
•*kkkkk••••••*k••**k•••••••••kk•k•*•*****•••k***k
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Texture User's ~anual

BY

The Texture Support Group

Technical Manual 75-08

1978 January 19

DEPARTMENT OF COMPUTER SCIE~CE
THE UNIVERSITY OF BRITISH COLUMBIA

VANCOUVER, BRITISH COLUMBIA V6T 1W5

ABSTRACT

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Texture is a document formatting program designed for a
wide variety of applications ranging frow form letters to
technical reports. It features an exceptionally versatile
command language~ and permits great freedom in page layout.

This manual contains a description of Texture, together
with three supplements: an update newsletter describing new
features as of 1977 July, and descriptions of two conve nient
libraries, Eurekalib and Drawlib, developed by Mark Scott
Johnson.

This document was printed on an IBM 3800 printer, courtesy of
Block Brothers Industries, Vancouver.

Terms of Usage

The Texture package was developed by:

Michael Garlick
Vincent Manis
Thomas Rushworth
Peter van den Bosch
Tjeerd Venema

under the auspices of the Department of Computer Science,
University of British Columbia.

The Texture package consists of copyrighted material, and
is distributed under a License Agreement available from the
Department. Any reproduction, in whole or in part, of the
package without permission, other than that explicitly provided
for under that Agreement, Is strictly prohibited.

NEITHER THE TEXTURE SUPPORT GROUP NOR THE UNIVERSITY MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO THE TEXTURE PACKAGE.
Neither the Texture Support Group nor the University shall be
held liable for errors contained therein, or for incidental or
consequential damages in conjunction with the furnishing, per
formance, or use of Texture.

Copies may be made of this manual, but in such a case, a
signed copy of the Document Agreement on the next page must
be give~ to the Licensee.

Copyright (cl 1975, 19~6 Texture Support Group
All rights reserved

Document Reproduction Agreement

I agree that the copy of the Texture User"s Manual which I
receive is for my own use in connection with a licensed copy
of the Texture package. I understand that the Texture package
consists of copyrighted material, and agree to conform to ~II
provisions of the Program License Agreement, a copy of which is
appended to this manual.

Date - • . • • • • • • • • • - · · · · · · · · · ·

Signed ..•.•......... . ..•.................

Texture User's Manual 4

<T,n,justification-method> Relative Tabbing

This will cause a tab to column 'n' relative to the sum or
the left block edge and the left indent, justifying the last
piece of text according to 'justification-method'. The value of
'justification-method' must be one of 'JUSTIFIED', 'RAGRIGHT',
'RAGLEFT', or 'CENTRED ' . If 'justification-method' is om itted,
RAGRIGHT is used. IF 'n' is omitted, then the tab is made to
the next co I umn set by TABSET where co I umn 1 is def i ne.d to be
the sum of the left block edge and the left indent.

<TAB,n,justification-method> Absolute Tabbing

This will cause a tab to column 'n' relative to the left
block edge, justifying the l ast p i ece of text accord ing to
'justi ficat ion-method'. The value of 'justification-method'
must be one or 'JUSTIFIED'. 'RAGRIGHT'' 'RAGLEFT'' or 'CEIHREO'.
If ' just ifi cation-method' is omitted, RAGRIGHT is used. If 'n'
is omitted, then the tab is made to the next column set byTABSET
where column l is defined to be the left block edge.

<LINESPACING,n> Setting the line spacing

On typewriters there is usua lly a sw it ch which controls
what is known as 'single', 'double' or •tr iple' spacing. This
means that a carriage return will result in the paper being
advanced one, two or three lines, respect ively. In Texture this
command contro Is the .!l!:!!!!Qfil: of b I ank I i nes between Q!1Y two .t4oed
I ines. Thus s ingle spdcing is set by <LINESPACWG,O>, double
spacing by <UNESPACitlG,1> and so on, for any positive value .

<PARAGRAPH-SPACING,n> setting the paragraph spacing

This command sets the number of blonk lines to be left
between paragraphs by the 'P' command to 'n".

<LI,n> and <RI,n> Indentation

On typewriters there are usually a pair of •margin' buttons
which set the left and right margins. In Texture it is these
commands which act as 'margin' buttons. <LI,n> resets the left
margin to column 'n', and <RI,n> resets the right margin 'n'
columns to the left of the right printing edge.

It is worth knowing that they act much the some way as the
eQuivalent buttons on a typewriter. If you have already typed a
line, and then reset the feft margin, the effect or your reset
will not be seen until the next line. Similarly if you ore past
column 'n ' , and reset the right margin to column 'n ', the effect
wi II not be seen until the next line.

Texture User's Manual 5

Indentation of the left margin hos no effect on tab
columns. <T,n> Wi 11 hove the some effect ofter a <LI,m> as
before (for n>ml. The expected occurs For a <P> command, · If we
think. of paragraphing as a new- line followed by spac ing over
some number of col umns; that Is, the paragraph does not begin ~t
a given column, it is~ some number of columns from the left
margin.

<BREAK-WORD-ON-EOL> and <NOTBREAK-WORD-ON-EOL>

After any occurrence of 'BREAK-WORD- ON- EOL' the end of
source line always causes a break between words until the next
'NOTBREAK-WORD-ON-EOL' occurs. 'BREAK-WORO-ON-EOL' is
equivalent to appending a trivial blank. onto the end of each
source line.

2.2 Adjusting~ !!!.l!h.L!l 9 line

Texture normal IY adjusts all text so that both margins are
flush (like this paragraph) . IF a line is sudden ly terminated
by tne equivalent of a carriage r·eturn l<L> For example, or
<P>J, the line WIii only have the left-hand margin flush.
Sometimes, however, it is des i rable to centre some text within a
line Cos is, for instance, the title of this manual), or to have
several line.s coming out bllth a ragged right margin, as though
they were typed on an ord inary typewriter. For this, there ore
other modes of adjustment.

<JUSTIFIED>

This is the normal mode of adjustment. It causes both
margins to be flush.

<RA~RIGHT>

This is the sort of adjustment you get when you type
something using o typewriter. On l y the left-hand margin is set
f lush; the right-hand margin is set exactly where it was when
the I ine filled up and the processor hod to go to the next 1.ine.
This paragraph is on example of ragged right text.

<RAG LEFT>

This is the opposite of RAGRIGHT, and causes text to be set
with a ragged left and a flush right margin. There is little

use for such an adjustment mode, except in paragraphs like this,
and in setting concrete poetry.

Texture User's Manual 6

<CENTERED> or <CENTRED>

This mode causes each line to be centred as much as possible.
An almost equal number of blanks is put on each side of the I ine

to centre it. A gcod use of this mode is in titles, and the
title of this chapter is, indeed, centred. A poor use is in

normal documents, unless one is demonstrating centred text, as
in this paragraph.

<SPLIT>

This is not so much an adjustment mode as a command which
causes a I ine to be split into two parts, one set Flush against
the left-hand margin, the oth9r flush against the right. It is
useful in tables of contents, and for other similar effects.
For example, the I ine

<L> Chapter 3 .•.•. <SPLIT> . • ••• 42 <L>

would come out

Chapter 3 ••••.

<CHAR,x> Special characters

42

Some line printer print chains have a number of special
characters on them which are very useful for producing handsome
documents. These include braces C{}>, square brackets C[ll,
superscript numbers !01234567B9> and other graphic characters.
Since these characters do not have an equivalent on most data
entry equipment (e.g., Terminals and, heaven forbid,
keypunches), it is difficult to get at them without a facility
I ike CHAR. The value 'x' is the decimal equivalent of the
bit-sequence of the particular character. Thus, I, which is not
included on some teletypes, has the bit-representation 01001111
in EBCDIC, and is therefore "<CHAR,79>. Having to remember
numbers is almost as annoying as not having the characters
available in the first place, and it will be explained in the
next section how one can define mnemonics for one's favorite
special characters. Al I cl,arocters avoi I able on the TN print
chain are given (hopefully meaningful> mnemonics by using the
PAR=SYSLIB feature on the $RUN command which initiated execution
or Texture (see Appendix Bl. To avoid confusion with the
Internal representation or some special markers, any value or
'x' which is less than 64 is turned into 64.

2.3 Cose shifts

Just as not every input device has a full character set, so
not every input device has lower-case characters. It would be

Texture User's Manual 7

very tiresome if we had to do all our
CHAR, and in recognition of this,
source editing commands.

lower-case letters with
Texture provides several

<DOWN> and <NOTDOWN>

After a DOWN, every text character from "A" through "Z" is
automatically turned into its lower case
NOTDOWN or UP is encountered . EureKa
affected by this translation.

equivalent until a
program text is not

<UP> and <NOTUP>

After an UP, every text character from "a" through "z" i s
automatically turned into its upper-case equivalent until a
NOTUP or DOWN is encountered. Eureka program text is net
affected by this translation.

<SET-SEIHENCE ,strl, str2>

This primitive changes when Texture is to start a new
sentence. If while building a word, any of the characters of
'strl' is encountered and none of the characters of 'str2' is
encountered in the remainder of the word, then the next word
will begin a new sentence. The default value of 'strl' is '.?!'
and of 'str2' is al I the upper- and lower-case letters as wel 1
as the digits zero through nine.

<AUTOCAP> and <NOTAUTOCAP>

After an AUTOCAP the first letter of the first word of
every sentence is capitalizeo until a NOTAUTOCAP is encountered.
Eureka program text is not affected by this translation.

2.4 Some special ~eraiors

For convenience, Texture defines some single-character
operators which are not treated as text, but have an effect on
the character which follcws them:

1.

2.

3.

places an underscore under the next character .
"ba_th" becomes "ba!h" on output.

".>" causes the next character to be shifted up.

Thus

TllUS,
11 .)mc.>phee" becomes "McPhee". This can be very useful
in DOWN mode.

"¢" causes the next character to be shifted dcwn. Thus,
"¢E.¢E.¢Cummings" becomes "e.e.cummings" . This is very

Texture User's Manual

1. USING TEXTURE IMMEDIATELY ..•.•••••........•.............. 2
2. SOME MORE TEXTU~E • . . . • . . . • • 3

2 .1 Tabs • • • • • • • . • • • • • • • • . • • . • • • • • • • • • • • • . • . • • . • • . • • • • • • • • • 3
2.2 Adjusting text within a line ••••..••••..•••.•..••••..• 5
2.3 Case shifts .••••..•.•••••••••••••••.•.•••.••••.•.••••• 6
2.4 Some special operators ••.•••••••.••...•••.••••••.••••• 7
2.5 Headers and Footers ••..••............................ 11

3. EUREKA! .••.••.•••••.••••..•...••.•...••••••..••.••.••••• 13
3 .1 A program examp I e • . • • • . • • • • . • • . • . . • • . • • • • • • • • • . . 14
3.2 Neutral evaluation ••••••••••••••••••••••••••••••••••• 17
3.3 Some Eureka Functions .•••...••.•••..••..••••••••.•••• 17

3.3.1 Lexical comparison •••.••..••••••••••..•••...•••• 18
3.3.2 Numeric computation ••..••••••••.•••••••.•••••••• 19
3.3.3 string manipulation •.••••..•..•.•••••..••••••.•. 20
3.3.4 User internal function definition •••.••••.•••••. 21
3.3.5 User external function definition •••••••.•.••••• 23
3.3.6 Function deletion and garbage collection •••••••• 24
3.3.7 Eureka programs in Texture text•.........••. 25
3.3.8 Eureka input and output ••••••••••••••.•••••••••• 26
3.3.9 Miscellaneous functions •••••••••••.••••••••••••• 28
3.3.10 Altering the Eureka special characters ••••••••• 30

4. THE REST OF TEXTURE ..•.••.•.•••••••••••••••••.•••••.•.•• 30
4.1 Environments ..•.•.•••....•.•••••••.••.•••••.••••••••• 30
4. 2 Layouts • • . • • • . • . • • . . • • . • • • • • • • • • • • • . • . . . • • 31
4.3 Blocks ••.••••.••.•••••••••••••••.••...•...•...•...... 32

4.3.1 Standard blocks ••••••••••••.•.•.••••••••••••••.• 32
4.3.2 Temporary blocks •••..•••.•.••...•••••.•••••••••• 34

4.4 Accessing absolute page locations •••••••••.•.••.•••••• 37
4. 5 Lines and boxes ••••••••••••••••.••.••••••• ,. • . • • • • • • . . 38
4.6 Footnotes································~··········· 40
4.7 Modifying Texture's I/0 stream ············- ·········· 43
4.8 Events •••••.•.•..•••••••••.•...••••••.••.•••••••••••• 43
4.9 Miscellaneous functions ••••••••••••••••••••.••••••... 44
4.10 Setting Texture's special purpose characters •••••••• 46

5. Appendix A - Defaults ••••.••••••••••••••••••••••••..•••• 47
6. Appendix B - the SYSLIB library ••••••••••.•••..••••••••• 49
7. Appendix C - the SYSTEM I i brary •••••••.••••.••••...•••.• 51
8. Index •••.•••...•••.•.•.•••••..•..••.••••••••..•.••...••• 56

/Wai labi I ity

1

TEnU_R_E: ! ~ ~

"It is shaped, sir, like itself, and it is
as broad as ii' hath breadth; it ls just so

high as it is, and moves with its own
organs; it lives by that which nourisheth

it, and the elements once out of it, it
transmigrates."

Anthony and Cleopatra

Texture can be obtained using the fo 11 owing MTS RUN comrnar,d
(With the PAR field optional):

$RUH cs:TEXTURE SCARDS=sourcefile SPUNCH=outputfile
SPRINT=listingfile PAR=SYSLIB

where SCAROS specifie~ the user input file, SPUNCH, the file on
Which Te><ture wi 11 initially begin text output, SPRINT, the Fi le
which will contain error messages and the output or the LIST
command, and the PAR field indi cates to Texture to U3e the
system library or predef ined Eureka functions lsee Appendix Bl.
If the ' SPUNCH=outputr i I e' is om I tted on the RUN command,
Texture will default its output to the NTS file '-TXTDOC'.

The input 10 Texture is a stream of text. This text may be
broken across the 'boundaries' imposed on such a stream by the
harsh practicalities or the real world: such boundaries as The
end of a cord or record in a line-Fi le or on a tape . To the
document processor, however, oil this looks like one contiguous
stream or text. The text will probably include the text of the
document which Texture eventua ll y outputs; but mixed with this
prose there will in gensral be remarks to the processor In The
form or Eureka calls. Eureka is a language for the definition
and expansion of macros Which define pr imi tive Functions ror
these purposes, along with some conditional evaluation,
input/output and string manipulation primit ives. A E~reko
program Is o Eureka ca I I , which Is genera I I y enc I osed in the
delimitiers <and>. The input to the document processor is
therefore first examined by Eureka, which either ignores the
text (if it is not inside the Eureka call delimitiersl or
evaluates the text if it is a call. The value of a call is
either scanned anew or, if it was o neutral cal I (one preceded
by the symbol ':' l, it Is ignored. When Eureka "ignores" text,
It passes the text along to Texture proper lthe document
processor) which outputs the text in a finished form.

The form or the output text is controlled by the calling of
primitives (described below) which affect the processing oF
subsequent text as soon as they have been evaluated. To the

Texture User's Manual 2

user, then, it appears as though Texture is actually a set of
document processing primitives defined in Eureka, and that the
Eureka output routine is one which formats the processed text.
This manual will describe the primitives (those which ore proper
to Eureka and those which define Texture> as though this is in
fact the case, although in reality this is somewhat of an
oversimplification.

The manual is organized into four parts. The first part,
entitled "Using Texture Immediately", is concerned with the
basics, including a few useful commands. The second part, "Some
t1ore Texture", gives the remaining commands I i ke I y to be needed
by the average user. The third part is "Eureka!" Which
introduces the user to writing programs in Eureka. The fourth
port is entitled "The Rest of Texture" and gives al I the other
commands and advanced concepts which remain.

!- Using Texture Immediately

If one knew nothing else about Texture than how to run it,
it would be possible to feed some lines of raw text to Texture
and to get the text printed out again, neatly formatted for a
typewriter-size page.

This is seldom adequate, however. In any document it is
necessary to be able to produce paragraphs, underline words and
tab to desired columns. -These are accomplished by means of
"commands" to the processor, and it is perhaps most convenient
to think of them as "asides" or "proofreader"s marks". Like
proper asides, they are enclosed in parentheses -- in this case
angle brackets C< and >l. This naturally precludes the use of
angle brackets for any other purposes, such as mathematical
notation, since the processor always thinks of them as command
delimiters, and the user should be aware of this. In the next
section it will be explained how angle brackets can be produced
as ordinary text.

Commands may be inserted anywhere in the text: whatever
their effect is, it will be felt at the point at which they
occur. Whenever possible, Texture acts the way a typewriter
would and commands are treated as though they were special
buttons on a typewriter. The most important commands, and their
effects on the text, are the following:

<P,justification-method> New paragraph

Advance to a new line using 'justification-method' to
justify the last line and space in X spaces from the current
left-hand printing edge where Xis the current paragraph-inaent
(default is 5). The value of 'justification-method' must be one
of 'JUSTIFIED', 'RAGRIGHT', 'RAGLEFT' or 'CENTRED'. If
'justification-method' is omitted, it defaults to RAGRIGHT if

Texture User's Manual 3

the current global justification method is JUSTIFIED, otherwise
it defauits to the current global justification method. All the
paragraphs in this document were started with a <P> before the
first word in the paragraph.

<L,n,justification-method> New line

Advance to a new line 'n' times en must be integral)
justifying the lines using 'justification-method'. The value of
'justification-method' must be one of 'JUSTIFIED', 'RAGRIGHT',
'RAGLEFT' or 'CENTRED'. If 'justification-method' is omitted,
it defaults to RAGRIGHT if the current global justification
method is JUSTIFIED, otherwise it defaults to the current global
justification method.

<U> and <NOTU> Underlining

Every word between a <U> and the next <NOTU> w i I I be
under I i ned. The blanks separating these words ore not
underlined. Letters, digits and hyphens within words a:-e
under I i ned, but punctuation is not. In section 4 1M
description of the pair of functions UNO and NOTUNO will explain
how the set of characters which is underlined may be changed.

_g. Some ~]"ex_tur~

2.1 Tabs

As anyone who has ever used a typewriter will know,
convenient to be able to jump, at the touch of a single
to a predetermined column. Almost all typewriters
foci I itY for setting •stops' at such columns and so has
Fol lowing the usual terminology, this foci I ity is
tabbing.

<TABSET,n> Setting tab-stops

it is
button,
have a

Textu1·e.
cal led

The value 'n' is a number correspcnding to a column. A
tab-stop is set at that column. Thus, <TABSET,26> wil I set a
tab-stop at column 26. The meaning of the word "column" is
dependent on the type · of tabbing being done Csee TAB and T).

<TABCLEAR,n> Clearing tab-stops

This tios the opposite effect of TABSET. The tab-stop at
column 'n' is removed. <TABCLEAR>, without a value 'n', causes
all tab-stops to be removed.

Texture User's Manual 8

useful in UP mode, to avoid having to shift down for a
single character.

4. "*" causes the next character to be treated I iteral IY as
text. Thus, "15*¢EACH" becomes "15¢EACH", not "15eACH"
as it would have been without the asterisk. Similarly,
"*<P>" does not cause a new paragraph, but simply
causes the text "<P>" to come out (which is the only
way this document could have been written).

5. "I" causes the next character to be overprinted on the
previous. Hence, "al"" becomes 11 0 11

, and 11 :/<CHAR,191>"
becomes":".

6. "," is replaced by a blank on output. The difference
between "o,b" and "a b" is that "a b" is two words, and
may be broken across lines or separated by extra spaces
ofter justi Ficotion, while "a,b" is a single word which
happens to have a blank in it. The character which
replaces the , is or is not underlined in underlining
mode, depending on whether the character would normally
be underlined. Thus a blank, which is the default
character, would not be underlined.

These operators always act upon the next text character.
Thus two or more operators might appear in a row and so affect
the same text character. !e.g., 11_o1a" results in "h"•)

<SET-op,c> Setting special characters

It is not necessary to consider oneself stuck with the six
special characters given above. Sometimes these particular
characters ore inconvenient, and we'd prefer another set. In
the <SET-op,c> commands, ••~• becomes the special character
denoted by "op", where "op" means the following:

<SET-TEXT,c> 'c' is henceforth treated as ordinary text. This
can be convenient if one is not using one of the special
characters and wants to be Free from the bother of having
to put an asterisk in Front of any use of 'c' in the
text.

<SET-BREAK,c> 'c' is henceforth treated, the way a blank is now, ·
as a break between words. Hereafter, "acb" is treated as
the two words "a" and "b".

Texture User's Manual 9

<SET-NTB,c> 'c' is henceforth treated as a non-trivial blank
(the way, is by default!. Thot is, from now on, 'c' is
replaced by a blank on output !described above).

<SET-OPC,c> 'c' is henceforth treated as an overprint operator,
the way I is by default.

<SET-LIT,c> 'c' is henceforth treated as
operator, the way* is by default.

a I iteral-next

<SET-DOWN,c> 'c' is henceforth treated as a down-shift operator,
the way¢ is by default.

<SET-UP,c> 'c' is henceforth treated as an up-shift operator,
the way~ is by default.

<SET-UNDER,c> 'c' is henceforth treated as an
underscore-operator, the way_ is by default.

<LIST,nome> and <NOLIST> Turning the source listing on and off

The action of these commands is obvious: LIST causes the
source to be listed on the file 'name•. If 'name' is absent,
the I isting file becomes the Hie attached to SPRINT. NOLIST
wi 11 turn off the I isting, unti I the next LIST command.

In LIST mode, each line of source text is echoed to the
listing file in the following form:

A. The source file line number, useful For editing
purposes.

B.

c.

The source line itself enclosed in vertical bars
I I >.

The mode in which the processor was operating at the
time it ended processing the previous source line ond
began processing the current line (the point of the
line break.). The possible modes ore:

T - Texture. The
document text at
break..

processor was assembling
the point of the line

F - Function. The processor was evaluating a
Eureka col I at the point of the I ine break.

L - Literal. The pronassor was scanning over o

Texture User's Manual 10

D.

E.

F.

G.

Eureka literal at the point of the line
break.

I - Input. One of the Eureka primitives RC,
RFN, RLN, RNC or RS was calling for input at
the point of the I ine break.

The Eureka function nesting I eve I at tdh i ch the I I ne
break occurred. This is the number of< or:< symbols
which have been scanned for which a matching> symbol
has not yet been scanned at the point of the line
break. This field is blank if the processor is not in
'E' or 'L' mode at the point of the line break..

The Eureka literal nesting level at which the I ine
break. occurred. This is the number or" symbols which
have been scanned for which a matching' symbol hos
not yet been scanned at the point of the line break.
This field is blank if the processor is not in 'L'
mode at the point of the line break.

The input-primitive mode at the point
break. If the processor is in 'I' mode
of the line break this field contains
fol lowing:

of the I ine
at the point
one of the

R - Read. The primitive is reading the text at
the point of the line break. This is true
for al I input primitives except RFN.

F - functionscan. The RFN primitive is scanning
a function call at the point of the line
break. The mode applies to RFN only, it is
blank for all other input primitives.

L - Literalscan. The RFN primitive is scanning
a literal at the point of the line break .
This mode applies to RFN only, it is blank
for al I other input primitives.

If the processor is not in 'I' mode, then this field
may contain one or both of the following:

> - Trim stem on. All SOURCE lines to Texture
have leading blanks deleted.

< - Trim stern on. All SOURCE lines to Texture
have trailing blanks deleted.

The RFN function nesting level at which the line break
occurred. This is the number of <or:< symbols
scanned by the RFN primitive for which a matching >
symbol has not yet been scanned at the point of the
line break. This field is blank if the processor is

Texture User"s Manual ll

not in 'I' mode or if the level is O.

H. The RFN literal nesting level at which the line break
occurred . This is the number of'' scanned for which a
matching ' has not yet been scanned at the point of
the line brea~. This field is blank if the processor
is not in 'I' mode or if the level is o.

When an error occurs, the line, up to the point of error,
is listed and the error message is printed below it enclosed
within a box to distinguish it from surrounding text. Errcrs
are classified as fatal or non-fatal, a fatal error being o~e
where a logical course of action cannot be undertaken (e.g.,
I~voking a block instead of a layout). When a fatal error
occurs, the page currently being assembled is printed on the
output file up to the current assembly point, the error message
is given on the listing file and then processing halts. When a
non-fatal error occurs, on error message is given on the listing
file, or SERCOM if NOLIST is in effect, and processing
continues, with the offending point either being assigned the
default value if a default value exists, Oi' ignoring the point
if nothing is known about it (e.g., An undefined function).

<PH,n> Setting the page number

Texture wi II automatically
starting with page 1. Sometimes,
assembled chapter by chapter, if is
a number other than 1, and fer this
number to 'n'.

number pages sequentially,
when a document is being
convenient to start off with
reason, <PN,n> sets the page

If one wants to know the current page number for some
reason (and there ore good reasons, such as setting up a
bacl-.ward reference J, the command <Pl~> is a I ways rep I aced by the
value of the current page number. Thus the text "This is i:,oge
<PH>" becomes 11 Ti1 is is page 11" when it is printed.

2.5 H_eoders and footers

It is convenient to have some facility for putting headers
at the tops of pages and footers at the bottoms, so that a
person flipping through a document can find his place quickly by
looking for the appropriate identifying text. For the user's
convenience, Texture defines, by default, a header at the tcp of
each page and a footer at the bottom. The header is divided
into left and right parts, each of which may be set
individually. The r ight header is, by default, the page numter,
but it may of course be reset. This should be sufficient for
most uses, but if it is not, section 4 will explain how to
define one's own headers.

Texture User's Manual 12

<LTITLE,text> Setting the left header

The left header is set to •text'. On each subsequent page,
the text 'text• is put at the left top of the page. If •text'
is absent, as in <LTITLE>, the text that would appear at the top
of the current page also appears in the stre011 at this point
!that is, the value of <LTITLE> is the left title).

<RTITLE,text> Setting the right header

The right header is set to 'text'. On each subsequent
page, the text 'text' is put at the right top of the page. If
'text' is absent, as in <RTITLE>, the text that would appear at
the top of the current page also appears in the stream at this
point !that is, the value of <RTITLE> is the right header). The
value of <RTITLE> defaults to "<PH>", with the result that the
page number comes out at the top right of each page.

<TITLE,text> Setting the entire header

The header is set to 'text'. On each subsequent page, the
text 'text• is put at the top of the page. If 'text• is absent,
as in <TITLE>, the text that would appear at the top of the
current page also appears in the stream at this point Cthat is,
the value of <TITLE> is the page header).

Initially, the page header is given the value
"< L TITLE><SPLIT><RTITLE>", which is what causes the I eft header
and right header to appear at opposite ends of the same line.

<FOOTER,text> Setting the footer

The footer is set to 'text•. on each subsequent page, the
text 'text' is put at the bottom of the page. If 'text' is
absent, as in <FOOTER>, the text that would appear at the bottom
of the current page also appears in the stream at this point
(that is, the value of <FOOTER> Is the current footer).

<PAGE,justification-method> Skipping to the next page

On a typewriter, this is the equivalent of rolling the
current page out after justifying the last non-blank line using
'justification-method', rol I ing the next page in, typing the
header and page number and then moving the carriage to the first
column of the first I ine. The value of 'justification-method'
must be one of 'JUSTIFIED', 'RAGRIGHT', 'RAGLEFT' or 'CENTRED'.
If 'justification-method' is omitted, it defaults to RAGRIGHT if
the current global justification method is JUSTIFIED, otherwise
it defaults to the current global justification method.

Texture User's Manual 13

J. Eureka!

Eureka is a complete programming language in which Texture
is embedded as a set of primitives and through which full
comput ing power is availcble to the user throughout tht
processing of a document. The average user will not need to
Know very much about Eureka because he wi II only be ~iving
s imp I e commands to Texture. But i F it becont'es necessary to do
some complex calcu lations ru1d t o have different commands
performed depending on some condition, It . Is necessary to k.now
how Eure~a can be used as a programming language .

Fortunately, this is very simple. What follows then, is a
Child's Garden of Eureka.

Every Eureka program looks something li~e this:

<a,b,c, ••• ,z>

Each of the a,b,c, •.. ,z may be an arbitrarily long string of
characters. Eureka evaluates the protot~pe program above b~
scanning each of the a,b , c, .. . ,z For more Eureka programs.
These it evaluates first , and r~scans the values they return for
more Eureka programs . When it is finished scanning, it treat~
the value "a" as the name of a function, and 'calls' that
function. The function may use the values orb through z for
its own dark. purposes, and finally it returns a string of
characters as its value. Th is value replaces the program and is
Immediately rescanned by Eureka.

For example:

<EQ,5,<SUM,2,3>,YES,NO>

Eureka first evaluates all programs inside the main program, and
replaces them by their value. There is exactly one program
inside: the <SUM,2,3>, which, needless to say, adds its two
parameters and returns the result. Thus, when finished
scanning, Eureka Faces the program:

Now Eureka evaluates
compares its first and
returns the third,
Hence the result is

Of course, it
precise semantics:

<EQ,5,5,YES,NO>

the main program. EQ is a function which
second arguments and if these are eq~al

otherwise it returns the fourth argument.

YES

isn"t quite that simple. These are the

Texture User's Manual 14

1. There are three strings and a stack whose elements are
strings: a neutral, an active and a scanning string, and an
evaluation stack. A Eureka program to be evaluated is on
the active string and, at the ceginning of evaluation, the
neutral and scanning strings and the stack are empty.

2. Text is taken from the front of the active string and put on
the end of the neutral string, character by ct1aracter, unti I
a closing bracket C>l is encountered.

3. Text is taken off the end of the neutral string, character
by character, and put on the end of the scanning string
unti I an argument separator is encountered C,J. When an
argument separator is encountered, the text on the scanning
string is put on top of the stack. Step 3 is repeated unti I
an opening bracket C<l is encountered, at which point the
text on the scanning string is put on top of the stack as a
single stack ele~ent. Scanning resumes with step 4.

4. The stack represents the name and arguments of a function
call. The top element on the stack is the name of the
Function to be called, the remainder of the stack, in order,
gives the arguments. The last character on the neutral
string is examined. If this character is the neutral
evaluation character c:J, then this character is removed
from the neutral string, and the result of the Function cal I
Ca string) is put at the end of the neutral string. If this
character is any character but the neutral evaluation
character, the result of thefunction call is put at the
front of the active string. Evaluation resumes at step 2.

That is al I,
follows, to allow
evaluation):

except that
for quoting

the
of

algorithm is enhanced as
text Cwhich inhibits

a. In step 2, whenever an opening quote C"l is encountered, the
scanning level is incremented by one; whenever a closing
quote C'l is encountered, the scanning level is decremented
by one. Only at a scanning level of o Cthe initial level l,
does a closing bracket C>l terminate step 2.

b. In step 3, whenever a closing quote C'l is encountered, the
scanning level is raised by one; whenever an opening quote
(") is encountered, the scanning level is lowered by one.
Only when the scanning level is zero, does an argument
separator C,J cause text to be put on the stack, and then
only after being stripped of any leading•• and trailing '

3.1 A program example

The user may wish eventually to reproduce the output of
Texture in a book format, by photographic means. IF he does, he

Texture User's Manual 15

will probably want the page numbering to be placed differently
for odd-numbered Cright-handl pages than For even-numbered
Cleft-hondl pages. In most books, the page number on
even-numbered pages is on the left, and on odd-numbered pages en
the right. This might be done by the Following commands:

<LTITLE, "<EQ,<MOD ,<PN>, 2>, 0, "<PN>' , "<MYTITLE>' >' >
<RTITLE,"<EGl,<NOD,<PN>,2>,0,"<MYTITLE>',"<PN>'>'>
<STRIMG,NYTITLE,text>

Here, NYTITLE is a string which expands as the desired
header text. It is on the right top (and.the page number on the
left top) whenever the page number is even -- that is, when the
page number modulo 2 is zero -- and vice verso when it is o~d.
To clarify the Eureka scanning algorithm, let ~s trace through
the events at the top of a page.

At the top of a page, Eureka is looking at the fol lowing
situation:

lldocument text ••.

The bars represent the divisions cf the strings. To the left of
the first bar is the neutral string. Between the bars is the
scanning string, and to the right of the second bar is the
active string.

First, Texture causes the text of the title to be inserted
at the front of the active string:

ll<TITLE~document text

Eureka scans until it encounters the closing bracket C>J:

(step 2) <TITLEll>document text ..•

The arguments of the call Cthere is only onel are scanned until
on opening bracket (<l is encountered:

Cstep 3l <ITITLEldocument text

The function TITLE is called with no arguments, and the
is put on the active string (this was an active call):

(step 4l ll<LTITLE><SPLIT><RTITLE>document text ..•

The process repeats for LTITLE:

C steps 2-4> 11 <EGl,<MOD ,<PN>, 2>, o, "<PN>', "<MYTITLE>' >

result

Here, the ellipsis c ••. l Represents
"<SPLIT><RTITLE>document text •.. ". Again, step
scan to proceed to the first closing bracket:

the string
2 causes the

Texture User's Manual

Cstep 2) <EQ,<MOD,<PHI l>,2>,0, •••

The function PN is evaluated:

(step 3-4) <EQ,<MOD,118,2>,0, •••

Again, the end of the first complete coll is found:

(step 2) <EGl,<MOD,8,211>,0, •••

This time, each argument of the cal I is stacked:

l step 31 <EGl,<MOO ,8, 121, o, "<PN>', "<MYTITLE>' > •.•
(step 3) <EGl,<MOD, 18I ,0,"<PN>' ,"<MYTITLE>'> •••
(step 31 <EGl,<IMODI ,0,"<PN>' ,"<MYTITLE>'> ••.

This results in on evaluation stack which looks like:

and the string:

MOO
8
_g

<EQ, 11,0,"<PN>' ,"<MYTITLE>'> .••

16

The evaluation of the stock. produces o ca modulo 2), which is
put on the active string:

!step 4) <EQ, I l0,0,"<PN>' ,"<MYTITLE>'> •••

The scan continues.
algorithm) causes
enclosed in quotes:

Note that modification Cal Ito the scanning
the scan to pass over the closing brackets

I step 21 <EQ,0,0,"<PN>' ,"<MYTITLE>' 11> •••

Again, the arguments are scanned and stacked; modification lbl
Cto the scanning algorithm) · causes the scan to pass over the
opening brackets enclosed in quotes:

(step 31 <EGl,0,0,"<PN>', l"<MYTITLE>' I .. .
!step 3) <EGl,0,0, l"<PN>' I. ..
(step 3) <EGl,O,IOI •••
(step 3) <EGl,l01 •••
!step 31 <IEGII ..•

Finally, the stack looks like:

EQ
0
0

<PN>
<MYTITL~>

Texture User's Manual 17

This is evaluated: it is true that o=o, so the third argument
"<PH>" is the value, which is placed on the active string:

l *) l step 4 J 11 <PN><SPLIT><RTITLE>document text •••

And so evaluation continues: PN will evaluate to the page
number, SPLIT will cause an action to toke place in Texture and
will evaluate to the empty string, and RTITLE will evaluate to
the text of MYTITLE. Finally, "document text • • • " can be
scanned and processed.

3.2 !i~tr_gJ_ ev~_l_ygti~D

Suppose the definition of LTITLE hod been as follows:

<LTITLE,"!<EQ,<MOD,<PN>,2>,0,"<PN>',"<MYTITLE>'>'>

That is, the function EGI has a neutral evaluation symbol 1:1 in
front of it. Then everything would hove been rather the same,
up to the point marked"(*)" above. Just before this point, the
Eureka scanning area looks like:

:I l<SPLIT><RTITLE>document text .••

(that is, the neutral evaluation symbol preceded the call of EQ,
which has Just been stacked and evaluated). Then, when the
value of the EQ is returned l<PN>), this value - is put on the
neutral rather than the active string, and the result is:

lstep 4) <PN>ll<SPLIT><RTITLE>document text •••

A careful scrutiny of the scanning algorithm will convince the
reader that this "<PN>" will never be evaluated, but rather that
it will be passed on to the document processor. In that case,
the text at the top of the page will be the string "<PN>", and
not the value of <PH>, Which is a number.

This is the difference between neutral c:<fn>l and active
l<fn>l evaluation: the result, or value, is not rescanned and
therefore if it contains any Eureka programs, is not evaluated
any Further; the result of an active evaluation is rescanned.
The reade~ will soon realize that this is one way of getting
function calls to pass through Eureka land so to the document
processor) without being evaluated. Beyond this, the document
processor user has I ittle use for neutral evaluation; however,
the Eureka programmer may find neutral evaluation valuable to
prevent the values of calls from bein~ themselves evaluated.

3.3 ~ .s.!:!.!:lli functions

Texture User's Manual 18

3.3.l Lexical comparison

The following functions depend on lexical ordering. It is
assumed here that the alphabet over which strings may be formed
is ordered in some fashion. (This will differ by location:
EBCDIC ordering is slightly different from ASCII ordering, but
it is usually fairly logical. Usually, the blank is lowest, and
the letters and digits are ordered a<b .•• <z <A<B •.• <Z
<O<l •.• <9.)

Two strings aA and bB (Where a,b are single characters and
A,B are strings> are lexically related as follcws:

if a< b then aA < bB
if a> b then aA > bB
if a= b then aA r bB if and only if Ar B,

where r is one of<, >, or=
The empty string is lexical IY less than any non-empty
string and equal to itself.

<EQ,a,b,true,false>

If 'a' is lexically equivalent to 'b', then the value is
the value of 'true•; otherwise it is the value of 'false'.

<NE,a,b,true,false>

If 'a' is lexically not equivalent to 'b', then the value
is the value of 'true•; otherwise it is the value of 'false'.

<LT,a,b,true,false>

If 'a' is lexically less than 'b', then the value is the
value of 'true•; otherwise it is the value of 'false'.

<LE,a,b,true,false>

If 'a' is lexically less than 'b', or equivalent to 'b',
then the value is the value of 'true'; otherwise it is the value
of 'false'.

<GT,a,b,true,false>

If 'a' is lexically greater than 'b', then the value is the
value of 'true•; otherwise it is the value of 'false'.

'

Texture User's Manual 19

<GE,a,b,true,false>

If 'a' is lexical IY greater than 'b', or equivalent to 'b',
then the value is the value of 'true•; otherwise it is the value
of 'false'.

3 •. 3. 2 Numer i c COl11fillt at i cm

As well as the above functions which act on a lexical
ordering of the arguments being compared, the following
Functions are available which operate on an integral comparison
of their arguments. If an argument is not integral, a 11.•arning
message results and the offending argument is replaced by 'l'.

<IEQ,a,b,true,false>

If 'a' is numericol lY equal to 'b', tt1en the value is the
value of 'true•; otherwise it is the value of 'false'.

<#NE,o,b,true,fatse>

If 'a' is numerically not equal to 'b', then the value is
the value of 'true'; otherwise it is the value of 'false'.

<#LT,a,b,true,false>

If 'a' is numerically less than 'b', then the value is the
value of 'true'; otherwise it is the value of 'false'.

<#LE,a,b,true,false>

If 'a' is numerically less than or equal to 'b', then the
value is the value of 'true'; otherwise it is the value of
'false'.

<#GT,a,b,true,folse>

If 'a' is numerically greater than 'b', then the value is
the value of 'true•; otherwise it is the value of 'Folse'.

<#GE,a,b,true,false>

the
If 'a'
value

'false'.

is numerically greater than or equal to 'b', 1hen
is the value of •true'; otherwise it is the value of

Texture User's Manual 20

<SUM,a,b>

The value is the integer SUII of 'o' and 'b'.

<DIFF,a,b>

The value is the integer difference of 'a' and 'b'.

<PROD,a,b>

The value is the integer product of 'a' and 'b'.

<DIV,a,b>

The value is the integer quotient of 'a' and 'b'.

<MOD,a,b>

The value is the remainder after integer division of 'a' by
'b'; that is:

<OIFF,a,<PROD,<DIV,o,b>,b>>

3.3.3 String manipulatiQn

The following primitives are provided to allow the analysis
of a sequence of characters.

<STEM,string,n>

Returns the first 'n' characters of 'string'.

<STERN,string,n>

Returns the last 'n' characters of 'string'.

<TRIM-STEM,string,n>

Returns all but the first 'n' characters of 'string'.

<TRIM-STERN,strlng,n>

Returns all but the last 'n" characters of 'string'.

Texture User's Manual 21

<LENGTH,string>

Returns the length of 'string'.

3.3.4 ~ internal function Q_efinitl_Qn

The following primitives are provided to enable the user to
define his own functions.

<STRIHG,name,text>

This functions defines 'text' to be a string with the name
'name'. Henceforth, whenever "<name>" appears on the active
string (see semantics, page 131 evaluation wil I replace it with
"text".

<SEGMENT,name,gapl,gap2, ••• ,gapn>

This function 'segments" the string·with the name 'name' on
the various 'gap's, which are strings. Segmentation is done os
follows:

For each 'gap', every segment of 'name's string is checked
for an occurrence of 'gap' in that segment; for each such
occurrence the segment is broken into two new segments, the port
before the occurrence and the part after. Between these two
segments there is created a numbered segment gap !if it was
created by matching the k'th argument, then it is the segment
gap numbered kl.

For example:

<STRIHG,string,most people like cheese>

creates a string (named 'string') consisting of a single
segment, which we will represent as:

(most people like cheese)

If this is followed by the command:

<SEGMEHT,string,e,o>

the result will be the fol lowing string:

(m)2(St p)l 2(pl)l(likll(ch)l l(s)l

Evaluation of the text "<string>" will now result in the text:

111st ppl lik chs

Texture User's Manual 22

However, simple evaluation of the text "<string,$!>" Will
result in the text:

mst p$!p1$! lik$! ch$!$!s$!

and "<string,a,b>" results in:

mbst pabpla lika chaasa

That is, the first argument replaces the gaps numbered land the
second argument replaces the gaps numbered 2. This can be
carried on for as many gaps as there are, of course. Missing
arguments are considered as on empty string where the missing
argument is a string argument and al where the missing argument
is a numerical argument, while excess arguments (those for wllich
there is no gapl are ignored. Thus <SUM,a> will add l to c.

It is worth noting that, since the segmentation strings
·called 'gap' above are taken in left to right order, the pair of
commands:

<STRING,foo,abcabcabcabc>
<SEGMEHT,foo,ab,bc>

will result in 'Foo' taking the internal form,

l(C)l(C)l(c)l(c)

after 'ob' has segmented it, and that 'be' will thereafter fail
to segment 'foo' any further. If the arguments had been
reversed, as in:

<SEGMENT,foo,bc,ab>

the result would have been instead:

C a)21 a)2(al21 al2

The functions STRING and SEGMENT are, of course, how the
Eureka programmer defines macros with parameters. We could
define a simple definition function as fol lows:

<STRING, def i ne,"<STRING, I name I," I text I'>
<SEGNENT,lnamel,lparametersl>'>

<SEGMENT,define,lnamel,lparametersl,ltextl>

which is called as follows:

<define,repeat,"what,howoften',
"<LT,O,howoften,

"what<REPEAT,"what',<DIFF,howof'ten,l>>'>'>

The above cal I of 'define', incidentally, defines a useful
Function called 'repeat' which will concatenate 'howoften' Ian

Texture User's Manual 23

integer number) evaluations of a given string 'what' !which may
in turn be a Eureka program>.

For example, the ca11:

<repeat,+,5>

expands as fol lows (these 'snapshots' of the Eureka scanning
area give the situation at the start of each new application of
step 2 of the algorithm):

<repeat,+,5>
<LT,0,5,"+<repeat,+,<DIFF,5,l>>'>
+<repeat,+,<DIFF,5,1>>
+<repeat,+,4>
+<LT,0,4,"+<repeat,+,<DIFF,4,1>>'>

+++++<repeat,+,O>
+++++<LT,0,0,"+<repeat,+,<DIFF,0,1>>'>
+++++

3.3.5 User _e_><ternp! function defir,ition

Although Eureka provides a large variety of primitives, it
is occasionally neccessary for the user to do something unusual
which Eureka will not conveniently allow. To assist in this
regard Eureka has the following primitive to allow the user to
define and use his own external functions.

<SYSTEM,eureka-name,library,MTS-entry-name>

This primitive associates •eureka-name' with a code segment
which has an entry point 'MTS-entry-name'. The code segment is
found by loading 'MTS-entry-name' from the MTS file 'library'.
At any occurrence of the call <eureko-name,parl,par2, ..• parn>
after the corresponding SYSTEM coll, Eureka builds o string
descriptor for each of •parl', 'par2', .•• , 'porn' which is a
half-word followed by a sequence of' characters (the length Jf
which is contained In the half-word). A sequential list cf n
full-words is then built to contain the addresses of the
parameters with the i'th full-word contain ing the address of the
i 'th parameter. The address of the s,.-!tuence of' Ful I-words is
then put into general register l and control branches to
'MTS-entry-point'. The address of a standard 18 word save area
is supplied in general register 13. On return Eureka expects
that either general register o has the value O (returns the nul I
string) or general register o points to a full-word containing
the address of a string descriptor of the type described above
(returns a non-null string value).

If the 'library' parameter is omitted, the file TEXT:UREFNS
is used (see Appendix C For the description of its contents).

Texture User's Manual 24

IF 'HTS-entry-name' is omitted, it is assumed to be the same as
'eureka-name'.

In order to aid with communication bet~een a SYSTEM defined
Function and the document processor the ent ry points TXTERR and
IADROF are supplied. TXTERR enables the user to supply an error
message to the document processor error routines. For example:

CALL TXTERRCcode,message,lengthJ

would be o valid co ll From a FORTRAN progrom. IF code has the
value 0, the message is treated as a warning (I.e. the call
returns); otherwise the message is treated as on error (I.e.
the call will not return, processing ha lts!. The parameter
'message' specif i es a character string to be printed whose
length is given by the parameter 'length'.

The IADROF entry point returns the address oF its parameter
and is used as follows in a FORTRAN program:

J=IADROFCPJ

After execution, J contains the address of P (P can be of any
type).

3.3.6 Function deletion and garbage collecti~n

The following functions allow the user to discard
Functions, blocks, layouts o~d environments which have been
defined and ore no longer needed.

<DELETE-STRING,stringl,string2, ••• ,stringn>

The
deleted

strings 'stringl', 'string2', .•. , 'stringn' are
From Eureka's definition space and will no longer be

recognized.

<DELETE-BLOCK,blockl,block2, •.• ,blockn>

The blocks 'blockl', 'block2', •.. , 'blockn' are deleted
From Eureka's definition space and will no longer be recognized.

<DELETE-LAYOUT,layoutl,layout2, ••• ,layoutn>

The layouts 'layoutl', 'layout2', •.• ,
deleted From Eureka's definition space and will
recognized.

' I ayoutn' are
no longer be

Texture User"s Nunual 25

<DELETE-ENVIRONNENT,environmentl,environment2, ••• ,environmcntn>

The environments •environment!', 'environmenti•, ••. ,
'environmentn' are deleted From Eureka's definition space and
will no longer be recognized.

<DELETE-SYSTEN,namel,name2, ••• ,namen>

The functions 'namel', 'name2', ••• , 'namen' (which must
have been _defined using the SYSTEM primitive> are deleted From
Eureka"s definition space and will no longer be recognized. In
addition, the corresponding user supplied cede segments will be
unloaded.

<REC LAIN>

The garbage collector is invoked and all definitions
deleted via any of the DELETE-xxx primitives are cleaned out of
the definition space.

<DEFIHITION-SPACE-SIZE,n>

At the next garbage collection (either user or system
invokedJ, the new definition space wi I I have a size oF 'n" pages
C'n' must be an integer). If called without any arguments, this
function returns the current size of the definition space.

3.3.7 ~ programs l.!:! Texture .!ill

When defining a Eurel<.o program within Texture text it is
often desirable that the sequence of blanks which begin and end
a source line be deleted and not be considered os part or the
Eureka progr"Om. In this way, an indentation scheme which mokes
the Eureka program readable can be used wl ttiout any worry ,hat
indentation will cause extra blanks to be included as part of
the Eureka program. To do this, thilre are the Fol lowing
primitives:

<TR IN-LINE-STEM>

All source lines which are part of the SOURCE stream will
have all leading blanks deleted before they are Fed into Eureka.

<NOTTRIM-LINE-STEM>

All source lines which are part of the SOURCE stream will
not have oil leading blanks deleted before they are Fed inro
Eureka.

Texture User's Manual 26

<TRIM-LINE-STERN>

All source
hove all trailing
Eureka.

lines which are part of the SOURCE strea;n b!ill
blanks deleted before they are fed into

<NOTTRIM-LINE-STERN>

All source lines which are part of the SOURCE stream will
not have all trailing blanks deleted before they are fed into
Eureka.

3.3.8 Eureka input and output

The following primitives provide Eureka with the ability to
do input and output operations which are independent of the

• document source.

<RS,eof>

The value of this function is the next string of text, from
the current input medium, up to but not including an
end-of-string marker. By default, the input medium is the
document source stream; the end-of-string mark.er is a full stop
C.l. If end of file is encountered before the end-of-string
mark.er, the value of the call is the argument 'eof', which is
actively evaluated.

<RC,eof>

The value of this function is the next character from the
current input medium. The argument 'eof' has the same meaning
as for RS.

<RHC,n>

The value of this function is the next •n• characters from
the current input medium. If there are less than •n• characters
left in the input medium, the function returns al I the remaining
characters together with as many alternating NEWLINE and EOF
characters as are required to fill out the required 'n'
characters.

<RLN>

This function returns the rest of the current source line
if the current source line is non-empty; otherwise it returns
the next source line. If the next source line is the

Texture User's Manual 27

end-of-file, the function returns the EOF character.

<RFN,fail>

This function reads in the next balanced Eureka function
call !either active or neutral!. The call being read may not be
preceded by anything other than blanks, or an error condition
will occur. If on end-of-file is encountered instead of a
function call, 'fai I' is returned; while a badly formed function
generates an error.

<?RINT,string>

The argument 'string• is output to the current outp~t
medium. The value is the null string. By default, the output
meoium is the document processor, so that "<PRINT,string>" is
equivalent to "string", While "<PRINT,obc<PRINT,def>hjl<.>" i!>
equivalent to "defabchjk" !because the argument is evaluated
firstl. The output medium may, however, be set to another file
or device.

<INPUT,nome>

After this call, all the read primitives wi II read From the
file or device named by 'name'. If the argument •name' is
absent, the document source file again becomes the input medium.

The usefulness of this functicn may vary from operati~g
system to operating system. It may be used to read from a file
attached to one of the available input units however, end so
merge input from two separate sources together in the stream.
It should be remembered that RS peels off the end-of-string
marKer; naturally the end-of-string mark.er con be set to any
convenient character.

<OUTPUT,name>

After this call, PRINT will print into the file or device
•name'. If •name' is absent, the document proce5sor becomes the
current output medium.

<SET-EOS,c>

The end-of-string character for RS is set to 'c'.

For example, the user may be producing form letters. The
names and addresses of the people to whom these form letters ere
to be sent ore in a file called 'VICTIMS'.

Texture User's Manual 28

Thus the complete Texture input might look like (in terms
of the sample user function 'define', page 22):

<define,LETTER,"lnamel, I address I',
"<MY.ADDRESS>

<L>
lnamel
<L>
I address I
Dear lnamel;
<L>
<TEXT OF LETTER>'>

<define,MYADORESS,etc ••• >
<Define,TEXT OF LETTER,etc ••• >
<IHPUT,VICTIMS>
<repeat, "<LETTER ,<RS>,<RS, "<PAGE><BYE>' >><PAGE>' ,10000>

0 3.3.9 Miscellaneous fy_nction,

The following ore miscellaneous functions which are often
useful in producing documents.

<TIME>

The value is the time of day
twenty-four hour clock with 'hh'
minutes and 'ss' the seconds.
always given. l

<DATE>

in the form 'hh:mm:ss' on the
being the hours, 'mm' the
CNote that all six digits are

The value is the date In the form 'mmm dd, l9yy' where
'mmm' is a three character month abbreviotion, 'dd' is a two
digit date Cthe first digit of which is tlonk if the date is o
single digit) and 'YY' is the lost two digits of the current
year.

<SYSPARS>

This function returns the parameter list as specified by
the PAR= Field on the Texture run command.

<WARNING,message>

This causes the document processor to print 'message' as o
warning message on whatever unit is the current LIST unit.
Since the message is a warning and not an error, control will
return to the point of the col I. The Function returns empty.
All warning messages produced in this fashion are prefixed with

Texture User's Manual 29

'<><><>'.

<ERROR,messoge>

This causes the document processor to print 'message' as on
error message on whatever unit is the current LIST unit. Since
this message is on error, oil processing will halt ofter the
message has been printed. An error message produced in this
fashion is prefixed with '<><><>'.

<WARN> and <NOTWARN>

The action or these two primitives is to turn the
suppression or the printing of warning messages on and off.
After on occurrence of NOTWARH all warning messages will be
suppressed until o WARN is encountered.

<STATISTICS> and <NOTSTATISTICS>

The action of these two primitives is to control whether or
not to print the six llnes of statistics at the end of a run.
IF STATISTICS is in effect at the end or a run, the statistics
ore printed; if NOTSTATISTICS is in effect at the end of o run,
the printing or statistics is suppressed.

<MTS-LINE>

This Function returns the MTS line number or the last
SOURCE line read in. The line number is returned in the format
' ddddd.ddd' with up to three trailing zeros removed and the
Removed if the last three digits are zeros. This primitive can
be used together with LINE (see section 4.4) and MAX-BLOCKS to
put line numbers out beside the blocks in the following manner :

<STRING,CUR-LN-#,><MAX-BLOCKS,70>
<HANG, Lit~E, "<NE, :<NTS-LINE >, :<CUR-LN-#>,

"<STRING,CUR-LN-#,:<MTS-LINE>>
:<LINE,:<MTS-LINE>,

:<SUM,:<RIGHT>>>'>'>

The increase in the number of blocks is necessary in that
Texture retains any text given to it via each call or the LINE
primitive as a separate block.

<BYE>

Execution of Eureka (and therefore Texture> termina1es
immediately. Since this could result in port or the current
page being lost, it is o good idea to prefix the coll to BYE

Texture User's Manual 30

with a cal I to PAGE.

3.3.10 Afi~ring the Eurel'-.a special character~

Up to this point, Eureka has been described entirely using
the symbols C < :< > ' ", J. Occasionally it is inconvenient
to have these symbols as special characters, forcing the user to
prefix the characters with an asterisk. In order to alleviate
this problem, the following SET-op commands allow the user to
change the characters which Eureka recognizes.

<SET-FNOPEN,c> 'c' is henceforth treated as the
start-of-function character the way'<' is by default.

<SET-FNCLOSE,c> 'c' is henceforth treated as the end-of-function
character the way'>' is by default.

<SET-ARGSEP,c> 'c' is henceforth treated as the
separator character the way',' is by default.

argument

<SET-LITBEGIN,c> 'c' is henceforth treated as the start-literal
character the way" is by default.

<SET-LITEND,c> 'c' is henceforth treated as the end-literal
character the way' is by default.

<SET-NTRLINDIC,c> 'c' is henceforth treated as the
neutral-indicator character the wcy is by default.

~- The Rest of J~xtui-e

4.1 Environment~

Some sections of a document (such as footnotes and figures)
are in their own environments. This means that the text and
commands of one of these are processed with certain global
switches set independently of the text surrounding them. As
soon as, say, a footnote is entered, the old values of the
global switches involved are saved on a stack of environments
and a brand-new environment with default settings comes into
force. Included in an environment are the fol lowing:

left and right indents
underlining switch
case-shift switches
paragraph indent
word, sentence and line spacing
tab-stops
fill character
AUTOCAP mode

Texture User's Manual 31

justification method

The user is able to forcibly interchange environments by
the use of the following Texture primitives:

<ENVIRONMENT,name>

The current environment is saved under the name 'name'.

<ACTIVATE,name>

The current environment is replaced by the environment
named •name• •

These two Functions can be useful
erw i ronment For foot not es C for examp I el,
environment whenever a footnote is entered.

in setting up an
and recalling this

To accomplish this, one might, for example, give the
sequence of instructions:

<ENVIRONNENT,save>

Some instructions to set up the footnote environment

<ENVIRONHENT,foot-environment>
<ACTIVATE.save>
<define,footnote,lendl,"<ENVIRONMENT,current-environment>

<ACTIVATE,foot-environment>
<FOOT,lendl>
<ACTIVATE,current-environment>'>

Henceforth, where 'FOOT' would have been called, 'Footnote' is
called instead in exactly the same way.

4.2 Layouts

One of the most important aspects of Texture is that The
user can control the layout of his text. This is done by
defining a layout as follows:

<LAYOUT,name,partl,part2, ..• ,partn>

This defines a layout named 'name', consisting of n
'part"s. Each 'part' is the name, either of another layout or
of a block. The layout is defined as consisting of all the
blocks and layouts whose names are given, in The order in which
they are given. For each layout that is part of a layout
definition, the blocks of wt1ich the sub-layout consists replace

Texture User's Manual 32

the sub-layout. Thus
layout B consists of
IX,U,V,W,Y,Z>.

if layout A consists of IX,B,Y,ZJ and
CU,V,WJ, then layout A consists of

To ~ a layout (that is, to make a given layout the
~ layout) use the IUVOKE command.

<INVOKE,layout>

'layout' Is the name of a layout and will become the active
layout for the next output page and any subsequent pages until
another call of INVOKE. Thus, if one wanted a layout to become
immediately active, It would be necessary to command:

<INVOKE,layout><PAGE>

When the processor begins to assemble a new page of output
text, a copy of the active layout cal led the current
made. Thus all text is assembled into the curr~nt
any modifications made to the page structure Ccf.
blocks) are made to the current layout only.

4.3 fil..Qill

4.3.l Standard blocks

<BLOCK,name,left,right,top,bottom,textl,text2>

layout is
layout and
Temporary

This defines a block. A block is a segment or the printed
page, going From column ' l eft' to column ' right' and from line
'top' to line 'bottom'. Inside the space def ined by the block
there is room to put text. The first text that goes into ony
block is the sixth parameter, 'textl' (which may be an empty
str ing l which Is eva l uated in the document processor's default
environment. The next text to enter the block i s the seventh
parameter, ' text2' (Which may be on empty string) which is
evaluated within the environment which is active at block entry.
After this, text from the SOURCE streoin I~ put into the block.
To put th i s into perspective, Texture deF'ines a standard layout
as Follows:

<BLOCK,STANDARD-HEADER,5,68,1,1,"<TITLE><NEXT>'>
<BLOCK,STANDARO-TEXT,5,68,5,58>
<BLOCK, STAN0.4.RO-FOOTER ,5, 68,60 ,60, "<FOOTER><NEXT>' >
<LAYOUT,STANDARD-LAYOUT,STANOARD-HEADER,

STANDARD-TEXT,
STANDARD-FOOTER>

This results in the page you are now studying, and is probably

Texture User's Manual 33

adequate for most documents. Notice that oil these blocKs go
from columns 5 to 68, and that the haader and footer blocks ara
only one line deep. This means that on ly one line or head~r an1
one line of footer are possible. Notice also that the s~ondJrd
layout cou ld define its three consti t uent blocks to be In any
order and it would sti II produce the same layout but not t he
same results. For example if the Footer Is beFor-e the text,
then any change in the footer is not Felt until the next page;
but if it is after the text, any changes ore Felt on the~
page. The current b lock is defined as that block. into which
Texture is currently oseembl ing text.

<MAX-BLOCKS,n>

This primitive sets the maximum number of blocks which is
allowed in a layout (default is 20) to 'n'.

In order to allow the user to determine aspects of a block,
the Following block enquiries are also given.

<LEFT,block-name>

The
returned.
assumed.
layout.

left-most column number in block 'block-name' is
If 'block-ncme' is omitted, the current block is
Note that 'block-name' must be a block in the current

<RIGHT,block-name>

The
returned.
assumed.
layout.

right-most column number in block 'block-name' is
IF 'block-name' is omitted, the current block is
Note that 'block-name' must be a block in the current

<TOP,block-name>

The line number corresponding to the top of 'block-name' is
returned. IF 'block-name• is omitted, the current block is
assumed. Note that 'block-name' must be a block in the current
layout.

<BOTTOM,block-name>

The line number corresponding to the bottom of 'block-name'
is returned. IF 'block-name' is omitted, the current block is
assumed. Note that 'block-name' must be a block in the current
layout.

Texture user's Manual 34

<NEXT,justification-method>

The current block is terminated immediately using
'justification-method' to justify the last non-blank line in the
block. If 'justification-method' is omitted, it defaults to
RAGRIGHT if the current global justification method is
JUSTIFIED, otherwise it defaults to the current global
justification method.

<LINES-LEFT>

The value of this function is the number of physical lines
remaining in the current block.

<COLS-LEFT>

The value of this function is the number of columns
remaining in the current line.

4.3.2 Temporary blocks

Up to this point, all blocks and block features have been
described in static terms; once the boundaries of a block have
been set, they can no longer be changed in any way. This is not
always a desirable situation as is shown by the follo~ing
example.

Suppose a layout is desired in which a photograph is to be
placed under which is to appear a caption describing the
photograph, such as:

Texture User's Manual 35

I
11

1 11
! I
I
I

I I
I PHOTO I

2 I I
I I
11 CAPTIOH 11

I
I

11
3 11

! I
I

In many cases, it is not known ahead of time how long the
caption for the photograph is to be, and it would be desirable
if the CAPTION block were flexible (depending on the amount of
text in the captionl and both the bottom of block 2 and tt1e top
of block 3 depended on where the bottom line of the caption ends
up. What is needed then are two things: a method for "cutting
up" I arger b I ocks into smo I I er b I ocks and a method for
specifiying if this "cutting" is fixed lall dimensions known at
the time of the "cut"l or flexible !vertical height of "cut out"
b I ock is not known at the ti me the "cut" is made l. These new
temporary blocks could then be inserted into the current layout,
thus modifying the current page dynamically.

It should be noted at the outset that the creation of these
temporary blocks would only affect 1he current layout and that
when the page is completed, printed and the new current la~out
for the next page is created, the new current layout is a copy
of the active layout which has not been affected by any
"cutting".

The following primitives enable the user to make these
modifications to the current layout.

<V-CUT,bname,col,1-bname,r-bname>

This cuts the block named by 'bname' l'bname' mus1 be a
block in the current layout) vertically at column 'col' and
assigns the name '1-bname' to the black to the left of and
including the the vertical cut column and 'r-bname' to the block
to the right of the vertical cut coluffin and replaces 'bncme' by
'1-bname' and 'r-bname' Cin that order) in the current layout .

Texture User's Manual 36

If col i s om itted, it defaults to the current co lumn Ci.e. to
the value of <COLUMN>, see section 4.41 and I f 'bnome• is
omitted, it defaults to the current block. If on attempt is
made to cut through any part of a block int o which Texture hos
already placed text, or if the value of 'col' is not withln the
boundaries of 'bname", a warning is g iven and the cut is not
made.

<V-CUT-SWAP,bname,col,1-bname,r-bname>

The action of this primitive is identical to that of V-CUT
with the exception of the fact that 'bname' is replaced by
'r-bnome' and '1-bname' !in that order) in the current layout
which is the reverse or V-CUT.

<H-CUT-FLEX,bname,t-bnome,b-bname>

Th i s cuts the block. named by 'bname' I 'bname' must be a
block in the current layout! horizontally and Flexibly and
replaces 'bnome' by 't-bnome' and 'b-bname ' (in that order) in
the current I ayout. The exact I i ne at which t 1,e cut is rr.ade is
not set at this time, but when •t-bname• is entered, its s i ze is
continual IY increased as text is entered. Any explicit use of
the <NEXT> command will cause the bottom of 't-bnome' and the
top of 'b-bname ' to be fixed at the line wh i ch Texture Is
assembling when the <NEXT> command is encountered. If a <HEXT>
command is not encountered, 't-bnome' will automatically be
exited when the size of •t-bname' reaches the size of the
original block I 'bname' I from which it was formed. In this
case, ' b- bname' Is regarded as a zero height block.

<H-CUT,bname,line-num,t-bname,b-bname>

This cuts the block named by 'bnome' ('bname' must be a
block in the current layout) horizontal IY at I lne 'I ine-n•Jm' and
assigns the name •t-bname' to the block aoove and including the
line or the cut and 'bname' to the block below the line of the
cut and replaces 'bname' by 't-bnome' and 'b-bname' (in that
order) In the current layout. If 'bname' is omitted, it is
assumed to be the current block; if 'line- num' is om itted it i s
assumed to be the number of the line which Texture is
assembling. If 'bname' has more than one flexible edge, then an
error will result from any attempt to cut 'bname'.

Any attempt to cut through the part of a block which
contains text or any value of 'position' which is not within the
boundaries of 'bname' causes a warning to be given and the cut
is not mode.

Texture User's Manual 37

<REMOVE-FR011-LAYOUT,bnome>

This primitive removes the bloc!r. 'bname' ('bname' must be a
b I ock in tt,e current I oyout l from the current I ayout. An error
is generated if 'bname' is not a block in the current lauout.

<MANDATORY-TEXT,bname,strl,str2>

The mandatory text associated with 'bname' I 'bname' must be
a block in the current layout> becomes 'strl' and 'str2' where
'strl' becomes the mandatory text to • be evaluated in the
document processor's default environment and 'str2' becomes the
mandatory text to be evaluated in the environment which is
active just prior to the entry of 'bnome". If 'bname' has
already been entered, a warning is generated and the mandatory
text of 'bname' is not altered.

Returning to the above example of the photograph, the
desired effect can be achieved via the following sequence of
commands (assuming the outermost block hos been entered and no
more than twenty lines processed):

<H-CUT,,20,stand-textt,stond-textb>
<H-CUT-FLEX,stand-textb,stand-textbt,stand-textbb>
<V-CUT-SWAP,stond-textbt,35,stond-textbtl,stand-textbtr>
<H-CUT,stond-textbtr,30,photo,caption>
<REMOVE-FROH-LAYOUT,photo>

4.4 Accessing absolute l!..Q.9§ locations

Occasionally it is useful to be able to override the notion
of blocks and instruct the document processor to pu-r'o piece of
text at an absolute location on the current page. Texture gives
the following two primitives for doing this.

<LIHE,str,col-num,line-num>

The string 'str' i s put Into the current page on line
'I ine-num' starting at column 'col-num'. The values of
' I i ne-num' Ol)d 'co 1-num' need not be III i thin the range or t l)e
curr-ent block. If 'I lne-num' Is absent Ii .e. only two
parameters given) then 'line-num' defaults to the cur-rent Jin~
into Which Texture is assembling text. lf both 'co l-num' a~d
'llne-num' are absent (i.e. only one por-ometer given) then
'I ine-num ' defaults as above one! 'col-num' daFaults to the
current column where Textur-e is assembling text. If LINE Is
called wi th no parameters it returns the value of the current
I i ne number.

Texture User's Hanual 38

<COLUMtl,str, Ii ne-num,col-num>

The string 'str' is put into the current page in column
'col-num• starting at I ine 'I ine-num' and work.ing vertical IY
downward. If 'col-num" is absent Ci .e. only two parameters
given) then •col-num' defaults to the current column where
Texture is assembling text. If both 'I ine-num' and 'col-num•
are absent (i.e. only one para~eter givenl then 'col-num'
defaults as above and 'line-num' defaults to the current line
into which Texture is assembling text. If COLUtlN is cal led with
no parameters it returns the value of the current colul'ln number.

4.5 Lines and~

In many documents it is very useful to be able to present
tables of data in a neat and orderly fashion. Often this is
done through the use of boxes, setting off sections of data via
dividing lines . Although the ability to Just draw tables is
suitable for most applications, there ore cases where the user
might want only half a table, or arrow pointers or any other
structure which involves the concept of a line.

In this regard, Texture allows the user to mak.e up any
network of horizontal and vertical lines and will see to it, if
told, that if any or these lines cross that a suitable "crossing
character" will be used at this point. The following primitives
provide these features:

<H-LINE,lnum,left-col,right-col,str>

A horizontal line is drawn from column 'left-col' to column
'right-col' along line 'lnum' of the current layout. The string
'str' is used to build this line by overprinting all characters
of 'str' at each location along the I ine. The default value of
'lnum' is the current line number !the value of <LINE>>, of
'left-col' is the left edge of the current block. (the value of
<LEFT>), of 'right-col' is the .right edge of the current block.
Cthe value of <RIGHT>) and of 'str' is •-•

<V-LINE,colnum,top-line,bottom-line,str>

A vertical line is drawn from line 'top-line' to line
'bottom-line' along column •colnum' of the current layout. The
string 'str' is used to build this line by overprinting all
characters of 'str' at each location along the column. The
default value of 'colnum' is the current column number (the
value of <COLUMN>>, of 'top-line' is the top of the current
block. Cthe value of <TOP>), of 'bottom-line' is the bottom of
the current block. !the value of <BOTTOM>) and of 'str' is 'I'.

Texture User's Manual 39

<POINT,col-num,line-num,str>

A point is placed at co-ordinate C line-num,col-num) of the
current layout. All characters of 'str' are overprinted at this
point. The default value of 'col-num' is the current col~mn
(the value of <COLUMN>>, of 'line-num' is the current I ine (th~
value of <LINE>> and or 'str' is a blank. unless the pcint
coincides with an existing I ine in which case the correspondir,g
Join character is used Ccf. JOIN).

<JOIN,joint,str>

This primitive determines whot character or string of
characters is to be used when lines overlap in various ways.
The characters of 'str' are overprinted at any point where joint
'joint' occurs. The possible values of 'Joint' and the
corresponcting default values for 'str' are as follows:

TL or LT. Two I ines meet to for·m the upper-left corner of
a box. The default string is 'r'-

TM or MT. T~o lines meet to form an upright T Joint . The
default string is •-•.

TR or RT. iwo lines meet to form the upper-right corner of
a box. The default string is •, '.

ML or LM. Two lines meet to form a left side T joint. The
default string is 'I'.

MM. Two I i nes intersect to form a "p I us" Joint. Tr,e
default string is •f•.

NR or RM. Two lines meet to form a right side T Joint.

BL

The default string is 'I'.

or LB.
a box.

Two lines meet to form the lower-left corner of
The deFauit string is ,L,

BM or MB. Two lines meet to form an upside down T Joint .
The default string is•-•.

BR or RB. Two lines meet to form the lower-right corner of
a box. The default string is ,J,

HH. Two horizontal lines overlap. The default string is ,_,

VV . Two vertical I ines overlap. The default string is
'I'.

H. 'str' becomes the new string
lines. The default string is

for drawing horizontal

_,

Texture User's Manual 40

V. 'str' becomes the new string for drawing vertical
lines. The default string is •I'.

If the second parameter is omitted, JOIN will return the
current value of the string which is being used for the joir)t
Cthe second parameter!. If all the parameters are missing, the
automatic joining facility which Will join all crossing lines as
described above is turned on. The default mode of operation is
with automatic joining on.

<NOT JOIN>

The automatic joining facility is turned off. All crossing
joints Will not be replaced by the joint string, but will just
consist of the overprinting of the characters used to make up
each point of the lines.

4.6 Footnote~

The details of how footnotes are handled within the Texture
system are very complicated; but when using the STANDARD-LAYOUT,
these details are irrelevant and misleading. for this reason,
the use of footnotes within the standard layout is described
first, followed by a description of what happens in the general
case when an arbitray layout is being used.

<FOOT-FOOT,string>

This
'string•.
•string•.

associates
An!,J use of

<TEXT-FOOT,string>

This
'string'.
'string•.

associates
Any use

with the name 'FOOT-FOOT' the value
<FOOT-FOOT> after this point returns

with the name
of <TEXT-FOOT>

'TEXT-FOOT' the value
after this point returns

<FOOT,end-string> For the STANDARD-LAYOUT

All text following the occurrence of the FOOT primitive up
to the next occurrence of ' ena-strl ng' Is t r eote~ as o footnote
and is p laced at t he bottom of t he STANDARD-TEXT block. The
s tri ng wh ich is t he current va l ue of TEXT-FOOT i s used to
separate the foo t note from any text in t11e STANJARD-TE.XT block .
If tile foot not e does not Fit Wit hin t he STANDARD-TEXT bloc;I<.
bec;ouse Text ure h~s already f i l led most of the b lock, t he
rema in i ng text is placed at the bottom of t he STANDARD-TE XT
b lock of t he next page. No more than t he bottom half of t he

Texture User's Manual 41

block is ever used for footnotes and if more than one footnote
is encountered while bui I ding the some page, the second footnote
is placed below the first footnote, any overflow going onto the
next .page. The string associated with FOOT-FOOT is pieced
between footnotes if more than one Footnote occurs on the same
page.

<FIRST-FOOT,yes-str,no-str,not-a-footnote-str>

If called from within a footnote, this primitive returns
•yes-str' if this is the first footnote on the page and "no-str'
otherwise. If this primitive is called but not from within a
footnote, it returns •not-a-footnote-str'.

<TEXT-AHEAD,yes-str,no-str>

This primitive returns •yes-str' if there are footnote
la!,Jouts Which have been created to hold the footnote overflow
from the current page, otherwise it returns "no-str•.

In order to describe how footnotes are handled in the more
complicated case of an arbitrary la!,Jout, it is first necessary
to define a few terms.

The ori g inal~ (defined for any point in the la!,Joutl is
the block which conta ined that point before an!,J cutting was done
to the current layout.

Two layouts are meraed if they a; e brought together to form
a single page b!,J removing from one of the layouts any areas
which intersect with the other layout.

A la!,Jout is said to be domi nant in a merge if it retains
the areas of intersection of the t wo laycuts, thus causing the
other la!,Jout to lose the areas of intersection. This con be
looKed upon as if the non-domi na nt iayc_ut "shrinKs away" from
the dominant one; changes be i ng made to the dimensions of the
blocks in the non-dominant la~out as necessar!,J.

<FOOTNOTES-USE,layout-name>

This primitive specifies that '101,Jout-name' is the layout
into which Texture is to build footnotes.

The following is a more complete description of what occurs
within the FOOT primitive when a layout other than
STANDARD-LAYOUT is being used.

~

Texture User"s Manual 42

<FOOT,end-string> Extended for arbitrary layouts

All text following this primitive up to the first
occurrence of 'end-string' is treated as a footnote. The bottom
of the original block of the point at which the FOOT primitive
was encountered is found. The footnote layout is then searched
for the first occurrence of a block B which would contain port
of the bottom line of the original block were the two layouts
overlayed.

If the line which Texture is currently assembling is
further down the page than the top of B, then the top of 5 is
decreased by setting it to be the current line+ l. The text of
the footnote is then fed into Bin the same manner in which text
is always fed into a block, including the release of any
mandatory text associated with B.

If the footnote fits entirely within B, then the current
layout and Bare merged with B dominant. If the footnote
overflows B, then when Bis exited, the footnote layout and the
current layout are merged with the footnote layout dominont.
The remainder of the footnote is then fed into the block of the
footnote following B. This could cause a new copy of the
footnote layout to be made; for instance, if B was the last
block of the footnote layout, the next block of the footnote
layout is the first block of the next copy. This process is
continued, making as many copies of the footnote layout as
necessary.

If this occurs, then when processing returns to the
document and a new page is started causing a new current layout
to be made from the active layout, tr.en the new current layout
is merged with the next footnote layout in the I ist of footnote
layouts which have already been processed ahead. The footnote
layout is dominant in this merging which occurs before any other
processing is done In the newly created current layout.

If further footnotes are encountered, processing is done in
the same manner as expessed above including re-entry of whatever
block is determined for B 1i1ith the exception that If anot11er
footnote has already been merged into the current layout, then
the top of Bis decreased to the current line+ l + number of
lines used by the previously merged footnote. The merged
footnote is considered to be "floating" in that it is always
located directly below the line Which Texture is assembling; any
new merged footnotes then are merged below any previous
footnotes.

The default value for the footnote layout is described in
Appendix A.

Texture User's Manual 43

<HIH-MERGE-CUT,n>

Whever two layouts are merged, it is possible that the
non-dominant layout becomes quite fragmented. The
'HIN-MERGE-CUT" primitve allows the user to specify a width 'n'
such that any blocks with width less than •n• which arise during
a merging process are deleted from the current layout.

4.7 Modifying Texture's 1/0 ~

In order to modify tha location from which the documsnt
processor is taking its source document stream, the following
primitives are provided.

<SOURCE,name>

After this call, the document source file becomes 'name'.
If 'name• is absent, the source file becomes the Fi le attached
to SCAP.DS.

<SIHK,name>

After this call, the document processor output file becom~s
•name'. If name is absent, the output file becomes the file
attached to SPUNCH.

4.8 Events

There are a number of occurrences which It would be very
useful to be war~ed about by the processor. There are times,
for instance, when on~ would like to know that the processor has
just finished a line and is about to start on the next one; at
this point, one would like to insert some text. For this
reason, Texture defines~-

<HAt~G, event, text>

The argument 'text• is associated with the event named by
the argument 'event'. Whenever that event occurs, the text is
inserted into the stream. The •event' may be one of the
fol lowing:

LINE r.ew I ine
BLOCK new bloc!<.
PAGE new page
EOL end of source l i ne
EOF end of source file

t~ote that <HANG,event,o><HAHG,euent,b> is equivalent to

Texture User's Manual 44

<HANG,event,ab>. Since it is desirable that a source
end-of-file cause completion of all processing, the string
'<PAGE><BYE>' is initially hung on the EOF event. If HANG is
called without the second argument, it returns the string of
text currently hanging on 'event'.

<EMPTY,event>

Any text associated with 'event' is discarded. • An
occurrence of •event' will not cause any text to be inserted
into the stream. 'event can be any one of the events defined
for HANG.

4. 9 Mis~ l_l_an~ous functions

<CJND,chars> and <NOTUND,chars>

The argument 'chars• is a string of characters. After d
coll to UNO, the characters In 'chars' wil I be added to those to
be underlined whenever underlining mode i s active (I.e.,
Between a <U> and <NOTU>I. After a call to NOTUNO, the
characters in 'chars' will be deleted from those to be
underlined whenever underlining mode is active.

<WIOOW,n>

This function is called WIDOW although it actually helps
prevent "widows", a typesetting term which means that some small
amount of text is awkward!~ left on one page when . It belongs
with a body of text on the next or previous pa~e. In effect,
this function wil l cause a Jump to the next block if there are
at the moment of the call no more than 'n' physical lines
remaining in the current block. Notice that <WIDO~,n> is
equivalent to <#LT,<LitlES-LEFT>,n, '"<NEXT>'>.

<MIN-WS,n>

The minimum word spacing Cthe least number of characters
that are to separate words! is set to •n•. By default, this
value is 1, which is why most words in this document are
separated by one blank. If 'n" is absent, the current minimum
word spacing value is returned.

<MAX-WS,n>

The maximum word spacing (the greatest number of characters
that ore to separate words, after justification! is set to "n".
By default, this value is s.

Texture User's Manual 45

If i t is not possible to justify a given line with at most
'n' blanks between words, the justification routine gives up,
issues a message to that effect, and sets the line ragged .right.
Th i s is no solution to the problem of excessive spacing, of
course, but it is often better than having a line come out
unreadable because of unreasonable spaces between words. If the
user cores more about flush right margins than about spactng, he
need only set 'n' to some enormous value. If 'n' i s absent, the
current maximum wore! spacing value is returned.

<MIN-SS,n>

The minimum number of spaces between sentences Is set to
'n' (th is value is the standard 2 spaces, by default!. A
sentence Is defined as ending in o FUil stop and a
word-terminator Ca ful I stop and a blank, usuollyJ, where a full
stop is one oF '.' '!' or '?'. If 'n' is absent, the current
value is returned.

<PAGE-DEPTH,n>

The page depth is set to 'n'. For a normal I ine printer,
in most installations, the default value will be about 60. If
this is not so, it con be reset to the correct value by using
this function. Where possible, Texture Wlll attempt to •print
al I • n' 11 nes of the page cont i gu:,us I y; this means that If a
given installation's printer skips to a new page after 60 lines,
but permits this skip to be overridden by corr-iage contrc l ,
Texture will overr-ide the skip. This can be useful For
printing, say, 100-1 ine pages, of two columns, and
photo-reducing these, for- conference pr-oceedings, etc.

<PARAGRAPH-INDENT,n>

The paragraph indentation value is set to 'n'. By default,
this value is the usual, secretarial 5 columns. If 'n' is
absent, the function returns the value of the current setting.

<AS-IS,end-string>

The text following this call, up to the next occurrence of
'end-str Ing' is treated "as given". Each I i ne is output as
though each character or the input stream from the AS-IS call to
the to the •end-string' was prefixed by the literal-next
character. Thus no Eureka programs in the SOURCE stream are
evaluated, but events can still occur which cause EureKa to
evaluate a Eureka program.

Texture User"s Manual 46

4.10 Setting Texture's special purpose ~haracters

Occasional IY in a document it is useful to be able to
modify the characters which Texture uses For special purposes.
The following primitives aid in this regard.

<SET-FILLER, c>

The filler character (by default, a blank) is set to 'c'.
The filler character is put between words, between segments,
between the left margin and the first word, and between the lost
word and the right margin. Thus changing the filler character
(e.g., To a "."l Before a tab, will have the effect of
creating a tab-drop character. Naturally the filler should be
set back to a blank as soon as the tab is completed, or it will
be inserted everywhere.

<SET-UNDERSCORE,c>

The underscore character (by default, _l is set to 'c".
Whenever a character is to be underscored (i.e., After the
occurrence or the underscore operator, or after a <U>J it wi I I
now be overprinted with a 'c'.

<SET-NTC,c>

The non-trivial character (by default, a blank! is set to
'c'. The non-trivial character operator (by default, ~J is
henceforth replaced by a 'c'.

Texture User's Manual 47

Appendix A

DefouJts

The document processor defaults are set by feeding a stream
of Eureka functions through the processor. The Fellowing is a
list of those Functions which are processed, given so that the
document processor defaults can easily be seen.

<LTITLE,><RTITLE ,"<PN>' >
<TITLE,"<LTITLE><SPLIT><RTITLE>'>
<FOOTER,>
<BLOCK,STANDARD-HEADER,5,68,1,1,"<TITLE><NEXT>'>
<BLOCK,STAl<DARD-TEXT,5,68,5,58>
<BLOCK,STANDARD-FOOTER,5,68,60,60,"<FOOTER><NEXT>'>
<LAiOUT,STANOARD-LAYOUT,STANDARD-HEADER,

STANDARD-TEXT,
STANDARD-FOOTER>

<INVOKE,STANDARO-LAYOUT>
<FOOT-FOOT,>
<TEXT-FOOT,"<L>--------------------<L>'>
<BLOCK,STANDARD-FOOTNOTE,5,68,32,58,

"<FIRST-FOOT,"<TEXT-FOOT>',"<FOOT-FOOT>'>'>
<LAYOUT,STANDARO-FOOTNOTE-LAYOUT,STANDARD-FOOTNOTE>
<FOOTNOTES-USE,STANDARO-FOGTNOTE-LAYOUT>
<AUTOCAP>
<DEFINITION-SPACE-S!ZE,3>
<DOWN>
<HANG,EOF,"<PAGE><BYE>'>
<JOIN>
<JUSTIFIED>
<LI,O><RI,O>
<LINESPACING, O>
<MAX-SLOCKS,20>
<MAX-WS,S><HIN-WS,l>
<MIH-MERGE-CUT,20>
<tlitl-SS, 2>
<NOLIST>
<NOTBREAK-~ORD-ON-EOL>
<NOTTRit1-LINE-STEt1><NOTTRlt1-LINE-STERN>
<NOTUND' II! , ; : ? • I >
<PAGE-DEPTH,60>
<PARAGRAPH-INDENT,5>
<PARAGRAPH-SPACING,O>
<PN,l>
<SET-SEtHENCE,. ! ? ,{upper- and I ower-case I etters and
digits}>
<STATISTICS>
<TABCLEAR>
<WARN>
<EQ,:<STEM,:<SYSPARS>,6>,SYSLIB,

"<STRING,#*#,"<NE,<RFN,FAIL>,FAIL,"<#*I>'>'>

Texture User"s Manual 48

<IHPUT,TEXT:URELIB><#*#><IHPUT>'>

Texture User's Manual 49

Appendix~

The SYSLIB library

When Texture is run with 'PAR=SYSLIB' on the MTS run
command, the system library of Eureka functions is read in and
processed. The following is a list of the Functions which are
defined in this manner.

All characters available on the TH print chain at UBC are
given the following (hopefully meaningful) mnemonics:

<LBRACE> •••••••••••••••.•••••••.•••.••••.. {
<RBRACE>.................................. }
<LBRJIK>................................... [
<RBRAK>................................... J
<LTOREQ> •••••••••••••••••••••••.•••••.•.•• ~

<GTOREQ>............................. . • • • • 2:
<~EQ> ••••••••••••••••••••••••••••••.•••••• t
<OPEt~BOX>. • • • • . • • . • . • • • • . • • • • • • • • • • • • • a
<SOLIDBOX>. • • • • • • • • • • • • • • • . • • • • • • • • • . • • • • • •
<OPENCIRCLE>. • • • • . • . • • • • • • • . • • • • • • • . • • • • • • 0

<SOLIOCIRCLE>. . . • . • • • •
<SUP(> •.••.•••••••••••.•. . .•...• •• c
<SUP)> •••••••••.••••.•..................•. I

<SUP+> ••.••••••••••••••••..•••••••••.••••• +
<SUP+-> .•.•••••.••••.•••.••••••.•••••••••• !:
<SUP-> •••••••••••.•••••..••••••••..•••.••• -
<SUPO>.............................. o
<SUP!>.................................... 1
<SUP2>. . • • • • • • • • • • • • • . • • • . • • • • • • • . . . • . • • • • 'Z

<SUP3>. • • • • . • • • • • • • • • • • • • • • • • • • . . • . • • • • . • • :I
<SUP4> ••••••••••••••.••••••••••.••.•••.•.• 4
<SUPS> •..••...••..•...•.......•........... 5
<SUP6> •.••••••••••••.•..•••. • •••••••.••.•• 6
<SUP7>............................ . . . • 7

<SUP8> •..•.•.•.•.• . •.......... , 8

<SUP9> .•..••...........•.••.....•.. . ..•.•. 9
<BOXLL>................................... L
<BOXUL> •.•.•••••••.••••.• •• •• • • · • · · • • · • • • • J
<BOXLR> ••••.••••••••••••.•••••• , .••••••• ,.
<BOXUR> •••.•••• , •••••.....•••.••••.••.••.• l
<BOX-> •.••••••••••..•............ -
<BOXSIDE>................. • I
<BOX+> ••••••.•••••••••.••..•••••. ~ •••••.•• f

Texture User's Manual 50

The macro DEFINE which is used as an example in several
places in this user's manual is also available.

<STRIHG,DEFINE,
"<STRING, INANE I," ITEXTI '>

<SEGMENT,INAMEl,IPARAMETERSI>'>
<SEGMENT,DEFINE,INAMEl,IPARAMETERSl,ITEXTI>

Two very useful external functions which are part of the
SYSTEM function library (see Appendix Cl are the INDEX function
!for creating an index) and tht CONTENTS function !for handling
tables of contents). To assist the user in using these two
facilities, the necessary SYSTEM coffimands to access the INDEX
and CONTENTS functions have been accumulated as follows:

<STRIHG, LOAD-CONTENTS, "<SYSTEM, START-CONTENTS, , CHISTART>
<SYSTEM,CONTENTS>
<SYSTEM, PRINT-CotffElffS, ,CTNPRINT>' >

<STR ItlG, LOAD- IND EX, "<SYSTEM, ST ART - IND EX , , NDXST ART>
<SYSTEM,INOEX>
<SYSTEM,PRINT-INDEX,,NDXPRINT>'>

Another Eureka primitive available is INLIB which tokes one
parameter, an MTS file name from ~hich it will read all Eureka
functions !useful for loading in a file of the user's own
macros l.

<DEFINE,IHLIB,LIBRARY,
"<STRING,#*#,"<HE,<RFH,F>,F,"<#*#>'>'>
<IHPUT,"LIBRARY'><#*#><INPUT>
<DELETE-STRING,#*#>'>

Texture User's Manual 51

Appendix~

The lliTIJ:! library

The system function library contains several functions
which may be desirable fer various phases of document
construction. Each of these functions is initially set up via
the SYSTEM primitive (see page 23l using the default library and
the entry point specified for each function. Setting up these
functions can be done quickly by using - the pre-defined Eureka
function~ specified in the SYSLIB library (see Appendix Bl. The
fol lowing are the functions currently avai I able in the system
library.

~0J1$tructing g Table of c~ontents

A taole of contents can be represented in Texture as a
contents list, a sequence of quintuples of the form:

(before string,section nome,between string,
page number,ufter string!

where 'before string' specifies some action which is to occur
before printing the section name !such as line indentation),
'section name' is the name of the item being put into the table
of contents, 'between string' specifies some action which is to
occur between printing 'section name' and •page number'lsuch as
printing a row of '.' l, 'page number' is the page number en
which section 'section ncme' starts and 'after string• specifies
some action which is to occur after printing the page number
(such as advancing to a new linel.

In these terms, a table of contents is just a sequential
list of these quintuples which grows whenever a ne~ entry is
made into the table of contents. This total string can then be
processed whenever the user wishes to print the table of
contents.

It would Quickly become tedious if every time the user were
to make an entry into the table of contents he would have to
supply a full quintuple to specify the entry. It would be more
useful to be able to specify a number of

!before string,between string,after string)

triples initially and then indicate to the table of contents
constructor tile 'section name' and an indication of w11ich triple
to use. The page number would not have to be specified since
this is always the current page number at the time of the cal I
to add a new entry to the table of contents.

Texture User's Manual 52

The above method is the one used by the table of contents
constructor found in the system library. The following external
functions ore avai I able to perform these various tasks:

<START-CONTENTS,num-pages,beforestrl,betweenstrl,afterstrl, ••••
beforestrn,betweenstrn,afterstrn>

This function must be cal led once before i~ is poss ibl e to
do ony Porm of contents construction. The value of 'num- pa9es'
must be integer and is the number of memory pages allocated to
contain the table of contents. The START-COtffENTS function
allows the specif ication of up to e ight triples of the before,
between and after str ings as descr ibed above. The default
parameter values are as follows:

•num-poges'
'befor-e-str i '
'be1111een-str i '
'after-stri'

l
<LI,<PROD,<DIFF,i>,3>>
~<SPLIT><SET-FILLER,.>
<LI,O><L><SET-FILLER, >

The MTS entry point for this function is 'CTNSTART'.

<CONTENTS,name,triple-num>

The string 'name' is added to the contents list by
catenoting the 'triple-num'th before string, 'name', the
'triple-nurn'th between string, the value of <PN> and the
'triple-num"th after string onto the contents list thus far
constructed. The default value of 'triple-num" is 1. The MTS
entry point for this function is 'CONTENTS'.

<PRINT-CONTENTS,before-str,after-str>

The table of contents is printed by returning a catenation
of 'before-str', the contents I ist and 'ofter-str' a~ input to
the document processor. The defualt value of 'before-str' is
'<LI,0>' and of 'after-str' is empty. The MTS entry point for
this function is CTNPRINT.

A problem Which often occurs with producing tables of
contents is that the table must be constructed dynamically as
the document is processed while the final location of the table
of contents is usually at the beginning of the document. Thus
most documents ore of the form:

Title page
Tobie of Contents

Document body

Texture User's Hanuol 53

This effect can be achieved in Texture as follows Cassuming
that the output document is to go into the MTS file OUTOOC).

Title page source
<SINK,OUTDOCC400l>

<LOAD-CONTEtffS>
<START-CONTENTS>

Document body source
<SINK,OUTDOCC200)>

<PRINT-CONTENTS,before-string,after-string>

Constructing .QD Index

An index con be represented in Texture as an index list, o
sequence or quintuples of the form:

(before string,index entry,between string,
page number,after string>

where 'before string' specif i es some action which is to occur
before printing the indexed entry Csuch as I ine indent ation> ,
'inaex entry' is the item being indexed, 'between str ing'
specifie~ some act ion which is to occur be tween printing 'index
entry' and 'page number' (such as printing a row of '.'l, 'page
number' is the page number on which the ' index entry' 11.10s

indexed and 'after string' specif i es some action which is to
occur after printing the page number (such as advancing to a new
I inel.

In these terms, en index is just a sequential
quintuples which grows whenever a new entry is
index. This total string can then be processed
user wishes to print the index.

I ist of' these
made into the
whenever the

It would quickly become tedious if every time the user were
to make an entry into the index he would have to supply a full
quintuple to specify the entry. It would be more useful 10 be
able to specify a number of

(before string,between string,after string!

triples initially and then indicate to the index constructor the
'index entry• and on indication of which triple to use. The
page number would not have to be specified since this is always
the current page at the time of the call to add a new entry to
the index.

The above method is the one used by the index constructor
found in the system library. The following external Functions
ore available to perform these various tasks:

Texture User's Manual

<START-INOEX,num-pages,beforestrl,betweenstrl,afterstrl, ..• ,
berorestrn,betweenstrn,afterstrn>

54

This function must be catted once befo~e it is possible to
do any form of index construction. The value of "num-~ages'
must be integer and is the number of memory pages allocated to
contain the index. The START-INDEX function allcws the
specification of up to eight triples of the before, between and
after strings as described above. The default parameter values
are as follows:

'num-pages'
'befare-str i '
'between-str i '

'after-stri'

1
empty
~<LI, lO><SPLIT><IIIN-US, O>
<RAGLEFT><SET-FILLER,.>~
<LI,O><L><MIN-WS,l><RAGRIGHT>
<SET-FILLER, >

The MTS entry point for this function is 'NOXSTART'.

<INDEX,name,triple-num>

The string "name' is added to the index list by catenating
the 'triple-num"th before string, "name', the 'triple-num"th
between string, the value of <PN> and the •triple-num"th after
string onto the index list thus far constructed. The default
value of •triple-num' is 1. The MTS entry point for this
function is 'INDEX'.

<PRINT-INOEX,before-str,after-str>

The index is printed by returning a catenation of
'before-str', the index I ist and 'after-str' as input to the
document processor. The default parameter values are:

'before-str"

'after-str'

<HANG,LINE,"<SET-FILLER, >'>
<RAGRIGHT><LI,O><MIN-WS,l>
<EMPTY,LINE><JUSTIFIEO>

CIH)verti..!19 numbers to Roman Numeral and Enqlish form

The following function is supplied to convert from a string
dtclmal representation of an integer to its equivalent capitol
Ro•an numeral or full English form.

<CONVERT,num,type>

The value of 'num' must be integer and is the decimal
nUl!lber which is to be converted (0 <= •num" <= 99991. The value
of 'type' is either 'R', in which case the Roman numeral

Texture User's Manual

equivalent of 'num' wi 11 be returned, or is 'E' in 1t•hich
ttae ful I English form of the number wi 11 be returned !e.g.
becomes 'eighty-four' l. The default value of 'type' is
The HTS entry point for this function is 'CONVERT'.

Ma~in9 your .Q!!!.!l date

Occasionally it is desirable to have the date given
form oTher than that given by the Texture <DATE> function.
following functions have been supplied for that purpose.

<DAY>

55

case
'84'
'R'.

in a
The

This function returns the numerical value of the current
day, for example, '3' on the third of the month or '22' on the
twenty-second of the month. The MTS entry point for this
function is 'DAY'.

<MONTH>

This function returns the ful I alphabetic representation of
the current month, for example, 'SEPTEMBER' or 'NAY'. The MTS
entry point for this function is 'MONTH'.

<YEAR>

This function returns the four digit representation of the
current year, for example, '1975'. The MTS entry point for this
function is 'YEAR'.

Texture User's Manual 56

INDEX

IEQ ••••••••.•••.•••••••.• ••• ••••••••••••••••••• • ••••••••.••• 19
#GE •••••.••..••.••••••.•.•.........••••••••••••••••••••••••• 19
#GT ••••.•..••••.•.••.•...••••••••••.••..•••.•••••••••••••••• 19
#Lf •• . ••.••••••••••••• 19
#LT • • . • 19
IN(. . . . • . • • • • • • • • • • . • 19
ACTIVATE •••••••••••••••..•.• -. • . • • • • . • • • • • . . • • • • • • • • • • . 31
A,-Is ... 45
AUTOCAP •.••..••.•••.•••••••••••••••.•.•••••••••••••.••••••••• 7
BLOCK .•••••••••.•..•.•••••••••••..•••••••.•.••••••.••..••••• 32
BOTTOM ..•••••••••• ••• .• ••.•• ..•••.• ••••• .•...••••.•• , . • • • • . • • • 33
BREAK-1.:0RD-ON-EOL • • • • • • • . • • • • • • . • . • • • • • • • • • • • • • • • • • • • . • • • . • • . 5
BYE ••..•.••••••••..•••••• .•. • ••••••••• • •••.•...•••.•• ••• ••.•• 29
CENTERED ••••••.•••..••••••••••••••••••••.•••••••••••••••••••• 6
CHAR ••••••••••••....•••..••••••...••...••..•..•••••••••..•••• 6
COLS-LEFT • • • • • . . • • • • • • • • • • . . . • • • • • •.• • . . • • • • • • • • • . . • . . . • . 34
COLUMN . . • • . . • • • • • • • • • . . • • • • • • • • • • • . • • • • • • • •.• . • • • • • • • • • • • • • • • 38
CONTENTS • • • • • • • • • • • • . . . • • • • • • • • • • • . . • • • • • . • • • • • . • • • . • • . • • • • • 52
CONVERT •••••••••..•..••••••••••••••••••••••••••••••••••••••• 54
DATE ••••••••••••••••.••••••••••••••••••••... • ••••.••.••••••• 28
DAY ••••.••••••••..•..•.......•...•......•.................•• 55
DEFINE •.••.•••.••.. .•••••••••••.••.••• •• . •••.••••••••••• •••• 50
DEFINITION-SPACE-SIZE ••••••••••••••••••••••••••••.••.••••.•• 25
DELETE-BLOCK • ••••••••••••••• •.•••••••••.•... •••••••••••••••• 24
DELETE-ENVIRONMENT ••••.•••••••••••••• •••.••••• ••• •••••• ••••• 25
DELETE-LAYOUT •••.••••• 24
DELETE-STRING ••••••••••••••••••••••••••••••••••••••.•.•..•.• 24
DELETE-SYSTEM ••••••••••••••••••••••••••••••••••••••.•••••••• 25
DIFF ••••••••••••••• ...••• ••••••..••••••••..•••••.•..•••••••• 20
DIV .•.• •• .••••..•..••••••..••.••••.•••.•••••••••••••••.••••• 20
DOWN • 7
EMPTY •••••••••••••••••.••••.•••••.•..•.••••••••••..••••.•.•• 44
ENVIRONMENT • • • • • • • • • . • . • • • • • • • • • • • . • . . • 31
EQ ••••••••••••••••••.•••••••••..•.•••••••.•••••.•••••.•••••. 18
ERROR ••••••••••••••••••••••••••••.•.•••••.••••• . •.•••••••••. 29
FIRST-FOOT •• 41
FOOT •.••••••••••••• ••.•.• •• •• •• •• •••••• . •.•••... ••••• ••••••• 40
FOOT-FOOT •.•••••••• •• •• .• •• ••• .• •••.••• •••••••••••••• ••• •... 40
FOOTER •••••••••••...•••••••• •• ••••••••••••••• ••••••.•••... • . 12
FOOTNOTES-USE • •.• • • • • • • • • • • • • • • • . . . • • • • • • • • • . • • • • • • • • • • • • 41
GE • .•• • •• ••••••••••••.••••.• •••. ••••••••.••••••• •• •• .•••• • •• 19
GT •.••••••••••••••..•..•••..•••••••.•..••.•••••.•••••••••.•• 18
H-CUT ..••...• •.••.•• •...•.••••••••. • ••••••••••. . •••••••••••.• 36
H-CUT-FLEX •••••••.•••••••.••.•••••••••••..•••••••••••••••••• 36
H-LIHE ••••.••••• • ••••••......••••••••••• , .• • •.••..•••..•.••• 38
HANG ••••••.•• ••• ••••...•••••••••••••..••.•.••••••.••.•••.•.. 43
INDEX •••.••••••••.•. • •.••••••• . ..•.•••••••.••••••••••••••.•• 54
IHLIB ••••••.•••.••.•••.•••.....••••••••••..••••••..••.•••••• 50
INPUT ••••• , •.•.•••••••••.••• , • ••.•••...•••••••. ••••••.•••••• 27
INVOKE •.•••••••••••.•.•.••••••••••.•.•.•••..•••••••••••••••• 32
JOIN • . • • • • • • • • • • • • • • • • • 39
JUSTIFIED • • . . . • • • • • • • . • • . • • • • • • • • • • • . • . • . • • • • • • • • • • • • • • • . . • • • 5

Texture User's Manual 57

L .•.•.• •.. • •.•••.•••••• ••••••••••. .• •••.• •••.••••••••• .••..•• 3
LAYOUT •••....••••••• 31
LE ••••.••••••••.••••.•••.. . •••••••••.•••••••.•.•••••.•.• : ••• 18
LEFT •.•.•.•..••••..•.•••.••.•••••••• • •••.••••••••••••••...•• 33
LENGTH ••••••••... .•• •.••••••••••••.•••.•••••••••••.••.•.••••. 21
LI .. 4
LINE •••••.•. •••• •. • ..••••• • •• •••..••••••••••••.•••••••••.••• 37
LINES-LEFT •••••••••••••••••••••••••••••.• , • • • • • • • • • • . • • • • • • • 34
LIHESPACIHG • • • • . • • • • • • • . • • • . • • • • . • • • • • • • • • • • • • • • • • . • • 4
LIST • . • . 9
LOAD - CONTENTS . •••.•••••••••••••••••••.••••..••••••••.•... •• . 50
LOAD-INDEX .. , ••.•.••..•••••••••••••••••• ~ .•••••••.••••.••••. 50
LT •••••.•.•••••••..•••••••••• , ••••.••.••••••••••.••••••.•••• 18
LTITLE .••• • ••••••••••..••••••••••••••.•••••••••••••.•••••••• 12
MANDATORY-TEXT ••••••••••••••••.••••.•••••••...•••.•.•....••• 37
MAX-BLOCKS • . • • . • • • . • • . • 33
MAX-WS •••••••••••••.•• , ••••.•••.•••.•••.••.•••.••••••.•••... '•4
NIH-MERGE-CUT ••••••••••••••••••••••••••••• • ••••••••••••.•.•• 43
MIH-SS • . . • • • • • • • • • . • • • • • 45
MIH-WS ••••••••••••••••••••••••••••••••••..•••••.••...••••••• 44
MOO • 20
HONTH •••••••••• • ••••••••...••••.••••• .. •••••••. .•• ••••••• 55
MTS-LitlE • • . • • • • • • • • • • • • • . • • • • • • • . • . • • • • . • • • • • . • • • • • . • • . • • • . • 29
NE ••.••• •••••••••• ••••.. • •••••••••.••••••••••••.••••.••••••• 18
NEXT .•••••••••..•••.•••••••••••••••••••.••••••.••••.•.•.••.•• 34
NOLIST • 9
NOTAUTOCAP ••••••••••••••••••••••••••••••••.•••••••••••••••• , • 7
NOTSREAK-WORO-ON-EOL .••....••••••• .. , • , ••..•.••••••••• , , ..••• 5
HOTDOWN •••••••••••••••••••••••••••••••••••.••••••••••••.•..•. 7
HOTJOIH ••••••••••••••••••••••••••••.•••••••••••.••••••••.••• 40
NOTSTATISTICS •••.•.•••• •• ••••••••••. ..•.••• •.•••••••••••.• .• 29
HOTTRIM-LINE-STEH • • . • • • • • • • • • • • • • • • • • . • • • • • • • • . • • • • • . • • • • • • • 25
HOTTRIM-LIHE-STERH ••••••••••••••••••••••••••••••••••••••..•. 26
NOTU • . • • • . • • . . • . 3
HOTUtlD ••••••••••••••••••••••••••• , ••••••••••••••••.•..•••••• 44
HOTUP • .. • • • • 7
NOTWARH •• • • , ••.••••••••... , , • • • • . • . • • • • • • • • • . • • • • • • • • • • . . . • • 29
OUTPUT •••••••••••••••••.•••.•••••••••••••.•.••••••.•••.•..•. 27
p . .•. ..••.•••••.•..• ••••••• . •.....••.....••••...•.....•.. 2
PAGE •••••••••••••••••••••.•••••••••••.••••••.• , ••••••••.•••. 12
PAGE-DEPTH •••••••••••••••..•••.•.•.•••••••••••••••.••••.•.•. 45
PARAGRAPH-INDENT •••••••••••••••••••••••••••••.••••.••••••••. 45
PARAGRAPH-SPACING • . 4
PN •••• · ••• . •• 11
POINT • . • • • . • • 39
PRINT ••• 27
PRINT-COHTEtlTS •• 52
PRINT-INDEX ••• 54
PROD ••••••.•••.•••••••••••••••••••••••••.•••.••••••••..••.•• 20
RAG LEFT .•••••••••••.•••• .• •• ••• •.•••.•...•.•••.•••••• ••••• • . . 5
RAGRIGHT ••••••••••••••••. ••• ••••••• • ••••••.•.•.•.••.•••••••.• 5
RC •••••••••••••••••••••••••••••••••.••••... , .•• , •••••.••..•• 26
l!ECLAIM .. .•• •• • ••. •. •....•. •... , •••......•.••••••..••••••••• 25
REMOVE-FROM-LAYOUT ••••••••••••••••••••••••••••••.••••••••.•• 37

Texture User's Manual 58

RFH •.•••••. •• •• •• •••• ••• • • •••.•.•.•••••••••.•.•••.•. . •.•.••• 27
RI •••••••••••••••••••••••••••••••..••.••••••••••••••••••••••• 4
RIGHT • • • • • • • • • • • • • • • • • • . • • • • . • . • • • • • • • • • 33
RLH ••••••••••••••••..••••••.•••••••.•••••••••••...••..•••.•••• 26
RHC •••••••••••••••••..•••••••••••••••••••••••.••............ 26
RS ••••••••••••••..•••.••.••••..••..•.•••••••••.•••••••••.••• 26
RTITLE • • • • • • • • • . • • • • • • • • • • • • • • . . • • • • • • • . •.• • . • • . . • • • • . • • . 12
SEGMENT ••••••••..• • •••.•••••••••••••••••••••.•••••.•.••••••• 21
SET-ARGSEP ••••••.•...•.....•••••••••• • •••••••••..•..••• • •••• 30
SET-BREAK • • . • • • . • • • • • • • • • • . • • • . • • • • • • . . • • • • • • • • • • • • . • • • • • • • • • 8
SET-DOWN •••. • ••.•••.•.•••...•••••••••••.•••....•...•..••••••• 9
SET-EOS .•.•••..••.•.••.....••••••••••••••••••..••••••••••••• 27
SET-FILLER •••.••. ...• 46
SET-FHCLOSE ••••.••..•..••.•.•• . •••••••••••••........ • •••••.• 30
SET-FtlOPEN •• ••••••••••••.•••....•...•••••.•••••••••.•.••...• 30
SET-LIT ••••••••••••••••••••••••.. . •.•..•••••••••••••••.••••.. 9
SET-LITBEGIH ••••••••••••••••••• . ••••..•.••••.•••.••••••••••• 30
SET-LITEt~D ••••••••••••••••••••••••.••••••••••••••••••••.•••• 30
SET-NTB ••••••••••.•••.•...•..•••••••••••••••.•••••••••••••••• 9
SET-HTC •••••••.••••••••••••...•.....••••.••.••.•.•.•..••.•.. 46
SET-tffR LIND IC • • • • • • • • • • • • • • • • • • • . • • • . • • • • • • • • • • • • • • • • • • • 30
SET-OPC •••••••.••.•••.•••.••••••••.•.•.••.••••••••••••••••••• 9
SET-SENTENCE •••.•••.•.•••••••••••••.•••.•••.••••••.•••••••••• 7
SET-TEXT •••••••••••••••••••.••••••••••••••••••.••• • •••••.•••• 8
SET-UNDER ••••••••••••••••.•.••••••..••••••••••••••.•••••...•. 9
SET-UNDERSCORE •••.•....•• • •••••..•...••..••..••...•••••.•••. 46
SET-UP • • • • . • • • • . • . • • • • • • • . • • • • • • . • • . • • 9
SINK • . . • . . • • • • • • • • • • • • . • . • • • . • • • • • • • • • • • • • • . • • • . • • • 43
SOURCE •••••.••••••••.•.•..••••••••••..•..••..•••...••••••••• 43
SPLIT •••.••.•••.••••••••••••• . ••••• • ••••••••••••• • •••.••.•••. 6
START-CONTENTS •.•••••••••••••••• •• •••••••••••••••••••••••••• 52
START-INDEX •.•.•.•..••..••••••••••••••••••••••••••••••.•••.. 54
STATISTICS ••••••••••.•.•.• . •.•••••••••.•••.•••••••.••..••••. 29
STEM ••••••.•••..••..••••••••••••••.•••••.•••••••••.••••••••• 20
STERN •••••••••••••••••.•••••••••••••••••• . .••••. . ••••••••••• 20
STRING ••.•••.•••..•• . • 21
SUM •••••.•••••••••••••.•••••••••••••••••••••••.•.•••••••.... 20
SYSPARS •••••••••••••••••••••••.•...........•• • .•.••••••••• . • 21l
SYSTEM ••••••••••••••••••••••• , . ••..••.•••••••••••••••••••••• 23
T ••••••••• . •.••••.••••• • ••••••••... • ...•.••••.•..••.•.••.•••• 4
TAB • ••••••• • ••••.••••.•••••••..••..••••••..••.•••••••• 4
TABCLEAR • • • • • • • • • • . • • . . • . • • • • • • • • . • • • • . • • • . • • • • • • • • • • • • • • • • • . 3
TABSET ••••••••••••••••••••••••••• , ••• · •••• · .••.••••.••••••••••• 3
TEXT-AHEAD •.••••••••••••.••••.•.••••••••••••••.. . ••••..•.••• 41
TEXT-FOOT . • • • . . • • • • • • • • . • • • . . . • . • • . . . • . • • • 40
TIME ••..••.••.•. 28
TITLE ••• 12
TOP•.......•...•......... 33
TRIM-LINE-STEM ••••••••••••••••••••..•.•....••.••••••••••.••• 25
TRIM-LINE-STERN •••••.••••••••••••••.• •• ..••..••..••.•.•••••• 26
TRIM-STEM • . . • • • . • . . . • . • • • • • • • • 20
TRIM-STERN .•••• . .•.••••.•••••••••••••••••••••••••••••••••••• 20
U •••.•••••• • ••••..•.•••.•••.••••••••••••••.••••.••••••••••••• 3
UNO ••.••.•.•.•••••••• • •••.•..• •... ..•..•. . .••••.•...•••.••.• 44

"'

Texture User's Manual 59

UP•................... 7
V-CUT ••••••.• • •••••.•..••••••••••••••.•..••••. ••.••• .••••••. 35
V-CUT -SWAP • • • • •••••••••••••••••••••••••••• • ••••••••••••• : • • • 3~
V-LINE • • • • . • • • . • • • • • • • . • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • 38
WARN ••••••••••••••••••.•••••••.•••••• • •• ••••••• •••••••••••.• 29
lo!ARHIHG ••••••••••• . •••••••••••••••••••••••...••••.•.••.•••.• 28
WIDOW •.•••..••.•.••••••.••••••••••••••••••••• • •••••••••••••• 4r+
YEAR •••..••••••..•••••••• . •••••••••••••••••••.••.•••••••••.. 55

MMM
MMMM MMM

MJ1 M MM
M M

M M MMMMMMMMM
MM MM MMMM MMM

MMM MM MM HMM
MMM MMM
MMMMHMMHMM

Mt1MMMMM MMMM
HMM

MM HMM
MHMMtlHM
MMM MM
MM Mt1M
M HMM

M MM MMH
MMMM MMMMHM
MMM

MM
MMMMM

M MM
H M

MM
MMM
MMM
MMM

MMM M
MMMl1M

-*************************
* * * Texture User's Manual *
* Updates *
* *
********-**********-*****

by

The Texture Support Group

Technical Note 77-_

July 1977

Department of Computer Science
University of British Columbia

Vancouver, B. c.

l

•~tis vain to multiply entities beyond
need."

Sir William Of Okham

In the fol lowing, annotations in braces ce.g., {23}) are
page references to the Texture User's Monuar, Technical Manual
75-08 CDec 1975).

1. Punning Texture

The parameters field on the Textur e run command {1,49-50}
need no longer explicitly ask for the system library by starting
off PAR=SYSLIB... The system librar y is automatically read
in. If the system library is not desired, the notation
PAR=NOSYSLIB... is to be used.

The parameter str ing may con t a in any Eureka programs.
These are eva I uate d ot I ea;it once c and every time t he ca I I
<SYSPARS> is evaluat ed act i ve l y ! , but any r esu lt ing text i s not
inc luded in the document. For examp l e, PAR =NOSYSLIB<LIST> Will
pr ec luoe t he sys t em li brary and turn li st ing of source l ines on
unt il a co l I of <NOLIST> is encount ered in the source.

2. ~ Primitives

The primitives described in this section ore available
whenever the Texture system is run.

2.1. Seqment and String Manipulation

<ERASE-SEGMENTS, namellst>

Al I segments in the named strings are restored. Reccd I
that a cal I to SEGMEtff {21-23} creates "gaps" in a string. 11,e
text originally in these gaps ~ay be r~stored by use of
ERASE-SEGMENTS. Thus,

<STRING, Alpha, gnus are gnice>
<SEGMENT, Alpha, gn>
"<Alpha, N>" results in "Nus are Nice"
<ERASE-SEGMEtHS, A I pha>
"<Alpha, N>" results in "gnus are gnice"

<PART, string name, type, n>

The 'n'th port Cof type 'type• l of the string is returned.
'Type' inaicates either text segment CO) or the segment gap of a
given ordinal Cl,2, ••• J. Thus,

<STRING, Beta, some people hate cheese>
<SEGMENT, Beta, ee, e>
!<PART, Beta, o, 3>) results in Copll
(<PART, Beta, 1, l>) results in Ceel

(<PART, Beta, 2, 3>) results in (el
(<PART, Beta, 3, l>l results in CJ
C<PART, Beta, 2, O>l results inc I

If any item does not exist, the null string is returned.

2. 2. Funcn on Trac_i n.9

2

The following primitives cause the calls of functions
!macro, primitive or SYSTEMed functions> to be traced; it is
intended as o debugging aid to serious Eureka programmers.

<TRACE, Function name, what>

Whenever the given function is called, a trace is printed
out. 'What• governs what is traced: 'what' is o string
containing any or "T" (type>, "A" !arguments) or "V" (value); if
it is absent, it defaults to "ATV".

<NOTTRACE, function name list>

The listed functions are no longer traced.

2.3. Input

The SOURCE primitive {43) as described in the user"s manual
changed the input file. It was like a GOTO. IF called without
argument Ci.e., <SOURCE>) the system input File was restored.
Now SOURCE stacks Fi res <up to 10 revels) so that a call without
arguments restores the previous file. Thus,

<SOURCE, X> Xis active
<SOURCE, Y> y is active
<SOURCE> Xis active
<SOURCE> system input is active

3. !.M SYSTEM Library

This section updates Appendix C of the manual {51-55}.
Some Functions have been added and several have been improved.
Most of the Functions in the SYSTEM library need no longer be
loaded explicitly Csee section 4 for further information).

3.1. New Functi~

<EMPTEE, filename>

Accepts an MTS file name and empties the file. This
Function is not included in any OS releases or Texture.

<COMMAND, MTS command>

Accepts an MTS command and causes it to be executed. Note
that any command like $RUN, $LOAD or $UNLOAD will cause Texture
to disappear. This Function will not be included in any OS

releases of Texture.

<SUP, string>

3

Translates any of the numerical characters or'()+-' in the
string to corresponding superscript characters on the TN-chain.
E.g., "<SUP, (-125)>" produces u(-125Ju

<HYPHENATE, word>

Checks the space left on the ~urrent line; if there Is not
enough space For •word' then it returns •word' broken, if
possible, into two strings, separated by a blank. A break is
possible if there is a hyphen C-1 or u discretionary hyphen C IJ
in •word' in the portion of •word' that will fit on the current
line. The leftmost hyphen or discretionary hyphen that will Fit
on the line is chosen, and a blank inserted just after it. This
discretionary hyphen is turned into a hyphen. After the above
is completed, all rema1n1ng discretionary hyphens are removed
whether or not hyphenation has taken place.

Thus, "<HYPHENATE, hy I phen I ate>" might resu It in "hyphen
ate'' if there were 7 or 8 but not 9 spaces left; if there were
9, it 111ou Id resu It in "hyphenate".

<.HYPHENATE, word>

This is the same as HYPHENATE, but it is used whenever
•word' is the first word in a sentence (that is, it takes into
account the difference between sentence spacing and word
spacing>.

<#, expression>

The expression is an arithmetic expression involving anu or
the Fol lowing:

integer numbers
+ (Addition)

(Subtraction or Negation>
* (Multiplication!
/ !Integer Division)
X (Remainder after Integer Division>
< l !Parentheses to affect order or evaluation>

All evaluation is From
expressions inside parentheses are
multiplication operators C*, /, Xl
operators<+,-); negation takes
A+B*C is equivalent to A+CB*Cl.

left to right, except that
treated as a single unit, and
take precedence over addition
highest precedence. Thus,

4

<BOLDFACE, string>

BOLDFACE simulates boldface Font by causing the argument
'string' to be overprinted three times. The quality of the Font
is thus dependent on the accuracy of the printer and the
condition of the ribbon when the document is printed. For
example,

<BOLDFACE,hello>
will print OS 'hello'.

The maximum length
characters. An argument
truncated without warning.

of the argument
exceeding this

'string' is
maximum wi 11

100
be

Note: The handling of the special Texture operators Ce.g.,
a) and_) by BOLDFACE deviates Slightly From the norm. The
operat ors *• ¢ and a> are assumed to refer to tile succeeding
character, regardless of whether or not it is another operator
or special charocter (e.g.,< and>). Also, the blanK and the
operators~, I and_ are returned unchanged. For example,

<BOLDFACE,a>HELLO>
will print as 'Hello',

<BOLDFACE,a>Ola>I>
will print as '0'

<BOLDFACE,**HI>
wi 11 print as '*hi'.

Warning: In the past, excessive use of BOLDFACE on a given
line or a given page caused the workspace to overflow (every
boldfaced character takes up 7 times the space of an ordinary
character>, and Texture to crash mysteriously; this bug appears
to hove been fixed For the standard layout, but boldfacing long
lines or large pages will almost certainly cause it to recur.

3.2. C!,ntents and Index Function~

These have been souped up so that multiple copies may be
loaded (For multiple, Lord of the ~ings style indexes and
multiple, thesis style tab les of contents, Figures and tables).
There is now only one Function to road to get a table of
contents lor index) and it toKes on additional argument,
inserted just after the function nome, which tells it what to
do. Thus,

<SYSTEM, YOUR-NAME,, CONTENTS> loads contents function
<YOUR-NAME, START, options-as-before> starts it

<YOUR-NAME, ADD, entry> odds an entry

<STRING, PRINT-COt-HENTS, "<YOUR-NAME>'>
<YOUR-NAME, PRINT, strings-as-before> prints it •

The definition of PRINT-CONTENTS is necessary (unless
YOUR-NAME = PRINT-CONTENTS) because during printing, YOUR-NAME
will call <PRINT-CONTENTS> but really wants to call itself

5

(except that it doesn't Know you called it YOUR-NAME>. Note
that the default for the first argument is PRINT.

If all this seems a little hard to follow, see section 4.2
For a simplified method.

4. The SYSLIB Library

This section updates Appendix B of the user's manual
{'19-50}.

4.1. Automatic Loading

All Functions in the SYSTEM library (except the contents
and index functions) are pre-defined as macros which cause the
function to be loaded on first reference. Thus it is no longer
necessary to say,

<SYSTEM, BOLDFACE>

<BOLDFACE, foobar>

The second coil by itself will cause the loading of BOLDFACE
Cwhich will then be called with the argument 'foobar'>.

4.2. Contents and Index

These must sti II be loaded expi icitly. The macros:
<LOAD-CONTENTS>
< LOAD-FIGURES>
<LOAD-TABLES>
<LOAD-INDEX>
<LOAD-INDEXl>

wi II st ill be pre-defined to make it more convenient. Note that
Figures and Tables ore just like a Table of Contents , except
that the th.ree macros used for them have FIGURES or TABLES where
the contents macros hove CONTENTS. Si milarly, INDEXl replacing
INDEX uniformly in calls gives a second index. The user wishing
to create other tables or o1 her indexes ,nigtit looK at th~~e
macros to see how it is done.

Example:
<LOAD-TABLES> loads a table of tables function
<START-TABLES,2> sets up a worKspace

<TABLES,Fly Populations in South America>

<PRINT-TABLES>

5. Other Macro .Li_brorie_s

an entry

Most things that a Texture user may need to do can be done
directly in Eureka. Texture users are also constantly
re-inventing the wheel because they all use the same basic set
of EureKa programs. For this reason, the Texture Support Group

encourages the development of macro
documentation for general use.

6

libraries and their

•
Note:

the page,
is best to
Ii brary.
blanl<.s.

Since libraries are generally laid out prettily on
and since Eurel<.a treats blanks as just more text, it

use the INLIB macro (defined in SYSLIBl to load a
I.e., <INLIB, library name>. IHLIB Will delete all

5.1. Generql Eureka Library

A Major macro library (developed by M.S. Johnson, initially
for his own use> is available in the MTS file

cs:EU~EKALIB
It contains many useful Eurel<.a macros for manipulating strings,
creating and manipulating counters, putting line numbers in the
margins of documents for editing, putting version bars in the
margins of documents for update~ of documentation, doing
structured Eureka programming, etc.

Documentation
Computer Science
up-to-date version

for this library is
Documentation archive
will also be l<.ept in the

TEXT:EUREKALIB.W
ready for copying to the TN-printer.

5.2. Diagram Library

available from
C $RUN CS:DQC l;
file

the
an

A number of functions for drawing diagrams in Texture
documents were developed by T. Venema and upgraded by M.S.
Johnson. These functions draw boxes and arrows with a minimum
of effort. The library is available in the file

cs:DRAWLIB
Documentation for this library is available from
Science Documentation archive !$RUH cs:Doc1;
version wi II also be 1<.ept in the file

TEXT:DRAWLIB.W
ready for copying to the TN-printer.

5. 3. Brac_t_e_t Cou_nter

the Computer
an up-to-date

Anyone who has written a large Eurel<.a program and
subsequently tried to decide whether the bracl<.ets C< and >land
evaluation delays C" and 'l were well-balanced, will have been
driven to the edge of a nervous breal<.down. There is now a
Eurel<.a program which will do the worl<. for you. It is in the
fi I e

TEXT!BRAX
and may be called as follows:

<COUNT, Texture source file>
The file will be printed out line by line and the bracl<.et and
delay-quote nesting printed out with each line. The output
appears in the Texture listing life !not in the Texture document
fi I el.

5.4. Including Flies J.n the .!.!J.put

7

file reference
source of the

It is frequently convenient to hove o
another file, which is to be included in the
document. This way, one master file can
several files making up parts of a document;
include a common subsection (copyright notice,

serially inc,ude
also, files may
etc.>

A function INCLUDE is defined in the file
TEXT:INCLUDE

and may be called as fol lows:
<INCLUDE, file name>

Such a coll has the effect of the text of the file being
inserted into your document source at the point of the call.

MMM
MMMM MMM

MM M MM
M M

M M MMMMMl1MMM
MM MM MMMM HMM

MMM MM NM HMM
MMM MMM
MMMMMMMNMM

MMMMMNM MMMM
MMM

MM MMM
MHNMMMM
HMM MM
MM MMN
M HMM

M MM MtlM
MMMM MHHHMtl
MMl1

MM
MHHMM

11 MM
M 11

. MM
MMM
11MM
tlMM

tlMM M
MMt11111

* *
* EUREKA LIB: * * A Library of Eureka Functions *
* *
*********************"'*******-****

by

Mork Scott Johnson

Technical Note 75-6

1975 November
Revised 1976 September

and 1977 July

Deportment of Computer Science
The University of British Columbia

2075 Wesbrook Moll
Vancouver, British Columbia V6T lWS

1

O. Preface to the second revision

The file cs:EUREKALIB now contains a new version ·of the
Eureka library. The old library hos been retained as
CSLB!EUREKALIB, but it will be maintained only for a limited
time under that id. Please use the new version, or make your
own copy of the old library. The differences between the two
versions ore summarized in the next paragraph, and new or
substantially revised portions of this document are indicated by
vertical bars in the right-hand margin.

BOLDFACE has been deleted from EUREKALIB since it is now
available in the default Texture system library. It is no
longer necessary to load it via a coll of the function SYSTEM;
it can be treated much like a primitive. Documentation for
BOLDFACE can now be found in the "Texture User's Manual
Updates".

The following functions now take optional last arguments:
FIGURE, PHYSICAL-L, and REVISION-BARS. Current uses Of these
funct i ans need nQ! be changecj. The function Ln~E-NUMBERlNG has
been changed internally to gain efficiency. A minor change in
the definition of LP has accurreci, but it is upward compatible.
The following are new functions now contained in EURffALIB:
CONCAT, DELETE-COUNTER, INI, MAKE-COUNTER, CUTI, RESET-COUNTER,
and SET-COUt'HER. A new string ALPHt.BET has also been defined.

l. . lntroductl_QD

This document describes a library of functions (written in
Eureka) which Texture users may find handy. Before using this
library, it must be loaded via the call <INLIB,CS:EUREKALIB>.

The user Is cautioned to read this document carefully
before using any of the functions described. Failure to do so
may result in disaster. The implementor has tried to insure
that these functions are useful, useable, general-purpose, and
fully debugged. Nevertheless, the implementor absolves himself
of all responsibility for problems which may arise out of the
use of EUREKALIB and, further, no obligation to maintain the
library is assumed.

Due to the nature of the Eureka string processor, the us~r
is obliged to know something of the internal structure of the
functions in EUREKALIB. In particular, it is important that the
user not redefine any of the functions or strings described
below since the functions in the library ore highly interdepen
dent. In addition, several strings ore defined internally in
the library and must not be used as the names of functions or
strings defined by the user; the names of all such strings both
begin and end with a pair of octothorpes C##l.

2

Two other precautions are in order. First, all of the
functions in EUREKALIB assume that the "standard" function
evaluation environment is in effect. For this reason, the
start-of-function C<J, end-of-function C>J, argument-separator
C,l, start-I iteral C"J, end-literal ('I, and neutral-indicator
c:J characters must not be changed. Likewise, no primitive
function should be redefined. Second, few of the functions in
EUREKALIB check their arguments for validity. Thus, an errone
ous call may result in an error message being initiated by one
of the Eureka or Texture system functions.

Some users may be concerned with the growing size of
EUREKALIB and the resulting increase in initialization overhead
each time it is INLIBed. Such users are free to make their own
copies of cs=EUREKALIB and to pare it d01.11n by discarding
unneeOed functions. If doing so, however, be certain to retain
all functions and strings ~hich are used in the definitions of
the top-level functions whose retention is desired.

2. Functions defined in EUREKALIB

<COMMENT,string>

This function simply causes its argumentCsl to be ignored
by the document processor. It con be used to insert comments
into Texture source programs without affecting the output
dOCUlllent.

<COMPRESS,string>

COMPRESS returns its argument with all leading and trailing
blanks trimmed off and with all multiple embedded blanks reduced
to a single blank. For example,

<COMPRESS, THIS IS A STRING>
returns the string 'THIS IS A STRING'.

<CONCAT,name,value>

This function appends the
value of the string called 'name•.
of

<STRING,FOO,HELLO>
<CONCAT,FOO, WORLD>

string •value' to the current
For example, after execution

the value of <FOO> is 'HELLO WORLD".

3

<COUNT,string,pattern>

This function returns a count of the number of occu~rences
of 'pattern' in 'string•. 'pattern• cannot be the nui I string.
For example,

<COUNT,ABABABA,ABA>
returns the value 3.

<DECR,name>

DECR causes the value of the string . called 'name' to be
decremented by one. Prior to a call of DECR, 'name' must be
defined via the STRING function and must have a numeric value.
For example, after execution of

<STRING,COUNTOOWN,100>
<DECR,COUHTOOWN>

the value of <COUNTDOWN> is 99.

<DELETE-COUNTER,name>

This function causes the counter •name' initiated via a
call of MAKE-COUNTER to oe discarded and its storage freed. See
the description of MAKE-COUNTER below.

<END-VERSION,n>

This function delimits the scope established by a preceding
call of <VERSION,n> to specify the bounds of a document revi
sion. See the description of REVISION-BARS below.

<EXPLODE,stringl,string2>

This function returns 'stringl' ~ith 'string2' appended
before each character of 'stringl'. For example,

<EXPLOOE,BLOWUP, •• >
returns the string • •• B •. L •. O •• W .. U .. P'.

Warning: Because of the way in which this function is
implemented, neither of the argument strings should contain the
start-of-Function C<J or the neutral-indicator c:) character.

<EXTRACT-NUNBER,string,pattern,default>

EXTRACT-NUMBER returns the number following an equal sign
C=) following the First occurrence of 'pattern' in •string'.
For example,

<EXTRACT-NUN8ER,NUM=l2 OPT=3,0PT,400>
returns the value 3. If 'OPT=' had not been contained in the
argument 'string', then the optional third argument (400 in this

4

example) would have been returned.

The nu~ber extracted is delimited by the equal sign on the
left, and by either a blank or the end of 'string' on the right.

Altho not designed to, EXTRACT-NUHBER Will actually extract
any string following 'pattern" which is properly delimited,
whether or not it is numeric. For example,

<EXTRACT-NUMBER,P=4PAGES T=5S,P,10PAGES>
returns the string '4PAGES'.

<FIGURE,string,length,flag,block>

The FIGURE function can be used to cause a string to be
treated as a Figure Ci.e., the entire Figure must appear on one
text page). The First argument is the string representing the
figure, and 'length' is the number of physical lines which
'string' will consume when printed by the document processor.
The user must supply this length since Eureka Functions are
unable to predict how many lines a given Texture string will
consume.

If the Figure will fit on the current text page, FIGURE
merely passes 'string' on to the document processor. However,
if the figure will not fit on the current page, FIGURE returns
the null string and causes the figure to appear at the top of
the next text page using the page event.

The optional third argument is used to determine whether or
not 'string' is being held over onto a new page. If the figure
Fits on the current page, the value of the string named 'flag'
is set to the string 'T'; otherwise it is set to 'F'.

The optional fourth argument specifies the block of text in
Which the figure is to appear If it will not fit in the current
block. The default block is STANDARD-TEXT. In general, this
argument will only need to be specified when user-defined blocks
and layouts are being employed, See the "Texture User"s Manual"
For an explanation of blocks and layouts.

Note: Altha it is possible For more than one Figure to be
saved over onto another page, the expansion of all such Figures
must not exceed a total of one page of output text. In other
words, no figure can be held over to a second page. This is an
implementation restriction which appears difficult to overcome.

<FOR,name,from,to,by,what>

This function acts like an Algol FOR loop. "name' Cwhich
can be any string) is given the initial integer value 'from'.
Next, the string 'what' is evaluated with all occurrences or
'name' being replaced by the value 'from•. Finally, the value

5

of 'name' is incremented by 'by' and 'what' is evaluated again,
but with this new value substituted. Execution terminates Wilen
the value of 'name• is one greater than the value of the integer
'to' c i.e., 'what' is executed maxco,cto-rromJ-by+lJ times!. If
'from', 'to•, or 'by' is the null string, its value defaults to
1. For example,

<STRING,TOTAL,O>
<FOR, I I I, 1,5, ,"<STRING, TOTAL,<SU11,<TOTAL>, I I I>>'>
<TOTAL>

returns the value 15, and
<FOR, IXI, ,5,2, "<STEM,ABCDE, IXI >' >

returns the string 'AABCABCDE'.

The user should note that the argument 'name' is handled
via the SEGMENT system function. This means that a textual
substitution of 'name' is made in 'what' •.

<FULL-DATE>

The value of this function is the current
'YY mm dd', where the month is written out
example, if <DATE> returns •oct 12, 1492',
returns '1492 October 12'.

<HI,n>

date in the form
in fUI I. For

then <FULL-DATE>

This func1ion causes a left indentation to column •n•
{i.e., <LI,n>l to occur after completion of the current line of
text. This is known as a hanging indentation.

HI is implemented by hanging '<LI,n>' onto the new line
event. Unfortunately, if I ine termination is the result of one
or the system functions <e.g., <L>, <P>, and <PAGE>J, the line
event does not occur. !This is an implementation restriction.I
Therefore, under some circumstances the user may find tne
indentation occurring later than desired. This can be compen
sated for by COi i ing <HANG,LIUE> to flush the I ine event, or bU
calling <EMPTY,LINE> to discard the line event, before calling
the system function which bypasses the normal line event
mechanism.

<INCR,name>

INCR causes the value of the string called 'name' to be
incremented by one. Prior to a call of INCR, 'name' must be
defined via the STRING function and must have a numeric value.
For example, after execution of

<STRING,COUNTER,O>
<INCR,COUNTER>

the value of <COUNTER> is 1.

6

<INI,n>

This function causes the left Indentation to increase from
its current value by "n'. Since it acts as a relative LI, the
indentation tokes effect only at the beginning of the next line
of output text. The left indentation can again be decreased via
the function OUTI or reset using LI.

<LINE-NUMBERING>

This function causes subsequent document processor lines
printed to contain, in the right-hand margin, the number of the
approximate input source line corresponding to each output line.
This Feature should Facilitate subsequent editing of the Texture
source file by the user.

Line numbering will appear to the right of the right-most
~erforation on 8Xll Forms For positive line numbers less than
10,000. Thus, the numbering can normally be discarded when the
edges of the continuous Forms are removed.

Line numbering can be discontinued by calling the Function
NOTLillE-t~UHBERING. s i nee use of LINE-NUMBERING incurs about a
ten percent increase In document processing time, the user is
encouraged to employ this Facility selectively For large docu
~ents. All line numbering con be suppressed by including the
string 'NONUMBER' in the PAR= Field of the Texture run command.

<LOWER,string>

LOWER returns 'string' with the lower-case operator(¢)
appended before each character. Thus, when output via the
document processor, 'string' wi I I be shifted to lower-case. For
example,

<LOWER,HELLO>
will print as 'hello'.

Since LOWER is implemented simply as <EXPLODE,string,¢>,
'string' should not contain the characters< or:.

<LP>

This function causes a new paragraph to be started with a
blank line separating the new paragraph From the old and forces
the first word of the new paragraph to be capitalized. It is
defined as '<L><WIDOW,3><P>~·.

7

<MAKE-COUNTER,name,type,case>

HAKE-COUNTER causes a counter called •name' to be created
of type 'type' and case 'case'. The acceptable values of 'type'
are 'ALPHA' (f'or alphabetic!, 'ROMAN' (for roman numerals!, and
'ARABIC' (for arab i C numera Is). The def au It 'type' is 'ARABIC I.
The acceptable values of 'case' are 'UPPER' (for upper-easel,
'LOWER' (for lower-easel, and 'SUPER' (for superscript). The
default is to return the counter without any particular case and
to let the current Texture environment determine the output
case.

HAKE-CoutffER worll.s by defining two string: •name" and
'INCR-name'. Executing <name> returns the current value of the
counter In the proper type and case. Executing <INCR-nome>
first increments the value of the counter by one and then
returns this new value in the proper type and case. For
example, after execution of

<MAKE-COUNTER,ALPHA-CTR,ALPHA,UPPER>
executing <IHCR-ALPHA-CTR> once returns the string '@A' and
executing it a second time returns •~B'. It is important to
note that the two calls <name> and <!NCR-name> return
translations of the real numeric value of the counter 'name';
the real value Is hidden from view. Thus, it is possible for
the user to think of ALPHA-CTR as a counter which increments
alphabetically rather than numerically, even tho this is an
oversimplification.

Not all combinations of 'type' and 'case' ore allowed:
types 'ALPHA' and 'ROMAN' cannot have case 'SUPER', and type
'ARABIC' cannot have cases 'UPPER' or 'LOWER'. All other
combinations have the expected attributes. Specifying a CO$e
For 'ALPHA' will Force that counter to always print in the
desired case, regardless of the current global case environment
(e.g., UP and DOWHJ. Otherwise, the output case of an alpha
betic counter will depend on the global case environment and
whether or not it begins a sentence.

Warning: s i nee the counters initiated by MAKE-COUtffER have
a special internal representation, it is not possible to treat
them as ordinary strings. In particular, a counter must be
deleted via a call of DELETE-COUNTER (rather than the system
Function DELETE), its value can only be reset to zero via
RESET-COUNTER, and its value can only be sst to some arbitrary
numeric value via SET-COUNTER (rather than via STRING).

one of the nicest featues of MAKE-COUMTER is that it allows
counters to be completely transparent. For example, after
execution of

<DEFINE,HEADING,ISTRINGI,
"<L,2><WIDOW,5><INCR-HEAD-CTR>. ISTRINGI '>

<MAKE-COUNTER,HEAD-CTR>
calls can be mode to HEADING ~ithout the need of passing a
heading number; headings will automatically be numbered

8

1,2,3, ..•• Similarly, it is possible to define a footnote
function such that superscripted reference numbers are com
pletely hidden.

<MAX,x0, .•.• x9>

MAX accepts from one to ten integral argumen1s and returns
the numerically largest of them.

<MIN,x0, .•• ,x9>

MIN accepts from one to ten integral arguments and returns
the numerically smallest of them.

<NOT LINE-NUMBERING>

This function causes the line numbering initiated via a
call of LINE-NUMBERING to be discontinued.

<OUTI,n>

This functions causes the left indentation to decrease from
Its current value by "n". Since it acts as a relative LI, the
indentation takes effect only at the beginning of the next line
of output text. The left indentation can again be increased via
the function INI or reset using LI.

<PAD-LEFT,string,char,pad-size>

PAD-LEFT returns 'string' padded on the left with suffi
cient copies of 'char" to maKe the result of length at least
maxcpad-size,<LENGTH,string>J. For example,

<PAO-LEFT,HELL0,.,10>
returns the string ' •.•.• HELLO! while

<PAD-LEFT,WORLO,X,4>
simply returns the string 'WORLD' unchanged. Also,

<PAD-LEFT,WORLD,+.,10>
returns the string '+.+.+.WORLD', which is of length 11.

<PAD-RIGHT,string,char,pad-size>

PAD-RIGHT is equivalent to PAD-LEFT, except that padding
occurs on the right of 'string'.

9

<PHYSICAL-L,n,justification-method>

This function advances to a new line 'n' times, where 'n'
must be integral. It differs from th~ system function L in that
L advances lines with respect to the current LINESPACING value,
while PHYSICAL-L ignores it and advances 'n' physical (as
opposed to logical) new lines. 'justification-method' is the
optional second argument of L; see the "Texture User's Manual"
for an explanation of its utility.

<REAL-DATE>

The value of this function is the current date in the form
'YY mmm dd'. For example, if <DATE> returns 'oct 12, 1492',
then <REAL-DATE> returns '1492 Oct 12'.

<REMOVE,string,pattern>

REMOVE returns 'string' with all occurrences of 'pattern'
removed. For example,

<REMOVE, BL AH,>
returns the string 'BLAH'.

<REMOVE-FROM-EVENT,event,text>

This function deletes all occurrences of 'text' from event
'event' leaving unchanged any other text associated with the
event. 'event' can be any one of the events defined for the
system function HANG.

<REPEAT,what,howoften>

This function concatenates 'howoften' (an integer number>
evaluations of the string 'what'. If 'howoften' is omitted, its
value defaults to 1. For example,

<REPEAT,"<STEM,ABCD,2>',4>
returns the string 'ABABABAB'.

<REPLACE,string,pattern,replacement>

REPLACE returns 'string' with all occurrences of 'pattern'
replaced by 'replacement'. For example,

<REPLACE,-- .. -.- •. ,.,+>
returns the string •--++-+-++'.

10

<RESET-COUNTER,name>

This function causes the value of the counter called 'name•
initiated by a call of MAKE-COUNTER to be reset to zero. See
the description Of MAKE-COUtffER above.

<REVERSE,string>

This function returns
reversed. For example,

<REVERSE,UVWXYZ>
returns the string 'ZYXWVU'.

'string' with its characters

<REVISION-BARS,position,version,blocK>

REVISION-BARS initializes a set of functions used to
jndicate versions of a document by selectively printing vertical
bars (I J in the margins of the output document. This is exem
plified by the bars in the right-hand margin of this document.

To use this facility, the user must supply two major pieces
of information. First, revisions of the Texture source document
must be delimited by calls of the pair of functions VERSION and
END-VERSION. All text between matching calls of <VERSION,n> and
<END-VERSION,n> are assigned the version number 'n'. It is the
user"s responsibility to insure that the VERSION -- END-VERSION
pairs are correctly nested and balanced. Second, the user must
specify which version number groups are to be indicated by
vertic.al bars. This can be accomplished in two ways. If the
PAR= field on the Texture run command contains the string
'VERSION=n• !where "n" is integral J, then al I versio~ groups
whose number is greater than or equal to 'n' Will be barred.
Alternatively, the "version' argument of REVISION-BARS will be
used if the PAR= field is not. If "version' is also missing, no
version groups wil I be barred.

REVISION-BARS must be called once before any calls of
VERSION or END-VERSION. The argument 'position" indicates wt1ich
margin of the output document is to contain the vertical bars.
'position' can be either the string 'RIGHT' or the string
'LEFT', or the nut I string. The default is to place vertical
bars in the right-hand margin. REVISION-BARS can be called more
than once to cause the value of 'position' to be changed. For
example,

<TITLE,'~REVISION-BARS,<#EQ,<MOD,<PN>,2>,0,LEFT,RIGHT>,2>'
:<TITLE>>

at the beginning of document processing causes vertical bars to
appear in the right-hand margin of odd numbered pages and in the
left-hand margin of even numbered pages. In addition, the bars
wilt only appear for version groups numbered greater than 1.

The values of "version" and 'blocK'
during the first call of REVISION-B,RS.
quent calls, they will be ignored.

11

are only significant
If supplied on subse-

The optional third argument specifies the blocK of text in
which the rev1s1on bars are to appear. The default blocK is
STANDARD-TEXT. In general, this argument Will only need to be
specified when user-defined blocKs and layouts are being
employed. See the "Texture User"s Manual" for an explanation of
blocKs and layouts.

<SEARCH,string,pattern>

SEARCH returns the position of the start of the first
occurrence of 'pattern' in 'string'. It returns zero if
'pattern' is the nul I string, if 'pattern• is not contained
within 'string', or if the length of 'pattern" is greater than
that of 'string•. For example,

<SEARCH,UVWXY,WX>
returns the value 3 and

<SEARCH,ABC,CD>
returns the value o.

<SET-COUNTER,name,n>

This function causes the value of the counter cal led 'name'
initiated by a call of MAKE-COUNTER to be set to the numeric
value •n•. See the description of MAKE-COUNTER above.

<SUBSTR,string,index,length>

This function returns the substring of 'string' of length
'length' beginning at position 'index". 'index' must be greater
than zero and less than or equal to <LENGTH,string>. Also,
'length' and index+length-1 must be less than or equal to
<LENGTH,string>. If 'index' is omitted, its value aefaults to
1. If 'length' is omitted, the entire substring beginning at
position 'index• of 'string' is returned. For example,

<SUBSTR,PAPER,2,3>
returns the string 'APE' and

<SUBSTR,PAPER,3>
returns the string 'PER'.

<UNDER.string>

UNDER returns 'string' with the underline operator C_J
appended before each character. Thus, when output via the
document processor, 'string' will be underlined. For example,

<UNDER,hello>
will print as 'hello".

12

Since UNDER is implemented simply OS <EXPLODE,string, >,
'string• should not contain the characters< or:. -

<UPPER,string>

UPPER returns 'string• with the upper-case operator (~)
appended before each character. Thus, when output via the
document processor, 'string' wi I I be shifted to upper-case. For
example,

<UPPER,hello>
Will print as 'HELLO'.

Since UPPER is implemented simply as <EXPLODE,string,_>,
'string• should not contain the characters< or:.

<VERSION,n>

This Function establishes the beginning of a document
revision group which must be terminated subsequently by a call
of <END-VERSION,n>. See the description of REVISION-BARS above.

<WHILE,condition,what>

This Function causes the string 'what' to be evaluated
repeatedly unti I 'condition' becomes False. •condition' must be
in the form of one of the built-in predicate functions CEQ, NE,
LT, LE, GT, GE, #EQ, #NE, #LT, #LE, #GT, or #GE) but without the
last two arguments being present (e.g., <EQ,a,b> rather than
<EQ,a,b,true,False>l. For example,

<STRING,LETTER,ABCX>
<WHILE,"<NE,<LETTER>,X>',

"<LETTER>
<STRING,LETTER,<TRIMSTEM,<LETTER>,l>>'>

returns the string 'ABCX BCX ex•.

3. Str i nqs def i nee! in EUREKAI.IB

<ALPHABET>

The value of this string is the twenty-six letters of the
English alphabet in upper-case.

<MAX-NUMBER>

The value or this string is 2147483647, the maximum integer
representable by the hardware of the IBM 360/370s.

13

<S>

The value of Sis a single
Functions read via the INLIB
removed by IHLIB.

blank. It can be u~ed in
function. Regular blanks are

4. Additional actions initiated ~1hen using EUREKALIB

Before defining the Functions and strings listed above,
EUREKALIB causes the DEFINITION-SPACE- SIZE to be increaseu to
accommodate the new Functions . The only additional action
initiated Is the call <BP.EAK-WORD-ON- EOL> to cause the end of
each subsequent line read by Eureka to be treated as a breuk
between text words. This is essentially equivalent to append ing
a blank to the end of each subsequent line of input text.

5. Summary .!lf functions IDJ cateqories

cuse Shifting: LOWER, UNDER, UPPER
control structures: FOR, REPEAT, WHILE
counters: DECR, DELETE-COUNTER, INCR, MAKE-COUNTER,

COUNTER, SET-COUNTER
dates: FULL-DATE, REAL-DATE
figures: FIGURE
indentations: HI, INI, OUTI
I ine numbering: LINE-tlUMBERING, NOTLINE-NUMBERIHG
line spacing: LP, PHYSICAL-L
miscellaneous: CONMENT, REHOVE-FROM-EVENT
numeric computation: MAX, MIN
revision bars: EMO-VERSION, REVISION-BARS, VERSION
string manipulation: COHPRESS, CONCAT, COUNT,

EXTRACT-NUMBER, PAD-LEFT, PAD-RIGHT, REMOVE, REPEAT,
REVERSE, SEARCH, SUBSTR

RESET-

EXPLODE,
REPLACE,

MMM
t1MNM MMM

MM M MM
M M

M M MMMMMMMMM
MM · MM MMMM MMM

MMM 1111 MM MMM
MMM MMM
MMMMMMMMMM

MMMMMMM MMMM
MMM

MM MMM
HMMMMM/1
HMM MM
MM MMM
11 MMM

11 MM MMM
MMMM MMMMMM
MMM

MM
MMMMM

M MN
M M

MM
MNN
MHM
HMM

MMM M
11MMMl1

**
* * * DRAWLIB: *
* A Library of Texture Functions *
* for Dra~ing Figures Directly onto a Page *
* * **

by

Mark Scott Johnson

Technical Note 77-1

1977 May 6

Department of Computer Science
University of British Columbia

Vancouver, B. c.

l

This document describes a library of functions !written in
Eureka) for drawing line figures directly onto a page of text.
Before using th is library, it must be loaded via tne call
<INLIB,CS:ORAWLIB>. Also, since drawing Involves Texture
blocks, it will generally be necessary to up the maximum block
size (Which defaults to 20) via the coll <MAX-BLOCKS,100>.
Intricate diagrams may require an even larger block
specification.

The Functions described below ore implemented using the
Texture primitives H- LIUE, V-LINE, POINT, and LINE (see sections
4.4 and 4.5 of the "Texture User"s Monua1:•) to cause lines and
strir,gs to be drlJbln at absolute- locations within the current
page . Thus, drawing is done without regard to text blocks and
layouts. In other words, it is possible to draw figures on the
page .Q!l ill~ normal text. It is the user's responsibility to
insure (using the L and PAGE primitives) that this does not
happen. Examples will be given below.

The drawing functions are divided into two classes: those
i nvo IV i ng rectangu I ar shapes (_RECTANGLE, SQUARE' and OPTION-BOX)
and those involving lines with arrowed tips (DOWN-ARROW,
LEFT-ARROW, RIGHT-ARROW, UP-ARROW, and ZIG-ZAG).

<RECTANGLE,col#,line#,Width,height,lobell,labelZ>

•col#' and 'I ine# ' indicate the absolute column and I ine
numbers of the top leftmost corner of the rectangle to be drown.
The rec tang I e w i I I be 'width ' characters wide and 'height '
characters high. 'labell' and 'lobel2', wh ich are optional, are
str ings which wi 11 be centered within the rectangle as lob-els.
For example, execution of the s~quence of calls :

<RECTANGLE,10,<SUM,<LINE>,2>,21,6,exomple,rectongle>
<L,9>

produces the figure:

example
rectangle

Note In particular that the <L,9> is necessary to prevent text
from being assembled on top of the rectangle.

<SQUARE,col#,line#,Width,labell,label2>

SQUARE is identical to RECTANGLE except that the height of
the figure is the some as Its ~idth and, thus, only "width'
needs to be specified.

2

<OPTION-BOX,col#,line#,Width,helght>

OPTION-BOX produces an unlabeled rectangle in which the top
and bottom lines are not drawn. Thus, the resulting figure
approximates a set of large square brackets. For example,

<OPTION-BOX,15,<SUM,<LINE>,2>,15,5>
<L,9>

produces the figure:

r
I
I
I
l

,
I
I
I
J

<direction-ARP.OW,col#,linel,length>

'direction• is one of the ~ords: DOWN, LEFT, RIGHT, or UP.
Each of these four functions operates in the same manner.
'col#' and 'line#' indicate the absolute column and line numbers
of the origin of the line to be drawn. A line is drawn from the
origin in the 'direction' and for the 'length' specified. An
arrow head CV, <, >, A) is drawn at the end of the I ine. For
example,

<RIGHT-ARROW,20,<SUN,<LINE>,2>,10>
<L,5>

produces the figure:

----->

<ZIG-ZAG,col#,line#,directionl,lengthl, ••• ,direction9,length9>

ZIG-ZAG causes a zig-zogged I ine of up to nine components
to be drawn starting at the origin ccol#,linel). 'direction' is
one of the words: DOWN, LEFT, RIGHT, or UP, and 'length' is the
length of one of the component lines . An arrow head is drown at
the end of the last component . . For example,

<ZIG-ZAG,5,<SUN,<LINE>,2>,RIGHT,15,DOWN,10,
LEFT,7,UP,5,RIGHT,3>

<L,14>
produces the figure:

I
I
I
I

r> I
I I
I I
I I
L__...J

3

When it is desired to draw a figure composed of several
subfigures, it is suggested that the origin for each subfigure
be specified using two user-defined numeric strings, and that
the values of these strings be passed cs the •col#' and 'line#'
arguments to the DRAWLIB functions rather than passing absolute
integers. This facilitates modification of the subfigures by
translation relative to each other and in positioning the entire
figure on the page. For example,

<STRING,X0,30>
<STRING,YO,<SUM,<LINE>,2>>
<STRING,Xl,45>
<STRING,Yl,<SUN,<Y0>,2>>
<SQUARE,<XO>,<Y0>,9,S>
<RIGHT-ARROW,<SUM,<X0>,8>,<SUM,<Y0>,4>,

<DIFF,<Xl>,<SUM,<X0>,8>>>
<RECTANGLE,<Xl>,<Yl>,11,5,R>
<UP-ARROW,<SllM,<Xl>,5>,<Yl>,3>
<L,12>

produces the figure:

I
I

A
I

I r--
I I

s 1-->I R
I I
I
I

where CXO,YO) is the origin of the squares and <Xl,Yll is the
origin of the rectangle R. Now the entire figure can be
centered by changing XO to 24 and Xl to 39 producing:

1 A
I I
I r--
I I

s 1-->I R
I I
I
I

