kx kkkkkkhkhkkhkkkhkhkkkkkkhkkkkkhkhhkkhkkhhkhrkkkhhkhkkkkkk

Texture User's Manual
BY

The Texture Support Group

1978 January 19

% % % % % N % ¥ ¥ % ¥ % ¥ ¥ *

*
*
*
*
*
*
*
¢ Technical Manual 75-08
*
*
*
*
*
*
*
*

khkkkhhkkhkkkkkhkhkkhkhkkkkhkkkhkkhhkhhkkhkhkkkhkhkkkkkkkh

DEPARTMENT OF COMPUTER SCIENCE
THE UNIVERSITY OF BRITISH COLUMBIA
VANCOUVER, BRITISBE COLUMRIA V6T 1W5

ABSTRACT

Texture 1is a document formatting program designed for a
wide variety of applications ranging from form 1letters to
technical reports. It features an exceptionally versatile
command language, and permits great freedom in page layout.

This manual contains a description of Texture, together
with three supplements: an update newsletter describing new
features as of 1977 July, and descriptions of two convenient
libraries, Eurekalib and Drawlib, developed by Mark Scott
Johnson.

This document was printed on an IBM 3800 printer, courtesy of
Block Brothers Industries, Vancouver.

Terms of Usage

The Texture package was developed by:

Hichael Gorlick
Vincent Manis
Thomas Rushworth
Peter van den Bosch
Tjeerd Venema

under the auspices of the Department of Computer Science,
University of British Columbia. :

The Texture package consists of copurighted material, and
is distributed under a License Agreement available fFrom the
Department. Any reproduction, in whole or in part, of the
package without permission, other than that explicitly provided
for under that Agreement, is strictliy prohibited.

NEITHER THE TEXTURE SUPPORT GROUP NOR THE UNIVERSITY MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO THE TEXTURE PACKAGE.
Neither the Texture Support Group nor the University shall be
held liable for errors contained therein, or for incidental or
consequential domages in conjunction with the furnishing, per-
formance, or use of Texture.

Copies may be made of this manual, but in such a case, a
signed copy of the Document Agreement on the next page must
be giver. to the Liccnsee.

Copuright (c) 1975, 1976 Texture Support Group
All rights reserved

Document Reproduction Agreement

I agree that the copy of the Texture User's Manual which I
receive is for my own use in connection with a licensed copy
of the Texture pockage. I understand that the Texture package
consists of copyrighted material, ond agree to conform to 4ail
provisions of the Program License Agreement, a copy of which is
appended to this manual.

DAtE .evvrncnnnnans o R R ok R AT i

Texture User's Manual 4

<T,n, justification-method> Reiative Tabbing

This will cause a tab fto column 'n' relative to the sum of
the left block edge and the left indent, justifying the last
piece of text according to 'justification-method'. The value of
‘justification-methed' must be one of 'JUSTIFIED', 'RAGRIGHT®,
'RAGLEFT', or 'CENTRED'. If 'justification-method' is omitted,
RAGRIGHT is wused. If 'n' is omitted, then the tab is made to
the next column set by TABSET where column 1 is defined to be
the sum of the left block edge and the left indent.

<TAB,n, justification-method> Absolute Tabbing

This will cause a tab fo column 'n' relative to the Ileft
block edge, Jjustifding the last piece of text according to
tjustification-method’. The wvalue of 'justification-methed'
must be one of 'JUSTIFIED', 'RAGRIGHT', 'RAGLEFT', or 'CENTRED'.
IF 'justification-method' is omitted, RAGRIGHT ie used. If 'n'
is omitted, then the tab is made to the next column set buTABSET
where column 1 is defined to be the left block edge.

<LINESPACING,n> Setting the |ine spacing

On typewriters there is usuully a switch which confrols
what is known as 'single', 'double' or *‘triple' spacing. This
means that @ carrigge return will result in the paper being
advanced one, two or three lines, respectively. In Texture this
command controls the number of blank lines between any two tuped
lines. Thus single spacing is set by <LINESPACING,0>, double
spacing by <LINESPACING,1> and so on, For any positive value.

<PARAGRAPH-SPACING,n> Setting the paragraph spacing

This command sets the number of blark 1lines to be left
between paragraphs by the 'P' command to 'n'.

<LI,n> and <RI,n> Indentation

On tupeuwriters there are usually a pair of ‘margin' buttons
which set the left and right margins. In Texture it is these
commands which act as ’margin' buttons. <LI,n> resets the |eft
margin to column 'n', and <RI,n> resets the right margin 'n'
columns to the left of the right printing edge.

It is worth knowing that they act much the sume way as the
equivalent buttons on a tupewriter. If ucu have ulready tuped a
line, and then resef the left margin, the effect of your reset
will not be seen until the next line. Similarliy if uou are past
column 'n', and reset the right morgin to column 'n', the effect
will not be seen until the next iline.

Texture User's Manual 5

Indentation of the Ileft margin has no effect on fab
columns. <T,n> will bhaove the same effect after o <LI,m> as
before (for n>m). The expected occurs for o <P> command, if uwe
think of paragraphing as a new-line followed by spacing over
some number of columns; that is, the paragraph does not begin ut
a given column, it is over some number of columns From the left
margin.

<BREAK-WORD-ON-EOL> and <NOTBREAK-WORD-ON-EOL>

After uny occurrence of ‘BREAK-WORD-ON-EOL' the end of
source line always causes a breok between words until the next
‘NOTEREAK-WORD-ON-EOL " cccours. 'BREAK-WORD-ON-EOL' is
equivaient to appending a trivial blank onto tThe end of each
source line.

2.2 Adjusting text within g line

Texture normal iy adjusts all text so that both morgins aore
Flush (like this poragraph). If a line is suddeniy termincted
by the equivalent of a carriage retfurn (<L> Ffor example, or
<P>}), the 1line will only have the Ileft-hand margin Flush.
Sometimes, however, it is desirable to centre some text within a
line {(as is, for instance, the title of this manual), or fo have
several lines coming out with a ragged right margin, ags though
they were tuped on an ordinary typewriter. For this, there are
other modes of adjustment.

<JUSTIFIED>

This is the normal mode of adjustment. It causes both
margins to be flush.

<RAGRIGHT>

This is the sort of adjustment you get when you type
something using o Tupeurifer. Only the left-hand margin is set
flush; the right-hand margin is set exactly where it was when
the line Filled up and the processor had 1o go to the next line.
This paragraph is an example of ragged right text.

<RAGLEFT>

This is the opposite of RAGRIGHT, and causes text to be set
with o ragged left and a flush right margin. There is little
use for such an adjusitment mode, except in paragrophs like this,
and in setting concrete poetry.

Texture User's Manual 6

<CENTERED> or <CENTRED>

This mode causes each line to be centred as much as possible.
An almost equal number of blanks is put on euach side of the !ine
to centre it. A gcod use of this mode is in tities, and the
title of this chapter is, indeed, centred. A poor use is in
normal documents, uniess one is demonstrating centred text, as
in this paragraph.

<SPLIT>

This is not so much an adjustment mode as a command which
causes a line to be split into two parts, one set flush against
the left-hand margin, the otha2r Flush against the right. It is
useful in ftables of contents, and for other similar effects.
For example, the line

<L> Chapter 3 <SPLIT> 42 <L>
would come out

Chapter 3 denea G2

<CHAR, x> Special characters

Some line printer print chains have a number of special
characters on them which are very useful for producing handsome
documents. These include braces ({}), square brackets (I1),
superscript numbers (01236456789) and other graphic characters.
Since these characters do not have an equivalent on most data

entry equipment (e.g., Terminals and, heaven forbid,
keypunches), it is difficult to get at them without a facility
like CHAR. The wvalue 'xX' is the decimal equivalent of the

bit-sequence of the particular character. Thus, |, which is not
included on some teletypes, has the bit-representation 01001111
in EBCDIC, and is therefore '<CHAR,79%>. Having to remember
numbers is almost as annoying as not having the characters
available in the First place, and it will be explained in the
next section how one can define mnemonics for one's favorite
special characters. All characters avdgilaoble on the TN print
chain are given C(hopefully meaningful) mnemonics by using the
PAR=SYSLIB feature on the $RUN command which initicoted execution
of Texture (see Appendix B). To avoid confusion with the
internal representaiion of some specidal markers, any value of
'X' which is less than 64 is turned into 64.

2.3 Case shifts

Just as not every input device has a full character set, so
not every input device has lower-cuase characters. It would be

Texture User's Monual 7

very tiresome if we had to do all our |ower-case letters with
CHAR, and in recognition of this, Texture provides several
source editing commands.

<DOWN> and <NOTDOMWN>

After o DOWN, every text character from "A' through "Z" is
automatically turned into its Ilcwer case equivalent until a
NOTDOWN or UP is encountered. - Eureka program text is not

affected by this tronsliation.

<UP> and <NOTUP>

After an UP, every text character from "a" through "z" is
automatically turned into its upper-case equivalent until a
NOTUP or DOWN is encountered. ~ Eureka program text is nct
affected by this Translation.

<SET-SENTENCE,strl,str2>

This primitive changes when Texture is +to start o new
sentence. IF while building a word, uny of the characters of

'strl' is encountered and nonhe of the characters of 'str2' is
encountered in the remainder of the word, then +the next word
wili begin a new sentence. The default value of ‘'strl' is '.?27°

and of 'str2' is all the upper- and lower-case letters as welli
as the digits zero through nine.
<AUTOCAP> and <NOTAUTOCAP>

After an AUTOCAP the first letter of the First word cof

every sentence is capitalizea until a NOTAUTOCAP is encountered.
Eureka program text is not affected by this transiation.

2.4 Some special operators

For convenience, Texture defines some single-characier
operators which are not treated as text, but have an effect on
the character which follcws them:

1. "_" ploces an underscore under the next character. Thus
"ba_th' becomes '"hath' on output.

2. "@" causes the next character to be shifted wup. Thus,
"amcaphee' becomes ''McPhee'. This can be very useful
in DOKN mode.

3. ¢ couses the next character to be shifted dcun. Thus,
"CE.CE.¢Cummings'' becomes “e.e.cummings'. This is very

Texture User's Manual

1.
2.

USING TEXTURE IMMEDIATELYccccvvnanacan

SOME MORE TEXTURE

B R

sa e

e

2.1 THABS . s cim 5o w1 i o0 w3 015 006 w0 516 575 ovm o si6 ws =ik &78 A $16 SUE 8% W 66

2.2 Adjusting text within a line ..
253 [COSE BITETE 5o D05 5rn 555 5im 006 aza oie mom 028 ate wom ace oiie wie skl se: ¥e ww siig) set
2.4 Some special operdators
2.5 Headers and footers S WA N wesee
EUREKAY' . g oo mi s wos min i 0v0 won BORBERRIE o w38 ¢ 1oy #%] st 655 @
3.1 A program exXampleccececcccccccnnnn
3.2 Neutral evalUCTION «ocee v sass se s o o s o5 54 56 o8 008 o0 076
3.3 Some Eureka functionscccececeee--

3
3.3
3.3.
3.3.
3.3.
3.3
3.3
3.3.
3.3.
3.3
ER

T

User internal
User external

Eureka programs

vironments

D

s ee e

csees

.3.1 Lexicdl COMPUriSONciveecacocrcsonssocnneacnasn
2 Numeric computationcceeceveccnncecncconnns
3 SIring manipUlATEON os s o o e 555 6@ 6% 655 8% &% o185 o8
4 function definitioncocceveene.
5 function definitioncc0uee
.6 Function deletion and garbage collection
7 in Texture text .c..eeccescsccccasns
8 Eureka input and outputcceecierececancnns
9 Miscellaneous fUNCTIiONS ...c.veececncncccssnnansa
.10 Altering the Eureka special characters
EST OF TEXTURE: s sie oi6 s1s 61s 516 o3 96 o o7 5w o6 S0 o5 654 o5 o1e 838

H
4.1 En
G0 LOGOUTT vcmie vrv vis oo ore mim pia avn gow ai s70 00 9va BBty ol diass B0 R SR
4.3 B

JOOKS ciceiceiscitonensasseesansssonniasssseesiosssss

8,31 Standand BLOCKS .« s o v st e w16 w5e s o5 aie wye 504 @
G.3.2 Temporary DIOCKS ... ww v e wie e s 5w ova s0n 678 576 606 00 o5

4
4
4
4
4
4

"y

cs e e

4 Accessing absolute page 10cationsccceveeesecnee
B Lines ang: BOXES . v s 0 68 e 50 60d 508 b 5,08 okl 06 S50 e, 528 88 Buck m
6 FOOTNOTES v e vis s o1s ae o70 o6 a3 978 57 516 a8 60 97@ oi8 oo o8 Bis oe o0s 078
7 Modifying Texture's I/0 STreamccovecennsnascaas
8

EVBITS 5.0 505 e 556 mom 518 mue Sus rw Sas mre ae wid e o740 S il ksl ot slie win w56 oite

.9 Hiscelldaneous FUNCTIONSc.ccivecrecnnasocascnnsanas

4,10 Setting Texture's special purpose characters
AppendixXx A - Defaultsiiieirneeccenocosanescsncones
AppendiXx B = the SYSLIB librarycceceeeeccsocsscncona
Appendix €C - the SYSTEM libraryccieeeecennnans

INdEX .osvivow

TEXTURE: A USER'S MANUAL

“It is shaped, sir, like itself, ond iT is
as broad as it hath breadth; it is just so
high a8 it is, aond moves with its own
organs; it lives by that which nourisheth
it, and the elements once out of it, it
transmigrates.*

Anthony and Cileopatra

Availability

Texture can be obtained using the following MTS RUN commard
(with the PAR field optional):

$RUN CS:TEXTURE SCARDS=sourcefile SPUNCH=outputfile
SPRINT=1listingfile PAR=SYSLIB

where SCARDS specifies the user input file, SPUNCH, the file on
which Texfure will initially begin text output, SPRINT, the file
which will contain error messages and the output of the LIST
command, and the PAR field indicates to Texture fto use the
system |libraru of predefined Eureka functions (see Appendix Bl.
If the 'SPUNCH=outpuffile' is omitied on the RUN command,
Texture will default its output to the MTS File '-TXTDOC'.

The input fo Texture is o sfreom of text. This text may be
broken across the 'boundaries' imposed on such a stream by the
harsh praoacticalities of the real world: such boundaries as the
end of o card or record in a line-file or on a taps. To the
document processor, however, all this looks like ona contiguous
stream of text. The text will probablyu incliude the text of the
document which Texture sventuully outputs; but mixed with this
prose there will in general be remuarks to the processor in the
form of Eureka calls. Eureka is a language For the definition
dand expansion of macros which define primitive Ffunctions for
these purposes, aiong with some conditional evaluation,
input/output and string manipulation primitives. A Eurekd
program is o Eureka call, which is generally enclosed in the
delimitiers < and >. The input to fthe document processor is
therefore First examined by Eureka, which either ignores the
text (iF it is not inside the Eureka call delimitiers) or
evaluates the text if it is a call. The valus of a call is
either scanned anew or, if it was a neutral call (one precsded
by the sumbol ':'), it is ignhored. When Eureka '"ignores' text,
it passes the text along to Texture proper (the document
processor) which outputs the text in da finished form.

The form of the output text is controliled by the calling of
primitives (described below) which afFfect the processing of
subsequent text as soon as they have been evaluated. To the

Texture User's Manual 2

user, then, it dappears as though Texture is actually a set of
document processing primitives defined in Eureka, and that the
Eureka output routine is one which formuts the processed text.
This manual wilt describe the primitives (these which are proper
to Eureka and those which define Texture) as though this is in
fact the case, although in reality this is somewhat of an
oversimplification.

The manual is organized into four parts. The first part,
entitled "Using Texture Immediately", is concerned with the
basics, including a few useful commonds. The second part, ''Some
Hore Texture'", gives the remaining commands likely to be needed
by the average user. The third part is "Eureka!" Which
introduces the wuser to writing programs in Eureka. The fourth
part is entitled "The Rest of Texture" and gives all the other
commands and advanced concepts which remdin.

1. Using Texture Immediately

If one knew nothing else about Texture than how to run it,
it would be possible to feed some lines of raw text to Texture
aond to get the text printed out again, neatly formatted for a
typeuwriter-size page.

This is seldom adequate, however. In any document it is
necessary to be able to produce paragraphs, underline words and
tab to desired columns. These are accomplished by means of
""commands' to the processor, and it is perhaps most convenient
to think of them das "asides" or 'proofreader's marks'. Like
proper asides, they are enclosed in parentheses -- in this case
angle brackets (< and >). This naturally precludes the use of
angle brackets for any other purposes, such ds mathematical
notation, since the processor always thinks of them as command
delimiters, and the user should be aware of this. In the next
section it will be explained how angle brackets can be produced
as ordinary text.

Commands may be inserted anywhere in the text: whatever
their effect is, it will be felt at the point at which they
occur. Whenever possible, Texture acts the way a tupewriter
wouid and commands are treated as though theu were special
buttons on a typewriter. The most important commonds, and their
effects on the text, are the following:

<P, justification-method> New paragraph

Advance to a new Jine wusing 'justification-method' to
Justify the last |ine and space in X spaces From the current
left-hand printing edge where X is the current paragraph-indent
(default is 5). The value of 'justification-method' must be one
of 'JUSTIFIED', 'RAGRIGHT', 'RAGLEFT' or 'CENTRED'. If
'justification-method' is omitted, it defaults to RAGRIGHT if

Texture User's Manual 3

the current globdal justification method is JUSTIFIED, ofherwise
it defauits to the current global justification method. All fthe
poragraphs in this document were started with a <P> before the
first word in the paragraph.

<Lsn,justification-method> New line

Advance to a new line 'n' times (n must be integral)
Justifying the lines using 'justificatrion-method'. The value of
tjustification-method' must be one of ‘*JUSTIFIED', 'RAGRICGHT',
'RAGLEFT®' or ‘'CENTRED'. If 'justification-method' is omitted,
it defaults to RAGRIGHT if the current global justificaiion
method is JUSTIFIED, otherwise it defauits to the current global
Justification method.

<U> and <NOTU> Underlining

Every word between a <U> and the next <NOTU> wiil be

underl i ned. The blanks separating these words are not
underlined. Letters, digits ond hyphens within words are
underlined, but punctuation 1is not. In section G the

description of the pair of functicns UND and NOTUND will explain
how the set of characters which is underlined may be changed.

2. Some more Texture
2.1 Jabs

As anyone who has ever used a typewriter will Khow, it is
convenient to be able to jump, at the touch of a single button,
to a predetermined column. Almost all typewriters have a

facility fFor setfting 'stops' at such columns and so has Texture.
Following the wusual terminology, this Facility is callad
tabbing.

<TABSET,n> Setting tab-stops

The value 'n' is a number correspending 1o a column. A
tab-stop is set at that column. Thus, <TABSET,26> will set a
tab-stop at column 26. The meaning of the word ‘'column" is

dependent on the tuype of tabbing being done (see TAB and T).

<TABCLEAR,n> Clearing tab-stops

This has the opposite effect of TABSET. The tab-stop at
column 'n' is removed. <TABCLEAR>, without a value 'n', causes
all tab-stops to be removed.

Texture User's Manual 8

useful in UP mode, to avoid having to shift down for o
single character.

4. "% causes the next character to be treated literally as
text. Thus, *"'15%¢EACH' becomes ''15¢EACH', not ''15eACH"
as it would have been without the asterisk. Similarly,
"%<pP>" does nhot cause d new paragraph, but simply
causes the text "<P>" to come out (which is the only
way this document could have been written).

5. "/" causes the next character to be overprinted on the
previous. Hence, “a/'' becomes '‘a", and '':/<CHAR,191>"
becomes ':'',

6. "=" is replaced by a biank on output. The difference
between “a-b" and "a b"™ is that "a b" is two words, and
may be broken across iines or separated hy extra spaces
after justification, while "o-b" is a singie word which
happens to have a biank in it. The character which
replaces the - is or is not underlined in underlining
mode, depending on whether the character would normally
be underiined. Thus a blank, which is the default
character, would not be underlined.

These operafors always act upon the next text character.
Thus fwo or more operators might appear in a row and so affect
the same text character. (e.g., '"_aa'" results in "A".)

<SET-o0op,c> Setting special characters

It is not necessary to consider oneself stuck with the six
special characters given above. Sometimes these particular
characters are inconvenient, and we'd prefer another set. In
the <SET-op,c> commands, '¢' becomes the special character
denoted by '‘op", where 'op'" means the following:

<SET-TEXT,c> 'c' is henceforth treated as ordinary fext. This
can be convenient if one is not using one of the spacial
characters and wants to be free from the bother of having
to put an asterisk in front of any use of 'c' in the
text.

<SET-BREAK,c> '¢' is henceforth treated, the way a blank is now,
as a break between words. Hereafter, "acb" is treated as
the two words “a" and '"b'".

Texture User's Manual 9

<SET-NTB,c> ‘'c' is henceforth treated as a non-trivial blank
(the way -~ is by default). That is, from now on, 'c' s
replaced by a blank on output (described above).

<SET-0OPC,c> 'c' is henceforth treated as an overprint operator,
the way / is by default.

<SET-LIT,c> ‘'c* is henceforth treated as a literal-next
operator, the way * is by default.

<SET-DOKN,c> 'c' is henceforth treuted as a down-shift operator,
the way ¢ is by default.

<SET-UP,c> 'c' is henceforth ftreated as an up-shift operaior,
the way @ is by defFault.

<SET-UNDER,cC> o is henceforth treated as an
underscore-operator, the way _ is by default.

<LIST,name> and <NOLIST> Turning the source listing on and off

The action of these commands is obvious: LIST causes the
source to be listed on the file 'name'. IF 'name' is absent,
the listing file becomes the file attached to SFRINT. NOLIST
will turn off the listing, until the next LIST command.

In LIST mode, each 1line of source text is echoed to the
listing file in the following form:

A. The source file 1line number, wuseful Ffor editing
purposes.

B. The source line itfself enclosed in vertical bars
c i

C. The mode in which the processor was operating at the
time it ended processing the previous source lineg and
began processing the current line (the point of the
line break). The possible modes are:

T - Texture. The processor wdas oassembling
document text ot the point of the line
break.

F - Function. The processor was evaluating a

Eurekda call at the point of the line break.

L - Literal. The procassor was scanning over o

Texture User's Manual 10

Eureka literal at the point of the line
break.

I - Input. One of the Eureka primitives RC,
RFN, RLN, RNC or RS was calling for input at
the point of the line breok.

The Eureka function nesting level at which the line
break occurred. This is the number of < or :< suymbols
which have been scanned for which a matching > sumbol
has not yet been scanned at the point of the line
break. This field is blank if the processor is not in
'E' or 'L' mode at the point of the line break.

The Eureka literal nesting level at which the line
break occurred. This is the number of ' symbols which
have been scanned Ffor which a matching ' symbol has
not uet been scanned at the point of tihe 1line breok.
This Ffileld is blank if the processor is not in 'L’
mode at the point of the line break.

The input-primitive mode at the point of the line
break. If the processor is in 'I' mode at the point
of the line break this field contains one of the
fol lowing:

R - Read. The primitive is reading the text at
the point of the line bredk. This is true
for all input primitives except RFH.

F - Functionscan. The RFN primitive is scanning
a function call at the point of the line
break. The mode applies to RFN only, it is
biank for all other input primitives.

L - Literalscan. The RFN primitive is scahning
a titeral at the point of the line break.
This mode appliies to RFN oniy, it is bliank
for all other input primitives.

If the processor is not in 'I' mode, then this field
may contain one or both of the following:

> - Trim stem on. All SCURCE lines tTo Texture
have [eading blanks deleted.

< - Trim stern on. All SOURCE lines to Texture
have trailing blanks deleted.

The RFN Function nesting level at which the line break
occurred. This is the number of < or i< symbols
scanned by the RFN primitive for which a matching >
suymbol has not uyet been scanned at the point of the
fine break. This field is blank if the processor is

Texture User's Manual 11

not in 'I' mode or if the level is 0.

H. The RFH literal nesting level ot which the line breuk
occurred. This is the number of ' scanned for which a
matching ' has not yet been scanned at the point of
the line breck. This field is blank if the processor
is not in 'I' mode or if the level is 0.

Khen an error occurs, the line, up to the point of error,
is listed aond the error message is printed below it enclosed
within a box to distinguish it From surrounding text. Errcrs
are classified as fatal or non-fatal, a fatal error being one
where a logical course of action cannot be undertaken (e.g.,
Invoking a block instead of a layout). When a Ffatal error
occurs, the page currently being assembled is printed on the
output file up to the current assembly point, the error messasg2
is given on the listing file and then processing halts. Hhen a
non-fatal error occurs, an error message is given on the fisting
File, or SERCOM iF NOLIST is in effect, and processing
continues, with the offending point either being assigned the
default value if o default value exists, o ignoring the point
if nothing is known about it (e.g., An undefined function).

<PN,n> Setting the page number

Texture will automatically number pages sequentiaily,
starting with page 1. Sometimes, when d document s being
assembled chapter by chaptfer, it is convenient to stort ofFf wiTth
¢ number other than 1, and fer this reason, <PN,n> sets the page
numnber to 'n'.

If one wants to Kknow the current page number for some
reason (dand there ore good reasons, such as setting up a
buckword reference), the commaond <PH> is aluays replaced by fhe
value of the current page number. Thus the text "This is poge
<PN>" becomes '"This is page 11" when it is prinfed.

2.5 Hegders and footers

It is convenient to have some facility for putting headsrs
at the tops of pages and footers at the bottoms, so that a
person flipping through o document can find his ploce quickly by
looking for the appropriate identifying text. For tne user's
convenience, Texture defines, by default, a header atf the tcp of
each poge and a footer at the bottom. The header i3 divided
info left and right parts, each oF which may be set
individually. The right header is, by defau!t, the poge numter,
but it may of course be reset. This should be sufficient for
most wuses, but if it is not, section 4 will explain how 7o
define one's own headers.

Texture User's Manual 12

<LTITLE,text> Setting the left header

The left header is set to 'text'. On each subsequent page,
the text 'text' is put at the left top of the page. If ‘'text!
is absent, o0s in <LTITLE>, the text that would appear at the top
of the current page also appears in the stream at this point
(that is, the value of <LTITLE> is the left title).

<RTITLE.,text> Setting the right header

The right header is set to ‘'text'. On each subsequent
page, the text 'text' is put at the right top of the page. If
'text' is absent, as in <RTITLE>, the text that would appear at
the top of the current page diso appears in the streom at this
point (that is, the value of <RTITLE> is the right header). The
value of <RTITLE> defaulfs to "<PN>", with the result that the
page number comes out at the top right of each page.

<TITLE,text> Setting the entire header

The header is set to ‘text'. On each subsequent page, the
text 'text' is put at the top of the page. If 'text' is absent,
as in <TITLE>, the text that would appeur at the top of the
current page also appears in the stream at this point (that s,
the value of <TITLE> is the page header).

Initially, the page header is given the value
“<LTITLE><SPLIT><RTITLE>", which is what causes the left header
and right header to appear at opposite ends of the same line.

<FOOTER, text> Setting the footer

The footer is set to "text’'. On each subsequent poage, the
text ‘'text' is put at the bottom of the page. If 'text' is
absent, as in <FOOTER>, the text that would appecr at the bottom
of the current page dalso appears in the streuam at this point
(that is, the value of <FOOTER> is the current footer).

<PAGE, justification-method> SKipping to the next page

On a typewriter, tThis is the equivaient of roiling the
current poge out after justifuing the last non-blank line using
tjustificarion-method', rolling the next page in, typing the
header and page number cond then moving the carriage to the first
column of tThe first line. The value of 'justification-method!
must be one of 'JUSTIFIED', 'RAGRIGHT', °'RAGLEFT' or 'CENTRED'.
If 'justification-method' is omitted, it defaults to RAGRIGHT if
the current global justification method is JUSTIFIED, otherwise
it defaults to the current global justification method.

Texture User's Manuul 13

3. Eureka!l

Eureka is a complete programming language in which Texture
is embedded as a set of primitives and through which full
computing pewer is availcble tTo the user throughout the
processing of a document. The average user will not need Yo
know wvery much about Eureka becouse he will only be giving
simple commands to Texture. But if it becomes necessary to do
some complex calculations and to have diffarent commands
performed depending on some condition, iT. I8 necessary to knouw
how Eureka can be used as a programming language.

Fortunately, this is very simple. What follows then, is o
Child's Garden of Eureka.

Every Eureka program [ooks something like this:
<t,b;Cy...52>

Each of the a,b,¢C,...,Z may be an arbitrarily long string of
characters. Eureka evaluates the proivotype program above by
scanning each of the a,b,c;...»2 Ffor more Eureka programs.
These it evaluates first, and rescans the values they return for
more Eureka programs. When it is finished scanning, it ftreats
the wvalue "“g" as the name of a function, and 'calls' that
function. The function may use the values of b through 2z Ffor
its own dark purposes, and FfFinally it returns o string of
characters as its volue. This value replaces the program and is
inmediately rescanned by Eurekd.

For example:
<EQ,5,<SUM,2,3>,YES,NO>

Eureka first evaluates all programs inside the main program, and
replaces them by Their volue. There 1is exactly one program
inside: the <SUM,2,3>, which, needless to say, adds its two
parumeters and returns the result. Thus, when finished
scanning, Eureka faces the program:

<EQ,5,5,YES,NO>
Now Eureka evaluates the main program. EQ is a function which
compares its first and second arguments and if these ore egquai
returns the third, otherwise it returns the Fourth argument.
Hence the result is

YES

Of course, it ishn't quite that simple. These are the
precise semantics:

Texture User's Manual 14

1. There ore three strings and a stack whose elements are
strings: o neutral, an active and a scanning string, and an
evatuation stack. A Eurekua program to be evaludated is on
the active string and, at the kteginning of evaluation, the
neutral and scanning strings and the stack are empty.

2. Text is taken from the front of the active string and put on
the end of the neutral string, character by character, until
a closing bracket (>) is encountered.

3. Text is taken off the end of the neutral string, choracter
by character, and put on the end of the scanning string
until an argunent separator is encountered (,3}. MWhen an
argument separator is encountered, the text on the sconnihg
string is put on top of the stack. Step 3 is repeated until
an opening bracket (<) is encountered, at which point the
text on the scanning string is put on top of the stack as a
single stack element. Scaonning resumes with step 4.

4. The stack represents the name und arguments of o function
cail. The top element on the stack is the name of the
function to be called, the remainder of the stack, in order,
gives the arguments. The last choracter on the neutral
string is examined. If this chdaracter is the neutral
evaluation charcacter (:), then this character is removed
from the neutral string, and the result of the function cail
(a string) is put at the end of the neutrdal string. IF this
character is any cheracter but the neutral evaluation
character, the result of the function call is put at the
front of the active string. Evaluation resumes at step 2.

That is all, except that +the algorithm is ennanced as
follows, to allow for quoting of text (which inhibits
evaluation):

a. In step 2, whenever an opening quote (') is encountered, the
scanning level is incremented by one; whenever a closing
quote (') is encountered, the scanning level is decremented
by one. Only at a scanning level of ¢ (the initial level),
does a closing bracket (>) terminate step 2.

b. In step 3, whenever a ¢losing quote (') is encountered, the
scanning level is raised by one; whenever an opening dquote
(") is encountered, the scanning level is lowered by one.
Only when the scanning level is zero, does an argument
separator (,) caouse text to be put on the stuack, and then
only after being stripped of any leading " and trailing '.

3.1 A program example

The wuser may wish eventually to reproduce the output of
Texture in a book format, by photographic means. IF he does, he

Texture User's Manudal is5

will probaubly want the page numbering to be placed differently
for odd-numbered (righf-hand) pages than for even-numbered
(ieft-hand) pages, In most booke, tThe page number on

even-numbered pages is on the left, and on odd-numbered pages cn
the right. This might be done by the following commands:

<LTITLE,"<EQ,<MOD,<PN>,2>,0,'"<PN>',"<MYTITLE>'>'>

<RTITLE,"<EQ,<MOD,<PN>,2>,0,' <MYTITLE>"','"<PN>'>'>

<STRIMG,MYTITLE,text>

Here, MYTITLE is a string uwhich expands as the desired
header text. It is on the right top (and. the page numker on the
left +top) whenever the pdage number is even -- that is, when the
page number modulo 2 is zero -- and vice versa when it is odd.
To clarify the Eureka scanning algorithm, let us frace through
the events at the top of a page.

At the top of a page, Eureka is looking at the following
situation:

| Idocument text ...
The bars represent the divisions cf the strings. To the left of
the first bar is the neutral string. Betftween the boars is the
sconning string, and to the right of the second bur is the
active string.

First, Texture causes the text of the title to be inserted
at the front of the active string:

| I<TITLE>document text ...
Eureka scans until it encounters the closing bracket (>):
(step 2) <TITLE!| |>document text ...

The drguments of the call (there is only one) are scanned until
an opening bracket (<} is encountered:

{step 3) <|TITLE] document text ...

The function TITLE is called with no argumenis, and the rasult
is put on the active string (this was an octive call):

(step &) | 1 <LTITLE><SPLIT><RTITLE>document text ...

The process repeats for LTITLE:

(steps 2-4) |I<EQ,<MOD,<PN>,2>,0,"<PN>","<MYTITLE>'> ...

Here, the ellipsis Comid Represents the string

"<SPLIT><RTITLE>document text ...'. Again, step 2 causes the
scan to proceed to the first closing bracket:

Texture User's Manual 16

(step 2) <EQ,<MOD,<PNl|>,2>,0,...

The function PN is evaluated:

(step 3-4) <EQ,<MOD,|18,2>,0,...

Again, the end of the first complete call is found:
(step 2) <EQ,<MOD,8,2|1>,0,...

This time, each argument of the call is stacked:
(step 3) <EQ,<MOD,8,2[,0,"<PN>',"<MYTITLE>'>...
(step 3) <EQ,<MOD, |8[,0,"<PN>',"<MYTITLE>'>...

{step 3) <EQ,<IMOD|,0,"<PN>',"<MYTITLE>'>...

This results in an evaluation stack which looks like:

HMOD

[

and the string:
<EQ, | 1,0, "<PN>',"<MYTITLE>'>...

The evaluation of the stack produces 0 (8 modulo 2), which is
put on the active string:

(step &) <EQ,110,0,"<PN>',"<MYTITLE>'>...

The scan continues. Note that modification (a) (to the scanning
algorithm) causes the scun to pass over the closing brackefs
enclosed in quotes:

(step 2) <EQ,;0,0,"<PN>',"<MYTITLE>'[I>...

Again, the crguments are scanned and stacked; modification (b)
(to the scanning algorithm)' causes the scan to pass over the
opening brackets enclosed in quotes:

{step 3) <EQ,0,0,"“<PN>', |"<MYTITLE>']...
(step 3) <EQ,0,0, Ju<pPN>']...

(step 3) <EQ,0,]0]...

(step 3) <EQ,|0]...

(step 3} <lEQI...

Finally, the stack looks like:

EQ
0
0
<PN>
<MYTITLE>

Texture User's Manual 17

This is evajuated: it is true that 0=0, so the third argument
"<PN>" is the value, which is placed on the active string:

(%)(step 4) ||<PN><SPLIT><RTITLE>document text ...

And so evaluation continues: PN will evaluate to the puge
number, SPLIT will cause an action to take place in Texture and
will evaluate to the empty string, and RTITLE wili evaluate to
the text of MYTITLE. Finally, ‘''document text ... * can be

scanned and processed.

3.2 Neutral evaluation

Suppose the definition of LTITLE had been as follows:
<LTITLE,":<EQ,<MOD,<PN>,2>,0,"<PN>","<MYTITLE>'>'>

That is, the function EQ has a neutral evaluation symbol (:) in
front of it. Then everuthing would have been rather the same,
up to the point marked '(%*)" above. Just before this point, the
Eureka scanning area looks like:

:| [<SPLIT><RTITLE>document text ...
(ihat is, the neutral evaluation sumbol preceded the call of EQ,
which has just been stacked and evaluated). Then, when thre
value of the EQ is returned (<PN>)}, this value is put on the
neutral rather than the active string, and the result is:

(step 4) <PN>||<SPLIT><RTITLE>document text ...

A careful scrutiny of the scanning algorithm will convince the
reader that this "<PN>'" will never be evaluated, but rather that
it will be passed on to the document processor. In that case,

the text at the top of the page will be the string '<PN>', and
not the value of <PN>, which is a number.

This is the difference between neutral (:<fn>) and active
(<fn>) evaluation: the result, or value, is not rescanned and
therefore if it contdains any Eureka programs, is not evaluated
any further; the resuit of an active evaluation is rescunned.
The reader will soon redalize that this is one way of getting
function calls to pass through Eureka (and so to the document
processor) without being evalucted. Beyond this, the document
processor user has little use for neutral evaluation; however,
the Eureka programmer moy find neutral evaluation valuable to
prevent the values of calls from beina themseives evaluated.

3.3 Some Eurekg functions

Texture User's Manual 18

3.3.1 Lexical comparison

The following functions depend on lexical ordering. It is
assumed here that the dalphabet over which strings mau be Formed
is ordered in some fashion. (This will differ by location:
EBCDIC ordering is slightiy different from ASCII ordering, but
it is usually fFairly logical. Usually, the blaonk is lowest, and
the letters and digits are ordered a<b...<z <A<B...<Z
<0<1...<9.)

Two strings cA and bB (where a,b are single characters and
A,B are strings) are lexically reiated as follcws:

if a < b then oA < bB

if a >b then aA > bB

if a=b then oA r bB if and only if A r B,

where r is one of <, >, or =

The empty string is iexically less than any non-empty

string and equal to itself.
<EQ,a,b, true, false>

If 'a' is lexically equivalent to 'b*', then the wvalue is
the value of 'true'; otherwise it is the value of 'false'.
<NE,a,b, true, false>

IF 'a' is lexically not equivalent to 'b*, then the value
is the value of 'tfrue'; otherwise it is the value of 'false’'.

<LT,a,b,true,fualse>

If 'a' is lexically less than *b', then the value is the
value of 'true'; otherwise it is the value of 'fulse’'.
<LE,a,b,true, false>

If 'a' is lexically less than 'b', or equivalent to 'b‘,
then the value is the value of 'true'; otherwise it is the value
of 'false'.
<GT,a,b,true, False>

If 'a' is lexically greater thon 'b', then the value is the
vajlue of 'true'; otherwise it is the value of 'false'.

Texture User's HManual 19

<GE,a,b,true, false>
If 'a' is lexically greater than 'b*, or equivalent to 'b',

then the value is the value of 'true'; otherwise it is the value
of 'false'.

3.3.2 Numeric computation

As well as the above Ffunctions which dct on o lexical
ordering of the arcuments being compared, the following
functions are available which operate onh uan integral comparison
of Ttheir ddrguments. If an argument is not infegral, a warning
message resuits and the offending argument is replaced by '1'.
<#EQ,a,b, true, false>

If 'a' is numerically equal to 'b‘, then the value is the
value of 'true'; otherwise it is the value of ‘Ffalse’'.
<$NE,a,b,true, false>

If ‘'a' is numerically not equal to 'b', then the value is
the value of 'true'; otherwise it is the value of ®'Ffalse'.

<$LT,a;b,ftrue, false>

If 'a' is numerically less than 'b', then the value is the
value of ‘true'; otherwise it is the value of 'false'.

<#$LE,da,b,frue,false>

If ‘'a' is numerically less than or equal to 'b*', then the
value is the value of 'true'; otherwise it is the wvalue of
‘false’.
<#GT,a,b,true, false>

If 'a' is numerically greater than 'b', then the value is
the value of ‘frue'; otherwise it is the value of 'False'.

<#GE,a;b,true, false>
IF '¢* is numerically greater than or equal to 'b', 1ihen

the wvalue is the vaiue of 'true'; otherwise it is the value of
'false'.

Texture User's Manuail 20

<SUM,a,b>

The value is the integer sum of 'a’ and 'b'.

<DIFF,a,b>

The value is the integer difference of ‘a' and ‘'b'.

<PROD,a,b>

The value is the integer product of 'a' uand ‘'b'.

<DIV,u,h>

The value is the integer quotient of 'a' and ‘b’'.

<MOD,a,b>

The value is the remainder after integer division of 'a' by
‘b'; that is:

<DIFF,u,<PROD,<DIV,qa,b>,b>>

3.3.3 String manipulotion

The following primitives are provided to allow the analysis
of a sequence of characters.

<STEM,string,n>

Returns the First 'n' characters of ‘string’'.

<STERN,string,n>

Returns the last 'n' characters of 'string'.

<TRIM-STEM,string,n>

Returns all but the first 'n' characters of 'string'.

<TRIM-STERN,string,n>

Returns all but the last 'n' characters of 'string'.

Texture User's Manual 21

<LENGTH,string>

Returns the length of 'string'.

3.3.4 User internal function definition

The following primitives are provided to enable the user to
define his own Functions.

<STRING,name, text>

This functions defines 'text' to be a string with the name

'name’ . Henceforth, whenever "<nam2>'" appeuars on the active
string (see semantics, page 13) evaluation will replace it with
"Text'.

<SEGMENT, name, gapl, gap2,. .. gapn>

This function 'segments' the string with the name 'name' on
the wvarious 'gap's, which are strings. Segmentation is done as

. Follows:

For each 'gap', every segment of 'name's string is checked
for an occurrence of 'gap' in that segment; fFor each such
occurrence the segment is broken into two new segments, the part
before fthe occurrence and the part after. Between these two
segments there is created a numbered segment gap (if it was
created by matching the K'th argument, then it is the segment
gap numbered k).

For example:
<STRING,string,most people |ike cheese>

creates a string (named 'sftring') consisting of a single
segment, which we will represent as:

(most pecple like cheese)
If this is followed by the commund:
<SEGMENT,string,e,o>
the result will be the following string:
(m)2(st pl)1 2(pi131(1ik)1(ch)l 1(s)]
Evaluation of the text "<string>' will now result in the text:

mst ppl ik chs

Texture User's Manual 22

However, simple evaluation of the ftText "<sfring,$'>" Will
result in the text:

mst p$ipls! 1ik$?! ch$isiss!
and "<string,da,b>'" results in:
mbst pabpla lika chaasa

That is, the first argument replaces the gaps numbered 1 and the
second argument replaces the gaps numbered 2. This can be
carried on for as many gaps as there are, of course. Missing
arguments are considered as on empty string where the missing
argument is a string argument and a 1 where the missing argument
is o numerical argument, while excess arguments (those for which
there is no gap) are ignored. Thus <SUM,a> will add 1 to c.

It is worth noting that, since the segmenfation strings
-called ‘gup' above are taken in left to right order, the pair of
commands :

<STRING, foo,abcabcabcabe>
<SEGMENT, foo,ab,bc>

will result in 'foo' taking the internal form,
1(e)l(ec)llell(c)
after ‘'ab' has segmented it, and that 'be' will thereafter fail
to segment 'foo' any Further. If the arguments had been
reversed, as in:
<SEGMENT, foo,bc, ab>
the result would have been instead:
(a)2(a)2(a)2(al2
The functions STRING and SEGMENT are, of course, how the
Eureka programmer defines macros with paramefers. We could
define a simple definition function as follows:
<STRING,define," "<STRING, |namel,*' [text]'>
<SEGHENT, |namel , |parameters|>*>
<SEGMENT,define, Inamel, | parameters|, | text|>
which is called as follows:
<define,repeat,"what,howoften',
"<LT,0,howoften,
"what<REPEAT,"what' ,<DIFF,howoften,1>>'>"'>

The above call of 'define', incidentally, defines a useful
function called 'repeat’® which will concatenate ‘howoften’ (an

Texture User's Manucl 23

integer number) evaluations of a given string 'what' {(which may
in turn be a Eureka program).

For example, the call:
<repedt,+,5>

expands as follows (these °'snapshots' of the Eureka scanning
area give the situation at the start of each new application of
step 2 of the algorithm):

<repeat,+,5>
<LT,0,5,"+<repeat,+,<DIFF,5,1>>'>
+<repeat,+,<DIFF,5,1>>

+<repeat,+,4>
+<LT,0,4,"+<repeat,+,<DIFF,4,1>>'>
+t+++<repeat,+,0>
+#444<LT,0,0,"+<repeat,+,<DIFF,0,1>>'>
+++44

3.3.5 User external function definition

Although Eureka provides a large variety of primitives, it
is occasional iy neccessary for the user to do something unusual
which Eureka will not conveniently allow, To assist in this
reguard Eureka has the following primitive to dallow the user to
define and use his own external functions.

<SYSTEM, eureka-name, ! i brary,MTS-entry-name>

This primitive associates ‘'eureka-name' with o code segment
which has an entry point ‘MTS-entry-name'. The code segment is
found by loading 'MTS-entry-name' from the MTS Ffile ‘'library'.
At any occurrence of the call <eureko-name,parl,par2,...parn>
after the corresponding SYSTEM call, Eureka builds a string
descriptor for each of 'parl', ‘par2',..., ‘'parn' which is a
half-word foliowed by a sequence of characters (the length Of
which is contdined In the half-word}. A sequential list ¢f n
full-words is then built to contain the oaddresses of the
parameters with the i'th full-word containing the address of tiie
i'th porameter. The address of the s.iquence of Ffull-words is
then put into general register 1 and control branches to
'‘MTS-entry-point'. The address of a standord 18 word save dareq
is supplied in general register 13. Onh return Eureka expects
that either general register 0 has the value 0 (returns the null
string) or general register 0 points to a full-word containing
the address of a string descriptor of the type described above
(returns a non-null string value).

If the 'library' parameter is omitted, the file TEXT:UREFNS
is used (see Appendix C For the description of its contents).

Texture User's Monual 24

If 'MTS-entry-name' is omitted, it is ussumed to be the sume as
‘eureka-name"' .

In order to aid with communication between a SYSTEM defined
function and the document processor the enfry points TXTERR and
IABROF are supplied. TXTERR enables the user to supply an error
messuage to the document processor error routines. For example:

CALL TXTERR(code,message,liength)

would be a valid call from a FORTRAN progrom. If code huas the
value 0, the message is treated as a warning (i.e. the call
returns); otherwise the message is treated as on error (i.e.
the call will not return, processing halfts). The parometer
'message’ specifies a character string fo be printed whose
length is given by the parometer 'length'.

The IADROF entry point returns the address of its parameter
and is used as follows in a FORTRAN program:

J=IADROF(P)
After execution, J contains the address of P (P can be of any

tupe).

3.3.6 Function deletion and garbage collection

The following functions allow the user to discard
functions, blocks, layouts ond environments which have been
defined and are no longer needed.
<DELETE-STRING,stringl,;string2,...,stringn>

The strings ‘'stringl', 'string2',..., 'stringn’ are
deleted Ffrom Eurekda's definition space and will no longer be
recognized.
<DELETE-BLOCK,blockl,block2,...,blockn>

The blocks 'blockl', ‘'block2';...,» ‘'blockn' are deleted

from Eureka's definition space and will no longer be recognized.

<DELETE-LAYOUT, layoutl, |layout2,..., layoutn>

The layouts 'layoutl’, ‘'layout2',..., 'layoutn' are
deleted from Eureka's definition space and willi no Jonger be
recognized.

Texture User's Manual 25

<DELETE~ENVIRONMENT, environmentl,environment2,...,environmentn>
The environments ‘environmentl', ‘environment2',...,

‘environmentn' are deleted from Eureka's definition spuce and
will no longer be recognized.

<DELETE-SYSTEM, hamel,name2, . .., namen>

The functions 'namel’, ‘name2',..., ‘namen’ (which must
have been defined using the SYSTEM primitive) are deleted from
Eureka's definition space and will no longer be recognized. In
addition, the corresponding user supplied cocde segments will be
unioaded.
<RECLAIM>

The garbage collector is invoked and dll defFinitions

deleted via any of the DELETE-xXxX primitives are cieaned out of
the definition space.

<DEFINITION-SPACE-SIZE,n>
At the next garbage collection (either user or system
invoked), the new definition space will have a size of 'n' puages

('n' must be an integer). IF called without any arguments, this
function returns the current size of the definition space.

3.3.7 Eureka programs in Texture text

When defining a Eureka program within Texture text it is
often desirable that the sequence of blanks which begin and end
a source line be delieted and not be considered as part oFf the
Eureka program. In this way, an indentation scheme which makes
the Eureka program readable can be used without any worry That
indentetion will cause extra blanks to be included as port of
the Eureka program. To do this, there are the Ffollowing
primitives:

<TRIM-LINE-STEM>

All source lines which are part of the SOURCE strecm will
have all leading blanks deleted before they are fed into Eureka.
<NOTTRIM-LINE-STEM>

AIIAsource lines which are part of the SOURCE stream will

not have all leading blanks deleted before they are fed inio
Eureka.

.

Texture User's Manual 26

<TRIM-LINE-STERN>

All source lines which are part of the SOURCE strean will
have all trailing bianks deleted before they are Ffed into
Eureka.
<NOTTRIM-LINE-STERN>

All source lines which are part of the SOURCE stream will

not have all trailing blanks deleted before they are fed into
Eureka.

3.3.8 Eureka input ond output

The following primitives provide Eureka with the ability to
do input and output operations which are independent of the
document source.

<RS,eof>

The value of this fFunction ies the next string of text, from
the current input medium, up to but not including an
end-of-string marker. By default, the input medium is the
document source strecm; the end-of-string morker is a full stop
(.). If end of file is encountered before the end-of-string
marker, the wvalue of the call is the argument 'eof', which is
actively evaluated.

<RC,eof>

The wvalue of this Function is the next character from the
current input medium. The argument 'eof' has the same meaning
as for RS.

<RNC,n>

The value of this function is the next 'n' characters from
the current input medium. If there are less than 'n' characters
left in the input medium, the function returns all fthe remaining
characters together with as many alternating NEWLINE and EOF

characters as dare required to fill out the required 'n'
characters.
<RLN>

This function returns the rest of the current source Ifline
if the current source line is non-empty; otherwise it returns

the next source line. If the next source line is the

Texture User's Manual 27

end-of-File, tThe function returns the EOF character.

<RFN, fail>

This function reads in the next balanced Eureka function
call (either active or neutral). The call being read may not be
preceded by anuthing other than blanks, or an error condition
will occur. If an end-of-fFile is encountered instead of a
function call, 'fail' is returned; while a badly formed functicn
generates an error.

<PRINT,string>

The argument ‘string' is output to the current output
medium. The wvalue is the nutl string. By default, the outpurf
medium is the document processor, so that "<PRINT,string>"' is

equivalent to 'string', while '"<PRINT,abc<PRINT,def>hjk>" is
equivalent to "defabchjk" (because fthe argument is evaluated
First). The output medium may, however, be set to another file
or device.

<INPUT,name>

After this call, all the read primitives will read from the
file or device named by ‘'name’'. If the orgument 'nuame' is
absent, the document source fFile again becomes the input medium.

The usefuiness of this functicn may vary from operating
system to operating susiem. It may be used to read from a file
attached to one of the available input units however, ond so
merge input from two separate sources together in the stream.
It should be rememberzd that RS peels off the end-of-string
marker; naturally the end-of-string marker con be set to any
convenient character.

<OUTPUT ; name>

After this call, PRINT will print into the file or d=vice
‘name'. IFf 'name' is absent, the document processor becomes the
current output medium.
<SET-EQS,c>

The end-of-string character for RS is set to 'c'.

For example, the user may bz producing form letters. The

names and addresses of the people to whom these form letters cre
to be sent are in a file called 'VICTIMS'.

Texture User's Manual 28

Thus the complete Texture input might look like (in terms
of the sample user function 'define', page 22):

<define, LETTER," Inamel, | address!"',
""<MYADDRESS>
<L>
| name |
<L>
| address|
Dear [nomel;
<L>
<TEXT OF LETTER>'>
<define,MYADDRESS,etc...>
<Define, TEXT OF LETTER,etc...>
<INPUT,VICTIMS>
<repeat,"<LETTER,<R5>,<RS,"<PAGE><BYE>'>><PAGE>',10000>

=3.3.9 Miscellaneous functions

The following are miscallaneous functions which are often
useful in producing documents.

<TIME>

The value is the time of day in the form ‘hh:mm:s8s' on the
twenty-four hour clock with 'hh' being the hours, 'mm' the
minutes ond 'ss' +the seconds. (Note that all six digits are
always given.)

<DATE>

The wvalue is the date in the form 'mmm dd, 19yy' where
‘'mmm' is a three character month abbreviation, 'dd* is a *two
digit date (the first digit of which is blank if the date is a
single digit) and 'yy' is the last two digits of the current
year.

<SYSPARS>

This function returns the parameter list as specified by
the PAR= field on the Texture run command.

<HARNING,message>

This causes the document processor to print 'message' as «a
warning message on whatever unit is the current LIST unit.
Since the message is a warning and not an error, confrol will
return to the point of the call. The function returns empty.
All warning messages produced in this fashion are prefixed with

Texture User's Manual 29

RS2 STSLMN

<ERROR,message>

This causes the document processor to print 'message' as an
error message oh whatever unit is the current LIST unit. Since
this message is an errcr, all processing will halt after the
messuge has been printed. An error message produced in this
fashion is prefixed with '<><><>!',

<HARN> and <NOTHARN>

The action of these two primitives is to turn the
suppression of the printing of warning messages on and off.
After an occurrence of NOTHARN dall warning messdages will be
suppressed until a WARN is encountered.

<STATISTICS> and <NOTSTATISTICS>

The action of these two primitives is to control whether or
nof to print the six lines of statistics at the end of o run.
If STATISTICS is in effect at the end of a run, the statistics
are printed; if NOTSTATISTICS is in effect at the end of a run,
the printing of statistics is suppressed.

<MTS-LINE>

This function returns the MTS 1line number of the last
SOURCE line read in. The line number is returned in the format
' ddddd.ddd' with up to three trailing zeros removed and the '.®
Removed if the last three digits are zeros. This primitive can
be used together with LINE (see section 4.4) and MAX-BLOCKS +to
put line numbers out beside the blocks in the following manner:

<STRING,CUR-LN-#,><MAX-BLOCKS, 70>
<HANG, LINE,'"'<NE, :<MTS-LINE>, :<CUR~-LN-%#>,
"<STRING,CUR-LN-#%, :<MTS-LINE>>
S<LINE, :<MTS-LINE>,
:<SUM, :<RIGHT>>>'>"'>

The increase in the number of blocks is necessary in that
Texture retains any text given to it viu each call of the LINE
primitive as a separate block.

<BYE>
Execution of Eureka (and therefore Texture) terminates

immediateiy. Since this could result in part of the current
page being lost, it is a good idea to prefix the call to BYE

Texture User's Manual 30

with a call to PAGE.

3.3.10 Altering the Eureka specidal charocters

Up to this point, Eureka has been described entirely using
the symbols (< :< > ' ' ,), Occasionally it is inconvenient
to have these symbols as special characters, forcing the user to
prefix the characters with an asterisk. In order to alleviate
this problem, the following SET-op commands allow the wuser to
change the characters which Eureka recognizes.

<SET-FNOPEN, c> Li- is henceforth treated as the
start-of-function character the woay '<' s by default.

<SET-FNCLOSE,c> 'c' is henceforth treated as the end-of-function
character the way '>' is by default.

<SET-ARGSEP,c> 'c' is henceforth treated as the argument
separator character the way ',"' is by default.

<SET-LITBEGIN,c> 'c' is henceforth treuted as the start-literal
character the way " is by default.

<SET-LITEND,c> 'c' is henceforth treated das the end-iiteral
character the way ' is by default.

<SET-NTRLINDIC,c> rer is henceforth treated as the
neutral-indicator character the way ':' is by defaulft.

4. The Rest of Texture

4.1 Environments

Some sections of a document {(such as footnotes and figures)
are in their own environments. This means that the text and
commands of one of these are processed with certain global
switches set independently of the text surrounding them. As
soon as, say, a footnote is entered, the old values of the
global switches involved are saved on g stack of environments
and a brand-new environment with defouit settings comes into
fForce. Included in an environment are the following:

left and right indents
underlining switch

case~-shift switches

paragraph indent

word, sentfence and line spacing
tab-stops

fFill choracter

AUTOCAP mode

Texture User's Manual 31

Justification method

The user is able to forcibly interchange environments by
the use of the following Texture primitives:

<ENVIRONMENT , name>

The current environment is saved under the nome 'hame'.

<ACTIVATE,name>

The current environment is replaced by the environment
named ‘"hame’ .

These two functions can be useful in setting up an
environment Ffor foofnotes (for example), dand recalling this
environment whenever a footnote is entered.

To accomplish this, one might, for exomple, give the
sequence of instructions:

<ENVIRONHENT,save>
Some instructions to set up the footnote environment

<ENVIRCNMENT, foot-environment>

<ACTIVATE,save>

<define,footnoie, lendl ,"<ENVIRONMENT, current-environment>
<ACTIVATE, foot-environment>
<FOOT, lend|>
<ACTIVATE,current-environment>*'>

Henceforth, where 'FCOT' would have been called, ‘footnote' s
called instead in exactly the same way.

4.2 Loyouts

One of the most important aspects ofF Texture is that Tthe
user cuan control the Ilayout of his text. This is done by
defining a layout as follows:

<LAYOUT,name, partl,part2,...partn>

This defines a layout named ‘'‘name’, consisting of n
'part's. Each 'part' is the name, either of another Ilayout or
of a block. The layout is defined as consisting of all the
blocks and layouts whose names are given, in the order in which
they are given. For each layout that is part of a |cyout
definition, the blocks of whi¢ch the sub-lauout consists replace

Texture User's Manual 32

the sub-iauout. Thus if layout A consists of (X,B,Y,Z) and
layout B consists of (U,V,W), then Ilayout A consists of
(X,U,V,W,Y,2).

To invoke a Jayout (that is, to make a given lauout the
active layout) use the INVOKE command.

<INVOKE, | ayout>

'layout' is the name of a layout and will become the active
layout for the nexi output page and any subsequent pages until
another call of INVOKE. Thus, if one wanted a layout to become
immediately active, it would be necessary to command:

<INVOKE; | ayout ><PAGE>

Hhen the processor begins to assembie o naw puge of output
text, a copy of the active layout calied the gurrent layout is
made. Thus all ftfext is assembled into the current layout and
any modifications made to the page structure (cCF. Temporary
biocks) are made to the current layout only.

4.3 Blocks

4.3.1 Standard blocks

<BLOCK,name, left,right,top,bottom, textl,text2>

This defines o block. A block is ¢ segment of the printed
page, going from column ‘left' to column 'right' and from line
‘top' to line *bottom’. Inside the spoce defined by the block
there is room tTo put Text. The first text that goes into any
block is the sixth parameter, 'textl' (which may be an empty
string} which is evaluated in the document processor's default
environment. The next text to enter the block is the seventh
parameter, ‘text2' (which moy be an emptu string) which is
evaluated within the environment which is active at block entry.
After this, text from the SOURCE stream is put into the block.
To put this info perspective, Texfture defines a standard |uyout
as follows:

<BLOCK, STANDARD-HEADER,5,68,1,1,"<TITLE><NEXT>'>

<BLOCK,STANDARD-TEXT,5,68,5,58>

<BLOCK, STANDARD-FOOTER,5,68,60,60,' " <FOOTER><NEXT>'>

<LAYOUT,STANDARD~LAYOUT, STANDARD-HEADER,
STANDARD-TEXT,
STANDARD-FOOTER>

This results in the page you are now studying, and is probably

Texture User's Manual 33

adequate Ffor most documents. Notice that alli these blocks go
from colunns 5 to 68, and that the hzader and footer blocks ore
only ore line deep. This means that only one line of header and
one line of fecoter are possible. Notice also that the s*ondird
laycut could define its Three constituent blocks to be in anpy
order and it would still produce the same Jayout but not the
sagme results. For exomple iF the footer is before the taxt,
then any chonge in the footer is not Felt until the next page;
but if it is after the texT, ony changes are felt on the same
page. The current block is defined as fthat block into which
Texture is currently assembiing text.

<MAX-BLOCKS,n>

This primitive sets the maximum number of blocks which is
allowed in a layout (default is 20) to ‘n’'.

In order to allow the user to determine aspects of a block,
the following block enquiries are also given.

<LEFT,block-name>

The left-most column npumber in block ‘'block-name' is
returned. If 'block-ncme' is omitted, the current block is
assumed. Note that 'block-name' must be a block in the current
layout.

<RIGHT,block-name>

The right-most column number in block 'block-name' is
returned. If 'block-name' is omitted, the current block is
assumed. Note that 'block-name' must be a block in the current
layout.

<TOP,block-name>

The line number corresponding to the top of ‘block-name’ is
returned. If 'block-name’ is omitted, the current block is
assumed. Note that 'block-name® must be a block in the current
layout.

<BOTTOM, bl ock-name>

The |ine number corresponding to the bottom of 'block-ncme!
is returned. If 'btock-name' is omitted, the current block is
assumed. Note that 'block-name' must be a biock in the current
layout.

Texture User's Manual 34

<NEXT, justifFication-method>

The current block is terminated immediately using
*Justification-method’ to justify the last non-blenk line in the
block. If ‘'Jjustification-method' is omitted, it defaults to
RAGRIGHT if the current global Justification method is
JUSTIFIED, otherwise it defaults fto the current global
Justification method.

<LINES-LEFT>

The value of this function is the number of physical lines
remaining in the current block.

<COLS-LEFT>

The wvalue of this Ffunction is the number of columns
remaining in the current line.

4.3.2 Temporary blocks

Up to +this point, dall blocks and block Features have been
described in static terms; once the boundaries of a block have
been set, they con no longer be changed in any way. This is not
always a desirable situation as is shown by the following
example.

Suppose a layout is desired in which a photograph is to be
placed under which is to appear a caption describing the
photograph, such as:

Texture User's Manual 35

— 1
Iy 1l
11 il
11 1 I
Il 11
It 11
[[1 I
] | |
Il | PHOTO |
11 2 | |
I i il
| | CAPTION 11
ll 1 ll
| — 1
Il Il
Il 3 I
I |1
| |
L]

In many cases, it is not known ahead of time how 1{ong the
caption Ffor the photograph is to be, and it would be desirable
if the CAPTION block were flexible (depending on the amount of
text in the caption) and both the bottom of block 2 and the top
of block 3 depended on where the bottom |ine of the caption ends
up. What is needed then are fwo things: a method for 'curting
up" larger blocks into smaller blocks and a method for
specifFiying if this "cutting' is fixed (all dimensions known at
the time of the ''cut') or flexible (vertical height of ‘''cut out'"
biock is not Kknown at the time the "cut" is made). These new
temporary blocks could then be inserted into the current layout,
thus modifying the current page dynamically.

It should be noted at the outset that the creation of these
temporary blocks would only affect the current layout and that
when the page is completed, printed and the hew current ladout
for the next poge is created, the new current layout is a copy
of the active Ilayout which hos not been affected by any
""cutting'".

The following primitives enable the user 1o make tThese
modifications to the current |ayouft.

<V-CUT,bname,col, | ~-bname, r-bname>

This cuts the block named by 'bname' (‘bname’ must be a
block in the current layout) vertically at column 'col' and
assigns the nume ‘I-bname' to the block to the teft ofF and
including the the verticaol cut column and 'r-bname' to the block
to the right of the vertical cut column and replcces 'bname' by
'‘I-bname' and ‘r-bname’ (in that order) in the current layout.

Texture User's Manual 36

If col is omitted, it defauits fo the current column (i.e. to
the wvalue of <COLUMN>, see section &.4) and if 'bname' is
omitted, it defaults to the current block. If an attempt is
made tTo cut through anu part of a block into which Texture has
already placed text, or if the value of 'col' is not within the
boundaries of ‘'bname'; a warning is given and the cut is not
made.

<V-CUT-SWAP,bname,col, | -bname, r~bname>

The action of this primitive is identical to that of V-CUT
with the exception of the fact that ‘bname' is replaced by
‘r-bname' and ‘l-bname' (in that order) in the current I|ayout
which is the reverse of V-CUT.

<H-CUT-FLEX,bname, t-bname, b-bname>

This cuts The biock nomed by 'bname' (‘bname' must bes a
biock in the current |layout) horizontally and flexibly ond
replaces ‘bname' by ‘t-bnome’ and ‘b-bname! (in that order) in
the current layout. The exact |line af which the cut is made is
not set at this time, but when 't-bname' is entered, its size is
continual ly increased as text is entered. Anu explicit use of
the <NEXT> command will cause the pboftom of 'f-bname' and the
top of 'b-bname' to be Ffixed ot the line which Texture Iis
assembling when the <NEXT> command is encounfered. If a <NEXT>
command is not encountered, ‘t-bname' will automatically be
exited when the size of 't-bnome' reaches the size of the
origingl block ('bname') from which it was formed. In this
case, 'b-bnome' is regarded as a zero height block.

<H-CUT, bname, | i ne-num, t-bname, b-bname>

This cuts the biock named by 'bname' (‘bnome' must be a
block in the current lauout) horizontaliy af line 'line~-num' ond
agssigns the name 'ft-bnome’ to the block above and including tThe
fine of the cut and 'bnome' to the biock below the line of the
cut and replaces ‘bname’ by ‘t-bname' and ‘b-bname' (in that
order) in the current layout. If 'bname’ is omitted, it is

assumed to be the current block; if 'line-num' is omitted it is
assumed to be the number of the Iline which Texture is
assembling. IFf 'bnome' has more Than one flexible edgs, then an
error will result From any afttempt to cut ‘bname’.

Any attempt to cut through the port of a block which
contains text or any value of 'position' which is not within the
boundaries of 'bname' causes a warning to be given and the cut
is not made.

Texture User's Manual 37

<REMOVE-FROM-LAYOUT, bname>

This primitive removes the block ‘bnome’ ('bname* must be a
block in the current lauout) from the current layout. An error
is generated if 'bname’ is not a block in the current layout.

<MANDATORY-TEXT,bname,strl,str2>

The mandatoru text associated with 'bnawe’ ('bname’ must be
a block in the current layout) becomes 'strl' and 'str2' where
'strl’' becomes the mandatory text +to- be evaluated in the
document processor's default environment and ‘*str2' becomes the
mandotory text 1o be evaluated in the environment which is
active just prior to the entry of ‘'bnome'. If ‘'bnamé’ has
already been entered, a warning is generated and the mandatory
text of 'bname’ is not altered.

Returning to the above example of the photograph, the
desired effect can be achieved via the fFollowing sequence of
commands (assuming the outermost block has been entered and no
more than twenty lines processed):

<H-CUT,,20,stond-textt,stand-textb>
<H-CUT-FLEX,stand-textb,stond-textbt,stand-textbb> '
<V-CUT-SHAP,stand-textbt,35,stand-textbtl,stand-textbtr>
<H-CUT,stand-textbtr,30,photo,caption>
<REMOVE-FROM-LAYOUT,photo>

4.4 Accessing absolute page locations

Occasionally it is useful to be able to override the notion
of blocks ond instruct the document processor to put a piece of
text ot an absolufe location on the current page. Texture gives
the following two primitives for doing this.

<LINE,str,col-num,|ine-num>

The string 'str' is put into the current page on line
'line-num' starting at column ‘coi-num'. The wvalues of
*line-num' and ‘col-num' need not be within the raonge of the
current block. If *line-num' s gabsent (i.e. only tTwo
porameters given) then 'line-num' defaults to the current |lin2
info which Texture is assembling text. IF both 'col-num' and
'line-num' are absent (i.e. only one parameter given) then

"line-num' defaults «as above and ‘'col-num' dafaults fo the
current column where Texture is assembling tText. IFf LINE is
called with no parameters it returns the value of the current
line number.

Texture User's Manual 38

<COLUMH, str, 1 ine-num,col-num>

The string 'str' is put into the current poge in column
‘col-num' starting at line ‘'line-num' and working vertically
downward. If 'col-num' is absent (i.e. only two poarameters
given) then ‘col-num' defuuits to the current column where

Texture is assembling text. If both ‘line-num' ond ‘col-num’
are absent (i.e. only one paranster given) then 'col-num’
defaults as above and 'line-num' defaults to the current line

into which Texture is assembling text. If COLUMN is called with
no parameters it returns the value of the current column number.

4.5 Lines and boxes

In many documents it is very useful to be able to present
tables of data in a neat and orderly fashion. Often Tthis is
done through the use of boxes, setting off sections of data via
dividing lines. Although the ability fo _just draw tables is
suitable for most applications, there are cases where the user
might want only half a table, or arrow pointers or any other
structure which invoives the concept of a line.

In this regard, Texture allows the user to moke up any

network of horizontal uand vertical lines and will see to it, if
told, that if anu of these lines cross that a suitable "crossing
character' will be used at this point. The following primitives

provide these features:

<H-LINE, inum, [eft-col,right-col,str>

A horizontal line is drawn from column 'left~col' to column
'right-col’ along line '"inum' of the current layout. The string
'str' is used to build this line by overprinting all chardacters
of ‘str' at each location along the line. The default value of
'tnum' is the current line number (the value of <LINE>), of

'left-col® is +the left edge of the current block (the value of
<LEFT>), of 'right-col' is the.right edge of the current block
(the value of <RIGHT>) and of ‘str' is '—'.

<V-LINE,colnum,top-1ine,bottom-line,str>

A vertical line is draun from line ‘'top-line' to line
‘bottom-line' along column ‘colnum’' of the current layout. The
string 'str' is used to build this line by overprinting all

characters of 'str' af each location aleng the column. The
default value of 'colnum' is the current column number (the
vajue of <COLUMN>)}, of 'top-line' is the top of the current
block (the vaiue of <TOP>), of 'bofttom-line' is the bottom of
the current block (the value of <BOTTOM>) and of 'str' is '|'.

Texture User's Manual 39

<POINT,col-num,line-num,str>

A point is placed at co-ordinate (line-num,col-num) of the
current lauout. All characters of 'str' are overprinted at this

point. The default value of 'col-num' is the current column
(the wvalue of <COLUMN>), of 'line-num' is the current line (th:z
value of <LINE>) and of ‘'str' is a blank unless the pcint

coincides with an exisfing line in which case the corresponding
Join character is used (cf. JOIN).

<JOIN, joint,str>

This primitive determines what character or sftring of
characters is to be used when lines overlup in varigus ways.
The characters of 'str’ dare overprinted at any point where joint
rjoint' occurs. The possible wvalues of 'joint' and the
corresponding default values for 'si¥r' are as follouws:

TL or LT. Two lines meet to form the upper-left corner of
a box. The default string is "r'.

TM or MT. Two lines meet to form an upright T joint. The
default string is '—'.

TR or RT. 7Two lines meet to form the upper-right corner of
a box. The default string is "7°'.

ML or LM. Two lines meet to form a left side T joint. The
default string is '|°'.

M. Two Ilines intersect 1o form a "plus'" joint. The
default string is '}*.

MR or RM. Two lines meet to form a right side T Jjoint.
The default string is '{°*.

BL or LB. Two lines meet to form the lower-ieft corner of
a box. The defauit string is 'L*.

BM or MB. Two lines meet to form an upside down T joint.
The default string is "—'.

BR or RB. Two |ines meet to form the lower-right corner of
a box. The default string is *J°.

HH. Two horizontal lines overlap. The default string is

V. Two vertical 1lines overliop. The default string is
||l.

H. ‘'setr' becomes the new string Ffor drawing horizontal
lines. The default string is *—'.

Texture User's Manual 40

V. ‘'str' becomes the new string for draowing vertical
lines. The default string is '|°'.
If the second porometer is omitted, JOIN will return the

current value of the string which is being used for the joint
(the second parameter). If all the parameters are missing, the
automatic joining facility which will join all crossing lines as
described above is turned on. The default mode of operation is
with automatic joining on.

<NOTJOIN>

The automatic joining facility is turned off. All crossing
Joints will not be replaced by the joint string, but will just
consist of tThe overprinting of the characters used to make up
each point of the lines.

4.6 Footnotes

The details of how footnotes are handled within the Texture
system are very complicafted; but when using the STANDARD-LAYOQUT,
these details are irrelevant and misieading. For this reason,
the use of footnotes within the standard lauout s described
first, followed by a description of what happens in the general
case when an arbitray layout is being used.

<FOOT-FOOT,string>

This associates with the name 'FOOT-FCOT' the wvalue
'string'. Any use of <FOOT-FOOT> after this point returns
‘string'.

<TEXT-FOOT,string>

This oassociates with the name 'TEXT-FOOT' the value
‘string’. Any use of <TEXT-FOOT> after this point returns
‘string’.

<FOOT,end-string> For the STANDARD-LAYOUT

All tText following the occurrence of the FOOT primitive up
1o the next occurrence of 'end-string' is treated os a Ffootnote
and is placed at the bottom of the STANDARD-TEXT block. The
string which is the current wvalue of TEXT-FOOT is used To
separate the footnote frecm any text in The STANDARD-TEXT block.
IF the Footnote does not FfFit within TtThe STANDARD-TEXT block
because Texture has dliready Ffilled most of the block, the
remaining text is placed at the bottem of fthe STANDARD-TEXT
block of the next page. No more than the bottom half of the

Texture User's Manual 41

block is ever used for foothotes and if more than one footnote
is encountered while building the same page, the second footnote
is placed below the first footnote, any overflow going onfo the
next page. The string uassociuted with FOOT-FOOT is plceced
between footnotes if more than one footnote occurs on the sam2
page.

<FIRST-FOOT,ues-str,no-str,nof-a-footrnote-str>

If calied from within a footnote, this primitive returns
‘ues-str' if this is the First footnote on the page and 'no-str!
ofherwise. If this primitive is called but not from within a
footnote, it returns 'not-a-footnote-sir'.

<TEXT-AHEAD,yes-str,no-str>

This primitive returns ‘'yes-str' if there are Ffootnote
layouts which have been created to hold the footnote overflow
from the current page, otherwise it returns 'no-str'.

In order to describe how footnotes are handled in the more
complicated case of an arbitrary layout, it is first necessary
to define a few terms.

The original block (defined for any point in the layout) is
the block which contained that point before any cutting was done
to the current layout.

Two layouts are merded if they ui e brought together to form
a single page by removinhg #frcm one of the layouts any areas
which intersect with the other layout.

A tayout is said to be dominant in a merge if it retains
the areas of infersection of the fwo laycuts, thus causing the
other layout to lose the areus of intersection. This can be
looked wupon as if the non-dominant iayaut "shrinks away'" from
the dominant one; changes being made to the dimensions of the
blocks in the non-dominuant lauout as necessary.

<FOOTNOTES-USE, | ayout-name>

This primitive specifies that 'layout-name' is fthe Ilayout
intfo which Texture is to build footnotes.

The following is a more comnplete description of what occurs
within the FOOT primitive when a layout other Than
STANDARD-LAYOUT is being used.

Texture User's Manual 42

<FOOT,end~-string> Extended for arbitrary layouts

All text following this primitive up to the first
occurrence of ‘end-sfring' is treated as a footnote. The bottom
of the original block of the point at which the FOOT primitive
was encountered is fFound. The foothote lauout is then searched
for the First occurrence of a block B which wouid contain part
of the bottom Iine of the original block were the two iayouts
overlaued.

If the line which Texture is currentliy ussembling is
further down the page than the top of B, then the top of 8 is
decreased by setting it to be the current tine + 1. The text of
the footnote is then fed into B in the same manner in which text
is always fed intfo a block, including the release of auany
mandatory text associated with B.

If the footnote fits entirely within B, then the current
layout and B are merged with B dominant. If the footnote
overfiows B, then when B is exited, the footnote layout and the
current layout are merged with the footnote Ilayout dominant.
The remainder of the footnote is then fed into the biock of the
footnote following B. This could cause o new copy oOFf the
footnote Jfayout to be made; for instance, if B was the fast
block of the Footnote layout, the next block of the Ffootnote
layout is the Ffirst block of the next copy. Thi3 process is
continued, muking us many copies of the Ffootnhote Ilauout as
necessary.

If this occurs, then when processing returns to the
document and a new page is started cousing o new current |ayout
to be made from the dactive loyout, then the new current layout
is merged with the next footnote layout in the list of Footnote
layouts which have already been processed ahead. The footnote
layout is dominant in this merging which occurs before any other
processing is done in the newly created current layout.

If further Footnotes dare encountered, processing is done in
the same manner as expessed above including re-entry of whatever
block is determined Ffor B with the exception that I|f another
footnote has already been merged into the current |ayout, then
the top of B is decreased to the current line + 1 + number of
lines used by the previously merged Footnote. The merged
footnote is considered to be "floating" in that it is alwoys
located directly below the tine which Texture is assembling; any
new merged footnotes then are merged below any previous
footnotes.

The default value for the footnote layout is described in
Appendix A.

Texture User's Manuul 43

<MIN-MERGE-CUT,n>

Whever two layouts are merged, it is possible that the
non-donminant 1auout hecomes quite fragmented. The
'"MIN-MERGE-CUT' primitve allows the user to specify a width 'n‘'
such that any blocks with width less than 'n' which arise during
a merging process are deleted from the current |ayout.

4.7 Modifuing Texture's I/0 stream

In order to modify the location from which the document
processor is faking its source document stream, the following
primitives are provided.

<SOURCE , name>

After this call, the document source file becomes ‘'name'.
If ‘name’ is absent, the source file becomes the file dattached
to SCARDS.
<SINK,name>

Affer this calt, the document processor output file becomes
‘name'. If name is dabsent, the output file becomes the file
attached to SPUNCH.

4.6 Events

There are a number of occurrences which it would be very
useful to be warrned about by the processor. There are times,
for instance, when one would like to know that the processor has
Just Ffinished a line and is about to stort on the next one; af
this point, one would Ilike to insert some text. For this
reason, Texture defines gvents.

<HANG, event,text>

The argument 'text' is associated with the event named by
the argument ‘'event'. Whenever that event occurs, the text is

inserted into the stream. The ‘event' wmay be one of the
following:

LINE rew line

BLOCK new biock

PAGE new page

EOL end of source line

EOF end of source file

Hote that <HANG,event,a><HANG,event,b> is8 equivalent to

Texture User's Manual 4%

<HANG,event,ab>. Since it is desirable that a source
end-of-file cause completion of all processing, the string
'<PAGE><BYE>' is initially hung on the EOF event. If HANG is
called without the second argument, it returns the string of
text currently hanging on ‘'event'.

<EMPTY,event>

Any text associated with ‘event' is discarded. - An
occurrence of 'event' will not cause any text to be inserted
info the stream. ‘event can be any one of the events defined
for HANG.

4.9 HMiscelldaneous functions

<UND,chars> and <NOTUND,chars>

The argument ‘chars' is a string of characters. After d
call to UND, the charcctiers in 'chars' will be added to those to
be underlined whenever underliining mode is active (i.€.s
Between a <U> and <NOTU>). After a call to NOTUND, the
characters in ‘'chars' will be deleted from tThose fo be
underl|ined whenever underlining mode is active.

<WIDCW,n>

This Function is called WIDOW although it actudally helps
prevent "widows", a typesetting term which means that some small
amount of text is aowkwardiu left on one page when it belongs
with a body of text on the next or previcus page. In effect,
this function will cause a jump to the next block if there uare
af the mement of the call no more than 'n' phusical lines
remaining in the current block. Notice +that <WIDOHW,n> is
equivalent to <#LT,<LINES-LEFT>,n,"<NEXT>'>,

<MIN-WS,n>

The minimum word spacing (the least number of choracters
that are to seéparate words) is set to 'n'. By default, this
value is 1, which is why most words in this document are
separated by one blank. If 'n' is absent, the current minimum
word spacing value is returned.

<MAX-HS,n>
The maximum word spacing (the greatest number of characters

that are to separate words, affter justification) is set to 'n'.
By default, this value is 5.

Texture User's Manual 45

If it is not possible to justify a given line with at most
'n' blanks between words, the justification routine gives up,
issues a message to that effect, and sets the |ine ragged right.
This is no solution to the problem of excessive spacing, of
course, but it is offten better than hoving a line ccme ouft
unreadable becouse of unreasonable spoces between words. If the
user cares more about flush right margins than about spacing, hs
need only set 'n' to some enormous value. If 'n' is absent, the
current maxXimum word spacing value is returned.

<MIN-SS,n>

The minimum number oFf spaces between sentences is set to
'n* (this value is the standard 2 spaces, by default). A
sentence is defined as ending in a Full stop and a
word-terminator (a full stop and a biank; usually), where a full
stop is one of '.' '!'" or '"2'., If 'n' is absent, the current
value is returned.

<PAGE-DEPTH,n>

The page depth is set to 'n'. For a normal line printer,
in most installations, the default value will be about 4&0. If
this is not so, it can be reset to the correct value by using
this function. MWhers possibie, Texture will attempt tTo -prinf
all *n' lines of the puge configususiys this means that if a
given insfallation's printer skips to o new page after 60 lines,
but permits this skip to be overridden by carriage confrcl,
Texture will override the skip. This can be useful Ffor
printing, 5aY, 100-1line pages; of Two columns, and
photo-reducing these, for conference proceedings, efc.

<PARAGRAPH-INDENT N>

The paragraph indentation value is set to 'n'. BY defaulv,
this value is the usual, secretarial 5 columns. If 'n" is
absent, the function returns the value of the current setting.

<AS-IS,end-string>

The text folliowing this call, up to the next occurrence of
‘end-string’ is treated ‘''as given'. Each line is output as
though each character of the input stream from the AS-IS call to
the to the ‘end-string' was prefixed by the Iiteral-next
character. Thus no Eureka programs in the SOURCE stream are
evaluated, but events can still occur which cause Eureka to
evaluate a Eureka program.

Texture User's Manual 46

4.10 Setting Texture's special purpose characters

Occasionally in a document it is useful to be able to
modi fu the characters which Texture uses for special purposes.
The following primitives aid in this regard.

<SET-FILLER,c>

The filler choracter (by defauit, a blank) is set to '¢'.
The filler charccter is put between words, between segments,
between the left margin and the first word, and between the last
word and the right margin. Thus changing the filler character
(e.g., TJo a "."}) Before a tTab, will have the effect of
creating a tab-drop character. Naturally the filler should be
set back to a blonk as soon as the tab is completed, or it will
be inserted everywhere.

<SET-UNDERSCORE ,c>

The underscore choracter (by default, _) is set to 'c’'.
Whenever a character is to be underscored (i.e., After the
occurrence of The underscore operator, or after a <U>) it will
now be overprinted with a ‘c'.

<SET-NTC,c>
The non-trivial chaoracter (by default, a blank) is set o

'c'. The non-trivial chcracter operator (by cdefault, =) is
henceforth replaced by a 'c'.

Texture User's Manual 47

Appendix A

Defaults

The document processor defaults are set by feeding a stream
of Eureka functions through the processor. The fcllowing is a
list of those functions which are processed, given so that the
document processor defaults can easily be seen.

<LTITLE,><RTITLE,"<PN>'>
<TITLE,"<LTITLE><SPLIT><RTITLE>'>
<FOOTER,>
<BLOCK,STANDARD-HEADER,5,68,1,1,"<TITLE><NEXT>'>
<BLOCK ,STANDARD-TEXT,5,68,5,58>
<BLOCK, STANDARD-FOOTER,5,68,60,60,"<FOOTER><NEXT>"'>
<LAYOUT,STANDARD-LAYOUT , STANDARD~READER,
STANDARD-TEXT,
STANDARD-FCOTER>
<INVOKE , STANDARD-LAYQUT>
<FOOT-FOOT,>
<TEXT-FCOT,,"<L>---mmmmcmmrm e e <L>'>
<BLOCK, STANDARD-FOOTNOTE ,5,48,32,58,
Y<FIRST-FOOT,"<TEXT-FOOT>',""<FOOT-FOOT>'>'>
<LAYOUT , STANDARD-FOOTNOTE-LAYOUT , STANDARD-FOOTNOTE>
<FOOTNOTES-USE , STANDARD~FOCTNOTE~LAYOUT>
<AUTOCAP>
<DEFINITION-SPACE-SIZE,3>
<DOKWN>
<HANG, EOF , "'<PAGE><BYE>'>
<JOIN>
<JUSTIFIED>
<LI,0><RI,0>
<LINESPACING, 0>
<MAX-BLOCKS,20>
<HAX-HS, 5><MIN-KS,1>
<MIN-MERGE-CUT,20>
<MIN-SS,2>
<NOLIST>
<NOTBREAK-WORD-ON-ECQL>
<NOTTRIM-LINE-STEM><NOTTRIM-LINE-STERN>
<NOTUND,"! ,3:2.'>
<PAGE-DEPTH,60>
<PARAGRAPH-INDENT,5>
<PARAGRAPH-SPACING, 0>
<PN,1>
<SET-SENTENCE,.!'?,{upper- and lower-case letters and
digits}>
<STATISTICS>
<TABCLEAR>
<KWARN>
<EQ, :<STEM, :<SYSPARS>,6>,5YSLIB,
U<STRING, #%#, '<NE,<RFN,FAIL>,FAIL,"<#x§>'>'>

Texture User's Manual

<INPUT, TEXT:URELIB><#%#><INPUT>'>

48

Texture User's HManual 49

Appendix B
The SYSLIB library

When Texture is run with 'PAR=SYSLIB' on the MTS run
command, the system |ibrary of Eureka functions is read in and
processed. The following is a list of the functions which are
defined in this manner.

All characters available on the TN print chain at UBC are
given the following (hopefully meaningful) mnemonics:

SLBRACED : 5.0 56 v e 56 8 s 0 S M wia s e e Wd 0 a %
CRBRACE; s v 56 w06 it o580 01080 8.9 058 101 & 55 8 18 6 101 3 6 8
KLBRBKD oo veq s mie s e wim e s iyt sve @ iwve miasns e ot e 6316 1o
CRBRAKY ..c 5:0 010 50 9.8 s 5bo = 35 Wiaiai o 9wl § % @ %ha A we B
CLYORERY: 55w w6 o s 516 516 508 56 BUsaYs a5 5 4 4738 888 0 6 @
COTOREQD,: so0 60e wun s 5 5 5 0 e e in: v » 65570 815 018 & @559 00w o
CRERQD sy wiu wim s7is wsin 7/s ile %18 o8 5] S1ie: ori ¢ & o el it y wiwre: 5w
COPEHBOX 05 5 o ¢ s ocs 6 e 161 550 8ol 8481 550 & 1o S50s8(918 %
KSOLIDBOXZ i wsnumamiws @sms Wi Bomiw s s $ime@sn
COPENCIRELEY:, ¢ oo woisawnis oiw oo 0% 20 818 95 o5 010 89
COSOLIDCIRCLED s ds e vsipaia =wminesiatornéa R
CEUPE D va v o 0o aie 000 00 oitim s m s ot e R A SIS &5 008 St
COUPYD, o w6 5 om0 8 0 6 6§ 0 EEEEREEB G S e oA e
COUIPEZG o5 s e s 508,00 508 5000 A48 B8 08 B W18 S60 600 & 10 00 4k
CEUPH=D 5.0 55 w6 wia wis wie 9 5 www 5w wr o o wie sve, $19 BH Wie ste
S b R e A T CoT s
COUPOY: wia wis ws 5k 5 06 50 5 6 50 5 56 B bt bgarsraine
RSUPLD o0 win wrie w8 09 o680 808 #10 S18) 5797 8 6781 B30 949 018 4780 518

o IO N IVIA ™

SEUPG> . covssnvevnbsmsssnssomonsmansoonssse
CEUPS>. c v encssnvvasisnsnpnesssisnieisnsassens
COUPE P . ciocv vie 00 vio vioeiownaonscen e vses s esss
KOUP T v 5o o 0l 56 ma s e w oo essreesaasan iees
SEUPB> . vosivnnin sin0s 5 6805006 esewmineessesenes
CSUPOD . casionv v soies vio wis om0 sie o9 0w e654 85068

<KBOXSIDEZ::c ¢i o4 56 s uvaae RS A e A .
SBOXED: os wiw vi0 5 w0 00 &0 18 We 408 978 556 &1 5 S50 5 8 5 8 B9 B

= | e ~, OO NOUIPHUHNKFO I + e

Texture User's Manual 50

The macro DEFINE which is used as uan exomple in several
places in this user's manual is dlso available.

<STRING,DEFINE,
"<STRING, INAME|," | TEXTI'>
<SEGMENT, INAME | , | PARAMETERS|>'>
<SEGMENT,DEFINE, INAME| , | PARAMETERS|, | TEXT]>

Two very useful external functions which are part of the
SYSTEM function library (see Appendix C) are the INDEX function
(for creating an index) and the CONTENTS function (for handling
tables of contents). To assist the user in using these two
Facilities, the necessary SYSTEM commands to access the INDEX
and CONTENTS functions have been accumulated as folliows:

<STRING,LOAD-CONTENTS, "' <SYSTEM,START-CONTENTS, ,CTHSTART>
<SYSTEM,CONTENTS>
<SYSTEM, PRINT-CONTENTS, s CTNPRINT>'>

<STRING, LOAD-INDEX,"<SYSTEM,START-INDEX, ,NDXSTART>
<SYSTEM, INDEX>
<SYSTEM, PRINT-INDEX, ;NDXPRINT>'>

Another Eureka primitive availaoble is INLIB which takes one
parameter, an HMTS file nome from which it will read all Eureka
functions (useful For loading in a file of the wuser's oun
macros).

<DEFINE,INLIB, LIBRARY,
"<STRING, #¥#, '<NE,<RFN,F>,F,"'<#x#>'>'>
<INPUT,"LIBRARY ' ><#x#><INPUT>
<DELETE-STRING, #x%>'>

Texture User's Manual 51

Appendix C

The SYSTEM library

The system function Ilibrary contains several functions
which may be desirable fer various phases of document
construction. Each of these functions is initially set up via
the SYSTEM primitive (see page 23) using the default library and
the entry point specified for each function. Setting up these
functions can be done quickiy by using- the pre-defined Eureka
functions specified in the SYSLIB library (see Appendix B). The
following are the functions currently available in the system
library.

Constructing u Table of Contents

A table of contents can be represented in Texture as
contents list, a sequence of quintuples of the form:

(before string,section nome,hbetween string,
page nunber,ufter string)

where ‘'before sfring' specifies some action which is to occcur
before printing the section name (such as line indentafrion),
'section name' is the name of the item being put into the table
of contents, 'between string' specifies some action which is fto
occur between printing *‘section name' and 'page number’(such as
printing a row of '."), 'page number’ is the page number on
which section 'section ncme' starts and ‘after string' specifies
some action which is to occur after printing the pags number
(such as advancing to a new line).

In these terms, a table of contents is just a sequential
list of these quintuples which grows whenever ¢ new eniry is
made into the table of contents. This total string can then ke
processed whenever the wuser wishes to print the table of
contents.

It would quickly become tedious if every time the user were
to make an entry into the table of contents he would have fto
supply a full quintuple to specify the entry. It would ke more
useful to be able to specify a number of

(before string,between string,after string)

triptes initially and then indicate to the table of contents
constructor the 'section name' and an indication of which triple
to use. The page number wouid not have to be specified since
this is always the current page number ot the time of the call
to add a new entry to the table of contents.

Texture User's Manual 52

The above method is the one used by the tabie of contents
constructor found in the system library. The foliowing external
functions are available to perform these various tasks:

<START-CONTENTS,num-pages,beforestrl,betweenstrl,afterstrl,...,
beforestrn,betweenstrn,afterstrn>

This Ffunction must be called once before it is possible fto
do ony form of contents construction. The value of 'num-poges’
must be integer and is the number of memory pages allocated fto
contain the ftable of contents. The START-CONTENTS function
allows the specification of up to eight triples of the before,
between ond after strings as described obove. The default
parameter values are as follows:

'num-pages’ 1

'before-stri’ <LI,<PROD,<DIFF,i>,3>>
‘between-stri’ ~<SPLIT><SET-FILLER,.>
‘after-stri* <LI,0><L><SET-FILLER, >

The MTS entry point for this function is 'CTNSTART'.

<CONTENTS, name, triple~-num>

The string ‘nome' is oadded to the contents 1list by
catenating the 'triple-num'th before string, ‘'name', the
'triple-num'th between string, fthe value of <PN> and the
'triple-num*th after string onto the contents list thus far
constructed. The default value of ‘triple-num’ is 1. The MTS
entry point for this function is 'CONTENTS'.

<PRINT-CONTENTS,before-str,after-str>

The table of confents is printed by returning a catenation
of ‘'before-str', the contents list and ‘after-sfr' a3 input to
the document processor. The defualt value of ‘'before-str' s
'<LI,0>' oand of ‘after-str' is empty. The MTS entry point for
this function is CTNPRINT.

A problem which often occurs with producing tables of
contents is that the tablie must be constructed dynamically as
the document is processed while the final tocation of the table
of contents is usually at the beginning of the document. Thus
most documents are of the form:

Title puge
Table of Contents
Document body

Texture User's Manual 53

This effect can be achieved in Texture as follows (assuming
that the output document is to go into the MTS fiie OQUTDOC).

Title page source
<SINK,QUTDOC(400)>
<LOAD-CONTEHNTS>
<START-CONTENTS>
Document body source
<SINK,OUTDOC(200)>
<PRINT-CONTENTS,before-string,after-string>

Constructing an Index

An index can be represented in Texture as an index list, a
sequence of quinfuples of the form:

(before string, index entry,between string,
page number,after string)

where 'before string' specifies some action which is to occcur
befeore printing tha indexed entry (such s line indentaticn),
‘index entry' is the item being indexed, ‘'betwsen string'
specifies some action which is to occur befween printing 'index
entry' and 'poge number' (such as printing a row of '.")y ‘'poge
number' is The page number on which the 'index entry' was
indexed and ‘*after string' specifies some action which is fto
occur after printing the page number (such as advancing to o new
line).

In these terms, cn index is just a sequential list oF these
quintuples which grows whenever a new entry is made into the
index. This tofal string can then be processed whenever fthe
user wishes to print the index.

It would quickly become tedious if every time the user were
to make an entry into the index he would have to supply a full
quintuple to specify the enfry. I would be more useful i1c be
able to specify o number of

(before string,between string,after string)

triples initially and then indicate to the index construcfor the
'index entry' and an indication of which friple to use. The
page number would not have to be specified since this is always
the current page ot the time of the call to add a new entry to
the index.

The above method is the one used by the index constructor
found in the system library. The following external functions
ore available to perform These various tTasks:

Texture User's Manual 54

<START-INDEX,num-puges,beforestrl,betweenstrl,afterstrl,...,
beforestrn,betweenstrn,afterstrn>

This function must be calied once before it is possible to
do any form of index construction. The wvalue of ‘num-pages’
must be infeger and is the number of memory pages allocated to
contain the index. The START-INDEX function allcws the
specification of up to eight friples of the before, between ond
after strings as described above. The default parameter vdlues
are as follows:

‘num-pages’ 1!

‘before-stri’ empty

‘between-stri’ =<LI,10><SPLIT><MIN-HS,0>
<RAGLEFT><SET-FILLER,.>~
<LI,0><L><MIN-WS,1><RAGRIGHT>
<SET-FILLER, >

‘after-stri’

The MTS entry point for this function is 'NDXSTART'.

<INDEX,nhame,triple-num>

The string 'name’ is added to the index list by catenating
the 'ftriple-num’'th before string, 'name', thes ‘'triple-num’th
betueen string, the value of <PN> and the ‘triple-num’'th after
string onto the index list thus Far constructed. The defaulit
value of ‘'triple-num’ is 1. The MTS entry point for this
function is 'INDEX'.

<PRINT-INDEX,before-str,after-str>
The index is printed by returning a catenation of

'before-sir', the index list and 'after-sfr' as input to the
document processor. The default parameter values ore:

‘before-str' <HANG, LINE,"'<SET-FILLER, >'>
<RAGRIGHT><LI,0><MIN~KS,1>
‘after-str! <EMPTY, LINE><JUSTIFIED>

Cegnverting numbers to Roman Numeral dnd English form

The following function is supplied to convert from a string
decimal representfation of on integer to its equivalent capital
Roman numeral or full English form.

<CONVERT, num, type>
The value of 'num' must be integer and is the decimal

number which is To be converted (0 <= 'num' <= 9%99)., The value
of ‘'type' is either 'R'; in which case the Romun numeral

Texture User's Manual 55

equivalent of 'num' will be returned, or is 'E' in which case
the Full English form of the number will be refturned (e.g. '&4'
becomes ‘'eighty-four'). The default value of ‘type' is 'R'.
The MTS entry point for this function is 'CONVERT'.

Making your own date

Occasionally it is desirable to have the date given in a
form other than that given by the Texture <DATE> function. The
foliowing tunctions have been supplied for that purpose.

<DAY>

This function returns the numerical value of the current
day, for example, '3' on the third of the month or '22*' on the
twenty-second of the month. The MTS entry point for this
function is 'DAY'.

<MONTH>

This function refurns the full olphabetic representation of
the current month, for example, 'SEPTEMBER' or 'MAY'. The MTS
entry point for this function is 'MONTH'.
<YEAR>

This function returns the four digit representation of the

current uear, for example, '1975'. The MTS entry point for this
functicn is 'YEAR'.

Texture User's Manual 56

BEQ Coidissinine diips savie sl v e el et dwiies sasesesesas s v s 19
#CE . ouwes 010.8i0:0:5 Siaskif i Bim @ 4 B1% 80 B0 518 408 o0 ie s w0 eiw ein 0 org piw eve oty oy a1 LD
BEY womavemeamseaes 516 SR BN SR e srm e pAC eeamaisa e siensa 19
BLE ‘ciismsion se s e Il L T T T YT Ty

O U e A P TP .-

WRE. icamtans e aus 5 605 36 §36 0050 550 370 09 60 90505 % 3 0 078085810 Dimrebieid = 0 wid wierm acw 6w o LD

ACTIVATE S e e niseie s sin e n s ainm e e e B s awismmems 31
AI=IS cevsvsncessnssanases osaaes ane e eaeseeed sesssscessinecese 45
AUTOCAP seids s esenenses seesaie 546 sssesecossnsese 1
BLOCK ccvnmovnocssesosonsseenssivsss ses s seiesineeeiasinennyeaeea S
BOTTOM ceneeeavae T R T LT ey s ennse, 33
BREAK-WORD-ON-EOLcccivvnvrnnnnninnannnn Sieie s sinlaie sniy aip e i D
) ascan wis ey weiaie e 8 S —— B F T U evassenss 29
CENTERED seiwesaeee CiakRenenseteaes s Eeesesneee sisiein wivswy ©
CHARcvnmennissvenes seensnssnneessaanansani L T T T T 6
COLS~LEFT .. siaws v siewisie e sarsieceia'e sin ey sia S8 S ieie e e wie wiei e B vessus 3%
COLUMN civesenssmanacais vesieiee ne aiea'aais wmas sTeee Hale esevesesses .« 38
CONTENTS s ois 5.5 ois sissiwaoin e sreeasesssasnesesessssssassssaasssesa DO
CONVERT wiv oo siv wis amiaminmas i wie o581 4 9 4 9076 &9 8 & &35 000§ ware e o6 ¥ smaw s,9.6 DY
DATE .« oo cic vro e wro ove g SheTainte N R L S RNy e el - -
DAY cieicrericnnencansnnss C¥E e s e s e e e E Sa e RN e e nasnse BB
DEFINE sisiie s s sassesssevenn e rsesenes ssseesss DO
DEFINITION-SPACE=SIZE ..o e snsnsinve s smmdeaniae dansiiisnvecins 20
DELETE-BLOCK e svaseesenescsrsavestesntesesssscss B4
DELETE-ENVIRONMENT cisesenssisessssssressssatensenens BF
DELETE-LAYOUT R L I L i T
DELETE-STRING svomsnsvsmruomsnvaamsmsmsmsesssssssssensgnsnsss 2%
DELETE-SYSTEM .ccceccrccresccvcncscssccssccnssssoasassnssense OF
DIFF cevensrsmeoss O — tasstassess s e asesesassresens 20
DIV <oisteore sinminainmsrs sresessases s wieisisieie ceEseeanee e senseenes 20
DOMN. o ciw oo 0 st w30 310 w07 s5as w5m o2 0 8 8 828 55 i [67% 078 838 w8 wilw 868 908 e miwiors sw miew 4
EMPTY cvciv iiv viw vio s omipimedminginises owioisiviesin b s §s 5ve cssesessssnsns GG
ENVIRONMENTccasnawssvavaoss seie sigers ceesasusessssane cess 31
EQ cosvnemivsmas B T P TP PP e ceceneersassesen e sve 18
ERROR . ucwuimioimsn o mspammmsmeaenesessseseseosssinssssssseesisveis 29
FIRST=FOOT & . oo cioliaiiaiaie oin oie oo mie ucn oiw o7 sie mie oim sie wi oie sis oiw oo e win L
FOOT asnoisiaismininsiosiss@n oonssaios siees see s ionessedesepess cesses 40
FOOT-FOOT cecenesinsas cissaae e sv A s s e ey Sieeie v i . 40
FOOTER ..cvsssasinsesssneass cdsaeiee «ive biesiee csasssasancessesensns 12
FOOTNOTES-USE 4 c:cn0seamsoensssssssssesesss e us v anin e se e 41

BT soevisinssnnmsnoesnevesessssiasasesie .5 waisiasie sle @ wie sieTwe srereie wie 18

H-CUT .anneonmonsses aavin e o tmiBb Bi6 esba e cessenasesses 36
H-CUT-FLEX <cesssuvessmessaessee cvesusumsens essases cecsssssce 36
H=LINE s it seis sainie aisinioe/anie alanigsns g esiseanas 38
HANGevevnvecnncces S 8 seeanise cesassssssncras 43
INDEX .cceeece. cansses e s aee e P enssesss 5G
INLIB ..cccivncnnncssavresnnsnsonnns s aeatareiwie w0 0 0 n e e e nas D0
INPUT seussvenesenes e v ey i desss et cessesssscses 27
INVOKE «.cccvocess csessessaaassssiessssses st nnrsrsseasce vees 32
JOIN o omvem oo sinoms wie wis sie wis o s opBipmiarmiele Casieeieels saieie e e 39
JUSTIFIED ceucecnnves o miaieane s eemmis e s kbbe Y b veassrersrensaas 5

Texture User's Manual 57

R — MR AR s SO ——— Syshinas B
LEYOUT 5 5.0 55t 5.5 468 hom i3m0 0 1w g i i e i mm s o mEAG AT awEe w8 L
R ipoonss soq wmsissimen s SHas n RS TESE O P gt Seww 18

LINE iueacimaonssmnesasevsssnoennsssnvesssssssnssenabstsissas 37

LINES-LEFT .cccveeceens svaaaeeeidnie s s ase e ceaseasasee - S 34
LINESPACING .ccvvevoccnncnasonsne tsessseneassseasrnaaans siees aiece 4

LIST wesows wiai sisre B T T L

LOAD-INDEX ...eovevesccroscsss cesserseavsbbsersssisanseesassss D0
LT cccenasnnaccancionsssnnsaceaanessassosasssssnessessnsnas .o 18
LTITLE icemevosmmesive tevessae teisvasssseserssasaiessnssenosane 12
MANDATORY=TEXT s ecsoscerssensenmusmesnmsesesesasesnnsshs seswes 37
MAX-BLOCKS ...cvcuveccecccecccnsssccscnsnssscssnassanssosssan . 33
MAX-WS oosmsmaionsnsise seesvestsssassssesoses e onssannns o eiaiaene GG
MIN-MERGE=CUT .s:svssnsesvamens Sasisw e nia sy ais sie e sin e s o 8 43
MIN-SS cccciicrcnrececrceccacscocneneanoccssssssnnsnsaanes ess 65
MIN-US c.cccccnccvenecincsscncossnansnsewsonsssosensivesssesas G4
MOD sevesssw W6 8 06 Sl 8 SRR BT S 0 818 SN RUR B 148 0 e 08 Wi W W B o6 s o as s s ©0
HOMTH ...coc00e seeesens sesresesievs soievaise s aie e e wewis e eesase BB
MTS-LIME ...sevecnvncrccnnsnnnnsnnss ¢essasssscsinennsaranansas 29
NE coseveacsve I S R Gy E essees 18
NEXT cvcecens B P TR R PP P cassisssssesssnsnseaves 3P
HOLTIST 5 eio win siie win siin as wie: i siw i a5 i g1 o 8 wies 0 6 o1 9 ‘wiie wie w05 wicy wiw wie wie mie gie w1 P
NOTAUTOCAP .ot ucocsnononssessiosssssses siansessnssessoesmmesee §
NHOTBREAK-IKORD-ON-EOL ..ccssssvsrscocssvorssrsssesasssssanencnss D
NOTDOWN coccveenncscsnsnansnsssasvosnsvonsossspnosnsssss saeeses T
NOTJOIN c.ccccvccnorccccsccnosccsnsssnnaceosvaannsssssonnssess G0
NOTSTATISTICSv... crsesraneneberaanans cesesesererennae 29
MOTTRIM=LINE-STEM .ccc.vecsssssnssscssrossossnssvensnsacsnses 25
NOTTRIM-LINE=STERN ..cccccvererrecsceassacscanccsnsansanassnes 26
NOTU « oo v sip e o inie v mre 4 w7 wie wis e wis w0 07 8 wie o @0 wiu e 00w win o0 SOTGIEIBS B4 8108 D
NOTUND . .cccccecrcaacnerencssncsssicasosscncscscocscssarannnee G4
NOTUP & 5o 6.0 55 5 o i 0 s o s 5 5 5 w5 st o stle o istis ie oCa wih 1 w0 676 BiRiaTol0le%er w7
NOTHARN . viesatsin sminiis oo oeiasm sasmae e meveesaspessssesssssssss . 29
OUTPUT ..ovsovsssssscsssnnnanss Cuessrsesi st e s anes sasssnaeves £7
P eeevesosssssnvsvossssssscsancunss tesvininsesnenssarssnsrania &
PAGE v unewensvianis i wrsouiwmnisis Vas s e s et ee e e smsia 1O
PAGE-DEPTHcocteerssacsasssasnns sececsasisssssnssnssences G5
PARAGRAPH-INDENT .4..cveerceanccnnnncrcacacnesssaninnsmasnss .. G5
PARAGRAPH-SPACINGcccveccctoncccocccrsssscsccacansnannns 4
PN s o o sw s 5% o e s wiie w0s wie o6 300 eve a0% B0 W8 wie #Te w48 wie RIRAAINeN svswes 11
POINT 4 v o nic oo 0n oo oo ae vie sia wie 070 n o0 8 w0 @ie 00 = s oo ee s AN WS EEE e 39
PRINT . soe s 55 5is 5 5k woe 505 500 506 9hm 336 908 518 315 9% Shw 955 W58 9000 b e 9N 838 Gom wim S0 2T
PRINT-CONTENTS s oo vs vio w0 w6 oo w5 wie 06 w15 606 5 518 &8 »i% 506 o15 o7s oiv 408 wiw #is DB
PRINT-INDEX e sia ein wie cesassncsennoa i wiw wim aie s aie wie aie DG
PROD cicevesncanae P S cessersidasssssesasevesnssaraene 20
RAGLEFT sevssonenes T T T L e P R
RAGRIGHT c.ccevoccvmene secsesannas R Vesasiedaseses B
RC ccvssnensnanaen cescssssnecasasensass sssissssessnans sassees 26
RECLATM .cceoscrenvs AR S PRSPPI T S oRl & RS w 25
REMOVE-FROM-LAYOUT oon 0 aie ia oie wie ain oo seiwian s ave og gie ere e #T6 BE DT

Texture User's Manual 58

RLN e sis o e Cececssssrensnasraseveassnseey essssssssesnssesens QO

SET-ARGSEP ...i0vveee ST ST N esoeeeyesavesese s yie 30
SET-BREAK ...econecavimsnsias esesesasasasssenessesssncseesnsssass 8
SET-DOWN ¢S viee e e SeTa i eie e ala e s wiaialy Sa sasanisas sreeessenns 9
SET=EOS iscvssssssinsasasosessinssmvanesn crsessveaseesesetens CF
SET-FILLER wonmaivmmsnsmsmans R S I sesenvere 46
SET-FNCLOSE. ‘u wasiaisters R T S P Sk = e S eV e vevssiaes 30
SET-FNOPEN ..ccccciovcicvsscssccsscsnens iecnseenessensesseess 0
SET-LIT & e sine seesesmsrsaanane crscsasisssiesanensanneseasnas P
SET-LITBEGIN ...cceewavsocns ceainasanss sesssesssnisssssasaess 30
SET-LITEHD .cvevcecccccneene ce e se e wene e e sy ae e aes s evensee 30
SET-NTB ..c.ccesascsosssassssnsosssssasess deessssranensansnass 9
SET-NTC ..:sveasirsnnrecnanaases eaema nalsn sremdsssnnssssraneses @46
SET-NTRLINDIC ..o oo nmmmnns ceesesessssseen e e an eesness 30
SET-OPC 15688 68 SR 866 BE/Eh B SR TV 8 a8 R e e aTee e ceswe 9
SET-SENTENCE ...coeucen sesseesrenssnsesnasnarissescisnssonesas 7
SET-TEXT o e e eie e eee ee iy ninie $eoiae e wisvasaoeee e . 8
SET-UHDERc:i.smawuimas e cresavasssiaasasssisrsrsssasasans 9
SET-UNDERSCORE ..ccvsvnnsses ssassrancsransansenasesnisnsnsoasas GO
SET~UP sssoaee R i e siaein nieinie sie vin Bie Be 0t qmee eseees 9
SINK & snsmam semissaenesse eaeees sssasssssssassaannncsasn sasaw 43
SOURCEvc0es eessssesas tesesrsseesseessaessscsasassnsnsa . 43
SPLIT sicvmicsvas cese eeerae ve e ess s ey vevewsvsansennsesesens O
START-CONTENTS ...ivvvrrnnens v ow e weTes e se e eese s i see sees 52
START-INDEX “sassaasesessessesessesssassssasasesavesass DG
STATISTICS s vissis vie o w0 wncwre woovoim T GEsm s P
STEMaw 6 VT R R e e S e ST ke e e e et s vee Q0
STERN ..cvvivevcrcscsnassnsnsnssnssissnciacos oG AT R 20
STRINS ..csinies oo saae see s eias o mwe w we e s vese e seevesesessases o1

SYSPARS 5.8 518 Bub re mom 208 m ceda b e iy g SRR s 120
SYSTEM & vis w5 ws sis we aim o a7s 506 o0 o S aaies S oiare o 0 0 A wRE So% cenesns os 23

T cmtinmeioidbie s aale e s smnses ac s nainarasasneesunesenesesasnieiene &

TAB iusivescvenstoevensses G s e e ee e e . w cnveneny &

TABCLEAR B S TR T = T I Pt sassaseness 3
TABSET .o vwans veessesan ceaseserasstsssnsesesesasssacsencesas 3
TEXT-AHEAD cesesenann sia o waiee e eemie e cu o unein ae snam seas e FL
TEXT-FOOT cseteccaan PR OS—— . vesdie R v sae s G0
TIME o oin os sun sie 310 6w siw o7 o it o SSRE SH B0 Bm SR W E cevssesssnssnsennses 28
TLTEE oo von v i we v 6w w308 #4808 700 3 19,8 (8 4785 8 90 % AL LT
TOP ssisian e ations pross . SN aTe A e e e e e e e e e e e e e ls ek e e caaen 33
TRIM-LINE-STEM i sini s Ve ab e e r R B e EE e coenes 25
TRIM-LINE=-STERN .. oo i om 5w sin Spe B0 % R EAS R TAESE e ape 26
TRIMN-STEM ..vew v vie eie e g s wie e v siwew e a B RS sessessnan susisvese 20

Texture User's Manual 59

UP cicsenssssacesscvinsesnanssassanss sEadeasbenasseeenasiaieiies o 7
V-CUT ...cccinsecnesasesnsnsasse sevssasseassanssassane sesevess 35
V-CUT-SWAP ..c.cocccccencces aie.mie o s ee v s esensesssevesses 30
V=LINEcce0vsvsssvcssnsensesavan iseasesassencessaasancne . 38
WARN cccecncsnnenas Gesa e e b e e e e el ek s e iases CF
KARNING «..cvcvunnnn cesesnansaaren L T T T L T (e pppup e -2 - |
WIDOH ivveivenvensrscsnavssssansanssassncssese shewen s sinbebin . 4%

YEAR ..cicisacassnssossanscansossstossirsissasssncnacassnnse svsws D5

MMM
MMMM MMM
MM M MM
M M
M M MEMMMMMMM
MM MM MMM MMM
MMM MM MM ylyly]
MMM Mt MM MMM
MMMMHMMEMM MHMHMHM MM
MHMMMMM - MMMM MMM MM MMMMM
MMM MM MMM MM
M MMM M M

M MM MMM MM
MMMM MMMMMM MMM
MMM MHM

MHM

MMM M

MHMMMM

FEIE I I I I I IEIE I I I I K IEIE I I H KN H

* *
% Texture User's Manual *
* Updates *
»* 3*

363636 36 36 3 96 I IEIE I 3 IE 6 I I I HH

by

The Texture Support Group

Technical Note 77-__

July 1977

Department of Computer Science
University of British Columbia
Vancouver, B. C.

"It is vain to multiply entities beyond
need."

Sir Williom of Okhom

In the Following, annotations in braces (e.g., {23}) are
page references to the Texture User's Monual, Technical Manual
75-08 (Dec 1975).

1. Punning Texture

The parameters field on the Texture run command <{1,49-50)
need no longer explicitly ask for the system library by starting
of f PAR=SYSLIB... . The sustem library is automatically read
in. If the system library is not desired, the notation
PAR=NOSYSLIB... is to be used.

The parameter siring may contain any Eurekg programs.
These oare evaluated af [east once (and every time the call
<SYSPARS> is evaluated activeiy), but any resuiting text is not
included in the document. For exumples PAR=NOSYSLIB<LIST> will
preclude the system |ibrary and turn listing of source lines on
until a call of <NOLIST> is encountered in the source.

2. New Primitives

The primitives described in this section are available
whenever the Texture system is run.

2.1. Segment and String Hanipulation

<ERASE-SEGMENTS, namelist>

All segments in the nomed strings are restored. Reccll
that a call to SEGMENT {21-23} creates ‘'gaps" in a string. The
text originaliy in these gaps nay be restored by use of
ERASE-SEGMENTS. Thus,

<STRING, Alpha, gnus are gnice>

<SEGMENT, Alpha, gn>

“<Alpha, N>' resuits in 'Nus are Nice"
<ERASE~-SEGMENTS, Alpha>

““<Alpha, N>'" results in ''gnus are gnhice"

<PART, string name, type, n>

The 'n'th part (of type 'type’) of the string is returned.
'Type' indicates either text segment (0) or the segment gap of a
given ordinal (1,2,...). Thus,

<STRING, Beta, some people hate cheese>
<SEGMENT, Beta, e€e, e>

(<PART, Beta, 0, 3>) results in (opl)
(<PART, Beta, 1, 1>) results in (ee)

(<PART, Beta, 2, 3>) results in (e)
(<PART, Beta, 3, 1>) results in ()
(<PART, Beta, 2, 0>} results in ()
If ony item does not exist, the null string is returned.

2.2. Function Tracing

The Ffollowing primitives cause the calls of functions
(macro, primitive or SYSTEMed functions) to be tTraced; it is
intended as a debugging aid to serious Eureka programmers.

<TRACE, Function name, what>

Whenever the given fFunction is called, a frace is printed
out. 'What*® governs what is traced: ‘'what’ is a string
containing ony of "T'" (tupe), "A" (arguments) or "V'" (value); if
it is absent, it defauits to "ATV".

<NOTTRACE, function name 1ist>

The ltisted functions are no longer traced.

2.3. Input

The SOURCE primitive {43} as described in the user's manual
changed the input fFile. It was like a GOTO. IF called without
argument (i.e., <SOURCE>) the system input file wus restored.
Now SOURCE stacks files (up to 10 levels} so that a call without
arguments restores the previous file. Thus,

<SOURCE, X> X is active
<SQURCE, Y> Y is active
<S0URCE> X is active
<SOURCE> system input is active

3. The SYSTEM Library

This section updates Appendix C of the manual {51-55}.
Some functions have been udded and several have been improved.
Most of the functions in the SYSTEM library need no longer be
loaded explicitly (see section ¢ for further information).
3.1. New Functions

<EMPTEE, filename>

Accepts an MTS file nome ond empties the file. This
function is not included in ony 0S releases of Texture.

<COMMAND, MTS command>
Accepts an MTS command and causes it to be executed. Note

that any command Jike $RUN, $LOAD or SUNLOAD will cause Texture
to disappear. This Function will not be included in any O0S

releases of Texture.
<SUP, string>

Transicotes any of the numerical characters or *(J)+-' in the
string to correspondinhg superscript characters on the TN-chain.
E.9., '"<SUP, (-125)>" produces ''(-125)n

<HYPHENATE, word>

Checks fthe space left on the current line; if there is nof
enough space for ‘word' then it returns ‘'word' broken, if
possible, into two strings, separated by a blank. A bredok is
possible if there is a hyphen (-) or u discretionary hyphen (}{)
in ‘'word' in the portion of 'word' that will fit on the current
line. The leftmost hyphen or discretionary hyphen that will fit
on the line is chosen, and a blank inserted just after it. This
discretionary hyphen is turned into a huphen. After the above
is completed, dall remaining discretionary hyphens are removed
winether or not hyphenation has tuken place.

Thus, "<HYPHENATE,hulphenlate>" might result in '"hyphen-
afe'" if there were 7 or 8 but not 9 spaces left; if there were
9, it would result in "hyphenate'.

<.HYPHENATE, word>

This is the same as HYPHENATE, but it is used whenever
'word' is the first word in a sentence (that is, it tokes intfo
account the difference between sentence spacing and word
spacing).

<#, expression>

The expression is an arithmetic expression involving any of
the following:
intfeger numbers
+ (Addition)
(Subtraction or Negation)

* (Multiplication)
4 (Integer Division)
Z (Remainder after Integer Division)
() (Farentheses to affect order of evaluation)
All evaluation is from left to right, except that

expressions inside parentheses are tireated as a single unit, and
muitiplication operators (%, /, Z) toke precedence over addifion
operators (+, -); negation takes highest precedence. Thus,
A+B#C is equivalent to A+(B*C).

<BOLDFACE, string>

BOLDFACE simulates boldface font by causing the argument
'string' to be overprinted three times. The quality of the font
is thus dependent on the accuracy of the printer and the
condition of the ribbon when the document is printed. For

example,
<BOLDFACE,hel 10>
will print as 'hello'.

The maximum length of the argument ‘'string' is 100
characters. An argument exceeding this maximum will be
truncated without warning.

Note: The handling of the special Texture operators (e.g.,
2 and _) by BOLDFACE deviates slightiy from the norm. The
operators %, ¢ and 39 are assumed to refer to The succeeding
character, regardiess of whether or not it is another operator
or special character (e.g., < and >}. Also, the blank ond the
operators -, / and _ are returned unchanged. For example,

<BOLDFACE,dHELLO>
will print as 'Hello',

<BOLDFACE,;20/91I>
will print as '0*

<BOLDFACE , %¥*HI>
will print as °'*hi'.

Warning: In the past, excessive use of BOLDFACE on a given
line or o given page caused the workspace to overflow (every
boldfaced character takes up 7 times the space of un ordinary
character), and Texture to crash mysteriously; this bug appears
to have been fixed for the standard |auout, but holdfacing long
lines or large pages will aimost certainiy cause it to recur.

3.2. Contents and Index Functions

These have been souped up so that multiple copies may be
loaded (for multipie, Lord of the Rings style indexes ond
multipte, thesis style tables of contents, Figures and tables).
There is now only one Ffunction to loud to get a table ofF
contents (or index) and if tokes an additional argument,
inserted just after thzs function nome, which tells it what to
do. Thus,

<SYSTEM, YOUR-NAME,, CONTENTS> loads contents function
<YOUR-NAME, START, options-as-before> starts it

<YOUR-NAME, ADD, entry> adds an entry

<STRING, PRINT-CONTENTS, "<YOUR-NAME>'>
<YOUR-NAME, PRINT, strings-as-before> prints it

The definition of PRINT-CONTENTS is necessary (unjess
YOUR-NAME = PRINT-CONTENTS) because during printing, YOUR-N&ME
will call <PRINT-CONTENTS> but really wants to call itself

(except thaot it doesn't Kknow you calied it YOUR-NAME). Note
that the default for the First argument is PRINT.

If all this seems a littie hard to follow, see section 4.2
for a simplified method.

4. The SYSLIB Library

This section updates Appendix B of the user's manual
{49-50}.

4.1. Automatic Loading

All functions in the SYSTEM library (except the contents
ond index functions) are pre-defined as macros which cause the
function to be loaded on first reference. Thus it is no Ilonger
necessary to say,

<SYSTEM, BOLDFACE>

<BOLDFACE, foobar>

The second call by ifself will cause the loading of BOLDFACE
(which will then be called with the argument ‘'foobar').

4.2. Contents and Index

These must still be loaded explicitiy. The macros:

<LOAD-CONTEHTS>

<LOAD-FIGURES>

<LOAD-TABLES>

<LOAD-INDEX>

<LOAD-INDEX1>
will still be pre-defined to moke it mora convenient. Note thaot
Figures and Tables dre just like a Table of Contents, except
that the three macros used for them have FIGURES or TABLES where
the Contents macros hdve CONTENTS. Simiiariy, INDEX1 replecing
INDEX uniFormiy in calls gives a second index. The user wishing
to create other tables or other indexes amight Jlook at thase
macros to see how it is done.

Example:
<LOAD-TABLES> toads o table of tabies function
<START-TABLES,2> sets up a workspace
<TABLES,Fly Populations in South America> an entry
<PRINT-TABLES>

5. Other Mocro Libraries

Most things thut a Texture user may need to do can be done
directly in Eureka. Texture users are also constantly
re-inventing the wheel because they all use the same basic set
of Eureka programs. For this reason, the Texture Support Group

6
encourages the development of macro libraries and fTheir
documentation For general use. &

Note: Since libraries are generally laid out prettily on
the page, and since Eureka treatfs blanks as just more text, it
is best to use the INLIB macro (defined in SYSLIB) to load a
library. I.e., <INLIB, library name>. INLIB will delete all
blanks.

5.1. Eeneral Eureka Library

A major macro library (develcped by M.S. Johnson, initially

for his own use) is available in the MTS file
CS:EUREKALIB

It contains many useful Eureka macros for manipulating strings,
creating and manipulating counters, putting line numbers in the
margins of documents for editing, putting version bars in the
margins of documents Ffor updates of documentation, doing
structured Eureka programming, etc.

Documentation for this Iibrary is available from the
Computer Science Documentation archive ($RUN cs:p0oC); an
up-to-date version will also be kept in the file

TEXT:EUREKALIB.MW
ready for copying to the TN-printer.

5.2. Diggram Library

A number of functions For drawing diagroms in Texture
documents were developed by T. Venema and upgraded by M.S.

Johnson. These functions draw boxes and arrows with a minimum
of effort. The library is available in the file
CS:DRAWLIB

Documentation for this library is available from the Computer
Science Documentation archive ($RUN CS:DOC); an up-to-date
version will also bhe kept in the file

TEXT:DRAWLIB.W
ready for copying to the TH-printer.

5.3. Bracket Counter

Anyone who has written a large Eureka program and
subsequently ftried to decide whether the brackets (< and >) and

evaluation delays (" and ') were weli-balanced, will have been
driven to the edge of o nervous breakdown. There is now a
Eureka program which will do the work for you. It is in the
file

TEXT:BRAX

and may be called as follouws:

<COUNT, Texture source file>
The Ffile will be printed out line by line and the bracket and
delay-quote nesting printed out with each line. The output
appears in the Texture listing life (not in the Texture document
fFile).

5.4. Including Files in the Input

It is frequently convenient to have a file reference
another file, which is to be included in the source of the
document. This wau, one master file can serially inciude
several files making up parts of o document; also, files may
include a common subsection {(copuright notice, etc.)

A Function INCLUDE is defined in the file
TEXT:INCLUDE
and may be called as follows:
<INCLUDE, file name>
Such a call has the effect of the text of the file being
inserfed into your document source at the point of the call.

MMM
MMMM MHM
MM M MM
M M
M M MMMMMMMMM
MM MM MMMM MMM
MMM MM ala] MMM
MMM MMM MM MHM
MMMMMMMMMM MHMMMMM MM
MHMMMMHIM MMMM MMM MM MMMMM
MMM MM MMM M MM
M MMM M M

M MM MHM . MM
MMMM MMMMHMN MMM
MMM MMM
HMM

MMM M

MMMIMM

363636 36 6 36 36 I I 3 3 36 I6 7 I 3 36 36 36 36 I 36 736 I 3 36 36 36 36 36 36 36 % 3¢

* *
* EUREKALIB: *
* A Library of Eureka Functions x
* *

HEXEERXARRERA R AL TR A LR RAEAXERFRERE

by

Mark Scott Johnson

Technical Note 75-6

1975 November
Revised 1976 September
and 1977 July

Department of Computer Science
The University of British Columbia
2075 Wesbrook Mall
Vancouver, British Columbia V6T 1W5

0. Preface to the second revision

The Ffile CS:EUREKALIB now contains a new version of the
Eureka |ibrary. The oid tibrary has been retained as
CSLB:EUREKALIB, but it will be maintained onty for a limited
time under that id. Please use the new version, or make your
own copy of tThe old library. The differences beftween the two
versions are summorized in the next poragraph, aond new or
substantially revised portions of this document are indicated by
vertical bars in the right-hand margin.

BOLDFACE has been deleted from EUREKALIB since it is now
available in the default Texture system library. It is no
longer necessary to load it via a call of the Ffunction SYSTEM;
it con be treated much like o primitive. Documentation for
BOLDFACE can now be found in the "Texture User's Manual
Updates'.

The following functions now take optional last arguments:
FIGURE, PHYSICAL-L, and REVISION-BARS. Current uses of these
functions need not be changed. The function LIME-NUMBERING has
been changed internally to gain efficiency. A minor change in
the definition of LP has occurred, but it is upward compatible.
The following are new functions now contained in EUREKALIB:
CONCAT, DELETE-COUNTER, INI, MAKE-COUNTER, OUTI, RESET-COUNTER,
and SET-COUNTER. A new string ALPHABET has also been definsd.

1. Iniroduction

This document describes a library of functions (written in
Eureka) which Texture users may find handy. Before using this
library, it must be loaded via the call <INLIB,CS:EUREKALIB>.

The wuser (s cautioned to read this document carefully
before using any of the functions described. Failure to do so
may result in disaster. The implementor has tried to insure
that these Functions are useful, useable, general-purpose, and
Fully debugged. Nevertheless, the implementor absolves himself
of all responsibility for probiems which may orise out of the
use oF EUREKALIB and, Ffurther, no obligation to maintain the
library is assumed.

Due to the nature of the Eureka string processor, the user
is obliged to know something of the internal structure of the
functions in EUREKALIB. In particular, it is important that the
user not redefine any of tThe functions or strings described
below since the functions in the library are highly interdepen-
dent. In oddition, severdl strings are defined internally in
the library and must not be used as the names of Ffunctions or
strings defined by the user; the nomes of all such strings both
begin and end with a pair of octothorpes (##).

Two other precautions are in order. First, all of the
functions in EUREKALIB assume that the ‘standard" Ffunction
evaluation environment is in effect. For this reason, the
start-of-function (<), end-of-function (>), argument-separator
(,), start-literal ('), end-literal ('), and neutral-indicator
(:) characters must not be changed. Likewise, no primitive
function should be redefined. Second, few of the functions in
EUREKALIB check their arguments for validity. Thus, an errone-
ous call may result in an error message being initiated by one
of the Eureka or Texture sustem functions.

Some users may be concerned with the growing size of
EUREKALIB and the resulting increase in initialization overheod
each time it is INLIBed. Such users are free to make their own
copies of CS:EUREKALIB and to pare it down by discarding
unneeded functions. IF doing so, however, be certainh to retain
alf Ffunctions and strings which are used in the definitions of
Tthe top-level functions whose refention is desired.

2. Functions defined in EUREKALIB

<COMMENT,string>

This function simply causes its argument(s) to be ignored
by the document processor. It can be used to insert comments
into Texture source progroms without affecting the output
document .

<COMPRESS,string>

COMPRESS returns its argument with all leading ond frailing
blanks trimmed off and with alil multiple embedded bianks reduced
to a single blank. For example,

<COMPRESS, THIS IS A STRING >
returns the string 'THIS IS A STRING'.

<CONCAT , name, value>

This function appends the string 'vailue' to the current
value of the string calied 'name'. For example, after execution
of

<STRING,FOO,HELLO>
<CONCAT,F0O0, WORLD>
the value of <FO0> is 'HELLO WORLD®'.

<COUNT,string,pattern>

This function returns a count of the number of occurrences
of 'pattern' in 'string’'. ‘'pattern' connot be the nuil string.
For example,

<COUNT , ABABABA , ABA>
returns the value 3.

<DECR, hame>

DECR causes the value of the string -called ‘'name’ *t90 be
decremented by one. Prior to a call of DECR, 'name' must be
defined via the STRING function and must have a numeric value.
For example, after execution of

<STRING,COUNTDOKN,100>
<DECR , COUNTDOWN>
The value of <COUNTDOWN> is 99.

<DELETE-COUNTER , name>

This function causes the counter 'name' initiated via a
call of MAKE~COUNTER to be discarded and its storage freed. See
the description of MAKE-COUNTER below.
<END-VERSION,n>

This Function delimits the scope established by a preceding
call of <VERSION,n> to specify the bounds of a document revi-
sion. See the description of REVISION-BARS below.
<EXPLODE,stringl,string2>

‘stringl' with 'string2' appended
For exomple,

This function returns
before each character of 'stringl’.
<EXPLODE ,BLOWUP, ..>
returns the string '..B..L..0..H..U..P'.

Warning: Because of the way in which fthis Ffunction is
implemented, neither of the argument strings should contain the
start-of-function (<) or the neutral-indicator (:) character.

<EXTRACT-NUMBER,string,pattern,defaul+>

EXTRACT-NUMBER returns
(=) following the first occurrence of
For exampie,

<EXTRACT-NUMBER,NUM=12 OPT=3,0PT,400>
returns the wvalue 3. If 'OPT=' had not been contained in the
argument ‘string', then the opticonal third argument (400 in this

the number following an equal sign
‘pattern’ in 'string'.

example) would have been returned.

The number exfracted is delimited by the equal sign on the
left, and by either a blank or the end of 'string' on the right.

Altho not designed to, EXTRACT-NUMBER will actually extract
any string following ‘pattrern' which is properiy delimited,
whether or not it is numeric. For exampile,

<EXTRACT-NUMBER , P=4PAGES T=5S5,P,10PAGES>
returns the string '4PAGES'.

<FIGURE,string, length,flag,block>

The FIGURE function can be used to cause a string to be
treated as a figure (i.e., the entire figure must appear on one
text page)d. The first argument is the string representing the
figure, and 'length' is the number of phusical Jines which
'string' will consume when printed by the document processor.
The user must supply this Ilength since Eureka functions cre
unable to predict how mony lines a given Texture string will
consume.

If the Figure wili fit on the current text page, FIGURE
merely passes ‘string’ on to the document processor. Houwever,
if the figure will not fit on the current page, FIGURE returns
the nul! string ond causes the figure to dappear at the top of
the next text page using the page event.

The optional third argument is used to determine whether or
not ‘'string' is being held over onto a new page. IFf the Figure
fits on the current page, the vailue of the string nomed 'fFlag’
is set to the string 'T'; otherwise it is set to 'F'.

The optiondal Fourth argument specifies the block of text in

which the figure is to appear if it will not Fit in the current
block. The default block is STANDARD-TEXT. In general, this
argument will only need to be specified when user-defined blocks

and layouts are being emploued. See the "Texture User's Manual'
for an explanation of blocks und |ayouts.

Note: Altho it is possible for more than one figure to be
saved over onto another page, the expansion of all such Figures
must not exceed a total of one page of output ftext. In other
words, no figure can be held over to a second pcge. This is an
implementation restriction which appears difficult to overcome.

<FOR,name, from, to, by, wvhat>

This Ffunction acts tike an Algol FOR loop.
can be any string) is given the initiaol integer vulue °'from'.
Next, tThe string ‘uwhat® is evaluated with all occurrences of
'nome’ being replaced by the value 'fFrom'. Finally, the wvalue

'name' (which

———— ——

of ‘nome® is incremented by 'by' and 'what® is evaluated aguin,
but with this new value substituted. Execution terminates wihen
the value of 'nume' is one greater than the value of the integer
'to' (i.e., 'what® is executed max(0,(to-From)—by+l)} times). If

'from', 'to', or 'by' is the null string, its value defaults to
1. For example,

<STRING,TOTAL,0>

<FOR,{Il5,1,5,,"<STRING, TOTAL,<SUM,<TOTAL>,|I|>>'>

<TOTAL>

returns the value 15, and
<FOR, IX|,,5,2,"<STEM,ABCDE, | X{>*>
returns the string 'AABCABCDE'.

The user should note that the argument ‘name' i3 handled
via tThe SEGMENT system function. This means that a textual
substitution of 'name' is made in 'what'.

<FULL-DATE>

The value of this function is the current date in the form
'uy mm dd', where the month is written out in Ffull. For
example, if <DATE> returns ‘oct 12, 1492', then <FULL-DATE>
returns '1492 October 12'.

<HI,n>
This function causes a Ileft indentation to column 'n'

(i.e., <LI,n>) to occur gfter completion of the current ling of
text. This is known as ¢ hanging indentation.

HI is implemented by hunging '<LI,n>" onto the new line
event. Unfortunately, if line fermination is the result of one
of the system functions (e.g., <L>, <P>, and <PAGE>), the {ine
event does not occur. (This is an implementation restriction.)
Therefore, under some circumstances the user may find The
indentation occurring later than desired. This can be compern-
sated for by calling <HANG,LINE> to fFlush the line event, or by
calling <EMPTY,LINE> to discard the line event, before cailing
the system Ffunction which bypasses the normal 1line event
mechanisn.

<INCR,nhume>

INCR causes the value of the string called 'name’ to be
incremented by one. Prior to a cuall of INCR, ‘'name' must be
defined via the STRING function and must have a numeric value.
For example, after execution of

<STRING,COUNTER, 0>
<INCR,COUNTER>
the value of <COUNTER> is 1.

<INI,n>

This function causes the left indentution to increase from
its current value by 'n'. Since it acis as a relative LI, the
indentation takes effect only at the beginning of the next line
of output text. The left indentation can again be decreased via
the function OUTI or reset using LI.

<LINE-NUMBERING>

This function causes subsequent document processor |ines
printed to contain, in the right-hand margin, the number of the
approximate input source {ine corresponding to each output |line.
This fFeature should facilitate subsequent editing of the Texture
source file by the user.

Line numbering will appear to the right of the right-most
perforation on 8X1l1l forms for positive line numbers less than
10,000. Thus, the numbering can normally be discarded when the
edges of the continuous forms are removed.

Line numbering can be discontinued by calling the function
NOTLINE-HUMBERING. Since use of LINE-NUMBERING incurs about a
ten percent increase in document processing time, the user is
encouraged to employ this focility selectively for large docu-
ments. All line numbering can be suppressed by including the
string "NONUMBER' in the PAR= field of the Texture run command.

<LOWER,string>

LOWER returns 'string' with the lower-case operator (¢)
appended before each character. Thus, when output via the
document processor, 'string' will be shifted to lower-case. For
example,

<LOMWER,HELLO>
will print as 'heilo'.

Since LOKER is implemented simply das <EXPLODE,string,<¢>,

'string' should not contain the characters < or :.

<LP>

This function causes a new paragraph to be started with a
bionk 1ine separating the new paragraph fFrom the old and Ferces
the first word of the new poaragraph to be copitalized. It is
defined as '<L><WIDOW,3><P>3'.

<MAKE-COUNTER ; hame, type, case>

MAKE-COUNTER causes a counter called 'name’ to be ¢reated
OF type 'tupe' and case ‘'case‘'. The acceptable values of 'type’
are 'ALPHA' (for dlphabetic), 'ROMAN' (for roman numerdals), and
'ARABIC' (for drabic numerals). The default ‘tupe' is 'ARABIC'.
The acceptable values of ‘case' are ‘UPPER' (for upper-case),
'LOKER' (for |lower-case), and 'SUPER' (for superscript). The
default is to return the counter without any particular case and
to let the current Texture environment determine the output
case.

MAKE-COUNTER works by defining two string: ‘'name' and
*INCR-name’. Executing <name> returns the current value of the
counter in the proper tupe and case. Executing <INCR-nome>
first increments the wvalue of the counter by one and then
returns this new value in the proper tupe and case. For
exanple, after execution of

<MAKE-COUNTER » ALPHA-CTR , ALPHA , UPPER>

executing <INCR-ALPHA-CTR> once returns the string '92A' and
executing it a second time returns 'aB°. It is imporiant to
note that the two calls <hame> and <INCR-name> return
transliations of the redal numeric value of fthe counter ‘nhame';
the real value is hidden from view. Thus, it is possiblie for
the user to think of ALPHA-CTR s a counter which increments
glphabetically rather than numericdally, even tho this is an
oversimplification.

'tupe' and 'cose' are allowed:
types ‘'ALPHA' and ‘ROMAN' cannot have case °'SUPER', and type
'ARABIC' cannot have cuses 'UPPER' or 'LOKER'. All other
comhinations have the expected aftributes. Specifying a case
for 'ALPHA' will force that counter to «always print in the
desired case, regardless of the current global case environment
(e.g., UP and DOWN). Otherwise, the output case of an alpha-
betic counter will depend on the global case environment and
whether or not it begins a sentence.

Not all combinations of

Warning: Since the counters initiated by MAKE-COUHNTER have
a special internal represenfation, it is not possibie to treat
them as ordinary strings. In particular, o counter must be
deleted via a call of DELETE-COUNTER (rather than the system
function DELETE), its value can only be reset to 2zero via
RESET-COUNTER, and its value can only be set to some arbitrary
numeric vdlue via SET-COUNTER (rather than via STRING).

One of the nicest featues of MAKE-COUMTER is that it allows
counters to be completely tTransparent. For example, after
execution of

<DEFINE,HEADING, | STRINGI,
U<, 2><HIDOMW, 5><INCR-HEAD-CTR>. ISTRING]'>
<MAKE-COUNTER ,HEAD-CTR>
calls can be made to HEADING without
heading number; headings will

the need of passing a
automatically be numbered

1,2,3,.... Similariy, it is possibie to define da Footnote
function such that superscripted reference numbers are com-
pletely hidden.

<MAX, X0, ...,X9>

MAX accepts from one to ten integral argumentis and refurns
the numerically largest of them.

<MIN>X05...,X9>

MIN «accepts from one to ten integral arguments and returns
the numerically smallest of them.

<NOTLINE-NUMBERING>

This Ffunction causes the |ine numbering initiated via a
call of LINE-NUMBERING to be discontinued.

<OQUTI,n>

This functions causes the l|eft indentation to decrease From
its current value by ‘n'. Since it acts as o relative LI, the
indentation takes effect only at the beginning of the next line
of output text. The left indentation can again be incregased via
the function INI or reset using LI.

<PAD-LEFT,string,char,;pad-size>

PAD-LEFT returns 'string' padded on the left with suffi-
cient copies of ‘char' to make the result of length at least
max(pad-size,<LENGTH,string>). For exomple,
<PAD-LEFT,HELLO,.,10>

returns the string '.....HELLO' whiile
<PAD~-LEFT,HWORLD,X,4>

simply returns the string 'WORLD' unchanged. Also,
<PAD-LEFT,HORLD,+.,10>

returns the string '+.+.+.WORLD', which is of length 11.

<PAD-RIGHT,string,char,pad-size>

PAD-RIGHT is equivalent to PAD-LEFT, except that padding
occurs on the right of 'string‘.

<PHYSICAL-L,n, justification-method>

This function advances t0 d new line 'n' times, where 'n'
must be integral. It differs from thz system function L in that
L dadvances lines with respect to the current LINESPACING value,
while PHYSICAL-L ignores it and advances 'n' physical (aus
opposed to logical) new lines. 'justification-method' is the
optional second argument of L; see the "Texture User's Manual"
for an explanation of its utility.

<REAL-DATE>

The vafue of this function is the current date in the form
'y mmm dd'. For example, if <DATE> returns 'oct 12, 1492°',
then <REAL-DATE> returns '1492 Oct 12°'.

<REMOVE,string,pattern>

REMOVE returns
removed. For example,

<REMOVE, B L A H, >
returns the string "BLAH".

'string' with alfl occurrences of 'puttern'’

<REMOVE-FROM~-EVENT ,event, text>

This function deletes all occurrences of 'text' from event
'event' leaving unchanged uny other text associated with the
event. ‘event' can be anyu one of the events defined for the
system function HANG.

<REPEAT,what,howoften>

This Ffunction concatenates 'howoffen' (an integer number)
evaluations of the string 'what'., If 'howoften' is omitted, its
value defaults to 1. For example,

<REPEAT,"<STEM,ABCD,2>',4>
returns the string 'ABABABAB'.

<REPLACE,string,pattern,repiacement>

REPLACE returns 'sfring' with all occurrences of
replaced by 'replacement'. For example,
<REPLACE,;--..-.=..5.3%>
returns the string '—-#++-+-++"'.

'pattern’

10

<RESET-COUNTER, name>
This function causes the value of the counter callied :name’

initiated by a call of MAKE-COUNTER fo be reset to zero. See
the description of MAKE-COUNTER above.

<REVERSE,string>

This function returns '‘string' with its characters
reversed. For example,

<REVERSE, UVHXYZ>
returns the string 'ZYXWVU'.
<REVISION-BARS,position,version,block>

REVISION-BARS initializes a set of Functions used to

indicate versions of a document by sefectively printing vertical
bars (l) in the margins of the output document. This is exem-
plified by the bars in the right-hand margin of this document.

To use this facility, the user must supply two major pieces
of information. First, revisions of the Texture source document
must be delimited by calls of the pair of functions VERSION and
END-VERSION. All text between matching calls of <VERSION,n> and
<END-VER3ION,n> are assigned the version number 'n'. It is the
user's responsibility to insure that the VERSION -- END-VERSION
pairs are correctly nested and batanced. Second, the user must
specify which version number groups are to be indicated by
vertical bars. This can be accomplished in two ways. If the
PAR= field on the Texture run command contains the string
'VERSION=n' (where 'n' is integral), then all wversion groups
whose number is greater fthan or equal to 'n®' will be barred.
Alternatively, the ‘version' argument of REVISION-BARS will be
used if the PAR= field is not. IF ‘version' is also missing, no
version groups will be boarred.

REVISION-BARS must be culled once before any calls of
VERSION or END-VERSION. The argument 'position’ indicates which

margin of the output document is to contain the wvertical bars,
'‘position' can be either the string 'RIGHT’ or the string
'LEFT', or the null string. The default is to place vertical

bars in the right-hand margin. REVISION-BARS can be called more

than once to cause the value of 'position' to be changed. For
example,
<TITLE,"<REVISION-BARS,<#EQ,<MOD,<PN>;2>,0,LEFT,;RIGHT>,2>"'

S<TITLE>>
at the beginning of dccument processing causes vertical bars to
appear in the right-hand margin of odd numbered pages and in the
left-hand margin of even numbered pages. In addition, the bars
will only appear for version groups numbered greater than 1.

11

The values of 'version' and 'block' are oniy significant
during the Ffirst call of REVISION-BARS. If supplied on subse-
quent calls, they will be ignhored. :

The optional third argument specifies the block of text in
which the revision buars dare to appear. The default block is
STANDARD-TEXT. 1In general, this argument will only need to be
specified when user-defined blocks and layouts are being
employed. See the "Texture User's Manual' For an explanation of
blocks and [ayouts.

<SEARCH,string,patrtern>

SEARCH returns the position of the start of the Ffirst
occurrence of ‘'pattern' in ‘'string’'. It returns 2zero if
'pattern' is the null string, iif ‘pattern' is not contained

within ‘'string's or if the length of 'pattern' is greater than
that of 'string'. For exomple,

<SEARCH , UVHXY yWX>
returns the value 3 and

<SEARCH,ABC,CD>

returns the vajue 0.

<SET-COUNTER , hame ,n>

This function causes the value of the counter called '‘name’
initiated by o call of MAKE-COUNTER to he set to the numeric
vatue ‘n‘. See the description of MAKE-COUNTER above.

<SUBSTR,string, index, length>
This function returns the substring of 'string’ of length

‘length' beginning at position 'index'. ‘'index' must be greater
than zero and less than or equal to <LENGTH,string>. Als0,

‘length' and index+length-1 must be less than or equal to
<LENGTH,sTring>. If 'index' is omitted, its value daefaults *to
1. If ‘'length' is omitted, the entire substring beginning at
position 'index' of 'string’ is returned. For example,
<SUBSTR,PAPER,2,3>
returns the string "APE' and
<SUBSTR,PAPER,3>

returns the string 'PER'.

<UNDER,stTring>

UNDER returns ‘string' with the underline operator (_)
appended before each character. Thus, when output via the
document processor, 'string' will! be underiined. For exomple,

<UNDER,hel o>
will print as "hello".

12

Since UNDER is implemented simply as <EXPLODE,string,_>,
'string' should not contain the characters < or :.

<UPPER,string>

UPPER returns 'string' with the upper-case operator (2)
appended before each character. Thus, when output via the
document processor, 'string' will be shifted to upper-case. For
example,

<UPPER, hel 10>
will print as "HELLO'.

Since UFPER is implemented simply as <EXPLODE,string,a>,
'string' should not contain the characters < or :.

<VERSION,n>

This Ffunction establishes the beginning of « document
revision group which must be terminated subsequentliy by a call
of <END-VERSICH,n>., See the description of REVISION-BARS above.

<WHILE,condition,what>

This function causes the string ‘'what' to be evaluated
repeatediy until 'condition' beccmes faise. ‘condition' must be
in the form of one of the built-in predicate functions (EQ, NE,
LT, LE, GT, GE, #EQ, #NE, #LT, #LE, #GT, or #GE) but without the
last two arguments being present (e.g., <EQ,a,b> rather than
<EQ,u,b,true,false>). For example,

<STRING,LETTER; ABCX>
<WHILE,"<NE,<LETTER>,X>',
"<LETTER>
<STRING, LETTER,<TRIMSTEM,<LETTER>,1>>'>
returns the string 'ABCX BCX CX'.

3. Strings defined in EUREKALIB

<ALPHABET>

The value of this string is the twenty-six letters of the
English alphabet in upper-case.

<MAX-NUMBER>

The value of this string is 2147483647, the maximum integer
representable by the hardware of the IBM 360/370s.

13

<S>

The value of S is @ single blank. It
functions read via the INLIB function.
removed by INLIB.

can be wused in
Reguiar blanks are

4. Additional dgctions initiated when using EUREKALIB

Before defining thz functions and strings listed abovs,
EUREKALIB causes the DEFINITION-SPACE-SIZE to be increased to
accommedate the new functions. The eonly additional cction
initiated is the call <BREAK-WORD-GN-EQL> to cause the end of
each subsequent |ine read by Eureka to be treated as a breuk
between text words. This is essentially equivalent to appending
a blank to the end of each subsequent line of input text.

5. Summary of functions by categories

LOWER, UNDER, UPPER
FOR, REPEAT, WHILE

cuse shiffing:
confrol structures:

counters: DECR, DELETE~COUNTER, INCR, MAKE-COUNTER, RESET-
COUNTER, SET-COUNTER

dates: FULL-DATE, REAL-DATE

figures: FIGURE

indentations: HI, INI, OUTI

line numbering: LINE-HUMBERING, NOTLINE-NUMBERING

line spacing: LP, PHYSICAL-L

miscellaneous: COHMENT, REMOVE-FROM-EVENT

numeric computation: MAX, MIN

revision burs: END-VERSION, REVISION-BARS, VERSION

string manipulation: COMPRESS, CONCAT, COUNT, EXPLODE,

EXTRACT-NUMBER, PAD-LEFT, PAD-RIGHT, REMOVE, REPEAT, REPLACE,
REVERSE, SEARCH, SUBSTR

MMM
MMMEi MMM
MM M MM
M M
M M MMMMMMMMM
MM - MM MMMM MMH
MMM MM MM FMMM
MMM MMM MM MMM
MMMMMMMMMH MMMMEHM M
MMHMMMM MMMM MMM MM MMMMM
MMM MM MMM M MM
M MMM M M

M MM MMM MM
MHMMM MMMMMM MMM
MMM MHM
MMM
MM M
MMMMM

9636 36 36 36 I IE IE 36 36 636 JE I I 6 36 36 I 3636 I6 I 3 36 I I 36 I I 636 36 I 36 I6 I IE I H I 3K N

X K X X %

DRAMWLIB:
A Library of Texture Functions

for Drowing Figures Directly onto a Page

X K K XK X

FEIE I I I IE T 36 26 96 36 3 36 I IEIE I I I IE I I 3 3 36 I H I I6 3636 36 36 I J FEIEH 3 36 3 3 3¢ 363

by

Mark Scott Johnson

Technical Note 77-1

1977 May 6

Department of Computer Science
University of British Columbia
VYancouver, B. C.

This document describes a librury of functions (wriftten in
Eureka) for drawing line Ffigures directiy onto a page of ftext.
Before wusing this library, it must be loaded via the call
<INLIB,CS:DRAKLIB>. Also, since drawing involves Texturs
blocks, it will generally be necessary to up the maximum block
size (which defaulits to 20) wvia the call <MAX-BLOCKS,100>.
Intricate diagrams may require an even larger block
specification.

The functions described below are implemented using the
Texture primitives H-LIME, V-LINE, POINT, and LINE (see sections
4.4 and 4.5 of the "Texture User's Manual) to cause lines and
strirgs 10 be drawn af absolute locations within the current
page. Thus, drawing is done without reguard to text blocks ond
layouts. In other words, it is possible to draw Figures on the
page on ftop of normal text. It is the user's responsibility to
insure f(using the L and PAGE primitives) that this does not
happen. Examples will be given below.

The drawing functions are divided into fwo classes: those
involving rectanguiar shapes (RECTANGLE, SQUARE, and OPTION-BOX)
and those involving lines with arrowed tips (DOWN-ARROMW,
LEFT-ARROW, RIGHT-ARROW, UP-ARROW, and ZIG-ZAG).

<RECTANGLE,col#,1ine#,width,height,labell, labei2>

'‘col®’ and 'line$” indicate the absolute column and |ine
numbers of the top leftmost corner of tThe rectangle to be draun.

The rectangle will be 'width' characters wide and 'height'
characters high. 'labell' and *label2', which are optional, cre
strings which will be centered within the rectangle as labels.

For example, execution of The sequence ofF cails:
<RECTANGLE,10,<SUM,<LINE>,2>,21,6,example,rectangle>
<L,9>

produces the figure:

1
|

| example
I rectangle
L

Note in particular that the <L,9> is necessary to prevent text
from being assembled on top of the rectangle.

<SQUARE,col#,line#,width, labeil, labei2>
SQUARE is identical to RECTANGLE except that the height of

the Figure is the sume as its width and, thus, oniy ‘'width’
needs to be specified.

<QPTION-BOX,col#,line%,width,height>

OPTION-BOX produces an unlabeled rectangle in which the top
and bottom lines are not drawn. Thus, the resulting figure
approximates a set of large square brackets. For example,

<OPTION-BOX,15,<SUM,<LINE>,2>,15,5>

<L,9>
produces the Figure:

o — s g
e |

<direction-ARROK,col#, | ine#, length>

‘direction’ is one of the words: DOWN, LEFT, RIGHT, or UP.
Each of these Ffour Ffunctions operates in the same manner.
‘col#' and 'line#' indicate the absolute column and |ine numbers
of the origin of the line to be drawn. A line is drown from the
origin in the ‘direction’ and for the ‘'length' specified. An
arrow head (V, <, >, A) is drawn at the end of the line. For
example,

<RIGHT-ARROW,20,<SUM,<LINE>,2>,10>

<L,5>
produces the figure:

<ZIG-ZAG,col#,!ine#,directionl, lengthl,...,direction®, length®>

ZIG-ZAG couses a zig-zagged line of up to nine components
to be drawn starting at the origin (col#,line#). ‘'direction’' is
one of the words: DOWN, LEFT, RIGHT, or UP, dand 'length' is the
length of one of the component lines. An arrow head is drown at
the end of the last component.. For excmple,

<ZI1G-ZAG,5,<SUM,<LINE>,2>,RIGHT,15,D0KN,10,

LEFT,7,UP,5,RIGHT,3>

<L,14>

produces the figure:

- 1

-
v

[

When it is desired 1o draw o figure composed OfF several
subfigures, it i3 suggested that the origin for each subfigure
be specified using two user-defined numeric strings, and that
the values of these strings be passed as the 'col#’ and 'line#’
arguments 10 the DRAWLIB fFunctions rather than passing chsolute
infegers. This facilitates modification of the subfigures by
transliation relative to each other and in positioning the entire
figure on the page. For example,

<STRING,X0,30>

<STRING,Y0,<SUM,<LINE>,2>>

<STRING,X1,45>

<STRING,Y1l,<SUM,<Y0>,2>> .

<SQUARE,<X0>,<Y0>,9,5> i

<RIGHT~-ARROW, <SUM,<X0>,8>,<SUM,<Y0>,4>,

<DIFF,<X1>,<SUM,<X0>,8>>>

<RECTANGLE ,<X1>,<Y1>,11,5,R>

<UP-ARROKW,<SUM,<X1>,5>,<Y1>,3>

<L,12>
produces the figure:

1 A

| Co |

I I pr———
I | | |
I s | > R
1 | | |
I I | T |
| |

{ I

where (X0,Y0) is the origin of the square S and (X1,Yl) is the
origin of the rectangle R. Now the entire figure can be
centered by changing X0 to 24 and X1 t0 39 producing:

— A

| | |

] | 0
1 i | |
i s >| R |
| | | |
l ' | M— |
| |

—

