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Abstract 

The relationship between the spectrum and the automorphism group of a graph is 

probed with the aid of the theory of finite group representations. Three related topics 

are explored: 1) graphs with non-derogatory adjacency matrix, 2) point-symmetric graphs, 

and 3) an algorithm for constructing the automorphism group of a prime, point-symmetric 

graph. First, we give an upper bound on the order of the automorphism group of a graph 

with non-derogatory adjacency matrix; and show, in a special case, that the degree of each 

irreducible factor of the minimal polynomial has a natural interpretation in terms of the 

automorphism group. Second, we prove that the degree of the minimal polynomial of a point­

symmetric graph is bounded above by the number of orbits of the stabilizer of any given 

element. For point-symmetric graphs with a prime number of points, we exhibit a formula 

linking the degree of the minimal polynomial with the order of the group. Finally, we 

give a simple algorithm for constructing the automorphism group of a point-symmetric graph 

with a prime number of points. 
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The relationship between the spectrum and the automorphism group of a graph 

is a fertile area for enlisting the aid of algebraic methods in the study of 

graphs. We have found the theory of finite group representations to be especially 

useful in this area. By exploiting this powerful algebraic theory as a unifying 

instrument, we obtain known results (see for example [3], [7], [8], [9]) in a gen­

eral setting, and also derive some new results. 

We explore three related topics: 1) graphs with non-derogatory adjacency 

matrix, 2) point-symmetric graphs, and 3) an algorithm for constructing the 

automorphism group of a prime, point-symmetric graph. In Section 1, we give an 

upper bound on the order of the automorphism group of a graph with non-derogatory 

adjacency matrix. In addition, for a special case, we show that the degree of 

each irreducible factor of the minimal polynomial over the rationals has a natural 

interpretation in terms of the automorphism group. In Section 2we prove that the 

degree of the minimal polynomial of a point-symmetric graph is bounded above by the 

number of orbits of the stabilizer of any given element. For point-symmetric 

graphs with a prime number of points, we exhibit a formula linking the degree of 

the minimal polynomial with the order of the group. In the concluding section, 

we give a simple algorithm for constructing the automorphism group of a point­

synnnetric graph with a prime number of points. 

The graph-theoretic terminology used in this paper is largely that of Harary 

[5]. The points and line of a graph Gare denoted by V(G) and E(G), respectively. 

We denote the automorphism group of G by r(G), the adjacency matrix by A(G), and 

the minimal polynomial of A(G) (or simply the minimal polynomial of G) by µG(x). 

A matrix is non-derogatory if its minimal and characteristic polynomials are iden­

tical. 
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1. Graphs with non-derogatory adjacency matrix 

Let G be a graph with n points. The set f* = {P (y) jye:r (G)} is a faithful 

representation of the automorphism group of G. It is well known (see, for exam­

ple, [6]) that f* is completely reducible on the complex field. Therefore, for 

each ye:r(G) 

D (y) 

~-

P' (y) = 

where P'(y) = UP(y)U-l for a fixed unitary matrix U, and each set· {D.(y)!l~i~r} 
1 

is an irreducible representation of r(G) of dimension m .. 
1 

Clearly, the following relation holds: 

Since the adjacency matrix A(G) commutes with all elements of r*, it is natural 

to consider the algebra 6 of all matrices commuting with every element of r*. A 

matrix Bis in 6 iff UBU- 1 commutes with matrices P'(y) for all ye:r(G); moreover 

(see [2]), 

(1) 

where Re. is a matrix of order e. and x denotes the Kronecker product. Thus, the 
1 1 



number of distinct eigenvalues of any Bin~ is less than or equal to 

Since A(G)e~ is symmetric, the number of distinct eigenvalues of A(G) over the 

complex field is also the degree of its minimal polynomial. We have therefore 

proved the following. 

Theorem 1. Let G, A(G), and e.(l~i~r) be defined as above. 
1 

r 
deg µG ~ Ee .• 

i=l 1 

Then 

Corollary 1.1. Let G be a point-symmetric• graph with n>2 points. Then A(G) is 

derogatory. 

Proof. If A(G) is non-derogatory, we have 

r r 
E m.e. = n 

. 1 1 1 1= 

which implies m.=1 for each i(l~i~r). That is to say, I'* contains n invariant 
1 

subspaces of dimension 1. But for n>2 this implies that f(G) is not transitive, 

because for each transitive group r the faithful representation I'*= {P(y)!yEf} 

must contain exactly one one-dimensional invariant subspace (U3], Thm. 29.1). 

The previous Corollary is also a consequence of a theorem of Petersdorf and 

Sachs [9]. The following is a result due i~dependently to Petersdorf and Sachs 

[9] and to Mowshowitz\[7]. 
I 

Corollary 1.2. If A(G) is non-derogatory, f(G) is elementary abelian. 

Proof. If indeed mi=l for each l~i~r, then each P' (y) is a diagonal matrix. 

3 

This implies (see [13]) that P(y) is symmetric. Hence, y2=1 for each yEf(G). 

Since the adjacency matrix of a graph is summetric over the complex field and a 

fortiori over the integers, its minimal polynomial is a product of distinct irre­

ducible factors. Using this property some information can be obtained about !re)! 
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when A(G) is non-derogatory. 

Theorem 2. Let G be a graph whose adjacency matrix A(G) is non-derogatory over 

the complex field, and such that its minimal polynomial µGover the integers 

splits into k irreducible factors. I I k-1 
Then r(G) S2 . 

k 
Proof. Suppose G has n points and µG(x)= IT µ,(x) where µ,(x) is irreducible of 

. 1 1 1 1-

degree n. (lSiSk) over the rationals. Then A is similar over the rationals to 
1 

the matrix A= diag[A
1

, ••• ,~],where Ai is the companion matrix of µi(x). 

Since A is non-derogatory, every matrix commuting with A is a polynomial in A 

(see [11]). In particular, any permutation matrix P(y), yEf(G), is a polynomial 

in A, for a permutation y is an automorphism of G iff P(y) counnutes with A. 

,.. -1 
Now let Ube the non-singular matrix satisfying A= DAU and let yEf(G). 

,.. -1 
Then P(y)=f(A)=UF(A)U for some polynomial f(x) over the rationals A, so that 

P(y) is similar to f(A) = diag[B
1

, B
2

, ••• , Bk] where Bi= f(A1), lSiSk. The 
I 

\ 
assumption that A is non-derogatory guarantees (by Corollary 1.2) that P2 (y) = I I n. 

I 

Hence, B? = In for l~isk. 
1 i 

Since A. has minimal polynomial µ.(x) which is irre-
1 1 

ducible, Q[A.] is a 
1 

field (isomorphic to Q[x]/µ.(x)); and since the only solutions 
1 

of x2-l in Q[A.] 
1 

P(y) = Udiag[B, 
l 

k r(G) is less than or equal to 2 But the matrix diag[-In' ... , -Ink] cannot be 

similar to a permutation matrix, because its trace is negative. Moreover, the 

order of r(G) must be a power of 2 since r(G) is elementary abelian. Thus 

jr(G)!$ 2k-l, as required. 

We can analyze two distinct cases when the hypotheses of the theorem are 

satisfied: 

A. I r.(G) I =2k- l 

B. jr(G) J=2m, where msk-2 

I 



Figure 1 exhibits two 5-point graphs with non-dcrogntory adj.1-:,,n ... ·y :::;\tr!:~ •.·:: i,::i 

illustrate the two cases. 

G: 

H: 

Figure 1 

µ (x) = (x3 - x2 - 4x +2)(x + l)x 
G 

f(G) = {e, (v
1
v

4
), (v2v

3
), (v

1
v

4
)(v

2
v

3
)} 

k = 3; lr(G)I = 4 = 2k-l 

f(H) = {e,(vv)(vv)} 
1 5 2 4 

k = 3; lr(H)I = 2 < 2k-l = 4 

The following theorem yields a result by Mowshowitz [8] as a special case. 

Theorem 3. Let G be a graph whose characteristic polynomial is a product, over 

the integers, of k distinct irreducible factors. If G is such that c~se A obtains, 

then each orbit of f(G) has cardinality not greater than two. 

Proof. If k = 1, f(G) consists of the identity alone, and the theorem follows 

trivially; if k = 2 and !r(G) I = 2, the result is also obvious. So, suppose 

k ~ 3 and lr(G)I k-1 = 2 • According to Theorem 2, there exists a matrix U such 

that for each yer(G), P{y) = U diag[B1, 

If B! = -B for lsisk; then 
1 i 

U diag[B', 
1 ... ' 

only one of the two matrices can be a permutation matrix. By hypothesis 

Ir (G) I = 2k- l ,. di [ J d hence, one and only one of each pair ag B1 , ••• , Bk an 

diag[-B 1 , , •• , -Bk] is similar to an element of f*(G). It follows that if any 

element of the form diag[-In
1

, B
2

, ••• , Bk] is similar to some element of ft:(G), 
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then B = Udiag[-1 , l , 
n1 nz ... ' Moreover, both 

and 

... , l , - 1 , 
n2i+l n2i+2 

•.. J 

have positive trace and are thus similar to elements of f*(G); the same holds for 

their product. So C = U diag[l 
n} 

plies BC= U diag[-1 l -1 
n ' n ' n ' 1 2 3 

... ' 
-1 . 

-1 , .•. , -1 JU l.S 
n3 nk 

-1 ]U-l is in f*(G). 

in f*(G) which im-

But this is impos-
nk 

sible since tr BC is negative. Thus we have shown that in the case lr(G)I = 2k-l 

the ·elements of f*(G) are those and only those of the form 

U diag[I , B, 
nl 2 

... ' Bk]U- l , where Bl.. isl or -1 for 2~i~k. 
ni ni 

Now let yi(2~i~k) be the elements of r(G) for which 

P(y.)=U[diag I , I , ••• , -I , .•. , I Ju-
1

• Clearly, f(G) is the direct p!o-
1. nl n2 ni nk 

duct of k-1 cyclic subgroups of order 2 having the elements y. as generators. 
l. 

Since + ... - ni + ..• + nk, there are 2ni points fixed by yi. 

Similarly, if we consider the product y,y. (i;:tj) of two generators, we see that 
l. J 

there are 2(n.+n.) points fixed by y.y .. But this implies that for each point v 
l. J l. J 

of G, there is at most one i (2~-i~k) such that y. (v).tv. Hence, for each -yE:f(G) 
l. 

-e·ither y (v)=v or y(v)=y i (v) and the theorem follows. 

Let G be a graph for which case A holds. Suppose the characteristic polyno­

mial of G splits over the integers into k distinct, irreducible factors of degrees 

n ~ n ~ ... ~ nk, respectively. 
1 2 

Corollary 3. 1. Let n 1 be as above. 

the number pf orbits of r(G). 

Under the hypotheses of the theorem, n equals 
1 
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Proof. The number of orbits off (G) is given by Burnside's Lemma to be 

1 E 
!r(G)I yE:f(G) 

tr(p(y)) 1 2k-1 - . d = -- n - n , as require. 
k-1 1 1 

2 

If G is such that case A holds, the following observations also obtain. 

The set of points of G can be decomposed into k pointwise disjoint subsets V. such 
1 

that 

1v1l=n1-n2- -nk 

!vii = 2ni, i=2, ••. ,k 

where v
1 

consists of those points v of G satisfying y(v) = v for each yE:f(G), and 

V. (2~i~k) contains n. pairs of points representing the orbits of the generator 
1 1 

y .. 
1 

Corollary 3.2. Let G be an n-point graph with non-derogatory adjacency matrix, 

and let n
1
~n

2
~ ••• ~nk be the degrees of the irreducible factors of its minimal 

polynomial. If n
1
<~, then G satisfies case B. 

Proof. If !r(G)I = 2k-l then it follows from Theorem 3 and Corollary 3.1 that 

n n
1

, the number of orbits of f(G), must be greater than or equal to 2. 

Some examples follow. For the graph G of Figure 1, n
1
=3 and n

2
=n

3
=1; r(G) 

has three orbits {v
1
,v }, {v ,v } ; {v} equal respectively to v , V , V • Figure 

'+ 23 5 1 2 3 

2 exhibits a 6-point graph satisfying case A. Here n =3, n =2, n =1 and lr(G)l=4. 
1 2 3 

Figure 2 
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f(G) has three orbits {v ,v }, {v ,v }, {v ,v }; V is empty because n -n -n =O, 
l 2 3 4 5 6 1 32 l 

V2 = {v3 ,v4 ,v5 ,v6 }, the union of two orbits, and v
3 

= {v
1
,v

2
}, the remaining orbit. 

For the graph Hof Figure 1, n
1 

= 2 < ¾ and lr(G)I = 2 < 2k-l = 4. 

Case Bis more difficult to analyze. The results obtained in case A do not 

apply as can be seen from the graph Hin Figure 1 or the graph in Figure 3. 

~G(x) = (x2+2x-l)(x2-2x-l)(x-l)(x+l) 

r(G) = {e,(v
1
v

3
)(v v ),(v v )(v v )(v v ), 

4 6 1 4 2 5 3 6 

(v
1
v )(v v )(v v )} 

6 3 4 2 5 

Figure 3 

In this last example we have r(G) 

{v ,v }. 
2 5 

2. Point-Symmetric Graphs 

Let G be a p-point graph with automorphism group f(G); let rv (v. E V(G)) 
i 1. 

denote the stabilizer of vi, and O(r ) the number of orbits of rv.• 
~ 1. 

A graph G is said to be point-symmetric if its automorphism group is 

transitive -
r 

deg µG ~ E 
i=l 

commuting with all elements of 

= O(rv.) (l~i,j~p) in this case. By Theorem 1 
r J 

Ee~ is the order of the algebra b of all matrices 
i=l 
f* = {P(y) IYEf(G)}. According to a theorem of 

Schur [10], if f* is transitive, the order of bis also equal to the number of 

orbits of the stabilizer of any given element. Therefore we obtain the following. 

Corollary 3.3. If G is a point-symmetric graph, then 
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Now let G be a PPS-graph (ie a point-symmetric graph with a prime number of 

points). In this case the minimal polynomial of G completely determines r(G), as 

will be shown in the sequel. First, we introduce the following definition due to 

Turner [12]: 

Definition. A p-point graph G is a starred polygon if its points can be labelled 

in such a way that 

1) [v
0
,v

1
] £ E(G) 

2) [vi,vj] £ E(G) iff [vp(i+k)' vp(j+k)J £ E(G) for l~k~p-1 where p(q) denotes 

the remainder on division of q by p, ie 

p(q) = q(mod P) and O ~ P(q) < p. 

Turner [12] showed that a non-trivial graph with a prime number of points is 

a PPS-graph if£ it is a starred polygon. Now, as Turner points out, the adjacency 

matrix of a starred polygon is a circulant matrix. We can therefore write the 

adjacency matrix of a non-trivial PPS-graph in the following way. 

where a = 1. 
1 

A(G) = 

0 

a p-1 

a 
1 

0 

a 
2 

a 
1 

a 
p-1 

a p-2 

0 

It is well-known that the eigenvalues of such a matrix are given by 

p-1 
E a wp(jk) 

j =l j 

th (0 ~ k ~ p-1) where w is a primitive p root of 

unity. 



P-1 
E 

j=l 
a. 

J 
is exactly the degree of G, while all the other eigenvalues are 

non-integer values. 

Theorem 3. Let m be the multiplicity of the eigenvalue a. Then the order of 
l 

rv
0

, the stabilizer of the element v
0

, is equal tom. 

Proof. 
p-1 ( 'k) 

[ a.wP J = 
j=l J 

p-1 
E a.wj ; but since the primitive roots 

j=l J 

of unity are linearly independent over the rationals, this is possible iff 

aj = ap(jk) (l~jsp-1). However, this is equivalent to the condition: 

[v
0
,vj] E E(G) iff [v0,vp(jk)J E E(G); and this in turn holds iff the permutation 

(for v. EV) is in r 
l. Vo 

Corollary 3. 1. Let G be a non-trivial p-point PPS-graph. Then = l + P-1. 
m 

_ p (j p (hk)) . _ _ _ 
Proof. Let °h~a 1 • Then ap(hk) - Eajw . Now 1.f ak-al then aj-ap(jk)' 

P-1 (h ('k)) p-1 ('h) 
l<"<p l· h a = Ea 'k wp p J = E a.wP J = ah. Therefore if m -J- - , ence P (hk) ( ) 

j=l P J j=l J 

eigenvalues are equal to a
1

, m eigenvalues are equal to ah, and the number of 

distinct, non-integer valued eigenvalues of A(G) is given by p-1 divided by m, 

from which the corollary follows. 

Corollary 3.2. Let G be a non-trivial PPS-graph of order p, Then 

I I p(p-1) f(G) = ---=-=--'-
deg µG - 1 

Proof. From the definition of starred polygon, it is evident that 
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lr(G)I = I I p (p-1) P r = _____.___.....__------'-_ 
Vo deg )JG - 1 

3, An Algorithm for Determining the Automorphism Group of a PPS-Graph. 

Both Alspach [1] and Chao and Wells [4] have presented algorithms for deter­

mining the automorphism group of a PPS-graph. Here, using the basic properties of 

a starred polygon, we give a simpler construction. If G is a PPS-graph ·of order 
'i 

P, let T b denote the permutation defined on V(G) by T b(v.) = v (' +b)' Chao a, a, i p ia 

and Wells [4] have shown that f(G) = r xK where K = {T b I O~b~p-1}. From Theo-Vo 1, 

rem 3 it follows that 'k O £ rv if£ ak = a
1

• Hence r(G) =· {,k,blak=a
1

, O~b~p-1}, 
' 0 

and consequently r(G) is completely determined once we have found all integers k 

The symbol Sofa starred polygon is defined to be the set 

Applying Theorem 3, we see that ak = a 1 iff {p(jk) I j £ S} = S. Since 1 £ S (by 

definition of starred 

Now let S' = {i £ S 

p(jk') = p(j(p-k')) = 

polygon), k £ S; by the same token, i ES iff (p-i) ES. 

n-1 
i ~ 2 } and let k' ES - S'. Then (p-k') £ S' and since 

p(jp) - p(jk') = p - p(jk'), we have p(jk') £ S if£ 

[p-p(jk')] £ S. From these observations it follows that in order to find those k 

such that ak = a
1

, one simply has to determine which elements k £ S' are such that 

{p(jk) I j ES'}.=. S. If k is one such element, then obviously both ak and ap-k 

are equal to a 1• 

Example 1. (Alspach [1]) Let G be a graph with p=29, S = {1,3,5,12,17,24,26,28}. 

Since none of P(3x3), P(5x3), P(l2x3) is in S, m=2, and lr(G)I = 58. The elements 

of f(G) are, , b' T b for O ~ b ~ p-1. 
l, 28, 
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Example 2. (Chao and Wells [4]) Let G be a graph withp= 13 and S = {l,S,8,12}. 

Since P(SxS) ES, m = 4 and !r(G)I = 52. The elements of r(G) are T
1 

b' T 5 b' 
, ' 

for O s b ~ P-1. 

Example 3. Let G be a graph with p=31 and symbolS={l,4,S,6,7,ll,20,24,25,26,27,30}. 

P(4x4) t S, but P(Sx4), p(Sx5), p(Sx6),p(Sx7), p(Sxll) are all in S, as are also 

P(6x4), p(6x6), p(6x7), p(6xll). 7 and 11 can be disregarded because p(7x4) {. S 

and p(llx4) t S. Hence m = 6 and !r(G)I = 186. The elements of r(G) are of the 

form T T T T T T for O ~ b s p-1. l,b' 5,b' 6,b' 30,b' 26,b' 25,b 

,. 

1. 
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