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Abstract 

A qeneral purpose collocation cod~ COLSYS has been written, 
which is capable of solvinq mi.xed order systems of multi-point 
boundary value ordinary differential equations. The piecewise 
polynomial solution is given in terms of a B-spline basis. 

Efficient implementation of algorithms to calculate with 
H-splines is a necessary condition for the code to he 
competitive. Here we describe these alqorithms and the special 
features incorporated to take advantage of the specific 
environment in which they are used. 

This paper was written with the financial support of the National Research 
Council of Canada under grants A 4306 and A 7871. 





1. Introduction 

Evaluation of B-Splines for Solving Systems of 

Boundary Value Problems 

by 

t tt U. Ascher and R. D. Russell ·· 
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In [1] a general purpose collocation code, COLSYS, for solving mixed order 

systems of multi-point boundary value ordinary differential equations is described. 

The piecewise polynomial approximate "global" solution is given in terms of a B

spline basis. This makes the solution process very flexible and stable. 

The evaluation of the basis functions is a major cost for COLSYS, and a 

careful implementation of selected algorithms is needed to make the code competi

tive. Efficient algorithms for calculating with B-splines are given by deBoor 

[2], who also efficiently implements these algorithms in a Fortran package [3]. 

Here we describe the modifications we have made in these algorithms to better 

suit our needs. Our use of B-splines is somewhat special because: 

(i) we are solving a system of differential equations, so many repetitive cal

culations can be avoided, 

(ii) the continuity in the solution at the mesh points (knots) is more restrict

ed here than in [2,3], and 

(iii) on many occasions we evaluate the B-splines at points which are placed in 

a regular fashion. 

t Computer Science Department, University of British Columbia. The work of this 

author was supported in part by NRC Grant #A4306. 

tt Mathematics Department, Simon Fraser University. The work of this author was 

supported in part by NRC Grant #A7871. 
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Specifically, suppose we have a set of d differential equations on an in

terval [a,b] of orders m
1

~m
2

~ ••• ~md. The collocation solution is constructed on 

a mesh 

with then-th component v (x), 1 ~ n ~ d, belonging to 
n 

pk+m IT n c<111u- 1>ca,b], 
n' 

by collocating at the k Gauss-Legendre points in each subinterval [xi,xi+l] 

i = 1, ... , N. Here 

(1. 2) ~{wlw is a polynomial of degree <k+m on each subinterval 
n 

(N+l)k+2md 
Let T = {t.} be the knot sequence: 

J j=l 

(1. 3) 

j ~ k + md 

ik + md < j ~ (i+l)k + md 

Nk + md < j 

i=l, •.. ,N-1 

Let N. k denote the j-th B-spline of order k [2], The function v is given as 
J, n 

a linear combination of the B-splines 

(1. 4) V (x) = 
n 

Nk 
E a. N. k (x) ; 

j=-k-m +2 J,n J, ~mn 
n 

In fact, only k+mn B-splines may be nonzero at x: If x e [ti,ti+l), then 

(1.5) V (x) = 
n 

0 
E a.+j N.+. k+m (x). 

j=-k-m +1 1 ,n 1 J, n 
n 

We consider the efficient implementation of the following procedures for 

COLSYS: Evaluation of the B-splines at a point (§2)~ derivatives of the approxi-
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mate solution (§3), derivatives of the basis functions (§4), highest order deri

vatives of the solution (§5), and we conclude with a brief summary of the uses of 

these procedures in the collocation code. 

2. Evaluation of the B-splines at a point x E [ti ,ti+l) 

This is the evaluation of the Ni+j,k' (x). deBoor's algorithm reads [2]: 

Algorithm ZA: 

Let N. l (x) = 1. 
1, 

Do for l = 1, .•• , k + md - 1: 

Ni-l,l+l (x) = O 

Do for j = 1, .. . , l: 

Mi+j-l,l(x) = Ni+j-l,l(x)/(ti+j - ti+j-l) 

Ni+j-L1,l+1(x) = Ni+j-l-1,l+l + (ti+j - x)Mi+j-l,l(x) 

Ni+j-l,l+l(x) = (x - ti+j-l)Mi+j-l,l(x) 

The first saving when using B-splines arises because of the recursive way 

in which they are defined. One call to algorithm 2A produces all the B-splines 

that we need for all the components of the solution~= (v
1

, v
2

, ••• , vd) and 

their derivatives (as we shall see). The algorithm produces ~he triangular array 

N. l (x) 
1, N. (x) --------------------- N. (x) 1-1,2 1-k-md+l, k+md 

I 
N. 2(x) ' 

1, .... I ........ 
............... J 

........ ...., I 
-....., l 

',, I 
.._, I 

',, I 
.......... _ 1 

'-.. I 
... .._ N. k+m (x) 

1, d 
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The knot sequence (1.3) has the special structure that each interior mesh 

point xi is repeated exactly k times. Since m1 ~ ••• $ md $ k, this implies that 

each B-spline has its support on at most 2 subintervals, and some of them have 

support on one subinterval only. Let i = rk + md. Then x £ [xr,xr+l), and since 

1 $ j $ l $ k + md - 1 in algorithm 2A, 

(2. 1) 
{hI-1 + hI for j $ k 

ti+j - ti+j-l = hr for j $ k 

hr+ hr+l for k + 1 

(2.2) rhI for 1 $ j 

t·+· - X = 
1 J 

Phr + hr+l for k + 1 

where 

(2. 3) 

Therefore, Algorithm 2A becomes 

Algorithm 2B: Suppose x £ [xr,xr+l). Set N. 1 (x) - 1 
1, 

(a) 

p 
1 

= p 
2 

Do for l = 1, •.• , k 

Do for j = 1, .•• , l : 

and l ~ j + k 

and l $ j + k - 1 

$ j 

$ k 

$ j $ k+ md - 1 (or 2k), 

.• 



Do for l = k + 1, .•• , k +md - 1 

Do for j = 1, .... , l - k: 

(b) L (*) with p replacing p 
1 2 

Do for j = l - k + 1, •.. , k: 

(c) L <•) with p2 

Do for j = k + 1, ... , l: 

~(•) with p 3 replacing p
2 

5 

Our implementation of algorithm 2B was found to be about 5·0% faster than the rou

tine BSPLVN in [3] on the IBM 370/168. (This is somewhat machine dependent because 

a division operation is replaced by a multiplication, and memory references to 

arrays are saved). Note also that some storage is saved by eliminating the knot 

sequence. 

There is another major saving to be done here. 

only on the relative position of x in its subinterval. 

In algorithm 2B, p depends 
2 

But the collocation points 

have exactly the same relative position in each subinterval. Thus loops (a) and 

(c) can be evaluated once and stored for each of the k Gaussian points, used in 

[l], and while assembling the collocation equations, only loops (b) and (d) have 

to be executed kN times. The same remarks hold for any set of "regular" evalua-

tion points; e.g., the points xI+l/6 = xI + l/6hI, xI+l/ 3 =XI+ l/3hI on wh~ch 

intermediate approximations are evaluated for estimating the error (see §2 of [1]). 

In our code, algorithm 2B is divided into 2C, which does loops (a) and (c), 

and 2D, which does the rest. The total number of B-splines computed is 

½(k+md)(k+md-1), while that computed in 2D is md(md-1). Thus, if we ignore the 

one call to 2C per N "regular" evaluation points, the savings are about 50%, and 
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more if k>md. 

Note that we have not utilized the symmetry of the collocation points 

(because it enters only in 2C and is not worth the complication in the program) 

and the nonconvex modification suggested in [4]. Even though we have not yet seen 

a case in which this nonconvex modification has significantly affected the aecura

cy in the solution, its improvement in efficiency is small enough that we have de

cided to play it safe. 

3. Computation of derivatives of the approximate solution. 

Then-th component of the approximate solution, v (x), is given in terms of 
n 

the coefficients aj by (1.4) or (1.5). Its r-th derivative is given by ,n 

(3 .1) 

where 

(3.2) 

0 (r) 
= (k+m -1) •.• (k+m -r) E ai+' 

n n . k + +l J,n J=- -mn r 

r = 0 

r > 0 

N.+. k+m (x) 
l. J' n -r 

In [3] a routine is given which prepares a table of divided differences, 

according to (3.2) with a(r) multiplied by (k+m -1) ... (k+m -r). 
i+j,n n n We have written 

1 a similar roµtine which again uses the fact that -----~---
ti+j+k+m -r ti+j 

n 

is known: 



{::+~ 
xl r+l :;:;; i+j :;:;; 

(3.3) ti+j+k+m -r - ti+j = - X (I-l)k+m +1 
I n n 

- XI Ik+r+l :;:;; i+j XI+2 

To compute z(v) = (v, v', ~ ~ 1 1 
... , 

vatives up to order m -1. Thus the resulting algorithm is 
n 

. (0) 
Algorithm 3A (with ai+j,n = ai+j,n): 

Do for n = 1, ..• , d: 

Do for r = 1, .•. ' m -1: 
n 

p 1 = (k+mn-r)/(x
2
-x

1
) 

Do for l = r+l, ••. , m: 

~*)a(r) = (a(r-1) _ a(~-1)) 
l,n l,n l-1,n 

Do for I= 1, ... , N: 

Pl= (k+mn-r)/(xI+l-xI) 

p2 = (k+mn-r)/(x1+2-x1) 

X p 
1 

Do for l = (I-l)k+m +1, ••• , Ik+r: 

L 
n 

( *) with P1 

Do fort= Ik+r+l, ... , Ik+m: · n 

m n 

:;:;; i+j s Ik+r 

~ Ik+m n 

I=l, •.• ,N 

There are many occasions in COLSYS where z(v) has to be evaluated. The 
N ~ 

most frequent evaluations are made during the Newton iterations for a nonlinear 

problem, where the solution from the former iteration is evaluated to determine 

the coefficients of the new linearized problem. Other evaluations are made for 

estimating the error and producing the final approximate solution for the user. 

7 
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There are two alternative ways to evaluate ~(i), 

Algorithm 3B 

(a) Generate once the divided difference table for a~r), i=l, ... , kN+m , 
1,n n 

r = 1, ... , m -1, n = 1, .•• , d , using algorithm 3A. 
n 

(b) For each x, x E [ti,ti+l) form the nonzero B-splines, up to order k+md' 

using algorithm 2B, 

(c) (For each x), form 
0 

= t a(r) 
j~-k-m +r+l i+j,n 

n 
Ni+j k+m -r (x) 

r = O, . • . , m -1, n = 
n 

Algorithm 3C 

1, ... ' 

' n 

d. 

(a) Generate once the piecewise-polynomial coefficients at the knots: 

for x = x, x, ... , x.. do algorithm 3B, with r in algorithm 3A going up to 
1 2 N 

(b) 

k+m -1. 
n k+ffiu-1 v (j) (x

1
) 

r n ( )j-r 
(j-r)I x-xI · 

j=r 

One disadvantage of 3C as compared to 3B is obviously that the amount of 

storage required for the divided difference table is more than doubled. It also 

requires more initialization and, in fact, if the number of points x at which 

~(~(x)) is required is less than N, algorithm 3B must be more effective. However, 

when the number of points xis very large, the situation is different. In the 

collocation example given in [3], it is algorithm 3C which is used for the nonlin-

ear iterations. 

We shall compare the relative efficiency of the two algorithms in our set

ting. For this, consider two cases. 

(i) The approximation is to be evalu,;1ted at M 
1 

points x, irregularly distributed 

in the interval [a,b]. 

(ii) The approximation is to be evaluated at M
1 

= M
2

XN regularly distributed 



points x, M
2 

points per subinterval at the same relative positions: 

x - xI = P(xI+l - xI) where there are only M2 different P's. Consider N 

large, compared to M
2

, k, and d. 

First, algorithm 3A involves 2N divisions, 2N+kN+m -r subtractions and n 

kN+m -r multiplications for each n and r. This amounts to about (k+2)N (m*-d) n 

multiplications for 3B, and about (k+2)N (m*-d) + (k+2)Nkd multiplications for 
d 

3C, where r goes up to k+m -1. Here, m* = E flu· 
n n=l 

9 

For step (b) in algorithm 3B we have about M1 (k+md)(k+md-1) operations for 

case (i), and 2M1md(md-1) operations for case (ii), where the 2C part can be ig

nored. 

Step (c) in algorithm 3B has 

multiplications, where 

d 
= M E [(k+½)m +1-1Y1 2 ]= M [(k+½)m*+1~M] = M

1
M 

ln=l n n 1 

d 
M = E m2 

n=l n 

Thus the overall amount of work measured by the approximate number of 

multiplications for algorithm 3B is 

(3.4) 

in case (i), and 

in case (ii). 

For step (b) of algorithm 3C the number of multiplications is 

M
1

[M + 2(k+md-2)]. Thus the overall amount of work for algorithm 3C is 
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(3. 6) W = N{(m*-d)(k+2) + kd(k+2) + 2(m~-md) + M + fk(k+l)} + 

M1[M + 2(k+md-2)]. 

We consider now when W is ' cheaper than WI or W
2

• 

Case (i). W ~WI. 

Since the right hand term is positive, W ~ WI only when M1 ~ NA, wheTe 

(3. 7) 
A = 

kd(k+2) + 2(m~-md) + M + ~(k+l) 

(k+md)(k+md-1) - 2(k+md-2) 

h ' . h d d 1 2 d k 3 34 ~ 2 5 Note tat A grows wit . For = , m = an = , A= 14 ~ .. 

= , = 155 ::::J 4 8 m
1 

1, m
2 

= 3 = m
3 

and k = 4, A 32 .• 

Case (ii). W ~ w
2

• 

Ford= 3, 

kd(k+2) + 2(m~-md) + M + ik(k+l) ~ M
2

[2(m~-md) - 2(k+md-2)] 

2 For this to happen we need 2(md-md) - 2(k+md-2) > O. Let 

(3.8) 

2 - d kd(k+2) + 2(md-md) + M + 2k(k+l) 

i[m~ - 2m - k + 2] 
d d 

Then algorithm 3C is faster only whenµ> 0 and M
2 

~ µ. This is never the case 

for md ~ 2 ! For d = 1, md = 3 and k = 4, µ = 6
~ = 32 and µ grows with d. For 

p = 1, m = 
d 

104 4 and k = 5, µ = 10 = 10.4. 

Thus, in practice algorithm 3B is always preferable to algorithm 3C in the 

"regular" case. This is the case in the nonlinear Newton iterations in COLSYS, 

except for the first iteration where the former mesh is not the same as the cur-

rent one. 
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Based on the above considerations., our c·ode nev.er conv:er.t,a t:o the .p:iec:e

wise polynomial representation 3C. The additional sto,:::age .and c0111putational and 

programming overhead :are not compensated in general by speed. 

4. Derivatives of B-splines. 

In .order .to as-semble .the coTlo:cat:i:on equat.io.ns., an algorithm :l:s :needed :t0 

evaluate der.ivatlve.s of the basis functions .. The .desired 0utp.ut i:s (:x e: [ t _
1
.td.+l'~) 

N ( x) N (x) ·N (x) ·N (x) ·N (x} 
·-k- +1 . :k+m , .•• .• '' i k+ ., . i-k-m

2
+L,k+m_

2
' ... .... ,, ·i..;k111_d+l.,k+md_,, .• -~ -•-4 -, .,i k+m 

1 ml ' 1 ., ml ' d 

Of course, the formula (3.1) for derivatives of a B-spline combination c:an 

(0) 
be used here, with ai+j,n = .ojl for Ni+l k+m • 

' ·.n 
The res.u1t:Lng algorithm :fo.ll~-s., 
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Algorithm 4A: 

Do for n = 1, •.. , d 

Do for l = -k-m +l .. . , 0: n , 

Do for r = 1, 
I I • ' 

m 
n 

Do for j 

l(r) 
i+j,n,l 

Do for j 

= -k-m +r+l 0 n , • •. , 

= 

(r-1) (r-1) 
a i +j , n ,l - a i +j -1 , n ,l 

t - t i+j+k+m -r i+j 
n 

= -k-m +r+l, , .. , 0 
n 

L Dr N ( ) 
i+j,k+m X 

n 

(each component) 

(each B-spline) 

(initialization) 

(each derivative) 

(triangular array of a's) 

(initialization) 

(sum accumulation) 

r 
= (k+m-1) .•. (k+mn-r) D Ni+l,k+m 

n 

It is apparent that there are a number of savings that can be made to improve 

algorithm 4A. First, if mn = mn+l' there is no need to repeat the computations 

for both orders, since they are the same. Hence, in the beginning the program 

isolates the set of strictly increasing orders and applies the algorithm only to 

them. The output array is then filled by copying available data where needed. 

We shall assume henceforth, without restricting generality, that m < m < ••• < 
1 2 

(r) 
Second, note that most of the°'·+· e are zeros, with a very simple zero 

1 J , m,,[, 

structure. By moving the loop on l inside the loop on j, the loop onl goes only 

from j to j+r. This has been noted and implemented in [3]. 



(4. 1) 

Now, again apply our knowledge of ti+j+k+m. -r - ti+j 
n 

j ~ m -r 
n 

m -r+l ~ j ~ k 
n 

k+l ~ j ~ k+m -r 
n 
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where we shift the index j to run from 1 to k+m. -rand break it into three domains, 
n 

so that in each the divided difference involves multiplication by the same constant 

(similar to algorithm 2B). 

The fourth improvement uses the fact that we have a system of differential 

equations. If the algorithm is performed for n = d, then a number of the a~+r~ P 
1 J ,nJ"--

may be determined directly by making the observation that 

(4.2) 

All of these points are incorporated in algorithm 4B, which is implemented 

in the code COLSYS. 

Algorithm 4B: 
(0) 

( Suppose ai +j , n ,.e. = 
r o.1 and D N. k+m (x), r ~ 1, are initialized 

J ~ J' n 

to zero ahead of time. Assume x E [ti,ti+l) = [x1 ,x1+1) and omit the explicit 

dependence of N. k+m. on x). 
J, n 

1. Set p 
1 

1 =------
XI+l - xI-1 

p 3 = 
1 
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2. Do for r = 1, ... , md: (each derivative) 

(largest order n = d) 3. 

4. 

4.a 

4.b 

Do for j = 1, •.. , md-r: 

Do for l = j, .•. , j+r: 

(*) a ( r) = P x [ c/ r-1 ) a ( r-1 ) J 
i+j+r,d,l 1 i+j+r,d,l - i+j+r-1,d,l 

Do for j .= md-r+l, ... , k: 

l ( *) with p 
2 

replacing p 
1 

Do for j = k+l, .•. , k+md-r: 

L ( *) with p 
3 

replacing p 
1 

If d = 1, go to step 5. 

Do for n = d-1, d-2, .•. , 1: 

If r > m then go to step 5. 
n 

(other components) 

Do for l = j, ... , 
(a's comp~ted above) 

j+r: 

= DrN + a(r) 
i+l-k-mn,k+mn i+j+r+(md-mn)~d,l 

x Ni+j-(k+m -r) k+m -r 
n ' n 

Do for j = md' ... , k+mn-r: 

Le**) with O replacing md-mn in the a index. 

Do for j = k+m -r-m +2 
n d ' 

(other a' s) 

Do for .t = j , •.• , j+r: 

(r) 
a·+· o 1 J+r,n,,{_, 

[ (r-1) (r-1) 
= P2 ai+j+r,n,l - ai+j+r-1,n,l 

= Dr + (r) 
i+l-k-m ,k+m ai+j+r,n,l 

n n 
Ni+j-(k+m -r)k+m -r 

n n 



5. Do for n = 1, ... , d: 

C = 1 

Do for r = 1, ... ' 
c = c (k+rn -r) 

n 

rn : 
n 

Do for l = 1, ... , k+rn: 
n 

r 
= D Ni+l-k-rn k+rn xc 

n' n 

5. Derivatives of highest order 

15 

(multiply by constant) 

When selecting a new mesh we need the values of the piecewise constant func

tions v(k+rnu-l)(x) n=l, ... ,d. These are obtained in a straightforward manner, 
n 

starting with the values a~ffin+.-l), j=-k, ... ,O, previously obtained in algorithm JA, 
1 J ,n 

and using 

(k+rnu-1) 
a. 1,n 

6. Using the B-spline algorithms in COLSYS 

The use of the B-spline routines in the collocation code is sunnnarized as 

follows: 

1. Call 2C for each of the Gaussian points. 

2. For each Newton iterate, evaluate the former solution and its derivatives 

using 3A and 3B (the evaluation with 3A is done beforehand and also 

serves to check convergence of the nonlinear iteration). Calculate 

B-splines with 2D and derivatives with 4B. 

3. Call 2C once for points at which the error is checked. Evaluate the 

solution and derivatives for error estimation on the given mesh using 

2D, 3A and 3B. 
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4. Evaluate v (k~-l), n=l, ... ,d, as described in section 5 to select 
n 

the new mesh. 

5. When the error tolerances are satisfied, evaluate v(x) and derivatives ~ 
at user-specified points using algorithm 3B. 
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