
tzT J.9/\
VOVNV::> ·::,·g 'lmAno:,Nv/\

Tl'v'W NIVJi\l 9SSZ - Z'.'::
VIIIJi\ln10:, I;~, 1 •• • , ~, J ·

W001I '.);~;.:.,·_,".i ~.:,._ ..• u, ----·· ..

r- r'"' -- r 1
* **** **** * n~;;-t_*~* '!.!:'=~ ! ** ** * * * ** * * ** * * ** ** *** * *
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A Collocation Solver for Mixed Orel er
SystPms of Bound ,iry Valu~ Problems

by

Ascher, J.
a.n d R. D.

Christiansen
Russell

~er.hnical Report 77-13

Nov em her 1 q77

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Department of Cornp11ter Science
The rrniver:sity of British r.olumbia

Vancouver, British Colnmbia V6T 1WS

l\bstract

Implementation of a spline collocation method for solvinq
boundacy value problems for mixed order systems of ordinary
differential equations is discussed.

The aspects of this mPthod cnnsidered include error
estimation, adaptive mesh selection, B-snline basis function
evaluation, linear system solution and nonlinear problem
solution.

The resulting general purpose cod~, COLStS, is tested on a
number of examples to demonstrate its stability, efficiency and
flex ibili t V.

, CICSR/COMPUTER SCIBNCE READ!NG ROOM
, lJNIVERSITY OF BRITISH COLUMBIA

262 • 2366 MAIN MA LL
VANCOUVER, B.C. CANADA

V6T 124

I

. I.

- r

A Collocation Solver for Mixed Order Systems

of Boundary Value Problems

by

u. Ascher*, J. Christiansen**, and R.D. Russell**

1. Introduction

Recently there have been several efforts to develop high quality, general

purpose software for the solution of boundary value problems for systems of

ordinary differential equations. Most of the codes developed have been based

on initial value methods, reflecting the current advanced state of such

methods. In particular, multiple shooting codes have been developed by

England, Nichols and Reid [19] and by Bulirsch, Steer and Deuflhard [10].

Successful solution of some difficult nonlinear problems with the latter

code is reported in [17]. Also, Scott and Watts have produced a super-

position code with orthonormalization (36]. A comparison of some initial

value type codes is given in [37].

A second approach has been implemented by Lentini and Pereyra [25,26],

where a finite difference method with deferred corrections is used.

A thorough theoretical analysis of finite element methods has been

available for some time [13], [34], (7), but, to our knowledge there has

been no attempt, prior to this work, to write a general purpose code using

these methods.

* Computer Science Department, University of British Columbia. Supported
in part under NRC (Canada) Grant A 4306.

**Mathematics Department, Simon Fraser University. Supported in part under
NRC (Canada) Grant A7871.

2.

In this paper we discuss an implementation of a spline collocation

method for solving boundary value problems for mixed order systems of

ordinary differential equations. While not in polished form, our code

COLSYS (COLlocation for SYStems) is sufficiently stabilized that we are

able to present a number of its theoretical and practical aspects and demon

strate the power of this preliminary version.

There are a number of reasons for our choice of the collocation method.

It is the most suitable method among the finite element ones, for a general

purpose code. See [1], [31) and [32), where complexity comparisons are made

which support the above claim and also show collocation, when efficiently

implemented, to be competitive with finite differences using extrapolation.

The theoretical results on the convergence of the collocation method [11),

[23), together with those on error estimation and mesh selection [33), [12)

are more general than for the other methods mentioned. This, and the basic

simplicity of the collocation procedure, also make programming of the method

reasonably straightforward. COLSYS is designed to solve mixed order systems

of nonlinear boundary value problems. This is in contrast to the other codes

mentioned above which require conversion of a given problem to a first order

system, thereby increasing the number of equations and changing the algebraic

structure of the discretized problem. Numerous numerical experiments have

demonstrated the stability of the collocation procedure, and recent attempts

at adaptive mesh selection and error estimation have been quite successful

[33]. For these reasons we feel that a robust, efficient collocation code

can be developed to reliably solve a larger class of problems than has here

tofore been possible.

3.

Most of the points mentioned above are discussed and demonstrated

in greater detail in the rest of the paper. In section 2 the collocation

theory for mixed order boundary value systems [11), [23], is extended to

obtain an error expression useful for adaptive mesh selection, generalizing

a result in [33) for a scalar equation. Also, a theoretical justification

of the error estimation strategy as well as practical aspects of these

features are given.

Section 3 considers the method used for evaluating the piecewise poly

nomial collocation solution, expressed in terms of a B-spline basis. This

involves appropriate modification of deBoor's B-spline evaluation procedures

[4 J •

Section 4 describes some aspects of solving the collocation equations.

Newton's method is currently used for solving nonlinear problems. For each

Newton iteration, the resulting linear algebraic system of equations is solved

using a package developed by deBoor and Weiss [8], after first bringing the

equations into a banded block structure.

A number of representative test problems, demonstrating the stability

and flexibility of COLSYS, are documented in section 5. These include

linear and nonlinear problems of various degrees of difficulty. The linear

examples are also tried with two other codes [36], [25] in order to put

COLSYS in a perspective. From these results our code appears to be

competitive in general and particularly suitable for mildly difficult and

difficult problems. Some of the examples with a small parameter can only be

solved by COLSYS. It is also the only one which can solve some problems

with singularities without any modification. The relative efficiency

of the code increases for problems of higher order and more than one component.

4.

2. Error estimates and mesh selection

The class of problems treated by our code has the following general

form: A system of d nonlinear differential equations of orders

(2 .1)

(m)
u n (x) =

n

a< x < b,

is subject to the nonlinear side conditions,

(2. 2) g,(1;;.;z(u)) = 0,
J J rv rv

d

F (x;z(u)),
n rv """

n=l, ... ,d,

z:;, E [a,b], j = 1, ••• ,m*,
J

where m* = L m
n=l n

To conveniently facilitate an efficient implementation

we require that md ~ 5 and that the side conditions (2.2) each involve

only one point. Thus, for example, periodic boundary conditions are excluded.

However, any problem with such nonseparated conditions (and even interface

conditions) can be cast into form (2.1), (2.2) at the expense of increasing

the size d of the problem, as we show by example in section 5.

To be able to apply the collocation theory we need to have an isolated

solution u to (2.1)-(2.2). This occurs if the linearized problem at ~

is uniquely solvable.
.,.,m*+l

Specifically, consider the curve Cc K

(m
1

:--1) (md-1)
C _ {[x,u

1
(x), ••• ,u

1
(x), •.. ,ud (x)] x E [a,b]} ,

and the linear problem

(2. 3) L w = 0 n = 1, ... ,a ,
nrv

(2. 4) B,w = 0 j = 1, ... ,m* I
]"'

defined by

5.

where w = (w1,···,wd) rv

(m) m* a1r, c • ; ~ <,~> >
(2. 3a) (u)w n z: L w - L = w . z.Q,(~) ,

Ir" nrvrv n
t=l az.Q,

m* 3g. (i;;.;z(u))
(2. 4a) B .w = B. (u) w = Z: J J ~ ~ • z.Q, (~) az .Q,

. Jrv J rv rv
t=l

If the Green's function G(x,t) for (2.3)-(2.4) exists (implying unique

existence for the linearized problem) and F1 , •.• ,Fd,g
1

, •.. ,gm* are suf

ficiently smooth in some 8-neighborhood of C, this is sufficient to guar-

antee that there exists a a> O such that u(x) is the unique solution

of (2.1)-(2.2) in the sphere m
B(D u,cr)

(m) (m)
={w(x) :llw n_u nll~cr,n=l, ..• ,d}

rv n n

[11]. This also implies that Newton's method converges quadratically if the

initial approximation is sufficiently close to u (x).
rv

To solve (2.1)-(2.2) numerically, we apply collocation at Gaussian

points, using piecewise polynomial functions. If TT is a partition of [a,b]

(2. 5)

TT : a = x
1

< x < . . . < x < x = b ,
2 N N+l

h = max
l~i~N

h.
1

x. ' 1
i=l, ..• ,N,

and p = {v
k ,TT

V is a polynomial of order k (degree < k) on I., i=l, •.. ,N}, then
1 (m -1)

we seek an approximate solution ~ = (v
1

, ... ,vd) such that v E Pk n C n[a,b]
n +m , TT

n

n = 1, ... , d
' or V rv E P n k+m,TT

rv

(m-p C ~ a,b]. We require k ::=: ma where k is

k
the number of collocation points per subinterval. If {p.}. 1 are the Gauss-

Legendre points on [-1,1),

where

(2. 6) x ..
1]

then { }N,k
x.' ' 1 ' 1 1] 1= ,]=

J J=

are the collocation points,

6.

The collocation equations which v has to satisfy are thus
rv

(m)
(2. 7) v n (x ..) =F (x .. ;z(v)),

n 1] n 1] rv rv
j = 1 , . . . , k, i = 1 , • . • , N , n = l , • . . , d ,

and (2. 2).

The theory and a-priori error estimates for collocation have been pre-

sented in [11), (cf. also [23), [30), [7), [39)). Here, we merely quote the

results that (assuming sufficient smoothness),

(2. 8)
k+m -i

llu(i) - v(i)II = O(h n)
n n oo

i= O, ... ,m , n = l, •.. ,d
n

and, at the mesh points, superconvergence occurs

(2.9) I (u (i) _v (i)) (x.) I = 0 (h2k)
n n 1

i=l, ... ,N, i=O, ... ,m-1, n=l, ... ,d.
n

The phenomenon of higher order accuracy at the mesh points displayed in

(2.9) may suggest (as has been noted in various places in the literature) using

a-posteriori high order interpolation of an approximate solution at the mesh

points to improve the overall accuracy, at least when k > md However, it

has been the experience of these authors and others that this is generally

not a very useful idea, as the asymptotic range of h, 0 < h S h0 , where

the superiority of the bound (2.9) over (2.8) is demonstrated, occurs very

often for an h
0

which is effectively too small.

We feel that in practice it is more significant that the main term of

the error expression is local if k > md Below we briefly describe this

analysis which is similar to that in [33] (cf. also [5]).

It is known [11] that a collocation solution of the linearized problem

(2. lOa)

(2.10b)

L w = L u
fY', l'}'v

B.w = B.u
J""]"'

n = l, ... ,d

j = l, ... ,m*

t,

7.

where L and S. are defined in (2.3a), (2.4a), lies within O(h
2
k) of

n J

the collocation solution of the original problem (2.1), (2.2). Therefore,

for terms of order less than 2k in h, one need only consider the form of the

error for linear problems. The Green's function G(x,t) exists if the linear

problem has a unique solution. If (2.10a) is cast as a system of m* first

order equations, with one component assigned to each of u~>,i = O, ... ,mn-1,

n = l, ... ,d, then the Green's function K(x,t) for this first order system

can be constructed as in [30). The Green's function G(x,t) for the system

(2.10a), (2.10b) then consists of a subset of the components of K(x,t)-

see [11). Usinq a general form for K(x,t) it can be shown that as a function
(m -1)

of t, G . (x,t) is in C nia,bJ if i '# n and G (x,t) is in
ni nn

C

(m -2)
n la,b] with

m -1
a n +

m -1 Gnn(t,t)
clt n

m -1
a n

m -1 Gnn(t,t)
clt n

m
a= (-1) n If

_;s(x) = L(~->:,) (x) then the error is ~(x) = ~{x) - >:,{x) = JbG(x,t)~(t)dt.
a

Using (2.7) and the convergence result (2.8) we obtain
{k+m)

u :n (O', (t)) k
rn (t) = _ n __ k_! __ i __ • IT tt-x . .) · for t E [x. ,x.

1
), for some cr. (t) E [x; ,x

1
.+

1
].

1J 1 i+ 1 .._
j=l

So the error in then-th component is

N d Ixi+l (k+mi) k
e (x) = E L G n (x,t)u 0 (cr. (t))" JI (t-x ..)/k!

n ,
1 0 _ nx, x, i .

1
1J

1= x,=l X, J=
1

Continuity arguments as in [33) imply
(k+m)

dt, n = l, ... ,d.

n
(

n u (x.) (n k+m -£ k+m +1-i
x,) n i P x,) (2 n n e (x) = ----- (x-x. L))h, + O(h) n = 1, ... ,d , (2.11)

n k+l"I -£ n h; i+~ 1
2 n ...

for x EI. , where
1

(2 .12) p (~) = f~
n -1

for ~ E (-1 , 1) .

m -1 m -1
(-1) n (t- l;) n

k! (m -1)!
n

k
IT (t-p.) dt =

j=l J

k-1"1
d n

k- m
df; n

8.

In arriving at error estimation and mesh selection schemes we assume

that the local term in the error expression (2.11) is the dominant one. This,

of course, can be guaranteed only when the mesh is quasiuniform, i.e.

h
min h.

l.
lSiSN

is bounded, and h is small enough. If, for example, the solution

behaves badly in one part of the domain and well in another, (2.11) indicates

that h should still be taken small in the region of good behaviour in order
k+m +1-t

to keep the O (h n) term relatively small. However, our experience has

been that the mesh selection and error estimation schemes usually work well,

supporting our above assumption.

A-posteriori error estimate

Suppose we have approximations V (•)
rv

and v* (•) on the meshes
rv

N+l
{xi}i=l and respectively, with x 2i-l = xi

= ½(xi+xi+l). We want to estimate the maximum of the error e*(x) = u (x) - v*(x)
n n n

for x E [x. ,x.
1

J.
l. i+

If

points to estimate [3 3)

/Iv -v*II n n

k+m +l
__ l __ + O(h n

k+m
2 n+l

s lle*II n

and v*
n

S llv -v*/1
n n

can be compared at several

k+m +l
__ 1 __ + O(h n)

k+m
2 n_l

However, if k > md, we use the structure indicated by (2.11) as follows:

Consider the points X* - X
2i-l/3 - i+l/3

(See fig. 2 .1).

xi xi+l

1~------'!l'----+-----1
x2i-l x;i x2i+l

fig. 2.1

Let

(2.13)

IP (-2/3) -
n

k+m k+m +l
-

1
- P (-1/3) lh. n + O(h n)

k+m n i
2 n

9.

and similarly

(2 .14)

IP (-1/3)
n

k+m k+m +l
- 1- P (1/3) lh. n + O(h n)

k+m n 1
2 n

where P is defined in (2.12). From (2.11),
n

(2. 15)
IIPnll (L\ + i".1

2
) max!e*(x) I = _k ____ ______ ___ ______ _ _

n ~ ~m - +

xE [x2i_ 1 ,x2i] I 2 np n (-2/3)-P n (-1/3) I + I 2 np n (-1/3)-Pn (1/3) I
k+m +l

n + 0 (h) .

When (2.15) is generalized to provide estimates of errors in all the components

of z(v) then the
CV ~,

(2.16) w = k,V

weights multiplying (i".1
1

+1".12) are given by

l]P (V)

V == 0, •.. , k-1

with
t::2 - 1

p (0 = p (k I O = (2k) I

These weights are precomputed and stored as constant data in the program,
k+m -t+l

and the error is then estimated by ignoring the o·(h n) term in

(2.17) max I e * (,Q,) (x) I
n

xE[x!,x~
1

]
1 1+

k+m -t+l
w (~

1
+1".1

2
) + O(h

k,k-m +,Q,
n

n)

where and are taken for
(,Q,)

V
n

n=l, •.. ,d.

Mesh Selection

,Q, == o, ... ,m -1
n

The results below are a generalization of [5], [18), [12]. Given a set of

tolerances TOL., j == 1, ... ,NTOL,
J

COLSYS attempts to satisfy

(2.18) TOL.
J

with a set of pointers LTOL . ,
J

LTOL.,
J

j == 1, ... ,N'l'OL •

j == 1, ••. , NTOL,

10.

The aim of the mesh selection algorithm is to meet the above requirements

with the least number of mesh points.

As before we neglect the global term in (2.11) and write

(k+m) k+m -JI,
(2 . 19) max I e (JI,) (x) I ~ Ck k + 0 I u n (x .) I h . n

n , -m :,,, n 1 1
xE[xi,xi+l] n

l= o, ... ,m-1,
n

where

(2.20) V = 0 , 1 , •.. , k-1 .

For each j (1 ::': j ::': NTOL) , let JI, = LTQL ..
J

let n = JTOL. indicate
J

the component of ~ that z51,(~) is· a derivative of, let WEIGHT. be the appro
J

priate C divided by
k,V and let ROOT.

J
be the inverse of the expected

rate of convergence of

{ *}N*+l From (2.18)-(2.20), the goal is to pick a mesh xi i=l for which

(2.21)

for the

max
l::':j::':NTOT,

(k+m) 1/ROOT .
WE!GHT.• ju n (x~) jh~ J::: 1

J n l. l.

smallest N*
(k+m)

(n=JTOL.); i=l, ... ,N*,
J

since the u
n

n (x~)
l.

possible. Actually finding this mesh is impossible

are unknown. Moreover, for COLSYS the final mesh

is a halving of the one before last (so that an error estimate is at hand).

If

(2.22)

and

(2. 23)

(k+m)
S. (x) = WEIGHT. I u n (x) I

J J n

FOOT.
S (x) = max S . J (x)

J l:::j :::NTOL

then (2.21) is equivalent to

(2.24) S(xt)ht ::': 1
l. l.

i = 1, ..• ,N* .

A collocation solution v on a mesh satisfying (2.24) would satisfy
rv

11.

(2.25) ZR,(~) /I ::: 'IDL (1 + O(h)) , ,Q, = LTOL,, j =
J

1, ... ,NTOL,

the O(h) term arising from neglecting higher order terms in (2.19). By

requiring that

x*

(2.26) J ~+l S (x)dx = 1
X.

1

instead of (2.24), (2.25) still holds [5]. To approximately satisfy (2.26),
(k+m)

we still need to approximate u
n

n
(x) , n = 1, .•. ,d. Given a mesh

N+l
{xi}i=l and an approximate collocation solution V ,

"-'
an accurate approx-

imation for the higher order derivatives can be constructed as follows

(cf. [12]) : The polynomial in the error expression

derivative of the
(k+m -1)

n

l d2k-l
n-th component is

(2k) ! df,;2k-l

and

for the (k+m -1) •st
n

(~
2
-l)k = ~ • Therefore,

e
n (xi+~) =

(k+m -1) (k+m -1)

(2.27)
2 Iv n

n

(k+m)

- V
n

n (x.) I
1

(k+m)
= ju n (x. 1)1 + O(h) n 1+

= I u n (x) I + O (h)
n

for x E [x. ,x.
2

)
1 1+

i=l, .•. ,N-1.

Define u (x) over the whole interval [a,b] by
n

-{
u (x.) X E [xi ,xi+l] i

n 1

(2.28) A
(x) u

n
un(x2) X E [xl,x2]

(k+m)
so that lu n (x) I = lu (x) I + O(h). Then

n n

IDOT.
(2.29) s (x) = max

lSjSNTOL
[WEIGHT. •u (x)] J

J n

= 2, ... , N

n = J'It)L.
J

is a piecewise constant computable function, and (2.25) is satisfied for

by requiring

12.

(2.30)

xi+l

f s(x)dx = 1
x~

i 1, ... ,N* .

l

In practice (2.30) may lead to a very large N*, compared to N, which

could mean that N* has been determined by premature data. Also, an error

estimate is needed at the end to check whether the tolerances have been

satisfied. So, we modify the criterion (2.30) to allow for these consider

ations by picking a new mesh (for some N*), according to

(2.31) f
xi+l

s(x)dx =
x*

i

1 fb y = N* s (x) dx =
a

1 N
* Es(x.)h.

N i=l l l

There are still two questions to be answered: When to redistribute

the points, as opposed to just halving the current mesh, and how to choose

{ }N+l
N*. When an approximate solution on the current mesh xi i=l

N
obtained, the diagnostics r

1
= max s(x.)h. , r

2
= E s(x.)h.,

i l l i=l l l

has been

are computed. The ratio r
1
/r

3
gives some idea of the gain to be

achieved by redistribution. Specifically, the code feels it can reduce

=
rl

r3
the error by as much in redistributing with N* = N as by taking N*

with the current distribution. Our present policy is to redistribute only

•N

when r
1
~ 2r

3
. This includes an amount of skepticism about the data derived

from the old mesh.

When redistributing, r
2

= yN* predicts the number of points needed

to satisfy the tolerances. If is much larger or much smaller than N,

then we do not put much faith in this prediction. The current policy is

to take

(2.32)

where N is the maximum number of subintervals allowed by the storage speci

fications. This allows for changes up to a factor of 2 in N and for later

13.

\

halving of the mesh in order to obtain an error estimate. Also, restrictions

are placed on the number of times a mesh can be redistributed before halving.

3. B-spline Evaluation

For reasons of efficiency, stability, and flexibility in order and

continuity, B-splines are chosen as the basis functions. Efficient algorithms

for calculating with B-splines are given by deBoor [], who imple-

ments these algorithms in a Fortran package [6]. Evaluation of the basis

functions is a major cost for finite element methods, and careful implementa

tion of the selected algorithms is necessary for the code to be competitive.

Our use of B-splines is somewhat special because (i) we are solving a system

of differential equations, so many repetitive calculations can be avoided,

(ii) the continuity in the solution at the mesh points is more restricted

here than in [6], allowing us to trade unneeded generality for an increase

in speed, and (iii) in many occasions we evaluate the B-splines at points

which are placed in a regular fashion in each subinterval. We take advantage

of these special features in implementing restricted versions of deBoor's

algorithms.

As we only outline the modifications to these algorithms, the interested

reader is referred to [2] for the complete details.

A. Evaluation of the B-splines and the solution

(m -1)
Recall that (x) E p n C

n [a,b] (1 ~ n ~ d) for a given V
n k+m , 7T

n
mesh 7T : a = xl < x2 < ... < XN+l b. If N. k is the j-th B-spline of

J,

order k [4], then

(3.1)

(3.2)

V (x) =
n

Nk
E

j=-k-m +2
n

a. N. (x)
J,n J,k+m n

Defining the knot sequence

xl j < k+m - d

t. = xi+l ik+md < j < (i+l)k+md
J

X Nk+md < j < (N+l)k+2md N+l

(1 < i < N-1) ,

,

then only k+m
n B-splines may be nonzero at x E [t.,t.

1
), viz.

l. 1.+

(3. 3) V (x) =
n

0

E a. . N .. k (x)
. k +l i+J,n i+J, +m J=- -mn n

The algorithm in [4] for the evaluation of these B-splines is

Algorithm I:

Let N.
1

(x) = 1
1,

Do for 2 = l, ..• ,k+md-1

Do for j = 1, ••. ,£

M,+· 0 0 (x) = N,+· 0 0 (x)/(t.+, -t·+· 0)
l. J-)v,!v l. J-Jv,!v l. J l. J-!v

Ni+j-£-1,£+1 (x)

.__....__ Ni+j-£,2+1 (x) =

14.

From the recursive manner in which the B-splines are defined it is clear

that algorithm I need only be performed once for a given x to produce the

B-splines needed to evaluate all components of V (X) by (3 • 3) •
rv

Also,

since the structure of the knot sequence is known in terms of the mesh TT,

there is no need to generate the t, IS•
J

the changes in algorithm I according to

If we can make

15.

(

(3.4) t, . - t.+. 9., = hI-1 + hI for j < k, j+k s 9.,
J.+J l. J-

hr for j < k, 9., < j+k-1

hr + hr+l for k+l s j

and

(3. 5) t.+. - X = J phI for l < j < k
l. J

l phr
+ h

I+l for k+l S j S k+md-1 (S 2k)

where p is chosen appropriately. The substitutions (3.4) and (3.5) have

lead to an algorithm about 50% faster than the general one [6] (when running

on an IBM Tl 0/168).

Some of the B-spline values at x depend only on their relative position

in [xI,xI+l) and not on the subinterval itself. For example, the collocation

points are located at the same relative positions in all subintervals, so it

is only necessary to evaluate these mesh independent splines once for each

relative position. The points at which the approximate solution is evaluated

for the error estimate (2.17) are another instance where this saving may be

made. Since ~(k+md) (k+md-1) B-splines are needed for any x and only

md(md-1) are subinterval dependent, a saving of at least 50% is obtained

for k > md .

We have used two routines in the impiementation of the modified version

of algorithm r. The first evaluates those B-splines which are mesh independ-

ent, while the second is for the splines whose values depend on I(where

We do not exploit the symmetry of the collocation points or the error

estimation points; the saving is too small given the additional complexity.

Also, we do not incorporate the nonconvex modification suggested in [31).

16.

While it can save a multiplication in the last line of algorithm I and

our experiments have not yielded a case where accuracy was significantly

affected, the improvement in efficiency proved small enough that we have

decided to be conservative.

B. Evaluation of spline derivatives

Given an approximate solution component

tives are given by

V (x) ,
n

as in (3.3), its deriva-

(3. 6) v(r) (x) = (k+m -1)
n n

0
(r)

(k+m -r) Z: a.+. N .. k (x) n i J n i+J, +m -r
j=-k-m +r+l ' n

n

where

j
a .. for r = 0

i+J, n

(3. 7)
(r)

=
(r-1) (r-1) a .. a. . a .. i+J,n i+J,n l+J-1,n

for r > 0 .
t .. k l

- t .. i+J+ +rn -r J.+J n

The B-spline package in [6] contains a subroutine which prepares the divided

difference table (3.7) (with
(r)

a. . multiplied by
i+J,n

(k+m -1) . . . (k+m -r)) .
n n

We have written a similar routine which uses the particular form of

(t .. k - t ..). i+J+ +m -r i+J
n

To compute z(v) =
rv rv

(m1 -1) (md-1)
(vl,v~,---,Vl ,v2, ... ,vd, ... ,vd) we only

need
(r)

vn (x), r = 0, .•• ,rnn-1, n = 1, ..• ,d. There are several occasions where

evaluation of z(v)
rv rv

is necessary. Values of z(v)
rv rv

are needed for setting

up the equations during the iterations on nonlinear problems and for the error

estimation procedure. Also, when COLSYS has terminated successfully the user

can evaluate z(v) for the final approximation. There are two efficient ways
rv rv

to evaluate z(v):
rv rv

Algorithm II:

(a) Generate
(r) a.
1,n

i = l, ... ,Nk+m; r = l, ... ,m -1; n = l, •.. ,d,
n n

17.

(b) for X E (xI,xI+l), form the ~(k+md) (k+md+l) nonzero B-splines up to

order k + md ,

(c) form v (r) (x)
n

(r

Algorithm II':

(a) Generate v(r)(x.)
n 1

II,

(b) for

(3. 8)

=

v (r) (x) =
n

j=r

o, ... ,m -1; n =
n

1, ... , d) by (3.6).

r = 1, ... , k+m -1; n = 1, ... , d; i = 1, ... , N
n

by algorithm

While algorithm II' requires more than twice the storage and more initializa-

tion than algorithm II, it is many times more efficient when z(v) ~~ is required

for a large number of points. For the collocation example in [6], algorithm

II' was used.

In [2] these algorithms are examined in our setting for two cases - when

z(v) is to be evaluated at ~~
(i) M

1
points irregularly distributed in [a,b] and (ii) M

1
= M

2
N points,

consisting of M
2

regularly distributed points in each subinterval. The numbers

of multiplications plus divisions required for Algorithm II are approximately

(i) (m*-d) (k+2)N + [(k+md) (k+md-1) + M]M
1

(ii) {(m*-d) (k+2) + [2(m!-md) + M]M
2

}N

and for Algorithm II',

(i) and (ii) [(m*-d) (k+2) + kd(k+2) + 2(m!-ma) + M + °i" k(k+l)]N +

[M + 2(k+md-2)]M
1

where
d 2

M = (k+~)m* + ~ Z: m
n=l n

18.

For case (i) algorithm II is more efficient when ~ SAN where, e.g.,

.
" = 2.5 if d = 1, m = 2 I k = 3 and " = 4.8 if d = 3, ml = 1, m2 = m3 3,

k = 4. In general, " grows with d. In case (ii) algorithm II is more

efficient for IOOst practical situations. Consequently, we at present use only

algorithm II.

C. Derivatives of the B-splines

In order to generate the collocation equations an algorithm is needed to

evaluate the B-splines derivatives. Formulas (3.6) and (3.7) could be used

with for the function

can be made. First, if m = m n n+l

Ni+Q,,k-lm (x),
n

but a number of savings

there is no need to repeat the computations,

so COLSYS initially isolates the set of strictly increasing orders and deals only

with them. Second, the algorithm avoids performing (3.7) on the many zero

coefficients (as is also done in [6]). Third, the special form of

(t .. k - t ..) is used. The fourth improvement arises from the fact
1+J+ +m -r 1+J

n
that we have a system of differential equations. If the B-spline derivatives

are evaluated for n = d then a number of the

directly from

(r)
1

a.i+j+(md-mn),d
(r)

(3. 9) a. . = l+J ,n (r)
a. . d md l+J,

D. Highe st order derivatives

(r)
a ..

l+J,n

< j < k

< j <

-

k +

may be determined

(m -m) - r + 1
d n

m - r
n

Selecting a new mesh requires the values of the piecewise constant functions
(k+m -1)

n
V

n
(x), 1 S n S d. These are obtained by starting with the values

19.

(m -1)
n a,. (-k:::j:::O),

i+J,n
which have been obtained in algorithm II, and repeatedly

applying (3.7) with t , , k - tl, +J· i+J+ +m -r n
to get

(k+m -1) (k+rn -1)
n n a. 1,n = V

n

4. The nonlinear iteration and the linear system solver

(x) for

In this section we briefly discuss the handling of nonlinear problems and

the implementation of the linear system solver.

A. Newton iteration

To solve (2.1), (2.2) we apply the Newton process of linearization and

iteration. Specifically, choose an initial approximation v' O E P n C (~-l~a,b]. ~ k+m ~
Then, for s = 0,1,2, ... until a convergence criterion is satisfied, solve

by collocation the problem

s
(4.1) L (v')w = f

n~ rv n

s
(4. 2) S. (v')w = y,

J "-' rv J

for the solution
, s+l

V
rv

(4.3)
s

f - f (•; v')
n n ~

s y, - y. (v')
J J rv

(4.4) =

n = 1, ... , d

j = l, ... ,rn*,

Here L . , S.
n J

s
= F (•·v ')

n '~

* (, s) m13. z;.;v
I: J J"'

i =l oz.Q,

are defined in (2.3a), (2.4a) and

m*
E

i=l

s oF (•; v') n rv s • z (v')
.Q, rv

n=l, •.• ,d

Most advantages and disadvantages of the Newton method are well-known.

Generally, if the initial approximation
,o

V is close enough to v,
rv

method performs very satisfactorily. h V ' O 1· s far from However, w en

the

V ,
rv

the behaviour of the algorithm is unpredictable (cf. [9], [16]). We are

20.

currently conducting an investigation to find more reliable fast algorithms

to handle nonlinearities, and intend to report the results elsewhere.

Implementing the Newton iteration requires determining when the desired

error tolerances (2.18) are satisfied. For a nonlinear problem, the error

has two components,
,s+l

v - v and v - u, where
,s+l

V is the Newton
rv rv rv rv "'

iterate which satisfies the convergence criterion to be specified and is thus

taken as the approximation to v = lim v's For any superl in early convergent

llv' s+l - v' sll
"' "' 00 lim - - - ---- = 1 (seeilS]), method,
llv' s - vii
"' "' 00

so that in the limit
,s+l ,s

V - V
"' "'

is a good measure for
,s

V - V • Thus, the convergence criterion for the non-
"' "'

linear iteration in (4.1),(4.2) is

(4. 5) 'IOL.
J

2 =LTOL.
J

j = 1, ... , NTOL .

To check (4.5) efficiently, recall that

(4. 6)

where the

(4. 7)

The a.
1., n

v (r) (x)
n

(r)
a. i,n

llv(r) II
n oo

,s = a. i,n

satisfy (3.7).

< I (r) I max a. .
i i,n

The N ..
1., J

r = 0, ... ,m -1, n = 1, ... , d ,
n

are normalized B-splines, so

are precisely the coefficients computed when solving the

linear system in each Newton iteration. Thus the nonlinear iteration con

vergence criterion is as follows:

1. Having obtained

n=l, •.. ,d.

,s+l
a. ' i,n compute

(r),s+l
a. i,n

for all i, r = o, ... ,m -1,
n

2. For j = 1, ... ,NTOL, let 2 = LTOL. and let (n,r) correspond to the coord
:J

inate l of z(•).
"'

.'

I,

21.

If Ila (r), s+l
(•) , n

- a(r),sll > TOL.
(•),n oo J

then go to step 4.

3. Dump a
(•) , s+ 1

onto
(.) s a , , signal success, and exit the Newton iteration.

4. Dump a
(•) , s+ 1

onto
(.) s

and reiterate. a , set s = s+l,

In fact, steps 1 and 2 above are combined so that only the array

is stored. Since the computation in step 1 is always needed to evaluate the

approximate solution (see section 3 and [2]), it is not wasteful. Finally note

that the criterion is somewhat pessimistic and is scaling-resistant [14].

B. The linear system solver

Here we consider the method for the solution of the set of algebraic

equations resulting from collocation applied to (4.1), (4.2). With xil' · · · ,xik

the k Gaussian points in the i-th subinterval I . = (x . ,x .
1

),
1 1 1+

1 S i SN

(cf. (2. 5) , (2. 6)), write these equations as

(4.8) L v(x . .) = f (x ..)
rrv 1J n 1J

j = 1, ... , k, i = 1, ... ,N, n = 1, ... , d ,

(4. 9) 8.v = y .
]"' J

j = 1, ... ,m* .

The total number of equations in (4.8), (4.9) is Nkd + m*, the dimension of

the approximation space (or the number of parameters a.
1,n

to be determined).

Consider next the structure of the matrix obtained from (4.8), (4.9).

Fixing i and n, 1 Si SN, 1 Sn S d, there are m nonzero B-splines on
n

r.lUr.,
1- 1

k-m B-splines which vanish outside I. and m which vanish
n 1 n

outside I U I i i+l.

a12' ··.a k a N +md,
causes an inconvenient zero structure, since it is desirable

to have all nonzero elements concentrated around the main diagonal. Thus, we

reorder the coefficient vector a
rv

is such a way that, for each i, all the

columns in the matrix which contain nonzero entries corresponding to the i-th

subinterval are adjacent. This produces a block-structured matrix whose i-th

22.

block, 1 Si SN, is characterized as follows:

Rows: With ,Q,.
1.

i = N,

side conditions given at points z;;,Q, x. S l;; 0 <x.
1 1. Jv 1.+

(when

XN < So < X) ,
Jv N+l

there are kd + ,Q,, corresponding rows.
1.

(For each n, 1 Sn S d, k rows correspond to xi
1

, ... ,xik).

The numbering of the rows increases with the argument x.

Columns: For each v (•), 1 < n S d, there are m B-splines which do not
n n

vanish on I. LI I.
1 1. 1.-

The corresponding columns, m for each n,
n

will appear first in the order m
1

,m
2

, ... ,md, totalling m* columns.

Then come k-m1 ,k-m
2

, ... ,k-md columns corresponding to the kd-m*

B-splines which vanish outside I ..
1.

The m* columns of those B-splines

which vanish outside I. U I.
1

appear last, ordered the same way as

the first m* columns.

kd + m* (Note that m*

1. 1.+

The total number of columns is therefore
N

~ 1. and kd + m* ~ kd + £.).
i=l 1. 1.

initial coordinates: The upper left element of the i-th block is the

i
2

= (i-l)kd +

of the matrix, where
i-1
~ ,Q,, + 1, i

2
= (i-l)kd + l .

. l J J=

As an example, take d = 2, m
1

= 1, m
2

= 2, k = 3, z
1

= z
2

= a, z
3

= b,

and N = 3. Then the reordered collocation matrix has the form

23.

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

fig. (4 .1) •

This is precisely the zero structure for the collocation method with k•d = 6

points per subinterval applied to a problem of one differential equation of

order m* = 3. The matrix can be considered as banded (asymmetric), but this

would alroost double the amount of nonzero entries. It is better considered

as almost block diagonal [8].

For the solution of the linear systems we have adopted the code developed

in [8] which performs Gauss elimination with scaled row pivoting. This proceeds

as follows:

For

1.

i = 1,2, ••• ,N do the following:
i-1

If i > 1, append the L £. rows of the
J j=l

(i-l)st block, not used as

pivotal rows, to the beginning of the i-th block, to form a block of
i

kd + L £. rows.
j=l J

2 . Apply kd steps of Gauss elimination with scaled row pivoting, storing

the resulting factorization in place of the original data.

24.

3. If i = N (the last block is square of size kd + m*), apply m* - 1 more

elimination steps.

This produces an LU factorization of the original matrix. For a given

right hand side, the solution a
rv

is then obtained by a forward-backward

substitution.

The permuted ordering in the solution vector

is as follows: For x E [x.,x.
1

) and 1 Sn S d,
l 1+

(4.14) V (X)
n

m
n

Then

= t~l a(i-l)kd+µi:_i.+Q, N . (x)
(1-l)kd+µ +2,k+m

n n

k-m
n

+ ~l a(i-l)kd+nn+m*+t N(i-l)kd+nn+m*+i,k+m~x)

The package [8] implementing the above method is used in COLSYS because

of its availability, stability, and its advantages over treating the system

as merely banded. There is, however, some amount of fill-in generated. The
i-1

i-th bl~ck has L 2. rows appended to it, and so the ratio of storage from fill
. 1 l J=

in to total storage is

1 N
r

N . 1 i=

i-1

J. ~lQ,.
- J

kd + .Q,,
l

For the example in fig. 4.1 this ratio is about 1/5. If N is large and we

consider a two-point boundary value system with half of the boundary conditions

at each end, the ratio tends to

since ... :':

1/2 m*
kd

This is always less than 1/2

but the value 1/2 is obtained when

25.

A method which generates no fill-in has been proposed in [38]. Here row

and column pivoting are performed alternately. A comparison between the above

two methods, regarding their efficiency and stability, is planned for the

future.

5. Numerical examples

COLSYS has been tested on a large variety of problems. We examine here

a representative selection of them to demonstrate the performance of the code.

Some comparisons with other codes are made as well, in order to gain a relative

perspective. However, these comparisons are not exhaustive and should not

be treated as final. In particular, COLSYS is not yet a production code, and

substantial modifications are expected in the future.

The examples quoted here were run in double precision (14 hexadecimal

digits) on the IBM 370/155 at Simon Fraser University, using the Fortran Gl

compiler. Because of fluctuations in the computing environment, variations

of 5 - 10% in the run times are meaningless.

In the examples below, the following notation is used:

u. (x)
l

(j)
E (u.)

l

(.)
est E(u.J)

l

TOL (u _(j))
l

· th f h t 1 . - i component o t e exac so ution

uniform error in u~j) (x)
l

(available when the exact solution

is known).

- estimated uniform error in
(j)

u. (x).
l

- absolute error tolerance for the component
(j)

u. (x).
l

(COLSYS

allows the user to specify different tolerances for different

components, and the mesh selection algorithm considers only

those components for which tolerances are specified).

26.

time - the actual solution time in seconds (not including error

a ± b

checking time).

+b
- a•10-

k - number of collocation points per subinterval.

mesh sequence (iterations) - successive mesh sizes, i.e. numbers N of subinter-

vals required, followed in parenthesis by the number of Newton

iterations performed on each mesh for nonlinear problems.

The errors E(u~j)) are approximated by measuring the error at 4 equally
l

spaced points in each subinterval. Unless otherwise stated, the initial mesh

for COLSYS is uniform. Incidentally, if NMAX is the maximum number of sub

intervals used and n boundary c·ondi tions are given at the right end point,
r

then approximately [(kd+m*-n) (kd+m*+2) + m*(4+k) + 3kd + k + 8]NMAX words
r

of storage are required by COLSYS.

Ex:ample l [22)

2
E:y" + xy' = -E:1T cos (1Tx) - (1Tx) sin (1Tx)

y(-1) = -2, y(l) = 0

u(x) = cos(1Tx) + erf(x//2E)/erf(l/v'2€)

The solution has a spike at x = 0

(see fig. 5.1). Results for various

values of E: are given in table 1

below.

'P

'I

-7

-1 < X < 1

fig. (5 .1) .

E

.1-1

.1-1

.1-3

.1-5

27.

Table 1 - example 1

k TOL(u) E (u) estE (u) TOL (u') F (u') estE (u') time mesh sequence

4 .1-1 .45-4 .19-4 .1-1 .22-2 .12-2 1.1 8,16

4 .1-5 .22-8 .18-8 .1-5 .24-6 .15-6 8.16 8,16,15,30,17,34,68

4 .1-5 .16-7 .19-8 .1-5 .67-5 .25-6 25.9 8,16,32,64,35,70,35,70,
35,70,140

4 .1-5 .48-9 .43-9 .1-5 . 23-6 .45-7 68.23 8,16,32,64,128,128,128,
128,256,128,256,128,256.

As E gets smaller, the problem gets stiffer and the mesh selection

algorithm has to have more mesh points in order to resolve the difficulty. In

fact, if we choose a good initial mesh (concentrated around x = 0) which

contains only a few points, the mesh selection algorithm often produces worse

meshes at first, because the error is very nuch different from the assumed

asymptotic form. In order to allow use of knowledge about where the region

of fast variation is located(as many special purpose methods do) COLSYS

has an option for choosing an initial mesh and repeatedly halving it until

the tolerances are satisfied. Doing so for
-10 -7

E = 10 , TOL(u) = 10 ,

-2
TOL(u') = 10 , and the initial mesh -1, -.1, -.01, -.001, -.0001, -.00001,

O, .00001, .0001, .001, .01, .1, 1 has resulted in a final mesh of 384

subintervals, with E(u) = .30-8, est E(u) = .30-8, E(u') = .61-2, est E(u') =

.98-2. A large amount of storage, however, is necessary, and special methods

such as expansion techniques [21], [22] for singular perturbation problems

with very small E will obviously be superior in many situations.

Example 2 [3]

.1176y1 - 52.59072yi - 4y1 + 4cy
2

= 0

l.8225y2 + 32.67135y2 - 4cy
2

+ 4y
1

= 0
0 < X :':: 8

(i)

(ii)

52.59072y
1

(0) - .1176yi (0) = 10, y 2(0) = 0

2.629536y
1

(8) - 32.67135y
2

(8) - l.8225y~/8) = 0

y'(8) = 0
1

C = 7.243657224749792

Solution:

u
2

(x) = a
5

u~(x) + a
6
ui (x) + a

7
u(x)

a
1

= .19016221835237111, a
2

= -l.4675293400578486 X 10-S

-8
a

3
= 2.6341295691033977 x 10 , a

4
= l.2408745047670897 x

-3
a

5
= -4.0587236193350687 x 10 , a

6
= l.8150612521116087,

a
7

= l.380518134032868 X 10-l

28.

bl= .77395646951204557, b
2

= -18.776674645942983, b
3

b
4

= 3578.2085129895722

447.27606412369653

This solution is only accurate to the 7-th, 5-th, 8-th and 8-th digits

after the decimal point in respectively. The problem

arises in the study of coal gasification, and the solutions are oscillatory

through [0,8] with large derivatives near x = 8 (and to a lesser extent

near x = 0). In table 2 we list results for k = 4 with (i) all tolerances

10-
4

, (ii) TOL(u
1

) = TOL(u
2

) = 10-
6

and no tolerances on the derivatives.

Table 2 - example 2

E (u
1

) estE(u
1

) E Cui) estE (ui) E(u
2

) estE (u
2

) E(u2) estE(u2) time
mesh

sequence

. 67-5 .10-6 .12-2 . 75-4 • 39-7 .15-8 .56-6 .85-7 15.88 2,4,8,16,32,
16,32

.19-12 .12-8 .68-11 .58-9 30.06 2,4,8,16,32
16,32,16,32,
16,32

For the second case, no significant digits of the exact error are available.

For this case, the final mesh (N = 32) has 12 of its points in [7.5, B.O]

and 10 in [7.96, 8.0).

29.

Note that the error estimates are off by about a factor of 10, and the

desired tolerance for ui (x) is not quite achieved. This is probably

because few significant digits have been computed (the solutions

and u'
2

are of magnitude .2, .005, .03, and .009 respectively).

In such cases the assumptions about the asymptotic form of the error, upon

which the error estimate is based, can fail to hold.

For our rough comparison, some of the examples were run with two other

general purpose codes, SUPORT and PASUNM. SUPORT, an initial value type

code based on superposition with orthonormalization, was developed by Scott

and Watts to solve linear two-point boundary value problems [36]. Unless

stated otherwise, SUPORT uses the initial value solver RKF. PASUNI, a

finite difference code using deferred corrections and a uniform mesh to

solve nonlinear multi-point problems, was developed by Lentini and Pereyraf25],

who later modified it to make the linear system solver more reliable.

Christiansen and Russell have subsequently made further modifications to

the code which can typically halve the run times; this last version we

call PASUNM.

Both SUPORT and PASUNM require converting problems to first order

systems and use a mixed absolute and relative error tolerance which is the

same for all solution components. (In t~e experiments below we use only

the absolute tolerance.) SUPORT has no a posteriori error estimation procedure

(in fact the local error control tolerance often does not indicate what the

global error is), while PASUNM produces very reliable error estimates at the

equally spaced mesh points. Moreover, if SUPORT fails it does not produce

any intermediate results. On the other hand, usually SUPORT requires much

less storage than PASUNM and COLSYS. The fact that PASUNM works only with

uniform meshes both limits its scope of applicability and makes the code perform

30.

very efficiently when it is successful. In many cases, when PASUNM falls

short of solving a problem, it is because the allotted storage is exceeded.

Lentini and Pereyra have produced a variable mesh solver [26] which we intend

to compare in the future.

Both examples 1 and 2 above are extremely difficult for SUPORT. For

-2
ES 10 in example 1, SUPORT overflows using RKF. Using GERK with tolerances

-6
of 10 , SUPORT requires 23.05 seconds with E = 10-

2
and 284.47 seconds with

-3
E = 10 . In example 2 SUPORT faces a stiff initial value problem, resulting

with extremely small integration steps (e.g., with TOL = 10, a very accurate

solution was computed using 183 orthonormalizations and 173.04 seconds of

execution time; with TOL = 10 -
2

, nothing was produced after 812 minutes) .

PASUNM looks better here:

Table 3

Example 1
TOL (all

E E (u) estE (u) E (u') estE (u') components time

.1-1 . 63-7 .55-7 .89-6 .76-6 .10-5 2.59

.1-3 .97-7 . 73- 7 .16-4 .12-4 .10-5 19.49

.1-5 • 36-1 .14-1 .27+3 • 32+1 .10-5 14.13

Example 2

.47-5 .17-4 .21-2 .73-2 .67-6 .21-7 .61-6

*Maximum N with 600 K bytes of total storage for PASUNM

mesh sequence

5,10,20,40,80

5,10,20,40,80,160,
320,640*

5,10,20,40,80,160,
320,640*

28.46

mesh sequence

5,10,20,40,80,
160,320*

The errors E(u{j)) for PASUNM are measured at the evenly spaced mesh points

,:

31.

and thus may be overly optimistic about a global error; nonetheless, these

are the only values available. Note that if the error for COLSYS were

measured that way, only superconvergence points would be encountered.

In the results for SUPORT which follow, the errors are approx-

imately obtained by measuring the error at 51 predetermined points (some of which

are chosen near any regions of bad behaviour). NO denotes the number of

orthonormalizations for SUPORT, if the number is > 0.

Example 3 [7]

y" - 4y = 4cosh (1)

y(O) = y(l) = 0

u(x) = cosh(2x-1) - cosh(l)

Here we run the three codes on an easy problem. Results are listed in table 4.

Considering the fact that COLSYS is designed to solve general problems on

arbitrary meshes and produces an error estimate, its run time is quite

satisfactory.

Example 4 [25,36]

y" (x) +

y(-.1) =

u(x)

-.1 < X < .1

__ ._1 __ = -y (. 1)

(£+.01/i

The solution to this problem has a turning point region of width

O(h) at O (but does not vary exponentially there). Results are listed

in table 4. For small E:, SUPORT is considerably faster than COLSYS, while

PASUNM is unable to solve the problem with E: ~ 10-4 and 600 K. bytes of

storage. The success of SUPORT is based on the fact that the associated

32.

initial value problem is well conditioned. (By contrast, for the problem

E:y" + ~· = o, y(-1) = -1, y(l) = 1,

.
whose solution's graph looks similar to that of example 4 and has y' (-1) = O,

the slightly perturbed problem with the initial conditions y(-1) = -1,

and y' (-1) = O has the solution y = -1. Thus, the associated initial value

problem is badly conditioned and indeed SUPORT cannot solve this problem for

-3
£ < 10 . COLSYS on the other hand does as well as for example 1).

Table 4 - examples 3,4

Example d - co e

E: k TOL(u) E(u) estE (u) TOL(u') E(u') estE(u') time
mesh

sequences

3

3

3

4

4

4

4

4

4

4

COLSYS

SUPORT

PASUNM

COLSYS .1-3

SUPORT .1-3

PASUNM .1-3

COLSYS .1-5

SUPORT .1-5

COLSYS* .1-7

SUPORT .1-7

4

3

5

.1-7

.1-7

.1-7

.1-5

.1-5

.1-3

5 .1-5

.1-5

.1-5

.1-5

.17-10 .11-10 .1-7

.11-10

• 25-8

.16-7

.12-6

.58

.22-7

.12-6

.29-9

.36-6

.25-8

.11-7

.14-7

.36-9

.1-7

.1-7

.1-3

.1-5

.1-3

.1-3

.1-5

.1-2

.1-5

*initial mesh points ±.1, ±.01, ±.004, ±.001, 0.0

.16-8

.24-9

.46-8

.18-4

.10-4

. 77+2

.95-4

.69-4

.29-5

.36-2

. 21-8

.46-8

.16-4

1.28 2,4,8,16

.64

.44 5,10,20

7.89 8,8,16,16,
32,64,128

.95

.23+0 13.20 4,8,16,32,
64,128,256,
512, 1024

.39-4 13.27 8,6,12,7,14,
14,28,56,28,
56

1. 75

.10-4 40.40 8,4,8,4,8,16,
8,16,8,16,
9,18,36,18,
36,72,36,72,
36,72,144,72,
144

2.65

33.

Table 5 - example 5

code TOL E(u) estE (u} E (u (3)) (3)
estE(u) E (u (7)) (7)

estE(u) time
mesh

sequences

COLSYS .1-1 . 31-9 .29-9 .11-4 . 79-5 .82-3 .61-3 7.8 4,8,16

SUPORT .1-1 .12-10 . 47-:-9 .58-4 71.56

PASUNM .1-1 .41-16 .42-10 .13-8 .13-8 . 99-3 .11-2 36.41 4,8,16,32,64,
128,256

COLSYS .1-3 .63-10 .40-10 .12-6 .10-6 .49-4 .74-5 14.12 4,8,16,8,16

SUPORT .1-3 .91-12 .11-10 .43-5 179. 72

PASUNM .1-3 .57-12 . 58-12 .86-10 .92-10 . 70-4 .75-4 39.13 4,8,16,32,64,
128,256

Example 5 [36)

y(8) - 914y(6) + 12649y(4) - 44136y" + 32400y = 0

j = 0,1,2,3

u (x)
-x -2x -3x

= e - 2e + e

This is a problem favorable to COLSYS, since it can be converted to two 4-th

order problems rather than eight first order ones, (recall the restriction

md ~ 5 in COLSYS), and the exponential homogeneous solutions cause initial

value codes difficulty. Table 5 contains the numerical results for this problem.

We get NO= 10 for SUPORT in both cases. As expected, COLSYS is best for

this problem. Notice also how well PASUNM does, in contrast to the results in

[36) for PASUNI, the major difference being the change to Lentini and Pereyra's

new system solver.

We now turn to the solution of some nonlinear problems by COLSYS.

Example 6 [20)

Perhaps the greatest relative advantage of COLSYS is in solving problems

in which the coefficients in the differential equations may contain singularities.

34.

These problems commonly arise when reducing partial to ordinary differential

equations by physical symmetry [35), [20), [29]. Unlike other general

purpose codes, no matching of the numerical solution to an analytic expansion

in the neighborhood of a singularity is necessary.

As a simple example consider the equation

1 8 2
y" = - y' - (-) ey

X . 7 y' (0) = y (1) = 0

which has the solution u (x) == 2log (
7

2
8-x

[20].

Results with the initial guess u = 0 are tabulated below

Table 6 - example 6

k

4

TOL (u) E (u) estE (u) TOL ('U ') E (u') estE (u') time mesh sequence

.1-5 . 33-8 . 2 4-8 .l-5 . 77-7 . 90-7 . 56 2 (3) ,4 (1)

We have also solved more complicated singular problems such as the Ginsburg

Landau equations [29] with little difficulty. This will be reported in more

detail elsewhere.

Examp l e 7 (24]

y 1 (0)

y',' =
l

= 10,

20 + y.
1

(100)
Y1 3

y'. (
lOOi

3 l

[4+.2y,(
lOOi

)] [1 +y '. (
l 3 l

=

100 100
3

(i-1) < X <
3

i, i = 1,2,3 ,

Y2 (
100

) , Y2 (
200 (200) , = Y3 -3-3 3

I (100 ,)
Yi+l -3- 1

= 2
lOOi)]½ [4+.2y. 1 (l~O i)] [l+y! 1 (

3 1+ 1+

u . (x) = [3156.25 - (x-47.5)
2

) ~ - 20
l

on
100 100

3
(i-1),

3
i],

y
3

(100) = 0 I

, i=l, 2,
2

100 i) J½
3

i = 1,2,3-

(i)

(ii)

35.

This problem arises in studying seismic ray tracing problems, where the ray

travels through three different homogeneous materials. The nonlinear boundary

conditions represent Snell's law at the interfaces. Such conditions can be

treated by COLSYS when the problem is converted to a system if we map

[o 100] [0 l] , 3 ➔ , ,
200

3
100

3
➔ [O,l],

200
3

, 100] ➔ [O,l],

because the resulting boundary conditions each involve a single point. This

trick also works in general for nonseparated boundary conditions, with the

obvious disadvantage that the size of the system of equations increases. Two

sets of results are given in table 7 below, where the initial guess was

u. - 0, i = 1,2,3.
l

Table 7 - example 7

k i TOL (u,) E (u.) estE (u.) TOL (u!) E (u !) estE (u!) time
mesh

l l l l l l sequences

3 1 .1-5 . 72-7 .67-7 .18-4 .16....;4 16.85 8(5),16(2),
8(1), 16(1),
32(1)

2 .1-5 .13-8 .18-8 . 78-7 . 72-7

3 .1-5 .17-6 .14-6 . 77-4 .63-4

4 1 .1-5 . 21-9 .16-9 .1-5 .56-7 . 66-7 26.37 8(5) ,16(1),
11 (1), 22 (1),
44 (1) .

2 .1-5 .12-9 . 44-11 .1-5 . 32-9 . 33-9

3 .1-5 . 33-9 .26-9 .1-5 .16-6 .19-6

Example 8 [27]

The last example arises when considering the flow between two counter

rotating infinite plane disks. The equations which describe the motion can be

cast into the form

36 .

EG" + HG' - H'G = 0
-1 < X < 1

iv
EH + HH' I I + GG' = 0

and

G(-1) = JJ, G(l) = 1, H (-1) = H' (-1) = H (1) = H' (1) = 0

with µ = -1 for the case where the disks are counter-rotating at the same

speed. In this latter case, there exists an odd solution [27]. This solution

has boundary layers near both ends and varies smoothly in between.

Various investigators have computed solutions to this problem (see references

in [27], [28]) with conflicting results. The problem becomes very ill-cond-

itioned for small values of E > 0. Except for [28], solutions have been

computed for E > 10-3. In [28], the antisymmetry for the particular case

µ = -1 is used to solve the problem on the half interval [0,1) with G(O) = 0

and H(O) = H"(O) = 0 replacing the boundary conditions at -1. This improves

the condition of the problem significantly, enabling the authors to obtain

solutions for E = 10-4 .

We solve the problem with µ = -1 and
-3

E = 10 on [-1,1), obtaining

the odd solution without using antisymmetry. This enables us to demonstrate

the stability and reliability of COLSYS. By comparing values of the obtained

solution at points x and -x (with the final mesh being nonuniform) we

get an idea of how well the error estimates do.

For k = 5, TOL(G) = TOL(H) = TOL(H') = .1-5, and the initial guess

3 2 2
G = x , H = -x (x-1) (x+l) , the results are listed in table 7. Tests hased

on the symmetries of the solution support the error estimates.

Table 7 - example 8

estE(G) estE (G') estE (H) estE (H') estE(H")

. 78-6 .11-3 . 79-8 . 22-6 .15-4

estE (H' '')

.33-2

37.

time mesh
sequences

56.45 10(10),5(4),
10(5) ,20(2)

The computed curves of G and H are plotted in figs. 5.2 and 5.3, respectively .

.

~

"'

~

l!i,
i; ..

' · 11 ,1l ' . o, ,s
~ ~x'is ' ,. u e.1, , ..

~
Ill
'i

'i

,,
v

0 f!~. (5.2)
~

~

~

!

J
!? \

~
a

§0 _ .• ., .n ,., ,,
s
~

'l'

• ,
~
'l'

!
,; fi~. (5, 3)

31i.

References

1. U. Ascher, Discrete least squares approximations for ordinary differential
equations, to appear in SIAM J. Numer. Anal.

2. U. Ascher and R.D. Russell, Evaluation of B-splines for solving systems
of boundary value problems, Comp. Sci. Tech. Rep. 77-14, Univ. of
British Columbia, 1977.

3. D. Billingsly, Experience and problems concerning numerical solution for
linear o.d.e. two-point B.V. problem, IBM internal memorandum, Palo Alto,
Jan. 1970.

4. C. de Boor, On calculating with B-splines, J. Approx. Th. 6 (1972),
50-62.

5. C. de Boor, Good approximation by splines with variable knots II,
Springer Lecture Notes in Math., 363 (1973).

6. C. de Boor, Package for calculating with B-splines, SIAM J. Numer. Anal.
14 (1977). 441-472.

7. C. de Boor and B. Swartz, Collocation at Gaussian points, SIAM J. Numer.
Anal. 10 (1973), 582-606.

8. C. de Boor and R. Weiss, Solveblok: a package for solving almost block
diagonal linear systems, with applications to spline approximation and
the numerical solution of ordinary differential equations, MRC TSR #1625
(1976), Madison, Wisconsin.

9. C. Broyden, Recent developments in solving nonlinear, algebraic systems,
in Numerical Methods for Nonlinear Algebraic Equations, ed. by P. Rabinowitz,
Gordon Beach, 1977.

10. R. Bulirsch, J. Stoer and P. Deuflhard, Numerical solution of nonlinear
two-point boundary value problems I, Numer. Math. Handbook Series Approx
imation (1976).

11. J. Cerutti, Collocation for systems of ordinary differential equations,
Comp. Sci. Tech. Rep. 230, Univ. Wisconsin-Madison, 1974.

12. J. Christiansen and R.D. Russell, Error analysis for spline collocation
methods with application to knot selection, to appear in Math. Comp.

13. P. Ciarlet, M. Schultz, and R. Varga, Numerical methods of high-order
accuracy for nonlinear boundary value problems I. One dimensional problem,
Numer. Math. 2_ (1967), 394-430.

14. J. Daniel and A. Martin, Implementing deferred corrections for Numerov's
difference method for second-order two-point boundary-value problems,
to appear in SIAM J. Numer. Anal.

39.

15. J. Dennis and J. More, Quasi-Newton methods, motivation and theory,
SIAM Review 19 (1977), 46-89.

16. P. Deuflhard, A relaxation strategy for the modified Newton method.
(1975), 59-73. In Conference Proceedings on Optimization and Optimal
Control, Bulirsch, Oettli and Stoer (eds.) Lecture Notes 477.

17. H.J. Diekoff, P. Lory, H.J. Oberle, H.J. Pesch, P. Rentrop and R. Seydel,
Comparing routines for the numerical soltuion of initial value problems
of ordinary differential equations in multiple shooting, Numer. Math .

.1J. (1977), 449-469.

18. D. Dodson, Optimal order approximation by polynomial spline functions,
Ph.D. thesis, Purdue Univ., 1972.

19. R. England, N. Nichols and J. Reid, Subroutine 0003AD, 1973, Harwell
subroutine library. Harwell, England.

20. s.c. Eisenstadt, R.S. Schreiber and M.H. Schultz, Finite element methods
for spherically synnnetric elliptic equations, Res. Rept. #109, Comp. Sc.,
Yale Univ., 1977.

21. J.E. Flagherty and R.E. O'Malley, Jr., The ~umerical solution of boundary value
problems for stiff differential equations, Math. Comp. 2!_ (1977), 66-93.

22. P. Hemker, A Numerical Study of Stiff Two-point Boundary problems,
Math. Centrum, Amsterdam, 1977.

23. E. Houstis, A collocation method for systems of nonlinear ordinary dif
ferential equations, to appear in J. Math. Anal. & Appl.

24. W.H.K. Lee and v. Pereyra, Solving two-point seismic ray-tracing problems
in a heterogeneous medium: part 2, preprint 1977.

25. M. Lentini and V. Pereyra, A variable order finite difference method for
nonlinear multipoint boundary value problems, Math. Comp. 28 (1974), 981-1004.

26. M. Lentini and v. Pereyra, An adaptive finite difference solver for non
linear two point boundary proble~s with mild boundary layers, SIAM J.
Numer. Anal. 14 (1977), 91-111.

27. J.B. McLeod and s.v. Parter, On the flow between two counter-rotating
infinite plane disks, Arch. Rat. Mech. Anal. 54 (1974), 301-327.

28. H.J. Pesch and P. Rentrop, Numerical solution of the flow between
counter-rotating infinite plane disks by multiple shooting, Rep.
Technische Universitat Munchen, 1976.

two
#7621,

· 29. P. Rentrop, Numerical solution of the singular Ginzburg-Landau equations
by multiple shooting, Computing 16 (1976), 61-67.

30. R.D. Russell, Collocation for systems of boundary value problems,
Numer. Math. ll (1974), 119-133.

40.

31. R.D. Russell, Efficiencies of B-splines methods for solving differential
equations, Proc. Fifth Conference on Numerical Mathematics, Manitoba
(1975), 599-617.

32. R.D. Russell, A comparison of collocation and finite differences for
two-point boundary value problems, SIAM J. Nurner. Anal. 14 (1977),
19-39.

33. R.D. Russell and J. Christiansen, Adaptive mesh selection strategies for
solving boundary value problems, to appear in SIAM J. Nurner. Anal.

34. R.D. Russell and L.F. Shampine, A collocation method for boundary value
problems, Nurner. Math. 19 (1972),1-28.

35. R.D. Russell and L.F. Shampine, Numerical methods for singular boundary
value problems, SIAM J. Nurner. Anal. 12 (1975), 13-36.

36. M.L. Scott and H.A. Watts, Computational solutions of linear two-point boundary
value problems via orthonormalization, SIAM J. Nurner. Anal. 14 (1977),
40-70.

37. M.L. Scott anc ~.A. Watts, A systematized collection of codes for solving
two-point boundary-value problems, in Numerical Methods for Differential
Systems (1976), Academic Press, pp. 197-227.

38. J.M. Varah, Alternate row and column elimination for solving certain
linear systems, SIAM J. Numer. Anal. 13 (1976), 71-75.

39. K. Wittenbrink, High order projection methods of moment and collocation
type for nonlinear boundary value problems, Computing 11 (1973), 255-274.

