
* * * Assaulting the Tower of Babel: *
* Rxperiences with a *
* Translator Writing System *
*
*
*
*
*
*
*
*
*
*

by

Harvey Abramson
William F. Appelbe
Mark Scott Johnson

Technical Report 77-12

1977 November

*
*
*
*
*
*
*
*
*
*

* *

Department of Computer SciEnce
The University of British Columbia

Vancouver, British Columbia V6T 1W5

Abstract

TFUST is a translator writing system (TWS) which evolved from
several available TWS components, including an LR(k) parser
generator anrl a lexical scanner generator. The design and
historical develo~ment of TRUST are briefly presented, but the
paper is primarily concerned with relating critically the
experiences gained in applying the TWS to various p~actical
software projects and to the classroom environment. These
experiences lead to a discussion of how a modular TWS should be
designen and implemented.

KEY WORDS: compiler construction Compilers Generators
Translator writing systems TRUST

This work was supported by the National Research Council of
Canada through operating grants A-9132 and A-7447.

1

INTRO DUCT ION

TRUST is the name of the translator W£iting gtility §YS!em
developed in the Department of Computer Science at the Univer
sity of British Columbia. It was not the oriqinal intent to
develop a translator writing system. Rdther, as a result of
graduate student research, several components of a T~S {e.q., an
LR (k) parser generator and a lexical scannec qenerator) were
available. Since these proiects represented considerable
investments in time and money, it was agreed they ouqht not to
expire when the initial projects terminated. An attempt was
made to build the remaining parts of a TWS (e.q., component~ to
construct and traverse trees and perform semantic actions) and
to design some method of combining and using thesa components.
Hence TRUST, like Topsy, "iust growed".

This paper describes the historical development of TRUST to
its current state, enumerates uses to which it has been put,
evaluates the degree of success of these applications, criti
ci2es the entire effort, and draws conclusions concerninq the
feasibility of constructing such large-scale systems in a
university environment.

OVERVIEW

The oldest components of TRUST are an LR (k) parser qene ra tor and
a lexical scanner generator based on regular expressions. The
parser generator was constructed by David Ramer as part of an
ALGOL 68 implementation.<r> It was needed to generate an
LALR{3) parser for an ALGOL ~8 translator, but ~as applicable to
other projects. The scanner generator was constructed as part
of the thesis research of Ted Venema, who was interested in th~
general problem of the modular design of translators.< 1 1>< 12 >

Concurrently, there was interest in the department in
syntax directed translation and the specificaticn of programminq
language semantics by interpreting sets of strings attached to
the nodes of derivation trees. Previous work en syntax directed
translation<t> and macroprocessinq< 2 > led to the desiqn and
implementation of TOSI, a tree oriented strinq interpre
tPr. C3)C9> TOSI was initially used ·by Tom Rushworth to qenerate
code for an ideal ALGOL 68 machine as part of his thesis
research.<to>

These main TWS components, a parser generator, a lexical
scanner generator, and a mechanism for code generation, were
thus separately available. It was possible, though iust barely,
for a skilled hacker to use them to construct translators. It
was decided then to clean up the available components, create
other necessary ones, and impose a communications structure
betveen them so translators could be written more easily. The
system so constructed is described in the 'fRUST User• s
Guid~.<13} currently, !RUST is in a state of dormancy. While
there are some users, the system is not beinq actively developed

I
• I

and cnly a minimum level of support is being maintained.

Co■aunication ■echaais■

2

A TaUST-generated translator is a democracy of modules.
The TWS contains components to generate lexical scanners, lookup
routines, parsers, tree builders for intermediate representa
tions, and semantic routines. The resultinq translator i~ a
democracy in that no module may control another, nor may any
module directly request anything of another. All requests for
actions by another module, and all replies to such requests, are
channeled through an intermodule communicator (IMC). Should any
operating system dependent requests be made, these too are
channeled through the IMC to a special module s1stem communica
!:QI (MSC). The basic structure of a 'l'RlJST-qenerated translator
is shown in Figure 1.

Any number of special-purpose modules may be qenerated by
TRUS1 and interconnected. There may, for example, be an LR(k)
parser, a simple precedence parser, or an LL(k) parser. ThP
user selects the desired modules and links them together throuqh
a user-written IMC. If at any time a module must be replaced, a
change to the IMC should suffice to effect the replacement.

since modules cannot communicate with each other directly,
the user must establish a communication network in the IMC.
'Y'here is attached to each module a communication block which is
passed between the IMC and the modules. Associated with each
TRUST-generated module is a unique COMMBLOCK through which all
communication with other modules must be accomplished. The
block is divided into three sec tions: an event number, a
parameter list, and ninety words of local storage.

The event number of the COMMBLOCK determines what acticn is
to be performed by either the module (when control is
transferred from the IMC to the module) or the I MC (when cont ro 1
is transferred from the module to the IMC). The writer of the
IMC must know the event numbers associated with each module.
The ~arameters of the COMMBLOCK communicate information between
the module and the IMC. A lexical scanner, for example, may
re quire the address and lengih of an input buffer, and may
pr ovide the address, length, and type of a lexical token. The
l ocal storage of the COMMBLOCK is reserved for the associated
module and may be used as required (e.g., for storinq local
variables). The local storage must not be accessed by any other
module.

3

EXPERIENCES

Each of the module generators currently supported by TRUST has
its own specification language. For 8Xample, there are
languages to specify IMCs, lexical scanners, and LR(k) qrammars.
TRUST itself was used to generate recognizers for each of these
admittedly simple languages. Nevertheless, this doAs demon
strate the possibility of applying a TWS to itself to bootstrap
to more complex languages.

The first major attempt to apply TRUST to producinq a
useful translator was the development of a cross-assembler for
the HP2100MX. This presented a practical challenge since the
assembly language was quite unlike the high-level structured
languages for which TRUST was principally designed. Initially,
TRUST was used to develop a syntax checker for the assembly
language, then this was extended to produce relocatable binary
obiect code for the HP2100MX. All the modules except for the
semantics were generated using TRUST. The semantic module was
written in PL360 and linked directly to the IMC.

The greatest difficulty in implementing the syntax checker
was encountered in defining the scanner and parser. The format
of the assembly language was strongly card-oriented and not
directly suited to a scanner based on regular expressions.
Rather than writing a scanner by hand, the format of assembly
instructions was restricted to make it compatihle with the
generated scanner. Thus, all comments were required ta be
prefixed by asterisks, and Hollerith constant lengths were
ignored. Major problems were also encountered when the syntax
checker was extended to a full cross-assembler. The format of
the relocatable binary obiect code was clearly unsuited to
single pass translation, and it was difficult to decide on an
appropriate structure for the semantic phase. At this point the
project ground to a halt because users were dissatisfied with
the language incompatibilities and restrictions, though the
implementors judged the project a success sincP it demonstrated
the feasibility of using TRUST for an unstructured language.
Eventually, a full cross-assembler was written directly in BCPL,
with less effort than would have been required to generate a
full cross-assembler using TRUST.

Components of TRUST were used to generate a bootstrap
version of a C translator.< 8 > The components used were the
scanner, parser, and lookup routine qenerators. The user found
the TRUST tree builder to be unsatisfactory since it generated
far too many trivial nodes (i.e., nodes with one input and one
output arc) and the tree header nodes generated were unnecessar
ily large. He therefore replaced the TRUST tree builder with
one of his own. Similarly, he found the TOSI-based semantics
unsuitable and wrote his own semantic routines. He was able,
using the generated TRUST modules together with his own, to
write a bootstrap version of a C translator. This, of course,
was for a suhset of c, but a subset substantial enough to write

I,
I

a full-scale c translator.
essentially operational.

4

This latter translator is now

The lanquaqe BO is tbe first of a sequence of proposals
culminating in a lanqua(Je suitr1ble for teachinq programming to
bPqinners. Cs> The language is fairly simple, and an attempt was
made to generate a translator for it. The attempt was severely
constrained by the pressure of other work and by limited
computing funds. Using TRUST, a translator from BO to ALGCL 68
was designed and partially com~leted, at least enough to show
that there were no insurmountable difficulties preventinq
completion, given sufficient time and money.

The principal obstacle to the completion of the BO
translator was the implementation of TOSI. In theory, a set of
strings to control code generation should be reaa at translation
time so that minor changes can be made to their definitions
during the course of semantic development. Despite this, the
TOSI implementors decided to compile the semantic strings into
the generated semantic module to avoid the substantial oveibead
associated in performing transput with the local operatinq
system when the generated translator is executed. This decision
provEd disastrous since any slight change to the set of semantic
strings re~uired the complete regeneration of the semantic
module. ~hus, although his made the actual runninq of the
generated translator less costly, the cost of developing the
semantics was high due to frequent expensive module regenera
tions. For this reason, the BO project was dropped after a few
weeks of intermittent effort.

Components of TRUST were incorporated into thesis research
in the development of an interactive high-level debugqinq
system.< 6 > ~his involved two aspects: the use of TOSI as a
stand-alone interactive macroprocessor, and the construction of
a syntax checker. The debugging system, called RAIDE, is
controlled by the commands of a debugginq lanquaqe, called
DiSpeL. Since DiSpeL looks very much like a macroprocessinq
language, it was initially implemented by extending TOSI to
accept strings interactively and by defining the primitive RAIDE
acticns as TOSI functions. This use of a TRUST component
demonstrated the ability to incorporate an interpretive module
into a translator even though TRUST was designed primarily to
accommodate generated modules.

The second application of TRUST to RAIDE was the
development of a syntax checker for DiSpeL proqrams. This
reguired the generation of scanner, lookup, and parser modules.
The result of executing these modules was a parse trace of some
input DiSpeL program; no semantics were associated with the
program. As a byproduct, a qeneral-purpose IMC was written to
ccntrcl syntax checkers for other languages. By combining the
syntax checker with the interactive TOSI component, it should be
possible to generate a translator for DiSpeL, thouqh this was
not done due to time constraints.

5

The most ambitious project relying on TRUST was the
implementation of GRAIL, a semantic representation for the
translation of hiqh-level algorithmic languages.<•> GRAIL is a
gI!Phica! program representation designed to simplify the
development of translators. Instead of writing a translator
directly from a high-level language into object code, the
language implementor defines the translaticn of the source
language into GRAIL and the subsequent translation of GRAIL into
object code. The definition of the translation of the source
language into GRAIL is compiled to produce input files for the
TBUST module generators. Thus, the implementation of GRAIL
constituted a semantic extension to TRUST.

The primary difficulties in using TRUST to implement GRAIL
arose because of the incomflete <locumentation and poor debugqinq
facilities of TRUST, especially in TOSI. Undocumented con
straints were discovered in both the number of productions in
the source language BNF and the total size of TOSI strings.
These limited the implementation to developing translators for
subsets of high-level languages. The TOSI semantics were found
to be extremely expensive and tedious to debug since a ninor
syntax error invariably caused the semantic generator to fail
without any indication of the source of the error. Debugqinq
facilities had to he built into the IMC, written in ALGCL-W,
which grew in size and complexity as more of the semantics were
moved into it from TOSI. Despite these difficulties, the
implem€ntation was successful in demonstrating the use of GRAIL
as an extension to TRUST.

Pedagogical eiperieaces

An attempt was made to use TRUST in an undergraduate course
on compiler construction. This proved to be premature since,
although it had been shown useful for several graduate research
projects. TRUST was not sufficiently documented and debugged for
use at the undergraduate level.

For example, the lexical scanner generator adapted for
TRUST was never completely implemented. Documentation of the
actually implemented generator neglects to mention some of these
restrictions. Thus, students follow~d the manual's specifica
tions and rediscovered known bugs and misfeatures. When these
deficiencies were made public, however, the students managed to
incorporate TRUST-generated scanners into translators for
Algol-like languages which they designed themselves. If any TWS
is to be useful at the und e rgraduate level, it should be
designed with a high degree of system security, error diagnos
tics, and complete and accurate documentation.

6

Criticis■s of TROST

Since the majority of users of a TWS such as TRUST are
language implementors with broad backgrounds, they are almost
certain to be highly critical of its design and development. In
analyzing these criticisms, it is important to avoid basing them
on reinor aspects of the TWS, such as the format of the commands
for generating modules. It is also equally important to avoid
criticizing the TWS foe applications which are outside its
design goals. Consequently, this section concentrates on the
design features which caused the most significant problems.

Perhaps the greatest difficulty comes in linkinq together
the modules using the IMC generator. Although it does permit
the language implementor to choose between coroutine and
procedure modes of control, the IMC generator does not permit a
controller to do anything other than transfer central to another
module. The only facility for conditional transfer of control
is the selection of a segment of code based on the event nurober,
which must be performed when a module transfers control back to
the IMC. Similarly. there is no facility for assigning
expressions to parameters within communication blocks. In the
IMC. parameters to a module must either be integer constants or
parameters copied from another communication block. In princi
ple. all these limitations can be overcome by writing an exter
nal module and an associated contrcller to perform the desired
operation, but this becomes tremendously labcrious and tend~ to
ccnvert the IMC into a nightmarish Gordian knot. In practice,
nearly all users chose to write their own IMCs in high-level
languages such as PASCAL or ALGOL-W. In spite of this, it
remained necessary to imitate the structure of the IMC expected
by all TROST-generated modules. Even with only a few modules
communicating via the event mechanism, it is extremely difficult
to trace the flow of control between modules er to predict the
effects of a change. The majority of users simply took a
working IMC and modified it for their own use.

Another flaw in the design of TRUST is the interdependence
of modules. In principle, a modular TWS should permit each
module to be written, debugged. and tested separately. Never
theless. even a minor change iri one TRUST-generated module can
force oth~r modules to be rewritten. For exam~le, the parser
generator is closely linked to both the scanner and semantic
generators. If the order of parser rules is altered, the
semantic routines must be r etranslated with new procedure
numbers assigned. Similarly, if a new terminal is introduced
into the parser productions, the scanner must be rewritten to
assign a new sequence of lexeme numbers since the parser itself
determines the ordering of terminal symbols alphabetically.
This led to the ludicrous situation of users introducing new
terminals such as 11 ; ", with the labe 1 "z em icolon" rather than
"semicolon", to simplify rewriting and retesting the scanner.
Nevertheless, at least part of this problem is due to the
lexical scanner having been adapted for TRUST rather than having

7

been designed as part of TRUST.

IMPROVE~ENTS

Perhaps the most critical need in developing a large software
project such as a TWS is to integrate the system design. It is
extremely frustrating for the lanquaqe implementor to have to
learn a new protocol for each module and then to have to ;uggle
them together to build a system. Ideally, a modular TiS should
force the implementor to use a top-down structured proqramminq
approach, rather than simply interfacing modules to produce a
translator. Since TRUST was designed from the bottom up, it
suffers from some severe design defects because of incompatibil
ities between modules. Par example, it should be possible to
redefine the productions of the parser generator without having
to rewrite and regenerate the scanner and the lookup modules.
Ideally, the IMC should be defined before any modules are
generated, with stubs being substituted for missing modules.
The current IMC structure simply provides a protocol £or
interconnecting existing modules. Communication between modules
should be based on a user-oriented protocol, rather than on
magic numbers passed from one module to another in series. The
system should also enable each module to be written, generated,
and tested separately once the overall structure of the
translator has been defined. ~he IMC should provide the user
with data and control structures which facilitate the
construction of a translator to suit the user•s own application.
Although it is appealing to define a very simple universal model
for the IMC, each user invariably prefers a different structure.
Implementing these in terms of a simple communication mechanism
such as TROST provides is analogous to programming a Turing
machine.

In TRUST, operating system dependencies are well isolated
by means of the MSC. Nevertheless, the design of the MSC makes
system requests somewhat cumbersome. A well-structured T~S
should allow the implementor to define a hierarchy of system
procedures which can be replaced and called directly by each
module.

Although a TWS is highly d~pendent on its operating
envircnment, emphasis should be placed on a reasonably portable
implementation. Because TRUST is a gargantuan ensemble of IL360
programs, many of which rely on local operating system routines,
it is difficult to move TRUST to another operating system, and
inconceivable to adapt it to another machine. Consequently, the
development of TRUST has halted since few people in a university
environment are prepared to work voluntarily on software ~hich
they are unable to transport.

The TWS should be written in a portable, high-level
algorithmic language such as BCPL or PASCAL, with the system
dependencies as well-defined and isolated as possible. The TWS
source language should be compatible with the range of TWS input

' ..

8

languages so it can b~ used to generate,a translator for the TWS
source language. In this way tha TWS can be implemented on a
new machine by bootstrapping. In this process, a translator is
generated for the TWS source language and the new machine using
the existing TWS, then this translator is used to compile a
version of the TWS which will execute on the new machine.

Ideally, a T~S should provide the user with a wide range of
aids for debugging and testing translators. At present, TRUST
provides only rudimentary debugging aids. Each individual
module may have its own facilities for tracing and dehuqginq,
but there is no overall debugging facility for the IMC. The TWS
should provide the user with both meaningful trace and snapshot
facilities to enable the sequence of module calls to be readily
monitored. This can be done by providing a facility for
generating an interactive version of the IMC, together with a
set of dummy modules. An interactive IMC permits the user to
generate a test translator which can be monitored and modified
interactively.

CONCLUSIONS

In spit~ of the above criticisms, TROST has proved tote a
useful (though cumbersome) research tool. The development of
TRUST, moreover, has led to the following conclusions.

The development of large-scale systems by patching together
existing and newly written components under a rigid monitor is a
poor methodology. Ideally, large systems should be designe~ and
implemented top-down in the approved structured fashion, and
system documentation should be ~ritten in the process. Univer
sities are the primary proponents of the structured approach to
the ccnstruction of programs, but ironically have been generally
unable to apply the approach to large-scale research proiects.

The structured approach to the construction of larqe
systems requires not only a discipline of pcoqramminq, but also
an external discipline of programmers. Some restraint is
required to insure that someone writes each specified part of
some system. In a university environment, nonetheless, people
generally choose to work en projects only out of intellectual or
academic interest. It is difficult to assemble at one time a
large team of researchers (say six or more) who will maintain
interest in the tedious portions of important pro;ects.
Students complete their degrees and leave for jobs; faculty may
he distracted by smaller scale, completable proiects of their
own. l'loreover, when a large project is finally completed, the
burden of system maintenance is likely to fall upon the UEers
since the implementors are pursuing other interests. It is
tempting to bemoan such a situation and compare it to industry
where a more authoritarian discipline at least qives the
possibility (though not necessarily the actuality) of applying
the structured approach to large-scale systems. Industry,
however, is rarely interested in research proiects which lean

9

heavily on theoretical aspects of computer science; and industry
too has substantial investments in existing software which
prevent initiation of new projects.

University computer science departments have been slow to
enter certain important research areas, such as the construction
of practical translator writing systems or the design and
implementation of large-scale database and information retrieval
systems. The reason for this is neither lack of interest nor
lack of funds (though the latter may play a part), but the
nature of the university itself. Since the orqani~ation of
universities is unlikely to change,* it appears that larqe-scale
research projects started from scratch will continue to be
avoided, and that most large projects in universities will have
a patchwork effect. Alternatively, the question mav be asked if
there are not effective methods of organization other than the
hierarchical. The question of the organization of large onqoinq
projects in a university environment requires further study.

ACKNOWLEDGEMENTS

The authors are indebted to the designers and implementors of
TRUST, especially Ted Venema and Tom Rushworth, and to the
various TRUST users, including Don Thomson, John Peck, and Peter
van den Bosch, whose experiences shaped much of the content of
this pa per.

REFERENCES

1. H.D. Abramson, Theor~ and A~Qlication QI g ~Qi1~~=.!!.2
s1ntax-Directed Translator, Academic Press, New York, 1973.

2. H. D.
vol.

Abramson, 'A syntax
14, 261-272 (1974).

nirected macro processor',

3. H.D. Abramson, T.B. Rushworth, and T. Veneroa, 'TOSI: a tree
orient@d string interpreter for the design and implementa
tion of semantics•, Software--Practice and Ex£erience, to
appear.

4. w. F. Appel be, A Seman tic Re.12i;: es enta tion for Translation of
High-Level Algorithmic Languages, Ph.D. Thesis, Department
of Computer Science, University of British Columbia, 1977.

5. L.J.M. Geurts and L.G.L.T. Meertens, 'Designing a beginners'
programming language', Mathematisch Centrum, Amsterdam,
1976.

•one may be unhappy about this or one may reioice that there is
at least one environment where the individual is of primary
importance.

10

6. M.s. Johnson, The Design and Im£lementation of ~ R~n=lifil~
Analysis and Interactive Debugging Environment, Ph.D. Thesis
Draft, Department of Computer Science, TTniversity of British
Columbia, 1977.

7. D.R. Ramer, Construction of LFJkl Parsers with A£.Elication
to ALGCL 68, M.Sc. Thesis, Department of computer Science,
University of British Columbia, 1973.

8. D.M. Ritchie, C Reference Manual, Bell Telephone Latora
tories, Murray Hill, New Jersey, 1974.

9. T.B. Rush-worth, T. V€nema, anci H.D. Abramson, •TOSI', Fro-
ceedings of the 1975 International Conference on ALGOL 68,
Stillwater, Oklahoma, 293-305 (1975).

1 O. T. B. Rushworth, Macros as a Methog_ for S~~~ill'.ing Sema.n tics,
M.Sc. Thesis nraft, Department of Computer Sci€nce,
University of British Columbia, 1977.

11. T. Venema, ! 1~!1£~1 ~~~nn~£ Generator fQ~ ~ ~21~1~~
Cam~iler Generation System, M.Sc. Thesis, Department of
Computer Science, University of British Columbia, 1975.

12. 1. Venema, 'A lexical scanner generator for a modular
compiler generation system', Proceedings of the Canadian
Computer Conference, Montreal, 373-386 (1976).

13. 1. Venema, TRUST User's Guide, Technical Maoual, Department
of Computer Science, University of British Columbia, 1976.

11

r
I
I
1

MSC

,
I
l
I .\.--_______ .J

.r-
1

• I
T

I IMC
I

,
I
I
I

L--------.J

• I • I
,--------------.J

..
I
I
I

L---- , --------,

I
'f

r------,
I I
I Module I
I 1 I
I I

' ,-------,
I I
1 Module I ...
I 2 I
I I

.J

I
f

.--------,
I I
I Module I
I n I
I I
L _______ .J

Figure 1. Basic Translator Structure

