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1. iINTRODUCTiON.

In introaucing the sequent calculi Lk for
classical first order logic and LJ for intuitionistic
first order logic, Gentzen [ 1 ] noted the importance
of duality and symmetry of the caicuius LK. Concerning
symmetry Gentzen wrote: ' This is made possible by
the admission of sequents with several formulae in the
succedent....The symmetry thus obtained is more suit-
abie tou classical logic. On the other hand the restriction
to at most one formula in the succedent will be retained
for tne intuitionistic calculus LJ." (page 86 of the
English translation edited by M.E.Szaboj.

The tableaus methoa in proof theory, tirst
introduced by Beth [2] and Hintikka (3] , uitimately
derive trom the Gentzen sequent calculus, as Smullyan
acknowledges (page 15 of C4] ) in defining his analyrtic
tableaus. In addition, Gentzen's observations about
LK, together with the weil known dual properties of
first order ciassical logic, led to the introduction
of dual tableaus, see ior example the duals of Smuliyan
tableaus, (eisewhere called positive analytic tableaus)
definea in (5] .

Turning to intuitionistic first order logic
as formalized by neyting (6]}, it does not seem that
tne dual properties of this formal system have been
investigated. It should be noticed however that the
restriction to only one formuia in the succedent of a
sequent in the calculus LJ was in many cases unnecessary,
see Leblanc and Thomason 7] .

After thne introduction oi Kripke's semantics
for intuitionistic logic (81, Fitting (9] introduced
intuitionistic tableaus with signed formulas, proving
completeness of this method of proof with respect to
Kripke models. Then Smullyan ({107 showed how the
completeness theorem for intuitionistic logic, as
well as for S,-Modal logic, can be obtained as a special
case of the completeness theorem of ciassical frame-
works. :
With sucn poweriul instrumenis at our disposal
it is easy to show tnat Betih intuitionistic tableaus
have duals and to prove their completeness with respect
to Kripke models.



2. KRIPKE MODELS AND POSITIVE INTUITIONISTIC TABLEAUS.

Before introducing Kripke models we require
some definitions.

Let 8 be a countable, non-empty set of para-
meters: a, b, ¢,...; and let D be a countable set of
predicate letters Al’ A,,... . An atomic formula from
8 and D is an expreSsion of the type A(k1’k25">kn)

where A is an n-place predicate letter in 9 and for
each 1 < i <n ks is an element of ‘8.

A classical model for ©® and D is any complete
and consistent set of atomic formulas. Formulas from
8 and D are built in the usual way from atomic formulas
using the connectives &, v, ~», » and the quantifiers
¥,3 . A signed formula is any expression of the form
+B or -B where B is a formula. If S is a set of signed
formulas let

S, = {+B | +Be 8} , S8_={-B| -B ¢ S} and

D(S) = {+X | #X ¢ S }.

Definition. An intuitionistic Kripke model
for '8 and D, called a model in the sequel, is a triple
(K, R, o) where :

K is a non-empty set
R is a reflexive and transitive relation on K,
¢ is a mapping from K such that for each p, g in K
(1) ¢(p)is a classical model for Q' and D, V!
a non-empty subset of 8
(2) For each A in D and for each a in 8:
tA(a) e®(p) and pRq => +A(a)e 2(q);
-A(a) e¢(p) and pRq => either —A(a) or +A(a)
is in &(q).

Definition. Let T be a set of (signed)
sentences. We say that the (signed) sentece (%)B
is from I if each parameter and atomic predicate letter
used in B appears in some sentence of T.

Definition. Let (K, R, ¢) be a model.
We want .to define by induction a sequence of functions

on K, é(o) (1) <“),... such that for each neN and
for each p in K ¢“3(p) contains only signed sentences




trom o(p). Let ¢mkp) = ¢{p) ror all p in K. Having
defined #M® sucn that for each p in K ¢&tp) contains
only signed sentences from ¢(p), then o™ Vis gefined
in the foliowing way. For each p an K @“”kp) L5 the
set of signed sentences *B, B a sentence from ¢(p),
for which one of the fo¢low1ng conditions holds:

(1) #B e o kp), respectively;

(2) B 1s C&D and each of +C and +D is in éﬂ(p),
respectively, one of -C or =D is in oK(p);

(3) B 1s CVD and one of +C or +D is in o¥/(p),
respectively, both -C and -D are in #kXp);

(4) B is »C dnd for each q in K such that pRq, -C
is in o) (q), respectively," there is a q in K
such that pRq and +C is in gk (q)

(5) B is C»D and for each q i1n K such that pRq
one of -C or +b is in ofk)q), respectively,
there is a q in K such that pRq and each of
+C and -U are in Q(Lq),

(6j B is AxC(x) and +C(a) is in tl)Qde) for some
sentence C(a) from ¢(p), respectively, for ali
sentences C(a) from o(p), -C(a) is in K)(p);

(7) B is ¥xC(x) and for ali q such that pRq and
for all sentences t(a) from ¢(y) +U(a) is in
o(q), respectively, there is a g in K such
that pRq and for some sentence C(aj from ¢(q)
-C(a) is 1n eW(q).

Finally let for each p in K ¢ (pj = .KLSJNQM(})).

With this derinition, for eacin p in K ¢ {p) contains
one and only one of +5 and -B tor each sentence B from
o(p) .

Definition. A sentence B is valid in a #model
(K, R, ¢) if for each p in K such that +8 is from &(pj,
+Bed® (p). A sentence B is vaiid if it is valad in all
models.

Definition. Let S = {#Xl,...,*Xﬁ,JYl,..,JYh}.

A moael (K,x,®) is a countermodel £or the set 8 if
there is a p in K such that -X, € ¢ (p) tor each i <n
and +Y. € ¢ (p) for each j <m. "When this happens we
wili sAy that p refuses S.



Finally we recall the foliowing property of

Kripke models: if (K, R, ¢) is a model

for any for-

mula X and eiements p, q in K if +Xe ¢ {q) and pRq

then +Xe Q*(q).

We are now ready io introduce our dual

tabieaus.

In table A are shown the reduction rulies for

intuitionistic Beth tabieaus as introduced by Fitting
€ 91, while in table B are the positive intuitiomnistic
tableaus. All proof- theoretical definitions given

in Fitting apply with minor changes.

In particular

we recall that a set S of signed seniences is ciosed
if 1t contains both +X and -X for some sentence X.
We wiil write L-I X, if some positive beth

tableau for +X closes.

S, +X, +Y

S, + X&Y

S, + XVY

5 *x | 8§, #Y

Sy # XY
S, -X | S, +Y

S, # IxX(x) *
S, +X(a)

Sy, * V&X(x)
S, +X(a)

S, - X&Y

S, -X | S, -Y

S, - XvY

By ~Xyp =X

S, - ~X

S+, +X
S, - X->Y
S+, +X, =Y
S, - AxX(x)

S’ _X(a)
S, - VxX(x) =
S+, -X(a)

. : . .
with the proviso that a does not appear in S or in X.

Table A



1) sz,six+|)'cs&,fy 2) ﬁ%

5) 2_’% o S?:X—]XS\.(,ZY

I S v

P N
) S5 10) 25
W SRS T e S

® . 5 .
with the proviso that a does not appear in S or in X

Table B

3. CORRECTNESS OF POSITIVE INTUITIONISTIC BETH TABLEAUS.

The correctness of Beth intuitionistic
tableaus is a straightforward consequence of the follow
ing theorem:

Theorem (Fitting [9]). If Cl,Cz,..,Gn is

a tableau and Ci is realizable, so is Ci+1'
In the case of positive Beth tableaus the

dual concept of realizability will be the notion of
countermodel defined earlier.

Theorem 1. Suppose the set of signed sentences
above the line in any of the rules of table B admit
a countermodel, then so does the set below the line
(or at least one of the sets below the line in the
cases of rules Bl, B4, B8).




In order to prove the theorem we need the
following lemma, whose tedious proof we omit because
it parallels exactly the proof of lemma 2.2 of
Fitting (91].

Lemma 1. If {S,+X(b)},( {S,-X(b)} ),
admits a countermodel and a is a parameter which
does not occur in S or in X(b), then {S,+X(a)},
{S,-X(a)} resp.), admits a countermodel.

Proot of the theorem.

There are twelve cases to consider according
to which rule we apply.
Bl. Suppose there is a pe K in a model (K, R, @)

which refuses {S,+X & Y}. Then DtS)QQ*(p) and

-IX&'Y5¢*(p) , which implies that either -X or -Y

is in ¢*(p). Therefore either p retfuses {S,+X} or
p refuses {5,-X}.
B2. If there is a pe K in a model (K, R, ¢) which

refuses {S,-X &Y}, then D(S)¢& <I>*(p), +X&Ye<1>*(p)

and therefore +X and +Y are both in ¢*(p). Hence p
refuses {S,-X,-Y}.

B3 and B4 are proved analogously.

B5. Suppose there is a pe K in a model (K,R,9) which

refuses {S,+~X}. Then -~X is in ¢*(p), which implies

that there exists a qe K such that pRq and +Xle¢*(q).
Moreover each signed sentence -B in S is such that

+B is in Q*(p) and hence in Q*(q). Therefore q refuses
{s_,-X}.

B6. Suppose there is a pe K in a model (K,R,¢) which
refuses {S,-~X}. Then +~X, and hence -X, is in

Q*(p) and D(S)£,¢*(p). Theretore p refuses {S,+X}.
B7. If some.pe K in a model (K,R,%) refuses {§,#X>Y},

then -X-+Y is in ¢*(p) which implies that there exists
a qe K such that pRq and both +X and -Y are in

*
¢ (q). Moreover each -B in S is such that +B is in

™ i . . E3
¢ (p) and a fortiori in ¢ (q). Hence q refuses
{S_,-X,+Y}.



B8. If some pe K in a model (K,R,¢) refuses {S,-X~+Y},
then +X->Y is in ¢*(p). Hence either -X or +Y is in

é*(p) which also contains D(S). Hence p refuses either
{S,+X} or {S,-Y}.
B9. If some pe K in a model (K,R,®) refuses

{S, +3xX(x)}, then D(S)€ s (p) and -3xX(x) e o (p).

If a is used in ¢(p), then -X(a) is in ¢*(p). Hence
p refuses {S,+X(a)}. Otherwise let c be a parameter
used in ¢(p). Then p refuses {S,+X(c)land a does not
appear in S or in X(c); hence the lemma applies.
B10. Let us suppose there is a model (K,R,%) and a

P € K which refuses {S,-—ExX(xj}. Then D(S)¢ Q*(p)
and +3xX(x) is in Q*(p). Therefore, for some c,

+X(c) € Q*(p) and p refuses {S,-X(c)}. If a=c we are

done; otherwise, since a does not occur in S or X(c),
we invoke the lemma.

Bll. Suppose there is a pe K in a model (K,R,¢) which

refuses {S, +¥xX(x)}. Then -VxX(x) is in Q*(p).
Hence there exists a qe K such that pRq and a para-

meter ¢ from ¢(q) such that -X(c) e ¢*(q). Moreover
each -B in S is such that +Be Q*(p); hence +B is in
Q*(q) so that q refuses {S_,+X(c)}. If a=c we are

done; otherwise we invoke the lemma again since a does
not occur in S or X(c).
B12. If some p in a model (K,R,2) refuses {S, -¥YxX(x)},

we have that D(S)¢ Q*(p), +¥YxX(x) e ¢*(p). Hence

+X(c) is in ¢*(p). If a is one of these c we are done;
otherwise this implies that a does not appear in S,
X(c), while p refuses {S,-X(c)}. Therefore the lemma
applies.

Corollary 1. If F—IX, then X is valid.

Prootf. By hypothesis there is a closed

tableau fo +X of the form C1={+-X}, Cz,...,Cn,



where Cn is a configuration all of whose elements are

closed sets. Suppose that X is not valid. Then there
exists a model (K,R,%) with a pe K which refuses {+X}.
But then by the theorem each Ci and, in par‘cicular,Cn

must contain at least one set of signed sentences
which admits a countermodel. This gives a contra-
diction since each set of Cn is closed.

4, COMPLETENESS OF POSITIVE INTUITIONISTIC BETH TABLEAUS.

The completeness proof closely parallels
the one given by Fitting (91 and derived by Kripke [81].
First we will introduce the notion ot a dual Hintikka
collection. Then we will show that any dual Hintikka
collection admits a countermodel. Finally we will
show that if no positive tableau for +X closes, than
+X can be extended to a dual Hintikka collection,
from which completeness of positive tableaus with
respect to Kripke models follows immediately.

If S is a set of signed sentences, let‘SS

be the set of all parameters occurring in the formulas
of S.

Definition. A dual Hintikka collection is a
collection \% of sets of signed sentences such that
for any S in , no positive tableau for S closes
and the following holds:

1) if +X&Y e S then +XeS or +Ye S

2) if -X&YeS then -XegS and -Ye S

3) if +X Y eSS then +XeS and +Ye S

4) if -X YeS then -XeS or -Ye S

5) if -~Xe S then +Xe S '

6) if +aX e S then there is a T in ‘ﬁ, such that

‘SSC_:‘ST, S ¢T and -XeT

7) if -X+>Y e S then +XeS or -Ye S
8) if +X+>Y e S then there is a T in ‘9 such that
“SS_G_‘ST, S €T and -XeT and +YeT

9) if +3xX(x) eS then for all a in “SS +X(a) e S




10) if -3xX(x) € S then for some a in‘Ss -X(a) e S
11) it -UxX(x) € S then for all a in 8, -X(a) €S

12) if +VxX(x) € S then there is a T in ﬁ} such
that ‘SSQ‘-ST, S ¢T, and an ae'8_ such

T
that +X(a) ¢ T.

Given any dual Hintikka collection.§={8p}pel

we can define a model (K,R,®¢) as follows. K = I;
R is a reflexive and transitive relation on I

such that pRq iff S < S and “8_, <8 s

P,~ y= Sp Sq
and for each p in K &(p) is a classical model from‘SS
defined by: +A(a) e o(p) iff -A(a) is in §  for P

each atomic sentence A(a).

Theorem 2. For any dual Hintikka collection
the corresponding model defined above is a counter-
model for any set Sp.h1$. More precisely for any

pel: if iXe:Sp, then ;sté*(p).

Proof. Since Q*(p) = k{& Q(n)(p), it is

enough to show that for each pe I and for each
integer n Sp{\¢(n)(p) is empty.

The assertion is true by definition when
n = 0. Suppose the assertion true for each integer
k <n. We now prove it is true for k=n+1 by
assuming the contrary and deriving a contradiction.

Suppose there is a Z which is both in Sp and in

+
¢(n 1)(p). We have twelve cases to examine according
to the form of Z.

(1) Z is +X &Y. Then either +X or +Y is in Sp while

both of them are in ¢(n)(p). This contradicts
the induction hypothesis.
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(2) Z is -X&Y. Then both -X and -Y are in S_ while
(n)

at least one of them must be in ¢
gives a contradiction.

(p), which

(3) and (4) The cases Z=*XVY are treated similarly.

(n+1) 5y,

(5) Z is -~X. Since Z is in ¢ there exists

a q such that pRq and +Xe ¢(n)(q). But -~X 1s
also in Sq’ because S <S  ; hence +X is

H >

also in Sq’ a contradiction.

(6) Z is +~X. Since Z is in Sp, there exists a q such
that S e 5 and -X is in S . But by hypo-
p,- q,- q
(

? 3

thesis, ++X is also in & n+1)(p) and pRq; hence

<X 5 da 3 0gy, Whieh 1s inpesaibis.

(

(7) Z is -X~»>Y. Since Z is in ¢ n+l)(p), there is

a q such that pRq and +X and -Y are in Q(n)(q).

But because S <SS  , -X-Y is also in Sq;
b 3

that is, either +X or -Y is in Sq, a contradiction.
(8) Z is +X~+>Y. Since Z is in Sp, there is a q such
that S < S and both -X and +Y are in S
P, q, - q
But pRq and Z in.én+1)
o (M*1)

(p) implies Z is also in

(q) which means that either -X or +Y must
be in ¢(n)(q), a contradiction.

(9) Z is +3dAxX(x). Since Z is in Sp, +X(a) is in Sp

for all a in‘BS. But, because Z is also in ¢(n+1)(p)

there must be some a.e%s such that +X(a) is in

P
¢(n)(p), a contradiction.

(10) Z is -3xX(x). Since Z is in Sp, there must be
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an a in‘SS such that -X(a) is in Sﬁ' But, be-

’ (n+1)

cause - 3xX(x) is also in @ (p), then -X(a)

is in ¢(n)(p) which is impossible.

(11) Z is -¥xX(x). Since Z is in ¢(n+1)(p), there is
a q such that pRq, and an a in‘SS such that

P (n) : q
-X(a) is in ¢ (p). But Z in Sp implies Z is
also in S_ because S & 8 ; hence -X(a)
q P~ q, -

is in Sq which is impossible.

(12) Z is +Y¥xX(x). Since Z is in Sp’ there is a q
such that S £ S , S c S and +X(a) is in S
P q P,- q,- q
On the other hand, in view of the relation pRq,

the hypothesis that +¥YxX(x) is in ¢(n+1)(p)

implies that +X(a) is also in Q(n)(q), a contra-
diction.

Definition. A dual Hintikka element with
respect to a set ‘S of parameters is a set of signed
sentences S such that no tableau closes for S,

“SSEDS, and S satisfies conditions 1,2,3,4,5,7,9,10,11

in the definition of a dual Hintikka collection.

Theorem 3. Let S be a set of signed sen-
tences such that no tableau for S closes, and“S a
countable set of parameters such that‘ssg*s. Then
S can be extended to a dual Hintikka element with
respect to <8.

Proof. Let Z. ,Z,,+++3Z_ 5%+ D€ an enumer-
1772 n

ation of all subformulas from S using only parameters
from 3. We want to define a sequence of signed sets

S. . for each i eN and O0<j <i, such that no closed

>

tableau exists for any of them. Let S0 o~ S.
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n-1,n-1" Lot Sn,O B Sn—l,n—l'

Now, in order to define Sn,k+1 given Sn,k for
X If neither of +Zk or
—Zk is in Sn,k’ let Sn,k+1 - Sn,k' Otherwise, since

Sn K is consistent by hypothesis, at most one of +Z
> §

-Z,. is in S
k n
cases.

Having defined S

O<k<n, let us consider Z

k’
X Again we have to consider all possible
3

If +Zk is in S and has the form +aX,

n,k
+X =+ Y, +¥xX(x), then Sn,k+l

Zkis X&Y and —Zkis in S

= § . Otherwise: 1if
n,k

R’ Lot Sn,k+l B {Sn,k’—

Since no tableau closes for S by the induction

n,k
hypothesis, no tableau can close for S I£ +Z
+Y}

X,-Y}.

n,k+1° k

is in Sn,k let Sn,k+l be {Sn,k’+X} or {Sn,k’

according to which of the two configurations does not
close.

The other propositional cases are treated
similarly.

Z, is AxX(x) and +3AxX(x) is in S,

Then bn,k+l is obtained by adding +X(a) to Sn

for each parameter a used in S

"

,k

K It is clear that

no tableau closes for S if no tableau closes
n,k+1

for Sn,k' If -3dxX(x) is in Sn,k’

struction Sn X contains only a finite number of para-
2

meters, take from S the first unused parameter a, and

let Sn,k+l = {Sn,k’ k 1s ‘VXX(X)

is treated similarly to the case +32AxX(x).
It is evident by construction that

T=\S is a dual Hintikka element with respect
neN n,n

to 8.

then since by con-

—X(ai)}. The case Z
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Theorem 4. (Completeness) If X is valid,
then F—IX.

Proof. We will show the contrapositive,
that is if no tableau for +X closes then {+X} admits
a countermodel and therefore X cannot be valid.

Let {n_} be a collection of countable
m meN

sets of parameters such that nir\nj is empty for

each i,j e N, n. contains all parameters in X and let

1
g =\f/n for each ne N.
n el m

Let us call a p-sentence any sentence of
the type #+Y, +Y > Z, +{/xY(x). We will now show how
to construct a dual Hintikka collection starting
with +X. Since no tableau for +X closes, extend {+X}
to a dual Hintikka element with respect to‘Sl. Let S1
ﬁﬁ be the set of signed sentences so obtained. Now
enumerate all p-formulas of S1 and take the first
one. We then extend one of the sets . {S1 _e~XD,

{Sl . 5=R,4Y}, and {S1 _,+A(a)} to a dual Hintikka
] ’

element with respect to‘SZ, note that a eS8 according

2’

as the first p-formula of S, has the form ++X, +X->Y

1
or +YxX(x) respectively.

Call S2 the result of such an extension

and consider the p-formula in question "used".

Clearly no tableau can close for S2 if no tableau

for Sl closes. In general at step n we will have the

collection {Sl,SZ,...,SZn} where each Si is a dual
Hintikka element with respect to‘Si. Take the first

unused p-formulas appearing in each of these sets
and repeat the process above according to the form
of the p-formula, obtaining in this way a sequence

£ T Ll
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It is clear that the collection % con-
structed according to this procedure is a dual Hintikka
collection. Indeed each element S; of 5 , being a

dual Hintikka element with respect to‘Si, must satisfy

conditions 1,2,3,4,5,7,9,10,11. Moreover if +~X is
in Si’ for some i, then by construction there must
be an Sk in 5 such that Si k,‘s Cfssk and

—XE:Sk so that condition 6 is satisfied. 1f +X->Y

is in S. there must be an Sk in % such that Si &S
3

‘SS E@S and both -X and +Y are in Sk’ which takes
k

care of condition 8. Finally condition 12 too is
satisfied because if +VxX(x) eSi, for some i, then

k’

by construction there must be an S, in'% such that

c :

Si 3 Sk,*ssl_}ss , and an a 1n‘-5S such that +X(a) € S
L k k

Since is a dual Hintikka collection, we

can apply Theorem 2 and construct the corresponding

X"

model. In such a model Q*(p])r\sl is empty but +Xe:Sl;
hence -X¢ ¢*(pl) and X is not valid.

AKNOWLEDGEMENTS

G.Criscuolo is grateful to prof.P.Gilmore who intro-

duced him to the subject of intuitionistic logic and

dual tableaus; and to prof.A.Mowshowitz for editorial
suggestions on the present paper.

R.Tortora wishes to thank prof.A.Melzak and the Depart
ment of Mathematics of the University of British
Columbia for their hospitality in Vancouver, which made
this work possible.



(13

R

_15_

BIBLIOGRAPHY

.GENTZEN - "Untersuchungen iliber das logische

Schliessen."™ Mathematische Zeitschrift, 39,
1935. English translation in "The collected
papers of Gerard Gentzen'", ed.by M.E.Szabo,
North Holland, 1969.

.W.BETH - "The foundations of mathematics."

North Holland, 1959.

.J.J.HINTIKKA - "Form and content in quantific-

ation theory.'" Acta Philosophica Fennica, 8,
1955

.M.SMULLYAN - "First order logic.'" Springer-

Verlag, 1968.

.LEBLANC, D.P.SNYDER - '"Duals of Smullyan trees."

Notre Dame Journal of Formal Logic, vol.
XIIE, 3, 1972.

.HEYTING - "Die formalen Regeln des intuition-

istichen Logik." S.B.Berlin, Phys.-math.
K1., 1930.

.LEBLANC, R.H.THOMASON - "The demarcation line

between intuitionistic logic and classical
logic." Zeitsch.f.math.Logik und Grundl.d.
Math.,12, 1966.

.KRIPKE - "Semantical analysis of intuition-

istic logic I." in Formal Systems and rec-
ursive functions, North Holland, 1965.

.C.FITTING - "Intuitionistic logic, Model Theory

and Forcing.'" North Holland, 1969.

M.SMULLYAN - "A generalization of intuition-
istic and modal logic." in Truth, Syntax
and Modality, ed.by H.Leblanc, North Holland,
1973.





