
MflM
MMMM IUfM

MM K MM
M 11

M M MMMMl'UUUUt
Jl'IM MM P.IMM!.11 !UHi

MMM MM Ml! ll!M
MMH MMM MM M.KM
MMM MMM!HI Pl/II KfU11UUIM

MfU't PIM
MM

Mft MMM MMMMMMM MMMM
PIMM MM K!M I!! MN

M
MMMM
MMM

M KPJft
lUl KMII
tUUUll!ft

M M
MM

MM!'!
MMM
Ml'IM

fUUl K
tUIMMM

•••••••••••••••••••••••••••
* •
* FUNL Semantics: *
• Work Towards an UNCOL *
• • •••••••••••••••••••••••••••

by

R. A. Praley

Technical Report 77-9

Auqust 1977

Department of Computer Science
University of British Columbia

Vancouver, B. c.

FUNL Semantics:
Work Towards an UNCOL

R. A. Fraley
University of British Columbia

August 27, 1977

ABSTBACT

An intermediate semantics lanquage, applicable to aanv
source languages and machines, is proposed in this paper. over
its domain and ranqe it promises manv of the advantaqes of the
original UNCOL project. Data abstraction is used to hide
machine features. The lanquage hides from the source compiler
all implementation representations and conventions, except for a
few descriptive constants. The semantic model is expandable by
me3ns of a library. Higher level semantic models may be
iaplemented in FUNL, reducing compiler writing effort.

1

FURL Semantics: Work Towards an UNCOL

The Unlanguaqe processor desiqn philosophy encourages the
development of modular, · extensible, evolutionary lanquaqes which
are transportable. P.ONL is the First UNLanguage processor
(4,5]. This paper presents the semantic model which has been
developed for FONL.

As the design of FUNL progressed, its c~pabilities showed
~any similarities to those of UNCOL [6,11]. UNCOL, a UHiversal
~ompiler Language, was conceived in the late so•s, but was
abandoned as being an impossible task. Because of this failure
the UNCOL objective is often considered to be impossible [9).
this conclusion seems to be based on the failure of the original
project and the obvious conclusion that no one languaqe can
~ontain all possible ideas.

The FUNL semantic model is not universal. But for some
class of source languages the FUNL semantics primitives seem to
provide an efficient description of their concepts. Likewise,
the FUNL semantics canoe efficiently implemented for some class
of computers. While FUNL will be most useful if these classes
are large, reduction of implementation e .ffort will occur if
there are more than two members in each [6). Because modular
compilers can be constructed using PUHL, the system offers
~reater potentials than those described for the original UNCOL.
WheR hew compilers are constructed, portions of existing
compilers m~y be utilized. Because of its evolutionary syntax,
Languages developed using PUNL are more flexible than those
designed with conventional techniques.

There are a number of reasons to believe that FUNL will
achieve UNCOL' s goals where the original e .f fort failed.

1. It has weakened the goal of universality.

2. Its description employs data abstraction methods which
have been developed in the past fifteen years.

3. The semantic model is built using higher
primitives.

level

Data abstraction sol~es one of the few documented problems
vhich existed with the original UNCOL. Its authors were
concerned about using indirect addressing on those machines
which have it, yet working correctly fo:r those which don•t.
PUNL contains an abstract data type LOCATION. which is defined
tor each implementation. The contents of this type cannot be
interrogated by a compiler specification. The semantic model

J.

contains primitives for manipulating locations.

Comparisons

Intermediate languages fall into three qeneral cateqories:
nigh-level, mid-level, and low-level. Hiqh-level intermediate
languages tend to restrict the available source lanquaqes since
their model includes a part of a source lanquaqe model.
Low-level intermediates, on the other hand, tend to exclude so~e
target machines since they are based on a specialized machine
model. ~id-level intermediates attempt to exclude the biases of
the source lanquaqe, yet not introduce machine details. The
FUNL semantics fo.rms a raid-level intermediate language.

The high-level intermediates, such as GRAIL (11, P-Code
(7), and OCODE [10] are generally based on a stack model or a
postfix notation model. In either case, a large amount of
implementation is still needed to produce machine code for
non-stack machines. These intermediates are designed to work
with a single language or. in the case of GRAIL, a restricted
class of languages. Low-level intermediates. such as INTCODE
[9], LOWL [3], portable c intermediate langauqe [7), and PLUB
[12] are based on a specific machine model. To i ■plement this
model in an efficient manner on a different machine requires a
large implementation effort if the structures differ greatly.
When code has been generated to bypass a resource limitation of
the model machine, it must be detected and eliminated by the
implementation. some operations of the model machine must be
simulated by the implemntation translator so that they needn't
be performed at run time. In many cases, facilities of the real
machine can't be used by the implementation because applicable
situations cannot be detected.

only one mid-level languaqe has been found by the author.
Xhe "Storage" language which forms the middle abstraction for an
Algol 68 compiler (21 appears to be one, but its details have
not yet been located.

The Design of FUNL

FUNL was inspired by work on a Pascal compiler f8]. The
work performed by the author in re-designing and expandinq the
compiler suggested some internal structures which were
independent of the source lanquaqe details. At the same time,
the implementation of the structures was iqnored bV most
routines. These structures and the routines for manipulatinq
them vere isolated and refined. The resulting primitives vere
subjected to a number of "situations", where each· situation was

3

a code segment in some programming language. A sequence of
primitives was needed to handle each situation.

The goal of an UNCOL is flexibility and simplicity for both
the compiler and the i ■plementation. There is no way to
determine how closely FUNL approaches these qoals. Many
compilers must be built for ■any languages, on many machines,
and by many people, before the FUML primitives can be refined to
an acceptible degree of universality. Readers are urged to try
these primitives with their favorite languages and machines, and
to submit descriptions of problem areas and suggested
improvements.

PUNL's main advantage is flexibility in memory allocation
primitives. FOHL is capable of simulating COBOL structures
which have dynamically computed displacements. (This facility
is also used in memory management, even when dynamic
displacements are not a part of the source lanquaqe.) It allows
the compiler to pass packing information to the implementation
without knowing the machine's internal structure. The
implementation can ch~ose to pad fields; it knows when
comparisons of the packed fields aight be performed. FUNL is
capable of some type checking. While the compiler is free to
attach any type to any position in me■ ory, the implementation
can be sure that this assiqbed type is beinq used in a
consistent manner.

Th~ c semantic ■ odel, like many of the others, has a "call"
primitive. FUNL attempts to add distinguishing features to
procedures so that many different callinq sequences can be
qenerated. For example, a compiler might generate different
sequences for its own procedures, external procedures, and
support routines. some of the decisions for the details of the
calling sequence are left to the compiler, while others are
determined by the implementation.

The type-checking facilities are not absolute. Because
data fields can be arbitrarily overlapped, t~e compiler desiqner
can access one fora of data usinq a different description. The
choice of descriptor for a qiven location gives him the power to
~ypass type checking. This implies that programs might produce
different results in different implementations if the compiler
allows access to the data representation. Some design for
portability therefore re mains with the language.

The FUNL semantic model is not small. It has about 100
primitives, not including library modules. These primitives are
defined in Appendix I. The definition of these primitives is,
of course, subject to change at this stage of PUNL's
development. An example which uses so ■ e of the primitives is
presented in Appendix II.

Machine Types

The data abstraction MACHINE_TYPE defines the
representation type being used in an implementation. This type
is distinct from source language types. A selected machine tvpe
determines the amount of memory needed to store a piece of data.
The selection of types includes a BIT type. This suggests a
bias towards machines capable of using a binary number
representation, although digit tests could replace bit tests.

A number of primitives are provided for dealing with
machine types. The FIXED primitive machine types hold integer
values. FLOAT types can hold real values. Fields of CHAR type
hold a single value from an arbitrarily large character set. An
object of POINTER type holds a reference to me ■orv, while a
specified number of bits will fit in a BIT type.

Replecation of a type, as in an array, forms another
machine type. DYNAMIC types may be constructed for variable
length replications. A dynamic type ■ay also be created usinq
the stored size of a data element.

Areas

An AREA is a compound storage unit composed of Ii~lg§1 each
field having a machine type. The area can be allocated (qiven a
piece of real memory vhich can hold its fields), . or can be part
of a larger area. The fields which form an area are normally
concatenated, so that one follows another: they may also overlay
each other if desired.

There are two varieties of areas: standard and comparison.
In a standard area, the implementation can leave space between
fields. This "padding", used to improve access time to
variables, will contain an indeterminate value. If two areas
are to be compared, all bits become significant. The areas can
only be equal if all bits, even padding, agree. (The compiler
could do a field by field comparison, but the i ■plementation
doesn•t have the required information.) If the implementation
decides to add padding to a "comparison" aI"ea, it must be sure
that different copies are not made unequal by their fill bits.
If a field allocation caused padding to be added to an area, any
assignment to that field must place a standard value in the fill
bits. Likewise, if a subfield is referenced, and the subfield
is adjacent to the padding, the paddinq bits must be set again.

5

Packing

To allov more flexibility in creatinq data structures, a
J!!!Cking factor may be specified as part of the machine type
description. A packing factor specifies the trade-off between
the expense of retrieval and the data storage space. Since each
implementation will have a different number of choices for the
£epresentation of a value, a compiler must be specified without
knowledge of this number. An arbitrary decision vas made to use
values from Oto 100 for packinq factors. To reduce the amount
of tuning required vhen moving a compiler to a new installation,
the following rule may be used for assiqninq representations to
packing factors:

Make a grid showinq reference expense (time and space)
vs data storage space. Por each representation being
considered for a data type, "compute" its expense and
storage space values. Connect the relevant points by
a (minimal) monotonically decreasing function. Divide
the expense scale into 100 intervals. A
representation which lies on the decreasinq function
is used for all packinq factors from its coordinate to
the next representation havinq greater access expense.

This process is quite arbitrary, but may aid in compiler
transportability.

The ends of the packing factor scale have not been
specified by the above technique. We can say that "10" means "A
little extra overhead is okay if you can save a fair amount of
space", while "85" means "Make a dense packing, but don't do
anything which requires an inordenate amount of time."

Locations

A LOCATION is an abstract data type which refers to an
i11pleaentation location. There are three types of locations:
actual, displacement, and literal. An actual location refers to
a data location in the implementation, while a displacement is
the distance from one location to another. A literal contains a
constant value, which may be assigned storage space in the final
obiect code.

Locations can be IH!~!HU!1 and transient. A transient
object disappears after it is re.ferenced in a FU NL primitive.
(Certain primitives do not destroy their location parameter.)
The primitive routine USE_COUNT allows an object to be used
several times before it disappears. For efficient code
generation, transient objects should be discacded if all of
their specified uses are not needed.

6

The location model will probably be difficult to implement
on a stack computer. Stack machines vill probably lie outside
the target space of PUNL. (While the UNCOL ■odel could be
simulated to re-create the stack sequencinq. there is some
question as to the desirability of the technique.)

Labels

Positions in the generated code ■av be ■arked by LABELS. A
label is an abstract type which isolates the assiqn ■ent of
ae■ ory locations from the compiler code. Labels ■av be
manipulated by primitives, but label values and relative
positions may not be determined. GO T0 1 s are used to branch to
t.hese labels.

Lest the reader be alarmed by the GO TO capability, recall
that the ¥UNL semantics lie betveen the hiqh-level lanquaqe and
the machine languaq@. Flexibility ■ust be given to the compiler
writer, not structure. The compiler may impose structure on the
source programmer, and prevent his access to labels and the
~o TO mechanism.

Functional Primitives

The FONL functional primitives include all data
transformations which can be generated. The selection of these
primitives is guite difficult: ve want as many as possible so
that the compiler aay be ■ore easily specified and ■ore ■achine
features can be utilized, yet as fev as possible so that the
implementation is compact.

It is obvioas that the basic arithmetic operators are
needed. But the selection of more obscure operators is harder
to accomplish. such operators must be well defined in terms of
the available machine types, independent of the representations
used in various machines. ihen duplication vas found in the
selected primitives, one of the duplicates was omitted. Some
common machine instructions produce different results on
aifferent machines. For example, an algebraic riqbt shift is
usually regarded as being a division by a power of tvo. But
most 2's complement machines truncate away from zero for
negative numbers. Instead of providing an explicit riqht shift,
the division operator can check for division by a power of 2 if
appropriate.

The results of real number computations usually differ fro ■
machine to machine. due to the difference in hardware
implementation or vord size. The author views this as a fault
of the usual representation of real nuabers. The FOHL system
does not attempt to solve these problems, but should be no worse

7

for transportability of programs than other syste ■s.

A number of pri111itives perfor• tests. These primitives
should be able to hide the differences between machines which
use a conditional branch or jump based on siqn from those which
use an instruction skip facility. Special forms of the test
primitives are provided for producing a numeric true/false value
in place of a transfer of control.

Generation Libraries

There are a number of operations performea by hardware
instructions which are not available on manv machines or not
used by many source lanquaqes. Rather than require that
primitives for these operations be available at all times, tbev
are placed in the generation librari. Standard library routines
will probably include edit, translate, table search, bit shift
and rotate, and bit count packages.

Non-standard primitives can obviously be added to a
library. This technique can be used to experiment with new
primitives, and to adapt FUNL to the construction of
machine-oriented and special-purpose translators whose
transportability is of no concern.

Procedure Invocation

Procedure in vocation poses one of the most diff ic ult
problems for the FUNL semantics, , due to the variety of
conventions used in different machines and lanquaqes. A sinqle
compiler might generate a number of different calling sequences.
In addition to the principal calling conventions used by the
lanquage, there may be special sequences for support routines,
external library routines, code sequences within the proqram,
and so on.

In addition to the transfer of control, a call involves the
following actions:

Handling the return address.

Reserving space for parameters.

Passing and receiving parameter values.

Saving and restoring reqisters.

Returning a result value.

8

Returninq an exit condition code.

Not all of
conventions,
generation.
languages,
t!Xi ts•

these factors will be a
but their very absence

The exit condition, used
indicates exit conditions

part of all callinq
is significant for code
in some machines and

or selection of multiple

Exception Conditions

The handling of exceptional conditions (interrupts) differs
widely from machine to machine and language to lanquaqe. These
have been ignored for the most part, in the design of FUNL; they
must be provided by support routines which interface the machine
and operating system. Likewise, I/0 facilities must be provided
through support routines.

Three exceptions are integer arithmetic overflow, null
pointer tests, and division by zero. The compiler can check an
environment constant to see if the implementation is providinq
zero divide interrupts. The compiler can test to see if null
opinter tests and integer overflow interrupts are provided by
bardvare. If not, the compiler is free to provide its own
checks. overflow checking for integer operations can be
defeated.

Object Modules

Sometimes the compiler needs to have control over the final
object output modules. It may wish to group certain procedures
together for efficient loading, and may wish others to be
separated for individual loading. Unfortunately, the foraats of
different systems vary widely. .In some systems the desired
grouping may be impractical. An additional problem is created
by procedure names. Different systems have different
conventions regarding the lenqth of naaes and the available
character set for constructing names. In languages which allov
procedure nesting, a name may even be duplicated if inner
procedures in two distinct outer procedures have identical
J1a11es.

One solution is for PUHL to handle all of its own ob1ect
modules. PUNL needs to manage its own libraries anyway, since
library routines may include synta% definitions or user
procedures needed during compilation.

Unfortunately, this solution is not practical. To obtain
acceptance, FUNL must interface existing systems. It must be
able to use external libraries and should be able to produce
code which is callable from some other lanquaqe iaplementa tion.

9

lt would be impractical in some instances for an object ■ odule
to contain code for all library routines, because of the
resulting module size. Finally, the combined module must still
be executed by the system, and there is no standard method for
preparing this final output.

The proposed solution to this chaos
inappropriate for so111e implementations. · It
provide some expressive power to the compiler
tlexibilitv for the implementation.

is sure to be
does, however,

yet leave some

A ~Q~~l~ is a code unit which can be loaded separately from
other modules. Each module can contain procedures and data
areas. A module may also contain a main program. one module,
the program module, is the main program for a run; the main
programs of other modules can be called like procedures.
Certain procedures and data areas of a module can be desiqnated
external, and may be referenced from other modules. The
remaining ones can only be referenced by other procedures of the
same module. In many implementations the isolation of local
procedures will be accomplished by naminq conventions.

Code Generation

Nany compilers require that code be generated sequentially.
This requires that the compiler perform all of the reordering of
the parse tree, never rearranqing the code generated at lover
levels. FUNL normally uses this method of code generation. The
FUHL primitives, generated by the compiler, may optionally be
placed in a tree. This tree must be traversed to provide the
linear ordering required for the priaitives.

In certain situations, reordering of the code qenerated by
the FUNL primitives would be desirable. For example, consider
the statement:

FOR H TIMES DO S END

This statement specifies that "S" should be performed N times.
we must have some auxilliary counter for use in this statement.
If ve compile the code for S first, ve can determine whether
there is an extra reqister which may be used for the counter, or
whether the counter would be better off in storaqe. use of the
code reordering primitives would enable this action to be taken.

code reordering is costly, especially when a small
implementation is required. Therefore, code reorderinq
primitives are placed in a library module and only included for
those compilers which need them. This will enable the
evaluation of the reordering technique.

10

When code reordering is included, there must be additional
mechanisms for handling the assignment of temporary storaqe. In
particular, each block of code must contain a description of the
temporary storage required by that block. It should be possible
to specifv that assigned temporaries do not include any used by
some specific block. The use of temporaries must be manaqed on
~ block basis, so that no temporary created inside a block is
used on the outside.

The Environment

The compiler may pass status information to the
implementation by means of the OPTION primitive. The options
control handling of interrupts, compilation output options, and
optimization level. The compiler must also specify the required
library routines needed for this compilation, but these
primitives are not described in this report.

several items about the implementation can be utilized bv
the compiler. The environment specification contains the ra.nqe
of integers supported, and the precision and exponent ranqe of
real numbers. It indicates whether integer overflow and
division exceptions are trapped, and whether attempts to
dereference the null pointer are trapped. A flaq indicates
whether short (procedure-si%ed) ob1ect modules are required.

Using a Limited UMCOL

The FUNL semantics form a fairly low-level language. The
construction of a compiler which outputs PUHL semantics can
still be a maior undertaki~q. To save effort, an additional
semantic model, usiaq primitives of a higher level, could be
implemented using the PUNL primitives. GRAIL is one such
language f1]. Let's call this model H. For best results, H
should completely enclose the FURL model, preventing direct
reference to any FUNL primitives. If the semantic model is
designed appropriately, a number of high-level lanquaqes may be
implemented in this model. In all likelyhood, a nu■ber of
source languages which could be implemented in terms of the FUNL
semantics could not be implemented in H.

Let M be a collection of machines which have a similar
architecture, but which are inappropriate for implementinq PUNL.
A nev unlanguage processor (SUNL?) could be implemented for
these machines, and H coald then be implemented in SUNL.
Compilers which generate H could then be run on the machines of
3. The expense of the operation is the design of SUNL and the
extra implementation of H. If the class M contains only one or
two members, the SUNL semantic model could be simply H, thouqh
the potential source lamguage space would be small~r.

11

simplification of implementation through construction of
new semantic models is not limited to the hiqb-order side of
PUNL. Given a number of machines vith similar addressing and
register structures, models can be constructed for implementinq
locations and performing register allocation. This will reduce
the amount of effort needed to move FUNL to a nev machine of the
class.

The FUNL Primitives

The reader is cautioned that the primitives described in
the index form an initial proposal. As the FUNL semantics
package has not received much use, it is subiect to chanqe. As
experience is gained in s~veral implementations, weaknesses of
the primitives will become apparent. Suqqestions for change
will be gratefilly appreciated by the author.

To some, the number of primitives will be appalling.
surely there must be a way of reducing that number. Each
primitive has been included to solve a specific iaplementation
problem. Due to the many features of languages and machines,
the number of primitives is large. As ve qain expreience with
FONL, and as the trend in computer languages changes, perhaps
the primitive set can be reduced. The design chosen uses a
large number of primitives instead of primitives which have a
large number of parameters or parameters which are optionally
included.

12

(1]

[2]

r J 1

[4]

[5 l

(6]

f 7]

(8]

(9]

[10.]

(11 J

{ 12]

Bibliography

Applebe, w. F., "A Semantic Representation for
Translation of High-Level Algorithmic
Languages", Ph D Thesis,· Univ. of British
Columbia, Vancouver, 1977.

Boom, H., "The Orqani~ation of the
Generator in ALGOL 68H", Tech Report
Math. Centrum, Amsterdam, 1975.

ob;ect Code
Ii 33/75,.

Brown,. P.J., "Levels of Lanquaqe for Portable
Software", ~!£!1, j~:12,. 1059-1062 (1972).

Praley, R. A., "An Unambiguous Scanner for Special
Character Tokens", submitted for publication.

Fraley, R. A.,. "Unlanguaqe Grammars and their Uses",
Dept. of Computer Science Tech. Beport 77-6,
University of British Columbia, 1977.

Mock,. o. et al., "The Problem of Proqramminq
Communication with Chanqinq Machines: A Proposed
Solution",, £.!~r!, j:8-9,, 12-18, (1958).

Nori,, K. v. et al., "The Pascal P Compiler:
Implementation Notes", Tech. Report 10,,
Institute for Information,, ETH, Zurich~ 1974.

Pollack,, B. W. and Fraley,. R. A., "Pascal/UBC User's
Guide",, Tech. Manual TM-2,, UBC, Vancouver,
Sept. 1976.

Richards, K., "Bootstrappinq the BCPL Compiler Using
INTCODE", in 11~£hiB~ ta:i!!!~Hl High~~ .l&!~l ­
U~g~~gg§, van der Pohl and Maarssen (edt,. North
Holland, Amsterdam, 1974, pg. 271.

Richards, !., "The Portability of the BCPL Compiler",.
Soft~sr~ f&E,. 1:2, 135-146 (1971).

Steel, T. B. , "A First Version of UNCOL 11 ,, f[QQ· .il£s; •
371-377, 1961.

Waite, w. a., "The Mobile Programming
STAGE2", : 7, 421-!2.9 11970l•

System:

13

The current formulation of FUNL primitives is presented
oelov. They are presented as procedures with argument lists and
results. This procedural description may be replaced by an
equivalent tree or tuple description if desired. References to
ttcode1• in the descriptions refers to t:he output of the
procedures, not necessarily the final processor output. Some of
the data types are abbreviited in the descriptions, as follows:

mt l!.IACH.INE_'l'YPE
LOC~TION
LAOEL_T ABLE

loc
labtab
cb
imp_id
int

CODE_BLOCK
INPLEMEN?ITION_IDENTIPIER
INTEGER

~ACRINE TYPE PBIMITIYES

TY_FIXED (min , max, base): mt
Returns a FIXED machine type which is capable of storinq
numbers in the ranqe from "min" tbrouqh "•ax". "base" is
2 or 10, indicating a preference towards binary or decimal
numbers. (The compiler cannot force a specific
representation.)

TY_FLOAT (precision, min_exp, max_exp): ■t
The result type can hold a real value of at least the
specified precision and exponent range. Tbe precision is
specified in bits.

TY_CHlR (number): mt
Machine type for a single character. The number specifies
the number of characters in the character set. The
character representation is o · to number-1.

Tt_POINTER (packing): mt
The result type can hold a memory pointer. The parameter
is the maximum packing level of the referenced field.

~Y_BITS (number): mt
The bit type can contain "number" bits,
for logical operations. If the parameter
result type requires no space.

TY_PROC (proc_form): mt

and may be used
is zero, the

The result type can hold a pointer to a procedure of the

14

indicated form.

TY_LABEL: mt
The result type can hold a pointer to a label.

TY_REPEAT (mt, number, packing, compare): mt
The result type will hold "number" copies of the specified
machine type. "packing" controls the placement of obiects
within the array. If "compare" is true, there should be
no unused space (padding) between the elements. Packing
factors used in constructing the parameter type limit the
packing used in the repetition.

tY_CONCAT (mt1, mt2, packing, co11pare): mt
The result type can contain both of the paraaeter types.
Additional parameters define the packing con•entions. If
mt2 is a composite type havinq packing factor "x", then x
is an upper bound on the packing actually used for mt2.

Dynamic Machine Types

The size of a dynamic type must be co11puted at run time.
~ach dynamic type contains a location which holds its lenqth.
The location may be used at any time the machine type is
referenced. Because this may occur at arbitrary references to
the type or to locations having the type, the use_count of the
location should not be changed. While the size of an obiect
cannot be obtained at compile time, it may be stored for later
use.

rY_DYNAMIC (mt, loc, packing, compare): mt
"loc" is the result of an integer expression. It qives
the number of occurrences of the machine type. The size
of the result type is generally determined at run time.
The result type may only be inserted into one location;
the last use of t~is location will invalidate the type.
"packing" and "co•pare" refer to the spacinq between
elements, correspoinding to para.meters of .TY_-BEP!AT.

SIZE_OF_TYPE (mt): loc
The result refers to the size of the specified type. The
type may be static or dynamic. It is rounded up to the
next nearest addressing unit if necessary.

TY_VARIABLE (loc): mt
This primitive
implementation
location.

constructs a dynamic
lenqth is contained in

type whose
the specified

15

BEPEAT_CT (mt1, mt2): loc
The result contains the number of occurrences of type
11 mt2 11 in "mt1". "mt1" usually has a variable size.

Area Construction Primitives

The primitives in this section are used to construct areas.
All locations in this section are displacement locations, and
uses of locations as parameters do not constitute a use of that
~ocation. ~achine types used for these primitives must be
~tatic. It is possible to overlay two fields usinq the area
construction primitives. It is the responsibility of the
compiler to safequard the use of this capability so that user
programs cannot be representation dependent.

~EW_AREA (compare): area
Creates a new area. If "compare"
be used.. in a comparison. If the
causes paddinq, this space must
field is stored.

is true, the area might
addition of a field

be cleared whenever the

!BEA_CONCAT (area, mt, packing): loc
Allocates space for a field having type " ■ t" at the end of
the area. The result is a permanent displacement
location. Its type may differ from the para ■eter type,
depending on the packing factors.

AREA_TYPE (area): at
Returns a machine type corresponding to the space required
for the area as currently composed.

AREA SIZE (area): loc '
The size of the arqument, at the end of the current
procedure, is contained in the result location. This is
the amount of space allocated by an ALLOCATE call.

AREA_PdLLOW (area, loc, mt, packing): mt
Allocates space in the specified area for
type " ■ t" to follow displacement •loc".
permanent displacement location.

AREA_OVERLAY (area, loc, 11t, ' packing): loc

an ob;ect of
The result is a

Allocates space in area for a field of type " ■ t" to
overlay "loc". The result is a per■ anent displacement
location. This primitive should be used only if all
remaininq fields of the area may be overlayed, since
representation size of " ■ t" can vary radically in
different implementations.

16

AREA_MARK (area): area_status
Records the current condition of the
restoration. If the area is a temporary
on temporary use is also recorded.

AREA_RESET (area, area_status)

area for later
area, information

Resets the area to the qiven status. The "area_status"
must have been generated for the specified "area". Fields
allocated since the status was generated may be overlayed,
and temporaries allocated since then are invalid.

lREA_INIT (area, loc1, loc2)
Specifies that the field at displacement "loc1" should be
initialized to constant value "loc2" vhen the area is
allocated.

Allocation Primitives

There are three classes of stora qe known to FUNL: static,
stack, and heap.

ALLOCATE (area, class): loc
Allocates enough space to accommodate the area. The
result location is a permanent actual location, except for
heap allocation, which gives a temporary result. The
amount of space reserved is the value of AREl_SIZE (area).
If the class is stack or heap, the size allocated is
computed at the end of the current procedure, so that
additional fields may still be added.

~ETSPACE (mt, class): loc
Allocates space for the specified machine type. "mt" must
have fixed size if "class" is "static".

DEALLOCATE (loc)
Prees the space and invalidates the actual location passed
as a parameter. If the location resulted from a static
allocation, nothing is deallocated. If it resulted from a
stack allocation, all hiqkec stack locations are also
invalidated. "loc" should specify a run-time value for a
heap deallocate. The location must specify an entire
block created via ALLOCATE or GETSPACE. and cannot be
"static".

17

Literal Location Construction

INT_LOC (integer): loc
creates a literal location containinq the specified value.

REAL_LOC (real): loc
creates a literal location containinq the specified value.

STRING_LOC (string): loc
creates a literal location containinq the specified value.

NILP'l'R_LOC: loc
creates a literal location containinq a null pointer.

EXTERN LDC (string): loc
Result references the external routine specified by the
string.

PBOC_LOC (imp_id): loc
The result addresses the specified procedure.

OATA_LOC (imp_id): loc
The result addresses the specified data area.

LABEL_LOC (label): loc
The result is the address of the label. The label must be
located in the current procedure. Forward references are
al loved.

CON_CONCAT (loc1, loc2, packing): loc
The result is a literal location which is the
concatenation of the parameter literal locations.
Explicit types should be inserted into the locations
before invoking this primitive. If thev are not, a
default representation of the constant is selected.

CON_REPEAT (loc1, int, packing): loc
The result is a literal location
constant "loc1" repeated "int• times.
are packed with the specified packinq

which contains the
The constant fields

factor.

18

Location Operations

USB_LOC (loc, number, store): loc
The result location references the ociqinal value as the
original, but can be referenced wnumber" times in
primitives. If "store" is true, one or more of the~e
references will be a store. If "store" is false, the
value may be moved to a temporary. If some references are
not used, "LOC_DESTROY" should be called.

~OC_DEREFERENCE (loc, mt): loc
The result location
original. The parameter
refer to a pointer. The
machine type.

results from dereferencing the
location must be an address or
result location has the specified

~oc ADDRESS (loc): loc
- The address of the data specified by the first location is

referenced by the result. The para ■eter must be an actual
or literal location. Note: if the location is a temporar,
location, it miqht not be directly addressable. This will
require an implementation to move the data as part of this
function. The compiler writer must be certain that all
future references to this location, or branches to
previous uses, will still be valid. ?or this reason,
obtaining the address of a "fast" temporary is
·discouraged.

LOC_DISPLACE (loct, loc2): loc3
The displacement specified bf "loc2" is applied to "loct"
to obtain "loc3". The result location is a displacement
if and only if "loc1" was a displacement. The type of the
result is obtained from "loc2".

LOC_SUBCO~P (loc, mt, packing, compare): loc
The parameter location must reference an integer value.
The result is the displacement of the i1b element of an
array, where each element has type " ■ t" and the location
specifies the value i, startinq at o. Negative indexes
are permitted. The result has type "mt".

LOC_SUBRANGE (loc1, mt, packing, compare, loc2): loc
Operates like LOC_SUBCOMP, but "loc2" specifies the number
of repetitions of "•t" included in the result type. Loc2
must be non-negative. The location derived by callinq
LOC SUBRANGE and LOC SUBTYPE, then combininq the results
with LOC DISPLACE must-be the same as a sinqle call to
LOC_SUBTiPE with the sum of the original indices.

LOC_TYPE (loc): mt
Returns the machine type associated with a 1ocation.

19

LOC NEXT (loc, mt, packing): loc
- The result is · a field located after •loc" which has type

"mt" and is allocated with the specified packing. This
primitive is most useful if "loc" was computed · with a
variable size. It does not imply an extension of the
area; the compiler must ensure that adequate space exists.

L0C_DESTR0Y (loc, perm)
Destroys a location, making it invalid. This is intended
for destrovinq temporary locations which have uses
remaining. It may also be used to destroy permanent
locations if "perm" is true. This may reduce the space
needed durinq compilation.

Temporary Storage

The tempoc-arv storage primitives allow the implementation
to control the allocation of temporaries. If the compiler
maintained its own record of temporary storaqe usage, additional
temporaries could not be acquired during code generation.

iEMP AREA (area, loc)
- This primitive specifies the atea 11.hich ■ay be used for

temporary allocation. The area cannot be a ttco11pare"
area. The location is a specific allocation of the area.
The call applies only to the current procedure. Some
implementations may fail during code generation if this
call is not made. Packinq level O is always used when
adding to the area.

LOC_TEMP (mt, fast): loc
creates a temporary location. "fast" is true if fast
memory should be osed. This may limit the implementation
if an expression will be e,valutated between this call and
the final use of the temporary.

TEMP RELEASE (loc)
- Release the use of the temporary.

count as a reference to "loc".
TEMP _REUSE.

TEftP_REUSE (loc)

This primitive does not
Used in coniunction with

Reserves the temporary specified by the location. The
location must have been the parameter to "TE~P_RELEASE" as
its last reference. ~his does not count as a use of
"loc".

20

Functional Primitives

IYr_DYAD (kind, locl, loc2, min, max, flagt: loc
Perform the integer operation specified by "kind" on the
integer operands "loc1" and "loc2". !he result value will
occupv a space capable of holding a nuaeric ranqe from
"min" to "max". The machine type of ·the parameters must
reflect that of the data, especially reqardinq the decimal
or binary preference. "flaqn may include "oflo_test" if
overflow testing should occur, and can contain
"no oflo test" to turn off overflow testinq. If neither
is -specified, the implementation ■ av choose the easier.
The possible "kind"s are:

1 •
2
3 •
4 /
5 BEM
6 MOD

Addition
Subtraction
Multiplication
Division with truncation towards zero.
Remainder of division.
Modulus. Result is non-negative.

~NT_MONAD (kind, location, min, max, flag): loc
Performs a integer function on the parameter location.
The result is stored in a field capable of holding "min"
and "maxn. The following kinds are available:

1 Negation
2 ABS Absolute value
3 NABS Negative of absolute value.

REAL_DYAD (kind, round, loc1, loc2): loc
Specifies a function to be performed on two real values.
The parameters must have the same precision and exponent
range; this is the precision and exponent range of the
result. Rounding occurs if "round" is TROE; truncation
occurs if "round" is FALSE. If an implementation does not
include the option requested, a sinqle varninq should be
issu~a at the e~d of the compilation indicating that that
the other form has been used.

1 +
2
3 •
4 /

Addition
Subtraction
Multiplication
Division

BIT_DYAD (kind, loc, loc): lac
Perform a dyadic operation on bit strings.
the maximum size of the bit strings.
dyadic operators are available. These are
truth table below:

1
2
.3
4
5
6
7
8
q

10

loc1
loc2

1 1 0 0
1 0 1 0

OR 1 1 1 0
AND 1 0 0 0
EOR 0 1 1 0
IMP 1 0 1 1
DIFP 0 1 0 0
NOR 0 0 0 ,
HAND 0 1 1 1
EQV 1 0 0 1
REVIMP 1 1 0 1
R EVDIPP 0 0 , 0

21

The result has
The ten loqical
given in the

In addition, the operators have assignment forms (11-20),
with the result remaining in the first field. The result
location is the first operand.

DYAD (kind, loc, loc): loc
Performs a dyadic operation on arguments of equal type.
For the current operators, arquments mav be PIXED. PLOAT,
or CHAR.

1 KIN
2 IIUX

Minimum
Ka.xiaum

MONAD (kind, loc): loc
Perform a monadic operation. The first three operators
require a real location, the next two a bit strinq.

1
2
3
4
5

ABS
NABS
INV
INVP

Negation.
Absoulte value.
Negative of absolute value.
Invert the bits in a set.
Invert in place. Result is parameter loc.

MAKE_BITS (loc1, loc2, mt): loc
The result is a bit string of type "•t" havinq bits "loc1"
through "loc2" set to 1, and the remaining bits to O.

ASSIGN (kind, loc1, loc2)
Copies loc2 to loc1. The locations must have the same
type. The available kinds are:

1
2

•­.-·- . . -.
Assignment.
Exchange.

INT_ASSIGN {kind, loc1, loc2, flag)
Perform an integer assiqnment operator. "flag" defined as
for "INT_DY AD". The a vaila.ble kinds a·re:

10
1 1

+ ·-.-
-:=

Add loc2 and loc1 and assiqn to loc1.
subtract and assign to loc1.

t!OV E {loc 1 ~ loc2, ;ust, fill, loc3): loc
causes the first location to be moved to the second. Any
data type other than fixed and float can be used. If tbe
locations have different lengths, "iust" determines
whether the right-hand or left-hand sides will be aligned.
"fill" determines the contents of any unused portion of
loc2, as follows:

1
2
3

none
repeat
fill

Leave unused portion unchanged.
Repeat the loc1 value through field.
Pill remainder of field vith locJ.

CONVERT (kind, loc, mt): loc
convert the value described by "loc" to a value of the
specified form. The permitted conversions are: packing
changes, fixed base change, fixed to float, float to
fixed, and CHAR to and from PIXED. BIT to PIX and its
reversal are explicitl1 omitted so that an implementation
can select its own bit ordering and number representation.
"kind" indicates rounded (1t or truncation (2) for float
to fixed.

.Label PrimitiYes

jEW_LABEL: label
Create a new label.

LABEL_DEF (label)
Defines the label as referring to the current position in
the output code.

23

~ABEL_EQUATE (label1, label2)
Defines the first label to have the same location as the
second. The second must have been previously defined in a
LABEL DEF or LABEL EQUlTE. "label1" and "label2" are
associated with the-same procedure.

GOTO (label)
Generates a branch to the specified label, which mav or
may not have been defined. The label must be located in
the current procedure.

GOTO_LOC (loc)
Generates a branch to the location, which usually contains
a computed label.

EXIT_DEF (imp-id)
Defines the implementation identifier as referrinq to the
current location.

Jump Table Primitives

NEW_TAB: labtab
creates a new label table.

rAB ENTRY (labtab, label)
- Places the specified label in the table. ~ay not be

for a table if TAB_INCLOOE or TAB_LOC has already
called for the same table. The label must reside in
current procedure.

TAB INCLUDE (labtab)
- The specified table is generated in the code.

TAB_LOC (labtab, loc): loc

used
been
the

The result is an entry of the label table. The parameter
location contains the entrv number, starting at zero. It
may be used in a GOTO_LOC, or a label value may be moved
into it.

24

Conditional Primitives

iEST (kind, loc1. ;ump, loc2)
Generates a test of "loc1". The value of "jump" (TRUE or
FALSE) determines whether a jump is m~de to loc2 on a true
condition or a false condition. "loc2" must be a label or
computed address. Only one test is currently provided.

1 ODO Test low bit of fixed item.

TEST_3WAY (loc, label, label, label)
Tests the value of loc1, and branches to the first label
if negative. second if zero. and third if positive.

RELATION (kind. loc1 • loc2, iump, loc3)
Tests a relationship between loc1 and loc2. A jump is
made to locJ if the result is the same as "jump" (true or
false). Data types of the t•o parameters must have
identical machine types. The followinq kinds are
available:

Fixed. float, char. and char structures:
< <= = >= > ~=

Arbitrary types:

Bit strings:

Fixed and Bit:

SUBSET 0ISJ0UIT

BIT_ON BIT_OPI'

CO~PARE (kind. loc1, loc2, just, fill, loc3. jump. loc4)
l comparison is performed between loc1 and loc2.
Alignment and fill is performed as for ftOVE, except that
either field can be fille~ . The 1ump selection is made as
for TEST.

Procedure Module Primitives

These primitives declare the structure
acquire implementation identifiers for each
area of the module. Procedure identifi~rs
procedure bodies, alternate entries, and exit

of modules.
procedure and
may be used
labe.1s.

and
data
for

25

MODULE (name)
Indicates the beginning of a module having the specified
name. Modules may not be nested; the module is terminated
by the next ~ODULE primitive, the end of the proqram, or
an OBJECT GENERATE primitive. No primitive which
generates code may be issued before a module has been
established. A module may be re-opened (by specifyinq a
nODULE primitive with the same name) if the previous use
of the module only declared names (i.e.: no code was
generated).

~ODULE ENTRY: imp id
The resulting identifier may be used to reference the main
program of the current module.

ilTERN_PROC (name}: i11p_id
The result identifier refers
specified name. This procedure
name from outside the module.

EXTP.RN_DATA (name): imp_id

to a procedue of
may be referenced by

the
this

Produces an identifier for a data area vhich mav be
referenced from outside the module.

LOCAL_PROC: imp_id
Produces an identifier for a local procedure, which may
only be referenced within this module.

tOCAL_DATA: imp_id
Produces an identifier for a local data area, which may
only be referenced within this module.

OBJECT_GENEBATE (ret)
Generate code for all modules which have been output.
This assures that the modules have been completely
compiled, and may be loaded at compile time if desired.
If "ret" is false, no return is made to the compiler.

Procedure Declaration Primitives

Procedure declarations define a calling sequence. The
declaration may be shared by many procedures.

PROC_DECL (storage, arguments, savinq, result, conditiont
: proc form

The result-format defines the calling conventions for a
procedure. The compiler .is responsible f~r seeinq that
the proc form used in defining a procedure is identical to
that us~d for its call. The parameters may have the
follovinq values: ·

storage
specifies the type of storage to be used for the
return address and register save area.

STACK_ST0RAGE
Return address is placed on the stack.

STATIC_ST0RAGE
Return address is placed in static memory.

L0CAL_ST0RAGE
Return address placed in storage local to
surrounding procedure.

arguments
Specifies the argument passing conventions.

saYing

STACK_ARGS
Arguments are placed in the stack, within the
stack area used for the called procedure.

L0CAL_ARGS
Arguments are placed in memory local to the
calling procedure, allocated in the temporary
area.

EXTERNAL_ARGS
An external convention is used.

FAST_ARGS (n)
A fast calling
assumes at most n
primitive types.
only be passed by

N0_ARGS

convention is used • . This
arquments,vhich must have

(Structured parameters may
passing a pointer.)

No arguments are passed.

save conventions for registers.

STD_SAVE
Use the standard compiler reqister savinq
conventions.

EXTERN_SAVE
use the standard external routine conventions.

L0CAL_SAVE
use conYentions
LOCAL_ST0RAGE.

SUPP0RT_SlVE

for calling code

Use conventions for support procedures.

with

27

resol·t
Describes the method used for function results.

EXTERN~L_RESULT
Use external conventions.

STD_ RESULT
ose the standard compiler·return conventions.

FAST_RESULT
Use the fast return conventions.

NO_RESULT
This procedure cannot return a value.

condition
Indicates whether an exit condition is returned.

NO COND
There is no exit condition.

COND_VALUE
The condition is a non-negative numeric value
less than 100.

Procedure Body Primitives

RROC_BODY {impl_id, proc_for11)
Begin the procedure body of the indicated procedure.
Procedure bodies may be nested if desired.

l.'IAIN_PROGRAM (imp_id, proc_for11)
Identical to PROC_BODY except that the procedure becomes
the main proqram.

PROC_STACK (area, level): loc
narea" is the local data area to be placed on the stack.
"level" is the lexic level for the procedure. (The main
program has level 0~) The result is the local data
location.

PBOC_ARGS (area): loc
Returns the permanent location of the procedure arqument
area. The layout of the area must be specified. Used for
STACK_ARGS and LOCAL_ARGS procedures only.

GET_NEXTPAR (mt): loc
Returns the location of the next parameter~ which has the
specified type.

PROC_ALTENTRY (name, proc_form): loc
Declares the location of an alternate entry point to the
procedure. The area describes its parameters, and the
result is the location of the parameters.

DISPLAY (int): loc
Returns the location of the data area for the procedure
having the indicated lexic level.

RESULT_LOC (mt): loc
Returns the location of the result value. The value will
have the indicated type. This primitive may only be used
with S~D_RETURN procedures.

~ROC_RESULT (loc)
sets the return value for the procedure. If the return
class is FAST_RESULT or EXTEBMAL_RESOLT. this procedure
must be followed by PROC_RETURN or PROC_RETCODE.

PROC_RETCODE (int)
sets the return condition for
conditions must lie in the range
implies a call to PROC_RETUHR.

the procedure. Return
0 to 63. This call

PROC_RETURN
Returns from the procedure with the indicated condition.
The condition is optional.

PROC GOEXIT (level
- Exit the procedure with a GOTO to a procedure of the

specified lexical level, returnioq control to the
specified external label. The stack storage for all
called procedures being terminated is released, but no
additional clean-up for source structures mav be
performed.

PROC_ END
data and parameter list

procedure become invalid
This primitive does not

End of the procedure. All
locations generated for this
after this primitive is executed.
imply a return.

Procedure Call Primitives

CALL_START (proc_form)
Initializes a call to a procedure of
description. If proc_form has F&ST_ARGS,
may be performed within this call.

the specified
np computations

29

CALL LEVEL (int)
- Provides the lexic level of the procedure beinq called.

The outermost level is o. If this primitive is o,itted,
the display is not modified.

CALL_ARG_LOC (area}: loc
Establish
specified
primitive
form.at is

the location of the parameter area. The
area contains the parameter format. This
is only used for procedures whose argument

STACK_ARG or LOCAL_ARG.

CALL_PASSPARAM (loc)
Pass the specified value as the next parameter. This
primitive is used for PAST and EXTERNAL arqu11ent forms.

CALL_ROUTINE (loc)
Generate a call to the routine.

CALL_RETCOND: loc
Location of the return condition code, if specified by the
called procedure.

CALL RESULT (mt):· loc
- Returns the location

called procedure.
calls, this location

containing the stored result of the
For PlST_RESULT and EITERNAL_RESULT
must be used "immediately".

ClLL_COMPLETE
End . of calling sequence.

Code Ordering Primitives

These primitives appear in the generation library.
are only available if the library module is included.
allows simplification of the implementation fQr
co■ pilers.

lliEW_CODEBLOCl<

They
This

simple

Create a new code block, which becomes active. A previous
active block is stacked for later completion.

CODE_DISJOINT
Declares that the new block will never be included in anv
block currently on the stack. This implies that the
current code plock will be a procedu~e, or will never be
generated.

CODE-CONTAINS (cb)
Declares that the
block "cb". This

active block will eve~tuallv contain
information is used when assiqninq

30

temporaries in the current block, so that they will not
duplicate the temporaries of "ch". This primitive should
be used before code is qnerated in the active block, or
immediately after "cb" (or its containinq block) is
removed from the active stack.

~ODE_INCLUDE (cb)
Block cb is included at the current position in the code.

END_CODEBLOCK: cb
Terminate the active code block and return it.

Standard Generation Library

The standard qeneration routines have not been selected
yet. This section qives an indication of expected entries.

iDIT (loc, string): loc
The first location
found in the string.
resulting character

is edited under the specifications
The resulting location contains the
stri.ng, and of ten a dynamic machine

type.

TBANSLATE_TABLE (strinq1, strinq2): loc
Generates a table for
character in strinq1 is
corresponding character of
remain unchanged.

fRANSLATE (loc1, loc2): loc

character
to be
strinq2.

conversion. Each
replaced by the

Other characters

Translates the character strinq "loc1 11 using the translate
table "loc2". The result is t-e translated strinq.

Semaphores
An additional data type, the "semaphore", ■ay be included
for process synchronization. Variables are automatically
initialized to a "reset" value. Primitives exist for
settinq and testing the semaphore, and for resetting it.

Additional Operators

1. An alternate form of the INT_DYAD and INT_~ONAD
primitives is provided, with the final operand
replaced by a location. Control flows to this label
or address location if overflow occurs.

2. Additional bit operators include rotations riqht and
left and end out shifts of bit string~. These must
work for arbitrarily lonq strings.

3. Additional supported operators:

SIGN
COUNT
PARITY
*2**
*10**

-1. O, or +1 for neq, zero, or pos value.
Count the 1 bits in a bit item.
Parity of a bit strinq.
compose real number from two parts.
Compose real number--decimal exponent.

DIVIDE (loc1, loc2, locl, loc4)

31

Divide inteqer loc1 by loc2. lo~J and loc4 become the
locations of the quotient and remainder.

CODE_COPY (cb): cb
.Produce a copy of a code .block. Any branches from the
block to itself become . branches from the copy to itself.
Branches from the · outside to the original will still qo to
the oriqinal.

Array Operations
Array operations,
provided. Table
devised.

for pipelined machines could be
searches and string scans could also be

Implementation Option Control

The compiler can change certain options
implementation packaqe by using the OPTION primitive.

of the

OPTION (kind, direction)
set the specified option "ON" or "OPP" depending on the
value of "direction".

OBJECT_GEN
OBJECT_PRINT
DEBUG1
DEBCJG2
OPTIMIZATION
LEXIC_DISPLAY
TEST _OPLO

Generate the code.
Print the qenerated code.
First level debug output • .
Second level debug output.
Perform object optimizations.
ftaintain lexic nestinq displa,.
Test for overflow of integer
arithmetic operations.

32

The Implementation Environment

The following constant values are
implementation:

provided

MINI NT
MAXINT
KAX_PR ECISION
MIN_EXPO
MAX_EXPO
REENTRANT
O'PLO_TRAPPED
DIV_TRAPPED
NIL_ TRAPPED

1'1inimu11 integer
Maximum integer
Maximum real precision.
Minimum exponent.
Maximum exponent.
Generated object code is reentrant.
Integer overflows are trapped.
Divide exceptions are trapped.
use of the null pointer trapped.

by the

Additional information below could be provided but could lead to
implementation differences if used improperly.

STD_CHAR
STD_IUNINT
STD_MAXINT
WO'IW_SIZE
ADDR_UNIT
CH:AR_SIZE

Standard character set size.
usual maximum for inteqers.
usual maximum for inteqers.
Bi ts per vord.
Bits per addressing unit.
Bits per character.

•
33

Appendix II

The hand-coded example below illustrates the use of some of
the primitives. The primitives are shown in a Pascal-like
notation. FUNL semantics are normally represented in an
internal format; this representation is for.illustration only.

The Pascal program below is used for the example. The code
generation mimics that generated by the PASCAL/UBC compiler f81.
Some simplifications and changes are made to illustrate the
semantics and reduce the lenqth of the example.

PROGRAM FACTORIAL_TABLE;
VAR L,I: INTEGER;

A: ARRAY [1 •• 201 OP INTEGER;
FUNCTION FACT (N: INTEGER): INTEGER:

BEGIN
IF N) 0 THEN PACT:= FACT (N-1) * N
ELSE FACT ·:= 1

END (* FACT *);
BEGIN

READ (L);
FOR I := 1 TO N DO A[I] := PACT (I)

END.

Generated Code:

Standard Prelude Seqment

std_proc := PROC_DECL (STACK_STORAGE, STACK_ARGS, STD_SAVE,
ST D_RESOLT • NO_COND);

io_proc := PROC_DECL (LOCAL_STORlGE, FAST_lRGS(4), SUPPORT_SAVE,
. FAST_RESULT, NO_COND);

int_ty := TY_FIXED (■ inint, maxint, 2);
int_zero := INT_LOC (0);
MODULE (•*Pascal Library*');

libl :-= EXTERN_PROC ('READ_INT');

PROGRAM PlCTOBIAL_TABLE;
ltODULE (' •aain••);

aO := NEW_AREA (false);

VAR L, I: INTEGER;
l_loc := AREA_CONCAT (aO, int_ty, 10);
i_loc := AREA_CONCAT (aO, int_ty, 10);

(NOTE: l_loc and i_loc would be stored in the svmtol table.)

A: ARRAYf 1 •• 201 OF INTEGER
arry_ty := TY_REPEAT (int_ty, 20, 10, true);
a loc := AREA_CONCAT (aO, arry~ty, 10,;

FUNCTION PACT
l'.IODUL.E ('FACT') :

34

arg_area := NEW_AREA (false);
a1 := NEW_AREA (false);

(N: INTEGER): INTEGER;
n loc := AREA_CONCAT (arq_area, int_ty, 10);

BEGIN
fn1 := MODULE_ENTRY;

PROC_BODY (fn1, std_proc);
stk := PROC_STACK (a1, 1);
arg := PROC_ARGS (arg_area);
TEMP _ AREA (a1, stk);

IP N > 0 THEN
m1 := NEW LABEL:
RELATION(>, LOC_DISPLACE (stk, n_loc),

INT_LOC (0), false, m1);

FACT:= FACT (N-1)*N
CALL_START (std_proc): Call PACT.

CALL_LEV EL { 1) ;
a2 := CALL_ARG_LOC (arq_area);
d1 := LOC_DISPLACE (arq, n_loc); Coapute N-1.

, i1 := INT_DYAD (-, d1, 'I?l'r_LOC (1),
minint, ma xint, (]) ;

d2 := LOC_DISPLACE (a2, n_loc); Store parameter.
ASS.IGN (:=, d2, i 1);
CALL_ROUTINE (PROC_LOC (fn1));
i2 := CALL_RESULT (int_ty);

CALL COMPLETE;
d3 :; LOC_DISPLACE (arg, n_loc); *N
i3 := INT_DYAD (*, i2, dl,

minint, 11axint, r]);
PROC_RESULT (i3); Store PlCT result

ELSE
m2 := NEW_LABEL;
GOTO (m2) ;

l.ABEL_DEF (m1);

FACT:= 1
PROC_RESULT (INT_LOC (1));

LAB EL_DEP' (m2) ;

END (*PACT*);
PROC_ RETURN i

PROC-' END;

MODULE (••tUIN*');
fn2 := MODULE_ENTRY;
MAIN_PROGRAM (fn2, std_proc);
stk := PROC_STACK (aO, 0);
TEftP_AREA (aO, stk);

BEGIN (• MAIN *)

READ (L) ;
ClLL_STlRT (io_proc);

d1 := LOC_DISPLACE (stk, l_loc); Pass by reference.
d2 := LOC_ADDBESS (d1);
CALL_PASSPARAM (d2);
CALL_ROUTINE (PROC_LOC (lib1));

CALL_COMPLETE;

FOR I := 1 TON DO
t1 := LOC_TEMP (int_type, true);
t 1 : = LOC_USE (t 1, 5) ;
ASSIGN (:=, t1~ INT_LOC (1)); Initial value.
m3 := NEW_LABEL;
m4 := NEW_LABEL;

LABEL_DEF (ml) ;Looping location.
RELATION (<=, t1, int_zero, false, a41;
ASSIGN (:=, LOC_DISP (stk, i_loc), t1);
TEMP_RELEASE (t1);

t2 := LOC_DISP (stk, i_loc);
t2 := USE_LOC (t2, 2) ;

A[I] := FACT (I);

O pti11ization

CALL_START (std_proc); Call to FACT.
CALL_LEVEL (1);
a3 := CALL_ARG_LOC (arg_area);
ASSIGN (:=, LOC_DISPLACE (al, n_loc), t2); Pass arq.
CALL_ROUTINE (PROC_LOC (fn 1)) ;
i4 := CALL_RESOLT (int_ty);

CALL_COMPLETE;

i5 := LOC_SUBCOMP (t2, INT_LOC
10, true);

i6 := LOC_DISP (LOC_DISP (stk,
ASSIGN (:=, i6, i4);

TE·MJ:> _REUSE (t 1) ;

Compute A[I]
(1) , arr y _ t y,

a_loc) , 15) ;
Assiqn result.

Complete FOR loop.

ASSIGN (: =, t 1, LOC_DISP (st.It, i_loc)) ;
IlfT_ASSIGN (-:=, t 1, LOC_DISP (1), (]) ;
GOTO (113) ; Loop to top.

LI.BEL_DEF (m4);

PROC_RETURN;
PROC_END;

OBJECT_ GENERATE (false);

END.

35

