MMM

MMMM MMM
MM M MM
M M
M M MMMMMMMNM
MM MM MMMHY MMNN
MMM MM MH MAH
MMH MMM MM MMM
MMMMMMMMHN MNMMMMN M
MMMMMMM MMMM MMM MHN MMM
MMM MM MMM .|
M MMN M
M MM MMM MM
MMMHM MMM MMM MMM
MMM MMM
MMM
MMM
MMMMH

Redgkk kR kR Rk kR KRRk Rk kKRR

* *
* ~ FUNL Semantics: *
¥ Work Towards an UNCOL #
* *

hkkkkd bk bk ko kR kkk

by
R. A. PFraley

Technical Report 77-9

Auqust 1977

Department of Computer Science
University of British Columbia
Vancouver, B. C.

M
MM
MM
M



FUNL Semantics:
Work Towards an UNCOL

R. A. Fraley
University of British Columbia
August 27, 1977

ABSTRACT

An intermediate semantics lanquage, applicable to many
source languages and machines, is proposed in this paper. Over
its domain and range it promises many of the advantages of the
original UNCOL project. Data abstraction is used to hide
machine features, The lanquage hides from the source compiler
all implementation representations and conventions, except for a
few descriptive constants, The semantic model is expandable by
means of a 1library. Higher 1level semantic models may be
implemented in FUNL, reducing compiler writing effort.



FUNL Semantics: Work Towards an UNCOL

The Unlarquage processor desiqgn philosophy encourages the
development of modular, extensible, evolutionary languages which
are transportable, FONL 1is the First UNLanguage processor
[4,5)e This paper presents the semantic model which has been
developed for FONL.

As the design of FUNL progressed, its capabilities showed
many similarities to those of UNCOL [6,11). UNCOL, a UNiversal
Compiler Language, was conceived in the 1late 50's, but was
abandoned as being an impossible task. Because of this failure
the UNCOL objective 1is often considered to be impossible {9].
This conclusion seems to be based on the failure of the original
project and the obvious conclusion that no one langquage can
contain all possible ideas.

The FUNL semantic model is not nuniversal, But for sone
class of source lanqguages the FUNL semantics primitives seem to
provide an efficient description of their concepts. Likewise,
the FUNL semantics can be efficiently implemented for some class
of computers., While FUNL will be most useful if these classes
are large, reduction of 1implementation effort will occur if
there are more than two members im each [6]. Because w@modular
compilers can be constructed using FUNL, the system offers
greater potentials than those described for the origimal UNCOL.
When new compilers are constructed, portions of existing
compilers may be utilized. Because of its evolutiomary syntax,
languages developed using FONL are more flexible than those
designed with conventional techniques.

There are a number of reasons to believe that FUNL will
achieve UNCOL's goals where the original effort failed.

1s It has weakened the goal of universality.

2. Its description employs data abstraction methods which
have been developed in the past fifteen years.

3. The semantic model is built wusing higher level
primitives.

Data abstraction solves one of the few documented probleams
which existed with the original UONCOL. Its authors were
concerned about using indirect addressing on those machines
which have it, yet working correctly for those which don't.
FUNL contains an abstract data type LOCATION, which is defined
for each implementation. The contents of this type cannot be
interrogated by a compiler specification., The semantic model



contains primitives for manipulating locations.

Comparisons

Intermediate languages fall into three general categories:
high-level, mid-level, and low-level. High-level intermediate
languages tend to restrict the available source lanquages since
their model includes a part of a source language model.
Lowv-level intermediates, on the other hand, tend to exclude sone
target machines since they are based on a specialized machine
model. Mid-level intermediates attempt to exclude the biases of
the source language, yet not introduce machine details., The
FUNL semantics forms a mid-level intermediate langquage,

The high-level intermediates, such as GRAIL (11, P-Code
(7), and OCODE [10] are generally based on a stack model or a
postfix notation model. In either case, a large amount of
implementation is still needed to produce Rrachine code for
non-stack machines. These intermediates are designed to work
with a single 1language or, in the case of GRAIL, a restricted
class of languages., Low-level intermediates, such as INTCODE
[9], LOWL [3], portable C intermediate langauge [7), and FLUB
[ 12] are based on a specific machine model. To implement this
model in an efficient manner on a different machine requires a
large implementation effort if the structures differ greatly.
dhen code has been generated to bypass a resource limitation of
the model machine, it must be detected and eliminated by the
implementation, Some operations of the model machine must be
simulated by the implemntation tramslator so that they needn't
be performed at run time. In many cases, facilities of the real
machine can't be used by the implementation because applicable
situations cannot be detected.

Only one mid-level lanquage has been found by the author.
fhe "Storage®" language which forms the middle abstraction for an
Algol 68 compiler ([2] appears to be one, but its details have
not yet been located.

The Desiqgn of PUNL

FUNL was inspired by work on a Pascal compiler [8]. The
work performed by the author in re-designing and expanding the
compiler suggested some internal structures which vere
independent of the source lanquage details., At the same time,
the implementation of the structures wvas ignored by most
routines, These structures and the routines for manipulating
them were isolated and refined. The resulting primitives vwere
subjected to a number of "situations", where each situation was



a code segment in some programming language. A sequence of
primitives was needed to handle each situation.

The goal of an UNCOL is flexibility and simplicity for both
the compiler and the implementation. There is no way to
determine how closely FUONL approaches these gqoals. Many
compilers must be built for many lanquages, on @pany machines,
and by many people, before the FUNL primitives can be refined to
an acceptible degree of universality. Readers are urged to try
these primitives with their favorite languages and machines, and
to submit descriptions of problem areas and suggested
improvements.,

FUNL's main advantage is flexibility in memory allocation
primitives, FUNL is capable of simulating COBOL structures
which have dynamically computed displacements. (This facility
is also used in memory management, even vhen dypamic
displacements are not a part of the source language.) It allows
the compiler to pass packing information to the implementation
without knowing the machine's internal structure. The
implementation can choose to pad fields; it knows when
comparisons of the packed fields might be performed. FUNL is
capable of some type checking. While the compiler is free to
attach any type to any position in memory, the implementation
can be sure that this assigned type is being used in a
consistent manner.

The C semantic model, like many of the others, has a "call®
primitive, FUNL attempts to add distinguishing features to
procedures so that many different calling sequences can be
generated. For example, a compiler mnight generate different
sequences for its own procedures, external procedures, and
support routines. Some of the decisions for the details of the
calling sequence are left to the compiler, while others are
determined by the implementation.

The type-checking facilities are not absolute. Because
data fields can be arbitrarily overlapped, the compiler designer
can access one form of data using a different description. The
choice of descriptor for a given location gives him the power to
bypass type checking. This implies that programs might produce
different results in different implementations if the compiler
allows access to the data representation. Some design for
portability therefore remains with the lanquage.

The FUNL semantic model is not small. It has about 100
primitives, not including library modules. These primitives are
defined in Appendix I. The definition of these primitives is,
of course, subject to ~change at this stage of FUNL's
development, An example which uses some of the primitives is
presented in Appendix II.



Machine Types

The data abstraction MACHINE_TYPE defines the
representation type being used in an implementation., This type
is distinct from source lanquage types. A selected machine type
determines the amount of memory needed to store a piece of data.
The selection of types includes a BIT type. This suggests a
bias towards machines capable of using a binary number
representation, although digit tests could replace bit tests.

A number of primitives are provided for dealing with
machine types. The FIXED primitive machine types hold integer
values., FLOAT types can hold real values. Fields of CHAR type
hold a single value from an arbitrarily large character set. An
object of POINTER type holds a reference to memory, while a
specified number of bits will fit in a BIT type.

Replecation of a type, as 1in amn array, forms another
machine type. DYNAMIC ¢types may be constructed for variable
length replications. A dynamic type may also be created using
the stored size of a data element.

Areas

An AREA is a compound storage unit composed of fields, each
tield having a machine type. The area can be allocated (givea a
piece of real memory which can hold its fields), or can be part
of a larger area. The fields which form an area are normally
concatenated, so that one follows another; they may also overlay
each other if desired.

There are two varieties of areas: standard and comparison,
In a standard area, the implementation can leave space between
ftields, This "padding", used to improve access time to
variables, will contain an indeterminate value. If two areas
are to be compared, all bits become significant, The areas can
only be equal if all bits, even padding, agree. (The compiler
could do a field by field comparison, but the implementation
doesn't have the required information.) If the implementation
decides to add padding to a "comparison" area, it must be sure
that different copies are not made unequal by their fill bits.
If a field allocation caused padding to be added to an area, any
assignment to that field must place a standard value in the fill
bits. Likewise, if a subfield is referenced, and the subfield
1s adjacent to the padding, the padding bits must be set again.



Packing

To allow more flexibility in creating data structures, a
packing factor may be specified as part of the machine type
description. A packing factor specifies the trade-off between
the expense of retrieval and the data storage space. Since each
implementation will have a different number of choices for the
representation of a value, a compiler must be specified without
knowledge of this number. An arbitrary decision was made to use
values from 0 to 100 for packing factors. To reduce the amount
of tuning required when moving a compiler to a new installation,
the following rule may be used for assigning representations to
packing factors:

Make a grid showing reference expense (time and space)
vs data storage space. For each representation being
considered for a data type, "“compute" its expense and
storage space values. Connect the relevant points by
a (minimal) monotonically decreasing function. Divide
the expense scale into 100 intervals. A
representation which 1lies on the decreasing function
is used for all packing factors from its coordinate to
the next representation having greater access expense,

This process 1is quite arbitrary, but may aid in compiler
transportability.

The ends of the packing factor scale have not been
specified by the above technique. We can say that "10" means "A
little extra overhead is okay if you can save a fair amount of
space", while ®85" means "Make a dense packing, but don't do
anything which requires an inordenate amount of time."®

Locations

A LOCATION is an abstract data ¢type which refers to an
implementation location. There are three types of locations:
actual, displacement, and literal. An actual location refers to
a data location in the implementation, while a displacement is
the distance from one location to another. A literal contains a
constant value, which may be assigned storage space in the final
object code.

Locations can be permanent and traansient. A transient
object disappears after it is referenced in a FUNL primitive.
(Certain primitives do not destroy their location parameter.)
The primitive routine USE_COUNT allows an object to be used
several times before it disappears. For efficient code
generation, transient objects should be discarded if all of

their specified uses are not needed.



The location model will probably be difficult to implement
on a stack computer, Stack machines will probably lie outside
the target space of PUNL. (¢hile the UNCOL model could be
simulated to re-create the stack sequencing, there is sonre
question as to the desirability of the technique.)

Labels

Positions in the generated code may be marked by LABELs. A
label is an abstract type which isolates the assignment of
memory locations from the compiler code. Labels may be
manipulated by primitives, but label values and relative
positions may not be determined, GO TO's are used to branch to
these labels,

Lest the reader be alarmed by the GO TO capability, recall
that the PUNL semantics lie between the high-level langquage and
the machine language. Plexibility must be given to the compiler
writer, not structure. The compiler may impose structure on the
source programmer, and prevent his access to labels and the
G0 TO mechanism.

Punctional Primitives

The FONL functional primitives include all data
transformations which can be generated, The selection of these
primitives is quite difficult: we want as many as possible so
that the compiler may be more easily specified and more machine
features can be utilized, yet as few as possible so that the
implementation is compact.,

It is obvious that the basic arithmetic operators are
needed, But thes selection of more obscure operators is harder
to accomplish., Such operators must be well defined in terms of
the available machine types, independent of the representations
used in various machines, When duplication was found in the
selected primitives, one of the duplicates was omitted. Some
common machine instructions produce different results on
different machines, For example, an algebraic right shift is
usually reqgardsd as being a division by a power of two. But
most 2's complement machines truncate away from zero for
negative numbers. Instead of providing an explicit right shift,
the division operator can check for division by a power of 2 if
appropriate.

The results of real number computations usually differ from
machine to machine, due to the difference in hardware
implementation or word size, The author views this as a fault
of the usual representation of real numbers. The FUNL systenm
does not attempt to solve these problems, but should be no worse



for transportability of programs than other systenms.

A number of primitives perform tests, These primitives
should be able to hide the differences between machines which
use a conditional branch or jump based on sign from those which
use an instruction skip facility. Special forms of the test
primitives are provided for producing a numeric true/false value
in place of a transfer of control.

Generation Libraries

There are a number of operations performed by hardware
instructions which are not available on many machines or not
used by many source languages. Rather than require that
primitives for these operations be available at all times, they
are placed in the generation library. Standard library routines

will probably include edit, translate, table search, bit shift
and rotate, and bit count packages,

Non-standard primitives can obviously be added to a
library. This technique can be used to experiment with new
primitives, and to adapt FONL to the constructiom of
machine-oriented and special-purpose translators whose
transportability is of no concern.

Procedure Invocation

Procedure invocation poses one of the most difficult
problems for the PUNL semantics, due ¢to the variety of
conventions used in different machines and lanquages. A single
compiler might generate a number of differemt calling sequences.
In addition to the principal calling conventions used by the
lanquage, there may be special sequences for support routines,
external 1library routines, code sequences within the progran,
and so on.

In addition to the transfer of control, a call involves the
following actionss

- Handling the return address.

- Reserving space for parameters.

> Passing and receiving parameter values.
- Saving and restoring registers.

- Returning a result value.



- Returning an exit condition code.

Mot all of these factors will be a part of all calling
conventions, but their very absence is significant for code
gqeneration, The exit condition, used in some machines and
languages, indicates exit conditions or selection of multiple
exits.,

Exception Conditions

The handling of exceptional conditioms {interrupts) differs
widely from machine to machine and lanquage to lanquage. These
have been ignored for the most part, in the design of FUNL; they
must be provided by support routines which interface the machine
and operating system. Likewise, I/0 facilities nust be provided
through support routines.

Three exceptions are integer arithmetic overflow, null
pointer tests, and division by zero. The compiler can check an
environment constant to see if the implementation is providing
zero divide interrupts, The compiler can test to see if null
opinter tests and integer overflow interrupts are provided by
hardware, If not, the compiler 1is free to provide its own
checks. Overflow checking for integer operations can be
defeated.

Object Modules

Sometimes the compiler needs to have control over the final
object output modules. It may wish to group certain procedures
together for efficient 1loading, and may wish others to be
separated for individual loading. OUnfortunately, the formats of
different systems vary widely. In some systems the desired
grouping may be impractical., An additional problem is created
by procedure names, Different systenms have different
conventions regarding the length of names and the available
character set for comstructing names., In lanquages which allow
procedure nesting, a name may even be duplicated if inner
procedures in two distinct outer procedures have identical
names,

One solution is for FPUNL to handle all of its own object
modules, FUNL needs to manage its own libraries anyway, since
library routines may include syntax definitions or user
procedures needed during compilation.

Unfortunately, this solution is not practical. To obtain
acceptance, FUNL mnmust interface existing systems. It must be
able to use external libraries and should be able to produce
code which is callable from some other language implementation.



1t would be impractical in some instances for an object module
to contain code for all 1library routines, because of the
resulting module size. Finally, the combined module must still
be executed by the system, and there is no standard method for
preparing this final output.

The proposed solution to this chaos is sure to be
inappropriate for some implementations. It does, however,
provide some expressive power to the compiler yet leave sonme
flexibility for the implementation.

other modules. Each module can contain procedures and data
areas, A module may also contain a main program. One module,
the program module, is the main program for a run; the main
programs of other modules can be called 1like procedures.
Certain procedures and data areas of a module can be designated
external, and may be referenced from other modules. The
remaining ones can only be referenced by other procedures of the
same module, In many implementations the isolation of local
procedures will be accomplished by naming conventions.

Code Generation

Many compilers require that code be generated sequentially.
This requires that the compiler perform all of the reordering of
the parse tree, never rearranging the code generated at lower
levels, FUNL normally uses this method of code generation. The
FUNL primitives, generated by the compiler, may optionally be
placed in a tree. This tree must be traversed to provide the
linear ordering required for the primitives.

In certain situations, reordering of the code generated by
the PFUONL primitives would be desirable. For example, consider
the statement:

FOR N TIMES DO S END

This statement specifies that "S® should be performed N times.
We must have some auxilliary counter for use in this statement.
I1f we compile the code for S first, we can determine whether
there is an extra register which may be used for the counter, or
whether the counter would be better off in storage. Use of the
code reordering primitives would enable this action to be taken.

Code reordering is costly, especially when a small
implementation is required. Therefore, code reordering
primitives are placed in a library module and only included for
those compilers which need then. This will enable the
evaluation of the reordering technigue.



10

When code reordering is included, there must be additional
mechanisms for handling the assignment of temporary storage. In
particular, each block of code must contain a description of the
temporary storage required by that block. It should be possible
to specify that assigned temporaries do not include any used by
some specific block. The use of temporaries must be managed on
a block basis, so that no temporary created inside a block is
used on the outside.

The Environment

The compiler may pass status information to the
implementation by means of the OPTION primitive. The options
control handling of interrupts, compilation output options, and
optimization level. The compiler must also specify the required
library routines needed for this comepilation, but these
primitives are not described in this report.

Several items about the implementation can be utilized by
the compiler. The environment specification contains the range
of integers supported, and the precision and exponent range of
real numbers. It indicates whether integer overflow and
division exceptions are trapped, and whether attempts to
dereference the null pointer are trapped. A flag indicates
vhether short (procedure-sized) object modules are required.

Using a Limited UNCOL

The FUNL semantics form a fairly low-level lanquage. The
construction of a compiler which outputs FUNL semantics can
still be a major undertaking. To save effort, an additional
semantic model, using primitives of a higher 1level, could be
implemented wusing the PFUNL primitives. GRAIL is omne such
langquage [1]. Let's call this model H. For best results, H
should completely enclose the PUNL model, preventing direct
reference to any PUNL primitives. If the semantic model is
designed appropriately, a number of high-level langquages may be
implemented in this model. In all 1likelyhood, a number of
source langquages which could be implemented in terms of the FUNL
semantics could not be implemented in H.

Let M be a collection of machines which have a similar
architecture, but which are inappropriate for implementing PFUNL.
A nev unlanguage processor (SUNLZ?) could be implemented for
these machines, and H could then be implemented in SUNL.
Compilers which generate H could then be run on the machines of
M. The expense of the operation is the design of SUNL and the
extra implementation of H, If the class M contains only one or
tvo members, the SUNL semantic model could be simply H, though
the potential source language space would be smaller.



11

simplification of implementation through construction of
new semantic models is not limited to the high-order side of
FUNL. Given a number of machines with similar addressing and
register structures, models can be constructed for implementing
locations and performing register allocation. This will reduce
the amount of effort needed to move FUONL to a nevw machine of the
class.

The FUNL Primitives

The reader is <cautioned that the primitives described in
the index form an initial proposal. As the FUNL semantics
package has not received much use, it is subject to change. As
experience is gained in several implementations, wveaknesses of
the primitives will become apparent. Suggestions for change
will be gratefully appreciated by the author.

To some, the number of primitives will be appalling.
surely there must be a way of reducing that number. Each
primitive has been included to solve a specific implementation
problen, Due to the many features of languages and machines,
the number of primitives is large. As we gain expreience with
FONL, and as the trend in computer languages changes, perhaps
the primitive set can be reduced. The design chosen uses a
large number of primitives instead of primitives which have a
large number of parameters or parameters which are optionally
included.



12

(11

(2]

(31

(4]

(5]

(6]

(7]

(8]

(9]

[(10]

(1]

(12]

Bibliography

Applebe, W. PF.,, "A Semantic Representation for
Translation of High-Level Algorithmic
Languages", Ph D Thesis,  Univ. of British
Columbia, Vancouver, 1977.

Boom, H., "The Orgarization of the Object Code
Generator in ALGOL 68H", Tech Report IW 33/75,
Math., Centrum, Amsterdam, 1975.

Brown, Peda, "Levels of Language for Portable
Software®™, CACM, 15212, 1059-1062 (1972).

Fraley, R. A., "An Unambiguous Scanner for Special
Character Tokens"™, submitted for publication.

Fraley, R. A., "Unlanquage Grammars and their Uses",
Dept. of Computer Science Tech. BReport 77-6,
University of British Columbia, 1977.

Mock, 0. et al., "The Problem of Programming
Communication with Changing Machines: A Proposed
Solution™, CACH, 1:8-9, 12-18, (1958).

Nori, K. Vo. et al., "The Pascal P Compiler:
Implementation Notes"®, Tech. Report 10,
Institute for Information, ETH, Zurich, 1974,

Pollack, B. W. and Fraley, R. A., "Pascal/UBC User's
Guide", Tech. Manual TM-2, ©UBC, Vancouver,
Sept. 1976.

Richards, M., "Bootstrapping the BCPL Compiler Using
INTCODE", in Machime OQrieated Higher Level
Lanquages, van der Pohl and Maarssen (ed), North
Holland, Amsterdam, 1974, pg. 271.

Richards, M., "The Portability of the BCPL Compiler®,
Software PS&E, 1:2, 135-146 (1971).

Steel ] T. BI ' “‘ Fitst VetSiOB Df UNCOL“' EE_Q !Qgg'
371-377, 1961.

Waite, W. HN., '"The Mobile Programming System:
STAGE2", =7, 421-429 (1970).



13

APPENDIX I: Semantic Primitives

The current formulation of FUNL primitives is presented

below. They are presented as procedures with argqument lists and
results. This procedural description may be replaced by an
eguivalent tree or tuple description if desired. References to
vcode® in the descriptions refers to the output of the
procedures, not necessarily the final processor output. Some of
the data types are abbreviated in the descriptions, as follows:

nt MACHINE _TYPE
loc LOCATION

labtab LABEL_TABLE

ch CODE_BLOCK

imp_id  IMPLEMENTATION_IDENTIFIER
int INTEGER

MACHINE TYPE PRIMITIVES

TY_FIXED (min, max, base): mt

Returns a FIXED machine type which is capable of storing
numbers in the range from "min" through ™max™, "base" is
2 or 10, indicating a preference towards binary or decimal
numbers. {The compiler cannot force a specific
representation,)

TY_FLOAT {precision, min_exp, max_exp):at

The result type can hold a real value of at least the
specified precision and exponent range. The precision is
specified in bits.

TY_CHAR (number): mt

Machine type for a single character. The number specifies
the number of characters in the character set. The
character representation is 0 to number-1,

TY_POINTER (packing): mt

The result type can hold a memory pointer., The paranmeter
is the maximum packing level of the referenced field.

LfY_BITS (number): mt

The bit type <can contain "nupber™ bits, and may be used
for logical operations. If the parameter is zero, the
result type requires no space,

TY_PROC (proc_form): mt

The result type can hold a pointer to a procedure of the



14

indicated formn.

TY_LABEL : mt
The result type can hold a pointer to a label.

TY_REPEAT (mt, number, packing, compare): at
The result type will hold "number” copies of the specified
machine type. "packing" controls the placement of obijects
within the array., If "compare" is true, there should be
no unused space (padding) between the elements. Packing
factors used in constructing the parameter type limit the
packing used in the repetition,

1Y_CONCAT (mt1, mt2, packing, compare): mt
The result type can contain both of the parameter types.
Additional parameters define the packing conventions. If
mt2 is a composite type having packing factor "x", then X
is an upper bound on the packing actually used for mt2.

Dynamic Machine Types

The size of a dynamic type must be computed at run tinme.
rach dynamic type contains a location which holds its lenqgth.
The location may be used at any time the machine type is
referenced, Because this may occur at arbitrary references to
the type or to locations having the type, the use_count of the
location should not be changed. While the size of an object
cannot be obtained at compile time, it may be stored for later
use.

TY_DYNAMIC (mt, loc, packing, compare): mt

"loc" is the result of an integer expression. It gives
the number of occurrences of the machine type. The size
of the result type is generally determined at run time.
The result type may only be inserted into one location;
the last use of this location will invalidate the type.
"packing® and Ycompare" refer to the spacing between
elements, correspoinding to parameters of TY_REPEAT.

SIZE_OF_TYPE (mt): loc
The result refers to the size of the specified type. The
type may be static or dynamic. It is rounded up to the
next nearest addressing unit if necessary.

TY_VARIABLE (loc): at
This primitive constructs a dynamic type vhose
implementation length is contained in the specified
location.



15

REPEAT_CT (mt1, mt2): loc
The result contains the number of occurrences of type
"nt2" in "mt1"., "mpti1" usually has a variable size.

Area Construction Primitives

The primitives in this section are used to construct areas.
All locations in this section are displacement locations, and
uses of locations as parameters do not constitute a use of that
ilocation, Machine types used for these primitives must be
static, It 1is ©possible to overlay tvwo fields using the area
construction primitives, It is the responsibility of the
compiler to safequard the use of this capability so that user
programs cannot be representation dependent.

NEWR_AREA (compare): area
Creates a new area. If "compare™ is true, the area might
be used in a comparison. If the addition of a field
causes padding, this space must be cleared whenever the
field is stored.

ABEA_CONCAT (area, mt, packing): loc
Allocates space for a field having type "mt®™ at the end of
the area, The result is a permanent displacement
location, Its type may differ from the parameter type,
depending on the packing factors.

AREA_TYPE (area): nmt
Returns a machine type corresponding to the space required
for the area as currently composed.

AREA_SIZE (area): loc’ ,
The size of the arqument, at the end of the current
procedure, is contained in the result location. This is
the amount of space allocated by an ALLOCATE call.

AREA_FOLLOW (area, loc, mt, packing): mt
Allocates space in the specified area for amn object of
type "mt"® to follow displacement ®™loc". The result is a
permanent displacement location.

AREA_OVERLAY (area, loc, mt, ‘packing): loc
Allocates space in area for a field of type "mt" to
overlay "loc". The result is a permanent displaceaent
location. This primitive should be wused only if all
remaining fields of ¢the area may be overlayed, since
representation size of "mpt® can vary radically in
different implementations.



16

AREA_MARK (area): area_status
Records the current condition of the area for 1later
restoration. If the area is a temporary area, information
on temporary use is also recorded.

AREA_RESET (area, area_status)
Resets the area to the given status. The "area_status"
must have been generated for the specified “area™., Fields
allocated since the status was generated may be overlaved,
and temporaries allocated since then are invalid.

AREA_INIT (area, loci, loc2)
Specifies that the field at displacement "loc1" should be
initialized to constant value ™loc2" when the area is
allocated.

Allocation Primitives

There are three classes of storage known to FUNL: static,
stack, and heap.

ALLOCATE (area, class): loc

Allocates enough space to accommodate the area. The
result location is a permanent actual location, except for
heap allocation, which gives a temporary result. The
amount of space reserved is the value of AREA_SIZE (area).
If the class 1is stack or heap, the size allocated is
computed at the end of the current procedure, so that
additional fields may still be added.

GETSPACE (mt, class): loc
Allocates space for the specified machine type. "mt" must
have fixed size if "class" is "static".

DEALLOCATE (loc)
Frees the space and invalidates the actual location passed
as a parameter, If the location resulted from a static
allocation, nothing is deallocated. If it resulted from a
stack allocation, all higher stack locations are also
invalidated. "loc" should specify a run-time value for a
heap deallocate, The location must specify an entire
block created via ALLOCATE or GETSPACE, and cannot be
"static”,



17

Literal Location Construction

INT_LOC (integer): loc
Creates a literal location containing the specified value,

REAL_LOC (real): loc
Creates a literal location containing the specified value.

STRING_LOC (string): loc
Creates a literal location containing the specified value,

NILPTR_LOC: loc
Creates a literal location contaiming a null pointer.

EXTERN_LOC (string): loc
Result references the external routine specified by the
string.

PROC_LOC (imp_id): loc
The result addresses the specified procedure.

DATA_LOC ({imp_4id): loc
The result addresses the specified data area.

LABEL_LOC (label): loc
The result is the address of the label. The label must be
located in the current procedure, PForward references are
allowed.

CON_CONCAT (loct, loc2, packing): loc
The result is a literal location wvwhich is the
concatenation of the parameter literal locations,
Explicit types should be inserted into the locations
before invoking this primitive. If they are not, a
default representation of the constant is selected.

CON_REPEAT (loc1, int, packing): loc
The result is a 1literal 1location which contains the
constant "loc1" repeated "int¥ times. The constant fields
are packed with the specified packing factor.



18

Location Operations

USE_LOC {(loc, number, store): loc

The result location referemnces the original value as the
original, but can be referenced “number" times in
primitives, If "“store"™ is true, one or more of these
references will be a store. If n"store" is false, the
value may be moved to a temporary. If some references are
not used, "LOC_DESTROY" should be called.

LOC_DEREFERENCE (loc, mt): loc

The result location results from dereferencing the
original, The parameter location must be an address or
refer to a pointer., The result location has the specified
machine type.

LOC_ADDRESS (loc): loc

The address of the data specified by the first location is
referenced by the result. The parameter must be an actual
or literal location. Note: if the location is a temporary
location, it might not be directly addressable. This will
require an implementation to move the data as part of this
function, The compiler writer must be certain that all
future references to this location, or branches to
previous uses, will still be valid. For this reason,
obtaining the address of a "fast" temporary is

‘discouraged.

LOC_DISPLACE (loc1, loc2): loc3

The displacement specified by "loc2" is applied to "loci®
to obtain "loc3", The result location is a displacement
if and only if "loc1"™ was a displacement. The type of the
result is obtained from "loc2%,

LOC_SOUBCOMP (loc, mt, packing, compare): loc

The parameter location mnust reference an integer value.
The result is the displacement of the ith element of an
array, where each element has type "mat" and the location
specifies the value i, starting at 0. Negative indexes
are permitted. The result has type "mt",

LOC_SUBRANGE (loci, mt, packing, compare, loc2): loc

Operates like LOC_SUBCOMP, but ™loc2" specifies the number
of repetitions of "mt" included in the result type. Loc2
must be non-negative. The location derived by calling
LOC_SUBRANGE and LOC_SUBTYPE, then combining the results
with LOC_DISPLACE must be the same as a single call to
LOC_SUBTYPE with the sum of the original indices.,

LOC_TYPE (loc): nmt

Returns the machine type associated with a location.



19

LOC_NEXT (loc, mt, packing): loc
The result is a field lovated after "loc" which has type
"mt"® and is allocated with the specified packing. This
primitive is most useful if ®"loc" was computed with a
variable size, It does not imply an extension of the
area; the compiler must ensure that adequate space exists.

LOC_DESTROY (loc, perm)
Destroys a location, making it invalid. This is intended
for destroying temporary locations which have uses
remaining. It may also be used to destroy permanent
locations if "perm™ is true., This may reduce the space
needed during compilation.

Temporary Storage

The temporary storage primitives allow the implementation
to control the allocation of temporaries. If the compiler
maintained its own record of temporary storage usage, additional
temporaries could not be acquired during code generation.

TEMP_AREA (area, loc)

This primitive specifies the area which may be used for
temporary allocation. The area cannot be a 'compare"
area, The location is a specific allocation of the area.
The call applies only to the current procedure. Sonme
implementations may fail during code generatiom if this
call is not made, Packing level 0 1is always used when
adding to the area.

LOC_TEMP (mt, fast): loc
Creates a temporary location. "fast®" is true if fast
memory should be used. This may limit the implementation
if an expression will be evalutated between this call and
the final use of the temporary.

TEMP_RELEASE (loc)
Release the use of the temporary. This primitive does not
count as a reference to "loc". Used in conjunction with
TEMP_REUSE.

TEMP_REUSE (loc)
Reserves the temporary specified by the location. The
location must have been the parameter to ®"TEMP_RELEASE" as
its last reference, This does not count as a use of
"loc".



20

Functional Primitives

INT_DYAD (kind, loci, loc2, min, max, flag): loc

Perform the integer operation specified by "kind" on the
integer operands "loci" and "loc2", The result value will
occupy a space capable of holding a numeric range from
"min" to "max", The machine type of ‘the parameters nmust
reflect that of the data, especially reqarding the decimal
or binary preference, "flaq"™ may include "oflo_test" if
overflow testing should occur, and can contain
"no_oflo_test®" to turn off overflow testing. If neither
is specified, the implementation may choose the easier.
The possible "kind"s are:

+ Addition

- Subtraction

* Multiplication

Division with truncation towards zero.
REM Remainder of division.

MOD Modulus. Result is non-negative.

VUL E WM -
™~

ANT_MONAD (kind, location, min, max, flag): loc
Performs a integer function on the parameter location.
The result is stored in a field capable of holding "min®
and "max"., The following kinds are available:

1 - Negation
2 ABS Absolute value
3 NABS Negative of absolute value.

REAL_DYAD (kind, round, loci, loc2): loc

Specifies a function to be performed on two real values.
The parameters must have the same precision and exponent
range; this is the precision and exponent range of the
result. Rounding occurs if "round™ is TRUE; truncation
occurs if "round" is FALSE. If an implementation does not
include the option requested, a single warning should be
issued at the end of the compilation indicating that that
the other form has been used.

1 ¢ Addition

2 - Subtraction

3 % Multiplication
4y 7 Division



21

BIT_DYAD (kind, loc, loc): loc
Perform a dyadic operation on bit strings. The result has
the maximum size of the bit strings. The temn logical
dyadic operators are available. These are given in the
truth table below:

loci 1100
loc2 1010

1 OR 1110
2 AND 1000
3 EOR 0110
4 IMP 1011
5 DIFF 0100
6 NOR 0001
7 NAND 0111
8 EQV 1001
9 REVIMP 1101
10 REVDIFF 0010

In addition, the operators have assignment forms (11-20),
with the result remaining in the first field. The result
location is the first operand.,

DYAD (kimnd, loc, loc): loc
Performns a dyadic operation on arquments of equal type.
For the current operators, arquments may be FIXED, FLOAT,
or CHAR.

1 MIN Minimum
2 MAX Maximum

MONAD (kind, loc): loc
Perform a monadic operation., The first three operators
require a real location, the next two a bit string.

1 - Negation.

2 ABS Absoulte value.

3 NABS Negative of absolute value.

4 INV Invert the bits in a set.

5 INVP Invert in place, Result is parameter loc.

MAKE_BITS (locl1, loc2, mt): loc
The result is a bit string of type "amt™ having bits *"locti"®
through "loc2" set to 1, and the remaining bits to 0.

ASSIGN ({kind, loc1, loc2)
Copies loc2 to loc1l. The locations must have the sanme
type. The available kinds are:



22

Assignment.
Exchange.

[ ]

oe 89
nou

we

INT_ASSIGN (kind, loc1, loc2, flaq)
Perforn an integer assignment operator. "flag" defined as
for "INT_DYAD"™. The available kinds are:

Add loc2 and loc1 and assign to locl.

10 +
- Subtract and assign to loct.

1

MOVE (loc1, loc2, just, fill, loc3): loc
Causes the first location to be moved to the second. Any
data type other than fixed and float can be used. If the
locations have different lengths, qust" determines
whether the right-hand or left-hand sides will be aligned.
®"fjill" determines the contents of any unused portion of
loc2, as follows:

1 none Leave unused portiom unchanged.
2 repeat Repeat the loc1 value through field.
3 fill Fill remainder of field with loc3.

CONVERT (kind, loc, mt): loc

Convert the value described by ™loc" to a value of the
specified form. The permitted conversions are: packing
changes, fixed base change, fixed to float, float to
fixed, and CHAR to and from FIXED., BIT to FIX and its
reversal are explicitly omitted so that an implementation
can select its own bit ordering and number representation.
"kind" indicates rounded (1) or trumcation {(2) for float
to fixed.

Label Primitives

MEW_LABEL : label
Create a new label.

LABEL_DEF (label)
Defines the label as referring to the current position in
the output code.



23

LABEL_EQUATE {(labelil, label2)
pefines the first label to have the same location as the
second, The second must have been previously defined in a
LABEL_DEF or LABEL_EQUATE., "label1™ and "label2"® are
associated with the same procedure.

GOTO (label)
Generates a branch to the specified label, which may or
may not have been defined, The label must be located in
the current procedure.

GOTO_LOC (loc)
Generates a branch to the location, which usually contains
a computed label.

EXIT_DEF (imp-id)
Defines the implementation identifier as referring to the
current location.

Jump Table Primitives

NEW_TAB: labtab
Creates a new label table.

TAB_ENTRY (labtab, label)
Places the specified label in the table. May not be used
for a table if TAB_INCLUDE or TAB_LOC has already been
called for the same table. The label must reside in the
current procedure.

TAB_INCLUDE (labtab)
The specified table is generated in the code.

TAB_LOC (labtab, loc): loc
The result is an entry of the label table. The parameter
location contains the entry number, starting at zero. It
may be used in a GOTO_LOC, or a label value may be moved
into it.



24

Conditional Primitives

TEST (kind, locl, jump, loc2)
Generates a test of "loc1". The value of "jump"™ (TRUE or
FALSE) determines whether a jump is made to loc2 om a true
condition or a false condition. "loc2® must be a label or
computed address. Only one test is currently provided.

1 0DD Test low bit of fixed iten.

TEST_3WAY (loc, label, label, label)
Tests the value of loct, and branches to the first label
if negative, second if zero, and third if positive.

RELATION (kind, loc1, loc2, jump, loc3)
Tests a relationship between 1loct! and loc2. A jump is
made to loc3 if the result is the same as "Jump” (true or
false). Data types of the two parameters must have
identical machine types., The following kinds are
available:

Fixed, float, char, and char structures:

< L= = >= > ~=
Arbitrary types: = o=
Bit strings: SUBSET DISJOINT
Fixed and Bit: BIT_ON BIT_OFF

COMPARE (kind, loc1, loc2, just, fill, loc3, jump, loc#H)
A comparison is performed between loc1 and loc2.
Alignment and fill is performed as for MOVE, except that
either field can be filled. The jump selection is made as
for TEST.

Procedure Module Primitives

These primitives declare the structure of modules, and
acquire implementation identifiers for each procedure and data
area of the module, Procedure identifiers may be used for
procedure bodies, alternate entries, and exit labels.



25

MODULE (name)

Indicates the beginning of a module having the specified
name, Modules may not be nested; the module is terminated
by the next MODULE primitive, the end of the progqram, or
an OBJECT_GENERATE primitive, No primitive which
generates code may be issued before a module has been
established. A module may be re-opened (by specifying a
MODULE primitive with the same name) if the previous use
of the module only declared names (i.e.: no code was
generated) .

MODULE_ENTRY : imp_id
The resulting identifier may be used to reference the main
program of the current module.

LXTERN_PROC (name): imp_id
The result identifier refers to a procedue of the
specified name. This procedure may be referenced by this
name from outside the module.

EXTERN_DATA (name): imp_id
Produces an identifier for a data area wvhich may be
referenced from outside the module,

LOCAL_PROC : imp_id
Produces an identifier for a local procedure, which may
only be referenced within this module.

LOCAL_DATA 3 imp_id
Produces an identifier for a local data area, vwvhich may
only be referenced within this module.

OBJECT_GENERATE (ret)
Generate code for all modules which have been output.
This assures that the modules have been completely
compiled, and may be loaded at compile time if desired.
If "ret" is false, no return is made to the compiler.

Procedure Declaration Primitives

Procedure declarations define a calling sequence. The
declaration may be shared by many procedures.

PROC_DECL (storage, arquments, saving, result, condition)
: proc_form
The result format defines the calling conventions for a
procedure, The compiler is responsible for seeing that
the proc_form used in defining a procedure is identical to
that used for its call. The parameters may have the
following values:



26

storage
specifies the type of storage to be used for the
return address and register save area.

STACK_STORAGE
Return address is placed on the stack.

STATIC_STORAGE
Return address is placed in static memory.

LOCAL_STORAGE
Return address placed 1in storage 1local to
surrounding procedure.

arquments
Specifies the arqument passing conventions.

STACK_ARGS
Arquments are placed in the stack, within the
stack area used for the called procedure.

LOCAL_ARGS
Arqumrents are placed in memory local to the
calling procedure, allocated in the temporary
area.

EXTERNAL_ARGS
An external convention is used.

FAST_ARGS(n)
A fast calling convention is used. This
assumes at most n arquments,which must have
primitive types. (Structured parameters may
only be passed by passing a pointer.)

NO_ARGS
No arguments are passed.

saving
Save conventions for registers.

STD_SAVE
Use the standard compiler register saving
conventions.

EXTERN_SAVE
Use the standard external routine conventions.

LOCAL_SAVE
Use conventions for calling code with
LOCAL_STORAGE,

SUPPORT_SAVE _
Use conventions for support procedures.



27

result
Describes the method used for function results.

EXTERNAL_RESULT
Use external conventions.

STD_RESULT
Use the standard compiler return conventions.

FAST_RESULT
Use the fast return conventions.

NO_RESULT
This procedure cannot return a value.

condition
Indicates whether an exit condition is returned.

NO_COND
There is no exit condition.

COND_VALUE
The condition is a non-negative numeric value
less than 100.

Procedure Body Primitives

PROC_BODY (impl_id, proc_form)
Begin the procedure body of the indicated procedure,
Procedure bodies may be nested if desired.

MAIN_PROGRAM (imp_id, proc_form)
Identical to PROC_BODY except that the procedure becomes
the main program.

PROC_STACK (area, level): loc
"area" is the local data area to be placed on the stack.
"level” is the lexic level for the procedure. (The main
program has level 0.) The result is the local data
location.

PROC_ARGS (area): loc
Returns the permanent location of the procedure arqument
area. The layout of the area must be specified. Used for
STACK_ARGS and LOCAL_ARGS procedures only.

GET_NEXTPAR (mt): loc
Returns the location of the next parameter, which has the
specified type.



28

PROC_ALTENTRY (name, proc_form): loc
Declares the location of an alternate entry point to the
procedure, The area describes its parameters, and the
result is the location of the parameters.

DISPLAY (int): loc
Returns the location of the data area for the procedure
having the indicated lexic level.

RESULT_LOC (mt): loc
Returns the location of the result value. The value will
have the indicated type. This primitive may only be used
with STD_RETURN procedures.

PROC_RESULT {loc)
Sets the return value for the procedure. If the return
class is PAST_RESULT or EXTEBNAL_RESULT, this procedure
must be followed by PROC_RETURN or PROC_RETCODE.

PROC_RETCODE (int)
Sets the return condition for the procedure. Return
conditions must lie in the range 0 to 63. This call
implies a call to PROC_RETURN.

PROC_RETURN
Returns from the procedure with the indicated condition.
The condition is optional.

PROC_GOEXIT (level
Exit the procedure with a GOTO to a procedure of the
specified lexical level, returning control to the
specified external 1label. The stack storage for all
called procedures being terminated is released, but no
additional clean-up for source structures may be
performed.

PROC_END
End of the procedure. All data and parameter list
locations generated for this procedure become invalid
after this primitive is executed. This primitive does not
imply a return.

Procedure Call Primitives

CALL_START (proc_form)
Initializes a call to a procedure of the specified
description, If proc_form has FAST_ARGS, no computations
may be performed within this call.



29

CALL_LEVEL (int)
Provides the lexic level of the procedure being called.
The outermost level is 0., If this primitive is omitted,
the display is not modified.

CALL_ARG_LOC (area): loc
Establish the location of the parameter area. The
specified area contains the parameter format. This
primitive is only used for procedures whose argument
format is STACK_ARG or LOCAL_ARG,

CALL_PASSPARAM {loc)
Pass the specified value as the next parameter. This
primitive is used for FAST and EXTERNAL arqument forms.

CALL_ROUTINE (loc)
Generate a call to the routine,

CALL_RETCOND : loc
Location of the return condition code, if specified by the
called procedure.

CALL_RESULT (mt):: loc
Returns the location containing the stored result of the
called procedure. For FAST_RESULT and EXTERNAL_RESULT
calls, this location must be used "immediately®.

CALL_COMPLETE
End of calling sequence.

Code Ordering Primitives

These primitives appear in the generation library. They
are only available if the 1library module is included. This
allows simplification of the implementation for simple
compilers.,

HEW_CODEBLOCK
Create a new code block, which becomes active, A previous
active block is stacked for later completion.

CODE_DISJOINT
Declares that the new block will never be included in any
block currently on the stack. This implies that the
current code block will be a procedure, or will never be
generated.

CODE_CONTAINS (cb)
Declares that the active block will eventually contain
block "cb", This information is wused when assigning



30

temporaries im the current block, so that they will not
duplicate the temporaries of "cb"™. This primitive should
be used before code is gnerated in the active block, or
imnediately after "cb™ (or its containing block) is
remnoved from the active stack.

CODE_INCLUDE (cb) _
Block cb is included at the current position in the code.

END_CODEBLOCK : cb
Terminate the active code hlock and returnm it.

Standard Generation Library

The standard generation routines have not been selected
yet., This section gives an indication of expected entries.

EDIT (loc, string): loc
The first location 1is edited under the specifications
found in the string, The resulting location contains the
resulting character string, and often a dynamic machine
type.

TRANSLATE_TABLE (string1, string2): loc
Generates a table for character comnversion. Each
character in stringtl 1is to be replaced by the
corresponding character of string2. Other characters
remain unchanged.

TRANSLATE (loct, loc2): loc
Translates the character string "loci" using the translate
table "loc2", The result is the translated string.

Semaphores
An additional data type, the "semaphore", may be included
for process synchronization, Variables are automatically
initialized to a Mreset" value, Primitives exist for
setting and testing the semaphore, and for resetting it.

Additional Operators

1. An alternate form of the INT_DYAD and INT_MONAD
primitives is provided, with the final operand
replaced by a location. Control flows to this label
or address location if overflow occurs.

2. Additional bit operators include rotations right and
left and end out shifts of bit strings. These must
work for arbitrarily long strings.



31

3. Additional supported operators:

SIGN -1, 0, or +#1 for neq, zero, or pos value.
COUNT Count the 1 bits in a bit item.

PARITY Parity of a bit string.

* D k% Compose real number from two parts.

*10*# Compose real number--decimal exponent.

DIVIDE (loci, loc2, loc3, locl)

Divide inteqger loc1 by loc2. loc3 and loc4 become the
locations of the quotient and remainder,

CODE_COPY (cb): cb

Array

Produce a copy of a code block. Any branches from the
block to 1itself become branches from the copy to itself.
Branches from the outside to the original will still go to
the original.

Operations

Array operations, for pipelined machines could be
provided. Table searches and string scans could also be
devised.

Implementation Option Control

The compiler can change certain options of the

implementation package by using the OPTION primitive.

OPTION (kind, direction)

Set the specified option "ON" or "OFF" depending on the
value of "direction".

OBJECT_GEN Generate the code.

OBJECT_PRINT Print the generated code.

DEBUG1 First level debug output.

DEBUG?2 Second level debug output,
OPTIMIZATION Perform object optimizations.
LEXIC_DISPLAY Maintain lexic nesting display.
TEST_OFLO Test for overflow of integer

arithmetic operations.



32

The Implementation Environment

The following constant values are provided by

implementation:

MININT

MAXINT
MAX_PRECISION
MIN_EXPO
MAX_EXPO
REENTRANT
OFLO_TRAPPED
DIV_TRAPPED
NIL_TRAPPED

Minimum integer

Maximum integer

Maximum real precision.

Minimum exponent.

Maximum exponent,

Generated object code is reentrant.
Integer overflows are trapped.
Divide exceptions are trapped.

Use of the null pointer trapped.

Additional information below could be provided but could lead
implementation differences if used improperly.

STD_CHAR
STD_MININT
STD_MAXINT
WORD_SIZE
ADDR_UNIT
CHAR_SIZE

Standard character set size.
Usual maximum for integers.
Usual maximum for integers.
Bits per vord.

Bits per addressing unit,
Bits per character.

the

to



33

Appendix II

The hand-coded example below illustrates the use of some of
the primitives, The primitives are shown in a Pascal-like
notation, FUNL semantics are normally represented in an
internal format; this representation is for illustration only.

The Pascal program below is used for the example. The code
generation mimics that generated by the PASCAL/UBC compiler 81.
Some simplifications and changes are made to illustrate the
semantics and reduce the length of the example.

PROGRAM FACTORIAL_TABLE;
VAR L,I: INTEGER;

A: ARRAY [1..20] OF INTEGER;
FONCTION FACT (N: INTEGER): INTEGER;
BEGLN

IF N > 0 THEN PACT := PACT (N-1) * N
ELSE FACT := 1
END (* FACT *);

BEGIN

READ (L)

FOR I 2= 1 TO N DO A[I] := PACT ({I)
END.

Generated Code:
Standard Prelude Segment

std_proc := PROC_DECL (STACK_STORAGE, STACK_ARGS, STD_SAVE,
STD_RESOLT, NO_COND);

io_proc := PROC_DECL (LOCAL_STORAGE, PAST_ARGS(4), SUPPORT_SAVE,
FAST_RESULT, NO_COND);

int_ty := TY_FIXED {(minint, maxint, 2);

int_zero := INT_LOC (0);

MODULE ('#*Pascal Library#*?);

1lib1 := EXTERN_PROC ('READ_INT') ;

PROGRAM FACTORIAL_ TABLE;
MODULE ("*main¥?);
a0 := NEW_AREA (false);

VAR L, I: INTEGER;
1 _loc := AREA_CONCAT (a0, int_ty, 10);
- := AREA_CONCAT (a0, int_ty, 10);
(NOTE: 1_loc and i_loc would be stored in the symtol table.)

A: ARRAY[ 1..20] OF INTEGER
arry_ty :z= TY_REPEAT (int_ty, 20, 10, true);
a_loc := AREA_CONCAT (a0, arry_ty, 10);

FONCTION FACT
MODULE (*FACT?);



34

arg_area := NEW_AREA (false);
a1 := NEW_AREA (false);

(N: INTEGER): INTEGER;
n_loc := AREA_CONCAT (arq_area, int_ty, 10);

BEGIN
fn1 := MODULE_ENTRY;
PROC_BODY (fn1, std_proc);
stk := PROC_STACK (al, 1);
arqg := PROC_ARGS (arg_area) ;
TEMP_AREA (al, stk):

IF N > 0 THEN
mt z= NEW_LABEL;
RELATION (>, LOC_DISPLACE (stk, n_loc),
INT_LOC (0), false, mil);

FACT := FACT (N-1)*N
CALL_START (std_proc) ; Call FACT.
CALL_LEVEL (1);
a2 := CALL_ARG_LOC (arg_area);
d1 := LOC_DISPLACE (arg, n_loc); Compute N-1.
i1 = INT_DYAD (-, d1, INT_LOC (1),
minint, maxint, []);
d2 := LOC_DISPLACE (a2, n_loc); Store parameter.
ASSIGN (:=, 42, i1);
CALL_ROUTINE (PROC_LOC (fn1));
i2 := CALL_RESULT (int_ty);
CALL_COMPLETE;
d3 := LOC_DISPLACE (arg, n_loc); *N
i3 := INT_DYAD (%, i2, 43,
minint, maxint, [ 1)
PROC_RESULT (i3); Store FACT result

ELSE
m2 := NEW_LABEL;
GOTO (m2);
LABEL_DEF (m1);

FACT := 1
PROC_RESULT (INT_LOC (1});
LABEL_DEF (m2):

END (* PACT ¥);
PROC_RETURN ;
PROC_END;

BEGIN (* MAIN ¥)
MODULE (**MAIN*');
fn2 := MODULE_ENTRY;
MAIN_PROGRAM (fn2, std_proc) ;
stk := PROC_STACK (a0, 0);
TEMP_AREA (a0, stk);



READ (L)
CALL_START (io_proc);
d1 := LOC_DISPLACE (stk, 1l_loc); Pass by reference.
A2 := LOC_ADDRESS (d1);
CALL_PASSPARAM (d2);
CALL_ROUTINE (PROC_LOC (lib1));
CALL_COMPLETE;

FOR I := 1 TO N DO

t1 := LOC_TEMP (int_type, true);

t1 := LOC_USE (t1, 5);

ASSIGN (:=, t1, INT_LOC (1)) Initial value.
m3 := NEW_LABEL;

m4 := NEW_LABEL;

LABEL_DEF (m3) ;Looping location.
RELATION (<=, t1, int_zero, false, ml);
ASSIGN (:=, LOC_DISP (stk, i_loc), t1);
TEMP_RELEASE (t1);

A[I] 3= FACT (I);
t2 := LOC_DISP (stk, i_loc);
t2 := USE_LOC (t2, 2); Optimization

CALL_START (std_proc); Call to FACT.
CALL_LEVEL (1);
a3 := CALL_ARG_LOC (arg_area);
ASSIGN (:=, LOC_DISPLACE (a3, n_loc), t2); PRass arq.
CALL_ROUTINE (PROC_LOC (fn1)) ;
i4 := CALL_RESULT (int_ty);

CALL_COMPLETE;

Compute A[I]
i5 := LOC_SUBCOMP {t2, INT_LOC (1), arry_ty,
10, true);
i6 == LOC_DISP {(LOC_DISP (stk, a_loc), 1i5):
ASSIGN (:=, 16, iu); Assign result.

Complete FOR loop.
TEMP_REUSE (t1);
ASSIGN (z=, t1, LOC_DISP (stk, i_loc)
INT_ASSIGN (-:=, t1, LOC_DISP (1), [ ]
GOTO (m3): Loop to top.

) :
)

LABEL_DEF (m4);

END,
PROC_RETURN;
PROC_END;
OBJECT_GENERATE (false);

35



