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0. Introduction. 

Presentation of the theory of computation as a theory of programmable ma

chines has the advantage of diminishing the distance between theoretical and 

practical work concerned with programming principles and their application. It 

seems clear that such presentation appeals directly to programming experience, so 

that mastery of its techinques and results by practical workers is not unduly im

peded by irrelevant technicalities. Furthermore, such presentation affords theo

retical workers direct access to the wisdom embodied in programming techniques. 

This paper presents an extremely useful technical theorem concerning the 

composition of functions computable on programmable machines, together with a 

proof which, being basad on the idea of coroutines, illustrates the application 

of programming experience in the development of theory. To illustrate the use

fullness of the theorem itself, a characterization of the full AFLs in terms of 

programmable machines is here established with its help. 

The following notation is used here: Card X denotes the cardinality of 

the set X. X\Y denotes the difference {xtXlx¢Y}. D denotes the empty set, 1 

the set {0} and 2 the set {0,1} (when convenient), and..D'\ the set {0,1,2 ... } of 

natural numbers. 

Members of cartesian products are expressed as ordered tuples or as functions 

defined on an index set, according to convenience. However, it is assumed that 

cartesian products are defined by a universal construction, so that, for example, 

cartesian product as an operation on sets is associative and commutative. 

X+Y denotes the disjoint union of sets X and Y, similarly assumed to be 

defined by a universal construction. Members of X+Y are usually expressed as if 

they were members of XuY, with XnY=□. 
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"Function" here means "partial function". Specifically, f:X-+Y means that f 

is a function (single-valued relation) defined for some elements of the set X 

and taking values in Y. domf•{x\y=f(x) for some y£Y}. ranf~{y\y=f(x) for some 

X£X}. As usualy, the barred arrow specifies a function by its action on an ele

ment. f:xl-+y means (in the proper context) y=f(x). If X is a set, IdX denotes 

the identity relation (or function) on X. 

0 denotes composition of (partial) functions, and is always defined. 

z=[g 0 f](x) if and only if there is some y such that y=f(x) and z=g(y). Thus 

dom(g 0 f)~{x\f(x)£domg} andran(g 0 f)={g(y) \y£ranf}. 

If A is a set, then A* denotes the set of strings over A as alphabet 

(the free monoid generated by A). <> is the empty string (the identity of A*), 

A+ is the set of nonempty strings over A. For x£A*, \x\ is the length of x. 

(\x\=O if and only if x•<>.) 
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1. Coroutines compute compositions. 

The idea behind the above aphorism is presented in Knuth (1975) as "an im

portant relation between coroutines and multiple-pass algorithms". The heart of 

it is this: Given two programs which compute functions by accepting input and 

producing output, one can construct a program of the following form to compute 

the composition of the functions: Invoke the first given program (as a subrou

tine), storing output as it is produced; then invoke the second given program, 

using the previously stored output as input. The resulting program implements a 

two-pass algorithm for the composition. If both the first-pass storing and 

second-pass retrieving are sequential, then there is an equivalent one-pass al

gorithm which can be implemented using the given programs as coroutines. 

This idea can be presented quite explicitly in the theory of progrannnable 

machines outlined in Baker (1977). The theorem which embodies it (1.17 here) has 

considerable technical utility in that theory. In addition, that theorem and its 

proof indicate a potentially important and somewhat novel attitude toward the role 

of formal languages in the theory of computation. 

For the most part, the theory of computation is considered to provide models 

for the external behavior of programs or systems. That is, it is applied toques

tions of the form what functions are computable (with given resources.£!_ tech

niques), and at what cost? -- it inquires into the nature of computing pro~esses 

through their effects. With respect to the theory as a source for external mo

dels of computation, formal languages have been useful in two ways: The member

ship problem for languages in certain families has been a touchstone for compari~ 

son of computing resources; and some particularly important real-world computing 

activities, namely the translation or interpretation of progrannning and natural 

languages, have been guided in their development by theoretical models of lan-
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guage processing. 

If, on the other hand, it is considered suitable that the theory of computa

tion provide models for internal structure of programs or systems--their decompo

sition into distinct computing processes or agents, in particular--, then formal 

languages may have a further significance: A particular decomposition of a pro

gram or system is somehow characterized by the language comprising the sequences 

of communications between its distinct parts which occur or can occur during 

computations. (Such a language is a formal language in the usual sense--a set of 

strings over a finite alphabet--because buffers and channels have finite capacity 

in practice, so that each single communication is chosen from a finite set.) 

The quest for models of internal structure is supported by presentation of 

the theory of computing as a theory of programmable machines, particularly by the 

inclusion of a notion of product of devices (1.06 here), and the attitude toward 

formal languages just described is pretty clearly represented, in connection with 

that notion, in theorem 1.17 here. 

The following fundamental definitions, constructions, and results (1.01 

through 1.10) are included here for completeness. Consult Baker (1977) for exam

ples, proofs, and motivational remarks concerning them. 

1.01. A program IT comprises the following: 
~ 

ITQ a finite set, the nodes; 

IT 8£ITQ' the start node; 

TIA a partial function with domITAcITQ, the 

ITB a partial function with domITBcdomITAxU 

action function; 

for some finite set 

and with ranITBcITQ, the branching function. 

It is also convenient to define 

u, 
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ITT=ITQ\domIIA, the terminal nodes; 

ITc=ranITA' the commands; 

ITv(s)={il<s,i>EdomITB}, the valence of s, defined for each sEITQ; 

ITU=u{ITV(s) lsEITQ}, the unified set of valences. 

1.02. A device ,fJ comprises the following: 
fVVVV 

f;Q, l!8 , bT' sets, the memory, input, and output sets; 

b 1 : JJ8+,fjQ, cf,0 : bQ+~T' partial functions, the input and output functions; 

~C' a set, the commands; 

IJG, a partial function with dom /)Ge cl5'Cx .e,Q and ran /jGc o!:)Qxu for some 

set U, the general interpretation . 

It is also convenient to define, for each aE /jc' 

riOV(a)~{ij cbG(a,m)c<m' ,i> for some m,m'}, the valence of a; 

c/)
0

: lJQ+rl)Qx/jV(a) :mt-+oOG(a,m), the interpretation of a. 

1.03. If IT is a program and lJ a device, then e(IT,.0), the set of computa
MAA. 

tions ~ IT on h, is the set of sequences <s
0

,m
0

> .•• <sk,~> in ITQxo&Q in which, 

for all jE{l,2 ••. ,k}, l'ITA(~j-l)(mj_l)=<mj,i> and ITB(sj_ 1,i)=sj for some 

iEITv<sj_ 1). 

e T (IT ,o6), the set of terminating computations by IT on I:) , is the set of 

sequences <s
0

,m
0
> ••• <sk,~> as above in which skEITT. 

The Jength of a computation of the above form is k. 

~- Lemma. If IT is a program, lJ a device, and <s
0

,m
0

>EITQx£)Q' then there 

is at most one sequence <s
0
,m/··•<sk,~> in tT(IT,cb). 

h£2.· If IT is a program and /j a device, then .Brr, the function computed 

~ IT on JJ , is a partial function defined thus: 
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J)II: cbS-+ JJT: x ~ J:)0 (m)' 

where <JI
8

, f\ (x) > ••• <r,; ,m>e: (:T (II ,fl). 

1.06. If J is a set and for each je:J IJ. is a device, then a device 
fVV'AJ J 

x l) . is defined thus (writing P for the product x Jj.): 
je:J J je:J J 

IPQ= x cb.)Q, P
8
= x (..,El.)

8
, (PT= x (/J.)T. 

j E: J J j e:J J j E:J J 
c1\:xHm, where m(j)=(J:>j)I(x(j)) for all je:J. 

!?
0

:mH-y, where y(j)=(c8j)
0

(m(j)) for all je:J. 

fF>C is the disjoint union + (J:J.)C. 
j e:J J 

For each a.e: PC, if a.e: ( fj j) C, then 

is such that(~.) (m(j))=<m'(j),i>. 
J a. 

rP :m~<m' ,i>, where m'=m except that m' (j) 
ct 

1.07. ut, and l are devices, then ,..,.._., jj < ~ ( ,J:J is reducible to -e_ ) if and 

only if, whenever II is a program, there is a program II' such that tII,=J1II. 

IJ~e, ( ,tj is eguivalent to c ) if and only if fj < e_ and E <b as above. 

~- If II is a program and i!J a device, then II is _!or ,fJ if and only if 

IICci)C andTIV(r,;)ct)V(IIA (r,;)) for all 1',;e:Dq. 

~- Lemma. If II is a program and ,f> a device with rfJ C;t□ , then there is a 

program II' such that II' =II for 1e:{Q,S,T}, and ~(II',l'))= C(II,J:)). 
1 1 

f e:G, 

1.10. Theorem. If G is a set of programs and ,fJ a device, then JJ ~ ,/:J', 
~ 

1.11. Notation. If G,,/7, and .ft' are as in (1.10), we call the elements 
,v.,v,, 

of G programmable operations for /j. We may define programs under that name 
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and use them as in programs for /J' without further apology. 

For any device /J, No is the programmable operation specified by 

The following development (through 1.14) formalizes the observation that 

finite data structures are indistinguishable from control structures. 

k!l,· A device fj has trivial input [resp. output] if and only if card/) 
8

=1 

[resp. card t,T=l] and dam b
1

= b-
8 

[resp. dam JJ
0
= bQJ. 

A device Jj is trivial if and only if it has trivial input and output and 

/j Q is finite. 

1.13. Theorem. If/) is a device, e, is a trivial device, and IT is a pro
i\/Vv'V 

gram, then there is a program IT' such that.bIT 1 (x)=y if and only if JJx~IT(x,s)= 

<y,t>, where t 
8
={s} and i!T={t}. (,fJxt_ </J if we take the point of view that 

( /) x e, ) S = it, S and ( IJ x C ) T = fJ T • ) 

Proof: 

JI 'A: < r;' u> I-+ 

IT' is as required, since clearly <r;o,<mo,u/> ... <r;k,<~,uk>>e: C(IT,/)x~) if and 

only if «r,;
0
,u/,m/·· .«r;k,uk>,~>e: E(IT' ,fJ). 

1.14. Notation. By virtue of (1.13), we may include use of variables over 
,vvv., 

finite sets in any program. Where appropriate, we specify initial values for such 

variables. The coI!Dilands to be employed are: 
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x+a, x+y: assignment of constant or current variable values: 

valence = {O}; 

x=: test of current value: valence is the set over which x varies. 

These notions are to be understood in their usual programming language senses, 

assuming static storage allocation for variables. 

We come now to the principal subject of this paper, the representation in 

our theory of the use of coroutines to compute the composition of functions. 

The following two devices are used to represent repectively the storage and re

trieval of intermediate results in a two-pass computation. Their absence in 

(l.17(i)) represents the incorporation of intermediate results into the corou

tine mechanism underlying an equivalent one-pass computation as described at the 

beginning of this section. 

3vJJ..· If A is a finite set, the output device Out(A) is specified thus 

(omitting the superscript): 

OutQ=OutT=A*, Out8=1. 

OutI:01-+<>, Out0=IdA*" 

Outc={O+aJaE:A}. 

Out : x 1--+<xa, O>. O+a 

1.16. If A is a finite set, the one-way input device Inl (A) is specified 
,vv-.,v, 

thus (omitting the superscript): 

InlQ=(A+{~})*, Inl 8=A*, InlT=l. 

InlI:x1-+x~, Inl
0

:<>r+O (undefined on nonempty strings). 

1n1c={o}. 

Inl
0

:axl-+<x,a> for all aE:A+{-f} (undefined on.:::>). 
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1.17. Theorem. If A and B are finite sets with A-=B, t3 and t!, are 

devices, and~ and~ are programs, then there is a program IT such that the follow

ing are equivalent: 

I) xe (x ,x )=<y ,Y > 
TI 1 2 1 2 

(i) 

(ii) bxout(A) (x ,O)=<y ,z> 
~ l 1 

and Inl (B)x t'..
111

(z,x )=<0,y > for some zEA*. 
T 2 2 

Proof: Let P=({~
8

}u{~B(s,O)i~A(s)=O+a for some aEA})+{T}, Q={~
8

}u 

{~B(s,a)ilf'A(s)=o and aEA+{-t}}. By (1.09), assume~ is for Dxout(A) and~ is for 

Inl(B)xc. Define TI with ~Q+~QcTIQ, and using variables <B,p,q> over <A+{,,-},P,Q> 

with initial values <-,~
8

,~
8

>, thus: 

Tis=~s· 

If ~A(s)E J,C' then ITA(s)=~A(s), ITV(s)=~V(s), and ITB(s,i)=~B(s,i) 

for each iE~v(s). 

If ~A(s)E eC, then ITA(s)=~A(s), ITV(s)=~v(s), and ITB(s,i)=~B(s,i) 

for all idv(s). 

If ~A(s)=O+a, then IT includes 

s: B+-a 
• 

If sE~T' then IT includes 

If 

If 

s: B+-1 p+T 
••--~),olw---->7 p~ 

~A(s)=o, then IT includes 

s:q+~B(s,B) 

• > p~ 

sE~T' then rr includes 

s: B= p= T • ;,,e ,.. 
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In addition, IT includes 

use~ and fas, respectively, producer and consumer coroutines. ~ is run until 

it is about to produce a symbol by executing an "O+a" command. Control is then 

passed to f, which is run until it is about to consume a symbol by a 11 611 command. 

At that time, control is returned to~ at the node it would have reached if the 

"O+a" command mentioned had been executed. At the same time, linkage is set up 

to resume execution off at the node reached by following the "a" branch from 

that bearing the 11 611 command mentioned. Alternate execution of~ and f continues 

in this manner until~ halts. f is then resumed as usual, but with linkage so 

arranged that, when it next reaches a 11 611 node, it is left in control at the node 

reached by following the "-t" branch. IT then halts whenever f does, provided 

does not reach any further 11 611 nodes. 

If the reader sees clearly how the construction given for IT is as just des

cribed, he need read no further in this section. Otherwise, he may proceed de

ductively, reading the further detail now to be given, or inductively, examining 

the example (1.18) below. 

In the rest of this proof, denote C(~,bxout(A)) by e(~), C:.(l,Inl(B)xt) 

by e(f), and e(H,bxt) by e(IT). 

We first prove (i)=>(ii). It is not difficult to prove, by induction on the 

length of the IT-computation about to be mentioned, that if sE~Q+lQ and 



1-9 

<Tig,m, n,<-,~S'~S>> ••. <s,m,n,<a,~,n>>E ~(TI) then there is some string ZEA* such 

that ~ sE~Q,a=-,<~
8
,; <>>,.,<~,m' ,z> .• ,<s,m,z>E {'.:'.(~) for some m', 

or 
N,N 

and <~
8

,z,n.>,,.<n,<>,n>E t(~) 

sE~Q' 

(either <~
8
,;,<» .•• <~,m,za>E c'.(~) 

or ~=T and <~ 8,;,<>>,,.<0,m,z>E t(~) for some 0E~T), and 

(either <~ 8,za,~> ..• <n,a,n'> .. ,<s,a,n>E ~(~) for some n' 

or a=- and <~ 8 ,z~,n> ..• <n,<>,n'>,,.<s,<>,n>E e(f) for some n'). 

Now suppose (i). By construction of TI, <TI 8,t\(\), c\(x
2
),<-,~

8
,~

8
» 

... <s,m,n<-,T,n»Et(TI) for some sEfT, nEfQ, mEi8Q, and nEtQ, with Yt~O(m) and 

y
2
= ~O(n). By the assertion above, there is some ZEA* such that <~8 , PI(x

1
),<>> 

-~-<0,m,z>E ec~) for some 0E~T and <~s,z~, tI(x2)>,,.<s,<>,n>E L(~). (ii) fol-

lows. 

We next prove (ii)::>(i). For ~EP, nEQ, it is clear from the construction of 

TI that 

(1) If <,,m,<>>, .• <0,~,<>>, •• <s,m' ,a>E C(~), ~A(0)=O+a, 

<n,<>,n>.,.<A,<>,n 1 >E e(f), fA(A)=o, and <A,a>Edom~B' 

then <,,m,n,<-,,,n>> •• ,<s,m',n',<-,~B(0,O), lB(A,a)>>Ee(TI); ~ 

(2) If <~,m,<>>,,,<0,m' ,<>>E ~(~), 0E~T' 

<n,~,n>,,.<A,~,n> ••• <s,<>,n'>E C(~), ~A(A)=o, and <A,~>EdomfB' 

then <~,m,n,<-,~,n>> •• ,<s,m' ,n' ,<-,T,~i'J..,-f )>>E COI). 

From (1,2) it follows by induction on lzl that, for ~EP, nEQ, ZEA*, 

(3) If <,,m,<», •• <0,m' ,z>E (:(~), 0E~T' and 

<n,z~,n>, ,,<s,<>,rl>E t(l), 

then <~,m,n,<-,~.n>>.,,<s,m',n' ,<-,T,n'>>E C(n) for some n'. 
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(ii)=;,(i) follows easily from (3). 

1.18. ,..,,...,._,. Example. If r is a finite or countable set, the pushdown store device 

Pds(E) is specified thus (omitting the superscript): 

PdsQ=r*, Pdss=PdsT=l. 

Pds
1

:0I-+<>, Pds
0

:<>H-0 (undefined on nonempty strings). 

Pdsc={+P}u{P+alaer}. 

Pds :ax~<x,a> for all aer (undefined on<>). 
+p 

Pds :x1-+<ax,O>. P+a 

Let~ and t be respectively the programs of Figure l(a) and (b). Clearly 

Inl ({a,b})xOut({a,b}) ~:<x,O>f-+<0,f- 1 (x)>, where f is the homomorphism al-+a, 

bl-+bb; and dom(Inl({a,b})xPds({a})t)={aibili~O}x{O}. (1.17) asserts that there 

({ab}) ({a}) · i 2il is a program TI with dom(Inl ' xPds rr)={a b i~O}x{O}, and the proof of 

(1.17) gives a construction for such a program TI, as shown in figure l(c). To 

get a clearer idea of how TI works, we can eliminate use of variables, using the 

construction of (1.13), then elide the resulting occurrences of the command "No" 

in an obvious way. The result is shown in figure l(d). 
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2-:0,F:--....!..-
a 

2a: P-G-a 

Figure 1. Programs of example 1.18, illustrating the coroutine 
>. 

construction in the proof of theorem 1.17. In (d), for i=l,2,3, 

i- denotes <F;,<-,F;,ni>> 

ia denotes <n
1

,<a,F;,n
1

>> 

ib denotes <n
1

,<b,F;,ni>> 

i-1 denotes <n
1

,<-t,T,n
1

>>. 



r. 
I 
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2. A characterization of the full AFLs. 

Theorem 1.17 here is technical in the sense that one cannot draw from it 

alone any important conclusions about the feasibility or cost of real-world com

putations. Although, as suggested above, it may have some philosophical impor

tance with re~pect to the role of formal languages in the theory of computing, it 

is offered primarily in the hope that its use may allow some more directly appli

cable parts of the theory to be developed simply and clearly. To illustrate what 

can be done along these lines, here is a brief but nearly complete development of 

a characterization of the full AFLs in terms of programmable machines. 

A full AFL is defined to be a family of languages closed under the operations 

union, concatenation, concatenation closure, intersection with regular sets, 

homomorphism, and inverse homomorphism. (See Ginsburg (1975).) We will see that 

a family~ is a full AFL if and only if there is a machine 'h1 which is a pro

grammable nondeterministic acceptor for 'I.., in the sense that LEcl if and only if 

there is a program TI such that TI running on~ is a nondeterministic acceptor for 

L. 

Nondeterminism, which plays an essential role in the characterization we are 

seeking, comes into the theory outlined in section 1 as a matter of interpretation. 

Specifically, a relatioµ (nondeterministically) computed by a program TI on a de

vice ifJ will be defined as the projection of the function en obtained by omitting 

a specified factor of /}S (presumed to be a product), the omitted component peing 

thereby regarded as an auxiliary input selecting a particular path in the tree of 

computations by TI on 1:/' determined by the components not omitted. We will use the 

following as a standard auxiliary input device in this sense. 

2.01. The auxiliary input device Aux is specified thus: 
,-NVv,,, 
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AuxQ=Aux8=2*, AuxT=l. 

AuxI=Id
2
*, Aux

0
:<>1-+0 (undefined on nonempty strings). 

Auxc={A}. 

AuxA:ix~<x,i> for ie:2 (undefined on<>). 

~- Remark. For any set X ·, let *x denote the regular languages over 

X (as alphabet). It is easy to show, using familiar techniques, that 

{dom(Inl(A)rr)\TI is a program}=~A for any finite set A. Programs for Inl(A) 

are in this sense deterministic finite-state acceptors. Programs for Auxxinl(A) 

are likewise nondeterministic finite-state acceptors in the sense that 

{x\<w,x>e:dom(Auxxinl (A) TI) for some program TI and some we:2*} is also ~A" Sim

ilarly, AuxxOut(A) is a programmable nondeterministic generator, and we have 

{x\<O,x>nan(AuxxOut(A)TI) for some program TI}=~A" 

The above uses of Aux are typical. In specifying relations defined computa

tionally, we will always project away from Aux. Likewise, we will always project 

away from components with trivial input or output. In this connection, the fol

lowing nomenclature is useful. 

2.03. 
~ 

A machine 1rl comprises the following: 

'hf.I:} an indexing function with ~(j) a device for all j e:dom 1f/..r,; 

?JzK, ntLcdom 'fn/j, the indices active for input and output, respectively. 

It is also convenient to define 

"m3=dom 111.D, the index set; 

'i>z.n=. X '»l,e (j)=><(ran miJ). the underlying device; 
J e:71& 

'ms=j~1t?K( mai5(j)) 8 , the input set; and 

'n'lT=.x ( 'h1at:,(j))T, the output set. 
Je:»IL 
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2.04. If 1t[_ is a machine and IT a program, then the relation computed by IT 
~ 

on 111. is 

/R. (IT,'h1,)={<x,y>E 'h(8x 71-lTI (~D)IT(x)=y for some xE(1f!n)s and yE('iY(n)T with 

x(j)=x(j) for all jE )'JfK and Y(j)=y(j) for all jE 111
1

} 

2.05. Notation. A machine 1>'l is ordinarily to be specified by exhibiting 
IVvV\, 

1'{D, thus specifying the index set 1r/.J and the function 111.,a implicitly. The sets 

'JftK and m
1 

may also be specified implicitly by referring to devices which are 

factors in the product 111D as active for input or output. 

In this paper, the devices Inl(A) are active for input in all machines, the 

devices Out(A) are active for output in all machines, and none of Inl(A), Out(A), 

Aux, or Pds(E) (example 1.18) is otherwise active for input or output. In parti

cular, Aux is not active for input or output in any machine. 

If »f is a machine and b a device, then m.xtJ denotes nt,Dxb, which notation 

serves as in the first paragraph above to denote both a machine and a device. 

The following is also convenient. 

~- If 111. is a machine, then 

Xe nf S is 1>t-acceptable if and only if there is a program IT such that 

X=dom /<.(IT,1'-Z). 

Xc1'>lr is '»t.-generable if and only if there is a program IT such that 

X=ran ~(IT, "1. ) • 

In terms of the above nomenclature, the remark (2.02) asserts the equivalence 

of the following propositions, where A is a finite set: 

(i) XE ~A 

(ii) Xis Inl(A)_acceptable. 
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(iii) Xis Auxxinl(A)_acceptable. 

(iv) Xis AuxxOut(A)_generable. 

We now proceed to develop a few basic facts about machines and the role of 

Aux (nondeterminism) in general, beginning with an obvious generalization of de

finition 1.07. 

2.07. If 1Yl and ')t are machines, then -»1 < 11, ( 'm_ is reducible (as a machine) 
~ m --

to 'l1.) if and only if, whenever IT is a program, there is a program IT' such that 

dl(IT'' n )= ~(IT, »t). 

'l'>1. ~m 'n. ( 'IYl. is equivalent (as ~ machine) to 11) if and only if 'iYl. 1n 1t and 

'n < .Jn.. 

~- Lemma. If m. is a machine and /J is a device such that cB 
O 

( .,BI (s)) 

is defined for some se: .:8
8

, then 'YYl <m 11t,xl), where oL:J is not active for input or 

output in this product. 

Proof: Whenever IT is a program for 'YY/D, (~xt})IT:<x,s>t-+<('W/D)IT(x),J}-
0

(a\(s))>. 

It follows that tf2. (IT, 'W/xl})= ~(IT,»1.) ;, By (1.09), this is sufficient. 

Corollary. If »I. is a device and tJ is a device with trivial input and out-

put, then m <m 'mx/7 , where J:, is not active for input or output in this product. 

2. 09. Theorem. If 'Wt is a machine and tJ is a trivial device, then ,.,,.,,,.,,,, 

?YI. ~m 'm.xcfJ, where /j is not active for input or output in this product. 

Proof: (1.13, 2.08). 

By (2.09), the machine conventions are not invalidated by use of variables 

as described at (1.14). 
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2.10. Theorem. If 1Yl is a machine, then ?n< Auxx1fl. ,...,.,_., ==== m 

Proof: Since Aux0 (AuxI(<>))=O, (2.08) applies. 

Corollary. If »t is a machine and X is 'WI. -acceptable, then X is Auxx 1>1.-

acceptable. 

~- Lemma. If 1rl_ is a machine, then Aux2 x m <mAuxx 1J'/. 

Proof: Let IT be a program. Denote the commands for the two Aux components 

of Aux2 xfYl by A ,A. Obtain a program IT' from IT by replacing all occurrences of 
1 2 

A, A as commands by A. By induction on the length of computations, it is 
1 2 

clear that 

<~,x ,x ,m>, .. <~ 1 ,<>,<>,m >£ t(IT, Aux2 x1Jt) for some x ,x 
1 2 1 2 

It follows that ~(IT' ,Auxx»t)= R(rr,Aux2 x1i[), as required. 

2.12. Theorem. If 1'>{ is a machine and ne.a!\{O}, then Auxnx»t ~mAuxx1Y/. 
,-;vvv 

Proof: By induction on n, using (2.10, 2.11). 

We are now ready for our first applications of (1.17), leading to theorem 

(2.15), which generalizes the equivalence of Auxxinl-acceptable and AuxxOut

genera&le. 

2.13. Lemma. If A is a finite set, fJ a device, and IT a program, then 
~ 

there is a program IT' such that Auxxt,xout(A) rr,(w,x,O)=<O,y,z> for some we2* if 

and only if Inl(A)xt'rr(z,x)=<O,y>, 
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1 A 1 
--) q • "'-·;HI 

(I 

(a) 

'O ~a 1 k 
02.~ak 

Figure 2. Programs in proofs of Lemmas 2.13 and 2.14. 

(a) ~ in Lemma 2.13. (b) 1 in Lemma 2.14. 

Proof: (The double output trick) Let A={a
1 

••• ,ak} and define~ to be the 

program of figure 2(a). Clearly ran(Aux (Out(A)) 2 ~)~{<0,z,z>lz£A*}. Application 

of (1.17) completes the proof. 

~- Lemma. If A is a finite set, ll a device, and TI a program, then 

there is a program IT' such that Inl(A)xbTI 1 (z,x)=<0,y> if and only if 

.0xout(A) TI(x,0)=<y,z>. 

Proof: (The double input trick) Let A= f a
1 

••• , ~} and define 1 to be the 

program of figure 2(b). Clearly dom(Inl(A)) 2 ~={<z,z>I z£A*}. Application of 

(1.17) completes the proof. 

l,..:JJ.• Theorem. If A is a finite set, 'n1, a machine with ')tZK= 1'?
1

=0, 

and XcA*, then X is Auxxinl(A)x'"t -acceptable if and only if X is 

Auxx»lxout(A)_generable. 

ful. 

Proof: (2.13, 2.11, 2.14). 

The following notion, which is quite natural to consider, will also be use-

2.16. If Eis a countably infinite set, then S is a sequential relation 
~ 
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in E if and only if there are finite sets A,BcE and a program IT such that 

S= ~(IT ,Auxxinl (A) xout (B)) cA*xB*. 

By way of (2.13, 2.14), (1.17) can again be applied to obtain the following. 

2.17. Theorem. S is a sequential relation in a countably infinite set E 
r,,J'vv 

if and only if the converse of Sis also. 

Proof: Let Sv denote the converse of S and let S=~(IT,Auxxinl(A)xOut(B)). 

In (2.13), take /J =AuxxOut(B) and see there is a program IT' such that 

Aux2 xout(B)xOut(A)IT'(w',w,O,O)=<O,O,y,x> for some w'E2* if and only if 

Auxxinl(A)xOut(B)rr(w,x,O)=<O,O,y>. By (2.11), it follows that there is a program 

IT" such that ran {ll(IT" ,AuxxOut (B) xout (A) )=S"". 

In (2. 14) , take IJ =AuxxOut (A) and see there is a program IT III such that 

Auxxinl (B)xou/A) rr"' (w,y,0)=<0,0,x> if and only if AuxxOut(B)xou/A) JI,,(w,O,O) 

=<O,y,x>. Thus Ol.(IT 111 ,Auxxinl(B)xOut(A))=S""'. 

Since S=(S~)"', this completes the proof. 

We begin now to obtain the characterization itself, starting with some basic 

definitions included here for completeness. 

~- A family of l angua ges is a pair <t..,E> such that Eis a countably in

finite set and, for each LE~, there is · some finite set AcE with LcA*. It is also 

required that L~□ for some LEl. 

LJ.2.· A family of languages< 't,E> is c l osed under i ntersection with regular 

sets if and only if LnRE £. whenever LE t., and RE -S(E. 

2.20. If A and B are sets, then a function f:A*➔B* is a homomorphism 
,-,..,vv 
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(of strings ) if and only if domf=A* and f(xy)=f(x)f(y) for all x,yEA*. 

Cor ollarz l . for f as above, f(<>)=<>. 

Corollary 2. For A and B sets, f:A*+B* is a homomorphism if and only if 
A A A A 

there is a function f:A+B* with domf=A such that f(a •.. a )=f(a ) ••. f(a) for any 
1 n 1 n 

a ... a EA. 
1 n 

For A,B,f as above, we employ the usual notations f(X), f-1.(Y) thus: 

If XcA*, then f(X)={f(x)lxEX}. 

If YcB*, then f-1 (Y)={xif(x)EY}. 

2.21. A family of languages <l ,E> is closed under homomorphism [resp. _,_ 

inverse homomo r phism] if and only if f(L)El, [resp. C 1 (L)Ei,] whenever LE.l and 

f:A*+B* is a homomorphism with A,B finite subsets of E. 

2.22. A family of languages <l..,E> is closed under sequential r elati ons if 
~ 

and only if {yixSy for some xELhl whenever LE! and S is a sequential relation 

in L 

2.23. Theorem. A family of languages </.,E> is closed under sequential 
NVvv 

relations if and only if it is closed under homomorphism, inverse homomorphism, 

and intersection with regular sets (if and only if it is a full trio, in the ter

minology of Ginsburg (1975)). 

Proof: Suppose <£-,E> is closed under sequential relations. If f:A*+B* is 

a homomorphism with A and B finite subsets of E, then there is clearly a pro

gram TI such that ~(II,Inl(A)xOut(B))={<x,f(x)>ixEA*L By (2.10, 2.17), it fol

lows that f (L), r-1 (L)El, . 

If RE~E' then necessarily RE*A for some finite set AcE, As remarked at 

(2.02), R=dom~nl(A)II) for some program II, Clearly a program II' can be obtained 
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from II with Ol(II',Inl(A)xOut(A))=IdR. It follows that LnRe:l whenever L£t... 

Conversely, suppose <t.,E> is closed under homomorphism, inverse homo~orphism, 

and intersection with regular sets, and let S=Ol(II,Auxxinl(A)xOut(B)) be a se-

" quential relation in E. Let al-+a be a one-to-one function with domain A and ,. ,., ,.. 
A={alaEA}cE, AnB=O. Obtain a program II' from II by replacing each 

by 0 A 
i:.; 0:t=~2 

0+-a 
1 

i:_; 
1 

where t is a variable over 2 with initial value 0. Define homomorphisms 

g: (AuB)*-+A* :;i-a, b,-..+<>; 

f: (AuB) *-+B*:; 1-+<>, b 1-+b; 

" 
and see that {ylxsy for some x£L}=f(g- 1 (L)nran(Aux2 xout(Au~~))El. whenever L£f... 

;.;.J:!!. If E is a countably infinite set and ?)t is a machine with 'mK= 11i L =□, 

define the 'm -family ~ E to be 

7(1Yj,E)~{XcE*IX is Auxxinl(Ai,n. -acceptable for some finite AcE}. 

Corollary 1. If '»t,E are as above, then 7(1"t,E) = {XcE*IX is Auxx»(xOut(A)_ 

generable for some finite AcE}. (By (2.15).) 

;,. 

Corollary 2. If 1rl ,E are as above, then <7(1n,E),E> is a family of lan-

guages. (Since {<>}=ran~ (No, Auxx m x0ut (A))'.) 

2.25. Examples. 
l'\/VV\, 

7(Pds( 2) ,E) is the family of context-free languages over 
,.. 

E, where Pds is as in example 1.18. ~ E = ';1(Id, E), where Id is the device speci-

fied by IdQ=Id5=IdT=l, IdI=Id0 :0>-+0, and Ide=□, not active for input or output. 
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,.. 
2.26. Theorem. If ?Y!,E are as at (2.24), then <1(m.,E),E> is closed 
~ 

under sequential relations. 

Proof: (1.17, 2.11). 

" Corollary. If 'h1, , E are as at (2. 24), then < 7( ?,f, E), E> is a full trio. 

,.. 
2 .27. Theorem. If 1rl, E are as at (2. 24), then 7 ('»1., E) is closed under 
~ 

union. 

Proof: For i=O,l, let Xi=ran~(ITi, Auxx'WlxOut(Ai)). Obtain IT by adjoining 

to the disjoint union (as programs) of IT and IT . Clearly ran6( (IT,Auxx'Ynxout(AouAl)) 
0 1 

=X UX. 
0 1 

"' Corollary. In the terminology of Ginsburg (1975), <~('Wl,E),E> is a full 

semi-AFL. ----

~- Theorem, If 11'l ,E are as at (2.24) with m
0
=(ntD)

1
(s) where 

('mD) 5={s}, and for each program TI there is a program r (a reset program) such 
.... 

that <f S, m> ... <O, m 
O 

>e: C1 T (r, 1?tD) whenever <ITS, m / ... < r; ,m>e: C (TI, 1)1D), then '}'(11j,E) 

is closed under + (nontrivial concatenation closure). 

Proof: Let X=ran~(TI,Auxx»t_xout(A)), and let r be as hypothesized, with 

respect to TI, Obtain IT' from the disjoint union (as programs) of IT and r by 

replacing each 
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and specifying IT'B(~,i)=IT 1

8=IT 8 whenever rB(~,i)=OerT. Clearly 

ran ~ (IT I ,Auxx m xou t (A)) =X +. 

2.29. Theorem. A family of languages <t.,E> is closed under sequential --
relation, union, and + (is a full AFL, in the terminology of Ginsburg (1975)) 

if and only if there is a machine~ satisfying the hypothesis of (2.28) with 

" t.. ='1< m, n. 

" Proof: By (2.26, 2.27, 2.28), <';l;(r}t,E),E> is a full AFL. 

Conversely, suppose < t , E> is a full AFL. Define a device /3 , not active 

for input or output, by 

ZJ =E* /j = ,8 =l. Q ' S T 

t,
1

:0~<>, J,
0

:<>1-+0 (undefined on nonempty strings) • 

.Dc={W+al ad}+.e. 

JjW+a: w 1-+<wa, O> • 

J)L:wH-<<>,O> if weL, undefined otherwise. 

A comniand of the last-mentioned type is an oracle for membership in Le~. 

~:A 1 A L 
=------'--►--➔• 

0 0 

w~a, w~a"-
o~a1 O<-c\k 

Figure 3. Program IT in proof of theorem 2.29. 

If L£~, then clearly L=ran(JI,Auxx.t)xout(A)), where A={a
1 
... ,ak}, LcA*, and 

,.. 
IT is the program of figure 3. Thus lc'F(JJ,E). 
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Finally, suppose IT is a program for AuxxJ'xOut(A). Let 

B={ad:IW+a occurs in IT}, 

C= {LE.f IL occurs (as a command) in IT}. 

~ ~ A A 

Let L1-+L be a one-to-one function with domain C and C={LjLEC}cE, CnB=O. Let 

D=BuC. Obtain a program IT' for AuxxOut(D)xOut(A) from IT by replacing each command 

W+a by 0D+a and each command L by 0D+L. (Commands O+a in IT are to be retained as 

0 A +a.) Define S=ran ~(IT' ,Auxx0ut (D) x0ut (A)). By (2 .14), S= <R.(IT" ,Auxxinl (D) x0ut (A)) 

for some program IT', so S is a sequential relation in E. Clearly, 

ran<R.(IT,Auxxbxout(A))=-{ylxsy for some xE(u{L{L}\LEC})*hL. "' Thus ~ ( %) , E)ct.,. 

tJ satisfies the hypotheses of (2.28) thus: If IT is a program for /J and 

B~{aE:EIW+a occurs in IT}, then f= 

is as required. 

B* .,.. ,. . 
In the above proof, several facts about the full AFL <t,E> were used with

out proof: l. is closed under concatenation and * (concatenation closure), and 

~Ect. Proofs of these not using any development along the lines given here may 

be found in Ginsburg (1975). 
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