MHEM

MMMH MMM
MM M MM
M M
M M MMMMMMMMM
MM MM MMMH MMM
MHMH MA MH MMM
MMM MMM MM MMM
MMMMMMMH MY MMMMMHMN MM
MMPRMMMN MHMNHM MMM MM MMMMHM
MHH MM MMH] MM
M MMH M M
M MM MMM MM
MMMHN MMMMMM MHHM
MMM MMM
MHAM
MMM M
MMMMM

Rk ok KR Ok ROk R KOk ok Kok kR ok Rk Rk K
. ,

* An Unambiquous Scanner
* for
™
e
*

*
&
*
Special Character Tokens *
*
x

*kkkkkkkkk ke kb ko kokk kR kkkk ¥k

by

R. A, Fraley

Technical Report 77-5
June 1977

Department of Computer Science
University of British Columbia
Vancouver, B. C,.

An Unambiguous Scanner for Special Character Tokens

K. A. Fraley
University of British Columbia
June 22, 1977

Abstract

A fast algorithm for a general purpose scanner is presented. It
includes a mechanism for permitting user-defined special
character tokens. The scanner is able to separate strings of
special characters without imposing arbitrary spacing rules on
the programmer. An analysis shows that most special character
tokens from selected languages could be handled properly by the
scanner, even if they were in the same language. Many of the
omitted tokens could be confused for combinations of operators,
demonstrating the utility of the scanner for preventing lexical
ambiguity. The special character analysis is extended to other
classes of tokens.

An Unambiguous Scanner for Special Character Tokens

Input scanners for programming lanquages have been around
for quite some time {7,14]. They divide the input string into
units called "tokens", The normal inmplementation uses a
finite-state machine to recognize the tokeans. Special character
operator tokens, such as ":=" and "**¥", are generally built into
the scanner. Many scanners also contain a table of reserved
words for the language; this feature shall not be discussed.
The scanner described below has been developed as part of the
Unlanguage project.

Traditional scanners are not very convenient for lanquages
which change during compilation. The proqrammer is generally
restricted to tokens which have been built into the scanner.
Operators could, however, be defined im a symbol table, as is

traditionally done with variables. Some lanquages, such as
Snobol [8] and Algol 68 [21], already have a limited form of
this capability. The defined operators must be chosen from a

specified collection of symbols (wvhen a word symbol is not
used) . The lanquage Mary [U4] allows symbols to be constructed
as sequences of specified characters. The Unlanguage scanner
also allows for the creation of new token symbols, but uses a
different scanning technique than that used for Mary.

In designing such a scanner, we have two conflicting goals:
efficiency and flexibility., Efficiency is important due to the
number of characters processed by the scanner during a
compilation, and flexibility is important so that the scanner
doesn't place undue restrictions on the languaqe. Consider the
Pascal [13] statement

A(.I.)%:=-B

if our scanner was being used with Pascal, it would need to
produce the tokens ",)", "gn, Y:=w_ and "-", among others. But
suppose that our scanner isn't designed for a specific language.
How will it know where one token emds and the next begins? We
could require the programmer to put spaces between the tokens
{(the "SNOBOL technique®),

R(.I.)f:=—ﬂ

This imposes unreasonable requirements orn the programmer (and
hence the language)., The requirement is unreasonable because it
differs from our normal use of symbols.

Another separation technique is to look up each potential
token in a table. That is, we add one character at a time to
the token until the resulting string is neither a token nor the
initial portion of a token. We use the longest token matched by

the input, saving extra characters for future tokens (the "Mary
technique™), This method is quite flexible, but the table
lLook-up slows down the scanning process, and imposes some
restrictions on the symbol table organization. The coding is
complicated by the necessary back-up.

Lexical Ambiguity

A general scanner should face the issue of lexical
ambiquity. This is a phenomenon which is found in @ npumber of
existing languages. FORTRAN [101 is a prime example of this
phenomenon. Consider the expression fragments "12.EQ." and
"12.E2", The first fragment has two tokens; the second has only
one, "12" may be a token, but we must look past the "," and
the YE"™ to the next character to find out. Our general scanner
should never look ahead more than one character.

Another type of lexical ambiquity is found in the 1language
Simula 67 [5]. Simula uses the operator ":-" for the assignment
of reference values, as opposed to ":=" which is used for the
assignment of data values. This new operator provides a problenm
tor the scanner because the coastruct "[-10:-11" is wvalid for
the specification of array bounds. 1In this case ":-" is two
tokens, ":" and "-". A specially designed scanner will produce
t¥o tokens when ":-" occurs inside of brackets, where a pointer
assignment cannot occur. But if the scanner allows new operator
definitions, a complex language analysis would be required to
discover such facts. It would be desirable to eliminate this
type of dependence on a specialized grammar analyzer.

One more type of lexical ambiquity occurs in the lanquage C

{18]. The operator "--" is used as a prefix operator. But "-%
is also a prefix operator in C, so the expression "--B" could be
interpreted as either "-- B" or as "-(-B)'". We would have a

similar problem if "--" was an infix operator: does "A--B" mean
WA == B"™ or M“A - (=B)"? One could arque that the second
interpretation is not very useful. But in a general scanner, we
cannot know which combinations of operators are useful. ¥We must
prevent the unsuspecting user from creating such operators. For
example, the user might define an assignment operator "<-" on a
machine which has no left arrow. Some Boolean expressions may
accidentally use this operator, as in "if A<-B then...". Here,
separate "<" and "™-" tokens were probably intended, although
assignment may have been desired. The scanner described below
will not recognize the "<-" as a token. The parser could accept
the pair of tokens "<" followed by "-" if the language designer
feels that the construct is safe, although the parser generator
being developed for use with this scanner would issue a warning
message.

Some scanners ignore the issue of lexical ambiguity. The
"Mary technique™ requires the programmer to separate tokens when
an ambiquity arises. Some C compilers warn the user when a

construct might be ambiquous. Other lanquages, such as Algol
68, avoid lexical ambiguity by the choice of special character
tokens. For the Unlanqguage processor, special character tokens
may be used as user~defined operators or delimiters. Lexical
ambiguity is avoided as a protection for the user.

One way to prevent lexical ambiguity is to rtegqgard each
special character as a complete token. This leaves the issue of
ambiguity for the parser to worry about. The Unlanquage scanner
can operate this way, but allowing the lanquaqge designer the use
of tokens seems to simplify his task. The technique used to
eliminate lexical ambiguity of operators requires little extra
work for the scanner with only minor limitations on the use of
tokens in the langquage.

Token Classification

If one examines the use of special characters 1in existing
languages, it becomes apparent that lexical ambiquity is avoided
by the legal placement of tokens 1in the language. Special
character symbols usually appear as prefix, infix, or postfix
operators, which obey certain rules:

- Infix operators never appear together.

- A prefix operator 1is never followed by a postfrfix
operator.

= An infix operator cannot follow a pretix operator or
precede a postfix operator.

- A postfix operator may be followed by an infix
operator, and an infix operator by a prefix operator.

s Any number of prefix operators may appear together,
and any number of postfix opreators nmay appear
together.

= Operands may be preceded by an infix or prefix
operator, and followed by an infix or postfix
operator.

Thus, for example, the infix operators ":=w", Wzt _ apnd "=" may
all be present in an unambiquous language, because ":" apd n"=V¥
as infix operators may never be adjacent. But if '='" is also a
valid prefix operator, then ":" could be followed by a prefix
#="_ so that ":=" is ambiguous.

An operator token is a "prefix token", "infix token", or
"postfix token"™ depending on the type of operator vwhich it
Lepresents. If a tokem is used as both a prefix (postfix) and
infix operator, it is a prefix (postfix) token. If it is both a
prefix and a postfix operator, it is called a "bifix token".

The rules which we will develop for bifix tokens also apply to
special character tokens used as operands.

Character Classification

Let us investigate the properties of the token classes
based on the characters used to represent the tokens. If we are
scanning an infix operator, we must gather together the one or
more characters used to represent the operator. But the infix
operator might be followed by a prefix operator. We must stop
yathering up characters when the first character of the prefix
operator is encountered. Likewise, when reading a prefix token,
the scanner gathers up characters until the first character of
the next prefix operator is found. (0Of course, the scan also
stops if a blank, letter, or digit is found.) This behavior
suggests that the first character of a prefix operator must be
chosen from a distinguished collection of characters.

let?'s see some examples of this rule. For our examples,
the characters "+", Ww-w®_ nnw_ apnd (" will be the prefix
characters, The expraession "A:=-B" is brokenm into four tokens:
WA We=n w_n_ apnd WB", Because the "-" symbol is one of the
distinguished prefix characters, two tokens ";=" and "-% yere
tormed instead of a single token ":=-", Likewise, because "="
is not a distinquished character, ":=" remained as a single
token, The expression "A:=:B" has a single operator, since ":@:"
is not distinguished, The expression "A#:=B" jis valid even
though "+" is distinguished: an infix operator may begin with a
prefix character; a prefix operator must begin with such a
character. The prefix characters may not appear after the first
character of an operator, so tokens such as "++" and "$(" are
not possible for this scanner,

Postfix tokens are the reverse of prefix tokens. It is the
last character of a postfix token which is important. This
postfix character siqgnifies the end of the token, <Hust as the
prefix character signifies the beginning of a new token. Thus
if ")" is a postfix character, the character cluster "/)/" is
divided into two tokens "/)" and "/, We have avoided attaching
any special significance to the characters of an infix operator
to allow infix tokens such as "//" and "..". Note that postfix
characters may only be the last character of a token.

Bifix tokens are used as both prefix and postfix operators.
An example of this is "¢" in Pascal, which is a prefix operator
in type declarations and a postfix operator in expressions. In
general, the first character of a bifix token must be a prefix
character, and the last must be postfix. If a bifix token
contains only one character, it is both a prefix and postfix
character. We might call such a character a bifix character.
gifix characters may not be part of other tokens, as they must
be both the first and last character.

We may see now why special-character operands must be bifix
tokens, They must begin with a prefix character for separation
from a preceding infix operator, and must end with a postfix
character for separation from a following operator.

Evaluation of the Operator Scanner

While the use of character classifications to break apart
character clusters might seem overly simple, it is a very
effective method. Our goal is the development of a scanner
having definable tokens. To evaluate the method, we can use the
operators found in existing languages. This does not imply that
our goal 1is to make a system for processing all existing
languages; these lanquages serve only as a source of data,
providing operator tokens which have been useful in the past.

Pascal, PL/I, and Algol 68 <can all be handled by the
scanning technique. Some of the character classifications might
not be obvious. In PL/I, for example, " (", ", % and ")" pust
all be bifix characters, This allows proper handling of the
strings "DCL A (*,*)" and "A*%B", A similar classification is
needed for Algol 68, where an array with a single dimension
might have the string " ()" as part of its type name. 1In Pascal,
with "(." and ".)" used in place of square brackets "[" and
"ij*, we would need a special provision in the grammar for the
enpty set: "(. .)" and "(..)" are both valid representations,
although the latter is only one token. "." could be classified
as a bifix character, but ".." would become two tokens while
"{(..)" would become four.

Simula 67 has the problem described earlier regarding the
token ":-", but other special symbols such as "==" and "=/=" are
handled correctly. The grammar for Simula could be modified to
read ¥:-" as two tokens, or to allow ":-" as a single token in
array declarations, Note that if ":-" is two tokens, the
compiler would also accept ": =%,

Rather thanm looking at additional lanquages by themselves,
iet's consider several at one time. The special character
tokens from the following 1languages were accumulated: Pascal
[13], Algol 68 [21], Algol 60 [16], Cobol [121, Simula 67 [5],
Simscript 2.5 [2], IMP (Edinburgh) [1], Jovial [20], Snobol [8],
Sue [3], BCPL [17], € [18], Mary [4], and Euclid [15]. We shall
select a specific classification of the characters, and use it
with operators from all of these 1lanqguages. The character
classification is shown below:

Prefix characters: + - ([[¢ #&# ' o2 2 , 1 1}

Postfix characters:)] 1 ¢ ¢« o # 2?2 ,

-
-
p—

The table below shows those tokens from the selected languages
which can be recognized as such with the character

classification above:

Prefix
¥ = $ —® A5 -1 %4 &%

Infix
rY - *x / * % // l & l‘ &6 - 3)] - s “e e ? %
= < > K= >= K> D> == =~k ad> => 31=; 1/=r == =/=
2= #i= =3= %:= Jz= fi= Rz =3 => +=; =% =§ =L
=>> =& =) =% =z%% =3/ =3// =1L =2>> =K% =31%>
<K D> ¥ <% k) |: L=

Postfix
) *) /) %)) =) ¢ 11 2 1 o

Bifix

The symbols labelled "Bifix" require some explanation. In
several of the langquages, it is possible to omit items from a
list. This leads to several adjaceat " ," or ";" symbols. These
tokens were classified as "bifix" so that they don't combine
with each other or adjacent brackets. For empty lists, we may
make the brackets into bifix symbols, so that "[" becomes two
tokens. In the case of "(" and ")", we cannot use bifix
symbols, since we desire multi-character brackets (like " (/7).
¥ie may still handle the null 1lists by accepting " {)" as an
alternative to w(n mywu, These problems arise because the
languages allow lists with omitted elements, which do not follow
the rules of operators stated earlier.

The "#" is bifix for a different reason. In the IBM 370
extensions to BCPL [17], operators such as "“#+" and "#-" are
used as floating point operators. The "§" symbol transforms
integer operators into floating operators. Rather than regard
n§s+n and "§%" as new operators, the "#" was considered to be a
functor which transformed the operator. The functor must be a
postfix token due to the operator to its right. It must also be
a prefix token when "4-" is used as a prefix operator.

The table below shows those tokens which are not handled
properly:

Prefix
< $(. $ % x* /& | 4+ ==
Infix
- ¢ Ky K- 1D =4 == 1= =p =14 =:1- §!
=3<+ =:4> ,.
Postfix
> % ++ == = =D KL D> ¥+ <+
Bifix
I T |
Let?s consider why these symbols could not be tokens. We have

already discussed the exclusion of ":-", Mg apd M=--9,

operators which introduce lexical ambiguity in a general
processor. A number of the prefix exclusions were introduced by
snobol, which uses blanks to distinguish between infix and
prefix operators. Many of these prefix operators are "spares".
The language IMP introduced the tokens "<-" and "!1", The first
of these 1is clearly ambiquous in our scheme, while "!!" yas
excluded because the postfix use of "!" seemed more important.

In addition to the prefix and postfix "¢+" 3apdg Ww--%_ ¢
provided the operators M=#W", H==®_ wi=0t_ gpngd W=¢®_, The first
two are ambiguous in the lanquage C, leading to different
interpretations for "A =— B" and "A = - B", M"i=" apd "=4" are
excluded by other desired uses for "!" and "¢r,

Mary provided the greatest challenge for the scanner,
pecause Mary uses postfix operators where other languages use
prefix operators. For a specialized Mary scanner, we would
redefine "+" and "-" as postfix instead of prefix characters.
This would enable us to handle the postfix operators "-W, Mkgn
and "¢<+", as well as the infix operators "=:#9", W=:-"_ gngd
W=z <+, Some Mary operators could not be handled. In fact,
Mary programmers can define any sequence of characters from the
set M"#-¥/%E<=>!.:" as an operator.

Several of the "spare" operators of Algol 68 were omitted
from this table. They could not be handled by the scanner only
pecause we chose not to make "g" and "%" prefix characters, and
because "¢" is a bifix character. Some operators of Algol 68
disappeared because they are outside of the character set being
used for this classification.

APL [9]1 was originally in our lanquage sample, but wvas
discarded. With all of the symbols which it uses, it does not
compose operators from multiple characters. Note that operators
such as "+ _*" have several characters only because "_ " is
peing used as a functor, combining the infix operators "+" and
nkn_, The local version of APL [19] leads to additional troubles
when the keypunch character set is used. The extra symbols are
encoded as "$" followed by one or two characters. At times
these symbols are letters, In some cases the "$" may be
regarded as a functor, but in others the scanner cannot handle
this type of token.

OQther Tokens

So far we have considered only the special character
tokens, All of our work to ensure lexical non-ambiquity will be
lost if the other tokens of +the lanquage are ignored. The
additional classes of tokens which shall be considered here are

identifiers, integers, reals, and strings. In addition, the
scanner must be able to recognize comments. Definitions shall
be given for each of these classes. These definitions should

not be considered as universal, but as a formulation chosen for

the sake of analysis. Personal preference might suggest a
ausber of modifications to these definitions, most of which
could be adapted for this scanning technique.

Tokens are defined in terms of the characters which form
them. The characters being used for processing are divided into
tive disjoint classes: letters, digits, break characters,
quotes, and special characters.

For convenience, we shall call special character tokens
operators. We may extend our previous definition by allowing
break characters as any character of an operator other than the
tirst. Certain break characters might be distinguished as
postfix characters if desired.

Integers are defined as sequences of digits. For our
purposes, there are no limitations on the number of digits in an
integer, Integers are unsigned, as a sign cannot be regqgarded as
a digit. (If a sign was a digit, it could appear anywhere in an
integer.) The parser could associate a prefix operator and an
integer to form a signed value.

Identifiers always begin with a letter, but otherwise may
be any sequence of letters, digits, and break characters.
Identifiers may appear next to any operator, because a letter
may not appear in an in an operator, and a special character may
not appear in an identifier. If break characters were alloved
to begin an operator, we would not be able to place such an
operator immediately after an identifier. Identifiers must be
separated from other identifiers and from integqgers (and reals)
by spaces. 1Identifiers might be used for keywords or operators
by the parser; this is irrelevant to the scanner.

Real numbers pose a number of problems for the scarnner.
There are two common formulations of real numbers. The first
requires that there be one or more digits on each side of the
decimal point, while the second allows a decimal point toc start
or end a number, If we use the first formulation, the decimal
point character may be included in the special character set.
If the second formulation is used, the decimal must be excluded
from all of the character classes. If the decimal point could
start an operator, then "12." could be the number "12% followed
by a ".% operator. "." <can't be a break character, unless
such characters are excluded from the construction of operators,
or “(.12" could be divided into *(." and "12" or into " (" and
“.12“.

The second problem with reals 1is the exponent portion.
This consists of a "power of ten" symbol, an optiomal siqn, and
an integer, The simplest approach regards the "power of ten®™
symbol as being an infix operator of the highest priority, and
the sign as being a prefix operator in front of the exponent.
The resulting definition of real numbers would differ from the
traditional definition, since blanks could appear before the

exponent portion. Unless the definition of the "power of ten"
symbol as an operator is valid only after an integer or decimal
number, it would be available as an operator between an
arbitrary real or integer and an integer. At least with the
Unlanguage parser, it would be possible to eliminate this type
of usage.

In certain situations the traditional form of real numbers
might be desired. The complete real coanstant would then be a
single token. The safest way of achieving this would be to
reserve a unique "power of tea" symbol which appears in none of
the character classes, or occurs only as a break character. The
common practice of allowing the letter "E" as the "power of ten"
symbol can be dangerous if identifiers are allowed to follow
numbers with no intervening spaces. If "E1® is an identifier,
then "1,2E1" could be either a real number alone, or the real
w1.2" followed by the identifier "E1", OQur rule, then, is that
whenever the ‘"power of ten" symbol belongs in some character
class, a token which begins with a character of that class must
be separated from a real number or integer by one or more
spaces.

Strings and comments are tokens which are enclosed by
quotes. In order to make some practical decisions about the
formats of these tokens, we shall mnake a few arbitrary
restrictions. strings shall be enclosed by quotes which are
single characters, and the opening and closing quote <c¢haracters
are identical, Comments, on the other hand, may have quotes
which are either single or multiple characters, and the c¢losing
guote may differ from the opening quote. In addition, a variant
of the comment will permit the end of the input line to serve as
the closing quote. Comments may run from line to line, while
strings must appear on a single line only. The value of the
string token is available, while comments are eliminated by the
scanner. There may be a number of different types of strings,
where the quote symhol selects between the different types.

Strings are simpler to process than comments. The quote
symbols used to delimit strings cannot appear in any other class
of characters, so strings may appear next to other tokens. For
simplicity, we shall assume that a doubled quote character
represents a single occurrence of that character within the
string. Escape characters could be specified to allow control
functions, but different escape characters may be needed for
each string type, which would complicate the description of the
scanner. Note that the definition of a postfix operator ®"E"
would allow the conversion of one string type to another. For
example, '01'B could specify that '01' is a character string,
while the B could convert this to a bit string.

Comment brackets may be arbitrary clusters of characters,
with other character clusters serving as a comnent close. We
could, for example, define "/*" and "*/" to be a pair of comment
brackets, or we could use "{" and "}", Once again, it is safest

10

1f the first character of the left bracket cluster is used for
no other purpose in the lanquage, as in the Pascal use of " (",
when a comment bracket like " (*% is used, the first character of
the bracket 1is a prefix character, so the symbol is safe as a
comnment start. If "/%" jis permitted as a comment bracket but
wy/n is an infix character, then the user might attempt to define
clusters such as "//%" but would find that a comment had been
started. The scanner would have a more difficult time finding
this comment bracket than if it only needed to check at the
beginning of a tokem. This suggests that comment brackets must
be separated from other tokens by a space if they amight
otherwise be pistaken as part of that token. But since special
character tokens do not need space separation in other
constructs of the language, the user might expect that no such a
space is needed. We could be a bit more conservative and
require that an open bracket of a comment be a bifix token. If
"% ywas a bifix token, the user could not define a token such
as "/x/n yhich starts out with the comment open bracket. Any
character or cluster may be used as a closing bracket. But note
that if the cluster is not a bifix token, a similar operator
{such as "x/%") mnight appear in the comment, causing accidental
termination of the comment string. Likewise, if the closing
guote is used elsewhere in the language (as ";" is in ALGOL), a
portion of code may not be placed conveniently within comment
urackets.

implementation

One of our stated goals was efficiency, so we should
consider the implementation of our scanner. Except for sone
uncertainty regarding comments and real numbers, the first
character of the token dictates the token type. The end of the
token is either a- blank, a postfix character, or the first
character of the next token. Because the token separation is
based solely on properties of the characters, we may use a
scanning process to separate tokens instead of a finite-state
machine, The scanning process may be carried out by a
table-driven scan which resembles the IBM 370 TRT instruction.
This routine could be micro-coded on appropriate hardware. It
requires nine instructions on the IBM 370 (including a TRT), and
occupies about 20 bytes on an INTEL B8080.

Comparison

The Unlanguage scanner has a number of advantages over each
of the three traditional scanning methods: the finite-state
scanner, the "Snobol technigque", and the "Mary technique™. it
has a number of disadvantages as well.

The Unlanguage scanner has one basic advantage over each of
the other techniques: the finite-state scanner cannot be
extended as easily, the "Snobol technique" is less convenient

1

for the programmer, and the "Mary technigque"™ may lead the
programmer into ambiguous constructs. A finite-state machine
could, of course, be used to implement any of these techniques,
including the unlanguage schene, ¥e are comparing the
unlanguage scanner with the traditional method of encoding
specific tokens within the machine.

Probably the greatest advantage of the Unlanguage scanner
1s its protection against lexically ambiquous constructs. It
makes it possible for a lanquage designer to permit operator
name extension but still provide protection against the
construction of lexically ambiquous lanquages.

The ©Unlanguage scanner is also quite fast. 1Its principal
scan procedure can be micro-coded. It does not require a large
amount of space., The principal tables characterize the
characters based on their occurrence as the first character of a
token and their use after the first character. These tables
require approximately two bytes per character. An additional
table gives matching close brackets for comment open brackets.

The major disadvantage of the Unlanqguage scanner is its
restrictions on operator use, The characters must be classified
for the entire 1lanquage, and cannot change their qualities in
different places within the language. This restriction does not
seem to be serious, as can be seen by the operator analysis of
existing languages., It would be possible to switch scanning
tables during a compilation if the proper controls are provided
at a higher level.

12

L1]

(2}

{3]

(4]

L5]

Le]

[7]

18]

[9]
[10]

(1]

[12]

[13]

(18]

(15]

Bibliography

Barritt, M. et al., Edinburgh IMP Language Manual,
Edinburgh Regional Computing Centre, July 1970.

CACI, Simscript 1I.5 Reference Handbook, CACI, Los
Angeles (1973).

Clark, B. L., The SUE System Language User's cuide,
Computer Systems Research Group, UOniversity of
Toronto (Revised July 1977 by Aa. Ballard,

University of British Columbia.)

Conradi, R. and P. Holager, MARY Textbook, RUNIT

report STF14A74034, University of Trondhein,
Norway (1974).

Dahl, 0. et al., Common Base Language, Norwegian
0).

Fraley, R., "Unlanquage Grammars and their Uses",
Department of Computer Science Technical Report
77-6, University of British Columbia, {in
prearation).

Gries, D., Compiler Construction for Digital
Computers, John Wiley and Sons, New York (1971).

Griswold, R. et al., The SNOBOL 4 Progqramming

—_——— ==

Lanquage, Prentice iHall, New Jersey (1971).
IoM, APL/360 User's Manual, IBM, GH20-0683-1, (1970).

IBN, FORTRAN IV Language, IBY Corporation,
28 5 e

1BHM, PL/I(F) Language Reference Mapual, IBHM
GC28-8201-4 (1972).

IBM, DOS Full American Natiopal Standard COBOL, IBM
Corporation, GC28-6394-4, (1973).

Jensen, K. and N. Wirth, Pascal User Mapual and
Report, Springer-Verlag New York {1976).

Johnson, W. et al., "Automatic Generation of

Efficient Lexical Processors Using Finite State

Techniques", CACM, v.11, n.12, Dec. 1968.
Lampson, B. et.al., "Report on the Programming

Language Euclid", Sigplan Notices,v.12, n.2,

L16]

£AT]

(18]

{19]

{20]

(21]

13

Feb.,1977.

Naur, P. ed., "Revised Report on the Algorithmic
Languaqe Algol 60", CACM, v.6, n.1, Jan. 1973,

Richards, M., The BCPL Programming Manual, Computer
Laboratory, University of Cambridge, April 1973;
as adapted by J.E.L. Peck for MTS, University of
British Columbia, July 1975.

Ritchie, D., C Reference Manunal, Bell Labs, Murray
Hill, N. J. (1974).

Twiver, D., APL - A Programming Lanquage, University

of British Columbia Computing Centre, Manual UBC
APL, Sept. 1971.

Univac, JOVIAL Programmer Reference, Sperry Rand
Corporation, UP-7698 (1973).

van Wijngaarden, A. et al., Revised Report omn the

Algorithmic Langquage Algol 68, Springer-Verlagq,
New York {1976).

