
MMM
lUU1M MMM .

PIK M MM
l1 M

l1 M MMMltPIMMPIM
MM MM l111iUHI ttMM

lHJllt MM
MlUl IUlH
M MMl.'l M Ml!UUIM

MM Pl M lll'Ut MM l'I M
MHH

MM MMM
MM MMM

MMlU!MPIM
MMM MM
MM MMM
M MMM

M MM MMM
MMlUt M lUU1MN
MMM

M
M

MM
Ml:H1
MMM
MMM

MMM l"I
MMMMM

* *
* An Unambiguous Scanner *
• for •
• Special Character Tokens *
*

by

R. A. Fraley

Technical Report 77-5

,lune 1977

Department of Computer Science
University of British Columbia

Vancouver, B. c.

An Unambiguous Scanner for Special Character Tokens

R. A. Fraley
University of British Columbia

June 22, 1977

A fast algorithm for a general purpose scanner is presented. It
includes a mechanism for permitting user-defined special
character tokens. The scanner is able to separate strings of
special characters without imposing arbitrary spacinq rules on
the programmer. An analysis shows that most special character
tokens from selected languages could be handled properly by the
scanner, even if they were in the same lanquaqe. Many of the
omitted tokens could be confused for combinations of operators,
demonstrating the utility of the scanner foe preventing lexical
ambiguity. The special character analysis is extended to other
classes of tokens.

1

An Unambiguous Scanner for Special Character Tokens

Input scanners for programminq lanquaqes have been around
for quite some time [7,14]. They divide the input strinq into
units called «tokens«. The normal implementation uses a
finite-state machine to recognize the tokens. Special character
operator tokens, such as":=" and"**", dre generally built into
the scanner. Many scanners also contain a table of reserved
words for the language; this feature shall not be discussed.
The scanner described below has been developed as part of the
unlanguage project.

Traditional scanners are not very convenient for lanquaqes
which change during compilation. The proqrammer is qenerally
restricted to tokens which have been built into the scanner.
Operators could, ho~ever, be defined in a symbol table, as is
traditionally done with var~ables. Some lanquaqes, such as
Snobol f81 and Algol 68 f211, already have a limited form of
this capability. The defined operators must be chosen from a
specified collection of symbols (when a word symbol is not
used). ~he lanquaqe Marv [41 dllows symbols to be constructed
as sequences of specified characters. The Unlanquaqe scanner
also allows for the creat · on of new token symbols, but uses a
different scanning technique than that used for Marv.

In designing such a scanner, we have two conflicting goals:
efficiency and flexibility. Efficiency is important due to the
number of characters processed by the scanner during a
compilation, and flexibility is important so that the scanner
doesn't place undue restrictions on the language. Consider the
Pascal [13] statement

A(. I.) t: =-B

If our scanner was being used with Pascal, it would need to
produce the tokens"•>", "t", 11 :=", and"-", among others. But
~uppose that our scanner isn•t designed for a specific lanquaqe.
How will it know where one token ends and the next beqins? We
could require the programmer to put spaces between the tokens
(the "SNOBOL technique").

A (. I •) t := - B

This imposes unreasonable requirements on the programmer (and
hence the language). The requirement is unreasonable because it
differs from our normal use of symbols~

Another separation technique is to look up each potential
token in a table. That is, we add one character at a time to
the token until the resulting string is neither a token nor the
initial portion of a token. We use the longest token matched by

2

the input, saving extra characters for future tokens (the "Mary
technique"). This method is quite flexible, but the table
look-up slows down the scanninq process, and imposes some
restrictions on the symbol table organization. The codinq is
complicated by the necessary back-up.

Lexical Ambiguity

A general scanner should face the issue of lexical
dmbiguity. This is a phenomenon which is found in a number of
existing languages. FORTRAN r 101 is a prime example of this
phenomenon. Consider the expression fragments "12.EQ." and
"12.E2". The first fragment has two tokens; the second has only
one. 11 12 11 may be a token, but we must look past the "." and
the "E" to the next character to find out. our general scanner
should never look ahead more than one character.

Another type of lexical ambiguity is found in the language
Simula 67 [5]. Simula uses th~ operator":-" for the assignment
of reference values, as opposed to":=" which is used for the
assignment of data values. This new operator provides a problem
.tor the scanner because the construct "[-10:-1) 11 is valid for
the specification of array bounds. In this case 11 :-" is two
tokens, ":"and"-". A specially designed scanner will produce
two tokens when 11 :-" occurs inside of brackets, where a pointer
~ssignment cannot occur. But if · the scanner allows new operator
definitions, a complex languaqe analysis would be required to
discover such facts. It would be desirable to eliminate this
type of dependence on a specialized grammar analyzer.

One more type of lexical ambiquity occurs in the lanquaqe C
{18]. The operator"--" is used as a prefix operator. But "-"
is also a prefix operator inc, so the expression "--B" could be
interpreted as either 11-- B" or as 11-C-B)". We would have a
similar problem if"--" was an infix operator: does "A~-B" ~eati
"A -- B" or 11 A ~ (-B)"? one could argue that the second
interpretation is not Very useful. But in a general scanner, we
cannot know which combinations of operators are useful. We must
prevent the unsuspecting user from creating such operators. Foe
example, the user might define an assignment operator 11 <-" on a
machine which . has no left accow. Some Boolean expressions may
accidentally use this operator, as in "it: A<-B :t.hg9: ••• 11 • Here,

e pacate "<" and "-" tokens were probably intended, although
assignment may have been desired. The scanner described below
will not recognize the"<-" as a token~ The parser could accept
the pair of tokens"<" followed by"-" if the languaqe desiqner
teels that the construct is safe, al though the parser qene ra tor
being developed for use with this scanner would issue a warninq
message.

Some scanners ignore the issue of lexical ambiguity. The
"Mary technique" requires the programmer to separate tokens when
an ambiguity arises. Some C compilers warn the user when a

3

construct might be ambiguous. Other lanquages, such as Alqol
68, avoid lexical ambiguity by the choice of special character
tokens. For the unlanguage processor, special character tokens
may be used as user-defined operators or delimiters. Lexical
ambiguity is avoided as a protection for the user.

One way to prevent lexical ambiguity is to reqard each
special character as a complete token. This leaves the issue of
ambiguity for the parser to worry about. The Unlanquaqe scanner
can operate this way, but allowing the language designer the use
of tokens seems to simplify his task. The technique used to
eliminate lexical ambiguity of operators requires little extra
work for the scanner with only minor limitations on the use of
tokens in the language.

Token Classification

If one examines the use of special characters in existing
languages, it becomes apparen~ that lexical ambiquitv is avoided
by the legal placement of tokens in the lanquage. Special
character symbols usually appear as prefix. infix, or postfix
operators, which obey certain rules:

Infix operators never appear toqether.

A prefix operator is never followed by a postfix
operator.

An infix operator cannot follow a pretix operator or
precede a postfix operator.

A postfix operator may be followed by an infix
operator, and an infix operator by a prefix operator.

Any number of
and any number
together.

prefix operators may appear together,
of postfix opreators may appear

Operands
operator,
operator.

may
and

be preceded
followed by

by an infix or
an infix or

prefix
postfix

Thus, for example- the infix operators":=", ":",and"=" may
all be present in an unambiquous lanquaqe, because":" and "="
as infix operators may &ever be adiacent. But if 1 = 1 is also a
valid prefix operator, then":" could be followed by a prefix
•=", so that":=" is ambiguous.

ln operator token is a "prefix token", 11·inf ix token", or
"postfix token" depending on the type of operator ~hich it
~epresents. If a token is used as both a prefix (postfix) and
~nfix operator, it is a prefix (postfix) token. If it is both a
prefix and a postfix operator, it is called a "bifix token".

4

The rules which we will develop for bifix tokens also apply to
special character tokens used as operands.

Character Classification

Let us investigate the properties of the token cldsses
based on the characters used to represent the tokens. If we are
scanning an infix operator, ve must gather together the one or
more characters used to represent the operator. But the infix
operator might be followed by a prefix operator. We must stop
yathering up characters when the first character of the prefix
operator is encountered. Likewise1 when readinq a prefix token,
the scanner gathers up characters until the first character of
the next prefix operator is found. (Of course, the scan also
stops if a blank, letter, or diqit is found.) This behavior
suggests that the first character of a prefix operator must be
chosen from a distinquished collection of characters.

Let's see some example~ of this rule. For our examples,
the characters"+", "-", "-.", and "(0 will be the prefix
characters. The expression "A:=-B 11 is broken into four tokens:
NA",":=", 11 - 11 , and "B". Because the"-" symbol is one of the
distinguished prefix characters, two tokens":=" and"-" were
formed instea.d of a sinqle token 11 :=-"• Likewise, because "="
is not a distinguished character, ":=" remained as a sinqle
token. The expression "A:=:B 11 has a single operator, since ":"
is not distinguished. The expression "A+:=B" is valid even
though"+" is distinguished: an infix operator &~Y beqin with a
prefix character; a prefix operator mY§t begin with such a
character. The prefix characters may not appear after the first
character of an operator, so tokens such as"++" and"$(" are
not possible for this scanner.

Postfix tokens are the reverse of prefix tokens. It is the
last character of a postfix token which is important. This
postfix character siqnifies the end of the token, iust as the
prefix character signifies the beginning of a new token. Thus
if")" is a postfix character, the character cluster "Ill" is
divided into two tokens "i>" and"/". we have avoided attachinq
any special significance to the characters of an infix opera. toe
to allow infix tokens such as "II" and "· • 11 • Note that postfix
characters may only be the last character of a token.

Bifix tokens are used as both prefix and postfix operators.
An example of this is "f" in Pascal, which is a pcefix operator
in type declarations and a postfix operator in expressions. In
general, the first character of a bifix token must be a prefix
character, and the last must be postfix. If a bifix token
contains only one character, it is both a prefix and postfix
character. We might call such a character a bifix character.
Bifix characters may not be part of other tokens, as they must
be both the first and last character.

5

We may see now why special-character operands must be bifix
tokens. They must begin with a prefix character for separation
from a preceding infix operator, and must end with a postfix
character for separation from a following operator.

Evaluation of the Operator Scanner

While the use of character classifications to break apart
character clusters might seem overly simple, it is a verv
effective method. our goal is the development of a scanner
having definable tokens. To evaluate tbe method, we can use the
operators found in existing languages.· This does not imply that
our goal is to make a system for processing all existinq
languages: these languages serve only as a source of aata,
providing operator tokens which have been useful in the pas~

Pascal, PL/I, and Algol 68 can all be handled by the
scanning technique. Some of the character classifications miqht
not be obvious. In PL/I, for exa~ple, "C", ",", and")" must
all be bifix characters. This allows proper handling of the
strings "DCL A (*, *)" and "A**B". A similar classification is
needed .for Algol 68, where an array with a single dimension
might have the stri.nq "()" as part of its type name. In Pascal,
with"(." and".)" used in place of square brackets "f" and
"]", we would need a special provision in the qrammar for the
empty set: "(••)" and"(••)" are both valid representations,
although the latter is only one token. 11 • 11 could be Glassified
as a bifix character, but"••" would become two tokens while
"(••)" would become four.

Simula 67 has the problem described earlier regardinq the
token":-", but other special symbols such as "== 11 and"=/=" are
handled correctly. The grammar for Simula could be modified to
read":-" as two tokens, or to allow 11 :-" as a sinqle token in
array declarations. Note that if ":-" is two tokens, the
compiler would also accept 11 : -".

Rather than looking at additional lanquaqes by themselves,
let•s consider several at one time. The special character
tokens from the following languages were accumulated: Pascal
{ 13], Algol 68 [211, Algol 60 [161, Cobol f 121, Simula 67 f 5],
Simscript 2.5 (21, IMP (Edinburgh) f 11, Jovial f20], Snobol f81,
sue [3],, BCPL [17], C [18], Mary [4], and Euclid f15]. We shall
select a specific classification of the characters, and use it
with operators from all of these languages. The character
classification is shown below:

Prefix characters: + r · f t # !

Postfix characters:)] } t ! ii) # ?

Th~ table below shows those tokens from the
which can be recognized as such

iii ? I

, .
• r

selected
with the

(

1 l

lanquaqes
character

classification above:

Prefix
+

Infix
♦

·. - <

t

* I
> <=

+· -.- -:=

(* (I

** II
>= <> ••-. -

($ (.

& II
>< -.=

1:= %·-.·-

(: [{ • ii> 1

&& ... # @ 1 " -.< .,) => . - . . -. : /=: =·= =I=
%•:= -· -> + =: =• =" =<< - .

=>>
<<

Postfix

=& =1 =:• =:•• =:I =:I/ =:<< =:>> =:<* =:*>
>> +>

) *) I)
Bifix

, • r

<* •> I : <<=

$) •) :) f] } ? ! ii)

, (..) ()

The symbols labelled "Difix" require some explanation. In
several of the languages, it is possible to omit items from a
list. This leads to several adjacent"," or":" symbols. These
tokens were classified as "bifix" so that they don't combine
with each other or adjacent brackets. For empty lists, we mav
make the brackets into bifix symbols, so that 11 r 1" becomes two
tokens. In the case of "(" and ">", we cannot use bifix
symbols, since we desire multi-character brackets (like "{/").
we may still handle the null lists by accepting "() 11 as an
alternative to "(" ")". These problems arise because the
languages allow lists with omitted elements, which do not follow
the rules of operators stated earlier.

The "I" is bifix for a different reason. In the IBM 370
~xtensions to BCPL [17], operators such as"#+" and 11 1-" are
used as floating point operators. The "#" symbol transforms
integer operators into floating operators. Rather than reqard
"t+" and "I*" as ne11 operators, the "#" was considered to be a
functor which transformed the operdtor. The functor must be a
postfix token due to the operator to its riqht. It must also be
a prefix token when"#-" is used as a prefix operator.

The table below shows those tokens which are not handled
properly:

Prefix
< $ (• $ % * I & ++

Infix
:- + ♦ <+ <- ! ! =+ =- ,_ .- -=t =:+ =:- $!
=:<+ =:+> , -

:eostfix
> " ++ => << >> *+ <+

Bifix

* (

Let•s consider why these symbols could not be tokens. We
already discussed the exclusion of 11 :-", "++", and

have
"--" •

7

operators which introduce lexical ambiguity in a general
processor. A number of the prefix exclusions were introduced by
snobol, which uses blanks to distinguish between infix and
prefix operators. Many of these prefix operators are "spa res".
The language IMP introduced the tokens"<-" and"!!". The first
of these is clearly ambiguous in our scheme, while"!!" was
excluded because the postfix use of"!" seemed more important.

In addition to the prefix and postfix "•+" and "--", C
provided the operators "=+", "=-", "!=", and "=t". The first
two are ambiguous in the language c, leading to different
interpretations for "A=- B" and "A= - B". 11 != 11 and "=t" are
excluded by other desired lises for "!" and II f".

Mary provided the greatest challenqe for the scanner,
oecause Mary uses postfix operators where other languages use
prefix operators. Foe a specialized Marv scanner, we would
redefine • 11 +11 and "-" as postfix instead of prefix characters.
This would enable us to handle the postfix operators "-", "*+",
and "<+", as well as the · infix opera tors "=: + 11 , "=: - 11 , and
"=:<•"· some Mary operators could not be handled. In fact,
ctary programmers can define any sequence of characters from the
set"+-•/%&<=>!.:" as an operator.

Several of the "spare" operators of Algol 68 were omitted
from this table. They could not be handled by the scanner only
Decause we chose not to make 11 & 11 and 11 %11 pref ix characters, and
because "t" is a bifix character. Some operators of Alqol 68
disappeared because they are outside of the character set being
used for this classification.

APL [91 was originally in our lanquaqe sample, but was
discarded. With all of the symbols which it uses, it does not
compose operators from multiple characters. Note that operators
such as 11 +.*" have several characters only because "•" is
Deing used as a functor, combining the in.fix opel:'ators 11 + 11 and
"*"· The local version of APL r 191 leads to additional troubles
when the keypunch character set is used. The extra symbols are
encoded as"$" followed by on~ or two characters. At times
these symbols are letters. In some cases the "$" mav be
regarded as a functor, but in others the scanner cannot handle
this type of token.

Other Tokens

So far we have considered only the special character
tok~ns. All of our work to ensure lexical non-ambiquity will be
lost if the other tokens of the language are iqnored. The
additional classes of tokens which shall be considered here are
identifiers, integers, reals, and strinqs. In addition, the
scanner must be able to recognize commentfu Definitions shall
De given for each of these classes. These definitions should
not be considered as universal, but as a formulation chosen for

8

the sake of analysis. Personal preference might suggest a
llUmber of modifications to these definitions, most of which
could be adapted for this scanning technique.

Tokens are defined in t~rms of the characters
them. The characters being used for processing are
five gi§.iQint classes: letters, digits, break
quotes, and special characters.

which form
divided into
characters,

For convenience, we shall call special character tokens
Q~I~to~2 • we mav extend our previous definition bv allowinq
break characters as any character of an operator other than the
tirst. Certain break characters might be distinguished as
postfix characters if desired.

IJ!!:egef§ are defined as sequences of diqits. For our
purposes, there are no limitations on the number of digits in an
integer. Integers are unsigned, as a sign cannot be regarded as
4 digit. (If a sign was a digit, it could appear anywhere in an
integer.) The parser could ·associate a prefix operator and an
integer to form a signed value.

Identi.t1&£~ always begin with a letter, but otherwise mav
be any sequence of letters, digits, and break characters.
Identifiers may appear next to any operator, because a letter
may not appear in an in an operator, and a special char~cter may
not appear in an identifier. If break characters were allowed
to begin an operator, we would not be able to place such an
operator immediately after an identifier. Identifiers must be
separated from other identifiers and from inteqecs (and reals)
by spaces. Identifiers might be used for keywords or operators
by the parser; this is irrelevant to the scanner.

Re~! 1rnmhe~ pose a number of problems for the scanner.
rhere are two common formulations of real numbers. The first
requires that there be one or more digits on g~~h side of the
decimal point, while the second allows a decimal point to start
or end a number. If we use the first formulation, the decimal
point character may be included in the special character set.
rt the second formulation is used, the decimal must be excluded
from all of the character classes. If the decimal point could
start an operator, then "12." could be the number "12" followed
by a"•" operator. "·" can't be a break chardcter, unless
such characters are excluded .from the construction o[operators,
or "(.12 11 could be divided into"<·" and 11 12 11 or into "(" and
".12".

The second problem with reals is the exponent portion.
This consists of a "power of ten" symbol, an optional siqn, and
dn integer. The simplest approach regards the "power of ten"
symbol as being an infix operator of the highest priority, and
the sign as being a prefix operator in front ot the exponent.
The resulting definition of real numbers would differ from the
traditional definition, since blanks could appear before the

9

eJ:ponent portion. Onless the definition of the "paver of ten"
symbol as an operator is valid only after an integer or decimal
number, it would be available as an operator between an
drbitrary real or integer and an integer. At least with the
unlanguage parser, it would be possible to eliminate this type
of usage.

In certain situations the traditional form of real numbers
might be desired. The complete real constant would then be a
single token. The safest way of achievinq this would be to
reserve a unique "power of ten" symbol which appears in none of
the charatter classes, or occurs only as a break character. The
common practice of allowing the letter "E" as the "power of ten"
symbol can be dangerous if identifiers are allowed to follow
numbers with no intervening spaces. If "E1" is an identifier,
then 11 1.2E1" could be either a real number alone, or the real
"1.2" followed by the identifier "E1". Our rule, then, is that
whenever the "power of ten" symbol belongs in some character
class, a token which begins with a character of that class must
be separated from a real ·number or integer by one or more
spaces.

fil&in.g2 and gQmmgn..f:.2 are tokens which are enclosed by
quotes • . In order to make some practical decisions about the
tormats of these tokens, we shall make a few arbitrary
cestrictions. strings shall be enclosed by quotes which are
single characters, and the opening and closinq quote characters
are identical. Comments, on the other hand, may have quotes
which are either single or multiple characters, and the closinq
gllote may differ from the opening quote. In addition, a variant
of the comment will permit the end of the input line ·to serve as
the closing quote. Comments may run from line to line, while
strings must appear on a sinqle line only. The value of the
string token is avail~ble, while comments are eliminated by the
scanner. There may be a number of different types of strings,
where the quote symbol selects between the different types.

Strings are simpler to process than comments. The quote
symbols used to delimit strings cannot appear in any other class
of characters, so strings may appear next to other tokens •. For
simplicity, we shall assume that a doubled quote character
represents a single occurrence of that character ~ithin the
string. Escape characters could be specified to allow control
functions, but different escape characters may be needed for
each string type, which would complicate the description of the
scanner. Note that the definition of a postfix operator "B"
would allow the conversion of one strinq type to another. For
example, •01•s could specify that •01• is a character string,
vhile the B could convert this to a bit string.

Comment brackets may be arbitrary clusters of characters,
with other character clusters serving as a comment close. We
could, for example, define"/*" and"*/" to be a Pdir of comment
brackets, or we could use"(" and"}". Once aqain, it is safest

JO

if the first character of the left bracket cluster is used for
no other purpose in the language, as in the Pascdl use of"(".
When a comment bracket like"(*" is used, the first character of
the bracket is a prefix character, so the symbol is safe as a
comment start. If"/*" is permitted as a comment bracket but
NI" is an infix character, then the user might attempt to define
clusters such as "II*" but would find that a comment had been
started. The scanner would have a more difficult time finding
this comment bracket than if it only needed to check at the
beginning of a token. This suggests that comment brackets must
~e separated from other tokens by a space if they miqht
otherwise be mistaken as part of that token. But since special
character tokens do not need space separation in other
constructs of the language, the user might expect that no such a
space is needed. We could be a bit mor~ conservative and
reguire that an open bracket of a comment bed bifix token. If
"I*" was a bifix token, the user could not define a token such
as "l*I" which starts out with the comment open bracket. Any
character or cluster may be used as a closing bracket. nut note
that if the cluster is not a bifix token, a similar operator
(such as "*I*") might appear in the comment, causinq accidental
termination of the comment string. Likewise, if the closinq
guote is used elsewhere in the language {as":" is in ALGOL), a
portion of code may not be placed conveniently within comment
urackets.

lmplementa tion

one of our stated goals was efficiency, so we should
consider the implementation of our scanner. Except for some
uncertainty regarding comments and real numbers, the first
character of the token dictates the token type. The end of the
token is either a· blank, a postfix character, or the first
character of the next token. Because the token separation is
based solely on properties of the characters, we may use a
scanning process to separate tokens instead of a finite-state
wacbine. The scanning process may be carried out by a
table-driven scan which resembles the IBM 370 TRT instruction.
This routin~ could be micro-coded on appropriate hardware. It
requires nine instructions on the IBM 370 (including a TRT), and
occupies about 20 bytes on an INTEL 8080.

Comparison

The Unlanguage scanner has a number of advantages over each
of the three traditional scanning methods: the finite-state
scanner, the "Snobol technique", and the "11 ary tee hnique". It
has a number of disadvantages as well.

The Unlanguaqe scanner has one basic advantage over each of
the other techniques: the finite-state scanner cannot be
extended as easily, the "Snobol technique" is less convenient

1 1

for the proqrammer, and the "Mary technique" may lead the
programmer into ambiguous constructs. A finite-state machine
could, of course, be used to implement any of these techniques,
including the unlanquage scheme. We are comparing the
unlanguage scanner with the traditional method of encodinq
specific tokens within the machine.

Probably the greatest advantage of the Unlanquaqe scanner
is its protection against lexically ambiguous constructs. It
makes it possible for a language designer to permit operator
name extension but still provide protection against the
construction of lexically ambiquous lanquaqes.

The Unlanquaqe scanner is also quite fast. Its principal
scan procedure can be micro-coded. It does not require a larqe
~mount of space. The principal tables characterize the
characters based on their occurrence as the first character of a
t~ken and their use after the first character. These tables
require approximately two bytes per cha.racter. An additional
table gives matching close brickets foe comment open brackets.

The major disadvantage of the Unlanquaqe scanner is its
cestrictions on operator use. The characters must be classified
for the entire language, and cannot change their qualities in
different places within the language. This restriction does not
seem to be serious, as can be seen by the operator analysis of
existing languages. It would be possible to switch scanninq
tables during a compilation if the proper controls are provided
at a higher level.

12

(1]

(21

[3]

[41

(5 .J

(6]

(7)

rs1

(9]

r 101

f 11]

[12]

r 13 J

(14]

[15]

Bibliography

Barritt, M. et al., Edinburgh IMP Langua~ Manual,
Edinburgh Regional Computing Centre, July 1970.

CACI, Simscri]?t ir. 5 Re.terence Ha!!llf!.QQ~, CACI, Los
Angeles (1973).

Clark, B. L., The SUE ~ste.m Langya~ U,ser •s Guide,
computer Systems Research Group, University of
Toronto (Revised July 1977 by A. Ballard,
University of British Columbia.)

Conradi, R. and P. Holaqer, ~ARY Textbook_ RUNIT
report STF14A74034, University of Trondheim,
Norway (1974).

Dahl, o. et al., ~Q.!!!.J!!Ql! 1L~2 g l!i!!!.9..!:Hl9~, Norwegian
computing center Pub tS-22 (1970).

Fraley, R., 11 Unlanquage Grammars and their uses",
Department of computer Science Technical Report
77-6, University of British Columbia, (in
prec1ration).

Gries, D., Col!illiler Construct ion for Qi_gi,t~!
CO.!!!.E.!!tei;:§, John Wiley and Sons, New York (1971).

Griswold, R. et al., Th~ aNQ!!Q!i !! f&QSl&,ammj.9,g
La!!..fl.Y.~Sl~, Prent ice ilall, New Jer·sev (1971).

IBM, APLL360 User•s Manual, IBM, GH20-0683-1, (1970).

IBM, FORTRAN IV Language, IBM Corporation,
GC28-6515-8, (1971).

IBM, ~LLIJfl 1~gy~g~
G C 2 8- 8 2 0 1- 4 (1 9 7 2) •

Reference IBM

IBM, DOS .Full American National Stdntlard ~Q~Ql!, IBM
Corporation, GC28-6394-4, (1973).

Jensen, K. and N. Wirth, Pascal user .Manual s.ll.9
Re.22£!., Springer-Verlag New York (1976).

Johnson, w. et al., "Automatic Generation of
Efficient Lexical Processors Using Finite State
Techniques", ,a,~, v.11, n.12, Dec. 1968.

Lampson, B.
Language

et.al., ttReport
Euclid", ~igR!~D

on the Proqramminq
JQtic£2 ,v.12, n.2,

[16]

[17]

(18]

(19]

i 20]

(21 J

Feb.,1977.

Naur, P. ed., "Revised Report on
Language Algol 60", ~ACM, v.6,

13

the Algorithmic
n. 1, Jan. 19 73.

Richards, M., The BCf1 Programming Man.J!al, computer
Laboratory, University of Cambridge, April 1973;
as adapted bv J.E.L. Peck for MTS, University of
British Columbia, Julv 1975.

Ritchie, D., c Reference Manual, Bell Labs, Murray
Hill, N. J. (1974).

Twiver, D., APL - A Programming Language, University
of British Columbia Computing Centre, Manual UBC
APL, Sept. 1971.

Onivac, JQ.Y:!.A1 ~f:Q.9~~.m.mg.r R~.tg~gn~, Sperrv Rand
Corporation, UP-7698 (1973).

van Wijnqaarden, A. et al., !!g!i!fgg Re.I?ort on t-he
A~orithmic Lan_gua_gg AlgQl 68, Sprinqer-Verlaq,
New York {1976).

