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Alan K. Mackworth
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Abstract

A computer program, named MAPSEE, for interpreting maps
sketched freehand on a graphical data tablet is described. The
emphasis in the program is on discovering cues that invoke
descriptive models which capture the requisite cartographic and
geographic knowledge. A nodel interprets ambiqguously the local
environment of a cne. By resolving these interpretations using
a new network consistency algorithm for n-ary relations, MAPSEE
achieves an interpretation of the map. It is demonstrated that
this approach can be made viable even though the map cannot
initially be properly segmented. A thoroughly conservative,
initial, wpartial segmentation is described. The effects of its
necessary deficiencies on the interpretation process are shown.
The ways in which the interpretation can refine the segmentation
are indicated.

The purpose of this paper is to report on a program,
MAPSEE, that reads sketch maps. The intention is not to discuss
the overall goals of this research nor how it fits into current
computational vision <concerns except insofar as it directly
impinges on them. Those issues are tackled in detail in a
companion paper (Mackworth, 1977). Suffice it to say here, by
way of introduction, that one of the goals is to understand how
to exploit the semantics of images designed for communication as
typified by sketches, in general, and sketch maps in particular.

Another goal 1is to transfer some of the current vision

——————— - ———————— ——
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paradigm to other domains. Gne of the useful concepts to emerge
from earlier wvork was an approach to vision as a task of
understanding the implications of local cues 1invoking models
that placed constraints on the interpretation ot picture
elements 1in the neighbourhood of the cue. The Huftman-
Clowes-Waltz approach ({Waltz, 1972), tor example, used junctions
as cues, and corners as models with the «constraints placed on
the edges at the corners, while POLY (Mackworth, 1973, 1976)
tocussed on edges and surfaces. One purpose in designing MAPSEE
was to demonstrate that the constraint satisfaction approach has
much wider applicability than Jjust the blocks world. This
required, in part, further generalization of the so-called
network consistency algorithms.

Thus one focus of the current vork is to explore the limits
of the cue/descriptive model approach to vision with particular
emphasis on the modularity that it buys. Another focus is an
aspect of the chicken-and-eqgg problem (Mackworth, 1975b) namely,
can one segmnent before interpreting? If so, how? - given that
a complete segmentation requires prior interpretation. In this
domain, and in many others I suspect, the semantics are so rich
that a partial segmentation that 1is conservative in many
different ways 1is sufficient to allow a bootstrap into an
interpretation. By 'rich semantics! I mean simply that there
exists a large number of partially independent but mutually
confirming inference paths. Furthermore, the initial
interpretation can then, 1in turn, refine the initial partial

segmentation. (See, for example, {Yakimovsky and Feldman,



1973), (Tenenbaum ar: Barrow, 1976) and (Starr and Mackworth,

1976) for other approaches to this problem.)

The maps chosen for this study were sketched free-hand on a
graphical data tablet. No great effort was made to draw the map
carefully. The map shown in Fiqure 1 gives many people pause
vefore they see that it depicts an island on which there are two
towns connected by a road which crosses a bridqe over a river
which rises in a mountain range in the north-west, and runs to a

delta in a bay on the southern shore.

AOANY

Fiqure 1. A Typical Sketch Map

The only major possible geographical elements allowed by the



current MAPSEE but missing from that map are inlaand 1lakes.
Moreover, the 1land area need not be an island - it could cover
the entire map. The cartographic elements may be arranged in
any of the legal ways their corresponding geographic obijects

could.

3. Interpretation in Context: Cues and Models

To understand the general nature of MAPSEE the following
experiment 1is sSuggested. Cut a small hole in a piece of paper
and place it on the map. As you move it around the map ask
yourself "What could that be?" Initially, if you'’re looking at
4 line then clearly it could be a road, a river (flowing in one
direction or the other), a bridge, a mountainside or a shoreline
{of a lake or of the sea, with the water on one side or the
other). If on the other hand, you see a blank space, an areal
element, it could be land, lake or sea. If you now temporarily
remove the paper with the hole in it and see the map as a whole,
you will notice that the lineal elements appear to agqgregate
Lnto units of connected lines each with a uniform
interpretation. These are chains. Similarly, the areal
elements will aggregate into reqgions that have uniform
interpretations.

As you resume moving the hole around the map, you will
further discover a wide variety of interesting picture fragments
which constrain their parts. A sharp kink in a chain, for

axample, rules out the possibility that it is part of a bridge.



it «could, on the other hand, be a mountain top, in which case
the chain is a mountain and .the regions on either side are ©ovoth
iand, or it «could be part of a coast line, in which case the

region on one side is land, the other being sea or vice versa,

OL  wwa & If a chain stops abruptly with no other lines
anywhere in the vicinity it most certainly is not a shoreline;
curthermore, the region that it stopped 1in must be a land
region. The free end could be a river source in which case the
chain is a river flowing away from the free end. (Rivers may
appear out of the ground but they do not disappear into it.
Rivers also start at lakes and other rivers. They empty into
other rivers, lakes or the sea. They may, however, temporarily
disappear under a bridge.) Or the free end could be a
mountainside or ... .

These informative picture fraqgments are called “primary
cues"™ because they invoke models that interpret the immediate
lLocale of the cue thereby putting constraints on the lineal and
areal components of the cue. The initial enormous ambigquity of
1nterpretation is reduced by these local models. It is further
reduced by allowing the models to talk to each other and aqgree
aupon the interpretations of picture elements that they mutually
interpret. This process is handled by a network consistency
algorithm that progressively eliminates interpretations of the
picture prinmitives, the chains and regions {not the
interpretations of the cues), until, if the model intormation is
strong enough, the interpretation intended by the user remains.

A wide variety of geographical and cartoqraphical



knowledqge, typified by the sample inferences given above, is
captured in MAPSEE by the primary cue interpretation cataloque.
I'he varieties of cue are shown in Fiqure 2, with names for their
relevant component parts. For each cue there is a set of models
as listed in Fiqure 3. Each model constrains the interpretation
of each part of the cue to belong to the set given. The
interpretations of Figure 3 are context-sensitive in that if the
interpretations of a part are separated by a | then only one of
them is possible. The direction of flow of a river is handled
this way. A chain has associated with it the direction in which
1t was drawn. If the river flows in that direction it is
labelled “river" elss= ¥“river*", 1In the first interpretation of
the TEE, for example, the river can only flow into the TEE on
the stem-chain.

In order to use this catalogue of models we must segment
the picture into chains, regions, cue instances and the bindings
of their components. Unfortunately, that segmentation cannot be
done perfectly, as we shall see, but it can be done with
sufficient care that the models can start to make sense of the
picture. That interpretation can then be used to refine the
segmentation. The program MAPSEE, written in LISP, consists of
the three phases: partial segmentation, network consistency, and

refining the segmentation.
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Figure 2, The Primary Cues Used by MAPSEE



Interpretations of Parts

TEs:
STEM-CHAIN BAR-CHAIN RA RB RC
{river} | {river¥} {shore} {sea} {land} fland}
friver,river¥} {shore} {lake} ({land} fland}
{river,riverx*j {river,river¥*} {land} f{land} fland}
froad} {road} fland} {land} fland}
fmountain} {mountain} fland} {land} fland}
{river,riverx} {bridge} fland} ({land} {land}
OBTIUSE L:
CHAIN R-LARGE R—-SMALL
{shore} {lake,sea} {land}
{shore} {land} {lake,sea}
{road, bridge,
river,river*} {land} fland}
ACUTE L:
CHAIN R-LARGE R-SMALL
{shore} {lake,sea} [land}
{shore} fland} flake,seal
{road,mountain,
river,riverx} {land} {land}
FPREE END:
CHAIN REGION-SURRQOUND
{river}{ {river¥*} {land}
{mountain,bridge} {land}
CLUSTER:
CHAIN REGION-SURROUND
{road} {land}
LINK:
CHAIN
{shore}
MULTI:
THROUGH-CHAIN CHAIN1 CHAIN2 RA RB RC RD
{river,river*} {(river,river*} {river, river*} {land} {land} f{land} ([land}
{road} {road} froad} fland} f{land} {land} {land}
Figure 3. The primary cue interpretation cataloque
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MAPSEE receives a map 1in the form of a procedure for
drawing it, created by the routines that track the stylus on the
data tablet. That is, the 1input 1is a sequence of plotter
commands where a command is move (pen up) to ({(x,V) or draw (pen
down) to (x,y) from the current position.

There are so many points in this picture description (more
than 800 for Figure 1) that one of the main priorities of all
the segmentation routines 1is computational efficiency. There
are two ways in which this is achieved. 1In the first ©place, a
variety of different representations of the picture are
maintained. Each is appropriate for one oOr more purposes.
Secondly, when computing in a pictorial representation, a
segmenter only works at a level of detail appropriate to its
urrent needs.

The procedural representation gives way to a network
cepresentation which initially contains just chains (consecutive
draws), line segments and s2gment end points. In this
cepresentation, each chain underqoes a process of
generalization, as the cartographers call it, whereby at each
level of detail the <chain is represented to within a certain

tolerance,



Finally, there 1is an arrav representation indexed by the
X-y coordinates of the end points. This is quite coarse (32x32)
put allows quick answers to questionns such as "What are you
near?" which uses a spiral search in the array. As discussed
in the next section, the array representation is generalized in
the process of region-finding to form a space occupation

hierarchy of arrays of four elements each.

4.2 Region Segmentation

If we were to define a region as a connected subset of a 2D
Euclidean space, the picture, in our domain, would always have
exactly one region! Whenever the user intends to enclose a
regjion he leaves a small (or, sometimes, not so small) gap,
relying wupon the map reader to divine his intention by reading
his mind as well as the map. We cannot segment until we can
Lnterpret but we cannot interpret until we seqment; this is the
familiar AI chicken-and-eqq problenm. However, an initial,
partial, conservative region seqmentation 1is possible. A
recursive algorithm partitions the image into empty patches:
subdividing a patch of space only if it is not empty. This
top~down subdivision stops well before it could lead to trouble,
at a level whose patch size is mnuch greater than any
unintentional gaps in the sketch. The empty adijacent patches
are then merged to form the five regions shown in Fiqure 4. The
conservatism quarantees no leakage; no region so found will

correspond to more than one ‘'intended! region. But sone
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Lntended regions may be represented by more than one found
cegion: the large connected 1land reqgion has been split into
regions 2, 3, 4 and 5. Other intended reqions may not he
represented at all: the two small land reqgions in the river
delta have been missed. Moreover, the extent of the found
regions 1is somewhat less than their actual extent. As we shall
see, the consistency process is very tolerant of these necessary

Ldiosyncracies of the region seqmenter.

4.3 Cue Segmentation

Fach of the cue types has its own specialized rontines that
discover instances in the picture. They lean heavily on the
levels of detail in the representations for efficiencye.
Moreover, they all have their own brand of conservatism. Each
is designed to reject all border-line cue instances. As the
Jolly Green Giant says, "Only the best will dol!" A tentative
tree end, for example, must be well in the clear (relative to
the minimum patch size of the region segmentation) before it |is
accepted as a free end. An obtuse angle must have arms longer
than a given minimum, straighter than a certain tolerance, angle
considerably less than pi ... « No false cues can be found so,
as a result, many genuine ones are iqnored. The cues found are

indicated by the hexagons in Figqure 5.

4.4 Fleshing Out the Cues
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THE FREE-ENDS

The Cue Instances Discovered



THE CLUSTERS THE LINKS

Figure 5b.

THE MULTIS

The Cue Instances Discovered (Continued)
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Bach cue instance needs to bind various picture elements
{chains and regions) to its 1internal nanes. Again, the
segmentation process 1is heavily biased in favour of sins of
omission rather than commission. If, for example, it is looking
tor the region associated in a certain direction with a cue, it
crawls carefully in that direction from the initial point. 1f
it finds a region within a very short distance, again,
determined by the minimum patch size, well and good. But if it
does not it will give up rather than risk returning the wrong
region. If it gives up it creates a fegion ghost (Bobrow and
Winograd, 1977) that stands for the region which has that
relationship to the cue but cannot yet be identified. The
region corresponding to the gqghost may or may not exist as a

found region. Eighteen region ghosts were created during the

segmentation of the sample map.

5. The Consistency Phase

The picture is now partially segmented into chains, regions
and partially instantiated cues. 1In describing the consistency
process, I will iqnore, for the time being, the four types of
inadequacies in the segmentation (the extra regions, the missing
regions, the missing cues and the reqgion ghosts) and assume that
the segmentation is perfect. Subsequently, we shall see how
those inadequacies affect the consistency process.

Mackworth (1975a) discusses and extends a class of

algorithms typified by Waltz's (1972) arc consistency algorithm



{called AC-2, there) and Montanari's (1974) path consistency
algorithm {called PC-1), designed to satisfy a set of binary
relations among a set of variables each of which must be
instantiated in an associated domain. Network consistency
algorithms are often hetter than backtracking for such a task in
that, by appropriate bookkeeping, they eliminate several kinds
of thrashing behaviour,

In Waltz's blocks world, for example, the variables
correspond to the junctions, the domains to the set of possible
corners for each junction type and the binary relations to the
edges, in that each edge mnust have the same interpretation
Lmposed on it by each of its twvo corners. His network of
relations was then isomorphic to the perfect line drawing being
interpreted.

In MAPSEE, the "variables" are the chains and the regions
{which also must be interpreted: everything need not, indeed
cannot, be packed into the chain interpretations). The domains
are their context-free interpretations, that is {road, river,
river*, mountain, bridge, shore} for chains and f{land, lake,
sea} for regions. The relations are the cue instances, the
constraint being the disjunction of the set of models for each
cue instance.

The relations are now n—-ary, not just binary, because each
model relates from one to seven regions and chains. The network
consistency algorithm used in MAPSEE given below is a suitably
generalized version of AC-3 (Mackworth, 1975a). Note that, in

lieu of network consistency, one could, of course, backtrack on
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the wvalues 1in the AJdomains of the chains and regions, failing

vack when any cue ceases to have a model which satisfies

the

current values; however, the fcllowing alqorithm, NC, is far

wore efficient,.

NC: An

n-ary Relation Consistency Algorithm

1. Construct a queue consisting of (variable,relation) pairs

in

which each variable 1is paired with every relation that

directly constrains it.
Z. While the queue is not empty do steps 2.1 and 2.2.
2.1 Remove the first pair (x,R) from the gqueue.
FPor each value, a, in the domain of variable x, Dx,
step 2.1.1
2.1.1 Find at 1least one value in the domain of each
the other variables directly constrained
relation R such that all the values, including
simultaneously satisfy R. If such values cannot
found delete a from Dx.
2.2 If any values were deleted from Dx in step 2.1 then
step 2.2.1

2.2.1 If Dx is now empty then return failure as

do

of

by

be

do

the

result of this call else replace the queue by the

union of the queue and the set of pairs obtained

from all the relations other tham R that constrain

X, each relation paired with all the variables

other than x that it constrains.



3. At this step there are three possible states of the network:
a) If every variable has exactly one element in its domain
return that set of bindings as the result of this call.

p) 1If one variable, y, has k (k > 1) elements in its domain
and the rest have exactly one element return the k solutions
formed by binding y to each of its values and the other
variables to their unique values.

c) If more than one variable has more than one element in its
domain then split the domain of one of those variables
approximately in half and return the solutions obtained by
applying the algorithm recursively to the two subproblems so

generated.

The algorithm eilither returns failure {because some dcmain
was exhausted) or one or more solutions each of which satisfies
all the relations. The solutions are complete: no subsequent
backtracking is necessary. The algorithm <c¢an be trivially
modified to return Jjust the first solution if desired. Note
that the ordering of the queue is unspecified: the process
converges regardless; however, it may be treated as a priority
gueue, For example, sorting the gqueue so that strongly
interrelated variables are more likely to be adjacent in the
queue speeds convergence.

Freuder (1976) independently generalized the consistency
arquments given, for binary relations, in (Mackworth, 1975a) to
apply to n-ary relations. His alqgorithm is very different from

the one presented here in that he explicitly coanstructs sets of
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all the n-tuples of values of the variables which satisfy each
relation and deletes tuples from those sets. Furthermore, he
constructs similar exhaustive representations for all the
implicit relations induced by the ones given up to and including
the global relation that relates all the variables. As with the
binary relation consistency algorithms complexity analysis of
these algorithms is difficult (for anything other than worst
case) making explicit comparison impossible. Rest assured,
though, that they are both inherently exponential, in the worst
case, in that the problem is NP-complete. For this task,
nowever, NC requires far fewer CONS cells and operations than
Freuder's algorithm. Significant contributions to the
development of network consistency algorithms have also been
made by Gaschnig (1974), Barrow and Tenenbaum .(1976) and
Rosenfeld, Hummel and Zucker (1976).

In the implementation of NC in MAPSEE each cue has a 1list
of models associated with it. Each instance of that cue has a
set of bindings for its subparts to various chains and reqgions
(the “yariables" it constrains). In step 2.1.1 of the
algorithm, a structure matcher is used'to match the cue instance
against each model for the cue until a model is found all of
whose parts match successfully. A part of a cue instance and
the corresponding part of a model match iff their domains have a
non-NIL intersection unless the instance part is the particular
variable x in which case the model part must have ‘interpretation
a in its domain.

For the sample map the consistency alqorithm, NC, converged



to unique values for all but one region in a single pass. The
algorithm did not invoke itself recursively. The chain
iLnterpretations are as shown in Fiqure 6. The only remaining

ambiguity is 1n the interpretation of the surrounding region,
regionl, as either sea or lake. The wuser may have 1intended
"sea" but the island could, of course, be in a large lake whose
shore is beyond the bounds of the map. Regions 2, 3, 4 and 5
dare all interpreted as land. The interpretations are,

presumably, as intended by the user.

6. Refining the Initial Segmentation

In this section we will consider the effect of the
segmentation deficiencies on the consistency process and then
see how the results of that interpretation process can be used
to refine the seqmentation. Recall that the deficiencies are:
the m;ssing cues, the region ghosts, the missing regions and the
exXtra regions.

The missing cues have no serious effect on the consistency
process, provided, of course, that sufficient remain. A missing
cue simply fails to supply its extra constraints on the possiople
interpretations of the <chains and regions. 1In this domain,
however, there is such a welter of cues invoking consistent
models that there 1is a multitude of partially iandependent but
mutually confirming inference paths. Breaking 4 few of those
inference paths causes no degradation in the interpretation. It

1s tempting to postulate that most perceptual tasks, in the real
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world, have the rich semantics which give rise to this
robustness property if we can but discover the appropriate
language for the 1inferences gnd appropriate mechanisms for
carrying them out. (The gualification "in the real world" is
added because psychological experiments in the laboratory
usually use meaning-deprived stimuli that rule out this
phenomenon (Clowes, 1972).)

The region ghosts are, if you like, reqgion intensions while
the found regions are (imperfect) reqgion extensions (Woods,
1975). A ghost is a intension in that it may be specified as,
for example, "“the reqion on the reflex angle side of this acute
L"., The intension/extension distinction forms a spectrum rather
than a strict dichotomy here. Recall that a ghost arises when a
cue fails to find an associated region; it may fail either
pecause it stopped looking too soon even though there is a found
region there or because there is no found region. The gqhosts
participate in the consistency process just as do the found
regions. The single cue that created a region ghost constrains
it and it is quite possible for interpretations ot the ghost to
be progressively ruled out. After the consistency process we
s5till do not know the extension of a ghost but we may know more
about it than before; for example, it may now be forced to have
the interpretation "land".

The missing reqions, as in the river delta, for example,
also do not seriously affect the consistency process. The cues
in the neighbourhood of a missing region will have used qhosts

ian 1its stead. But, standing 1in for a single missing region
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there will be several chosts so the constraining effect will be
weakened somewvhat.

Similarly, the extra regions created by the splitting of a
single intended region participate independently in the
consistency process thereby exerting a weaker constraining
effect than 1if the region had not been split. However, the
semantic richness overcomes that weakening and forces the four
found regions corresponding to the single intended land region
(regions 2, 3, 4 and 5) to have that single interpretation.
Again, as in the other cases, if the region splitting is so
severe as to cut too many inference paths then the process will
deqgrade gracefully (Marrc, 1975). In that case the various found
regions would not have the intended interpretation uniquely. It
would simply be in the intersection of the possible
interpretations of the found regions.

The third phase of MAPSEE uses the results of the
consistency process to refine the initial partial segqmentation.
There are four ways in which this can be done: a) establishing
distinct ghosts with the same interpretation and location as
co—extensive b) considering the merge of found regions with the
same interpretation <c¢) establishing a found region as the
extension of a gqhost with the same interpretation and 4)
discovering a new found reqgion as the extension of one or more
ghosts. These involve revisiting the picture and seqgmenting
wore purposefully, more carefully and at a finer level of detail
in the particular areas concerned. Fiqure 7 shows the final

iand region that results from the successful proposed merges of



REFINED REGIONZ2 IS LAND

Figure 7. The Final Land Region
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the separate initial lsud regions.

7. Conclusions

I cannot here discuss how this work satisfies the goals of
the project nor future directions such as a) dinteqrating still
further the segmentation and interpretation phases, b)
automating the generation of the primary cue interpretation
catalogue by the provision of a lanquage for describing the
nodels so that transfer to other sketch worlds 1is facilitated
and c¢) the use of schemata as procedural models. Suffice it to
say that MAPSEE is an existence proof of the power of semantics
in the interpretation of pictures. It demonstrates that the
cue/descriptive model paradigm works in domains other than the
plocks worid, that the network consistency algorithms can be
extended, that imperfect data can be overcome by a thoroughgoing
conservatism in the segmentation process, that a partial
segmentation can yield an initial interpretation, and that the

interpretation can sensibly refine the initial segmentation.
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