MMM						
MMMM MMM						
$M M$ M M						
$M \quad \mathrm{M}$						
M	MMMMAMMMM					
MM	MM M M			MMM		
MMM	M M			HMM		
MMM MM	HM			MM	MM	
MMAMMMMMMM	M M M M M					
MMMMMMM	MMMM	MMM		MM	MMMMM	
MMM		M H		MMM	M	MM
		M		MMM	M	M
		M	MM	MM	MM	
MMMM			MMMMMM		MMM	
MMM					MMM	
					M M M	
					MMM	M

Dy
Alan K. Mackworth

Technical Report 77-2

May 1977

Department of Computer Science
University of British Columbia vancouver, B. C.

ON RFADING SEETCH MAPS*
Alan K. Mackシorth
Department of Computer Science
University of British Columbia
Vancouver, B.C. Canada V6T 1 W5

Abstract

A computer program, named MAPSEE, for interpretinq maps sketched freehand on a graphical data tablet is described. The emphasis in the proqram is on discoverinq cues that invoke descriptive models which capture the requisite cartoqraphic and yeographic knowledqe. a model interprets ambiquously the local environment of a cue. By resolvinq these interpretations using a new network consistency alqorithm for n-ary relations, MAPSEE achieves an interpretation of the map. It is demonstrated that this approach can be made viable even though the map cannot initially be properly seqmented. A thoroughly conservative, initial, partial seqmentation is described. The effects of its uecessary deficiencies on the interpretation process are shown. Whe ways in wich the interpretation can refine the seqmentation are indicated.

1. Int등uction

The purpose of this paper is to report on a proqram, MAPSEE, that reads sketch maps. The intention is not to discuss the overall goals of this research nor how it fits into curcent computational vision concerns except insofar as it directly impinges on them. Those issues are tackled in detail in a companion paper (Mackworth, 1977). Suffice it to say here, by way of introduction, that one of the qoals is to understand how to exploit the semantics of imaqes desiqned for communication as typified by sketches, in general, and sketch maps in particular. Another goal is to transfer some of the current vision

[^0]paradiga to other domains. one of the useful concepts to emerqe from earlier work was an approach to vision as a task of understanding the implications of local cues invokinq models that placed constraints on the interpretation of picture elements in the neiqhbourhood of the cue. The Huffman-Clowes-Waltz approach (Waltz, 1972). Eor example, used functions as cues, and corners as models with the constraints placed on the edqes at the corners, while PoL (Mackworth, 1973, 1976) focussed on edges and surfaces. One purpose in desiqninq MAPSEE was to demonstrate that the constraint satisfaction approach has auch wider applicability than just the blocks world. This required, in part, further generalization of the so-called network consistency algorithms.

Thus one focus of the current work is to explore the limits of the cue/descriptive model approach to vision with particular emphasis on the modularity that it buys. Another focus is an aspect of the chicken-and-egg problem (Mackworth. 1975b) namely. can one segment before interpreting? If so, how? - qiven that a complete segmentation requires prior interpretation. In this domain, and in many others I suspect, the semantics are so rich that a partial seqmentation that is conservative in many different ways is sufficient to allow a bootstrap into an interpretation. By 'rich semantics' I mean simply that there exists a large number of partially independent but mutually confirming inference paths. Furthermore, the initial 2nterpretation can then, in turn, refine the initial partial seqmentation. (See, for example, IYakimovsky and feldman,
1973). (Tenenbaum art Barrow, 1976) and (Starr and Mackworth, 1976) for other approaches to this problem.)

2. The Mapps

The maps chosen for this study were sketched free-hand on a yraphical data tablet. No qreat effort was made to draw the map carefully. The map shown in figure 1 qives many people pause wefore they see that it depicts an island on which there are two towns connected by a road which crosses a bridqe over a river which rises in a mountain range in the north-west, and runs to a delta in a bay on the southern shore.

Fiqure 1. A Typical Sketch Map

The only major possible qeographical elements allowed by the
current MAPSEE but missing from that map are inland lakes. Moreover, the land area need not be an island - it could cover the entire map. The cartoqraphic elements may be arranqed in any of the leqal ways their corresponding qeoqraphic objects could.

3. Interpretation in Context: Cues and Models

To understand the qeneral nature of MAPSEE the followinq experiment is sugqested. Cut a small hole in a piece of paper and place it on the map. As you move it around the map ask yourself "What could that be?" Initially, if vou"re looking at a line then clearly it could be a road. a river fflowing in one direction or the other), a bridqe, a mountainside or a shoreline (of a lake or of the sea, with the vater on one side or the other). If on the other hand, you see a blank space, an areal element, it could be land, lake or sea. If you nom temporarily remove the paper with the hole in it and see the map as a whole, you will notice that the lineal elements appear to aqqreqate Into units of connected lines each with a uniform interpretation. These are chains. Similarly, the areal elements will aqqreqate into reqions that have uniform interpretations.

As you resume moving the hole around the map. you will further discover a wide variety of interestinq picture fraqments which constrain their parts. A sharp kink in a chain, for example, rules out the possibility that it is part of a bridqe.
it could, on the other hand, be a mountain top, in which case the chain is a mountain and the reqions on either side are both Land, or it could be part of a coast line, in which case the region on one side is land, the other being sea or vice versa, or If a chain stops abruptly with no other lines anywhere in the vicinity it most certainly is not a shoreline; rurthermore, the reqion that it stopped in must be a land region. The free end could be a river source in which case the Chain is a river flowing away from the free end. (Rivers may appear out of the qround but they do not disappear into it. Bivers also start at lakes and other rivers. They empty into other rivers, lakes or the sea. They may, however, temporarily disappear under a bridge.) or the free end could be a mountainside or

These informative picture fraqments are called "primary cues" because they invoke models that interpret the immediate iocale of the cue thereby putting constraints on the lineal and areal components of the cue. The initial enormous ambiquity of interpretation is reduced by these local models. It is further reduced by allowing the models to talk to each other and aqree apon the interpretations of picture elements that they mutually 1nterpret. This process is handled by a network consistency algoritha that proqressively eliminates interpretations of the picture primitives, the chains and reqions fnot the 1nterpretations of the cues), until, if the model intormation is strong enough, the interpretation intended by the user remains.

A wide variety of qeoqraphical and cartographical
knowledge, typified by the sample inferences qiven above, is captured in MAPSEE by the primary cue interpretation cataloque. rhe varieties of cue are shown in Fiqure 2, with names for their relevant component parts. For each cue there is a set of models as listed in Fiqure 3. Each model constrains the interpretation of each part of the cue to belong to the set qiven. The Anterpretations of Fiqure 3 are context-sensitive in that if the interpretations of a part are separated by a 1 then only one of them is possible. The direction of flow of a river is handed this way. A chain has associated with it the direction in which it was drawn. If the river flows in that direction it is Labelled "river" else "river*". In the first interpretation of the TEE, for example, the river can only flow into the TEE on the stem-chain.

In order to use this cataloque of models we must seqment the picture into chains, reqions, cue instances and the bindings of their components. Unfortunately, that seqmentation cannot be done perfectly, as we shall see, but it can be done with sufficient care that the models can start to make sense of the picture. That interpretation can then be used to refine the segmentation. The proqram MAPSEE, written in LISP, consists of the three phases: partial seqmentation, network consistency, and refining the segmentation.

Figure 2. The Primary Cues Used by MAPSEE
Cue Interpretations of parts

TEA:

STEM-CHAIN	BAR-CHAIN
\{river\} \|river*\}	\{shore\}
\{river, river*\}	\{shore\}
\{river,river*\}	\{river, river*\}
\{road\}	\{road\}
\{mountain\}	\{mountain\}
\{river,river*\}	\{bridge\}

RA	RB	RC
\{Sea\}	\{land\}	\{land\}
\{lake\}	\{land\}	\{land\}
\{land\}	\{land\}	\{land\}

OBTUSE L:

PREE END:
CHAIN REGION-SURROUND
\{river\} $\{$ \{river*\} $\{1$ and $\}$ $\begin{array}{ll}\{r i v e r\} \mid\{r i v e r *\} & \{1 a n d\} \\ \{\text { mountain,bridge\} } & \{1 a n d\}\end{array}$

CLUSTER:
CHAIN REGION-SIJRROUND \{road\} \{land\} \{road\} \{land\}

CHAIN
\{shore\}
\{shore\}
\{road, bridge.
river, river*\}
R-LARGE
\{lake, sea\}
\{land\}
\{1and\}
R-LARGE
\{lake,sea\}
\{land\}
\{land\}

R-SMALL.
\{land\}
\{lake,sea\}
\{land\}
R-SMALL
\{land\}
\{lake, sea\}
\{land\}

CHAIN
\{shore\}
\{shore\}
\{road, mountain,
river, river*\}

ACUTE L:

LINK:
CHAIN
\{shore\}

MULTI:

4. The Initial Partial Seqmentation

4. 1 Representations

MAPSEE receives a map in the form of a procedure for drawing it, created by the routines that track the stylus on the data tablet. That is, the input is a sequence of ploter commands where a command is move (pen up) to (x, y) or draw (pen down) to (x, y) from the current position.

There are so many points in this picture description (more than 800 for Pigure 1) that one of the main priorities of all the seqmentation routines is computational efficiency. There are two ways in which this is achieved. In the first place, a variety of different representations of the picture are maintained. Each is appropriate for one or more purposes. Secondly, when computing in a pictorial representation, a segmenter only vorks at a level of fetail appropriate to its urrent needs.

The procedural representation gives way to a network cepresentation which initially contains just chains (consecutive draws), line seqments and seqment end points. In this representation, each chain underqoes a process of yeneralization, as the cartographers call it, whereby at each Level of detail the chain is represented to within a certain tolerance.

Finally, there is an array representation indexed by the $x-y$ coordinates of the end points. This is quite coarse (32 3 32) out allows quick answers to questions such as "What are you near?" which uses a spiral search in the array. As discussed in the next section, the array representation is qeneralized in the process of reqion-finding to form a space occupation hierarchy of arrays of four elements each.

4.2 Region Segmentation

If we were to define a reqion as a connected subset of a 2 D Euclidean space, the picture, in our domain, would always have exactly one region! Whenever the user intends to enclose a reqion he leaves a small (or, sometimes, not so small) qap. relying upon the map reader to divine his intention by reading his mind as well as the map. We cannot segment until we can Interpret but we cannot interpret until we seqment; this is the łamiliar $A I$ chicken-and-eqg problem. However, an initial. partial, conservative reqion seqmentation is possible. A recursive algorithm partitions the image into empty patches: subdividing a patch of space only if it is not empty. This top-down subdivision stops well before it could ledd to trouble. at a level whose patch size is quch qreater than any unintentional gaps in the sketch. The empty adjacent patches are then merqed to form the five reqions shown in fiqure 4. The conservatism quarantees ao leakaqe; no reqion so found will correspond to more than one 'intended' reqion. But some

Figure 4. The Initial Region Segmentation

Abstract

Lntended regions may be represented by more than one found reqion：the large connected land reqion has been split into regions 2，3， 4 and 5．Other intended reqions may not be represented at all：the two small land reqions in the river delta have been missed．पoreover，the extent of the found regions is somewhat less than their actual extent．As we shall see，the consistency process is very tolerant of these necessary idiosyncracies of the reqion seqmenter．

4．3 Cue Segmentation

Each of the cue types has its own specialized rontines that discover instances in the picture．They lean heavily on the levels of detail in the representations for efficiency． Moreover，they all have their own brand of conservatism．Each is designed to reject all border－line cue instances．As the Jolly Green Giant says，＂Only the best will do！＂A tentative free ent，for example，must be well in the clear（relative to the minimum patch size of the reqion seqmentation）before it is accepted as a free end．An obtuse anqle must have arms longer than a qiven minimu⿴囗十，straighter than a certain tolerance，anqle considerably less than pi ．．．．No false cues can be found so， as a result，many qenuine ones are iqnored．The cues found are indicated by the hexaqons in Figure 5.

4．4 Fleshing out the Cues

Figure 5a. The Cue Instances Discovered

Figure 5b. The Cue Instances Discovered (Continued)

Each cue instance needs to bind various picture elements (chains and regions) to its interal names. Aqain, the segmentation process is heavily biased in favour of sins of omission rather than commission. If, for example, it is lookinq for the region associated in a certain direction with a cue, it crawls carefully in that direction from the initial point. If it finds a region within a very short distance, aqain, determined by the minimum patch size, well and good. But if it does not it will give up rather than risk returning the wrong region. If it gives up it creates a region ghost (Bobrow and Winograd, 1977) that stands for the region which has that relationship to the cue but canot yet be identified. The region corresponding to the ghost may or may not exist as a found region. Eighteen region ghosts were created during the seqmentation of the sample map.

5. The Consistency Phase

The picture is now partially seqmented into chains, reqions and partially instantiated cues. In describing the consistency process, I will iqnore, for the time being, the four types of Inadequacies in the segmentation the extra reqions, the missinq regions, the missinq cues and the reqion qhosts) and assume that the seqrentation is perfect. Subseguently, we shall see how those inadequacies affect the consistency process.

Mackworth (1975a) discusses and extends a class of algorithms typified by Waltz's (1972) arc consistency alqorithm
(called AC-2, there) and Montanari's (1974) path consistency algorithm (called $P C-1)$, desiqned to satisfy a set of binary relations among a set of variables each of which must be instantiated in an associated domain. Network consistency algorithms are often hetter than backtracking for such a task in that, by appropriate bookkeepinq, they eliminate several kinds of thrashing behaviour.

In Waltz"s blocks world, for example, the variables correspond to the junctions, the domains to the set of possible corners for each junction type and the binary relations to the edges, in that each edqe must have the same interpretation Lmposed on it by each of its two corners. His network of relations was then isomorphic to the perfect line drawing beinq interpreted.

In MAPSEE, the "variables" are the chains and the reqions (which also must be interpreted: everythinq need not. indeed cannot, be packed into the chain interpretations). The domains are their context-free interpretations, that is road, river, river*, mountain, bridqe, shore\} for chains and fland, lake, sea\} for reqions. The relations are the cue instances, the constraint being the disjunction of the set of fodels for each cue instance.

The relations are now n-ary, not just binary, because each model relates from one to seven regions and chains. The network consistency algorithm used in MAPSEE qiven below is a suitably generalized version of $A C-3$ (Mackworth, 1975a). Note that, in Lieu of network consistency, one could, of course, backtrack on
the values in the domains of the chains and reqions, failinq dack when any cue ceases to have a model which satisfies the current values; however, the followinq alqorithm, $N C$, is far wore efficient.

NC: An n=ary Relation Consistency Algorithn

1. Construct a queue consistinq of (variable, relation) pairs in which each variable is paired with every relation that directly constrains it.
2. While the queue is not empty do steps 2.1 and 2.2.
3. 1 Remove the first pair (x, R) from the queue.

For each value, a, in the domain of variable $x, D x$, do step 2.1.1
2. 1.1 Find at least one value in the domain of each of the other variables directly constrained by relation R such that all the values, includinq a, siuultaneously satisfy k. If such values cannot be found delete a from $D x$.
2.2 If any values were deleted from $D x$ in step 2.1 then do step 2.2.1
2.2.1 If $D x$ is now empty then return failure as the result of this call else replace the queue by the union of the queue dnd the set of pairs obtained from all the relations other than R that constrain x, each relation paired with all the variables other than x that it constrains.
3. At this step there are three possible states of the network: a) If every variable has exactly one element in its domain return that set of bindings as the result of this call.
b) If one variable, y, has $k(k>1)$ elements in its domain and the rest have exactly one element return the k solutions formed by binding y to each of its values and the other variables to their unique values.
c) If more than one variable bas more than one element in its domain then split the domain of one of those variables approximately in balf and return the solutions obtained by applying the alqorithm recursively to the two subproblems so generated.

The algorithm either returns failure (because some domain was exhausted) or one or more solutions each of which satisfies all the relations. The solutions are complete: no subsequent backtracking is necessary. The alqorithm can be trivially modified to retura just the first solution if desired. Note that the ordering of the queue is unspecified: the process converges regardless; however, it may be treated as a priority queue. For example, sorting the queue so that strongly interrelated variables are more likely to be adjacent in the queue speeds convergence.

Preuder (1975) independently generalized the consistency arquments given, for binary relations, in (Mackworth, 1975a) to apply to n-ary relations. His alqorith⿴囗 is very different from the one presented here in that he explicitly constructs sets of
all the n-tuples of values of the variables which satisfy each relation and deletes tuples from those sets. Furthermore, he constructs sinilar exhaustive representations for all the implicit relations induced by the ones given up to and including the global relation that relates all the variables. As with the binary relation consistency algoritums complexity analysis of these algorithos is difficult (for anything other than worst case) makinq explicit comparison impossible. Rest assured, though, that they are both inherently exponential, in the worst case, in that the problem is NP-complete. For this task. nowever, $N C$ requires far fewer CONS cells and operations than Freuder's alqorithm. Siqnificant contributions to the development of network consistency alqorithms have also been made by Gaschniq (1974), Barrow and Tenenbaum (1976) and Rosenfeld, Hummel and Zucker (1976).

In the implementation of $N C$ in MAPSEE each cue has a list of models associated with it. Each instance of that cue has a set of bindings for its subparts to various chains and reqions (the "variables" it constrains). In step 2.1.1 of the algorithm, a structure matcher is used to match the cue instance against each model for the cue until a model is found all of whose parts match successfully. A part of a cue instance and the corresponding part of a model match iff their domains have a non-NIL intersection unless the instance part is the particular variable x in which case the model part must have interpretation a in its domain.

For the sample map the consistency alqorithm, NC, converqed
to unique values for all but one reqion in a sinqle pass. The algorithm did not invoke itself recursively. The chain 1nterpretations are as shown in Fiqure 6. The only remaining ambiguity is in the interpretation of the surroundinq reqion, region1, as either sea or lake. The user may have intended "sea" but the island could, of course, be in a larqe lake whose shore is beyond the bounds of the map. Reqions 2, 3, 4 and 5 dre all interpreted ds land. The interpretations are, presumably, as intended by the user.

6. Refining the Initial Seqmentation

In this section we will consider the effect of the segmentation deficiencies on the consistency process and then see how the results of that interpretation process can be used to refine the seqmentation. Recall that the deficiencies are: the missing cues, the reqion ghosts, the missing reqions and the extra regions.

The missing cues have no serious effect on the consistency process, provided, of course, that sufficient remain. A missing cue simply fails to supply its extra constraints on the possiole Interpretations of the chains and regions. In this domain, however, there is such a welter of cues invoking consistent models that there is a multitude of partially independent but mutually confirming inference paths. Breaking a few of those inference paths causes no degradation in the interpretation. It 25 tempting to postulate that most perceptual tasks. in the real

THE SHORELINES

THE RIVERS.
ARROW MARKS RIVER SOURCE

THE BRIDGES

THE MOUNTAINS

Figure 6. The Chain Interpretations
world, have the rinh semantics which qive rise to this robustness property if we can but discover the appropriate Language for the inferences and appropriate mechanismsfor carrying them out. (The qualification "in the real world" is added because psycholoqical experiments in the laboratory usually use meaninq-deprived stimuli that rule out this phenomenon (Clowes, 1972).)

The region ghosts are, if you like, reqion intensions while the found reqions are (imperfect) reqion extensions (woods, 1975). A ghost is a intension in that it may be specified as, for example, "the reqion on the reflex anqle side of this acute L". The intension/extension distinction forms a spectrum rather than a strict dichotomy here. Recall that a qhost arises when a cue fails to find an associated reqion; it may fail either Decause it stopped looking too soon even though there is a found region there or because there is no found reqion. The ghosts participate in the consistency process just as do the found reqions. The single cue that created a region qhost constrains it and it is guite possible for interpretations of the qhost to be proqressively ruled out. After the consistency process we still do not know the extension of a ghost but we may know more about it than before; for example, it may now be forced to have the interpretation "land".

The missing reqions, as in the river delta, for example, also do not seriously affect the consistency process. The cues in the aeighbourhood of a missinq reqion will have used qhosts in its stead. But, standing in for a sinqle missing reqion
there will be several chosts so the constraining effect will be weakened somewhat.

Similarly, the extra reqions created by the splitting of a single intended region participate independently in the consistency process thereby exerting a weaker constraininq effect than if the region had not been split. However, the semantic richness overcomes that weakening and forces the four found regions corresponding to the sinqle intended land reqion (reqions 2, 3, 4 and 5) to have that sinqle interpretation. Again, as in the other cases, if the reqion splittinq is so severe as to cut too many inference paths then the process will degrade gracefully (Marr, 1975). In that case the various found regions would not have the intended interpretation uniquely. It vould simply be in the intersection of the possible interpretations of the found regions.

The third phase of MAPSEE uses the results of the consistency process to refine the initial partial sequentation. There are four ways in which this can be done: a) establishing distinct ghosts with the same interpretation and location as co-extensive b) considering the merge of found regions with the same interpretation c) establishing a found reqion as the extension of a qhost with the same interpretation and d discovering a new found reqion as the extension of one or more yhosts. These involve revisiting the picture and seqmentinq wore purposefully, more carefully and at a finer level of detail in the particular areas concerned. Fiqure 7 shows the final land region that results from the successful proposed merqes of

REFINED REGION2 IS LAND

Figure 7. The Final Land Region
the separate initial lad reqions.

7. Conclusions

I cannot here discuss how this work satisfies the qoals of the project nor future directions such as a) inteqratinq still Eurther the seqmentation and interpretation phases, b) a utomating the generation of the primary cue interpretation catalogue by the provision of a lanquaqe for describing the models so that transfer to other sketch worlds is facilitated and $c)$ the use of schemata as procedural models. Suffice it to say that MAPSEE is an existence proof of the power of semantics in the interpretation of pictures. It demonstrates that the cue/descriptive model paradigm works in donains other than the olocks worid, that the network consistency alqorithms can be extended, that imperfect data can be overcome by a thoroughqoing conservatism in the seqmentation process, that a partial segmentation can yield an initial interpretation, and that the interpretation can sensibly refine the initial seqmentation.

8. Acknowledgements

This work is supported by the National kesearch Council of Canada's Operating Grant A9281 and a grant from the university of British Columbia.

Barrow, H. G. and Tenenbaum, J. i. (1976) MSYS: a System for Reasoning about Scenes. Tech. Note 121. A. I. Center, Stanford Res. Inst., Menlo Park, Calif.

Bobrow, D. G. and Winograd. T. (1977) An Overview of KRL, a Knowledge Representation Lanquaqe. Journal of Cognitive Science 1,1

Clowes, M. B. (1972) Artificial Intelliqence as Psycholoqy. AISB Bulletin 1, November

Rreuder, E. C. (1976) Synthesizinq Constraint Expressions. A. I. Memo 370, M.I.T., Cambridge, Mass.

Gaschniq. J. (1974) A Constraint Satisfaction Method for Inference Making. Proge 12th Ange Allerton Conf. on Circuit Theory, O. Ill., Urbana-Champaiqn, Ill.

Mackworth. A. K. (1973) Interpreting Pictures as Polyhedral Scenes. Artificial Intelligence 4. 2, 121-137 also proc. 3IJCAI, Stanford, Calif.. pp. 556-563

Mackworth, A. K. (1975a) Consistency in Networks of Relations. TR 75-3, Dept. of Comp. Sci., Univ. of B. C., Vancouver. and Artificial Intelligence 8 (1977). 1. 99-118

Mackworth, A. K. (1975b) How to See A Simple world. in Machine Intelliqence B $^{\text {. }}$. W. Elcock and D. Michie (eds.) (in press) and TR 75-4, Dept. of Comp. Sci.. U. of B. C., Vancouver.

Mackworth, A. K. (1976) Model-driven Interpretation in Intelligent Vision Systems. Perception 5, 349-370

Wackworth, A. K. (1977) Vision Research Strateqy: Black Maqic, Metaphors, Mechanisms, Miniworlds and Maps. Proce Horkshop cn Cogpputer Vision Systems. Anherst, Mass. (in press)

Marr, D. (1975) Early Processinq of Visual Information. A. I. Memo 340, MIT, Cambridge, Mass.

Montanari, 0. (1974) Networks of Constraints: Fundamental Properties and Applications to Picture Processing. Information Sciences 7, 95-132

Starr, D. W. and Mackvorth, A. K. (1976) Interpretation-Directed Segmentation of ERTS Imaqes. Proc. ACM CIPS Pacific Regional Symp., pp.69-75

Rosenfeld. A.. Hummel, R. A. and Zucker, S. W. (1976) Scene Labelling by Relaxation Operations. IEEE Trans. on Systems.

Man and Cybernetics, SMC-6, 420-433
Tenenbaum, M. and Barrow, H. G. (1976) IGS: a Paradiqm for Integrating Imaqe Seqmentation and Interpretation. in pattern Recognition and Artificial Intelligegce, Academic Press

Waltz, D. L. (1972) Generating Semantic Descriptions from Drawings of Scenes with Shadows. MAC AI-TR-271, M.I.T.. Cambridge, Mass.

Woods, W. A. (1975) What's in a Link. in Representation and Understanding. D. G. Bobrow and A. Collins (eds.), Academic Press

Yakimovsky, Y. and Feldman, J. (1973) A Semantics-Based Decision-Theoretic Region Analyzer. Proc. 3IJCAI, Stanford, Calif., pp. 580-588

[^0]: * To appear in proc. Fifth Int. Joint Conf. on Artificial Intelligence, M.I.T. Cambridge, MA, Auqust 22-25, 1977

