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2. 

ON iiRADING SKETCH MAPS* 

Alan K. Mackworth 
D~partment of Computer Science 
University of British Columbia 

Vancouverr B.C., Canada V6T 1W5 

} computer program, named MAPSEE, for interpreting maps 
sketched freehand on a graphical data tablet is described. The 
emphasis in the proqram is on discovering cues that invoke 
descriptive models which capture the requisite cartographic and 
geographic knowledge. A model interprets ambiguously the local 
environment of a cue. By resolving these interpretations using 
a new network consistency algorithm for n-arv relationsr MAPSEE 
dChieves an interpretation of the map. It is demonstrated that 
this approach can be made viable even though the map cannot 
initially be properly segmented. A thoroughly conservative, 
initial, partial segmentation is described. The effects of its 
aecessary deficiencies on the interpretation process are shown. 
The ways in which the interpretation can refine the seqmentation 
d.re .indicated. 

1. Introduction 

The purpose of this paper is to report on a proqram, 

dAPSEE, that reads sketch maps. The intention is not to discuss 

the overall goals of this research nor how it fits into current 

computational vision concerns except insofar as it directly 

impinges on them. Those issues are tackled in detail in a 

companion paper (Mack.worth, 1977). Suffice it to say herer by 

way of introduction, that one of the qoals is to understand how 

to exploit the semantics of imaqes desiqned for communication as 

typified by sketchesr in generalr and sketch maps in particular. 

Another goal is to transfer some of the current vision 

* To appear in Proc. Fifth Int. Joint Conf. on Artificial 
intelligencer M.I.T., Cambridge, MA, August 22-25r 1977 



µaradigm to other domains. one of the useful concepts to emerqe 

from earlier work was an approach to vision as a 

understanding the implications of local cues invokinq 

that placed constraints on the interpretatiou ot 

elements in the neiqhbourhood of the cue. The 

task of 

models 

picture 

Huf tman-

Clowes-Waltz approach (Waltz, 1972), for example, used ;unctions 

as cues, and corners as models with the constraints placed on 

the edges at the corners, while POLY (Mackworth, 1973, 1976) 

focussed on edges and surfaces. One purpose - in desiqninq MAPSEE 

was to demonstrate that the constraint satisfaction approach has 

~uch wider applicability than ;ust the blocks world. This 

required, in part, further generalization of the so-called 

network consistency algorithms. 

Thus one focus of the current work is to explore the limits 

of the cue/descriptive model approach to vision with particular 

emphasis on the modularity that it buys. Another focus is an 

aspect of the chicken-and-egg problem (Mackworth, 1975b) namely, 

can one segment before interpreting? If so, how? - qiven thdt 

a complete segmentation requires E~1Q£ interpretation. In this 

domain, and in many others I suspect, the semantics are so rich 

that a partial segmentation that is conservative in manv 

different ways is sufficient to allow a bootstrap into an 

interpretation. By •rich semantics• I mean simply that there 

exists a large number of partially independent but mutually 

confirming inference paths. Furthermore, the initial 

interpretation can then, in turn, refine the initial partial 

.:iegmentat ion. (See, for example, (Yakimovskv and Feldman, 

3 , 
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1973) , (Tenenbaum ar::' Barrow, 1976) and (Starr ctnd Mackworth, 

1976) for other approaches to this problem.) 

The maps chosen for this study were sketched free-hand on a 

qraphical data tablet. No great effort was made to draw the map 

carefully. The map shown in Figure 1 qives many people pause 

~efore they §g~ that it depicts an island on which there are two 

towns connected by a road which crosses a bridqe over a river 

which rises in a mountain rauqe in the north-west, and runs to a 

J.elta in. a bay on the southern shore. 

Fiqure 1. A Typical Sketch Map 

The only major possible geographical elements dllowed by the 



current MAPSEE but missing from that map are inland lakes. 

Moreover, the land area need not be an island - it could cover 

the entire map. The cartographic elements may be arranqed in 

any of the legal ways their corcespondinq qeoqcaphic obiects 

could. 

3. InterRretation in Context: Cues and Models 

To understand the qeneral nature of MAPSEE the followinq 

experiment is suqqested. Cut a small hole in a piece of paper 

~nd place it on the map. As you move it around the map ask 

yourself "What could that be?" Initially, if you're lookinq at 

a line then clearly it could be a road, a river (flowinq in one 

direction or the other), a bridge, a mountainside or a shoreline 

(of a lake or of the sea, with the water on one side or the 

other). If on the other hand, you see a blank space, an areal 

~lement, it could be land, lake or sea. If you now temporarily 

remove the paper with the hole in it and see the map as a whole, 

you will notice that the lineal elements appear to aggregate 

Lnto units of connected lines each with a uniform 

interpretation. 

elements will 

interpretations. 

These are chains. Similarly, the areal 

aqqreqate into ceqions that have uniform 

As you resume moving the hole around the map, you will 

turther discover a wide variety of interestinq picture fraqments 

which constrain their parts. A sharp kink in a chain, for 

axample, rules out the possibility that it is part of a bridqe. 

5 
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lt could, on the other hand, be a mountain top, in which case 

the chain is a mountain and ,the regions on either side are ooth 

iand, or it could be part of a coast line, in which case the 

region on one side is land, the other beinq sea or .Y!:£~ y~&,§~, 

or ••• If a chain stops abruptly with no other lines 

dnywhere in the vicinity it most certainly is not a shoreline; 

curthermore, the reqion that it stopped in must be a land 

~egion. The free end could be a river source in which case the 

chain is a river flowing away from the free end. (Rivers may 

appear out of the qround but they do not disappear into it. 

Rivers also start at lakes and other rivers. They empty into 

other rivers, lakes or the sea. They may, however, temporarily 

aisappear under a bridge.) or the free end could be a 

mountainside or ••• 

These informative picture fraqments are called "primary 

cues" because they invoke models that interpret the immediate 

locale of the cue thereby putting constraints on the lineal and 

areal components of the cue. The initial ~normous ambiguity of 

interpretation is reduced by these local models. It is further 

reduced by dllowinq the models to talk to each other and aqree 

upon the interpretations of picture elements that they mutually 

interpret. This process is handled by a network consistency 

algorithm that progressively eliminates interpretations of the 

picture primitives, the chains and reqions (nQi the 

interpretations of the cues}, until, if the model intormation is 

strong enouqh, the interpretation intended by the user remains. 

A wide variety of qeoqraphical and cartoqraphical 



~nowledge. typified by the sample inferences given above. is 

captured in MAPSEE by the primary cue interpretation cataloque. 

rhe varieties of cue are shown in Figure 2. with names for their 

relevant component parts. For each cue there is a set of models 

as listed in Fiqure 3. Each model constrains the interpretation 

of each part of the cue to belong to the set given. The 

Lnterpretations of Fiqure 3 are context-sensitive in that if the 

Lnterpretations of a part are separated by a I then only one of 

them is possible. The direction of flow of a river is handled 

this way. A chain has associated with it the direction in which 

1.t was drawn. If the river flows in that direction it is 

label.led "river" else "river*"• In the first interpretation of 

che TEE. for example. the river can only flow into the TEE on 

the stem-chain. 

In order to use this catalogue of models we must segment 

the pictuce into chains. regions. cue instances and the bindinqs 

of their components. Unfortunately, that seqmentation cannot be 

done perfectly. as we shall see, but it can be done with 

sufficient care that the models can start to make sense of the 

picture. That intecpretation can then be used to refine the 

~egmentation. The program MAPSEE. written in LISP. consists of 

the three phases: partial segmentation. network consistency. and 

refining the segmentation. 

7 
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TEE OBTUSE L 

~~Glot.)-~~O\ll.)b 

--~ 
C.\UhMi. ,,,,. ,,, 

FREE END 
- - __ ..,_ ___ "(llRoll(, 11-

C."'Al fl 

MULTI 

LINK CLUSTER 

Figure 2. The Primary Cues Used by MAPSEE 



STEM-CHAIN 
{river) I {river•} 
[r_i ver, river*} 
[river,river*} 
{road} 
[mountain} 
(r-i ver, river*} 

OBTUSE L: 
CHAIN 
{shore} 
[shore} 
(road, bridge, 
river,river•} 

ACUTE L: 
CHAIN 
(shore} 
{shore} 
(road,mountain, 
river-,river*} 

FREE END: 

CLUSTER: 

LINK: 

~U.LTI: 

CHAIN 
(river} j {r-i ver-*} 
(mountain,bridge} 

CHAIN 
(road) 

CHAIN 
(shore} 

BAR-CHAIN 
(shore} 
[shore} 
[river,river*} 
(road} 
(mountain l 
{bridge} 

R-LARGE 
(lake, seal 
[land} 

{land} 

R-LARGE 
{lake,sea} 
[land} 

{ land} 

REGION-SUH ROUND 
(land} 
(land} 

REGION-S[JRROUND 
[land_} 

RA RB RC 
fsea} flanJ} fl and} 
{lake} fland} f land} 
{land l fl and} flandl 
f la ndJ {land} fl and} 
fla nd l (land l {land} 
(land} fland} flandl 

R-SMALL 
(land l 
[lake,sea} 

[land} 

R-S MALL 
f land} 
{lake,sea} 

(land} 

TliliOUGH-CHAIN CHAIN1 CHAIN2 RA RB RC RD 
{river,river•} (river,river*} {river,river*l (land} 

(road} (road} {road} (land} 
fland} fland} [land\ 
{land} {land} {land} 

Figure 3. The primary cue intecpcetation cataloque 
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4. The Initial Partial Se~en ta tion 

~.1 Representations 

MAPSEE receives a map in the form of a procedure for 

drawing it, created by the routines that track the stylus on the 

data tablet. That is, the input is a sequence of plotter 

commands where a command is move (pen up) to (x,y) or draw (pen 

down) to (x,y) from the current position. 

There are so many points in this picture description (more 

than 800 for Figure 1) that one of the main priorities of all 

the segmentation routines is computational efficiency. There 

are two ways in which this is achieved. In the first place, a 

variety of different representations of the picture are 

waintained. Each is appropriate for one or more purposes. 

secondly, when computing in a pictorial r-epresentation, a 

~egmenter only works at a level of detail appropriate to its 

u.rrent needs. 

The procedural cepresentation gives way to a network 

cepresentation which initially contains ;ust chains (consecutive 

draws), line segments and segment end points. In this 

cepresentation, each chain und erqoes a process of 

generalization, as the cartographer-s call it, whereby at each 

level of detail the chain is represented to within a cectain 

tolerance. 



Finally, there ts an array representation indexed by the 

x-y coordinates of the end points. This is quite coarse (32x32) 

out allows quick answers to questions such as "What are you 

near?" which uses a spirdl search in the ,1rray. As discussed 

in the next section, the array representation is generalized in 

th8 process of reqion-finding to form a space occupation 

hierarchy of arrays of four elements each. 

ij.2 Region Segmentation 

If we were to define a reqion as a connected subset at a 2D 

Euclidean space, the picture, in our domain, would always have 

exactly one region! Whenever the user intends to enclose a 

ceqion he leaves a small (or, sometimes, not so small) qap, 

relying upon the map reader to aivine his intention by readinq 

his mind as well as the map. We cannot seqment until we can 

Lnterpret but we cannot interpret until we seqment; this is the 

tamiliai AI cbicken-and-eqq problem. However, a~ initial, 

partial# conservative reqion segmentation is possible. A 

cecursive algorithm partitions the image into empty patches: 

~ubdividing a patch of space only if it is not empty. This 

top-down subdivision stops well before it could ledd to trouble, 

at a level whose patch size is much qreater than anv 

unintentional qaps in the sketch. The empty ad;acent pdtches 

are then merged to form the five regions shown in Figure 4. The 

conservatism guarantees uo leakdqe; no region so found will 

correspond to more than one •intended' r-egion. But some 

11 
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REGIDN4 

Figure 4. The Initial Region Segmentation 
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Lntended regions may be represented by more than one found 

~egion: the large connected ldnd region has been split into 

reqions 2, 3, 4 and 5. Other intended reqions may not be 

cepresented at all: the two small land ceqions in the river 

delta have been missed. Moreover, the extent of the found 

regions is somewhat less than their actual extent. As we shall 

see, the consistency process is very tolerant of these necessary 

idiosyncracies of the region seqmenter. 

ij.3 fue Segmentation 

Each of the cue types has its own specialized routines that 

discover instances in the picture. They lean hedvily on the 

levels of detail in the representations tor efficiency. 

Moreover, they all have their own brdnd of conservatism. Each 

is designed to rej_g£t all border-line cue instances. As the 

Jolly Green Giant says, "Only the best will do!" A tentative 

tree end, for example, must be well in the clear (relative to 

the minimum patch size of the region segmentation) before it is 

dccepted as a free end. An obtuse angle must have arms lonqer 

than a given minimum, straighter than a certain tolerance, angle 

considerably less than pi •••• No false cues can be found so, 

as a result, many genuine ones are iqnored. 

~ndicated by the hexagons in Figure 5. 

ij.4 Fleshing out the cues 

The cues found are 

13 
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THE TEES THE CJBTUSE-LS 

THE ACUTE-LS THE FREE-ENDS 

Figure Sa. The Cue Instances Discovered 
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THE CLUSTERS THE LINKS 

THE MUL TIS 

Figure Sb. The Cue Instances Discovered (Continued) 
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Each cue instan~e needs to bind various picture elements 

{chains and 

segmentation 

regions) 

process 

to its internal 

is heavily biased 

names. Aqain, the 

in favour of sins of 

omission rather than commission. If, for example, it is looking 

tor the region associated in a certain direction with a cue, it 

crawls carefully in that direction from the initial point. If 

it finds a region within a very short distance, ~qain, 

determined by the minimum patch size, well and good. But if it 

does not it will give up rather than risk . returninq the wronq 

region. If it gives up it creates a regi2n ghost (Bobrow and 

W inogt'ad, 1977) that stands for the region which has that 

celationship to the cue but cannot yet be identified. The 

cegion corresponding to the qbost may or may not exist as a 

found region. Eighteen region ghosts were created durinq the 

segmentation of the sample map. 

The picture is now partially segmented into chains, regions 

dnd partially instantiated cues. In describing the consistency 

process, I will iqnore, for the time being, the four types of 

inadequacies in the segmentation (the extra ~eqions, the missing 

regions, the missing cues and the region ghosts) and assume that 

the segmentation ~s perfect. Subsequently, we shall see how 

those inadequacies affect the consistency process. 

Mackworth (1975a) discusses and extends a class of 

algorithms typified by Waltz's (1972) arc consistency algorithm 



(called AC-2, there) and Montanari's 

algorithm (called PC-1), desiqned 

celations among a set of variables 

( 197 4) path consistencv 

to satisfy a set of binary 

each of which must be 

instantiated in an associated domain. Network consistency 

algorithms are often hetter than backtracking for such a task in 

that, by appropriate bookkeeping, they eliminate several kinds 

of thrashing behaviour. 

In Waltz's blocks world, for example, the variables 

correspond to the junctions, the domains to the set of possible 

corners for each junction type and the binary relations to the 

edges, in that each edqe must have the same interpretation 

Lmposed on it by each of its two corners. His network of 

relations was then isomorphic to the perfect line drawing beinq 

interpreted. 

In t1APSEE, the uvariables" are the chains ~ng the regions 

(which also must be interpreted: everythinq need not, indeed 

cannot, be packed into the chain interpretations). The domains 

~re their context-free interpretations, that is (road, river, 

river*, mountain, bridge, shore} for chains and (land, lake, 

~ea} for regions. The relations are the cue instances, the 

constraint being the disjunction of the set of models for each 

cue instance. 

The relations are now n-ary, not just binary, because each 

model relates from one to seven regions and chains. The network 

consistency algorithm used in MAPSEE given below is a suitably 

generalized version of AC-3 (Mackworth, 1975a). Note that, in 

iie~ of network consistency, one could, of course, backtrack on 

17 
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the values in the ~omains of the chains and regions, failinq 

oack when any cue ceases to have a model which ~atisfies the 

current values; howeveL, the followinq alqorithm, NC, is far 

lilore efficient. 

Nf: A!! n=~I:Y .R~latj.Qil Consistency Algorithm 

1. construct a queu9 consisting of (var-iable,c-elation) pairs in 

which each variable is paired with every relation that 

directly constrains it. 

L. While the queue is not empty do steps 2.1 and 2.2. 

2.1 Remove the first pair (x,R) from the queue. 

Foe each value, a, in the domain of variable x, Dx, do 

step 2. 1. 1 

2.1.1 Find at least one value in the domain of each of 

the other variables directly constrained 

relation R such that all the values, including a, 

simultaneously satisfy H. If such values cannot be 

found delete a from Dx. 

2.2 If any values were deleted from Dx in step 2.1 then do 

step 2. 2. 1 

2.2.1 If Dx is nov empty then r-eturn failure as the 

result of this call else replace the queue by the 

union of the queue dnd the set of pairs obtained 

from all the relations other than R that constrain 

x, each relation paired ~ith all the variables 

other than x thit it constrains. 
. . 1 ' 

,. 
I 



J. At this step there are three possible states of the network: 

a) If every variable has exactly one element in its domain 

return that set of bindings as the result of this call. 

b) If one variable, y, has k (k > 1) elements in its domain 

and the rest have, exactly one element return the k solutions 

formed by binding y to each of its values and the other 

variables to their unique values. 

c) If more than one variable has more than one element in its 

domain then split the domain of one of those variables 

approximately in balf and return the solutions obtained by 

applying the algorithm recursively to the two subproblems so 

generated. 

The algorithm either returns failure {because some domain 

was exhausted) or one or more solutions each of which satisfies 

all the relations. The solutions are complete: no subsequent 

~acktracking is necessary. The algorithm can be trivially 

wodified to return 1ust the first solution if desired. Note 

that the ordering of the queue is unspecified: the process 

however, it may be treated as a priority converges regardless; 

gueue. For example, 

interrelated variables 

sorting the queue so that stronqly 

are more likely to be adjacent in the 

queue speeds convergence. 

Preuder (1976) independently generalized the consistency 

arguments given, for binary relations, in (Mackworth, 1975a) to 

apply to n-ary relations. His algorithm is very different from 

the one presented here in that he explicitly constructs sets of 
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all the n-tuples of values of the variables which satisfy each 

relation and deletes tuples from those sets. Furthermore. he 

constructs similar exhaustive representations for all the 

implicit relations induced by the ones given up to and including 

the global relation that relates all the variables. As with the 

binary relation consistency algorithms complexity analysis of 

these algorithms is difficult (for anything other than vorst 

case) making explicit comparison impossible. Rest assured, 

though, that they are both inherently exponential. in the worst 

case. in that the problem is NP-complete. For this task. 

nowever. NC requires 

Freuder•s algorithm. 

far fewer CONS cells and operations than 

Siqnificant contributions to the 

uevelopment of netvock consistency algorithms have also been 

made by Gaschniq ( 1974), Barrow and Tenenbaum . (1976) and 

Rosenfeld, Hummel and Zucker (1976). 

In the implementation of NC in MAPSEE each cue has a list 

of models associated with it. Edch instance of that cue has a 

set of bindings for its subparts to various chains and reqions 

(the "variables« it constrains). Io step 2.1.1 of the 

algorithm. a structure matcher is used to match the cue instance 

against each model for the cue until a model is found all of 

whose parts match successfully. A part of a cue instance and 

the corresponding part of a model match iff their domains have a 

non-NIL intersection unless the instance part is the particular 

variable x in which case the model part must have ~nterpretation 

ci in its domain. 

For the sample map th~ cbnsistencv alqorithm, NC, converqed 



LO unique Vdlues for all but one region in a sinqle pass. The 

algorithm did not invok~ itself recursively. The chain 

Lnterpretations are as shown in Figure 6. The onlv rernaininq 

ambiguity is in the interpretation of the surroundinq reqion, 

cegion1, as either sea or lake. The user may have intended 

"sea" but the island could, of course, be in a larqe lake whose 

shore is beyond the bounds of the map. Regions 2, 3, 4 and 5 

are all interpreted ds ldnd. The interpretations are, 

~resumably, as intenaed by the user. 

6. Refining the Initial Segmentation 

In this section we will consider the e£f8ct of the 

~egmentation deficiencies on the consistency process and then 

see how the results of that interpretation process can be used 

to refine the seqmentation. Recall that tbe deficiencie~ are: 

the missing cu~s, the region ghosts, the missing reqions and the 

extra regions. 

The missing cues have no serious effect on the consistency 

process, provided, of course, that sufficient remain. A missinq 

cue simply fails to supply its extra constraints on the possiole 

interpretations of the chains and regions. In this domain, 

however, there is such a welter of cues invoking consistent 

models that there is a multitude 0£ partially independent but 

mutually confirming inference paths. Oreakinq d few of those 

inference paths causes no degradation in the interpretation. lt 

is tempting to postulate thdt most perceptual tasks, in the real 

21 
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THE RIVERS. 
ARRDW MARKS RIVER SOURCE 

THE SHORELINES 

THE BRIDGES 

I\ 
THE RDADS ANO TOWNS I' 

THE MOUNTAINS 

Figure 6. The Chain Interpretations 



world, have the ri:h semantics which qive rise to this 

robustness propertv if we can but discover the appropriate 

languaqe for the inferences and appropriate mechanisms for 

carrying them out. (The qualification "in the real 

added because psychological experiments in the 

usually use meaning-deprived stimuli that rule 

phenomenon (Clowes, 1972).) 

world" is 

labor-atorv 

out this 

The region ghosts are, if you like, region intensions while 

the found regions are (imperfect) region extensions (Woods, 

1975). A ghost is a intension in that it may be specified as, 

tor example, "the region on the reflex anqle side of this acute 

L". The intension/extension distinction forms a spectrum rather 

than a strict dichotomy here. Recall that a ghost arises when a 

cue fails to find an associated regioni it may fail either 

uecause it stopped looking too soon even though there is a found 

region there or- because there is no found reqion. The qhosts 

participate in the consistency process just as do the found 

ceqions. The single cue that created a region ghost constrdins 

it and it is quite possible for interpretations of the qhost to 

be progressively ruled out. After the consistency process we 

$till do not know the extension of a ghost but we may know more 

dbout it than before; for example, it may now be forced to have 

the interpretation "land". 

The missing regions, as in the river delta, for example, 

dlso do not seriously affect the consistency process. The cues 

in the neighbourhood of a missing reqion will have used qhosts 

in its stead. But, standing in for a single missinq reqion 

23 
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there will be several ~hosts so the constraining effect will be 

weakened somewhat. 

Similarly, the extra reqions created by th~ splitting of a 

single intended region participate independently in the 

consistency process thereby exerting a weaker constraininq 

effect than if the region had not been split. However, the 

semantic richness overcomes that weakening and forces the four 

found regions corresponding to the sinqle intended land reqion 

(regions 2, 3, 4 and 5) to have that single interpretation. 

Again, as in the other cases, if the region splitting is so 

~evere as to cut too many inference paths then the process will 

degrade gracefully (Marr, 1975). In that case the various found 

regions would not have the intended interpretation uniquely. It 

would simply be in the intersection of the possible 

interpretations of the found reqions. 

The third phase of MAPSEE uses the results of the 

consistency process to refine the initial partial segmentation. 

There are four ways in which this can be done: a) establishing 

~istinct ghosts with the same interpretation and location as 

co-extensive b) considering the merge of found regions with the 

same interpretation tj establishing a found region dS the 

extension of a ghost with the same interpretation and d) 

discovering d new found reqion as the extension of one or more 

4hosts. These involve revisiting the picture and seqmentinq 

~ore purposefully, more carefully and at a finer level of detail 

in the particular areas concerned. Figure 7 shows the final 

iand region that results from.the successful proposed merqes of 
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REFINED REGI □N2 IS LAND 

Figure 7. The Final Land Region 
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the separate initial laad regions. 

7. Conclusions 

I cannot here discuss how this work satisfies the qoals Of 

the project nor future directions such as a) inteqratinq still 

further the segmentation and interpretation phases, b) 

automating the generation of the primary cue interpretation 

catalogue by the provision of a lanquaqe for describinq the 

models so that transfer to other sketch worlds is facilitated 

and c) the use of schematd as procedural models. Suffice it to 

say that MAPSEE is an existence proof of the power of semantics 

in the interpretati~n of pictures. It demonstrates that the 

cue/descriptive model paradigm works in domains other than the 

Dlocks world, that the network consistency alqorithms can be 

ext~nded, that im~rfect data can be overcome by a thorouqhqoinq 

conservatism in the segmentation process, that a partial 

segmentation can yield an initial interpretation, and that the 

interpretation can sensibly refine the initial segmentation. 
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