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Abstract

Consider discrete Ll-approximations to a data function f, on some finite
set of points X, by functions from a linear space of dimension m < «, It is known
that there always exists a best approximation which interpolates f on a subset of
m points of X. This does not generally hold for the "continuous" L,-approximation

on an interval, as we show by means of an example.

We investigate the invariance of the interpolation points of the dis-
crete f,-approximation under a change in the approximated function. Conditions
are given, under which the interpolant to a function g on a set of "best £; points"
of a function f is a best Kl-approximant to g. Additional results are then ob-

tained for the particular case of spline ﬁl-approximation.






1. Introduction

One of the properties of the discrete 1inearwel—approximation to a func-
tion f over some finite set of points X, is that there always exists a best ap-

proximation which could be determined as an interpolant to f on some subset of X.

Specifically, let X = {x;, ..., xn} and let W be a set of associated
positive weights, W ='{W1, 5% @y Wn}. Let the functions dys eees b be linearly
independent over X, m < n, and consider approximations to f(x) of the form

(1.1) v(asx) := E oy %‘x) ;o = (al, - am)

The,tl-approximation problem is to find an o = o* which solves the minimization

problem
(1.2) min{ % g w, |v(ax) - £(x)[} = & % w, |vla*3x,) - £(x,)]
’ ) n =1 h| ’ J i n j=1 N ’ h h ’
Let
(1.3) Z(g;B) 1= {x e X | v(B;®) = g} B = (B,..., 8.

The following theorem may be found in Barrodale and Roberts [2]. It

can also be obtained constructively from the dual linear programming formulation

of (1.2) (see, e.g. [61).



Theorem 1.1 [2]

For a given data function f, there exists a best.@l—approximation

v@*;+) to £(+) on X, such that there exist m points in X

which satisfy

(1.4)

and

{1:5)

E, vvoey E X
1

E s s € 2(E30%)

bys wuaw By

il [Ae -3

1= det(¢i(gj)) # 0.

The subset of interpolation points El, G Em depends generally on f

and X and 1s not usually known in advance. Our purpose in this note is to deter-

mine criteria for the interpolation points to remain invariant under a change in

f; 1.e., to define a class of functions for which the interpolation points &3, ...,&

m

are "El-best". Thus, énce the points are known for a specific elass, (say, by carry-

ing out the linear programming computation of (1.2) for one function in the class)

the problem of Zl—approximation for other functions in that class is reduced to that

of interpolation of order m.

Our general theorem appears in section 2. It gives conditions for the

case where a set of 'ﬁq-best" interpolation points for one function is also

'ﬂg- best" for another function. In section 3 we recall corresponding results



for the "continuous" L, -approximation on an interval I. It is well known that

in the polynomial case, ¢i(x) t= xi-l, i=1l, ..., m, interpolation at the zeros of
the m-th order Chebyshev polynomial of the second kind (transformed from [-1,1]

to I) will provide the unique best Ll -approximation for any function in c™ whose
m-th derivative does not vanish on the interval. This was generalized in Micchelli
[4] to weak Chebyshev systems. By comparison, in the corresponding El -approxima-
tion there is no uniqueness and the Hobby-Rice theorem [ 3] does not hold; on the

other hand, theorem 1.1 does not extend to the continuous L1 —approximation in

such generality. An example is given to prove this last point.

In section 4 we consider the case where X ¢ I and arrive at a discrete
analogue to Micchelli's result. Finally, we treat the case of spline £1 -approxi-
mation and show, that the unique set of "Kl-best" interpolation points, obtained
from the 4£.-approximation of a certain perfect spline, provide a best Zl—approx-

1

imation for every function in the corresponding convexity cone.

The conditions given in section 2 for the invariance of the '"best 21
points" under a change in the approximated function may at times prove to be
quite restrictive, especially when X represents a discretization of some connected
domain in Rk, k > 1, Nevertheless, it has been noted in practical calculations
with cross products of B-splines that the interpolation points El’ awie s Em,
determined by best Zl-approximation to a function f, were also "good", though
not "best", for other functions tested which did not satisfy the invariance condi-
tions. That 1is, for another function g, the error when using El’ s Em to deter-
mine the approximant by interpolation, was of the same crder of magnitude as the
error obtained for the best El—approximation to g. This observation has insti-
gated motivation to use the Zl -points as collocation points in the numerical

solution of partial differential equations [8], [1].



2, Invariance of ll -interpolation points

Before stating and proving our theorem we recall the following character-

ization theorem for best 21- approximations (see, e.g.,[7]). With the notation

1 x>0
(2.1) sgn {x}:=1{ 0 x=0
-1 x<0

we have

Theorem 2.1

v(a*3*) is a best ll-approximation to f(-) if and only if

n
(2.2) | &

j wjv(u;xj)sgn{v(u*;xj)-f(xj)} | = = Wkl V(“§xk)]

1 xksz(f;u*)

for all a € - e

Our theorem follows.

Theorem 2.2

Let f and g be two given data functions on X. Let a* and El’ o5y gm

be so constructed so that v(a*;-) is a best ﬂl—approximation to £ on X and (1.4)
- (1.5) hold. Let o be determined so that v(a;-) interpolates g(-) at &, ...,Em.
If

(1) 2(g;a) > Z(£30%)

(ii) 3 o e {-1,1} such that for any j, 1 < j < n, either

‘bl’ seey ¢m9 g
sgn {det [ } = 0 sgn {det [

gl’ AR S ] gm’ X.

¢1)-°':¢m:f]}
il g]s-"agmng

or



¢1’ i oay ¢m’ g

By sows o

det

then v(a;+) 1is a best £ ;-approximation to g.

Proof

The characterization (2.2) holds for f with a*.

it holds for g with a.
Define a function ? on X by

A
(2.3) f(x,)

~ v(a*;xj)
)

£
(xj)
Then, by assumption (i),

A m
Z(f;o*) = Z(gsa).

A

We claim that (2.2) holds with f replacing f.

xj's which satisfy

3

For each such x

3

x, € Z(g;a) - Z(£;a%),

=0’

We want to show that

X, e Z(g;a)

otherwise

To show this we need consider only

and any o e]&m, the term wjlv(a;xj)l is added to the right hand

side of (2.2) and the term w v(a;xj) or -w v(a;xj) is eliminated from the left

3 3

A
hand sum. Thus, since the inequality (2.2) holds for f, it must also hold for f:



A
-EG) < T wlviasx)]

n
(2.4) | z w,v(asx, )sgn{v(a*;x
=131 ) d | x eZ(g;0)

for all a eR ™.

Now, v(a;°) interpolates g(*) at exactly the same points as v(a*;+)
A
interpolates f(*), and

A
b1s cens s E

$ys cees O, 8
(2.5) sgn{det[ ! -

]} = osgn{det[

El, see Em, xj El, ceey Em, xj

But the errors of interpolation can be written as

P s eeey 5 8
-det| ! m ]

N 'El, vy €m3 xj
vlasxg)mety) = T
det

A
v(a*;xj)—f(x

)=

The determinant in the two denominators is the same (and is nonzero),

and (2.5) now yields that

(2.6) sgh{v(;;x )-g(x

5 j)} = osgh{v(a*;xj)—g(xj)} j=1,...,n,



Thus we obtain, inserting (2.6) into (2.4),
n A
Ijzlev(a;xj)sgn{v(a;xj)—g(xj)}| < ¥ B wklv(a;xk)l

xkez(g;a)

for all o € Rm

and by theorem 2.1, this proves the desired conclusion.

3. The continuous L,-approximation

For purpose of comparison we now consider the case for Ll—approximation
on an interval I := [0,1], say. Let ¢1, o sy ¢m and f be continuous on I. With

a uniform weight function, the problem is to find an o = o* which solves the mini-

mization problem

(3.1) min {fllv(u;x)-f(x)ldx} = f1|v(a*;x>-f(x>|dx.
o 0 0

A characterization for o* is given by (see, e.g. [71])
i ,
(3.2) | f v(a;x)sgn{v(o*;x)-£(x)}dx| < [ |v(a;x) | dx

0 Z(f;o*)

for all o € Rm

with Z(f:a*) defined as in (1.3), I replacing X.



A general theorem, relevant here, is due to Hobby and Rice [3]

Theorem 3.1 [3]

For any set of functions Oys wees b5 linearly independent in L1[0,1],

there exist points

o=£0<£1<.. <E<E ;=1 , rsm

such that
el "

(3.3) I (-1 ¢, (x)dx =0 i=1, ..., m.
=1 &

Now, if ¢1, o ¢m and f are such that (i) r = m, (1i) interpolation
to £ on {Ei}T=1 is possible and (i1i) the error of interpolation changes sign on

m
{Ei}i=1 and only there, then by (3.2) we have a best Ll—approximation. Such a

result is proved in [4] for weak Chebyshev systems, and we state it below.

Recall that the set of linearly independent continuous functions
{¢1, wney ¢m} is called a weak Chebyshev system on (0,1) provided that for any

0<x < ...<x <1,

1 m
O, .ur b
(3.4) (ht[ 1 m] > 0.
X 5 eees X
1 m

The subspace S = span{¢1, AP ¢m} is then called a weak Chebyshev subspace of

c0,1], dimS = m. If the determinants in (3.4) are all strictly positive, then



the set 1s called a Chebyshev system. Also, denote by KC the class of all con-

tinuous functions in the convexity cone of'{¢1, sfexas ¢mL i.e., all continuous

functions f for which, either with h := f or with h := -f
bys eves ¢, h

(3.5) det[ ! m ] >0
Xps eves X9 X0

for all 0 < x < .,. < x < 1. Finally, let
F[xl, & 4% xm] = {(f(xl), B f(xm)); feKC}

for every 0 < x < ... < x < 1 and let d[x , ..., xm] be the dimension of the
1

smallest linear subspace of kw containing F[xl, i xm].

Theorem 3.2 [4]

Suppose S = span{¢1, AETpp ¢m} is a weak Chebyshev subspace of dimension
m of C[0,1], and for every 0 < x1 <o <x < i, d[xl, . i xm] = m, Then every
fe Kc has a unique best Ll—approximation by elements of S. Furthermore, we have
r = m in (3.3) and the best Llfapproximation v(a*;+) to £(*) is determined by the

condition that it interpolates f at El, T Em.

Note that El, i oy Em do not depend on f. When passing to the discrete
zi-approximation we do not have uniqueness, and the corresponding version of (3.3)
does not hold any more (i.e., the left hand side of (2.2) cannot usually be made equal
to 0). Nevertheless we obtain, in the next section, corresponding results about

invariance of the interpolation points, using theorem 2.2. On the other hand, we

show now by means of an example, that theorem 1.1 cannot be stated in such generality



10

for the continuous I; —approximation.

Example

Let ¢i(x) '= xzi, i=1, ..., m and £(x) := x2m+1 be defined on

I :=[-1,1]. Then ¢1, il ¢m are linearly independent over I. It is clearly
seen from (3.2) that a best Ll—approximation is provided here by a* = 0. Now,
let B = (Bl, “wn Bm)T provide another best Ll—approximation to £f. Then, for

each x ¢ I (see [7]),

v
o

[v(Bs;x)=£f (x) Jlv(a*;x)-£f(x)]

Therefore, we must have

(3.6) v(B:;x) < f(x) x e (0,11

v(Bsx) = £(x) x e [-1,0).

Assume, without loss of generality, that v(B;x) 2 0 for x in some neighborhood

of 0 (note that v(B;x) 1s symmetric around x = 0). Then, if B # 0, we get that

there exists € > 0 such that

v(g;x) > 0 x ¢ (-e,e) - {0} .

But, by the choice of f we then have that there exists § > 0 such that

v(B;x) > f(x) x e (-6,8) - {0} .



11

This contradicts (3.6); hence a* = 0 provides the unique best Ll-approximation
here. Now, v(o*;+) = 0 interpolates f(+) at only one point, El = (0, for any posi-

tive Integer m.

4. Discrete £,-approximation in one dimension

We restrict ourselves here to X ¢ I and use theorem 2.2 to obtain re-

sults analogous to part of theorem 3.2 for the discrete ﬁl—approximation.

Let
4.1) ¢1(x1) o E W oW W ¢1(xn)
A= ¢
¢m(x1) R ¢m(xn)

We say that the set {¢1, ey ¢m} forms a weak Chebyshev system on X if rank(A)=m
and every m by m submatrix of A has a nonnegative determinant. If all m by m de-

terminants are strictly positive then we have a Chebyshev system. A function f,

defined on X, is said to belong to the convexity cone of {¢1, e ¢m} if either
m+1
for ht= f or for h:= -f we have that for all x. < ... < x s 1x,} c X,
1 m+1 ii=1
(4.2)

We have the following consequence of theorem 2.2.
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Corollary 4.1

Let f and g both belong to the convexity cone of the set of m linearly

independent functions ¢y, ..., ¢m on X. With o* and a defined as in theorem 2.2,

assume

(4.3) Z(gsa) > Z(f3a%).
Then v(a;') is a best 31-approximation to g.
Proof

Condition (1) of theorem 2.2 is assumed here. Condition (ii) follows
from the definition of the convexity cone. Thus theorem 2.2 is applicable and
the conclusion follows.

Q. E. D.

Note that we do not assume above that the functions ¢1, ..., ¢m

form a weak Chebyshev systemj only that they are linearly independent on X.

From corollary 4.1 it 1s clear that if we want to find a set of points
LEix sany gm} c x which would be invariant for all functions in the convexity
cone on X, we have to find a function f in the convexity cone with a minimal set
of interpolation points (which always includes &1, ..., Em). If {1y wsuy ¢ £}

is a Chebyshev system on X, then f is such a desired function, since then
Z(fsa*) = {E1, ..., Em} 5

But even the requirement that ¢;, ..., ¢m form a weak Chebyshev system on X

does not guarantee the existence of such an f. In particular, for spline
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functions of order k:

i-1 k-1

(4.4) ¢i(x) =X i=1,...,k; ¢k+i(x) i (X_Ti%- 1=1,...,v

with m=k+v and 0<ty<.., &ty <1, where (x), := %(x+[x|) and X ¢ I :=[0,1],
there is no function f such that {¢;, ..., ¢_, f} is a Chebyshev system if X is

dense enough in I. Nevertheless we have for splines

Corollary 4.2

Let £ be the perfect spline

AVl
(4.5) F(x) 1= x5+ 2 3 (-1)i(x-Ti)_‘:
iml

and let &7, <.« Em be obtained as interpolation points of the best discrete

£1-approximation to f by spline functions defined in (4.4), which satisfies

(1.4) - (1.5). Then for any function in the convexity cone of {¢;,..., ¢m}

on X, interpolation on £3, ..., Em provides a best spline £;-approximation.

Proof

(
Since f*k) changes sign exactly at T3, ..., T, We have that f belongs

to the convexity cone of {71, ..., ¢m} defined by (4.4) (see [4]). Also,

since there cannot be more than m interpolation points to this f by any spline

m
v(ayx) = I ai¢i(x) [5], we have that
i=1

Z(f3a%) = {E1, ..., gm} c Z(g3a)

for any g in the convexity cone, and corresponding o which is determined by

interpolation on £7, +«., Em. Hence corollary 4.1 applies here.

Q. E. D.
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