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On the invariance of the interpolation points 

of the discrete l 1-approximation 
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Department of Computer Science 

University of British Columbia 
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i 

Consider discrete .e. 1-approximations to a data function f, on some finite 

set of points X, by functions from a linear space of dimension 1n < ~. It is known 

that there always exists a best approximation which interpolates f on a subset of 

m points of X. This does not generally hold for the "continuous" 1 1-approximation 

on an interval, as we show by means of an example. 

We investigate the invariance of the interpolation points of the dis­

crete ,e1-approximation under a change in the approximated function. Conditions 

are given, under which the interpolant to a function g on a set of "best k\ points" 

of a function f is a best l 1-approximant tog. Additional results are then ob­

tained for the particular case of spline l 1-approximation. 
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1. Introduction 

One of the properties of the discrete linear R.. 1-approximation to a func­

tion f over some finite set of points X, is that there always exists a best ap­

proximation which could be determined as an interpolant to f on some subset of X. 

Specifically, let ... , X } 
n 

and let W be a set of associated 

positive weights, ... , w }. 
n 

Let the functions 4>1, ••• , <I> be linearly 
m 

independent over X, m < n, and consider approximations to f(x) of the form 

v(a ;x) := 
m 

E ai <I>. (x) 
i=l 1 

a = 

The t 1-approximation problem is to find an a= a* which solves the minimization 

problem 

(1.2) 
1 n 

min{ - E wJ. 
a n j=l 

1 n 
= - E w 

n j=l j 

Let 

(1. 3) Z(g;S) := {x £XI v(B;x) = g(x)}; 

The following theorem may be found in Barrodale and Roberts [2]. It 

can also be obtained constructively from the dual linear programming formulation 

of (1. 2) (see, e.g. [6]). 
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Theorem 1. 1 [2] 

For a given data function f, there exists a bestl 1-approximation 

v(a*;•) to f(•) on X, such that there exist m points in X 

~, ... ,~ e:X 
1 m 

which satisfy 

(1. 4) 

and 

(1.5) 
[

c/>p 
det ~l' 

... , 

... , 

The subset of interpolation points~, ••• , ~ depends generally on f 
1 m 

and X and is not usually known in advance. Our purpose in this note is to deter-

mine criteria for the interpolation points to remain invariant under a change in 

f; i.e., to define a class of functions for which the interpolation points ~l, ... , ~ 
m 

are 11 .e.
1
-best". Thus, once the points are known for a specific class, (say, by carry­

ing out the linear progt'annnirig computation of (1.2) for one function in the class) 

the problem of .e.
1
-appro~imation for other functions in that class is reduced to that 

of interpolation of order m. 

Our general theorem appears in section 2. It gives conditions for the 

case where a set of "4-best" interpolation points for one function is also 

11 
~- best" for another function. In section 3 we recall corresponding results 
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for the "continuous" 1
1 

-approximation on an interval I. It is well known that 

i-1 
in the polynomial case, ~.(x) := x , i=l, ... , m, interpolation at the zeros of 

1 

them-th order Chebyshev polynomial of the second kind (transformed from [-1,1] 

m 
to I) will provide the unique best 11 -approximation for any function in C whose 

m-th derivative does not vanish on the interval. This was generalized in Micchelli 

[4] to weak Chebyshev systems. By comparison, in the corresponding f
1 

-approxima­

tion there is no uniqueness and the Hobby-Rice theorem [3] does not hold; on the 

other hand, theorem 1.1 does not extend to the continuous 1
1 

-approximation in 

such generality. An example is given to prove this last point. 

In section 4 we consider the case where X c I and arrive at a discrete 

analogue to Micchelli's result. Finally, we treat the case of spline f
1 

-approxi­

mation and show, that the unique set of "l -best" interpolation points, obtained 
1 

from the l 1-approximation of a certain perfect spline, provide a best l 1-approx-

irnation for every function in the corresponding convexity cone. 

The conditions given in section 2 for the invariance of the "best .t
1 

points" under a change in the approximated function may at times prove to be 

quite restrictive, especially when X represents a discretization of some connected 

k 
domain in R, k > 1, Nevertheless, it has been noted in practical calculations 

with cross products of B-splines that the interpolation points ~1 , ... , ~m' 

determined by best f 1-approximation to a function f, were also "good", though 

not "best", for other functions tested which did not satisfy the invariance condi­

tions. That is, for another function g, the error when using ~1 •... , ~m to deter­

mine the approximant by interpolation, was of the same order of magnitude as the 

error obtained for the best f 1-approximation tog. This observation has insti-

gated motivation to use the f 1 -points as collocation points in the numerical 

solution of partial differential equations [8], [1]. 
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2. Invariance of l
1 

-interpolation points 

Before stating and proving our theorem we recall the following character­

ization theorem for best l
1
- approximations (see, e.g.,[7]). With the notation 

(2 .1) 

we have 

Theorem 2.1 

sgn {x} := { ~ 
L1 

x>O 

x=O 

x<O 

v(a*;·) is a best l 1-approximation to f(·) if and only if 

n 
(2.2) I E w.v(a;xj)sgn{v(a*;x.)-f(x.)} 

j=l J J J 

for all a is Rm. 

Our theorem follows. 

Theorem 2.2 

Let f and g be two given data functions on X. Let a* and ~l' ... , ~m 

be so constructed so that v(a*;•) is a best £1-approximation to f on X and (1.4) 

- (1.5) hold. Let a be determined so that v(~;·) interpolates g(·) at ~1 , ••• ,~. 
m 

If 
~ (i) Z(g;a) ~ Z(f;a*) 

(ii) ~ cr is {-1,1} such that for any j, 1 < j .::_ n, either 

... ' 

. . . , [

~1,· •·,~m,f] 
= cr sgn {det } 

~l ' • • • '~ , X . m J 

or 

I 

l 
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[ 
~1' 

det ~l' 

... , 

... , = o, 

then v(;; •) is a best l 1-approximation to g. 

Proof 

The characterization (2.2) holds for f with a*. We want to show that 

~ it holds for g with a. 

Define a function~ on X by 

(2.3) 

Then, by assumption (i), 

" Z(f;a*) • Z(g;~). 

" 

xj E Z(g;~') 

otherwise 

We claim that (2.2) holds with f replacing f. To show this we need consider only 

xj's which satisfy 

For each such xj and any a 
m 

ER ' the term wj I v(a;xj) I is added to the right hand 

side of (2.2) and the term wjv(a;xj) or -wjv(a;xj) is eliminated from the left 

" hand sum. Thus, since the inequality (2.2) holds for f, it must also hold for f: 
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(2.4) 

m for all a ER • 

Now, v(;;•) interpolates g(•) at exactly the same points as v(a*;•) 
I\ 

interpolates f(•), and 

A rl' ... , <Pm, :Ji {$1' 
... , $m, s l (2. 5) sgn{det = asgn{det 

~ l' ... , ~m' ~l' ... , ~m' xj 

j = 1, •.• ' n . 

But the errors of interpolation can be written as 

t' ... , 'm' g] -det 1 

~1' ... , ~m' xj 
v(~;xj)-g(xj) = rl' ... ' +m] det ~l' ... ' ~m 1 ~ j ~ n 

A r, ... ' <Pm ' f ] -det 1 

A ~l' ... , ~m, xj 
v(a*;xj )-f (xj) = 

<P ' ... , $m 
det[ 

1 

~m 1 ~1' 
... , 

} 

The determinant in the two denominators is the same (and is nonzero), 

and (2.5) now yields that 

(2. 6) 
. I\ 

= asgn{v(a*;xj)-f(xj)} j = 1, ••. ,n. 
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Thus we obtain, inserting (2.6) into (2.4), 

n . 
I E wjv(a;xj)sgn{v(~;x.)-g(xj)}I S 
j~l J 

for all a e: Rm 

and by theorem 2.1, this proves the desired conclusion. 

Q. E. D. 

3. The continuous L1-approximation 

For purpose of comparison we now consider the case for L
1
-approximation 

on an interval I := [0,1], say. Let~ , •.• , ~ and f be continuous on I. With 
l m 

a uniform weight function, the problem is to find an a= a* which solves the mini­

mization problem 

(3.l) 

(3.2) 

l 
min {f lv(a;x)-f(x)ldx} = 

l J lv(a*;x)-f(x)ldx. 
a 0 0 

A characterization for a* is given by (see, e.g. [7]) 

l . f v(a;x)sgn{v(a*;x)-f(x)}dxj ~ J lv(a;x)ldx 
o Z(f;a*) 

m for all a e: R 

with Z(f;a*) defined as in (1.3), I replacing X. 
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A general theorem, relevant here, is due to Hobby and Rice [3] 

Theorem 3.1 [3] 

For any set of functions¢> , .•. , ; , linearly independent in L [0,1], 
l m l 

there exist points 

O = ~ O < ~ l < • • • < ~ < ~r+ 1 = l r ~ m 

such that 

(3.3) i = 1, ••• , m. 

Now, if¢>, ••• , ¢> and fare such that (i) r = m, (ii) interpolation 
l m 

to f on 
m 

{~i}i=l is possible and (iii) the error of interpolation changes sign on 
m 

{~i}i=l and only there, then by (3.2) we have a best L1-approximation. Such a 

result is proved in [4] for weak Chebyshev systems, and we state it below. 

Recall that the set of linearly independent continuous functions 

{¢>, ••• , ¢>} is called a weak Chebys~ev system on (0,1) provided that for any 
1 m 

0 < X < ••• < X < 1 , 
1 m 

(3.4) 
[ 

4> ' 
det 1 

X ' 
1 

.. ' 
... , 

The subspace S =span{¢>, ••• , ¢>} is then called a weak Chebyshev subspace of 
1 m 

c[0,1], dimS = m. If the determinants in (3.4) are all strictly positive, then 



the set is called a Chebyshev system. Also, denote by K the class of all con­
e 

tinuous functions in the convexity cone ot" {q, , ••. , q, }, i.e., all continuous 
1 m 

functions f for which, either with h :=for with h := -f 

... ' 
(3.5) ... , 

for all O < x
1 

< ••• < xm+l < 1. Finally, let 

F[x, 
1 

... , X ] 
m 

: = { (f (x ) , ••• , f (x ) ) ; f EK } 
1 m C 

for every O < x < ••• < x < 1 and let d[x, ... , x J be the dimension of the 
1 m 1 m 

m smallest linear subspace of R containing F[x
1

, ••. , xm]. 

Theorem 3.2 [4] 

9 

Suppose S = span{q,
1

, .•• , q,m} is a weak Chebyshev subspace of dimension 

m of C[0,1], and for every O < x < 
1 

< x < 1, d[x, ..• , x J = m. Then every 
m 1 m 

f EK has a unique best L -approximation by elements of S. Furthermore, we have 
C 1 

r =min (3.3) and the best 1
1
-approximation v(a*;•) to f(•) is determined by the 

condition that it interpolates fat~ , 
1 

... , 

Note that~, ••• , ~ do not depend on f. When passing to the discrete 
1 m 

!-approximation we do not have uniqueness, and the corresponding version of (3.3) 
1 

does not hold any more (i.e., the left hand side of (2.2) cannot usually be made equal 

to 0). Nevertheless we obtain, in the next section, corresponding results about 

invariance of the interpolation points, using theorem 2.2. On the other hand, we 

show now by means of an example, that theorem 1.1 cannot be stated in such generality 
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for the continuous½_ -approximation. 

Example 

Let <j>i(x) := 

I := [-1, l]. Then <I>, 
1 

2i 
X ' 

... , 
2m+l i = 1, ••• ,man~ f(x) := x be defined on 

<I> are linearly independent over I. 
m 

It is clearly 

seen from (3.2) that a best L -approximation is provided here by a*= O. Now, 
1 

T let S = (S, ••• , S) provide another best L -approximation to f. Then, for 
1 m 1 

each x € I (see [7]), 

Therefore, we must have 

(3.6) 

[v(S;x)-f(x)][v(a*;x)-f(x)] ~ O. 

v(a;x) ~ f(x) 

v(a;x) ~ f (x) 

X € (Q,l] 

X € [-1,0). 

Assume, without loss of generality, that v(S;x) ~ 0 for x in some neighborhood 

of O (note that v(S;x) is symmetric around x = O). Then, if a i 0, we get that 

there exists€> 0 such that 

v(a;x) > 0 

But, by the choice off we then have that there exists o > 0 such that 

v(S;x) > f(x) x € (-o,o) - {o} • 
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This contradicts (3.6); hence a*= 0 provides the unique best L
1
-approximation 

here. Now, v(a*;•) = 0 interpolates f(•) at only one point,~ = O, for any posi-
1 

tive integer m. 

4. Discrete l 1-approximation in one dimension 

We restrict ourselves here to X c I and use theorem 2.2 to obtain re­

sults analogous to part of theorem 3.2 for the discrete l -approximation. 

Let 

(4. 1) 

A= 

cf> (x ) 
1 1 

cf> (x ) 
m 1 

cf> (x ) 
1 n 

1 

We say that the set {cf>, ••• , cf>} forms a weak Chebyshev system on X if rank(A)=m 
1 m 

and every m by m submatrix of A has a nonnegative determinant. If all m by m de-

terminants are strictly positive then we have a Chebyshev system. A function f, 

defined on X, is said to belong to the convexity cone of {cf> , , .• , cf>} if either 
1 mil 

for b:= for for h:= -f we have that for all x < < x {x} c X, 1 • . • m+l' i 

(4. 2) 

X , 
1 

?:': 0 • 

We have the following consequence of theorem 2.2. 

i=l 
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Corollary 4.1 

Let f and g both belong to the convexity cone of the set of m linearly 

independent functions ~1, ••• , ~m on X. With a* and~ defined as in theorem 2.2, 

assume 

(4. 3) 

Then v(~;•) is a best l1-approximation tog. 

Proof 

Condition (i) of theorem 2.2 is assumed here. Condition (ii) follows 

from the definition of the convexity cone. Thus theorem 2.2 is applicable and 

the conclusion follows. 

Q. E. D. 

Note that we do not assume above that the functions ~l, ••• , ~ 
m 

form a weak Chebyshev system; only that they are linearly independent on X. 

From corollary 4.1 it is clear that if we want to find a set of points 

{~1, ••• , ~ } c x which would be invariant for all functions in the convexity 
m 

cone on X, we have to find a function fin the convexity cone with a minimal set 

of interpolation points (which always includes F;1, ••• , F; ) • If {~1, ••• , ~ , f}• m m 

is a Chebyshev system on X, then f is such a desired function, since then 

Z(f;a*) 

But even the requirement that ~l, • • •, ~m form a weak Chebyshev system on X 

does not guarantee the existence of such an f. In particular, for spline 



13 

functions of order k: 

(4. 4) 4>i (x) :• 
i-1 

X 
k-1 

i=l, ... ,k; 4>k+/x) :• (x--ri4- i=l, ... ,v 

with m•k+v and O<-r1< ••• <\, <1, where (x)+ :::a ½(x-+lxl) and X c I :•[O,l], 

there is no function f such that {4> 1, ••• , 4> , f} is a Chebyshev system if Xis 
rn 

dense enough in I. Nevertheless we have for splines 

Corollary 4.2 

Let f be the perfect spline 

(4.5) 

and let ~1, ••• , ~ be obtained as interpolation points of the best discrete 
m 

£1-approximation to f by spline functions defined in (4.4), which satisfies 

(1.4) - (1.5). Then for any function in the convexity cone of {4> 1 , ••• , 4>} 
rn 

on X, interpolation on ~1, ••• , ~ provides a best spline l1-approximation. 
m 

Proof 

(k) 
Since f ·' changes sign exactly at -r1, •.• , -r we have that f belongs 

\) 

to the convexity cone of° {4>1, .•• , 4>} defined by (4.4) (see [4]). Also, 
m 

since there cannot be more than m interpolation points to this f by any spline 
m 

v(a;x) s E ai4>i(x) [5], we have that 
i=l 

~ for any gin the convexity cone, and corresponding a which is determined by 

interpolation on ~1, ••• , ~ , 
m 

Hence corollary 4.1 applies here. 

Q. E. D. 
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