ok o e ok ek okl s ok sk sk ok o ok e e ok ok e e e ol ke ok ok ok sk ek i ol ok e sleook ok ok e ok ok

The BCPIL Proagrammihg Manual

BY TWM 75=-w

Martin Richards

Pdited by

J.E.L. Peck and V.5, Manis

L 3
* ¥ e 3 oe-HE 3 3 W I 6 %

*
*
%
*
*
*
*
*
*
i
%
*
*
*
*
*

i o ok s e ok ek ok ok ok ok ok e ke o koo ok e o ok ok ke ok ok ok s ok ok ok ok i ok ok o ook ko ok ok ok
Tachnical Manual 75-10

DEC®WMBER 1977
DEPARTMENT OF COMPUTER SCIENCE
THE TUNIVERSITY OF RBRITISH COLUMBIA
VANCNUVFER, BRITISH COLUMBIA V6T 1W5

“"

Introduction

BCPL 1is a programming languaqge designed primarily for non-
numerical applications such as compiler-writing and general
systems programming. T+ has heen used successfully to implement
compilers, interpreters, toxt editors, gam= playing programs and
operating svstems, Th= DBCPY. compilar is written in RCPL and
runs on sevaral machines including +the IBM 370/168 at the
Mniversity of Britishk Columhia,

Some of the distinguishing features of BCPIL are:

The syntax is rich, allowing a variety of wavs to
write conditional branches, 1loops, and subroutine
Adefinitions. This allows one to write quite readable
programs,

The basic data ooject is a word (32 bits on the
370, 16 hi*ts on many minicomputers) with no particular
disposition as to type. A word may bhe treated as a
bit-pattern, a number, a subroutine entry or a label.
Neither the compiler nor the run-time system makes any
attempt to enforce tyve restrictions. In this respect
BCPL has bo*h the flexibility and nitfalls of machine
langnage.

Manipulation of npnointars and vectors is simple
and straightforward,

All suhroutines mav he called recursivelv,

This wmanual is not intand=2d as a primar; the constructs of
the language Are presented with scant motivation ard few
examples., For a more tutorial presentation ser the RCPL Primer
(Dept., of Computer Science, UBCY. To nse BCPI effectively one
must have a good understandinag of how the machins works and he
familier with 1ts operating systen, To tbe axperienced and
disciplined programmer i+t is a powerful and anseful language, bhut
there are few provisions for *he protection of raive users.

The main hodv of this manual describes the "officialv
standard subset of 3CPL which will be supported at most BCPL
irstallation=, Many implamentations nrovids extansions to the
lanquage and a summary of the w»xtensions available on the 370
implementation c¢an bhe found in Appendices D and F., Users are
stronqly recommended +o remain within the standard subset unless
there are exceptionally strong reasons for not doing so.

e e s e e e e 4 e e e i e

The overall lavout and organisation of this manual is based
on a manual written by J."H.Morris of the TlUniversity of
California, Berkelev, which itself was based on a1 well-written
memorandum by F.M,.Canaday aad D.M,Ritchi> of Rell Telaphone

The BCPL Programming Mannal ‘ Pagqe 1

Laboratories,

The initial desiqgn and implementation of RCPL was done on
CTSS at Project MAC in 1967 hy M, Richards and since then the
lanquaqe has 1developed and been transfarced to many machines
around the world.

Ar 0S machine code librarv was implemented for the 370 by
J.K. M. Moody and manvy of the language extensions for the 370 were
implementead with the assistance of H.C.M.Meekings. Many of the
extensions were first designed and implemented by J.L.Dawsone.

The lanquage desiqn was stronqglv influenced by the author's
sxperience with CPL, This lanquaqge is described by D.¥,.B3arron
et al. in "™h~ Main Featur=s of CPL", The Computer Journal,
Vol. 6, p.134,

A numher of extensions to BCPL have been made over the last
few vears. These =2xtensions, which are found in a number of
implementations, are flagg2d in this manual by placing a sharp
(#) to the riqght of the toxt.

The MTS adaption . of BCPL is +the work of V,S.Manis and
M.DuMont at+ "BC, Vancouver, and the MTS machire code librarv 1is
patterned after the NS version, Som~ extended features of the
language and additioral lihrarv routines available only in the
MTS version are included in this revisad document but are
everywhers identified as belonqging to BCPL-V. Users are warned
that wuse of such features reduces portability of programs. At
npc, further work on BCPL has heen done by John Pecky = Kenny
Worq, Stephen Ma, Ivor Ladi, Stephenr Rand, Grant Weddell, No=l
Kalicheran, Davil Lowe, Navid Mielke, Rill Wa2bb and others.

Modifications made at UBC are denoted in ‘this manual by a
colon (3) to +the right of tho text, A stick (|) in the right
margin indicates that the languag~ featur2 is availahle in a
number of other implementations, but perhaps in a different
form. ' B

One of RCPL's main goals i3 portahbility. For this reason,
the compiler c¢an produc= an intarmediate cod2 which is the
lanquage of a hvypothetical computer; a translator from this
intermediate lanqguage to a specific machine lanquage 1is
relatively easy to construct, Interested readers are raferred
to "The FEssence of Computer Secience®, by J.F.L. Peck , TIRC
Deapartment of Computer Science TM 75-7.

, A number of BCPL compilors axist at UBC, including one on a
32K Nova running RDOS a*t Flectrical Fnqgineering; one on a 56K
word PDP-11/40 running MNIX at Animal Resource Ecology:; and

= I W

W I I e e

The RCPL Programmirqg Manual Page 2

(soon) one nn a 32X word Hewlett-Packard 21MX running RTE-II at
Computer Scienc=2. ¥For iletails, the readar is referred ¢to the
appropriate uwser's manunal,

Part T

An overview of BCPL

[———— e
e - —— — —

m™his part is being revised.

Part II

Th2 RCPL Language and Portable Library

po e —
SR e ———

At the ontarmost level, a BCPL program consists of a

sequence of declarations. To understand the meaning of a
proaram, it 1is necessary to understand the meaning of the more
basic constructs of the language from which it is made, We

therefore choose *to describe the lanquaqge from the inside out
starting with one of the most basic constructs, namely the

The BCPL Programming Manual Page 3

telement'.

Flement*s

<oloamant> 4= <identifier> | <number> |
<string constant |
{charactar coastant> |

TRUFE 4 FALSE |
2

An <identifiar> consists of a sejuence of letters, diqgits,
points, and underlines, the first character of which mus* be a
letter.

In sensible environments, the use of lower-case lettars in
ideptifiars is permitted (ard encouriged!), Case is significant
in identifiers, but n»nt in system words. In other words, the
idertifiers 'ront', *'foo', ard 'Foo' ar= {ifferent, while the
system words !'TRIIE!Y 3nd "true' are the same,

Examples of Jdentiflers are: GET3YTE, P1, BYTES_PRR_CWLL,
hut not 1P (does not heqgin with a letter) or GFT BYTE (contAains
A space) . (Prcause of the use of points to demarcate sactions,
an erroneous identifier beginring with a point will caus=e a
fatal compilation =rror.)

A <numb2r> is either an integer consisting of a sequence of
decimal diaits or an octal constant consisting of the sharp *#°
followed by octal digits, Yumbars may also he written in binary
or hexadecimal, bv preceding them with the warning sequences
'4R? and '#y', respec*tivelyv, For consistancy, the warning
sequence '#0' is =2quivalent to "#!',

Fxamples of numbers Aare

255, 0, #377
£3101001, #0477, #Y3IFACE

The raserved wprids TRYE and FALSE denote -1 and O
respectively and aro used *o rapresent the two trunth values.

A <strina ~sonstantd> consists of up +o 255 (on the 370)
characters enclosed in string guotes ("). The 1internal
character s=>* is ERBCDIC (on *+he 370). The charactzr " may Dbe
represented only hy +he pair *" and tha character * can only bhe
represent~d by ths paitr *#%, Other special characters may be
represented as follows:

*N is n=2wline,

¥ 15 horizontail tabh,

*¥*S is space (also represented by itself),
*C is carriaqe return,

*F is escane,

¥R is backspace,

T % T R

3% 2= ®

The BCPL Programmirg Manual Page 4

*P 15 newnaqge,
*¥nn 1is +the character whose hexadecimal
coi» is nn,

Within a string, a sequence consisting of an asterisk, some
number of spaces, nnowlines, and +*abs, and another asterisk 1is
completely 1ianored, This permits a string constant to extend
over a numher of lines, For example, we may wWrite

NTUTS STRING *
contains newlines
* AND SPACRS"

which is exac+ly ~muivalent to

"THTS STRTING CONTAINS NEWLINES AND SPACESM

Fxample strings are "“*NEND OF TRST%N" and "THIS IS 2
NUOTE*®M"M,

The machine ropresentation of a string is the address of
the region of store where the 1length and characters of the
string are packad, The fetching and storing of characters in
strings may be don2 using the machine iapendant libraryvy routines
GFTRYTE and PUTBY™%, or by *he byte operator '2°',

A <character constant> consists of 31 single character
nnclosed in apostronhes ('). The apostrophe character ' can be
represent2d in a character constant only by the pair *!, Other
escape conventions are the same as for a s*ring constant, except
for '*v', A character constant is right Hustified in a word,
Thus L = 193 {for tha 370). Fxamplas of character constants
are lAl' l(}l' I*IQ' PxN?' Aand UL

The olement '?' mav be used in any context 1in which a
variable is vermitted, ? vyields no particular value, and is
thus nseful for anch purposes as leaving variables
uninitialised, or filling a "hole"™ 1in a parameter list to a
routine,

—— e e —

Recanse an ident+ifier has no type information associated
with it, the tyn2 of an =l=2ment (and hence an expression) is
assumad to match the tvpe reguired by its context.

All 2xpressions are listed bhelow. EB1, %2 and B3 represent
arbitrarv expressions a2xca2pt 4s noted in the descriptions which
follow the 1list, and XN, K1 and X2 represant constant
expressions (whose values can be determined 1t compile time; see
the section on Constant Exnressions).

3 e e Tk I W W I I ok W T R

..

£ A

The BCPL Programming Manual

Page 5

primary <element>
(*1)
fn call r1()
E1(F2,%3,...)
addressing F1 ' FR2 subscripting
dEA1 address generaton
1R . indirection
F1 % E2 hy+te selection
arithmetic E1 * E2
1 / R2
F1 REM E2 inteqer remainier
F1 ¢+ E2
+ B
F1 - ®2
- "1
ARS F1
relational £l = F?2
F1 ~= F? not egual
FY ¢ ®2
m1 <= E?
1 > E?
1 »= ®2
shift 1 << E2 1 shift (logical) F2 bits
E1 >> F2 r shif+ (logical) R2 bits
(E2 2 0)
logical - M1 not (complement)
F1 & F2 and
E1 | E2 inclusive or
F1 7OV F2 bitwise aquivalence
1 NEQV F2 bhitwisc hot-eguivalence

conditional F1 =-> E2,
table

VALOF

(exclusive or)

TABLF K0O,K1,K2,...

VALOF <command>

The relative binding powar of the opesrators is as follows,

(highest, most binding)

nnction call
3

)

£
!
B
® PEM

.\s‘

+
relationals
shifts

(1]

The DBCPL Programming Manual Page 6

-4

EQV NEQV

->

TABLF
(lowest, least hinding) VALOPR

Operators of equal binding power associate to the left,
For exampnle,

¥+ Y ~-2
is equivalent to
(X = ¥y = 32

In order that ¢the rule allowing the omission of most
semicolons shonld work properly, a dvadic operator mavy not bhe
the first symbol opr a line.

The function c¢all is descrihed in the section on function
defiritions, and +he VALOF expression 1is described with the
RFSULTIS command,

A powerful pair of operators in BCPL are those which allow
one to generate and use addresses, An address may be
manipulated uwsing integer arithmetic andi is indistinquishable
from an integer until it is used ir a context which requires an
address, If the value of a variable X is the address of a word
in storage, then X+1 is the address of the next wvword.

If V is a variable, then associated with Vv is a single word
of memory, which is called a cell, The content of the cell is
called the value nf Vv and the addAress of the cell is called the
address nf V,

An adiress may be used by applying the indirection operator
('Y The expression

'E1

has, as value, the content of *the ¢ell vhose address is the
value of the expression E1. (On the 370, only the low order 22
hits of E1 are used.)

An address may be generated by means of the operator 9,
The expression

The RCPL Proqgramming Manual Page 7

aF1

is only valid if =1 is one of th= following.
(1) An idantifisr (not declarni bv a manifest
declaration), in which case 2V is *he aidress of V.
(2) A subscripnted expression, in which case the value
of PE1!E2 is F1+E2.
(3) An indirection expression, in which case the value
of 2'EV1 is n1,

Case (1 is selfra2xplanatory. Case, (2) 1s a consequence of
the way vectors are defined in BCPL. A vector of size n is a
set of n + 1 contiquous words in memorv, numbered 0, 1, 2, ¢es,
n, as shown in Figunre 8, ™he vector is identified by the
address of word 0. IJf V is an identifier associated with a
vector, then the value of V is the address of word 0 of the
vector, '

r h
| r——————— 1 = v {
i Voo -——+ > | I 0 [
[b e o i |
| | |]
| Lo d 1 |
| —————— (
| [l [
I bassmea s o 1. i
[N |
I | ! |
[tem— 4 q l
[|
| Figure 8 == A VYector with n Elements [
L J

|
!
|
|
i
|
I

The value of the expression
VIFE1

is the «content of c¢ell numbar %1 of vector V, as one would
expect. The address of this cell 'is the value of

vV + E1

hence
D(VIEYY = Vv + R1

This relation is true whether or not the expression
VIF1

happens to be valid, and wheth=r or not V is an identifier.

The RBCPL Proaramming Mannal Page 8

Case (Y is a consequence of the fact that the operators @
and ' are irverse,

m"he interpretation of
'E1

depends on context as follows:
(1) If it appears as the left-hand side of an
assignment statement, e.q.,
IRl = ER2
F1 is evaluated to produce the addrass of a cell and
E2 is stcred in it,
(2) A('%1) = F1 as noted above.
(3 Tn any other context FE1 1is evaluated and the
contant of that value, +*reated as an address, is
taken,

Thus, ! forcas one more content-taking than is normally
demanded by the context,

As a summarising example, consider the four variables A, B,
¢ and D with initial values aC, 3D, 5 and 7, respectively,
Thon, after the assignment

A =8
their values will be 2D, 2D, §, 7. If, instead, the assignment

A := 'R

had been axecuted, then the values would have bheen 7, 3D, S5, 7.
And if the assignmant

'A := B

had been executed, then the values would have been #C, @D, aD,
7. Note that

DA := B

is not meaningful, since it would call for changing the address
associated with A, ard tha%t association is permanent,

The operator ¥ bhas the same priority as !, and allows for
the selection or assignment of a byvyte in a string (or vector).
An example of this is

®(LFT S = “ABCDEF"
S % 1.2= 8% 5
WRTTES (S) %)

which would writes +he characters EBCDEF. Thus, the effect is
the same as

€0 9 g9 G0 S92 =% ap o4 °0 3¢

The BCPL Programming Manual Page 9

$(LET S = "ABCDEF™
POTBYTR (S, 1, GETRYTE(S, 5))
WRITFS (S) 3B)

in which the ©bprocedures PUTBYTE and GETBYTE are library
procedures discuss=2d in the description of the portable library.

The arithmetic operators *, /, REM, +, - and ABS (see
appendix D) act on 32 hit ‘quantities (on the 370) interpreted as
sigred integers.

The operators * ard / Jdenot=2 intzger multiplication and
division. The operator RFM vields the inta2gér remainder after
dividing the left hand overand bv the right hand one. If bhoth
operands are positive the result will be positive, it is
otherwise implementation depandent.

The operators + and - may be used in 2ither a monadic or
dyadic context and1 verform the approvriate integer arithmetic
operations. ‘ '

On many machines in which two's complement 1s used, the
relation

A= (A /B) 3 + A RUM B

always holds, but 1if B is n=2gative then A REM B is negative
(number theorists may well shuider).

The treatmen* of arithmetic overflow is undefined.
Relations
A relational operator compares the integer wvalues of its

two operands and vielis a truth-value (TRUET or FALSE) as result.
The operators are as follows

eaqual,

~= not equal,

< l=»ss than,

<= less than or =~qunal,

> greater than,

>= ‘gqreater than or equal.

The operators = and == make bitwisz2 comparisons of their
operands and so may be nsed to determine the equality of values
reqardless of th= kind of objects thev reapresent., The other
tests are for =signed arithmetic comparisons,

An extended relational expression such as

48 44 88 g A 4

The BCPL Programming Manual Page 10

YAY &= CH <= *7"
is ecquivalent to
'A* <= CH & CH <= '2?"

An examnle of an ~xtended relational expression in use \is
in

WHILFE *'0*' <= CH <= '9' DO
SUM = SHY * 10 &+ CH -~ %()°*

Shift operators

In the expression RF1 << E2 (%1 >> E2), E2 must evaluate to
vield a non-neqative integer. The value is E1, taken as a bit-
pattern, logically shifted 1l2ft (or riqht) by E2 places.
Vacated positions are filled with 0 bits.

Syntactically, the shift operators have lower precedence on
the left than relational operators bhut greater precedence on the
right. Thus, for example,

A< 10 = 14
is eguivalent to

(ALL10Y = 14

14 = A << 10
is equivalent to

{14=3) << 10

The offect of a logical operator depends on context. There
are *wo loaical contexts: *truth-value' and *bite, The truth-
value context 2xists whenever the result of the expression will
he interpreted immediately as true or false., 1In this case each
subey¥pression is interprnerted, from left to right, in truth-value
context until +h2 truth or falsehood of the expression 1is
determined, Then evaluation stops. Thus, 1in a truth-value
context, the evalunation of

The BCPL Programminag Manual Paqe 11

F1 | 2 & F3

is as follows.

The expressior T1 is evalnated, ard 1if true the whole
expression 1is tru», otherwise ®2 ig evaluat>d, and if false the
whole expression is false, otherwise 3 1is eavaluated, and if
false +he whole expression 1is true, otherwise the whole
expression is false., Lovers of sida effac*s should beware, An

example of a truth value context is in

WHTLE CH = '*S' | CH = Y*N' DO
CH := RDCH()
In a 'bit' <context, the operator -~ causes bit-py-bit
complementation of 1its operani. The othar operators combine
their operands hit-hy-hit according to the tahla below. An

example of a bit context is in CH := WORD & 2565

| ik i3 k|

' ? | OPERATOP |

| ONPERANDS | |

| | 5 | NFQV EOV |

—=== e 7 - — |

| 0 0 | 0 n n /| I

| | |

| 0 1 1 n 1 1 0 |

| | |

| 1 N | 0 1 1 0 |

| | |

| 1 1 | 1 1] 1 |

| | |

TR F T S N P NS J
The logical nperators & and | mav alsn be reoresented by /|
and |/ respectively (1o7icians mayv pra2fer this). The operators

EQV and NFEOV mav be replaced by == and >< respactively
(logicians mav wince).

The assignment operator == may b2 preced2d by apy
arithmetic, relational, shift, or logical opesrator.

The meaning of
F1 <opd>:= 12

is the same as that of:

F1 E1 <op> R?

cxcept that manv implementations will often evaluate F1 only
once, resnl+*ing 1in increased efficiency. Side effects mav or

60 B2 g9 ¢

E T B R TN R T

The BCPL Proqramming Manual Page 12

many not work as intended,
The expression
1 => R2, F3
is evaluated by =2valuating E1 in truth-value context, 9 S 1
vields true, then the expression has value E2, otherwise E3. F2

and T3 are never hoth 2valuated,

An example use of a conditional operator is in

P oi= CH = 'N' => 1%\,
CH = 'P1 => 1xpy,
CH = 'm0 > Vi,
CH = 'G¢ => 1%59,
CH

Table

The value 0f the *table exprassinn
“A3LE KO, K1, K2, uu.

is the address »f a static vector of cells initialised to the
values of kK0, K1, %2, ..., which must be constant expressions,

An exanple of 3 table i5 in

ERCH(N ! (TARLE *0%, »yv, Y24, ¥3¢,
v, v5e g e
'], YQr wpv 4By,
TCcY, DY, YEY 1 PR1Y)

Not~ a possihle ambiquitv: if P is a routine, then P(3,
TARLE 1, 4, 2) is is a call with two param2tars. Other meanings
mav be obtain~d bv using parentheses,

A constant expression 1s any expression involving only
nunhers, character constants, names declared by manifest
declaration, TRUE, FALSF, and arithmetic, relational, shift,
loaical, and conditional opnerators (for ABRS see Appendix %)« An
exanple of a constant »xpression is 'AY - Q¢

Mary BCPL compilers will optimise conditional expressions
and conditional commanAds in which the condition is a constant
expression. This is gquite2 convenicent, as for example, in the
eypression

E R T 2

The BCPL Programming Manual Page 13

CODE := PDPA =-> SIXRIT,
IBM370 -> EBCDIC,
11102 -> FIELDATA,
ASCII

Tf +he manifest constants PDPR, IBM370, and U1108 are defined
appropriately, the above commandi will compile into a simple
assignment command. Not+te tha+ no semantic difference occurs
with this optimisation (although some incorrect programs may
run--those with undefined identifiers 1in the parts *hat are
optimised out).

Floating point arithmetic

A floating-point constant may have one of +he following
forms:

i. -iF:k
1.3
iFfk

whore 1 and j are unsignad integers and k is a (possiblv signed)
integer, Tke valua is reoresented on tha 370 as a 32 bit
floatirg-noint number. Note that .5 is not a floating-point
constant--the point is taken as meaning the end of the proqram
seqment, and thus such a "constant" has A disastrous =2ff~ct upon
compilation.

The arithmn*ic and relational operators for floating-point
quantities are as follows:

% 4/
#+ #- #ARS
= # = #<= #>= #< #>

They have the same precedence as the corresponding integer
operators. There are, alsn, two monadic operators FIX and FLOAT
for conversinng between integers and floating-point numbers,
They have the =mame precadence as d.

The extonsiorn involving floating point may not. be
implemented on som~ minicomputers, due to +he short word length.
Observe that since RCPL does no type checking, the expression
1.0+#2.,0 may not vield the result exnacted when 1.0 #+¢ 2.0 was
intended,

Field selectors
Field selectors 1llow quantities smaller than a whole word
to be accessed with reasonable convenience and 2fficiency. A
selector is applied to a pointer using the operator OF (or ::2).
I+ has three <componants: the size, the shift and the offset.
The size is the numbher of hits in the field, the shift is the
nurber of bits between the right-most bit of the field and the

I o3k W W g B o W & I 3%

FHHE R W R W T o I A e o I o3 WS W e TR R A 3t I o o FEos W i i

The RCPL Programming Manual Page 14

right hand 2nd of the word containing it, ani the offset is the
position of the word containing the field relative to the
pointer.

The precedenc> of OF is the same as that of the
suhscription oncrator(!), but its left operand (the selector)
must be a constant expression. A convenient way to specify a
selector is to use the operator 5LCT whose syntax is as follows:

<constant expression> :=
SLCT™ <size>:<shift>:<offset> |
SLCT <Ksized>:<shift> |
SLCT <siza>

where <sized>, <shift> and <offset> are constant expressions.
Unless explicitly specified the shift and offset are assumed to
be zero bv default. A size of zero indicates that the field
axtends to the left hand end of the word.

Selectors are best dafined using manifest declarations,
.04, MANTFEST %(FLAGS = SLCT 7:6:2 %).

A selector application may be used on *the left hand side of
an ssignment and in anv other context where an expression may
be used, except as the operand of a#. 1In the assignment

FOv P 2= E

the appropriate number of bits from the right hand end of E are
assigned to *he specified field. When

F OF P

is evaluated in anv other context, the specified field is
axtracted and shifted so as to appear at the right hand end of
the result,

On the 370, fields corresponding to half-words and bhvytes
are treat~d efficientlv. Field selectors ares an exception ¢to
the earlier conments on the machine dependence of the
extensions. Judicious use of field selectors rather than inline
shifting (e.g9., FLAGS OF WORD rather than (WRRD ' 2) >> 6 &
127, using the Adeclaration of FLAGS given above) can
suhstantially decrease problems in transferring to a machine
with a different word size, or in rearranging data structures,
It will also increasa readability and may improve the chances
for the compiler to optinise,

Section brackets
Blocks, compound commands and some other syntactic
constructions us2 the symbols %(and $) which are called opening
arnd closing section hrackets,

2 3E I ot FE SE e 35 3 I I I 3k 2 3¢ W o3p W W IF 3 I 3k I gp % 2 W I I I N W T R R g W R

rne BCPL ProgrAamming Manual Page 15

A section bracket may he tagged with a sequence of lettars,
digits and underlines (the same chiractars as are usel in
identifiers). A seoction bracket immediately followed by a spdce
or newline is, in effect, taaqqed with nnll,

An opening soction bracka2t can b> matchad only by an
identically taqged <losing hracket, When the compiler finds a
closing section bracket with a non-null tagq, if the nearest
opening bracket (smallest cunrrently open section) does not
match, that section 1is closed and the process repeats until a
matching opening section hracket is fonund, While the use of
tagged command brackets is good programming practice, the use of
the multiple bracke*+ closure feature is not recommended.

It is impossible to write sections which are ‘overlapping
(rot nested).

An example of the use of section brackets is in

LET WPITEOCT(N, D) RE
$(TF D> 1 THEN
WRITENCT(N >> 3, D - 1)
WRCH(N 5 7 + '0%) %)

On ASCII *erminals, section bracxets mav be represented by [and

1.

Commanis

The complete set of commands is shown here, with F, E1, E2
and K dennting exnressions, C, C1 and C2 denoting commands, and
D1 and D2 denoting declarations.

routina call E(F1, E2, ...)

()
assiqgnment <left hand side list> :1= <expr list>
conditional IF © THEN C

INLESS B THEN C

TEST E THEN C1 OR C2
repetitive ABILE E DO €

TNTIL E DO C

C REPEAT

C REPEATWHILE E

C REPEATUNTIL ©

FO® N = EF1 ™0 R2 BY K DO C

FOR N = E1 TO E2 DO C
resultis RESULTIS FE
switchon SWITCHON E INTO <compound command>
transfer GOTO E ‘

PINISH

RETIRN

RREAX

LOQOD

TNDCASE

The RCPL Programming Manual Page 16

ees 3)

compound :
b s as e 2% e 3)

#{ €13
block $(D1;

Discussion of the routine call is Aefarred to the section
where function and routine declarations are described.,

The command
1 2= B2

causes the value of F2 to be stored into the cell specified by
F1, F1 must have on2 of the following forms:

(1) the identifier of a variable,

(2) a subscripted expression E3!'Fu4,

{3) an indirection expression !E3,

(4 if £1 is "3 % F4, then the rightmost byte of E2 is
stored in th=s T4-th byt~ of the vector (or string) E3.

In case (1) the <cell belonging to the identifier is
updated., Cases (2}, (), and (4) have been described earlier.

A list of assignments may be written thus:
E1' FZ' “as s p F-n s= F1' v?,' e e p Fn

where Ei and Fi are expressions., This is egquivalent to

E1 2= P1
E2 3= F?
Fn := Fn

An example of an assignment is B := TRUE, or

Cy Dy B 2= 3 "HELLOY, '€ 5

Conditional commands

IF B THEN €1
UNLESS F THEN C2
TFST B THEN C1 OR C2

Fxpression F is o2valuated in truth-value context. Command C1 is
executed if T is trne, othervwise the command C2 is executed. An
example of A conditional command is

The BCPL Proqramming Mannal Page 17

IF CH = *~' "HEN
$(B := TRUE;
CH := R®DCA() %)

FOR command

POR N E1 TO E2 BY K DN C

The N 1is +he defining occurrence of an identifier and X
must be a constant expression. This command will be described
by showing an equivalent block. |

$(LET N, t = E1, E2
UNTIL N > t NO

$(C
N := N + K %) %)

If the value of K 1is neqative the relation N > t is
replaced bvy N < +, The declaration
LFT N, t = E1, B2
declares two new cells with identifiers N and t, t being a new

identifier that does not occur in C. Note that the control
variable N is not availahle outside the scope of the command.

The command
FOR N = F1 TO E2 DO C
is equivalent to
FOR N = ®1 7™ E2 BY 1 DO C
Ap example of a FOR command is

FOR J = T+1 T0 D DO
WRCH (' *S7)

- ——

WHTILE E DO C
0

C RFEPEAT
C REPEATWHILE E
C REPEATINTTL F

The BCPL Programming Manual Page 18

Command C is execu*ted reneatedly until condition E hecones
true or false Aas implied by the ccmmand. If the condition
precedes the command (¥HILE, TNTIL) the test will be made before
each execution of C. T7Tf it follows the command (REPEATWHILF,
REPEATUNTTIL), the test will be made after 2ach execution of C,
and so C is executed a+ least once. In the case of

C REPEAT

there 1is no condition and termination must be by a transfer of
corntrol or RESULTIS command in €, C will usunally be a compound
command or block.

Within REPEA™, REPEATWHILE and REPEATUNTIL, C is taken as
short as possible, Thus, for example

IF E THFN C RFEPTWAT
is the same as

IF F THEN $(C REPEAT §)
and

F := VALOTF C REPEAT
is the same as

E :; VALOF $(C REPEAT %)
An example of a repeat command is

cn

= 3DCH ()
REDPT

ATWHILE CH = '*5?

e e e e T e e e o i Sy e e o G — —

The expression
VALOF C

where C 1is a command (usually a compound command or block), is
called a VALOTF expreassion, Tt is evaluated by executing the
commands (and declarations) in C until a RESULTIS command

RESHLTIS =
is encountered. The expression E 1is evaluated, its value

becomes the value of the VALOF expression and execution of the
commands within C c2ases,

The BCPL Programming Manual Paga 19

A VALOF axpression must contain one or more RESULTIS
commands and one must be executed, In the cise of nested VALOPF
expressions, the PESULTIS commani terminates only the innermost
VALOF expression containing it.

An example of a VALOF expression is

VALOF
$(LET CH = RDCH{()
RESULTIS *0' <= CH <= '9' -> CH - '0Y,
'A' <= CH <= 'F' =-> CH - 'A' + 10,
0

SKRITCHON commani

SWITCHON E TNTO <compound command>

where the compound command contains labels of the form
CASE <constant expressiond>:

or
DEFAUL™:

The expression T is first evaluated anil, if a case exists which
has a constant with the same value, than execution is resumed at
that label: otherwise, 1if there 1is a d=2fault 1label, then
execution is continued from there, and if there 1is not,
execution is resumed just after the end of the SWITCHON command.
A common error is to forget an ENDCASF, causing control to flow
to the next CASE,

The switch may be imnlemented as a direct switch, a
sequential search or a hinary search demending or the number and
range of case constants and thoe whim of the particular compiler
in use.

An example of a SWITCHON command is

SWITCHON CH INTO

$(CASF *'%S': CASF '%T'; CASE '*N¢;: ENDCASE
CASE '-t': NEG := TROFE
CASE '4': CH := RDCH(Q 9

Transfer of control
GOTD E
FINISH
RETURN

The BCPL Proaramming Manual Page 20

BRFEAK
LooP
ENDCASF

The command GOTO T interprets the value of R as an address, and
transfers control to that address. (However, the design of BCPL
is guch that the command GOTN % is seldom needed. Moreover, the
librarv routine LONGJUMP is often needed in those few places in
which a GO™0) command might bhe worthwhile), The command FINISH
causes an implem~ntation depm~nient termination of the entire
program; wusually it causes all currently opened files to be
closed. RETUPN causes control to return to the <caller of a
routine, BREAK causes execution to bhe resumed at the point just
after the smallest textually enclosing repetitive command. The
repetitive commands are those with the following key words:

UNTIL, WHILE, REPEAT, REPEATWHILE, REPEATUNTIL and

PORs

The command LOOP causes execution to he resumed at the
point Fjust before the end of the body of a repetitive command.
For a FOR command it is the point where the control variable is
incremented, and for the other repetitive commands it 1is where
the <condition (if any) is tested, FNDCASF causes execution to
be resumasd at+ th= point just after the smallest textually
enclosing SWITCHON command,

Ar example containing three transfers of control is

$(CYCLE
CH := BRDCH()
SWTTCHON CH INTO
$(CASE '%S1: CASE '%N's CASE '#T¢: LOOP
CASE '-': NEG := TRUE
CASFE "4': CH := RDCH()
ENDCASFE
CASE 'Z': BREAK $)
$) CYCLE REPFAT

.

—— e et s e e s —

A compound command is a sequence of commands enclosed in
section brackets.

$(€13 €23 wes)

The commands C1, C?, ... are executed in sequence. An exanmple
of a compound command is
$(B 2= TRUF
CH := RDCH{()
WHILE FOO({) DO
BRAR () $)

The BCPL Proqramming Manual Page 21

A block 1is a sequence of declarations follow2d by a
sequence of commands enclosed together in section brackets.

$(D1; D23 se63 DNy €1 C2; <vef Cu $)

The declarations "1, D2, ... and the commands C1, C2, ..o
are executed in sequence. The scope of an identifier (i.e., the
region of program wher2 the identifier is known) declared 1in a
declaration is the declaration itself (to allow Trecursive
definition), tha subsequent declarations and the commands of the
block. Notice that the scope Adoes not include earlier
declarations or extend sutside the block,

An example of a block is

$(LET A = READN() AND B = READN ()
RESULTTIS A > B => A, B §)

Observe that

LET A(N) BE TEST N > 0 THEN B(N-1) OR WRITES ("A")
LET B(N) BF TEST N > 0 THEN A(N-1) OR WRITES (*B")

is illeqal, since the identifier B is unknown in the declaration
of A; however, the (ridiculous) intent can be recovered by
changing the second ULFET to AND, thereby making it one
declaration (see helow, "Simultan=ous declarations").

The operator <>

The operator <> has a similar meaning to that of semicolon,
but is syntactically more bindinqg than DN, REPEAT, OR, etc. For
example,

IF F DO C1 <> C2
is equivalent to

IFP F DO $(C1; C2 %)

Declarations
Every identifier wused in a proaram must be declared
explicitly, There are 10 distinct declarations in BCPL:
global, manifest, static, dynamic, vector, function,
routine, formal parameter, lahel and for-loop control
variable,

LR b SE B S I I R N

The BCPL Proqgramming Manual Page 22

Nf t+hese, for-loop control variablas have been descrihed
ahove, The scon2 nf identifiers declared at the head of a block
is described in the previous section.

Globhal

A RCPL program reed not be compiled in one piece., The sole
mears of communication betwesn separately compiled segments of
program is the global vector.

Alterna*tively, programs may communicate via external
variahles, :

The declaration
GLOBAL %(Name : constant-expression $)

arsociates the identifier Name with the specified 1location 1in
the global vector., Thus Name identifies a permanently allocated
cell which mav be accassed by Name or by any other identifier
associated with the same globhal vector location.

Global declarations may be combined.
GLOBAL $(N1:K1; N2:K2; ...; Nn:Kn §)
is equivalent to

GLOBAL $(N1:K1 %)
GLOBAL $(N2:K2 %)

GLOBAL $(Nn:Kn %)
An example of a global declaration is GLOBAL $(WRCH:14 §) .

Note that in some implementations, particularly those with
strange loaders, the glcbals may not be considered consecutive
As in a vector. They are implemented instead as entries and
externals to be linked by the loader. Thus, programs which deal
with addresses of globals are implementation dependent.
Furthermore, some implementations may require extra-linqual
specificatiors of globals (e.qg., during linking). ‘

= ——— i

Globals may he replaced entirely by entries and externals,
A concept which 1is perhaps cleaner and more easily handled by
most loaders,

An entry declaration has the form

*NTRY ¥(name = string %)

and d=2fin=s the name of a routina, function or variable which is

W8 b 48 A0 se b B0 BE ae b

The BCPL Proqramming Manual Page 23

declared (or for a variable, is used and is to be stored) in
this segment. T™he string is the name by which it is known to
the loader. As A convenience, the form

ENTRY $(name %)

is permitted and means that the name used within the seqment is
the same as the name known to the loader,

An external declaration has the fornm
FXTERNAT %(name = string 3)
and defines a name of a routine, function or variable, in
another separately compiled segment (which may not even he
written in BCPL). The string is the name by which it is known
to the loader.
As A convenience, the form
EXTERNAL t(name 3)

is also permitted with the same meaning as for ENTRY.

As an example, the following segment will define a function
to be used by other segments,

ENTRY $(INVOLUTION = ®"TNVOL" §)
LET INVOLUTTON(F, X) = F(F (X))

The following program fragment is a segqment which uses the
function defined in the last examnle,

EXTFRNAL &(INVOLUTION = "INVOL"™
WRITE = "HRNUMOO1'™ %)
LET. G(T) = T%™ + T + 4

AND STAR™() BF
FOR T = 0 TO 10 DO WRITE(INVOLUTION (G, I))

Manifest

An identifier mav be associated with a constant by the
declaration

MANIFREST %(Name = constant-expression 3)

An identifier declared by a manifest declaration may only be
used in contexts where a constant would be allowable. It may
not, for 1instance, appear on the 1left hand side of an
assiagnment. Like global declarations, manifest declarations may
be combined.

D0 20 M8 gp 0 00 €% 0@ #6 N0 B0 pe w0 A0 B0 g0 Ak NB FE .4 BE BE B0 4 BU w4 20 B0 D 48 g8 S0 g8 B9 48 ed em e g9 o8

The RBCPL Programming Manual Page 24

MANIFEST $(N1=K1; N2=K2: ...; Nn=Kn %)

is equivalent to

MANIFES™ &(N1=K1 $)
MANIFRST $(N2=K2 §)

MANTFRST $(Nn=Kn %)
An example of a manifest Aeclaration is
MANIFRST % (CELL_SIZF = 32 %)

Note that <constant-expressinn> Jdoes not include <string>. For
example, MANTFES™ ¢(MSG = "HELLO" $) is illeqal.

Static

A variable may bhe declared and given an initial value by
the declaration

STATIC $(Name = constant-expression %)

The variahle that is declared is static, that is it has a
cell, in its segment, permanently allocated to it throughout the
execution of the program (even when control is not dynamically
within the scope of the declaration). Like global declaratioms,
static declarations may he combineqd,

STATIC %(N1=K1; N2=K2: ...; Nn=Kn $)
is equivalent to

STATIC &(N1=K1 §)
STATIC %(N2=K2 %)

STATIC $(Nn=Kn §)
Ar example of a static declaration is

STATIC $(CHAR_POINTFR = 0 3%)

The declaration
LFE™ N1, N2, «ee, Nn = E1, B2, .e., En

creates dynamic cells and issociates with them the identifiers
N1, N2, ..., Nn. These cells are initialised to the values of
E1, F2, ..., Fr. The space reserved for these cells is released
when ¢the bhlock in which the daclaration appears is left,

The BCPL Programming Manual Page 25

An example containing a dynamic declaration is

$(LE™ A = READN() AND B = RFADN ()
RRSULTIS A > B => A, R §)

Vector

where K is a constant expression, creates a dynamjc vector (but
not of dynamic size) by reserving K + 1 cells (K is a constant)
of contignous storaqe in the stack, plus one other cell in the
stack which is associated with the identifier N, Execution of
the declaration causes the value of N to brcome the address of
the K + 1 contiguous cells, The storage allocat=zd is released
when the block is left. An examnle of a vactor declaration 1is:
LET S ="VEC 255 . Note that L®T S1, S2 = VEC ni1, VEC n2 is not
permitted. It can, instead, be written LET $S1 = VEC N1 AND S2 =
VEC N2,

Function and routine
The declaration
LET N(P1, P2, s¢e., Pm) = E

declares a function named N with m parameters., The parentheses
are required even if m = 0. A parameter name has the same
syntax as an identifier, and its scope is the expression E. A
routine declaration is similar to a function declaration except
that 1its body 1is a command and the 2quals sign is replaced by

BF:
LE™ N(P1, P2, ..., Pm) BE C

If the declaration 1is within +the scope of a glchal
declaration for N or static declaration for N, then that cell
will be initiali'sed to the entry address ‘of the function (or
routine) before execution of the program. Thus the function mav
be accessed from any seqment if global, or from anywhere in its
own segment, if static, Otherwise, a static cell is created, is
associated with the identifier N, and 1is initialised ¢to the
entry address, ‘

The function or routine is invoked by the call
EO(F1, E2, ..., EN)

where = expression F0O evaluates to the entry address. In
particular, within the scope of the identifiar N, the function

The BCPL Proaramming Manual Page 26

or routine may be invoked by the call
H{B1; BD, exnx; EN)

provided the wvalue onof N has not been changed during the
aexecution of the proaram,

Tach value passed as a parameter is copied into a newly
created cell which 1is then associated with the corresponding
parameter name, The cells are consecutive in store and so the
argqument list behaves like an initialised dynamic vector. The
space allocated for the argument 1list is released when
evaluation of the call is complete, VWNotice that arquwents are
always passed by value; however, the value passed may, of
course, he2 an address, ©.9., UPDATE(@X) .

A function call is a call in the context of an expression,
If a function is being called, the result is the value of E, and
if a routine is being called, the result is undefined., A
routine call is a c¢all in the context of a command and may be
nsed to call eith2r a function or a routine, A routine call has
no resulft,

No Avynamic (or vector or formal) variabhle that is declared
outside the function may be referred to from within E. Thus,
the only ron-local variables permitted are those which are
declared STATIC or GLOBAL, {(This is a frequent source of error
for beaginners accustomed to more forgiving languages.)
Naturallv, manifest constants mav h2 used in any context in
which they are known.

An 2yamnle of a routine declaration is

LET WRITEOCT(N, D) RE
$(IF D > 1 THEN WRITFOCT(N > 3, D - 1)
WRCH(N & 7 + 10') §)

and an example of a call of this routine 1is WRITEOCT(N, 6).
Note tha- most BCPL implementations handle routine and function
calls efficiently; thus, you should not hesitate to construct
your program from manyv small routines or functions, (On the IBM

3707168, for example, 3CPL routine calls are about twice as fast
as those of Fortran!?!)

Label

A label mav be declarad by

Name:
A label declaration may nrecede any command or label
declaration, but mav nnt precede any other form of declaration
in the same bhlock, Exactly as in the case of a functicn or

routine, 4 label declaration crreates a statizc cell if it is not

The BCPL Programminqg Manual Page 27

within the scope of a globhal declaration of the same identifier.
The local or global c=211 is initialised b2fore a=xecution with
the address of +he point in the program labelled, so that the
command

GOTO Name

has the expected effect, which, of course, a qood programmer
should seldom use!

The scope of a label dep2nds on its context. It is the
smallest of the following regions of program:

(1) the command sequence of th=2 smallest textually

enclosing block,

{2) the body of the smallest textually enclosing VALOF

expression or routine,

(3) the body of the smallest enclosing FOR command,

Labels may be assigned to variables and passed as
parameters (dreadfnl thouqght, except with LONGJUMP!). It is, in
general, not useful for them to be declared global, but they can
be assigned to global variables (even worse, except for error
recovery via LONGJUMP),.

sing a GO™ command to transfer to a label which is
outside the current function or routine will produce undefined
(chaotic) results. Such transfers, if you insist on them, can
only be performed using the procedures LEVEL and LONGJUMP which
are described in the section on the portable library.

Any declaration of the form

LET s
may be followed by one or more Adaclarations of the form

AND e &
where any construct which may follow LET may follow AND., As far
as scope is conc2rned, such a collec*tion of declarations is
treated 1like a single declaration., This makes is possible, for
example, for two routin=2s to know each othar without recourse to
the global vector.

Miscellaneous features

e s O W —— > = e e e

It 1is possible *to-'include a file in the source text of a
program using a GET directive of the form:

The RCPL Programming Manual Page 28

GPT, “STRING"

This directive 1is rTeplaced by the text of the file whose
name is string., A get directive shonld appear on a 1line by
itself,

e - - — i St o —

The character pair // d2notes the baginning of a comment.
A1l characters from (and including) // up to but not including
the character 'newline! will he ignored by the compiler, Blank
lines are also ignored,

As a convenience, the character sequenca '{{' is treated as
a similar comment delimiter. Also, it is possible to embhed a
comment within the warning marks "/x ,,, *%*/", or "|* ... |0,
Such a comment mav appear anywhere that a space is permitted,
and may contain newline characters.

Space rharacters may be inserted freely excapt 1inside a
hasic svymbhol; a space character is required to separate
"identifiers or system words from adjoining identifiers or system
word s,

Optional symbols and synonyms
The reserved words DO and THEN are synonyms in BCPL, Most

implementations of BCPL also allow other synonyms; a list of the

synonyns for +he 3170 implementation can be found in Appendix A.

Tn ord2r to make BCPL programs easier to read and to write,
the compiler allows the syntax rules to be relaxed im certain

cases, The wordi DO (or THEN) miay be omitted whenever it is
immediately followed hy +the keyword of a command (€.g.,
RESULTIS) . Any semicolon cccuring as the last symbol of a line

may be omitted, This featurs requires that no line may begin
with a dvadic operator (se2e section 2,3). As an example, the
following two pieces are equivalent.

IF
A

I >

O DO GOTO X3
- 13

= b
"ﬂ
it &

0 GOTO X
-1

™)
> i

Programs may be compiled in more than one seqgment. A
seqment, in RCPIL, ends with a point ("."™). This is wuseful for
maintenance of large orograms such as the BCPL compiler itself.
An essential propetrty of a seqment 1is that identical global
declarations within Jdistinct segments refer to the same global
cell at run time, whereas identical static declarations within
distinct segments each vrefers to a Aistinct cell within its own

3 I N & I

The BCPL Proqgramming Manual Page 29

seqgrent., Thus the only communication between segments is via
the global cells, or externals, .

A (stupid) example of the use of segments is

GLOBAL $(START:1; GRFETING:101 %)
LET START() BE GREETING()

GLOBAL $(WRITFS:65; GREETING: 101 $)
LET GREFTING() RE WRITES ("HELLO")

L

A reasonable size for one seqment 1is about 8 pages of BCPL
source code,

Segment headings

A segmant of BCPL program may start with a directive of the
following form:

SECTTON. "name"

wvhere name is a module name acceptable ¢to the loader. It
defines the section name given to the obidject module
corresponding to the control segment of program,

Implemaentations may provide a means for «calling routines
written in other languages, In order that these may be called,
it may be necessarv to force them to be 1loaded, If such a
routine is called, the directive

NEEDS. '"namea"

may be usedl to force loading. NEEDS., directives follow the
SFCTION, directive, As an example, a seqment might begin:

SECTION, nGRAPHICSM
NFEDS. M"SIN®E®
NFEDS., "PLOT"
LET CIRCLF(R) BE ...

An object deck in another file may he required to be loaded
together with the main program (e.q. the BCPL library). The
directive

INCLUDE, "name"

may be used, INCLUDE, directives must follow the SECTION.
directive, e.qg.

SECTION, "MAINPROG"
INCLUDE, WCS: BEPLLIRM
LET START (PAR) BE ...

L L]

o8 60 20 46 e 08 20 04 oo Pe 00 00 e 3 B Wx F I I = W = = W W I W 3 I e W W W e N W N

The BCPI Programming Manual Page 30

%% this may not work **%

Tt may be desirable to pass parameters to the compiler
directly from +the program. The PARAMETER. directive may be
used *+o accomplish this, and All such directives must follow the
SECTION. directive. On MTS the PARAMETER. directive does
Aabsolutely nothing at present,

The Pup-tipma Library

This s=2ction summarises the library functions and routines
that are available, Some of these routines may be simulated
only with great difficulty on operating systems other than MTS.
These are marked in +the margin.

The input/output facilities of BCPL are quite simple, and
ire always invoked by means of function or routine calls. These
facilities are hased on the concept of character streams 1in
which newline and newpage are also characters.,

e e e o s v s ——— e —— ——

RDCH () is a function whose result is the next character from
the currently selected input strean. If the stream is
exhausted, it yields ENDSTREAMCH (=-1).

READN () is a function whose result is the next dacimal integer
from the current input stream. If the stream is exhausted,
PFADN returns 0, and the global variable TERMINATOR is set
to FENDSTREAMCII,

e — ———m e S S

WRCH (ch) will write the <character c¢ch to the <currently
selected output strean. The effect of WRCH on special
characters is as follows:

#*N - write the output buffer and gqo to a newvw line,

*P - write the output huffer and qo to a new page,

*T - go to the next tab position (no effect in
RCPL-V) ,
*S = a space,

*R - bhack space (not for printing one character
over anothery),

*C - write output buffer with carriage return, no
line feed,

¥F - write output buffer, no carriage return, no
line feed,

0% wp s ge 28 g5 w8

1The BCPL Programming Manual ; Page 31

*Xnn - write the character whose hexadecimal
representation (FBCDIC or ASCII) is nn, e€.4q., *X15
is equivalent to *N,

WRITES (s) Wwrites t+he string s to the current output stream.

WRITED(n,) writes the signed 1inteqer n to the current
output stream right qjustified in a field of width 4@ places.
If 4- 'is too small the number is written correctly using as
many characters as necessary.

WRITEZ(n, a) is as for WRITED, hut generates leading zeroes.

WRTTEF (format, a, b, J..) is a routine to output a,bh, ...
to the current output stream according to format. The
format string is copled to the stream until the end 1is
reached or the warning character '?' is encountered. The
character following the '%' defines the format of the next
value to be printed as follows:

% print Y%, '

%S print as a string,

%C print as a character, o

%N print ‘as an integer (minimum width),

%In print as an integer width n,

?0n print as an octal number of width n with

leading zeroes,)

%¥Xn vorint as a hexadecimal number of width n with

leading zeroes,

%7Zn prints as an inteqger wid*h n with leading

zeroes, where 0 < n € F (one hexadecimal digit). -
The routine takes the format and up to 11 arguments..

—— e e e — o — —

UNRDCH () 7 backspaces the current innut stream by one
character, in BCPL-V up to the last newline, Many
implementations will not permit consecutive calls of UNRDCH.

READREC (v) is a function that will read the remainder of the

MTS line (or the next line) from the current input streanm

- into - the ‘"vector v packing four rhara~+er“ per word. The

result is the numbher of characters read (if limited by

SETWINDOW the result is the negative amount). If a line of

length 0'is read,- READRFC returns 0 and !v is set to 0. 1f

the 1input stream is ~xhausted, READREC returns 0 and !v is
set to ENDRTDVAMCH

QKIPRFC() is a rouflnn which causes the remaining characters
in the current record of the currentlv s2lected input stream
20 be. 1qnored)

The BCPL ®rogramming Manual Page 32

Other output routines

- - —— > —————

NEWLINE () is a2quivalent +n WRCH('%N'),

NEWPAGF () is equivalent to WRCH('*P'),

WRITEN (n) is equivalent to WRITED(n,0).

WRITFOCT(n, 4) writes the d least significant octal digits of
the unsigned integar n to the current output streanm.

WRITEO (n) is equivalent to WRITEOCT(n, 8).

WRITFHEX (n, d) vrites the d leas* siqgnificant hexadecimal
digits of the unsigned integqer n ¢to the current output
stream,

HRITEX (n) is equivalent to WRITEHEY(n, 8).

BINWRCH (ch) writes a character as 1is, 1i.e., Wwithout

translating '*N' to newline =tc.

WRITFERFEC(v,n) writes n characters from the vector v to the
current output stream followed by a newline, The characters
in v are packed four per wori.

WRITESFG(v,n) writes n characters from the vector v to the
current output stream, The characters in v are packed four
per word.

Fnquiries

TIMFEOFDAY () is a function which yields a string of the form
"hh:mm:ss" in BCPL-V.

DATF () is a function which yields a string ot the form "yyyy
mon d4" in BCPL-V,

ENDSTREAMCH is A manifest constant (=-1) which 1is produced
by ®”DCH when the input stream is exhausted.

TIMFE () is a function whose result is the computation time in
units of about 13.3 micro-seconds on an IBM 370/168,

INPUT() is a2 function that will return with the currently
selected input stream (see SELECTINPUT),

ONTPUT () is a function that will return with the currently
selected output stream (see SELECTOUTPUT).

BATCH () is A function that returns true if ¢the program is
running in batch mode in MTS, and false otherwise.

The BCPL Programming Manual Page 33

USERID () . retnrns a string of length 4 which is the current
MTS user 1id.

STACKBASFE is a glohal variable which points to the base of
the runtime stack.

STACKEND is a gqlobal variable which points to the end of the
runtime s+*ack.

STACRHWM () is a function which returns a pointer to the
highest point on the runtime stack usei so far, ’

LOADPOINT is 1 glohal variable which points to the base of
the area in which the program is loaded.

ENDPOQINT is a global variable which points to the top of the
area in which the program is loaded. ,

PARMS is a global variable holding the address of a string
which, in BCPL-V, was in the PAR= field from the MTS $RUN
command,

TFRMINATOR is a global variable that holds the <character
following the 1last 4digit of the most recent number read in
by READN,

FINDINPUT(string) is a function taking a string which, in
BCPL- V, is the name of an MTS file or device (e.q., "-A%" or
"x%xSOURCE**") and returning a stream-pointer (a . machine
address) to he used by SELECTINPUT. If the file or device
does not exist, th? result is zero.

FINDINPUTUNIT (strinqg) is a function, in BCPL-V, taking a
string which 1is *he name of an MTS logical unit (e.q.,
"SCARDS" or "0") ard returning a stream pointer to be used
by the input routines.

SELFCTINPHT(stfeam) - is a routine which selects the specified
input stream for future reading.

INCCNTPROL (sw) causes the carriage control to bz iqnored on
inoput if sw is false (in MTS the default is true).

REWTND () repositions the currently selected input stream to
point to the firs+ record, if possible.

FNDREAD () closes the currently selected input stream,

SETTRIM(sW) sets the control that specifies the treatment of
trailing blanks in records read from the currently selected
input stream. If sw 1is ¢true trailing blanks will be

skippad, if sw is false they will not (in MTS the default is

88 o0 00

The BCPL Proaramming Manual Page 34

tha MTS trim setting at the time that the program is run).

SETWINDOW (w) limits the reading on the <currently selected
input stream with READREC to w characters or to the newline,
whichever is shorter.

FINDOUTPUT (string) is a function taking a string (e.g., "-I"
or M"&xTADPFk%") 35 +h2 name of ar MTS file or device and
returning a stream-poninter to be us2d by the routine
SELECT™OUTPUT, ITf the file or device does not exist, the
result is zero.

FINDOUTPUTHNIT (stTing) is a function, in BCPL~V, taking a
string w#which is the name of an MTS logical unit (e.g..,
"SPIINCH!" or "6") and returning a stream pointer to be used
hy the rontine SEFLECTQUTPUT,

SELECTOUTPUT(stream) is a routine which s=z2lects the specified
output stream for future writing.

OUTCONTROL (sw) causes the carriage control to be suppressed
on the currently selected output stream if sw is false (in
MTS the Aafault is true).

INDWRITF () closes +he currently selected sutput stream,

GETRYTE(s,1) is A function which returns the i-th byte of the
string s. In RCPL-V it is equivalent to s % i.

PUTRYTE(s,i,cC) is a routine which inserts the character c
-into the i-th bvyt2 of ¢the string s. In BCPL-V it 1is
equivalent to s % i := ¢,

PACK STRIVS (v, s) is a function which packs the characters v!1
to v't into s, where n = v!0 & 255, The result 1is the
subscript of th2 highest element of s us2d (i.e., n/4 on the
?70) L

UNPACKSTRING (s,V) is a routine to unpack characters from the
string s irto v!1 to v!n vhen n is the length of the string,
and sot vI0 = n,.

MAPSTORE () prints a mavn of the program area including
function and routine names, and the values of all global
variables used,.

8¢ 20 98 s

The BCPL Programming Manual Page 35

BACKTRACR (cd,Aadir) prints an error message using cd and addr

followed by a summary of the Aynamic stack qiving the names
of all functions Aand routines currently active and the
values of the first few 1ncal variables of each. If cd = 0
the error message will be disabled.

FLOSH () empties all the input/output buffers (gqenerally not
useful) .
ABORT (cd,addr,oldstack, data) is called automatically by the

svstem after most faults. Here cd is an abort code, which
is disnlayed to help identify the cause of the error; addr,
oldstack and data are parameters used in internal calls to
ABORT; they need not be supplied in user calls. In BCPL-V,
ABORT operates in the following manner:

1) call USERABORT - initially a dummy routine,

2) dump a messagqe,

3) in batch mode, call BACKTRACE and MAPSTORE, and
then terminate,

4) in interactive mode, return to the operating
system; if restarted, accept commands, which are
single characters, with the following meanings:

R call BACKTRACE .
C attempt to continue as though the error had
never
occurred
M call MAPSTORE
Q0 quit , , . ;
R force an unconditional return from the
function or routine in which the error
occurred
S call START, to trv to rerun the proqgranm.
Any other character is ignored, ABORT terminates
by executing STOP (100). e 4
Note that, by assigning the .address of a procedure to
USERABNRT, the wuser may program any desired termination
activity. USERARORT need not return; however, if it
doesn't, +then it should call CLEAR in order to reset the
interrupt system, before calling LONGJUMP.

An example of USFRABORT is

LPT START() BRE
$(STATIC $(REC.P:0; REC.,L:0 %)
LET MYARORT (CONDE, ADDR) BE
$(SELECTOUTPUT (SYSPRINT)
WRITRF ("PROGRAM FAULT, CODE %XU4=*N",
CODE)
CLEAP () ; LONGJUMP(REC.P, RFC.L) §)
REC.P := LEVEL()
TSERABORT == MYABORT
LAB: REC.L := LAB

4 B8 88 gg S0 se AR 38 NE Be B0 42 00 we WD g v g

B9 20 o9 €% po 60 4T 4p B0 A3 K8 gg 00 8 M0 g B0 &8 se b an e '3

The BCPL Programming Manual Page 36

COMPUTE({) $)

CIEAR() resets the proqram interrupt system, so that further
interrupts are allowad,

STOP (1) will terminate the run, returning a completion code
N.

e e e e e . o e o —

SYMEROL (str) yierlds the address of the system rou*tine with
name str, 1if i+ has currently been loaded. If the routine
canrnot he found, SYMBOL vields 0.

CALL(f, a, B, G wass«) is a function taking, for £, a value
vielded by SYMRNL, and, for a, b, ¢, etc., the parameters to
be passed +5 +*he TORTRAN callable routine as in, e.q.,

SECTION. "TESTH

NTEDS. "MUNG"

GAT "CS:BCPLLIB"

LET START() BF

$(LET MUNG = SYMBOL (MUNG)
AND PAR1, PAR2 = 66, 4004
LET I = CALL(MUNG, 4?PAR1, UBPAR?)
WRITEF ("MING yieldad %N®N“, I) §)

(note the conversion to 370 addresses). The return code
(contents of register 15) is stored in the global variable
RETURNCODE.

If something aoes awry inside the system routine, the
symptom will generally be a program interrupt inside CALL.

PLOATCALL(f, a, b, € ess) is a function similar to CALL but
should be us=2d instead of CALL when the result yielded is in
float’' ng-point,

RCALL(f, a, b) is a routine similar to CALL, which takes
axactly 2 additional parameters to f, and performs the
assembler R-tvne calling sequence, loading the values of the
2 parameters into general registers 0 ani 1.

Note that, for efficiency's sake, CALL, FLOATCALL, and
RCALL do not check that f points to a valid rontine., Thus a
program fault will occur if f is invalid.

Miscellaneous
LEVEL () is a function whose result is the current value of
the run-time stack pointaer for use with LONGJUMP, The stack
pointer changes only when a function or routine is entered

46 g8 8 o8 06 00 S0 06U 0p O3 pu 09 08 G4 20 0 s s 40 S0 op 2B 0 48 a¢ o0 a0 o0 go @9 59 40 g0 S0 ap 0% o o8

The BCPL Programming Manual Page 37

or left.

LONGJUMP (p, 1) will cause a non-local jump to the labhel 1 at
the activation 1level given by the stack pointer p. Most
GOTD operations use this procedure.

APTOVEC(f,n) is a function which will apply f to two
arguments v and n where v is a vector of size n. APTOVEC
could (illegally) be defined in BCPL as follows:

LET APTOVEC(F,N) = VALOF
$(LERT V = VEC N
RESNMLTIS F(V,N) $)
It may be used for dynamic storage allocation,
GETSPACE(n) is a function in BCPL-V which requests n cells

from the operating system and returns the address of the
first cell.

FREFSPACFE(a) is a routine which returns to the operating
system the cells pnointed to by the address in cell a (which
must have been vielded by GETSPACE previously).

COMMAND(S) passes the string s to the host operating systenm,
which will attempt to execute it as a command,

SYSTFEM() is a routine which returns control to the operating
system without unloading the progranm.

FEROR() displavs the message M"ERROR RETURN", and then
returns control to the operating system without unloading
the program.

ERRORMESSAGE (strinaq) prints the contents of string and then
calls FRROR,

CATCHATTENTTON (SW) is a routine which, 1f called with sw set
to TRUE, will trap attention interrupts. The gqlobal flag
ATTENTIONPENDING 1is initially set by CATCHATTENTION to
FALSFE. The first attention interrupt occurring after
calling CATCHATTENTION merelv sets ATTENTIONPENDING to TRUE,
"and the program continues to execute. If ATTENTIONPENDING
is not reset +to FALSE, the next attention interrupt will
cause the program to stop executing. At this point it can
be restarted with the MTS $RESTART command. 1f
CATCHATTFNTION is called with sw set to FALSE, the attention
interrupt trap is disabhled,

wp k& PR g0 00 ww R 48 BE 20 BU 0@ 0 a@ 40 Be sk %8 SR g 46 00 AB 4@ 06 A O0 e B4 B8 48 an

The BCPL Proqgramming Manual Page 38

Part TII

llsing BCPL with MTS

i e S Tl
e e e e ——

S S T — o —— S — —— —— — - —

The following represents a simple compilation and execution
of a4 RCPL proqram under the MTS operating systenm. See later
sections for compilation and execution options.

$RUN CS:RCPL SPUNCH=object
GRT, "“CS:BCPLHDRY®

LET START() BFE

L sos

{source proqram>

%)

$ENDFILF

$RUN ohject+CS:BCPLLIB
<data>

L

$ENDFILE

—————— _—— e e e ——

The Airective of BCPL-V
GE"., Y“CS:BCPLHDR"

will insert the standard library declarations from the MTS file
CS:BCPLHDR, The qlobal numbers and loader names of some items

declared in this file are shown below. By convention 1litrary
variahles are given global numbers in the range 1 to 199, and
loader names bheginning with a '#°, Usars should avoid

allocating glohals in this region, or using loader names
beginning with a *'#*', for their own purposes.

GLOBAL LOADER
NAME NIIMBER NAME
ARQORT 20 $ABNORT
APTOVEC 17 # APTOVEC

ATTENTTONPENDING 28 2ATTENTI

Programming Manual

BACKTRACS
BATCH
BCPLSTART,
RINWRCH

CALL
CATCHATTENTION
CLFAR

COMMAND

DATFR

ENDPOINT
ENDREAD
ENDTOTINPOT
ENDWRITFE
ERROR
ERRORMESSAGF
EXYTT.
FINDINPUT
FPINDINPUTUNIT
PINDULOG
FINDOUTPUT
FINDOUTPUTONTT
FLOATCALL
PLUSH
FREFSPACF
GETBY™E
GETSPACF
INCONTROL
INPUT

LEVEL
LOADPOINT
LONGJUMP
MAPSTORF
NEWLINE
NEWPAGF

., OUTCONTROL

ouTpUT
PACKSTRING
PARMS
PUTBYTE
RCALL

RDCH

READN
READREC
RFADS
RETTURNCODE
REWIND
SAVEAREA
SELECTINPU™
SELECTOUNTPUT
SETTRIM
SETWTNDOW
SKIPREC
STACKBAST
STACKEND

22
90
99
A1
36
27
26
qQy
11
34
b5
44

25

f
30
N
95
40
41
87

19
a0
1R
35
13
15
10
16
23
67
A8
s
43
82

2
81
88
50
54
52
56
39
318

32
42
36
37
53
12
13

BACKTR A
3ATCH

BCPLSTA
#RINWRCH
¥ CALL
#CATCHAT
#CLEAR
#COMMAND
#DATE
#TNDPOT N
% ENDREAD
#ENDTOLN
ENDWRIT
#ERROR

ERROBME
BEXIT.
#FINDINP
$INPUTUN
FINDLOG
$PINDOUT
g0oUTPNTU
#FLOATCA
FLUSH
$FREESPA
#GETBYTF
#GETSPAC
INCONTR
4TNPUT
#LEVEL
#LOADPOT
#LONGJUM
¥MAPSTOR
¥NEWLINE
#NEWPAGF
OUTCONT
$£OUTPUT
#DPACKSTP
#PARMS

PUTBYTE
#RCALL
#RDCH
EREADN

$ READREC
#READS

RETORNC
$REWIND
#SAVEARE
#SELECTI
#SELECTO
#SETTRIN
#SETHIND
SKIDREC
STACKBA
#STACKEN

Page 39

The BCPL Programming Manual Page 40

STACKHYM 14 #STACKHW
START 1 #START
STQDP 4 # STOP
SYMBOT, 5 #SYMBOL
SYSTWM A #SYSTEM
TERMINATOR 55 $TERMINA
TTME 9.2 #TIME
TIMEOFDAY 93 #TIMEOFD
ITNPACKSTRING 83 #NINPACKS
IINRDCH 51 #UNRDCH
JSERABORT 21 $TJSERABO
USERTD 91 #USERID
WRCH H0 $WRCH
WRITED 71 $WRITED
WRITEF 66k $WRITEF
WRITEHEX e #WRITEHE
WRTTEN 72 #YRITEN
WRITRED T4 #WRITEO
WRITEOCT 73 #WRITEOC
WRITFREC h2 #WRITERE
WRITES RS #4RITES
WRITESESG 63 BWRITESE
YRITETOLNOG 96 #WRITETO
WRTITEX 76 4#WRITEX
WRITFEZ 70 #WRITEZ

The RCPL compiler has three passcs: parse, translate and
codr-generate, There are correspondingly three kinds of error
diagrostic.

A parse diaqgnostic occurs wh2n a relatively simple
syntactic error is detected during the first pass of compilation
and an error message 1is 1interleavel with the listing. The
message includes a portion of the source program to give the
context Aand a bhrief description of +he probable error. The
compiler nusually skips to the end of the line before continuing
the parse, Later error messages should he viewed with suspicion
since the antomatic recovery is often not very successful. Note
that the command numbar is not the same as the line number.

Translation phase diagnostics occur in the second pass of
compilation and r=2port errors such as the ns2 of an undeclared
identifier. Fach arror is briefly described and some
descriptive information may be printed,

Code-generation diagnostics are rare and usually result
from table overflows or compiler errors.

See Appendix D for a list of compilation diagnostics and
appropriate actions to take.

PRSP JEY TS, e 7EN

The BCPL Programming Manual Page 41

Compilation optiors

The compilation of a program under MTS can be controlled by
various options passed by the MTS $RUN command

$RUN CS:2BCPL SCARDS=sourceprogqram SPRINT=listing -
SPUNCH=object 0=ocod= 1=assemblerlisting -
PAR='CORE=c'phiop/ph20p

where sourceprogram defaults to *SOURCE* and listing defaults to
SINK. If O=ocode is present, then the intermediate OCODE is
sent to the file given. If 71=assemhlerlisting is present, then
the assembler listing of the object program is sent to the file
given., ' ?

The option 'CORE=c' is an MTS interface directive, where c
is n (bvtes), or nP (pages) or nK (1028 bytes). It is almost
never needed. The remaining options are directives to phase one
and phase two of the compiler. The phase two options, if given,
are separated from the phase one options by a solidus. Most
options are specified by single letters and some are primarily
debugging aids for the implementer.

The phase one (parse and translate) options (rhlop) are as

follows: !

. Ln Set the size of work-space area used daring

compilation. The best value of n is usually between
A000 and 12000,

Disable the GET directive.

Print the source vproqgranm,

{duiet) Do not print the source nrogram

Print the parse tree of the source program,.

Punch the OCODE.

Input is in ASCII,.
Rn Terminate compilation if more than n error messages
are generated (n defaults to 30).
I Suppress 370 code genearation and punch MCODE with
stack linkage of two cells instead of three.
U Do not translate lower case characters to upper case
in the listing.
Z Suppress 370 code generation.

The phase two (code generator) options (ph2op) are as follows:
C Suppress generation of stack overflow checking code.
If this option 1is given, programs will run slightly
faster, bnt mav end in mysterious wavs,
K Compile instructions with each function and routine
to count the numpner of times they are =2xecuted. The
counts are printed by MAPSTORE,
P Compile instructions after 1labels and conditional
jumps %o accumulate execution counts, These counts
are nrinted by MAPSTORE and allow one to make a
detailed analvsis of the exacntion of the program.
D List the object code.
L Ontput*t an assembly listing of the conmpiled progranm.

>0 30 n

The RBCPI Programming Manual Page 42

N Do not g=2nerate an obiject module for the progranm.
The default setting of the PAR= field is *CORE=10P'L6000/K.

‘xecution options
The obiject module is invoked by the MTS command
$RUN object+CS:BCPLLIR linkage PAR='CORE=c'parm

where 1linkage is as usual, e.q., SCARDS=data, where 'CORE=c' is
an optioral MTS 1interface directive option as described in
section 3.1.,3 and parm is passed, as a string, to the routine
START, as described below. The default setting for ¢ is 10P and
that for parm is the ampty string.

In orider to execute Aa BCPL proqgram on MTS, the SYMTAB
system parameter must b2 ON, If it is OFF, the message LOADER
TARLES UNAVATLABLE is displayed,

When +he conplete program is 1loaded and executed, the
machine cod~ library iritialises the run-time system and obtains
space for the alobal vector and stack. The globals are
initialised to their aporopriate values and then control 1is
passed to tha RCPL program by calling the routine START (global
1) which must have heen defined by the programmer. START 1is
passed a string from the PAR= field of the MTS $RUN command that
caused the program *o bhe executed, If 'CORFE=xx' is given, then
that part will not be passed to START,

The size of the globhal vector is the smallest multiple of
100 words large enough to accommodate the highest global number
actually usel in any sagment of the loaded progqram. The size of
tte run-time stack depends on the space available in the reqgion
in which the ©oproaram is run, Some space 1is retained for
input/outout buffers and system use. The limits of the stack
are held in STACKBASE and STACKEND.

When STAPT is <called, wunder MTS, the 1initial output
selection is to SPRINT, and the initial input selection is fron
SCARDS.

Execution faults:

In the event of an execution fault such as division by zero
or a protection exception the routine ABORT is <called when 1in
MTS batch mode, This will print +the fault number and the
program address when the fault was detected, followed by a
summary of the rvruntime stack (printed out by BACKTRACE) and a
map of the proqram stor2 and globals (printel out by MAPSTORF).
This information is outout to SERCOM,

The BCPL Programming Manual Page 43

When running frnom an 1interactive terminal under MTS, an
execution error will halt exscution with an error messaqe. Upon
issuing a $RESTART™, the nser is prompted for a letter. Giving B
will Aisplay a backtrace, ™M will give A MAPSTORE, O will
terminate execution {Oouit) and R will restart aqgain. If there
is a program intarrupt in ABORT (or, more 1likely, USERABORT),
the system displays the message RECURSIVE PROGRAM INTERRUPT, and
halts.

The profile option is a facility that h2lps the BCPL user
to discover how often any statement in his program was obevyed
when the proqram was run. The facility 1is 1invok=2d using the
code generator option UpE, It causes 1instructions to bhe
compiled that will maintain execution counts at «certain places
in the <compiled «code and the 1locations and values of these
counts can be printed at the end of a run using MAPSTNRE. These
counts can be related to the original source program with little
difficulty and the rules for doing this are given below. For a
typical program, the <cost of the facility Aamounts to a 20%
increase in program size and a4 similar 1increase 1in execution
time for those sections of program which have been compiled with
the option specified, Study of the profile output invariably
leads to a greater understanding of the program and often
indicates ways in which the program c¢an be improved. If a
private post mwmortam 1is set up to call MAPSTORE, the profile
option may be usefnl as a debugging aid.

The profile option *P' is best used with the 'K' option so
that the output from MAPSTOR® inclules the print names and
execution counts of functions and routines. The precise rule
for where count instructions ar= inserted is as follows:

A count instruction is insert=24 just bhefore the first

instruction following a label of a conditional jump.

A label in this context+ is either a programmer's label as in
NEXT: A ::= P or a compiler inserted label such as the one
appearing in th2 compiled cole for IF X>0 THEN :=0. By this
rtule, multiple 1labels at the same point give rise to only one
count, and so in L:M: A := 3 it is not ©possible to determine
"directly the relative frequency of jumps to L and M, but the
count of how often +the assignment was oheyed is given. The
detailed specification of whera labels and conditional jumps are
compiled is given below,

Fach PCPL construction which compiles into code containing
a label or conditional -nmp is qgiven with an outline of its
translation. The following notation is used:

E, E1, E2,) E3 denote expressiors,

N denotes a name,

Cs C1, C2 denot~ commands,

D denotes'a d=finition,

[Ei] A denotes an expression in a Boolean context,

The BCPL Proagrammirg Manual Page 44

Lle L2 lennte labels,

J1, J2 denote uncorditional junps,

cJt, CJ2 ienote conditional jumps,

{11} lenntes an optional occurrence of L1,

compiled before the next compiled
instruction.

Expressions in normal contexts:

VALOF C C
{

Bl =-> E2, E3 E2 J2 L1 * E3 L2 *

Fxpressions in Boolean contexts:

VALOF C C L1 *
E1 -> E2, W3 re1] * [E2] * J2 L1 * [E3] L2 *
E1 /| E2)

E1 |/ F2) [E1] * [E2] {L1} *
(remember *hat E1<F?2<E3 is equivalent to F1<E2/|E2<E3)

Commands:

TF F THEN C
UNTFSS E THEN C
WHILE F DO C
UNTIL E DO C J1 L2 * C L1 * [E] *
C REPEAT L.1C * J1
TEST F THEN 1 DR C2 FE] *# CT J2 L1 % C2 L2 *
FOR N = Rl To R2 (BY E3} DO C

E1 ®2 J2 L1 * C N:=N+#1 L2 * CJ1 *

TE] * C L1 *

SWITCHON E INTO C J1 C J2 L1 * E Ji L2 *

N:C)

CASE E: C) L1 * C

DEFAULT:)

LET D C if D contains a function or

routine definition then D * C *
otherwise D C

In w»ractice these rules are 2asy to use since the labels
and conditional jumps occur ~2xactly where one would expect thenm
and since, also, the profile counts contain sufficient
redundancy for on= to he confident that one 1is attaching the
counts to the rtiqht source statements.

As an example, the following portion of profile output:

MAP AND COUNTS FROM 1310862(500238) To 1315286

1310862 SRCTION HANOI COMPILED ON 1976 DEC 10; LENGTH 118 WORDS
1310875 /HANOT 1310876 31 1310881: 16 1310884z 15
1310909: 0 1310915/START 1310916 1 1310919: 2
1310937 1 1310943; 17 1310953: 0

gives the «conunts for the following program when given the
input 4 0,

The RCPL Programming Manual Page U5

SECTION. "HANOT®
GFT. "CS:BCPLHDR"
LET HANOI(N, S, I, D) BF /% (31) %/
$(IF N<=0 THTWN /* (16) */ RETOURN
/% (15) */
HANOI (N-1, S, D, I)
WRITRF("MOVE %ZN FROM %C TO %C*N", N, S, D)
HANOI(N-1, I, S, D) %)
/¥ (0) */
LET START() BF /% (1) %/
$(LFT N = 0
WRITES ("ENTER NUMBER%NM)
N 1= READN()
WRITEF ("NUMBER INPOT WAS EN*N", N)
TIF N<=0 THEN /% (2) */ %(MAPSTORE() ; FINISH $)
/% (1) x/
HANOI (N, *'S*Y, ¢T?, D7)
) /% (1) */ REPEAT
/¥ (0) */

The counts have been inserted into the abov2 progqram listing as
comments in the appropriate places.

A complete job

{D

The following is an example of a complete BCPL +job.

$RUN CS:BCPIL SPUNCH=-U

// THIS IS A DFMONSTRATION RBRCPL PROGRAM

GET. "CS:RCPLHDR"

// THLIS INSFER™S THF STANDARD GLOBAL DECLARATION

// STARPT (GLORAL 1) IS THE MAIN ROUTINE
LET START(PARM) BE (1
GLOBAL $(TPFRE:100; TREEP:101; CH:102 §)
STATIC $(COUNT=0; MIN=0; MAX=0 %)
MANTFEST $(// THE FOLLOWING NAMES WILL
// BE USFED AS SUBSCRIPT SELECTORS
VAL=0; LFTFT=1; RIGHT=2 %) :
// THE FUNCTIONS PUT, LIST AND SUM(DEFINED BELOW)
// DPERATE ON A TRTE STPUCTURE WHOSE ROOT IS HELD
// IN TRPR, TIF T IS A BRANCH IN THIS TREE THEN
// ETTHER T=n ,
// OR T POINTS TO A TREE NODF AND VAL!T IS AN
// INTEGFR({X SAY), LFFT!T IS A BRANCH CONTAINING
// NUMBERS <K AND RIGHT!T IS A BRANCH CONTAINING
// NUMBERS >=K, '

// THE ROOTINE PUT WILL ADD A NODE TO TIE
// TREF WHOSE ROO™ IS POINTED ™0 BY P,
LET PUT(K, P) BE $(P
INTIL !'P=0" DO $(
LET. T .= Lp
P := KLVALYT => ALEPTIT, ARIGHT!T

The BCPL Programmina Manual Page U6

)
VAL!TRFEP, LEFT!TREEP, RIGHT!TREEP := K, 0, O
!B = TRFPED
TREEP 3= TRRFP + 3 §)P
$yp

// LIST THE NUMBERS HELD IN THE TREE T
AND LIST(T) BF
INLESS T=0 DO $(
LIST(LEFTIT)
IF COUNT REM 10 = 0 DO NEWLINE()
COUNT 2= CNUNT + 1
WRITEF(" %I6M", VAL!T)
LIST (RIGHT!T)
.5) .

AND SUM(T) = T=0 -> 0,
VAL!T<MIN -> SOUM(RIGHT!T),
VAL!T>MAX -> SUM(LEFT!T),
VALIT+SUM(LEPT!T) #SUM(RIGHT!T)

LET V = VEC 600
TREE, TREEP := 0, V

// THIS IS A CONVENIENT WAY TO
// ORGANTSE A TEST PROGRAM
NXT: CH := RDCH ()

SKW: SWITCHON CH INTO $(S
/7 QUIT,
CASE *Q's CASE ENDSTREAMCH:
WRITES ("*NEND OF TEST*N")
FINISH

// PUT A NUMBER IN THE TRFEFE

CASE 'P': PIT (RFADN(), @TREE)
CH = TERMINATOR
G0TO SW

// LIST THE NUMBERS IN THE TREE
CASE 'L': NEWLINE()

COUNT := 0

LIST (TREE)

NEWLINE ()

GOTO NXT

// COMPUTE THE SUM OF A RANGE OF NUMBERS
// IN THE TREE
CASF *Sts MIN := READN()
MAY := READN()
WRITEF ("*NSUM OF NUMBERS BETWEEN ")
WRITEF ("%N AND 7N IS %N#N",
MIN, MAX, SUM(TREE))
CH := TRRMINATOR

The BCPL Programming Manual Page 47

GOTO NXT

// PRINT A STORE MAP
CASE 'M': MAPSTOR®(): GOTO NXT

// ZERD,THE TREF ' _
CASE '7': TREE := 0; WRITES("*NTREE CLEARED%N")
GOTO NXT

// IGNORE LAYOOT CHARACTERS
CASE '%S%; CASE '%#N': GOTO NXT

/7 FLAG INVALID CHARACTERS
NDEFAULT: WRITEF ("%*NBAD CH '%C'*N", CH): GOTO NXT
$)s
$) 1 // FEND OF PROGRAM
$RUN ~-U+CS:BCPLLIB
P24 P13 PA6 Pus P-12 PO P45
L S10 50
0
$ENDFTLF

When the ohject <code 1is executed it will output the
following:

=52 0 13 24 s 46 96
SUM OF NUMBERS BETWFEN 10 AND 50 IS 128
END OF TEST

’
|

| Part TV
| ‘]
I Reference Material
|

|

b o S — — -

The following 1list of words and symbols are treated as
atoms by the syntax analyser. The nam= of the symbol or its
standard representation on the 370 is given in the first column,
and examples or synonyms are qgiven in the sezond.

The BCPL Proaramming Mahual

Basic symbhol

identifier

number

strina constant
character constant
TRUE

FALSE

=1
=

o>]
wn

M= I VAVAVAL I DI + 23N # 8 ie § a
VA W n !

=
<

NEQV
->

’
TABLFE
VALOF

$(

$)

VEC

BE

LET

AND
BREAK
LOOP
ENDCASE
RETURN
FINTISH
GOTO
RESULTIS
SHITCHON

Examples and synonyms

A H1 PQRST TAX_RATE K.TRUE
126 7249 #3771

WAN WPESTHNW

'S I I R KR R T

[

1

L

RV

(BCPL-V only)

(see Appendix W)

FO

NE

LR

GFE

LS

GR

LSAIPT

RSHIPT

NOT

LOGAND (/] in BCPL-V only)
LOGOR (|7 in BCPL-V only)
== in BCPL-V only)

(>< in BCPL-V only)

$ (AB
$)A3

({ BCPL-V only)
(’} BCPL-V only)

Page U8

The BCPL Proqramming Manual Page 49

INTO

REPEAT

REPEATUNTIL

REPEATWHILE

DO THWN
UNTIL

WHILE

POR

TO

BY

TEST

THEN DO
OR ELSE
IF

UNLESS

CASE

DEFAULT

SUBTITLF,

TITLE.

SECTION. SFCTION
GET. GET
LIST,

NOLIST.

NEEDS, NFEDS

Appendix R: RBNF of BCPL

This appendix presents the Backus Naur Form of the syntax
of BCPL., "he whole syntax 1s given, with +the following
exceptions:

1. Comments are not included, and the space character
is not represented even where required.

2. The section bracket tagging rule is not 1included,
sinc»? it is impossible to represent in BNF,

s The graphic escape sequences allowable in string
and character constants are not represented,

4. No account is made of the rules which allow
dropping of semicolon and DO in most cases., It seemed
that these rules wunnecessarily complicate the BNF
syntax vet are easv to nnderstand by other means.

5% BRCPI, has several synonymous system words and
operators: for example, DO and THEN, Only a standard
form of thes2 symbols is shown in the syntax: a list
of svynonyms can he found in Appendix A,

6. Certain constructions can be used only in specific

The BCPL Programming Manual Page 50
conteyxts, Not all these restrictions are included:
for example, CASE and DEFAULT can only be wused in

switches, and RFSTYLTIS only in VALOF expressions.

Finally, there 1is the necessity of declaring

identifiars that are used in a proqram,

il There 1is a syntactic ambiquity relating

<repeated command> which is resolved in later.

The brackets € » implv arbitrary repetition of the
enclosed.

1. Identifiers, strings, numbers

<letter> 2:= Al B | see | 2

<octal digitd> 2= 0 | 1 | oo 1 7

<digitd> 2:= 0 | 1 | ees {9

<string constant> ::= "<25%5 or fewer characters>"

{character constant> ::= '<one character>?
<octal number> ::= # <octal digit> { <octal digity >
<number> ::= <octal number> | <digit> <digitp >
<identifier®> ::= <latter> € <letter> <digit> |

1. Operators

<address op> ::= @ (| !

<mult op> ::= * | / | R®M

<add op> ::= + | -

<rel op> :1:= = | = | L= | >= | < | >
<shift op> :1:= <LK | >>

<and op> ::¢= §

<or op> :2:= |

<eqv op> ::= EQV | NEQV

3. Expressions

<elementd> ::= <character constantd> | <strinqg constant>
<number> | <identifier> | .
TRUF | FALSE
<primary > ::= <primary F> (<expression list>) |
<primary E> () |
(<expression>) |
{vector FE> ::= <vector E> ! <primary E> | <primary E>
<address E> ::= <address op> <address E>.| <vector BE>
<mult B> ::= <mult P> <mult op> <address E> |
<address B>
<add E> ::= <add T> <add op> <mult E> |

<add op> <mult ¥> | <mult B>

<elemant>

<tel E> ::= <add E> ¢ <rel op> <add E> »

<shift E> :2:= <shift FE> <shift op> <add E> | <rel E>
<not E> ::= <shift E> | <shift E>

<and B> :1:=

<not T> ¢ <and op> <not E> »
<or E> ::= <and T> € <or op> <and E> »

all

to

categories

The BCPL Programming Manual Page 51

<eqv E> ::= <or E> { <eqv op> <or E> »
<conditional F> ::=
<eqv E> -> <conditional B> , <conditional E> |
<eqv W>
<expression> ::= <conditiomal F> |
TABLF® <const T> & <const &> » |
VALOF <commani>

4, Constant expressions

<C element> ::= <character constant> | <numbar> |
<identifier> { TRUE | FALSE |
(<const FE>)

<C mult F> ::= <C mult E> <mult op> <C =21lement> | <C element>

{const E> ::=

{constant expression®> <add op> <C mult E> |

<add op> <KC mult E> | <C mult F>

5. Lists of expressions and idlentifiers

<pxpression list> :1:= <expression> <REP, <axpression> >
<name list> ::= <identifierd> <RTP, <identifiard> >

b Daclarations
<manifest item> ::= <idientifier> = <constant exprassiond
<manifes* list+> ::= <manifest item> § ; <manifest itenm)d >
<manifest doclaration> ::= MANIFEST %¥(<manifest list> ¥)
<{static d=claration> ::= STATIC %(<manifest list> %)
<global item> ::= <identifier> : <constant expression>
<qlobal 1list> ::= <global item> € ; <glohal item} >
<global d2claration> ::= GLOBAL $(<glohal list> %)

-
-
-
.

<simple definitiond> ::= <name list> = <expression list>
<vector defiritiond> ::= <identifier> = VEC <constant expression®
<function defipition> ::=

<id~n*tifier> (<name listd) = <expressiond> |
<identifier> () = <exnrassion>
<routine definition> ::=
<identifiar> (<name 1listd>) 8K <command> |
<identifiar> () BE <commandid>
<definition> ::= <simple definitiond> | <vector definition> |
<function definition> | <routine definition>
<simultaneous declaration> z::=
LFT <A=2finition> ¢ AND <Aefinition> »}|
<manifest declaration> | <static declaration |
<global declaration>

s Left hand side expressions
<LHSE> ::= <identifier> | <vector F> ' <primary B> |
! <J<primary F>

<left hand side 1list> 3= <LUSF> € <KLUSE> »

R Unlahelled commands

The RBCPL Programming Manual Page 52

<assignment> ::= <laeft hand sile list> := <expression list>

<simole command> ::= BRFAK | LOOP | T©NDCAS® | RETURN | PINISH

<goto commani> z2:= G0TO <expression>

<routine command> ::= <primarv F> (<a2¥opression listd>) |
<primary E> ()

resultis command> ::= RRSULTIS <expression>

<switchon commani>

1

E

SWITCIION <exn assiond> INTO <compound command>
<ropeatahle command> ::= <assignment> | <simnle commani> |
<qgoto command> | <rnntine command> |
<resultis command> | <repeated command> |
<switchon command> | <compound command> |

<hlock>
<repeatel command> ::= <repeatable command> REPFAT |
<repeatabls command> RFPEATINTIL <exopression> |
<repeatable command> REPEATWHILE <expression>
<until command> ::= UNTIL <expression> DO <command>
<while command> ::= WHILT <expression> DO <{command>
<for command> ::=
FOR <identifier> = <expression> TO <expression)>
RY <constant axpression> DO <command> |
FOR <identifior> = <expression> TO <expression>
N0 <command>
{repetitive commari> ::= <repeated command> | <until command> |
<while commanid> | <for commandi>
<test commanid> ::= TEST <expressiond> THEN <command> OR <command>
<if command> ::= IF <axpression> THEN <command>
<unless command> ::= UNLESS <expression> THEN <command>
<unlabelled commani> ::= <repeatable command> |
<repetitive command> | <test command> | <if comwand> |
<unless command>

9, Labelled commanis

<label prefix> ::= <identifier> ;
<case prefix> r1:= CASE <cons*ant expression> :
<default prefix> z:= DTRPAULT :
<prefix> ::= <label prefix> | <case prefix> | <default prefix>
<command> ::= <anlahelled command> |
<prefix> <command> | <prefix>

10, Blocks and compound commanis

<command list> ::
<declaration part> :
<bhlock>» ::= % (<decl
{compound command> :
<program> ::= <d->cla

= <command> ¢ ; <command> P

> ::= <declarationd> § ; <declaration> »
eclaration vart> ; <command list> §)
1= $(<command list> §)
ration part>

The BCPL Proqramming Manual Page 53

Tahle C-1 4gives the graphics of tha I8M TN character spt
(in hexadecimal), while Table C=2 shows (in octal) tha eurrept
ASCII standard character codes, PRS-

Fach tabhla runs from left to riqght, <ith the diqit above
each character rapresenting *he low order digit of its code; and
the digits at the left representing the high-order diqit% pf tho
code. Thus, for axamole, the EBCDIC code for A 13 7C.’ ‘ :

|
|
|
1

r 1
| -1 2 T 4 S 6 7 9 9@ A B ' C nN B R |
I |
{ 00 T *P *C |
{ 10 *N *D ¢
| 20 *F |
| 30 |
| 4o *5 ¢ . < (¢ | I
| S0 7 L T S S T I
| 60 - A !
| 70 s ¢ a2 v o= N |
| 80 a b ¢ d 2 f g h i f < ¢ t ¢ |
| 90 i k 1 m n o o q T 1 o) & !
| AOQ - 9% s ¢+ v v w X vV z ¢ ¢ > e |
| BO o 1 2 3 &« S 6 ? & 9 I) ¢t - |
| €0 A B«C T F5F @8 T ;
| PO J K L M » o P o i ;
| EO a T o v w X Yy 7z !
| FO 01 2 ¥ 4 & A 7 8 9 |
| |
} Pahla C= |
L P

ES = ==y — O T W D T U W -

r

!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
I
|
|
|
|
!
|
|
|
|
|
!
|
|
L

The BCPI Programminag Manual Page 5S4

———— — e o ——

nn 01 02 03 04y. 25 06 07

(2) Accent acute, or apostrophe
{3) Rackslash

(4) Circumflex

(5) Accent qgrave

{6) Tilde (equivalent to -)

y
|
|

000 NUL 5071 STX ETY EOT ENOQ ACK BEL |
01n 1S aT LF VT FF CR SO SI |
c20 DL® DC1 ne2 DC3 NnCy NAK SYN ETB |
030 CAN M STIR BSC FS GS RS s |
o040 (1) ' " # $ b4 £ (2) {
050 () * + ’ = . / |
060 0 1 2 3 4 5 A 7 |
070 1 Q 2 £ < = > ? |
100 A A R G D E 7 G |
110 i 1 J K % M N 0 |
120 b 8] 2 S T 4] v W |
130 X Y Z r (3)] (4) . |
140 (R A b c 4 e £ q |
150 h i i k 1 m n o] |
160 o) q B S t 1 v W |
170 X v Z { | } (6) DEL |
|

Tahle C=2 |

Notes |
“ |
(1) Space |
|

|

|

|

|

|

|

|

|

|

i

Appendix D': Compilation Diagnostics
The compiler produces a number of diagnostics when it

translates an erroneons program., It should be emphasised that
many diagnostic ma2ssages may be produced by the same error:
therefor=2, one change to the progqram mav remove many errors.
BFrrors are identified by a number (which is primarily useful to
the person who main*ains the BCPL compiler), and some text. The
messages, andl a brief oxplanation, are listed below:

Frror 6 'S (' expected

BRrror 7 t4) ' expected

Frror ®° Mame expected

Frror 9 Untagged *F) ' mismatch

Error 15 ") ' missing

Frror 19 *)' missing

Frror 30 ',' missing

The BCPL Programming #Manual Page 585

Frror 12 FError in expression:

Frror 33 Frror in number

Frror 35 1Illegal floating-point operator
Error U0 Name eyxpected

Frror 42 '=' or 'BTE' expected

Frror 43 MNamn expected

Frror 44 '=% or ' (' expected

Frror 45 *':' or '=!' expacteld

Error 50 Trraor in labhel

Frror 51 Error in command

Frror 5S4 T0R' expected

"rror 57 '=' expected

Frror 58 'TQ' axpected

Frror 60 'TNTO' expected

Error 61 ':' oxpected

Frror 62 Y:!' expected

Frror 63 '/!' or *|' missing

Error 64 Trroneons nse of UNRESERVT,

frror 8% Tnput ',..' not provided for GET
Error 99 String axpecthaed '

Error 91 '/, (', or ')' oxoncted

Frror 94 Tllegal character

Frror 99 S+ring too long

Frror 97 String expacted

Frror 98 Projgram too large

Frror 99 Tncorrect termiration

Frror 101 Tll=2gal us= of CASF or DEFAULT™
Frror 104 Tllenal use of RPEAX, LOOP, or RTUSULTIS
EFrror 105 Tllegal us=2 of CASE or DEFATJLT
Frror 106 Two cases with same constant
Frror 109 Ltype oxpressinn expactad

*rror 110 L.AS and PHS do rot match

Frror 112 LHS and RHS do not match

Frror 112 Ltype expression expectad

Frror 115 Namz not declareil

‘rror 116 Dynamic free variable declared
Frror 117 Frror in constant expression
Error 118 Frrnr in constant esxpression
Frror 119 Error in constant expression
I'rror 141 Too manv cases

Error 142 Name declared +wice

*rror 143 Too many names declared

Errvor 144 Toe manv globals

Frror 145 0CONE buffer overflow

Frror 147 Frror in 2xpression

Frror 150 Tnconrrect entrv or external AdAeaclaration
"rror 151 Tno mary 2ntries or externals declared
Frror 152 Too mary static cells

Frror 193 I1l29al us< of character when nroducing MCODE
Error 199 Invalid selector ~xpression

Any cnd> generatar nmessages should be reported to the
person who maintains +tha BCPL compiler,

The BCPIL Programming Manual Page 56

Appopdix ¥: Common 2xtensions

The extonsions listed heare are widaly available in a numher
of nRCPL implemontations, and, althouah they are not in the
standard Tananaqge, they shonlAd he considered by other
implompentors of 8CPL plannirg to extend the lanquage. This
ippendix 1% orovided ir th= hope that it will reduce needless
incompatibilities bhetween different implementations.

Tt must 5>y stressed that these extensions should only be
used wher~2 absolutely necessary, and then as sparingly as

possible, Thav tenl to decr2ase the efficiency and the
nrderstandability of +h2 program and often indicate bad

programming stvle,

The following features are included as "standard
axtensions":
floating point (on machin~s with suitable word length),
selectors,)
lower case~ leotters in identifiors,
tha warning sequencas #8, #0, and #¥ in constants,
thn sequence "“,,,%* <layoutr> *,,.,." 1in string constants,
the operators ARS and #ADS;
the oparator <>,
assiagnmonts of the form "F1 <op>:= E2%,
the exnression "2n,
comment forms other +han "//4,
the SECTINN an! NFENS diroctives,

e ¢ & & © g o o 3 3 O

3CPL-V

BCPL-VY contains a numbar of extensions to the language.
These are:
° entrv anrd extornal daclarations (found in a few other
implementations),
e the by*te onerator and the representations,
e« /| for LOGAND, |/ for 1LOGOR, == for £0V and >< for NFQV,
¢ the special charactears *Xnn and *f,
e condit . onal compilation,
. +he orovision for system keywords to be spelled in either
upnrer or lower cas~,
¢ +he directives TNCLUDE, and PARAMETER.

BCPL-V provides a sovecial directive "UNRESFRVE." designed
to ease difficul+*ies in moving programs originally designed ¢to
run on othar inmplementations, If such a program contains a
RCPL=-V svstem word as an identifier, either a massive edit must
he performed, or the reserved word removed, Thus, for =axample,
if the progran us=2s the name FTY as an identifier, the directive

UNPESEPYE, FIY

will cause *he compiler to fora=*t that FIX 1is a system word.
This declarativs shouldl only %~ used in cases of dire emergency.

The BCPL Programming Manual ' Page 5§57

In addition, BCPL-V also includes an auqgmented run time
library.

— — —— P T

**%* yarning--this section may change sonn **x%

The compiler mav be coerced into providing a listing of the
source program, In hatch mode, such a listing defaults, while
in terminal mode, no listing is normally produced. The 1listing
is affected hy the S5 and (@ parameters, Fach listing page
contains a title and a subtitle line, follow~d by a number of
proaram linas, 0On each proaram line appear:

a card number (generally not useful),

a command number (very useful for interpreting

translation error messages),

the text of the line,

the MTS line nnmber (occasinnallyv, *this line number is
incorrect, e.,q., Wwith GuET, In such a case, it |is
orinted as a row of dashes),.

The listing may b2 controllel hy the following options
TITLE, <string> sets the operandi as ‘title for
succeeding paqges,

SUBTITLRE., <string> sets its operand 4s +he subtitla
and skips to a rew page,

NOLIST., Turns off +he listing,

LIST. “nahles listing if raeqguest2d via the parameter
S, or if runnina in batch mode,

Note that, in orier to distingunish +these declarations from a
RCPL identifier, they end with a point, Such a declarative
should appear on a lin2 hy itself,

%% yarning: th=2 «c¢cross referancer 1is curren*ly being
redasigned %*x%

Cross rteferenceing of A BCPL program can be obtained by
using the PAR=Y option.on the ¥TS SRUN command, The cross
referencing routines will produce a tabhlas of all identifiers
nsed in the program, where “hey ware daclared, and where they
were referenced, Thev will also produce lists of unused qlobals
ard externals, AdAit.ional «c¢ross raferancing options are
available. Thev must be plac=2d within a pair of parentheses
immediately following the X in the HMTS PAR field. These
additional options are as follows:

In addition to other cross referencing information, produce
A header of onnly those globals, externals, and manifests which
are useid, This header will he produced on MTS logical unit 2.

The RBCPL Proarammina Manual Page 58

If logical unit 2 is not assign=ad, the Aefault file is "-hdr#v,

6 dn not include the 1lists of unused qglobals and
extarnals in the cross referencing information.

H print no cross referencing information, and produce
a header of onlv those globals, externals, and
manifests which are used, This header will be
prodnced on MTS lsagical nnit 2, If logical unit 2 is
not acsiqgred, the default file is "~-hAr#n,

N (narrow) print the cross referencing information
such *hat it will fit on a 8.5 1inch wide sheet of
PAapATr.

S print +h2 cross referencing information with single
spacingy, the default heing double-spacing.

As an o2xample, vlacing PAR=YX (NG) on the MTS $RUN command would
print a narrow cross reference table without the lists of unused
qlohals, externals, Aand manifests, The cross referencing
feature i3 very useful for debngqging proqrams.

_——— e -

Appendix G: Miscallany

——— — — oy o —

A BCPL-V str2am 1is represented as a pointer to a block
described as follows:

MANTFRST

$£(NFYT = 0
UNITFLAG = 1
WINDOW = 2
PNSITION = 3

CIHJRRENTLFNGTH = 4
BUFFERT,WNGTH = §
MNODRITS = 6
LINENUMBER = 7

BOFFER = A
NLFLAG = 9

FOF = 10

NOCC = 11
WINDOWSET = 12
FDUB1= 13
FDUR2= 14

FILENAME = 15 %)

There are other fields in a stream block but they are of no

interest to the usear. 0f most interest are the MODBITS and
LINFNUMBER fields; for +he use of these, see relevant MTS
docunentation. Mary of *he other fields can change

unpredictably, 2specially if a concatenated input file is used.
Naturally, delvinag into a stream is highly machine dependent.

The BCPL Programming Manual Page 59

__________ L Rrograms

A large program should he stored as a set of files; ccmmon
declarations mav Dpe included with GET. TIf only one section of
code need be recompiled, the obdect code may be placed 1into a
temporary fila, and the master object file updated via a utility
program (*RORJ mavy he used in MTS), Of course, proper care nmust
be taken to ensure that moiulas do not get out of step in this
updating process,

Calling Assembler-Languags? Routines on ths 370

Many nron-RCPL routines are called with a FORTRAN-compatible
calling sequence, and can he invnked by using the routines CALL,
FLOATCALL, and RCALL, Occasionally, this 1is difficult or
inconvenient, and a special assembler interfacs must be used.
In order to facilitate suach a painful task, a macro-libhrary is
available. Dedicated users should study the source code for the
I/0 interface before attempting to code assembler routines.

———— - —— . — —— ——— - e o

If a BCPL program is to b2 used rem-2nterably, the following
constraints must be followed.

1) Static variables shoulil not bhe used; instead

globals or locals should .bhe employed (this is hecause

of base reqister problems on the 370).

2) The run-time library on the 370 should be moilified
slightly, since it is not curcvently re-=nterable,

3) No program should ever cxceed its .stack space, for
the results couldl be disastrous on impnlementations
with inadequat2 memorv protection.

This anpendix contains information which is arcane and not
terribly useful to the average BCPL programmer, It is, however,
useful to those wishing to implement a function or routine in
Assembler. Such programmers will need to kXnow something of the
runtime organisation used by BCPL programs.

RCPL programs, on the 370, 1live in a nuniverse which
contains a stack and a static area. A small amount of
assistance is oprovid=2d by a rontine written in Assembly
Language, which allocates and nrganises the stack.

The general structure of a 3CPL module is illustratcd by
the following example,

The BCPL Programming Manual Page 60

STCTION "®no"
GLORAL
L START: 13
BAR: 200;
70™: 201 %)
LRT START) BE 4.
AND BAR (A, ®B) RT ...
AND ZO™ (G, H, I) = ...

which translates into *he following Assembly Language skeleton:

FOO BCPLCS

START BCPLNTR 1
nCOLEX

RAR RCPLNTR 200,ARGS=2
BCPLFEY

70T RCPLNTR 20171,ARGS5=3
RCPLEY
BCPLCSND
TND

BCPLCS genarates a prologue which is primarily useful for
mapstore, while BCPLCSND produces a table used in 1initialising
*+he qlobhal vectnr. The BCPLNTR macro generates the entry
sequence at the beginrning of a function or routine (there is no
differenca hetween the two at the Assembly Lanquage level); its
arquments are the qlobal number of the routine, and the number
of parameters, This number must bhe greater than or equal to the
number of param=2ters usad when you call the routine. BCPLEX
causes the routine to return to its caller,

Before describing the usage of reqgistars, it is necessary
to mention the distinction hetween a BCPL address and a machine
address. In BCPL's world, consecutive <cells have addresses
differing by 1, However it is unfortunately true that <the 370
was (mis) designed to have word addresses differing by U.
Therefore, a BCPL adiress is equal to the machine address
divided bv &, This is not pmarticularly inefficient (no worse
than Fortrant!);: for the code

7 2= 11

the compiler produces something like:

1. A3, I
AR A3,A0
L A2,0 (A3, A3)
ST A2,

which causes no ~xtra memorv refz2rences, However, it is still a
source of trouble when you code an Assembler subroutine to be

The BCPIL Programming Manual Page 61

called from BCPL.

The registers are allocated in the following manner:

reqister mnemonic use
numher
n rN contains 0
1 R1 contains 4096
2 R2 contains 8192
3 R3 contains 12288
4 B program hase
5 sp stack pointer
6 RET procedure return address
7 A1 procedure parameter,
or scratch
o] A2 "
[e] A‘; "
10 Al "
1 3 subroutine library bas=
12 GLOR points to 3lobal vactor
13 R13 dsect base
14 Ry tomporaryv, system usage
15 RP15 '

The values in reqisters 0-3 are used in addrassirqg. If vyou must

touch these reaisters (2.9., by ralling an axterral routine), be
sure to restore them bhefore exiting,

The other ragisters which will concern you are A1-A4, which
are free for use as scratch. 3y a fortunate coincidence, the
first four parametars +9 a function or TrToutine are found in
those registers (othor parametars apvearing on the stack: see
below) . Further, the value of a function is placed in A1 (aven
if it's a floating-point numher) at exit tims,

If vou ne=2d to access a nglohal, vyou may use register GLOR,
which points +*+o the glnhal vector, Thus, 1f vyou need the
contents of qlobal 263, you mav code

L A1, 26 3%4 (GLOB)

Register S points to a collectinn of support subroutines used
for proca2dure calling and statistics collection. The
subroutin~s are located at fixed offsets from the address given
in S. You don't normally nead to worrv abhout S.

R13, P14, and »15 have the normal OS significance, but, in
addition, R13 points +to a dsect which contains internal
information needed by the runtime routines, while r14 and r15
may be used freely, without any need to restore,

The RCPL Proaramming Manual Page 62

The thre~» remaining reqisters are used for procedure
linkagoe, N acantains tha program base, SP the current stack
pointar, and RFE™ the return address. A s*tack level consists of
first thase threoe vegisters, a3 theév wers at procedure entry,
followed by the paramaters, and then anv data declared by the
orocedur~, as in thke following diaarams:

("o ke suoplied)

Reports of

please give not

problems in the BCPL systen
solicited, as are comments on this manual. 1In the latter case,
the page references but also sufficient
context, Please direct any .such comments to

only

Nature of ProblemMeiceces

ceesescessssonroa
Peescecsscsessan s
seaneseansees e
"esssesscncsrans
enomabasseas e
cEseesen s e eesy
R D P E Ry
NAMEosoosssncoss
AdAresSSeecesssnas
@ @ 6% 0% 0p O oo 8o R0

9 06 00 H o9 000 G O

RCPI 1977 October,

Rev,

“

°

BCPL Maintainer

are earnestly

Department of Computer Science
University of British Columbia

2075 Wesbrook Place

Vancouver, B.C. V6T 1W5

Canada

ssecscsssssescscsssecs
teessececsvecsnsos se 0
essesssesssssscsscssss
esssssssesseassensnsan
cts s Es e sea s SO e 0 e B
sessiensssesssasessens
seescssassssnsssenss s
sessececscsscsPage NOS.es oo
cesesssssneecnssasscn e
ceecesssecsseseseses e

® 98 @00 00° 00 0900 80008 90 00

.........Postal COde..

i

@8 o0

® e 00

o8 ©08 006 0

9o w00 000

®0o0o s 60 090 0

oo 00 e ooo0 o0

900 80000 0

1o
10
0
=
=
o
1=
1=+
1=
1
)
{1
2
=
>
e
D
U
*

el =

Please return the form below if vyou wish to receive
revision of this manual to:

BCPL Maintainer

Department of Computer Science

Tniversity of British Columbia

2075 Weshrook Place

Vancouver, B.C, V6T 105

Canada
Namel.........‘.Q.....l.l.....l..’i..l...‘...l..‘...lll....
I\ddrﬂ.'ﬂs.‘...-.‘.-.-......’o.......}..-o.o-....-...-..---.....o

Q..‘........‘.".I..‘.....I'.Q..-Q"ll....'.0.‘..'..'.‘...0..!.0

-.3."2.....~,...5..;-.......'....';...Postal ColRicanisscssnsnse

pePL 1977 Cctober, Rev, 1

Introduction sessssesamasads
Acknowledgements ceeecocosae
The MTS version (BCPL-V) .
POTtADI1itY s v woomnmavoenee

Part I--An overview of RCPI

of Contents

9 06 860 8 0 o

e 0 & 006 0000 08 08 0O OO 0 90 9S00 BSOS SO

® 0 @ o P D O G0 50 0O OO 0O OO 20 080 60O O OO

60 0o 00 o0 0es0’'0seesssn san

2 06 00 ¢ 00 00 PO OV PO OO SO OO S OS SO S POTN

® 5 98 ¢ 00 0 00 8O 08 DO &0 ¢¢ OO 888 DSOS BB
p PR

Part IT--The BCPL Langnaqge and Portahle Libhrary

Lanquage Definition ...
Program escscoesscasesssa
Flements ccececesnsaces
FXPressionsS eccessescses
Addressing operators ..
Arithmetic operators ..
PelationNsS cteceasecscsoe
Shift operators ceecevss
Logical operators ...

Operations combined with a

S8

Conditional operator .eeeee
Table sisssassssenswsesadss
Constant exXpression ceeeoeo
Floating point arithmetic

Field s5210CtOrS seeseee
Section brackets ceseen
CONMMANAS ceenanmssvsnsos
Assignment ..o eecvvscns
Conditional commands ..
FOR commMand eoeeesessee

e o 0

Other repetitive commands

RESULTIS command and VALOF

.

SWITCHON command veeeessces

Transfer of control ...
Compound command «..oes
BloCk ® 8 ¢ 0 6 & &4 9 ¢ 8 S 5 B 6O 9
The operator <> .cecees
1
Declarations teeessecees
Global ® @ % & 0 00 0 00 O 0 00 ¢
FXternalsS seeccsescoces
MANIifesSt cesvevsonsioss
StALtICT censsswssses o0
Dynamic es 6000 0006 e0 0w
Vector s 08 e 000006060000 0
Function and routine ..
Labél (sevessviencsonasn

Simultaneous d2claration .

Miscellaneous features

L]
-
L]

L]

e 9 @ 008 % 00 9 00
® & ¢ 6 ® 09 0 50 00
® ® ® 9 0 &0 99 00 00
s eeeeccss 0o
s 006000 es 0000
® 00 60 00 060 00 0
R IR
e e ® 0 08 o 0 ¢ 00 9@
see s s 0000 s e
ignment,
® e 6 20 O s e R aee
® 49 % @08 e wa0 08
5 # % 60 ¢ 00 e 00 00
® 60 © 0 0 85 0 ® @0 08
e & ® 0 50 00 00 %o
® 90 0 0 %0 00 090 a0
® 2 2 28 0% 08 &P 0
o0 009 bdos oo 00
® @ 9 © 0 80 8 0 98 0
seeec e e a0 e

eXpPreassion <..

L]

°

L]

® 8 9 9 08 80 00 o0

® 6 ® & 4 800 B 900N

@ 8 ® @ @ 000 8 90 9 o

®© 99 606006 060 090 O
e ® 0 & 0 08 20 0 8o
® S 9 4N A0 e 8
® ® 0 % % 0 a0 000
¢ &% 5 0 88 a0 00 0 o
e 9 0 60 69 00 0o PO
I.‘.I.I...‘;.
® © 6 00 0as 0 e 0060

5 @000 9908 00 009

o0 oo
o8 o o
oe a e
o8 0o
oo v @
®ee 9 ¢
oo o
o0 e
oo 00
es s e
ee o0
se o
e o0
ee® s 0
e oo
oo o0
e s 000
ee 0 e
2o ¢ 0
o9 o0
ew o o
e e o0
e a0
6 ° 0
"9 0w
8 0@

>0 00

8 &
L
e &
ae o8
0 8@
e s
e o0
e ase
s o0

v
8 ¢ 0 5 20 & 00 09 O o0
o0 20 QO &% B O S S0 " 8
® ® 08 0 9 9 & N O S e w0
®® 09 © 8 00 00 o0 5O
®® 4% P OO O 0809 oo
e P8 000 dovoa0 oo
5 6 08 & 90 0 &0 008 % 0
.....‘.....“"
so0ce0s 0000 esos0 e
oo ee s e0 00000 00
® 9 0 08 0 8 ° s 00 00
o ® o0 000660 b0 B
esesssasneenbe
.........-..‘...
O 20 000 ° 20 00 Boe
cesvssessssccsvee
2 6 8 08 ¢ ¢ 9 0 0@ 5
® 0 @0 @00 0 00 60 @ o
® % B 8 8 " 0 8 B89 s s
®® &0 0006 %00 O RGeS
S 0 8 4 95 0 08088 a0
so0veevecevee s
®® @9 299 ¢ 80 ¢ 0 s
T ® &9 06 ¢ 0 ® 006 P ¢
® 0 20 2P e 08P o0
® 9 €0 © 9 O & 00 00 0

®© 9 060 9000 @ @0 09

S8 0% 080 8 8 000 oae
se 00080 vsensn e
"o eeesevaso0 0w
se0essss00 00 e
e8 00 c09vesos 0
esccosems0ss s
o000 0000006 008
S0 coes 000008 00
o 0e 080000 es s

[SS] - a0 D

10

11
12
12
12
13
13
14
15
16
16
17
17
18
19
19
20
21
21

21
22
22
23
24
24
25
25
26
27
27

GPT. ®@ @ & O 9 90 @ ° O 9 O VP & 00 O P O O SN G O O P S0 OO O S PO OO TE OSSOV OSPRS00 27
cComments AN SPACOS .esssenssasessssnansssssassnsssnessnsnsss 28
Optrional symbols ARd SVRONVES scssvesansuonos asmos soiesssnews 28

C;PGWPY“\'S ® & % 5 4 F 08 S S 86 R E SO ES E S 9O W NS AE ST e DO AT OO R IET OSSR e ?R

.Q("qun" ht"’fidinq,"\ © 68 5 9 ® 9 8 98 P S Q% 29 OO0 08 00 8N S5 00 B eSO SN S SS A SN 2q

ﬂ"hp_ Rl!n-tim&? I.iht‘arv P 8 % © 0 © 8 0000 TP S A S S 0N S S 08 0 A B eE BSOSO GCOEDRPE OGN 30
Elementary Tnput FUNCLLONS cessos seneeens oo psdodssbsasssoses 30
Flementary output TOULINGES "scenae s sianss sa@nes as sawieossiams 30
Dt her input TONEIDES “a v sdan Foeos sees dued i aeasesenssisnsese 371
Othear ontpnt coutinsds ssvevsass s daeeedenivlasisss sabos Vowams D2
Enquiriﬁs © 5 00 006005 6005 0000600 06¢ 0606096 $9 00006 60 O 0S0C0C00 BN 32
Inpat £ile MANIPUPALION e isnsnswesasmi s vams snsaaGasseen 33
Output £file manipulation sesssncesiss ssssscsnsnssssndsonsss I
SEPING DANYPUHLALION fweme mmon s e noe s eme s smses samomnnnesss S
PEOGEAMMING @138 wenassconwwannwsme swnos s pesmas e ans sasensw I4
FORTRAN interfdce in BEPL=V Gssidndisnassoss sé0dndsneasssen 36

Miscol-langous © 6 060 0 0 a9 8 90T B B8 AN T H NS AS G0 SR S S SE NSNS E N 0EE S 26
Par* III"”Si_nq RCPL Hi’-h MTq S 8 0 ¢ 0 00 00 00 ¢S 00 00 2O eV PSSO PO e Do 38

Compila‘(inn and execution F PR R BRI B G A AE BT O S e ns I8
’.’.ibrarv deC]_arations 9 60 8 8 00000 0600008 090660038 ST 00 SOECE SO 38
BIATNOSEICE sotmcssnsnosmenammenssesdionneesasssnsasessaonas 00
Complla*ion SPEIONE ssssssdevsnsscnssusnsvsanessvespnonssnce 91
Execution optionNsS sseesceacsascscncssssscscasacssacssscsssssne H2
Loadinq ..l....."‘........'.'.‘..'.......'...'......‘...... u2
Execution faultsS cuceececssccssccnsosccssrsosssssssannsssscnae U2
The P.EOfilp Opflf)n ooo--;o-o-ccooc-oooo-poooo-.oooo.o u3

A Complefe 'iOh o e wwee S EEE SR NI RE v s s e e e sieiesiew onieis D
Patrt JV--Reference Matarial sececesscccscccccsssscescaccssnses U7

Appendix A: Basic svmbhols and oXxampleS seeeccccscscsccesence 47

Apoendix n: RN]-, of H(“)I-‘ TS 8 0 E BN 0000 GO SN P AT SO AN ES 8Os %O e uq
Appendix C: ChAracter SetS .cisimsesessocsaassssassdssssonss
I‘\pPPndix D: Cﬁmpilaf ion Diaqnostics C 8 B e %W 00 0 88 BA0e s eER e OGS 5“

Appendix F: Commnon extonSions .s.cesvsesosascossdasenscsnne 56

[‘CPL-V ® 60 0 05 & 48 00 & E N 8 B9 B SN E RS D PG TP RE S RS ORGSO P PE eSO RS @ 56

Appendixy F3 Compilat-ion 1isting ceesoosssse os oo ws snisissdsoeises D7
CTOSS TEfOTaNCING maw b easls » sioimie saais soss snesssse snmenssvesss D7

Appendix G: MISCPllany iesesceasisitnsoscessasasscansanessss D8
Streanms jn RCPL~-V ©© 295 8 5 020 80 06 08 8 eE 8 0006 08 96 00 9S SRS IS0 NS S 58
Maintainina 1arqge BCPL PrOQLAMS .cessesesescossssssasssessas DI
Callinqg Assembler-Lanquage Routines on the 370 .cievsecesssee 59
Writing Re=-enterahle code

l'.l..l...Qllllllll.."....ll..l.. 59

Appendix H: Tha BCPL/3170 Runtime Environment

® 80 09 % o SO TE e Sq

