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ABSTRACT 

i. 

Most work in the fixed-point semantics of programs has been based on a 

mathematical approach in which we specify the fixed-points mathematically. The 

only exception is the work by Park which takes a logical approach vis Tarski type 

fixed-point semantics. We reevaluate this logical approach in this paper. We will 

develop a logical approach via Scott type fixed-point semantics. Very powerful 

and easy to use induction methods will be obtained. It will be observed that 

several ad-hoc but powerful program verification methods are special cases of 

these induction methods. Also an interesting logical semantic formulation of 

terminating program schemas wi 11 be given. The computational aspect of the Scott 

type of logical semantics will not be emphasized in this paper, but it might 

provide very important and helpful information for finding inductive assertions. 
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1. Introduction 

Several significant attempts have been made to define the semantics of com

puter programs as the least fixed-points of some adequate higher order functions. 

The importance and elegance of such an approach for formal semantics is twohold: 

(i) Associating a higher order function with each program is transparent and 

intuitively clear. Thus this method provides a mathematically clean and easy to 

understand formal semantics. 

(ii) The mathematical analysis of such fixed points provides several very power

ful induction methods for proving general properties about them. 

The former claim can be seen in the recent success of the Mathematical Semantics 

of Programming Languages (13,14). Quite notable results have been obtained with 

respect to the latter, in the field of program verification (4,5,6,7,9). In this 

paper we will mainly focus on the latter. 

The first (historically) important work in this direction was done by Park 

(4}. He used the famous Tarski fixed-point theorem (1) of monotone functions 

from a complete lattice to itself as a mathematical foundation of this approach. 

Then he showed that, for each program, we can associate an adequate such monotone 

function whose least fixed-point is the semantics of that program. Also he 

presented a very general and powerful induction on the least fixed-point, the so

called fixed-point induction, and applied this induction for program verification 

to show that both the inductive assertion method for recursive programs and the 

recursion induction are special cases of fixed-point induction. 

The only defect of Park's approach is that, using Tarski's fixed-point 

theorem, we can not feel the actual computation process involved in the program 

computation. In a sense, we can say that Tarski's fixed-point approach is too 

abstract for computer scientists. Scott overcame this weakness of the fixed-point 

approach. He observed that the semantics of computer- programs should be defined 
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as the least fixed-points of continuous functions rather than monotone functions. 

He showed that for a continuous function from a complete lattice to itself, the 

least fixed point can be obtained effectively. Using the effectiveness of the 

least fixed-points, Scott discovered a very powerful induction method for proving 

general properties of the fixed-points. This method is called the Scott fixed

point induction method (5). 

Various results followed after these two foundamental works. Manna and 

Morris discovered several other induction methods again using the effectiveness 

of Scott's least fixed-points (6,9). Manna also showed that Scott's fixed-point 

induction implies the inductive assertion methods for recursive programs and 

recursion induction, as in Park's work. 

Like Manna and Morris, we will pursue Scott's fixed-point approach. The 

first main result in this paper involves logical semantics. The idea of logical 

semantics originates with Park (4). In his fixed-point approach, Park defined the 

semantics of recursive programs not mathematically but logically. In other words, 

for each recursive program, he associated not a monotone function but a monotone 

formula which extensionally characterizes a monotone function. Then he showed 

that the least fixed-point of such formula exists and that fixed-point extension

ally defines the least fixed-point of the monotone function which the formula 

describes, But the work done so far in Scott's fixed-point approach takes the 

mathematical semantics approach (6,7,9). We observe that the fixed-point induc

tion in the mathematical semantics approach enforces the logic to include the 

domain of functions as a part of individual domain (7), while this is not so in 

the logical semantics approach. Therefore the logical semantics makes the logic 

needed for carrying out the induction simpler than the mathematical semantics. 

For this reason, we will take the logical semantics approach with respect to 

Scott's fixed-point approach. In fact from section 2 to 4, we will show how to 
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associate a continuous formula for each program s.t. the logical formula inten

sionally defines the continuous function which is supposed to be associated with 

the program. We then observe that we can effectively obtain the least fixed-point 

of the continuous formula which intensionally defines the least fixed-point of 

the continuous function (12). 

The second main result of this paper is a formulation of those induction 

methods of Scott, Manna, and Morris, in terms of the logical fixed-point theorem. 

We then apply these induction methods for program verification and observe that 

ad-hoc verification methods, like Floyd's inductive assertion method and King's 

symbolic execution method are special cases of these induction methods. An espe

cially close investigation on the justification and advantage of King's method 

will be given. Note that unlike the work by Manna (6), we do not translate 

programs into recursive programs to carry out this sort of discussion. Therefore 

we belive our approach is more straightforward and natural. 

The third main result is an interesting relation between the finiteness of 

logical semantics and the termination of program schemas. Actually the logical 

semantics of a program schema is a collection of first order infinitary formulas. 

A case study will leads us to a class of program schemas, the so-called terminat

ing schemas, for which the logical semantics reduces a collection of first order 

finitary formulas (12). 

The mathematical semantics approach can be formulated (in the logician's 

sense of formulation) as some sort of 1-calculus, like LCF (7). The logical 

semantic method is an alternative to LCF like application of Scott's fixed-point 

theorem in program verification. In fact LCF is so designed as to work even for 

higher order programming languages, in which a program treats programs as data. 

Obviously our programs in this paper are not higher ordered, and the logical 

semantics of higher order languages is not known yet. Thus our approach 
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sacrifices generality for simplicity and LCF scarifices simplicity for 

generality. 

A more formal and detailed treatment of the discussion of section 2, 3, and 

4 can be found in (12). 
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2. Scott's fixed-point theorem (5, 8) 

Since we will take Scott's fixed-point approach, we need to know the mathe

matical foundation of this approach, which is the Scott's fixed-point theorem. In 

fact we will use a special version of his theory which is based not on complete 

lattices but on complete partial orderings. 

A partially ordered set (D,~) is a complete partial ordering (c.p.o.) iff D 

contains the minimal (w. r. t. ! ) element and every chain X in D has a least upper 

bound UX in D. By chain X we mean a subset {xii i~Njso s.t. X;~ xi+l for all i. 

A function f:D-➔ D is monotone iff x1sx2 implies f(x1)5f(x2) where Dis a 

c.p.o. A monotone function f:D -•Dis continuous iff for every chain X in D, 

Uf(X) = f(UX). 

Theorem Scott's fixed-point theorem 

Any continuous function f:D - ➔ D has a least fixed point conv(f) given by 

the following: conv(f) =Litfi(.L)I i = 0,1,2, .. .J where f0(x) =l for any xeD. 

The formula for conv(f) suggests an induction rule for proving properties of 

conv(f). Presumably we can induce as follows: 

"P(conv(f)) = T if P(fi(.l.)) = T for all i 11 

,'. 

But, in general, the property P does not remain true in the limit. A good intui

tive analogy to this matter can be found in the well known fact that no regular 

polygon is smooth but their limit, a circle, is smooth. But fortunately it has 

been known that a quite large interesting class of properties remain true in the 

limit. Actually, as we will see later, for proving programs partially correct, we 

can always use the above induction. We call properties which allow the above 

induction admissible (11). 

For admissible properties, we actually have three different induction 

methods depending upon how we prove P(f1(..L)) = T for all i (6,9). 
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(1) simple induction method 

"P(conv(f)) = r -1f P(J.) = T and (Vi)[P(fi(x)) -~ P(fi+l(x))] = T" 

(ii) truncation induction method 

"P(conv(f)) = T if P(.L) = T and 

(Yi) f(vj~ i)[P(~(x))] -it' P(fi(x))J = T" 

(iii) Scott 1 s fixed-point induction 

"P(conv(f)) = T if P(..L) = T and P(x) -,;, P(f(x)) = T11 

Note that the elegance of Scott 1 s fixed-point indction is its simple inductive 
' 

step. 

I· 
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3. The language 

In this section we will set up the logical notions and notations needed 

later in this paper to define our logical semantics. Since our main purpose is 

to define computational object using mathematical logic, our language allows 

only a finite number of predicate and individual variables in formulas. Even 

though we are mainly interested in at most first order infinitary formulas to 

which we identify the semantics of programs, we need to establish a theory about 

these semantics. Therefore we need to extend our language to an at most second 

order language. Thus our language contains only at most second order infinitary 

formulas with finite variables. {Note: second order infinitary formulas will not 

be used in this paper.) 

~~)(ft,) where X= (Xl' ... ,Xm) and~= (x1, .. ,xn) denotes that a formula '3" 
has at most m free predicate variables and n free individual variables. 

An interpretation I of our language is a 4-tuple (D1,F,P,C) where D1 is a 

set called the domain of individuals of I, Fis a set of functions of D1 one for 

each basic function symbol, and Pis a set of predicates of D1 one for each 

basic predicate symbol, and C is a subset of D1 one for each individual constant 

symbol of our language. Let S be a syntactic object of our language, then by 

s1 we mean the result of assigning the corresponding elements of I to each basic 

symbols of S. 

Let ~~) ~) be a formula and A and ~ be vectors of informal predicates of 

D1 and of constants of D1 respectively. By 1-1(A)(I\) we mean the result of 

assigning A toYl and IS\\to~ component-wise in CJ 1. Note that we assume that the 

demension of~ and ~ are the same as that of* and~ respectively. By the 

extension of CJ iD._ I, denoted by ext 1 (g) , we mean the set of assignments: 

ext1 (g) = { ( A., at..) 111 (A)(~)j. 

Roughly speaking ext1(g:) is a collection of informal predicates and individuals 

which makes 1-1 true. 
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Definition 

Let CJ(t)(.3t) be a formula. Then: 

(i) ~is satisfied J?t.M!. assignment (A ,(l) .in I iff (,\,~)E ext1(g::), 

(ii) gis valid under I iff all possible assignments in I belong to ext1(g:), 

(iii) ':tis valid iff~ is valid under all admissible interpretations. 

By admissible interpretations we mean interpretations which satisfy the equality 

axioms together with T; F. 

We say that two formulas ~ and 3 a re semantically eguiva 1 en t under I, 

denoted by 5 =/l iff ext1{'3'.) = ext1(~). If tf =r41 for all admissible I, 

then we say :f is semantically equal to~ and denote this by g;. ~. 
Lemma 

(i) ~=r~ iff 3' ... +~ is valid under I. 

( i i) 9- = >a, . if f ~ " .. ~ is va 1 id. 

Because of this lemma we sometimes identify 11
;;

11 with 11 ~~ 11
• 

We have defined a sort of infromal (or semantic) substitution as assignment. 

Now we define formal (or syntactic) substitution. Let ~(Xl' ... ,Xm)(x1, ... ,xn) 

be a formula. Let ~ 1, ... , ,m be formulas and let T 1'". , {n be terms. By ""J ( !J.1, 

... ,~m)(71' ... ,7n), we mean the result of substituting (~ 1, ... ,~m) for (Xl' .. 

. ,Xm) and (71, ..• ,Tn) for (x1, ... ,xn). The above substitution should be done in 

such a way that no free variable in~ 1, ... ,j'm,\, ... ,7n will be bound in 

'J (~1'" · ,'~m)(11''" ''n). 

Defi ni ti on 

Let ~ ( Xl' ... ,Xm){9") be a formula. Let ~ 1, ... , ~ m be formulas. 

(i) ~ 1, ... ,~m satisfyc_under I iff l;(~ 1, ... ,~m)(~) is valid under I. 

(ii) ~1'' .. ,~ m satisfy~ iff ~(~l'" .,~m)(~) is valid. 

Let ~i(x1, .. ,,Xw)(~) be finitary formulas (l~iS.N). Then we call the 

following set of formulas, a system of formula equations. 
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~ N(Xp ••• ,XN) ~ = XN~ 

A solution to this system is a set of formulas ~ 1, ... ,~N satisfying these 

equations. A solution under I of this system is a set of 'formulas 11, ... ,~N 

satisfying these equations under I. 

Later in this paper we will associate a system of formula equations with a 

program schema and identify the semantics of this program schema to the least 

solution of this system of formula equations. In other words, we associate 

(~ 1, ... , ~N) with a program schema and define the semantics of the schema as the 

least fixed point of (~ 1, ... '~N). 
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4. A least solution of a system of formula equations 

In this section we will define a class of systems of formula equations for 

which the effective least solutions exist. The class which will be discussed here 

is that of continuous systems. A discussion which is essentially equivalent but 

based on the monotone systems can be found in (4). 

To introduce the notion of continuity for formulas, and hence apply Scott's 

fixed-point theorem to obtain the least fixed-point of them, we somehow have to 

interpret a formula as a function, since the fixed-point theorem is described in 

terms of functions. Suppose C.(X)(~) is a formula. We can regard this formula as 

a statement, under an admissible interpretation I, of a function c} of relations 

such that: C~(A) = {~ll.1 (A){~)} . 

Let us define ~(X)~) to be continuous iff cf is continuous for all 

admissible I. If X is a (demension of ~)-ary predicate variable then C~ has the 

least fixed point conv{C?), wheneverG. is continuous. Using the equation: 

conv(c7") = U {(c?)i(l) Ii= 0,1,2, ... 1 
we can easily prove: 

conv(C7) = ext1 (Conv(i) (~)) 

where Conv(C.)~) = F V~(F)(~) V t,.2(F){~) V ..... 

where ~n(F)(~) = 4(t."-1{F)(~))(~). Note that the above relation states that 

Conv(~)~) is a logical description of conv(c7). 

Applying Scott's fixed-point thorem to c?, we can easily prove the following 

theorem: 

Theorem Scott's fixed-point theorem for formulas 

Let C.(X){$t) be continuous and let X be (demension of ~)-ary. Then Conv{~) 

(£) is the extensionally least solution of the following system of equations: 

We can easily extend the above results to the case of simultaneous 

formula equations. We first associate the following functior.: 
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c~(,\) = (C~'{A), ... ,c7(A)) where c}(!~) = i ~le.{{,~){~) J , 
with L= {t 1, ... ,l:.N) where ~; = C:.i(X1, ... ,XN)(~) and the Xj are (demension of 

~ )-ary. (1:S: i ,j$. N). We define i to be continuous iff c? is continuous for all 

interpretations I. 

Lemma 

Suppose i is continuous, then: 

conv(~) = (conv1(c~, ... ,convN(C~)) 
}: k . 

where conv;(c;') = U{((CI) (L))i I k = 0,1,2, ... } and(¥); denotes the ith 

component of )( . 

This lemma is very important because it assures us that to obtain each component 

of the limit, we can take the limit component-wise. 

Definition 

Letl.= {C-.1' ... '~N) where C.i(Xl' ... ,XN){~) and Xj are {demension of~)

ary (ls i,j5 N). Define Conv;{~)(~ by: 
1 2 . ~N7 

Conv;(t..)(~) = F V ct.;(F)(~ V ~;(IF)(~) V ... with IF= (F, ... ,F), 

where c.i (F) (~) = C.; (F) (~) 

a;__~((F)(.~) = ~(~n-l(f)(~))(:¥c-) 

and C-.k(/F) (~) = (l~(IF) (.t), ... ,~~(IF)(~)). 

Let Conv( tJ (?k,) = ( Conv1 ( ~){~), ... ,ConvN ( ~) ~)). 

Now we can prove convi(~) = extI(Conv;(~)(~)) if ~ is continuous. There

fore, intuitively, we can think that the formula Conv;(~)(.£) is a logical des

cription of the function conv;(c}). Hence using Scott's fixed-point theorem for 

convi(ct), we obtain the following theorem: 

Theorem Scott's fixed-point theorem for formulas (extended) 

Let~= (~ 1, ... ,~N) be continuous where l:.; = ~;(X1, ... ,XN)(~) and Xj is 

(demensi on of ~)-ary (1 ~ i ,j -~ N). Then Conv( ~)(~) is the extension ally least 

solution of the following system of formula equations: 
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~N~)(,oc) = XN{~). 

In other words, it is the least fixed-point ofl... 

The definition of Conv{i){~) suggests the following induction methods for 

proving properties of Conv{~){t). 

A formula is said to be admissible under I iff the following formula is 

valid under I: {\7'i)['3{~\IF){~)){~)J - ➔ Conv(~){~). 

q is adm1ssible iff the above formula is valid. In the following inductions we 

assume that '3 is admissible {under I). 

The simple induction method 

9'{Conv{~){a)){!t) is valid (under I) if ':f (F){~) is valid (under I) and 

{~i)[~{cl\i){~))~) - ➔ g{~i+l{)k){~))~)J is valid (under I). 

The truncation induction method 

g(conv{~{.:t)){a) is valid {under I) if 'f{IF){~) is valid (under I) and 

Cv'i)[(Vjsi)[<J(~j{)k){i))(!rt)J - ➔ '1{l-;{){()~))(,Lt,)] is valid {under I). 

The Scott's fixed-point induction method 

g(conv{~){a)){~) is valid (under I) if Cf(IF)tl) is valid (under I) and 

the validity of ~(~')(~) implies that of q.(~{~){~))~) {under I). 

When we think of the relation: Convi{"-)~) = V it_~(IF){~), we can modify 
k=O 

the truncation induction as follows: 

Modified truncation induction 

~(Conv1(<t,)(~)(~ is valid (under I) if 9-(F)(~) is valid (under I) and 

{'\ik)[('v'js.k)[c.J(t~{)/(){~)){~)] -~'g(~~(;)!()(~)~)] is valid {under I). 

Note that in the above inductions, the logic needed is just ordinary first 

order logic. Especially note that we do not need to treat functions as 

individuals as in section 2. just because we express functions by formulas. 
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5. Fixed-point semantics of program schemas 

We will define a class of syntactic objects, called the program schema. We 

first associate a system of function equation schema to each program schema and 

define the semantics of the program schema as the least solution of that system 

of function equation schemas (3). Hence we obtain a mathematical semantics of the 

program schema. Next we associate with each program schema a system of formula 

equations in such a way that the least solution of this system coincides with the 

mathematical semantics of this program schema. Hence we obtain a logical 

semantics which is consistent with the mathematical semantics in Floyd's sense 

(2,12). 

5.1 Program schemas 

Program schemas are composed of the following program elements: 

start end assignation conditional merge 

ct -J, 

h ~i~ x. ~- t 
J L ~ 

where xi is an i ndi vi dual vari ab 1 e, t is a term, and P is a formula without 

predicate variables. 

A program schema is a collection of program elements satisfying: 

(i) it contains exactly one start and one end. 

(ii) each edge originates from one program element and proceeds into one another 

program element. 

A free individual variable in a program schema is called a program variable. 

To denote that a syntactic object Sofa program schema has at most n free 

program variables~= (x1, ... ,xn), we write S~). 

The interpretations of program schemas are the same as those of our language 

in section 3. To denote a syntactic object Sofa program schema interpreted 

under I, we write s1. 
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5.2 Mathematical semantics 

When we execute an interpreted program schema ~I(~), the program variables 

re are to be bound to elements of DI, at each program point (edge). We call a 

vector of elements of DI bound to~a state-vector of ~I~ (3). Essentially 

the semantics of an interpreted program schema is defined as a function of state

vectors. In usual schemata theory this function is defined operationally in terms 

of control flow (10). But in this paper we will define it mathematically. 

Given a program schema I'(~), let us associate a function variable with edge 

(program point) of)'(~. For each program element of zP(~, let us associate 

the following function equation schema: 

end 

assignation 

1>i 
I X ~- t(~) 

~j 

merge 

con di ti ona l 

F 

T 
ti(~= <l>j(x , ... xk-l't(~),xk+l'" ,xn) 

f> i (i:) = if P ~) then f p (.:t) else 1.1p ~) 

Thus for ~(~), we have a system J,,('f>) ~) of function equation scheams. 

example: s 

For 

<P1 
.---~ 

~2 
F 

E 

1\ (x) = t2(x) 

f)2(x) = if P(x) then 4'3(x) else ip5(x) 

~3(x) = t4(t(x)) 

4> 4(x) = <f'2(x) 

f5(X) = X 
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· I I · . ·- I · . .+.. I Let (~1, ... ,fm) be the least solution of .fi(q>1, ... ,q>m)(_eq, where ~(f(f1, .. ,fm) 

(t) is the interpretation under I of ~(<l\, .. ,fm)(Je). Then it is easy to observe 

that <Pf is the function computed by ;,,1(~) of state-vectors from the ith edge of 

?1(,;rc) to the end of )7 1~ (ls iSm) (3). This is the so called tail function. 

Thus we can safely regard (cp{, ... ,~~), the leastsolution of ~(t)(~ as the 

mathematical semantics of-;;, 1 (~). By the least solution of ~ (f) (~), we mean the 

set {(<Pf, ... ,f~) I I is admissibleJ. We define the mathematical semantics of 

~~) by the least solution of~(~(~). 

5.3 Some properties of program schemas 

Let J' (~ be a program schema and <pi be the tai 1 function associated with 

the start edge of f 1~. Then we say.,(~ terminates under I ( or P 1~) 

terminates) iff fi is total. We say d7('1<} terminates iff it terminates under all 

admissible interpretations. 

Let d-7 1(~) and ?f2(f/A be program schemas, and~i
1

,cpL_ be the tail functions 

for the start edges of O' i {~) and o' ~~) respectively. Then we say that «?' 1 ~) 

and8' 2(~) are equival ent under I (or~i(Pf4 andl7~(~ are equivalent) iff~i, 

and fii_ are equal as functions. We say d' 1(~) and c11 2(a-) are equivalent iff they 

are so under all admissible interpretations. 

5.4 The logical semantics 

Here we will associate a system of formula equations to each program schema 

and observe that the least solution of this system of equations coincides with 

the mathematical semantics of the program schema. Unlike Park's logical semantics 

for recursive schema, the least solution here does not describe the mathematical 

semantics directly as its extention. It will be observed that the logical 

semantics describes the mathematical semantics as a set of assertions which is 

consistent with the mathematical semantics (or the program schema itself). The 

notion of consistent assertions can be found in (2). 

First, given a program schema '!><Ji,), we associate a predicate variable to 
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each edge of 'i' ~). Then for each program element, we associate the following 

first order continuous formula: 

assignation X 

X ~- t(~) 

xj 

X;~) _ (:fy)[xk = t(xp ... ,xk-l'y,xk+l'"''xn) & 

con di ti ona 1 
F 

merging 

xj 

Xj (t) ; X
1
• (~) V X

1
• (~) V .. • V X. (~) 

I i l.., 

The re fore for each program schema ~ {jt) , we have a sys tern '1r (t)(~ of formula 

equations. For example: 

x+- t(x)] 
______ x4 

F 

x2{x) s x1{x) V x4{x) 

x3(x) _ x2(x) & P(x) 

x4(x) ; (::ry) [x = t(y) & x3(y)] 

X5(x) '= X2(x) & lP(x) 

As it can be seen in the above example, we obtain n equations for n+l 

predicate variables. Thus we have to fix one of them. Usually we fix x1 to some 

predicate which describes the domain of the program. 

Let <f(,'.t) be a program schema and ~i'(Xl' ... ,XN)(?i) be its system of formula 
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equations. Let (Ql' ... ,QN) be the least solution of~~(X1, ... ,XN){~. Then 

ext1(Qi) can be interpreted as the set of state-vectors to which the program 

va ri ab 1 es ~ can be bound at the i th edge when we execute the program d'1 ~ on 

the initial program states ext1(Q1). Therefore we can regard'£(}' (».}(9¼) as a 

description of the computation of ~ 1 (~) not on each initial program state but on 

the set of initial program states (12). In this sense we can say that the least 

solution ofi,i7(;1()(~) describes the semantics of;r(~). The following formal 

discussion will justify this intuitive argument. 

Theorem 

Let '?J' (OC) be a program schema and ~d' (,¥() (~) be the system of formula 

equations associated with d'(~). Let the ith and jth edge of J'(~) be the input 

and output edges of a same program element in tP(~ respectively. Then: 

1'~(ext1(Qi))=q>}{ext1(Qj)) for all admissible I, 

where f~ and f~ are the tail functions for the ith and jth edges of 1'1 
(~ res

pectively, and Qi and Qj are the least solutions of fJ'()f(){~) for the ith and 

jth edges respectively. 

Note that the above theorem states that the 1 east solution of ~{XO(~ , 

i.e. the logical semantics off(~), is consistent with J" (~) in Floyd's sense 

(2,12). Also observing the structure of the program scheam's syntax, we obtain 

the following theorem. 

Theorem 

Let ~ (~) and ~cf {¥()(;re) be as above, and let Q1 and QN be the least solution 

of i'f ~)(~) for the start and end edges of ?f' (!Ji.) respectively. Al so let fi and 

t~ be the tail functions for each of these edges respectively. Then: 

1i(ext1(Q1)) =<f>~(ext1(QN)) = ext1(QN) 

The next theorem tells us that the logical semantics gives the same sem~ntics for 

equivalent program schemas. 
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Theorem 

Let .f\(~ and f 2('KJ be equivalent under I. Let (Q 11 , ... ,QN,) and (Q1..z.,··· 

,QN~) be the least solutions for fitfj and~~ respectively. Then: 

QN =r QN if Ql EI Ql • 
i ~ I J. 
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6. Finite semantics and termination of program schemas. 

In the previous section, we have observed that the logical semantics of a 

program schema~(~ is the least solution of the corresponding system of formula 

equations -I,J' (X)(:l,). As we have seen in section 4, therefore the semantics of 

ff'(~ is a set of first order infinitary formulas. In this section, we will 

observe those cases in which these infinitary formulas reduce to first order 

finitary formulas. The following lemma is the mathematical foundation of this 

sort of reduction. 

Lenma 

Let f:D - ➔ D be continuous. Suppose, for some m, fm(l) = fm+ 1(L). Then: 

conv( f) = ~(J_). 

h Applying the above lemma to c1, we have the following theorem: 

Theorem 

Let i:.. = 0:-,1' ... ,i_N) where ~i = ~i(Xl' ... ,XN)(~ and Xj is (demension 

of ~)-ary (l~i,j:s:.N). Suppose"-is continuous. Also suppose that for some m, 
· m m+l ~i (F)(~) =i ~ i (lF") (~). Then: 

Convi(i)(I') =i ~~(F)~). 

The above theorem gives us a sufficient condition for the finiteness of 

Convi((CJ(rt). Thus our next question is what is a class of program schemas for 

which the logical semantics is finite. Actually we have a very important class 

of program schemas whose logical semantics is finite. 

Theorem 

If a program schema terminates then the logical semantics of it is finite, 

i.e. the logical semantics of it reduces to a set of first order finitary 

formulas. 

For example, the following program schema terminates: 
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[ y f- a 

F 

x1(y) :: (:1 z)(y = a & Q0(z)J = ~1()J()(y) 

X2(y) ~ X1 (y) & P(y) ~ ~ 200 (y) 

X3(y) =; X1(y) & ·1P(y) : ~ 3(~(y) 

X4(y);. (3z)[y = f(z) & X3(z)J::. l 40k)(y) 

X5(y) = X4(y) V X7(y) = ~500(y) 

X6 {y) ; X5 (y) & P {y) =: ~6 (X() {y) 

x7(y) ~ (3 z)[y = a & x6(z).] ~ ~ 7(1()(y) 

Xa(y) = X5(Y) &'lP(y) =; Z:aC~)(y) 

XgCY) s Xa(y) V X2(y) ~~g(x)(y) 

We can easily check that J-,io(f)(y) = ~~(IF)(y) (l~is.9). Therefore we have: 

Convi(d;)(y):: t~(lf)(y) (lS.i;S.9). 

One might expect that if an interpreted program schema o,> 1(~) terminates, 

then the logical semantics of ~ 1(~) is finite. But this is not true in general. 

More precisely, let '1!~00~) be as follows: 

~ 1 ().(') ~ s X 1 (.re) 

l N {)K){,t) s XN ~) • 

Then even if 1'1(~ terminates, in general, 11 for some k,t,~(IF-)~) =;: 1 J;1+1{f)~) 

(lsJsN)" is not true. The reason is that, for such r1(~, the least upper 

bound of the computation steps for each initial value of~ might be infinite. 

Note this least upper bound for a terminating r>(~ is always finite and is the 

steps of the symbolic execution of(/(?£.). 
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7. Program verification. 

With the logical semantics in hand, we are now in a position to prove 

properties of program schemas. In this paper we will treat only a class of 

properties, the so called partial correctness. Informally we can describe these 

properties as follows: 

"A program schema 1(~) is partially correct with respect to a pair of 

formulas (Cf ,'f) under I iff when we start the computation of j 1~) in the 

initial state ?z for which <f1(~) is true, then if the computation terminates in 

a state ~• then <-r(l') is also true." (2,6) 

Using the logical semantics, we can formally define partial correctness. 

Definition 

Let 'f (rtJ be a program schema and (Q1 , ... ,QN) be a least solution of the 

corresponding system ~, ~) (~). Then f (~) is partially correct w. r. t ("/, 4) 

under I i ff : 

cf(~ ;: Ql (~ & (QN(l) -~ l/'(~)) 

is valid under I, where the 1st and Nth edges are the start and the end edges 

respectively. 

If the logical semantics of 1 ('lt) is fineite, then proving f 1 (Jt) partially 

correct is simply theorem proving in first order logic. But if it is not finite, 

then, in general, we have to prove the fact in first order infinitary logic (16). 

Actually the infinitary logic needed for this purpose is very restricted and it 

might be worthwhile to investigate this sort of logic. But we will not take this 

approach in this paper. Actually the induction methods discussed in section 4 

provide finitary proof methods and they work well practically. In fact we will 

observe that several proof methods proposed for program verification from 

practical view point, like the inductive assertion method of Floyd (2), the 

symbolic execution method of King (15), turn out to be special cases of these 

induction methods. 
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Obviously, from the previous definition, to prove f (;)Z) partially correct 

w.r.t. {'f ,'f) under I, we need to do the following two steps: 

step 1 Solve the corresponding system: 

~10K)~) = x1~) 

~N ()x)('lt,) :: XN (~) 

with x1 (~) = 'f (~. 

step 2 : Prove ConvN(~)(£) -~4(~) is valid under I. 
N 

Note the formula ':f(~)(i) = & (Xk(~) -~ Pk(~)) is admissible (11). There-
k=l 

fore to prove the partial correctness, we can use the induction methods in 

section 4. A 1 so note, for this ':f , 1 (lf) (~) is vacuously valid under I. We wil 1 

see how these inductions work through several examples. 

(example 1) The following program schema computes the factorial function, under 

the usual interpretation IN of natural numbers. We will prove this as follows: 

I y .,_ 1 

...-----i!' 
X2 

r 

X l ( X ,y , i ) = i = X & X >-. 0 ; C. l 
x2{x,y,i) ;: ( 3 z)(y = 1 & x1 (x,z,i )] ; ~ 2 
x3(x,y,i) = X2(x,y,i) V X6(x,y,i) = ~3 
X 
4 

( X ,y , i ) = X 3 ( X ,y , i ) & X 'f O : &4 

x5 ( X ,y , i) := ( 3 z) [y = z ,l X & X 4 ( X , Z , i)J = ·~ S 

x
6 

( x ,y, i ) == ( 3 z) [x = z-1 & x5 ( z ,y, i ) ] = ~6 

X7(x,y,i) ~ X3(x,y,i) & x = 0 = l.7 

We will apply Scott's fixed-point induction rule. 

We first assume the followings are valid under IN. 

' , 



X1(x.y.i) - ➔ (i = x & x.zO) 

X2(x,y,i) - ➔ (y = 1 & x = i & x~O) 
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X3(x,y,i) -=. (x =O - ➔ y = i/) & ( X> 0 - ➔ (y = 1 ~ (i-1).it ... 1t-(x+l) & X( i)) 

X4(x,y,i) - ➔ (y = i~ (i-l)l' ... •(x+l) & O<x<;.i) 

X5(x,y,i) - ➔ (y = i•(i-1)~ ... ·•(x+l)*x & O<x< i) 

X6 ( X ,y, i) - ➔ (y = i • ( i -1) 11- ••• * ( x+ 1) & 0 ~ X < i -1) 

Using these induction assumptions we can easily prove the followings are valid 

under IN: 

~1 (.¥{)( X ,y , i) -➔ ( i = X & X ~ Q) 

~ 2()/()(x,y,i) -~ (y = 1 & i = x & x~O) 

~ 3 OK)( X ,y , i ) - ~ ( ( X = 0 - "? y = i 1 ) & 

( X > 0 - ➔ (y = i ~ ( i -1). . . . ~ ( x+ 1) & X ( i ) ) ) 

~ ~)( X ,y, i ) -➔ (y = i * ( i -1) ¥- ••• '- ( x+ 1) & 0 ( X <" i ) 

~ 5~)(x,y,i) -~ (y = i"Jf, (i-1)..,, ... ~(x+l) • x & O< x <i) 

C:. 6 (;,(){ X ,y , i ) -~ (y = i ill ( i -1 ) I'- • • • ~ { x+ 1 ) & 0 ~ X ( i -1 ) 

Therefore by Scott's fixed-point induction the following formula is valid under 

IN: Conv3(")(x,y,i) - ➔ ((x = O -~ y = i!) & 

(x>O -~ (y = i:.,; (i-1)• ... .-(x+l) & x< i)}). 

Therefore Conv7(CJ(x,y,i) - ➔ y = i) is valid under IN" Therefore we have 

proved that the program schema is partially correct w.r.t. (x.20,y = if) under 

IN. Note that this proof is an elegant version of Floyd's inductive assertion 

method (2). 

(example 2) For the same program schema and the same interpretation IN as in 

the previous example, we prove the same thing using Morris's truncation induction 

method. 

By manupulation of the system of formula equations, we have: 

x3(x,y,i) = (y = 1 & x = i & x.20) V 
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( 3 w) [y = w + ( x+ 1) & X 3 ( x+ 1 , w , i) & x+ 1 ; 0 J . . . ( i ) . 
Note that this manupulation corresponds to ascending 3 steps on the chain for 

Conv3(~) (~). 

We will proceed with the induction by assuming the induction assumption on the 

right side x3, and prove the assumption on the left side x3. Note, since (i) 

corresponds to 3 steps ascending on the chain for Conv3(~)(.t), the induction 

hypothesis is not that of simple or Scott's fixed-point inductions, but that of 

truncation induction. Therefore the proof goes as follows: 

By the induction assumption of truncation induction; 

X 3 ( x+ 1 , w , i) - ➔ ( x+ 1 = O -➔ y = i ) & 

(x+l>O -~ (y = if(i-1)"- ... "l'(x+2) & x+l<i)) 

Therefore x3(x+l,w,i) - ➔ (x+l>O - ➔ (y = i•(i-1)~ .... (x+2) & x+l<i)). 

Therefore: 

( 3 w) (y = w + ( x+ 1) & X 3 ( x+ 1, w, i) & x+ 1 'fi O] -~ 

((x = 0 - ➔ y = i!) & (x>O - ➔ (y = iJ(i-1)• ... +(x+l) & x<i))). 

By the truncation induction rule, we have: 

Conv3(i)(i) - ➔ (x = 0 -~ y = i!) & (x.>O - ➔ (y = i ,._ ... ·• (x+l) & x< i)). 

Therefore Conv7(~)(~) - ➔ y = i! is valid under IN' Q.E.D. 

Note the manupulation to obtain (i) corresponds to the symbolic execution 

for one iteration through the loop. Therefore the induction used in this example 

essentially is loop induction with symbolic execution. Therefore we can regard 

King's symbolic execution method (15) as a special case of truncation induction. 

The most notable advantage of this method is that the symbolic execution 

implicitly carries out the proofs for x1,x2,x4,x5,x6. Thus reduces the complexity 

of the logical proof drastically. 

As we can see from the previous examples, use of fixed-point induction rules 

does not solve the problem of finding inductive assertions (or key assertions), 

which is the main difficulty in inductive assertion methods. But if we can 

.... 
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establish a suitable infinitary logic in which we can directly prove properties 

of Conv(~)(fe), this difficulty will be automatically solved. Also, effective 

approximation of Conv(~)~), which is the least upper bound of an initial sub

chain of Conv(l'.;)(~), will give us a lot of information about the inductive 

assertions. Thus it might be worthwhile to look for some heuristic method for 

finding the key assertions from finite approximations of Conv(t;)(~. 
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8. Con cl us ion 

Systems of continuous formula equations were investigated and the least 

solutions for them were obtained in terms of sets of first order infinitary 

formulas. Several induction methods for proving properties of these solutions 

were presented. 

For each program schema, a system of formula equations was associated, and 

the least solutions of this system of equations was defined to be the logical 

semantics of this program schema. 

It was shown that any terminating program schema has the finite logical 

semantics. 

Application of the induction methods for logical semantics was exhibited. 

Several practical program verification methods were observed to be special cases 

of these induction methods. Especially King's symbolic execution method was 

proved to be a special case of the truncation induction method. 

Further research can be done in the following directions: 

(i) A very restricted first order infinitary logic in which we can prove 

properties of Conv(cC..)(~ will solve the difficult problem of finding key asser

tions in the inductive assertion method. 

(ii) By computing finite approximation of Conv("'-)(~, we might be able to 

obtain key assertions heuristically. 
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