
fUU!
PIIIPIM PIMl'I

PIM Pl MM
M IIIJ

Pl M MMIH1l'IMKMM
MIil MM MMMM PIJMM

HMK .PHI
1'Mr1 lllf l'IPI
ftKftMMMMM MM

l1IHIMMMM Kl'IIH!
lUtM

MM MMM
flll'I M MM

P1'1MMM MM
MMfl1 MM
MM l'IMM
M MMM

M P!M MMM
M!HIM MMM ~MM
l'IMM

MM
MPIIIMM

M MM
M M

MM
MIH-1
HMM
MMf'I

N Mr'! M
MMMMM

* *
* The Logical s~mantics of *
* Program Schemas *
* and Program Verification *
*

by

Akira Kanda

Technical R~port 76-11

December 1976

Department of Computer Science
University of British Columbia

Vancouver, E. c .

The Logical Semantics of Program Schemas and Program Verification

Aki ra Kanda
Department of Computer Science
University of British Columbia

Vancouver 8, B.C.
Canada

ABSTRACT

i.

Most work in the fixed-point semantics of programs has been based on a

mathematical approach in which we specify the fixed-points mathematically. The

only exception is the work by Park which takes a logical approach vis Tarski type

fixed-point semantics. We reevaluate this logical approach in this paper. We will

develop a logical approach via Scott type fixed-point semantics. Very powerful

and easy to use induction methods will be obtained. It will be observed that

several ad-hoc but powerful program verification methods are special cases of

these induction methods. Also an interesting logical semantic formulation of

terminating program schemas wi 11 be given. The computational aspect of the Scott

type of logical semantics will not be emphasized in this paper, but it might

provide very important and helpful information for finding inductive assertions.

ii

ACKNOWLEDGEMENT

The auther wishes to thank prof. R. Reiter and prof. D.M. Symes for helpful

discussions and encouragement. This research was partially supported by National

Research Council of Canada through grant A7642.

1. Introduction

Several significant attempts have been made to define the semantics of com

puter programs as the least fixed-points of some adequate higher order functions.

The importance and elegance of such an approach for formal semantics is twohold:

(i) Associating a higher order function with each program is transparent and

intuitively clear. Thus this method provides a mathematically clean and easy to

understand formal semantics.

(ii) The mathematical analysis of such fixed points provides several very power

ful induction methods for proving general properties about them.

The former claim can be seen in the recent success of the Mathematical Semantics

of Programming Languages (13,14). Quite notable results have been obtained with

respect to the latter, in the field of program verification (4,5,6,7,9). In this

paper we will mainly focus on the latter.

The first (historically) important work in this direction was done by Park

(4}. He used the famous Tarski fixed-point theorem (1) of monotone functions

from a complete lattice to itself as a mathematical foundation of this approach.

Then he showed that, for each program, we can associate an adequate such monotone

function whose least fixed-point is the semantics of that program. Also he

presented a very general and powerful induction on the least fixed-point, the so

called fixed-point induction, and applied this induction for program verification

to show that both the inductive assertion method for recursive programs and the

recursion induction are special cases of fixed-point induction.

The only defect of Park's approach is that, using Tarski's fixed-point

theorem, we can not feel the actual computation process involved in the program

computation. In a sense, we can say that Tarski's fixed-point approach is too

abstract for computer scientists. Scott overcame this weakness of the fixed-point

approach. He observed that the semantics of computer- programs should be defined

2.

as the least fixed-points of continuous functions rather than monotone functions.

He showed that for a continuous function from a complete lattice to itself, the

least fixed point can be obtained effectively. Using the effectiveness of the

least fixed-points, Scott discovered a very powerful induction method for proving

general properties of the fixed-points. This method is called the Scott fixed

point induction method (5).

Various results followed after these two foundamental works. Manna and

Morris discovered several other induction methods again using the effectiveness

of Scott's least fixed-points (6,9). Manna also showed that Scott's fixed-point

induction implies the inductive assertion methods for recursive programs and

recursion induction, as in Park's work.

Like Manna and Morris, we will pursue Scott's fixed-point approach. The

first main result in this paper involves logical semantics. The idea of logical

semantics originates with Park (4). In his fixed-point approach, Park defined the

semantics of recursive programs not mathematically but logically. In other words,

for each recursive program, he associated not a monotone function but a monotone

formula which extensionally characterizes a monotone function. Then he showed

that the least fixed-point of such formula exists and that fixed-point extension

ally defines the least fixed-point of the monotone function which the formula

describes, But the work done so far in Scott's fixed-point approach takes the

mathematical semantics approach (6,7,9). We observe that the fixed-point induc

tion in the mathematical semantics approach enforces the logic to include the

domain of functions as a part of individual domain (7), while this is not so in

the logical semantics approach. Therefore the logical semantics makes the logic

needed for carrying out the induction simpler than the mathematical semantics.

For this reason, we will take the logical semantics approach with respect to

Scott's fixed-point approach. In fact from section 2 to 4, we will show how to

3.

associate a continuous formula for each program s.t. the logical formula inten

sionally defines the continuous function which is supposed to be associated with

the program. We then observe that we can effectively obtain the least fixed-point

of the continuous formula which intensionally defines the least fixed-point of

the continuous function (12).

The second main result of this paper is a formulation of those induction

methods of Scott, Manna, and Morris, in terms of the logical fixed-point theorem.

We then apply these induction methods for program verification and observe that

ad-hoc verification methods, like Floyd's inductive assertion method and King's

symbolic execution method are special cases of these induction methods. An espe

cially close investigation on the justification and advantage of King's method

will be given. Note that unlike the work by Manna (6), we do not translate

programs into recursive programs to carry out this sort of discussion. Therefore

we belive our approach is more straightforward and natural.

The third main result is an interesting relation between the finiteness of

logical semantics and the termination of program schemas. Actually the logical

semantics of a program schema is a collection of first order infinitary formulas.

A case study will leads us to a class of program schemas, the so-called terminat

ing schemas, for which the logical semantics reduces a collection of first order

finitary formulas (12).

The mathematical semantics approach can be formulated (in the logician's

sense of formulation) as some sort of 1-calculus, like LCF (7). The logical

semantic method is an alternative to LCF like application of Scott's fixed-point

theorem in program verification. In fact LCF is so designed as to work even for

higher order programming languages, in which a program treats programs as data.

Obviously our programs in this paper are not higher ordered, and the logical

semantics of higher order languages is not known yet. Thus our approach

4.

sacrifices generality for simplicity and LCF scarifices simplicity for

generality.

A more formal and detailed treatment of the discussion of section 2, 3, and

4 can be found in (12).

5.

2. Scott's fixed-point theorem (5, 8)

Since we will take Scott's fixed-point approach, we need to know the mathe

matical foundation of this approach, which is the Scott's fixed-point theorem. In

fact we will use a special version of his theory which is based not on complete

lattices but on complete partial orderings.

A partially ordered set (D,~) is a complete partial ordering (c.p.o.) iff D

contains the minimal (w. r. t. !) element and every chain X in D has a least upper

bound UX in D. By chain X we mean a subset {xii i~Njso s.t. X;~ xi+l for all i.

A function f:D-➔ D is monotone iff x1sx2 implies f(x1)5f(x2) where Dis a

c.p.o. A monotone function f:D -•Dis continuous iff for every chain X in D,

Uf(X) = f(UX).

Theorem Scott's fixed-point theorem

Any continuous function f:D - ➔ D has a least fixed point conv(f) given by

the following: conv(f) =Litfi(.L)I i = 0,1,2, .. .J where f0(x) =l for any xeD.

The formula for conv(f) suggests an induction rule for proving properties of

conv(f). Presumably we can induce as follows:

"P(conv(f)) = T if P(fi(.l.)) = T for all i 11

,'.

But, in general, the property P does not remain true in the limit. A good intui

tive analogy to this matter can be found in the well known fact that no regular

polygon is smooth but their limit, a circle, is smooth. But fortunately it has

been known that a quite large interesting class of properties remain true in the

limit. Actually, as we will see later, for proving programs partially correct, we

can always use the above induction. We call properties which allow the above

induction admissible (11).

For admissible properties, we actually have three different induction

methods depending upon how we prove P(f1(..L)) = T for all i (6,9).

6.

(1) simple induction method

"P(conv(f)) = r -1f P(J.) = T and (Vi)[P(fi(x)) -~ P(fi+l(x))] = T"

(ii) truncation induction method

"P(conv(f)) = T if P(.L) = T and

(Yi) f(vj~ i)[P(~(x))] -it' P(fi(x))J = T"

(iii) Scott 1 s fixed-point induction

"P(conv(f)) = T if P(..L) = T and P(x) -,;, P(f(x)) = T11

Note that the elegance of Scott 1 s fixed-point indction is its simple inductive
'

step.

I·

7.

3. The language

In this section we will set up the logical notions and notations needed

later in this paper to define our logical semantics. Since our main purpose is

to define computational object using mathematical logic, our language allows

only a finite number of predicate and individual variables in formulas. Even

though we are mainly interested in at most first order infinitary formulas to

which we identify the semantics of programs, we need to establish a theory about

these semantics. Therefore we need to extend our language to an at most second

order language. Thus our language contains only at most second order infinitary

formulas with finite variables. {Note: second order infinitary formulas will not

be used in this paper.)

~~)(ft,) where X= (Xl' ... ,Xm) and~= (x1, .. ,xn) denotes that a formula '3"
has at most m free predicate variables and n free individual variables.

An interpretation I of our language is a 4-tuple (D1,F,P,C) where D1 is a

set called the domain of individuals of I, Fis a set of functions of D1 one for

each basic function symbol, and Pis a set of predicates of D1 one for each

basic predicate symbol, and C is a subset of D1 one for each individual constant

symbol of our language. Let S be a syntactic object of our language, then by

s1 we mean the result of assigning the corresponding elements of I to each basic

symbols of S.

Let ~~) ~) be a formula and A and ~ be vectors of informal predicates of

D1 and of constants of D1 respectively. By 1-1(A)(I\) we mean the result of

assigning A toYl and IS\\to~ component-wise in CJ 1. Note that we assume that the

demension of~ and ~ are the same as that of* and~ respectively. By the

extension of CJ iD._ I, denoted by ext 1 (g) , we mean the set of assignments:

ext1 (g) = { (A., at..) 111 (A)(~)j.

Roughly speaking ext1(g:) is a collection of informal predicates and individuals

which makes 1-1 true.

8.

Definition

Let CJ(t)(.3t) be a formula. Then:

(i) ~is satisfied J?t.M!. assignment (A ,(l) .in I iff (,\,~)E ext1(g::),

(ii) gis valid under I iff all possible assignments in I belong to ext1(g:),

(iii) ':tis valid iff~ is valid under all admissible interpretations.

By admissible interpretations we mean interpretations which satisfy the equality

axioms together with T; F.

We say that two formulas ~ and 3 a re semantically eguiva 1 en t under I,

denoted by 5 =/l iff ext1{'3'.) = ext1(~). If tf =r41 for all admissible I,

then we say :f is semantically equal to~ and denote this by g;. ~.
Lemma

(i) ~=r~ iff 3' ... +~ is valid under I.

(i i) 9- = >a, . if f ~ " .. ~ is va 1 id.

Because of this lemma we sometimes identify 11
;;

11 with 11 ~~ 11
•

We have defined a sort of infromal (or semantic) substitution as assignment.

Now we define formal (or syntactic) substitution. Let ~(Xl' ... ,Xm)(x1, ... ,xn)

be a formula. Let ~ 1, ... , ,m be formulas and let T 1'". , {n be terms. By ""J (!J.1,

... ,~m)(71' ... ,7n), we mean the result of substituting (~ 1, ... ,~m) for (Xl' ..

. ,Xm) and (71, ..• ,Tn) for (x1, ... ,xn). The above substitution should be done in

such a way that no free variable in~ 1, ... ,j'm,\, ... ,7n will be bound in

'J (~1'" · ,'~m)(11''" ''n).

Defi ni ti on

Let ~ (Xl' ... ,Xm){9") be a formula. Let ~ 1, ... , ~ m be formulas.

(i) ~ 1, ... ,~m satisfyc_under I iff l;(~ 1, ... ,~m)(~) is valid under I.

(ii) ~1'' .. ,~ m satisfy~ iff ~(~l'" .,~m)(~) is valid.

Let ~i(x1, .. ,,Xw)(~) be finitary formulas (l~iS.N). Then we call the

following set of formulas, a system of formula equations.

9.

~ N(Xp ••• ,XN) ~ = XN~

A solution to this system is a set of formulas ~ 1, ... ,~N satisfying these

equations. A solution under I of this system is a set of 'formulas 11, ... ,~N

satisfying these equations under I.

Later in this paper we will associate a system of formula equations with a

program schema and identify the semantics of this program schema to the least

solution of this system of formula equations. In other words, we associate

(~ 1, ... , ~N) with a program schema and define the semantics of the schema as the

least fixed point of (~ 1, ... '~N).

10.

4. A least solution of a system of formula equations

In this section we will define a class of systems of formula equations for

which the effective least solutions exist. The class which will be discussed here

is that of continuous systems. A discussion which is essentially equivalent but

based on the monotone systems can be found in (4).

To introduce the notion of continuity for formulas, and hence apply Scott's

fixed-point theorem to obtain the least fixed-point of them, we somehow have to

interpret a formula as a function, since the fixed-point theorem is described in

terms of functions. Suppose C.(X)(~) is a formula. We can regard this formula as

a statement, under an admissible interpretation I, of a function c} of relations

such that: C~(A) = {~ll.1 (A){~)} .

Let us define ~(X)~) to be continuous iff cf is continuous for all

admissible I. If X is a (demension of ~)-ary predicate variable then C~ has the

least fixed point conv{C?), wheneverG. is continuous. Using the equation:

conv(c7") = U {(c?)i(l) Ii= 0,1,2, ... 1
we can easily prove:

conv(C7) = ext1 (Conv(i) (~))

where Conv(C.)~) = F V~(F)(~) V t,.2(F){~) V

where ~n(F)(~) = 4(t."-1{F)(~))(~). Note that the above relation states that

Conv(~)~) is a logical description of conv(c7).

Applying Scott's fixed-point thorem to c?, we can easily prove the following

theorem:

Theorem Scott's fixed-point theorem for formulas

Let C.(X){$t) be continuous and let X be (demension of ~)-ary. Then Conv{~)

(£) is the extensionally least solution of the following system of equations:

We can easily extend the above results to the case of simultaneous

formula equations. We first associate the following functior.:

11.

c~(,\) = (C~'{A), ... ,c7(A)) where c}(!~) = i ~le.{{,~){~) J ,
with L= {t 1, ... ,l:.N) where ~; = C:.i(X1, ... ,XN)(~) and the Xj are (demension of

~)-ary. (1:S: i ,j$. N). We define i to be continuous iff c? is continuous for all

interpretations I.

Lemma

Suppose i is continuous, then:

conv(~) = (conv1(c~, ... ,convN(C~))
}: k .

where conv;(c;') = U{((CI) (L))i I k = 0,1,2, ... } and(¥); denotes the ith

component of)(.

This lemma is very important because it assures us that to obtain each component

of the limit, we can take the limit component-wise.

Definition

Letl.= {C-.1' ... '~N) where C.i(Xl' ... ,XN){~) and Xj are {demension of~)

ary (ls i,j5 N). Define Conv;{~)(~ by:
1 2 . ~N7

Conv;(t..)(~) = F V ct.;(F)(~ V ~;(IF)(~) V ... with IF= (F, ... ,F),

where c.i (F) (~) = C.; (F) (~)

a;__~((F)(.~) = ~(~n-l(f)(~))(:¥c-)

and C-.k(/F) (~) = (l~(IF) (.t), ... ,~~(IF)(~)).

Let Conv(tJ (?k,) = (Conv1 (~){~), ... ,ConvN (~) ~)).

Now we can prove convi(~) = extI(Conv;(~)(~)) if ~ is continuous. There

fore, intuitively, we can think that the formula Conv;(~)(.£) is a logical des

cription of the function conv;(c}). Hence using Scott's fixed-point theorem for

convi(ct), we obtain the following theorem:

Theorem Scott's fixed-point theorem for formulas (extended)

Let~= (~ 1, ... ,~N) be continuous where l:.; = ~;(X1, ... ,XN)(~) and Xj is

(demensi on of ~)-ary (1 ~ i ,j -~ N). Then Conv(~)(~) is the extension ally least

solution of the following system of formula equations:

12.

~N~)(,oc) = XN{~).

In other words, it is the least fixed-point ofl...

The definition of Conv{i){~) suggests the following induction methods for

proving properties of Conv{~){t).

A formula is said to be admissible under I iff the following formula is

valid under I: {\7'i)['3{~\IF){~)){~)J - ➔ Conv(~){~).

q is adm1ssible iff the above formula is valid. In the following inductions we

assume that '3 is admissible {under I).

The simple induction method

9'{Conv{~){a)){!t) is valid (under I) if ':f (F){~) is valid (under I) and

{~i)[~{cl\i){~))~) - ➔ g{~i+l{)k){~))~)J is valid (under I).

The truncation induction method

g(conv{~{.:t)){a) is valid {under I) if 'f{IF){~) is valid (under I) and

Cv'i)[(Vjsi)[<J(~j{)k){i))(!rt)J - ➔ '1{l-;{){()~))(,Lt,)] is valid {under I).

The Scott's fixed-point induction method

g(conv{~){a)){~) is valid (under I) if Cf(IF)tl) is valid (under I) and

the validity of ~(~')(~) implies that of q.(~{~){~))~) {under I).

When we think of the relation: Convi{"-)~) = V it_~(IF){~), we can modify
k=O

the truncation induction as follows:

Modified truncation induction

~(Conv1(<t,)(~)(~ is valid (under I) if 9-(F)(~) is valid (under I) and

{'\ik)[('v'js.k)[c.J(t~{)/(){~)){~)] -~'g(~~(;)!()(~)~)] is valid {under I).

Note that in the above inductions, the logic needed is just ordinary first

order logic. Especially note that we do not need to treat functions as

individuals as in section 2. just because we express functions by formulas.

13.

5. Fixed-point semantics of program schemas

We will define a class of syntactic objects, called the program schema. We

first associate a system of function equation schema to each program schema and

define the semantics of the program schema as the least solution of that system

of function equation schemas (3). Hence we obtain a mathematical semantics of the

program schema. Next we associate with each program schema a system of formula

equations in such a way that the least solution of this system coincides with the

mathematical semantics of this program schema. Hence we obtain a logical

semantics which is consistent with the mathematical semantics in Floyd's sense

(2,12).

5.1 Program schemas

Program schemas are composed of the following program elements:

start end assignation conditional merge

ct -J,

h ~i~ x. ~- t
J L ~

where xi is an i ndi vi dual vari ab 1 e, t is a term, and P is a formula without

predicate variables.

A program schema is a collection of program elements satisfying:

(i) it contains exactly one start and one end.

(ii) each edge originates from one program element and proceeds into one another

program element.

A free individual variable in a program schema is called a program variable.

To denote that a syntactic object Sofa program schema has at most n free

program variables~= (x1, ... ,xn), we write S~).

The interpretations of program schemas are the same as those of our language

in section 3. To denote a syntactic object Sofa program schema interpreted

under I, we write s1.

14.

5.2 Mathematical semantics

When we execute an interpreted program schema ~I(~), the program variables

re are to be bound to elements of DI, at each program point (edge). We call a

vector of elements of DI bound to~a state-vector of ~I~ (3). Essentially

the semantics of an interpreted program schema is defined as a function of state

vectors. In usual schemata theory this function is defined operationally in terms

of control flow (10). But in this paper we will define it mathematically.

Given a program schema I'(~), let us associate a function variable with edge

(program point) of)'(~. For each program element of zP(~, let us associate

the following function equation schema:

end

assignation

1>i
I X ~- t(~)

~j

merge

con di ti ona l

F

T
ti(~= <l>j(x , ... xk-l't(~),xk+l'" ,xn)

f> i (i:) = if P ~) then f p (.:t) else 1.1p ~)

Thus for ~(~), we have a system J,,('f>) ~) of function equation scheams.

example: s

For

<P1
.---~

~2
F

E

1\ (x) = t2(x)

f)2(x) = if P(x) then 4'3(x) else ip5(x)

~3(x) = t4(t(x))

4> 4(x) = <f'2(x)

f5(X) = X

15.

· I I · . ·- I · . .+.. I Let (~1, ... ,fm) be the least solution of .fi(q>1, ... ,q>m)(_eq, where ~(f(f1, .. ,fm)

(t) is the interpretation under I of ~(<l\, .. ,fm)(Je). Then it is easy to observe

that <Pf is the function computed by ;,,1(~) of state-vectors from the ith edge of

?1(,;rc) to the end of)7 1~ (ls iSm) (3). This is the so called tail function.

Thus we can safely regard (cp{, ... ,~~), the leastsolution of ~(t)(~ as the

mathematical semantics of-;;, 1 (~). By the least solution of ~ (f) (~), we mean the

set {(<Pf, ... ,f~) I I is admissibleJ. We define the mathematical semantics of

~~) by the least solution of~(~(~).

5.3 Some properties of program schemas

Let J' (~ be a program schema and <pi be the tai 1 function associated with

the start edge of f 1~. Then we say.,(~ terminates under I (or P 1~)

terminates) iff fi is total. We say d7('1<} terminates iff it terminates under all

admissible interpretations.

Let d-7 1(~) and ?f2(f/A be program schemas, and~i
1

,cpL_ be the tail functions

for the start edges of O' i {~) and o' ~~) respectively. Then we say that «?' 1 ~)

and8' 2(~) are equival ent under I (or~i(Pf4 andl7~(~ are equivalent) iff~i,

and fii_ are equal as functions. We say d' 1(~) and c11 2(a-) are equivalent iff they

are so under all admissible interpretations.

5.4 The logical semantics

Here we will associate a system of formula equations to each program schema

and observe that the least solution of this system of equations coincides with

the mathematical semantics of the program schema. Unlike Park's logical semantics

for recursive schema, the least solution here does not describe the mathematical

semantics directly as its extention. It will be observed that the logical

semantics describes the mathematical semantics as a set of assertions which is

consistent with the mathematical semantics (or the program schema itself). The

notion of consistent assertions can be found in (2).

First, given a program schema '!><Ji,), we associate a predicate variable to

16.

each edge of 'i' ~). Then for each program element, we associate the following

first order continuous formula:

assignation X

X ~- t(~)

xj

X;~) _ (:fy)[xk = t(xp ... ,xk-l'y,xk+l'"''xn) &

con di ti ona 1
F

merging

xj

Xj (t) ; X
1
• (~) V X

1
• (~) V .. • V X. (~)

I i l..,

The re fore for each program schema ~ {jt) , we have a sys tern '1r (t)(~ of formula

equations. For example:

x+- t(x)]
______ x4

F

x2{x) s x1{x) V x4{x)

x3(x) _ x2(x) & P(x)

x4(x) ; (::ry) [x = t(y) & x3(y)]

X5(x) '= X2(x) & lP(x)

As it can be seen in the above example, we obtain n equations for n+l

predicate variables. Thus we have to fix one of them. Usually we fix x1 to some

predicate which describes the domain of the program.

Let <f(,'.t) be a program schema and ~i'(Xl' ... ,XN)(?i) be its system of formula

17.

equations. Let (Ql' ... ,QN) be the least solution of~~(X1, ... ,XN){~. Then

ext1(Qi) can be interpreted as the set of state-vectors to which the program

va ri ab 1 es ~ can be bound at the i th edge when we execute the program d'1 ~ on

the initial program states ext1(Q1). Therefore we can regard'£(}' (».}(9¼) as a

description of the computation of ~ 1 (~) not on each initial program state but on

the set of initial program states (12). In this sense we can say that the least

solution ofi,i7(;1()(~) describes the semantics of;r(~). The following formal

discussion will justify this intuitive argument.

Theorem

Let '?J' (OC) be a program schema and ~d' (,¥() (~) be the system of formula

equations associated with d'(~). Let the ith and jth edge of J'(~) be the input

and output edges of a same program element in tP(~ respectively. Then:

1'~(ext1(Qi))=q>}{ext1(Qj)) for all admissible I,

where f~ and f~ are the tail functions for the ith and jth edges of 1'1
(~ res

pectively, and Qi and Qj are the least solutions of fJ'()f(){~) for the ith and

jth edges respectively.

Note that the above theorem states that the 1 east solution of ~{XO(~ ,

i.e. the logical semantics off(~), is consistent with J" (~) in Floyd's sense

(2,12). Also observing the structure of the program scheam's syntax, we obtain

the following theorem.

Theorem

Let ~ (~) and ~cf {¥()(;re) be as above, and let Q1 and QN be the least solution

of i'f ~)(~) for the start and end edges of ?f' (!Ji.) respectively. Al so let fi and

t~ be the tail functions for each of these edges respectively. Then:

1i(ext1(Q1)) =<f>~(ext1(QN)) = ext1(QN)

The next theorem tells us that the logical semantics gives the same sem~ntics for

equivalent program schemas.

18.

Theorem

Let .f\(~ and f 2('KJ be equivalent under I. Let (Q 11 , ... ,QN,) and (Q1..z.,···

,QN~) be the least solutions for fitfj and~~ respectively. Then:

QN =r QN if Ql EI Ql •
i ~ I J.

19.

6. Finite semantics and termination of program schemas.

In the previous section, we have observed that the logical semantics of a

program schema~(~ is the least solution of the corresponding system of formula

equations -I,J' (X)(:l,). As we have seen in section 4, therefore the semantics of

ff'(~ is a set of first order infinitary formulas. In this section, we will

observe those cases in which these infinitary formulas reduce to first order

finitary formulas. The following lemma is the mathematical foundation of this

sort of reduction.

Lenma

Let f:D - ➔ D be continuous. Suppose, for some m, fm(l) = fm+ 1(L). Then:

conv(f) = ~(J_).

h Applying the above lemma to c1, we have the following theorem:

Theorem

Let i:.. = 0:-,1' ... ,i_N) where ~i = ~i(Xl' ... ,XN)(~ and Xj is (demension

of ~)-ary (l~i,j:s:.N). Suppose"-is continuous. Also suppose that for some m,
· m m+l ~i (F)(~) =i ~ i (lF") (~). Then:

Convi(i)(I') =i ~~(F)~).

The above theorem gives us a sufficient condition for the finiteness of

Convi((CJ(rt). Thus our next question is what is a class of program schemas for

which the logical semantics is finite. Actually we have a very important class

of program schemas whose logical semantics is finite.

Theorem

If a program schema terminates then the logical semantics of it is finite,

i.e. the logical semantics of it reduces to a set of first order finitary

formulas.

For example, the following program schema terminates:

20.

[y f- a

F

x1(y) :: (:1 z)(y = a & Q0(z)J = ~1()J()(y)

X2(y) ~ X1 (y) & P(y) ~ ~ 200 (y)

X3(y) =; X1(y) & ·1P(y) : ~ 3(~(y)

X4(y);. (3z)[y = f(z) & X3(z)J::. l 40k)(y)

X5(y) = X4(y) V X7(y) = ~500(y)

X6 {y) ; X5 (y) & P {y) =: ~6 (X() {y)

x7(y) ~ (3 z)[y = a & x6(z).] ~ ~ 7(1()(y)

Xa(y) = X5(Y) &'lP(y) =; Z:aC~)(y)

XgCY) s Xa(y) V X2(y) ~~g(x)(y)

We can easily check that J-,io(f)(y) = ~~(IF)(y) (l~is.9). Therefore we have:

Convi(d;)(y):: t~(lf)(y) (lS.i;S.9).

One might expect that if an interpreted program schema o,> 1(~) terminates,

then the logical semantics of ~ 1(~) is finite. But this is not true in general.

More precisely, let '1!~00~) be as follows:

~ 1 ().(') ~ s X 1 (.re)

l N {)K){,t) s XN ~) •

Then even if 1'1(~ terminates, in general, 11 for some k,t,~(IF-)~) =;: 1 J;1+1{f)~)

(lsJsN)" is not true. The reason is that, for such r1(~, the least upper

bound of the computation steps for each initial value of~ might be infinite.

Note this least upper bound for a terminating r>(~ is always finite and is the

steps of the symbolic execution of(/(?£.).

21.

7. Program verification.

With the logical semantics in hand, we are now in a position to prove

properties of program schemas. In this paper we will treat only a class of

properties, the so called partial correctness. Informally we can describe these

properties as follows:

"A program schema 1(~) is partially correct with respect to a pair of

formulas (Cf ,'f) under I iff when we start the computation of j 1~) in the

initial state ?z for which <f1(~) is true, then if the computation terminates in

a state ~• then <-r(l') is also true." (2,6)

Using the logical semantics, we can formally define partial correctness.

Definition

Let 'f (rtJ be a program schema and (Q1 , ... ,QN) be a least solution of the

corresponding system ~, ~) (~). Then f (~) is partially correct w. r. t ("/, 4)

under I i ff :

cf(~ ;: Ql (~ & (QN(l) -~ l/'(~))

is valid under I, where the 1st and Nth edges are the start and the end edges

respectively.

If the logical semantics of 1 ('lt) is fineite, then proving f 1 (Jt) partially

correct is simply theorem proving in first order logic. But if it is not finite,

then, in general, we have to prove the fact in first order infinitary logic (16).

Actually the infinitary logic needed for this purpose is very restricted and it

might be worthwhile to investigate this sort of logic. But we will not take this

approach in this paper. Actually the induction methods discussed in section 4

provide finitary proof methods and they work well practically. In fact we will

observe that several proof methods proposed for program verification from

practical view point, like the inductive assertion method of Floyd (2), the

symbolic execution method of King (15), turn out to be special cases of these

induction methods.

22.

Obviously, from the previous definition, to prove f (;)Z) partially correct

w.r.t. {'f ,'f) under I, we need to do the following two steps:

step 1 Solve the corresponding system:

~10K)~) = x1~)

~N ()x)('lt,) :: XN (~)

with x1 (~) = 'f (~.

step 2 : Prove ConvN(~)(£) -~4(~) is valid under I.
N

Note the formula ':f(~)(i) = & (Xk(~) -~ Pk(~)) is admissible (11). There-
k=l

fore to prove the partial correctness, we can use the induction methods in

section 4. A 1 so note, for this ':f , 1 (lf) (~) is vacuously valid under I. We wil 1

see how these inductions work through several examples.

(example 1) The following program schema computes the factorial function, under

the usual interpretation IN of natural numbers. We will prove this as follows:

I y .,_ 1

...-----i!'
X2

r

X l (X ,y , i) = i = X & X >-. 0 ; C. l
x2{x,y,i) ;: (3 z)(y = 1 & x1 (x,z,i)] ; ~ 2
x3(x,y,i) = X2(x,y,i) V X6(x,y,i) = ~3
X
4

(X ,y , i) = X 3 (X ,y , i) & X 'f O : &4

x5 (X ,y , i) := (3 z) [y = z ,l X & X 4 (X , Z , i)J = ·~ S

x
6

(x ,y, i) == (3 z) [x = z-1 & x5 (z ,y, i)] = ~6

X7(x,y,i) ~ X3(x,y,i) & x = 0 = l.7

We will apply Scott's fixed-point induction rule.

We first assume the followings are valid under IN.

' ,

X1(x.y.i) - ➔ (i = x & x.zO)

X2(x,y,i) - ➔ (y = 1 & x = i & x~O)

23.

X3(x,y,i) -=. (x =O - ➔ y = i/) & (X> 0 - ➔ (y = 1 ~ (i-1).it ... 1t-(x+l) & X(i))

X4(x,y,i) - ➔ (y = i~ (i-l)l' ... •(x+l) & O<x<;.i)

X5(x,y,i) - ➔ (y = i•(i-1)~ ... ·•(x+l)*x & O<x< i)

X6 (X ,y, i) - ➔ (y = i • (i -1) 11- ••• * (x+ 1) & 0 ~ X < i -1)

Using these induction assumptions we can easily prove the followings are valid

under IN:

~1 (.¥{)(X ,y , i) -➔ (i = X & X ~ Q)

~ 2()/()(x,y,i) -~ (y = 1 & i = x & x~O)

~ 3 OK)(X ,y , i) - ~ ((X = 0 - "? y = i 1) &

(X > 0 - ➔ (y = i ~ (i -1). . . . ~ (x+ 1) & X (i)))

~ ~)(X ,y, i) -➔ (y = i * (i -1) ¥- ••• '- (x+ 1) & 0 (X <" i)

~ 5~)(x,y,i) -~ (y = i"Jf, (i-1)..,, ... ~(x+l) • x & O< x <i)

C:. 6 (;,(){ X ,y , i) -~ (y = i ill (i -1) I'- • • • ~ { x+ 1) & 0 ~ X (i -1)

Therefore by Scott's fixed-point induction the following formula is valid under

IN: Conv3(")(x,y,i) - ➔ ((x = O -~ y = i!) &

(x>O -~ (y = i:.,; (i-1)•-(x+l) & x< i)}).

Therefore Conv7(CJ(x,y,i) - ➔ y = i) is valid under IN" Therefore we have

proved that the program schema is partially correct w.r.t. (x.20,y = if) under

IN. Note that this proof is an elegant version of Floyd's inductive assertion

method (2).

(example 2) For the same program schema and the same interpretation IN as in

the previous example, we prove the same thing using Morris's truncation induction

method.

By manupulation of the system of formula equations, we have:

x3(x,y,i) = (y = 1 & x = i & x.20) V

24.

(3 w) [y = w + (x+ 1) & X 3 (x+ 1 , w , i) & x+ 1 ; 0 J . . . (i) .
Note that this manupulation corresponds to ascending 3 steps on the chain for

Conv3(~) (~).

We will proceed with the induction by assuming the induction assumption on the

right side x3, and prove the assumption on the left side x3. Note, since (i)

corresponds to 3 steps ascending on the chain for Conv3(~)(.t), the induction

hypothesis is not that of simple or Scott's fixed-point inductions, but that of

truncation induction. Therefore the proof goes as follows:

By the induction assumption of truncation induction;

X 3 (x+ 1 , w , i) - ➔ (x+ 1 = O -➔ y = i) &

(x+l>O -~ (y = if(i-1)"- ... "l'(x+2) & x+l<i))

Therefore x3(x+l,w,i) - ➔ (x+l>O - ➔ (y = i•(i-1)~ (x+2) & x+l<i)).

Therefore:

(3 w) (y = w + (x+ 1) & X 3 (x+ 1, w, i) & x+ 1 'fi O] -~

((x = 0 - ➔ y = i!) & (x>O - ➔ (y = iJ(i-1)• ... +(x+l) & x<i))).

By the truncation induction rule, we have:

Conv3(i)(i) - ➔ (x = 0 -~ y = i!) & (x.>O - ➔ (y = i ,._ ... ·• (x+l) & x< i)).

Therefore Conv7(~)(~) - ➔ y = i! is valid under IN' Q.E.D.

Note the manupulation to obtain (i) corresponds to the symbolic execution

for one iteration through the loop. Therefore the induction used in this example

essentially is loop induction with symbolic execution. Therefore we can regard

King's symbolic execution method (15) as a special case of truncation induction.

The most notable advantage of this method is that the symbolic execution

implicitly carries out the proofs for x1,x2,x4,x5,x6. Thus reduces the complexity

of the logical proof drastically.

As we can see from the previous examples, use of fixed-point induction rules

does not solve the problem of finding inductive assertions (or key assertions),

which is the main difficulty in inductive assertion methods. But if we can

....

25.

establish a suitable infinitary logic in which we can directly prove properties

of Conv(~)(fe), this difficulty will be automatically solved. Also, effective

approximation of Conv(~)~), which is the least upper bound of an initial sub

chain of Conv(l'.;)(~), will give us a lot of information about the inductive

assertions. Thus it might be worthwhile to look for some heuristic method for

finding the key assertions from finite approximations of Conv(t;)(~.

26.

8. Con cl us ion

Systems of continuous formula equations were investigated and the least

solutions for them were obtained in terms of sets of first order infinitary

formulas. Several induction methods for proving properties of these solutions

were presented.

For each program schema, a system of formula equations was associated, and

the least solutions of this system of equations was defined to be the logical

semantics of this program schema.

It was shown that any terminating program schema has the finite logical

semantics.

Application of the induction methods for logical semantics was exhibited.

Several practical program verification methods were observed to be special cases

of these induction methods. Especially King's symbolic execution method was

proved to be a special case of the truncation induction method.

Further research can be done in the following directions:

(i) A very restricted first order infinitary logic in which we can prove

properties of Conv(cC..)(~ will solve the difficult problem of finding key asser

tions in the inductive assertion method.

(ii) By computing finite approximation of Conv("'-)(~, we might be able to

obtain key assertions heuristically.

27

References

(1) Tarski A. (1955) A lattice theoretic fixed-point theorem and its applications

Pacific J. of Maths, Vol 5.

(2) Floyd R. (1967) Assigning meaning to programs, AMS Applied Mathematics

Symposia, vol 19.

(3) McCarthy J. (1963) Towards a mathematical science of computation, Information

Processing : Proc. of IFIP 62.

(4) Park D. (1969) Fix point induction and proofs of program properties, Machine

Intellegence, vol 5.

(5) Scott D. (1970) Outline of a mathematical theory of computation, Proc. of

4th Princeton Conference on Information Science and Systems.

(6) Manna Z. et. al. (1972) Inductive methods for proving properties of programs,

Proc. of ACM Conference on Proving Assertions about Programs.

(7) Milner R. (1972) Imp1ementat1on and applications of Scott's logic for

computable functions, In the same proceedings as (6).

(8) Milner R. (1973) Models of LCF, Technical Report CS-73-332, Stanford Univ.

(9) Morris H. (1973) Another recursion induction principle, CACM, vol 14 No.5.

(10) Manna Z. (1973) Program schemas, Currents in the Theory of Computing,

Prentice-Ha 11

(11) Igarashi s. (1972) Admissibility of fixed-point induction in first order

logic of typed thories, MEMO AIM-168, Stanford Uhiv.

(12) Kanda A. (1975) On computing the semantics of program schemas, M.Sc. thesis,

Queen's Univ. at Kingston.

(13) Scott 0. & Strachey C. (1971) Towards a mathematical semantics of computer

languages, Proc. of Symposia on Computers and Automata, Polytechnic

Institute of Brooklyn.

(14) Tennent R. (1976) The denotational semantics of programming languages, CACM

vol 19, No.a

28.

(15} King J. (1976} Symbolic execution and program tesing, CACM, vol.19, No.7.

(16} Scott D. & Tarski A. (1958} The sentential calculus with infinitary long

expressions, Colloquium Mathematicum, vol.11.

(17} Shoenfield J. (1967} Mathematical logic, Addison-Wesley.

I .

