
MMM
MPI f'IM !1!11'1

MM P.I f'll'l
M M

M f1 P1f1MMIIJMl'IMM
MP! IHI MM.MM tun,

MMM MM
MMM H MP!
rlfllfU'IMl'IMfHIM

HMP.IMl'IMM l'UU1M
MPifP'l

MM MMM
MM MMM

M Ml'lfMfU!M
11111M !UI
MM MNH
M M"P!

M MM Ml!l1
PIMfHf Ml'IMPU!l!
MMM

MM
MMMMM

M MM
M M

l'IPI
MM.Pl
IHI M
f!flll'I

"MM M
PH!MMM

* *
• The Design of a *
* High-level, Language-Independent *
* Symbolic De.buqging System *
* *

by

Mark Scott Johnson

Technical R~port 76-10

copyright. (c) 1976, Mark Scott Johnson.
Permission to reprint this document, except for profit, is

hereby granted subject to proper acknowledgement.

December 1976 •

Department cf computer Science
University of British Columbia

Vancouver, B. c.

< I

I "

i

Abstract.

The design of a language-independent, interactive system to
facilitate the analysis and symbolic debugging of computer
programs written in high-level languages is presented. The
principal features of th.e system are: (1) host source languag,e
independence is supported by the abstraction of language
entities and constructs with a language interfacer providing th .
system with language-dependent details, (2) translators can
cooperate with the system at varying levels of detail, (3) th e
user interacts with the system and an executing objAct program
thru an extendable debugging l nguage, and (4) debagginq
primitive actions are kept to a minimum and nonprimitive actions
are provided by user-supplied and library debugging proc€dures.
The design criteria of such a system a~e presented, and a
reali2ation of such a system is illustrated by ~xamples of
debugging commands and procedures encoded in a debugging
language.

Keywords and Phrases: symbolic debugging, debugging systems,
interactive debugging, error d~tection, automated programming
aids, program analysis, dynamic debugging, problem-oriented
languages

CR categories: 4.42, 4.22, 4.30

ii

Table of Contents

1 ' Introduction ..
2 . The De.bugging system • • . . • • '4 ••

2. 1. Design Criteria • • • ·• . • • • • • • • • • . . . • • • • ' • • • • •••
2. 2. Basic Concepts . . . ••• • •••• • ••
2. 3. The Debugging Language . . • • • IJ • • • • • • 11 •• . .
2,4. Examples • •••• • • • • • • • • • • • • • • • • • • • • • • • • ••• • • • • • ••

3 con cl U!$ion , ~ , • ·• ••••••.•••••••• · ••• Al

4 Acknowledge men ts ~ ~ •....•.•.

5 . References ··············· .. ·••1••········ .. ··············~
6 Appendix: DiSpeL Syntax Chart •••••••••••••••••••••••••••

1

2
]

4
7
9

12

13

, 3

,s

• j

1

The computQr program de velopment cycle consists primarily
of six phas es: s pecification, functional decomposition, codinq,
t es ting, debugging, and e va lua t ion. In recent years software
e ngineers have focused much at tention on the second and third of
the se phases. This is exemplified by the at te nt ion paid t o
language design and the advocacy of struct ured programminq.
Altho these two points are c e rtainly important components in the
production of quality sof tware, their e mphasis hAs distract9 d
from progress in the o her phas s. Emphasizing the d~siqn of
languages which make t he inclusion of logical e rrors difficul~
and programming methodologies which encourage error-free pro
gramming is important . N'::! v - r t he less, it is still nec€ssarv for
all programs to e nt er t he t e s t ing and debugging phases.

This paper presents the d~siqn of a language-independent,
interactive system to facilitate the analvsis and symbolic
debugging of computer programs written in hiqh-le v~ l languages.
The primary purpose of the debugg i ng syst e m is to provid~ an
environment in which the user can dete c t the pr es e nce of e rrors
and trace t he ir cause and, thereby, to reduce the total t ime
sp nt on t h~ debugging ph ase of the program de ve lopment cycle.
rhe nee d for such a sys t e m is apparen t f rom the proliferation of
language processing sys t e ms which provide inade quate run- t ime
debugging aids.

The concept of an interactive, run-time debugginq system is
not new. Before the invention of batch processing, debugging
was carried out directly at the operator•s console using the
console switches and lights to provide clues as to vhy a program
behaved incorrectly. After the deve lopment of batch processinq,
this activity was automated to produce m~ mo r v and r e qist~r
dumps. In the early days of in te rac~iv e computing , t h·P va lui: of
an interactive debugging system bec a me a ppa re n ~ and was f irst
applied to the detection of errors in machine-language programs,
Virtually evqry interactive computing environm~nt provides some
such aid [Bern 68, Evan 66, Gain 69, Sali 73] .

The trend away from machine-language programming has
emphasized the need to develop debugging tools which provide the
high-level language user with the ability to monitor the
execution of a program using source-level names and notations~
One common way in which such aid has been provided is thru
language processor supplied symbolic postmortem dumps (e.g.,
ALCOR ALGOL 60 [Baye 67] and ALGOL-W [Satt 72)) •

A significant advance in high-level language dRbuqging has
been afforded by the implementation of special diagnostic trans
lators. These translators sacrifice efficiency to provide
extensive run-time checks to aid in the detection of logical
program errors (e. q., subscripts out of range-). Examples of
such translators include PLUTO [Boul 721 and PL/C for PL/I
programs, DITRAN [~oul 67] and WATFIV for FORTRAN programs,

2

WATBOL for COBOL proqrams, and ALGOL-W fSite 71].

Another common way in which th~ high-level language us~r
has been given access to debugging tools is thru extension to
the host source language itself (Bair 75, conw 73, Wolm 72].

Systems have also be~n developed to provide high-level
language users vi:h essentially the same facilities available ~o
the machine-language user via low-level d~ ugging systems.
High~level interactive debugging systems have a lmost invariably
b~en dev~loped around one particular source langua ge (e.q.,
KANTIS [Ashb 73] and FORTRAN, EXDAMS (Salz 69) and PL/I, th e
INTERLISP system [Bobr 72], IB~•s PL/I Checkout Compile r
(Cuff 72], and PL/I under fllultics [Wolm 72)) . Al t ha some, of
these systems have actually involved int ~gr~ t ing d~ buqqinq
capabilities directly into an interpretive "" nvir onm P. nt (e. g ,
INTERLISP and the PL/I Checkout Compiler), oth <:: rs hav e b~cn
design e d explicitly as run-tim~ systems manipulating translated
code (~.g., EXDAMS and MANTIS). Neverthel~ss, in both cases a
debugging environment has b~en established which is applicable
~o a single high-l~vel language.

In viev of the current state of interactive debugging, the
advantages of a single system vhich is capable of dealing with
programs written in various source languag~s should be obvious.
A language-independent debugging system minimizes the duplica
~ion of effort need~d in providing a debugging environment with
th~ introduction of n~w programming languag~s. It also mini
mizes the user's overhead in learning a new debugging system for
aach new languag9. A language-independent environment. allows
collections of programs wri~ten in more than one sourc~ lanquage
to be debugged in a unifcrm mann~r.

/*Asa f amous ph i los oph ~r once almcst said,
"Give me a s uitable d'3 bngg i nq environment and a
tool-build i ng f aci li t y po werful (and simple) enough,
and I will de bug th e world."

Robert M. Balzer - (Balz 69), p. 567 */

The debugging sys te m described in this paper is called
RAIDE (Jun-time Analysis and Jnte ractive pebuqging ~nvironment),
named afte r another produc ~ s uccessfully employed to Bliminate
bugs from th ~ us er's e nvironm ~n t .

t

3

Many criteria have been taken into account in the design of
RAIDE [Gain 69, Gris 71, Mann 73]. The most important of these
is that the syst~m should be language-independent over a l~rqe
class of source languages. This virtually dictates that the
system run using translated code since to provide a system which
can interpret a broad class of source languages is currently
infeasible.

Whil~ language-independence is an advance over previous
debugging systems, this approach does have several disadvan
tages. Foremost among thEse is that run-time changes to correct
the source program are virtually impossible in a nonint~rpretive
environment. Also, using one or more of the host source
languages to specify debugging actions may encourage confusion.
It is thus desirable to provide a se~~rate debugging language
which the user must learn, A third disadvantage, which is
inherent in any language-independent system, is that it may not
always be possible to cater to the peculiarities of particular
source languages, either existing or future.

Altho the debugging system should be language-independent,
it should appear language-dependent from the user's point of
view. For example, if an array bound is exceeded during program
ex~cution, RAIDE should respond with a message couched in the
terminology of th~ source language. Thus, for ALGOL 68 the
message "INDEX EXCEEDS THE BOUNDS SPECIFIED IN THE DEFINING
OCCURRENCE OP THE MULTIPLE VALUE" might be produced.

Another goal is that RAIDE should be usable on multilingual
collections of programs. Thus, the user can debug a set of
programs written in more than one source language.

Another major design criterion is that the system should be
orient~d toward interactiv€ processing, but it ought also tc be
usable in a batch processing environment, Obviously, many of
the interactive features will be of marginal value from the
batch stream. Nevertheless,. there still exists a kernel of
debugging facilities vhich are ap~licable to both environments.

Another major requirement is that all debugging should be
done within t~rms of the source language(s). Knowl~dgA of the
underlying machin~ ?nvironment should he unnecess~ry .

one consequence of the preceding criterion is that lanquaqe
t~anslators will nBed to supply th~ debugging system with
substantial amounts of information concerning the source
program. Data such as the identifi8r tabls, the type table, and
aven the source code itself will need to be provided.
Neverth~less, it should be possible for translators to provide
information in increasing layers of completeness. This will
enable RAIDE to be used when the translators are not complet~ly
cooperating. If the user makes a requgst to which the system is

4

unable to r~spond because of lack of translator-suppli9d
information, RAIDE should return a message to that effect and
allow the user to continue.

Another design criterion is that RAIDE should be capabl9 of
supplying extensive information ccncerninq the sta e of proqram
execution. A.ltho some analysis features (0 . g, execution
profiles) border on the domain of program testing, as opposed t o
program debugging, such facilities are nee de d in a powerful
program debugging environment. Nevertheless, t he d9bugging
information supplied should never be ov~rwhelminq That is, ~he
user should only see what is relevant, with detailed information
neing provided upon a more precise request.

The kernel of the system should be minimal, yet sufficient.
That is, the system must include a set of primitiv9s sufficient
to carry out all of the desired debugginq actions; but this s ~t
should not contain primitives which can easily be simulated
using a combination of the others. Some ove rlap may be
necessary, however, in order to produce a set of ~ sily usable
primitives. This design criterio n should result in minimizing
the effort required to implement and transport the sys~~m.

system
host
wi t h
into

Also, to m~nimize the implementation effort, the
should avoid duplicating resources providable by the
operating syste m. It is assumed t.h~ us~r will bP. familiar
th@ operating syste m so that alt ernat ivB facilities built
the debugging system will merel y be a source of confusion.

one final design criterion is +hat t h~ use r should not. be
required to make modifications to the source program in order to
carry out debugging. It should be possible to specify at
run-time everything the user may ne e d to facilitate the
debugging of a proqram. This should not, however, preclude the
programmer from designing some de bugging aids in o thP proqram
since doing so is a desirable implementations rateqy fLa dq 751,

In summary, the design criteria discuss~d above are
enumerated in Table 1.

Thg user interfaces with RAIDE solely
system language. Before it is possible to
guage, howev~r, it is necessary to define
explain some basic RAIDE concepts which
debugging system language itself.

thru the debuqqing
describe such a lan
some terms and to
are reflected in the

A prograa is a collection cf procedures ~hich interact to
perform one priaary task. In other words, RAIDE is d=siqned to
debug a single program during one interactive s9 ssion. This
program may, however, consist of a main proc~dure and any numbe r
of subprocedures.

r
I
I 1.
I
I 2.
I
I 3.
I
I

' 4.
1
I
I 5.
1
I
I 6.
I
I
' 7.
I
I
I 8
I

I
I 9.
I
I
I 1 O.
I
I 11.
I
I
I
I

'

5

-----------------------,
The system should be source language independent.

The user interface should be language-dependent.

The system should be usable on multilingual collections of
programs.

The system should be interactively oriented, but usable in
batch.

Debugging should b~ done symbolically in source language
terms.

Translators should be allowed to supply information in suc
cessive layers of completeness.

The system should provid~ extensive analytic information at
run-time.

Information supplied by +he system should be concis~ and
per+.inent to the us~r•s request.

A small, usable, and sufficient set of primitive actions
should be supplied.

Operating system resources should not be duplicated.

No translation-time modifications to the source proqraffl
should be necessary to carry out debugging.

Table 1. D~bugging System D~siqn Crite,ria

L------------- _________________ J

The concept which is basic to a proper understanding of
BAIDE is the distinction bstween a specific and a genBric. A
specific is a reference to a particular ~ritity in the user's
program. For example, X miqht be one particular variable, 10
might be one particular constant, and X := 10 might be one
particular statement. Thus, X, 10, and X := 10 are specifics.
on the other hand, a generic r9fers to a set of entities within
the user's program all of one homogen~ous variety For example,
VARIABLE is a reference to a class of entiti8s cf which Xis one
particular member. Similarly, CONSTANT and STATEMENT are exam
ples of generics. Furthermore, it is conveni~nt to divide
generics into two classes. A seg ■ent-generic is a genaric which
r~fers to some executable segment of 3. us9r' s p.::-ogram. For a
block-s~ructured language, typical s~qm9n~-qenerics are PROCESS,

6

PROCEDURE, BLOCK, and STATEMENT. A data-generic refers to a
particular class of data which the user's program can manipu
late. Thus, for a block-structured language, VARIABLE, RESULT,
PARAMETER, and CONSTANT are examples of data-generics

Generics are host language dependent. The only
pr@supposition which RAIDE makes concerning them is that there
~re two classes: segment and data. For each language to he
interfaced to RAIDE, it is necessary to supply a set of
generics. Table 2 contains examples of generics which might be
defin@d for several well-known programming languages.

r-------------------,-----------------------------------,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ALGOL 68

FORTRAN

LISP 1.5

SNOBOL4

PROCESS
PROGRAM
ROUTINE
CLAUSE
UNIT

PROGRAM
SUBROUTINE
FUNCTION
STATEMENT

FORM
FONCTION

FUNCTION
PREDICATE
OPERATOR
STATEMENT

dat.a-ge ner,igs

VARIABLE
IDENTITY
DENOTATION
YIELD

VARIABLE
ARGUMENT
ARRAY
CONSTANT

ATOl'I
ARGUMENT
PROPERTY-LIST

VARIABLE
ARGUMENT
LITERAL
KEYWORD

I Table 2. Examplas of Possibls Generics for various Lanquaqas
I

' I .,
I
I
I
I
I
I
I
I
I
I

L------ __ J

Belated to th~ conc~pt of a g~neric is that of an incident.
An incident is some activity which is associated with a generic.
The system defines both segment-incidents and data-incidents to
correspond to segment- and data-generics. The activities . which
can be associated with the segment-generics are ENTRY and FXIT.
Thus, it is possible to speak of PROCEDURE ENTRY or STATEMENT
EXIT. Similarly, the activities associated with the data
generics are ACCESS and UPDATE for referencing and changinq the
value of an item of data. Unlike generics, incidents are fixed
within RAIDE and are not sp~cified by a language interfacer.

7

Another system concept is that of an event. An eyent is
any occurrence which can cause the user's program to stop
execution leaving RAIDE in the interactive request mode.
Examples of possible events are pressing the attention interrupt
key on the keyboard and changing the value of some variable. An
event which is defined independently of a source program (e.g.,
ATTENTION-INTERRUPT and OVERFLOW) is called an exception. Other
events are d~scribed by expressions (e.g., 11.Q.§.&.Q,t~ foo UPDATE"
to represent the event occurrinq immediately preceding an
assignment to the variable 'foo•). A number of exceptions are
predefined, but language-dependent exceptions can also be
defined. For example, SNOBOL4 might define STATE!ENT-FAILUBE.

When the user is interacting directly with RAIDE, many
possible actions can be requested. An action is any primitive
operation which the system can perform. For ~xample, Qi§B!~I is
an action which causes information to he displayeJ to the user.
A deferred action is any action which does not occur immediately
upon its specification. Deferred actions allow the user to set
traps within the program. Whenever the event associat e d with a
deferred ~ction occurs, the action itself is initiated by the
system. The system maintains all deferred actions on the
deferred action list.

Altho th~ basic actions of the system are fixed, system
extendability is provided by debugging procedures. A debugging
procedure is a subroutine written using the primitive actions of
RAIDE as available thru the debugging system language. Thus, it
is possible to provide the user with a library of debugging
procedures which perform any of the standard debugging opera
tions which are not provided as primitive actions in RAIDE. For
example, there is no primitive RAIDE action to cause all
procedure invocations to be traced altho it is possible to write
a debugging procedure to accomplish this .

Once the basic concepts described above are understood, the
RAIDE user should be capable of learning the system debugging
language to effectively aid in the detection of proqramminq
errors.

In order for the user to communicate with RAIDE, it is
necessary to provide a language embodying th~ primitive system
actions and supporting future extensions of the debugqinq
environment. The debugging language of RAIDE is called DiSpeL
<nebugging ~~§cification 1anguage). Sine~ it is not possible to
present a complete description of Dispel here, only enough of
the language is described to enable an understanding of the
examples presented subsequently. The complete syntax of DiSpeL
is outlined in the appendix using a syntax chart in the style of
(watt 74], and a detailed presentation of the language can be
found in [John 76].

8

In the ensuing discussion, an outline of the syntax of
DiSpeL is presented using a variation of the syntactic metalan
guage Backus-Naur Form (BNP). Opper-case identifiers are used
to represent language-dependent entities (e.g., generic names),
incidents, exception names, and the names of system functions.
Lower-case identifiers are used to represent program-dependent
entities (e.g., specific names) and the names of debugging
variables and procedures.

The fundamental syntactic ~ntity of DiSpeL is an <utter
ance>.

<utterance> : := <declaration> . I
<def i nit. ion> . I
<command>.

The <utterance> is the
the full-s~op symbol (.)
checked for syntactic
semantic interpr9tation.

basic unit of interactive input. Until
is encount~r~d, the <utteranc@> is only
corr~ctness; the full-stop initiates

A <declaration> specifies debugging variables, as opposed
to user program variables.

<declaration>::= in!~g~! <id-list> I
§~g£ifi£ <id-list>

Integer variables are especially useful as counters and as
flags. The declaration of specific variables can bB used as a
shorthand for identifying specifics.

A <definition> identifi~s a debugging procedure.

<definition>::= ,gefin~ <procedure-id>
[(<declaration-list>) J
g.§ <command>

The most important <utterance> of DiSpeL is the <command>.

<command>::= [<when-clause>] <action>
<when-clause>::= [<label-id>:] <when>
<vhen> ::= .Q.£ <exception-list> I

~ e f.QI~ <specific-list>
~_;: <specific-list>

The <when-clause> of a <command> causes the associatsd <action>
to become a deferred action. The <label-id> of the <~hen
clause> is used to remove the action from the deferred action
list. For a deferred action, vhen€ver the specified event
occurs, the associated <action> is initiated.

There are three p~incipal forms of the <when-clause>. The
QD <exception-list> form specifies that the associated <action>
is to be initiated whenever one of a set of po~sible <excep-

9

tion>s occurs. For example, ".2.!! ATTENTION-INTERRUPT .!a:!~.~" will
cause the interactive r9guest mode is to be en~ered (i.e., a
~I~5~ to occur) whenever the attention interrupt key is pressed .
The before and after forms of the <when-clause> cause the
associat€>d <action> to be initiated before or after some
particular incident occurs. For example,

sets a trap after each executable statement in the procedure
1 foo•. The phrase "~~£b STATEMENT in foo EXIT" is a <specific>;
it pinpoints the setting of a trap.

The basic actions of RAIDE are specified in DiSpeL as
follows.

<action>::= <compound-action>
<break-action> I
<call-action> I
<cancel-action> I
<display-action> I
<execute-action> I
<for-action> I
<if-action> f
<input-action>

<quit-action> I
<r€ference-action>
<restore-action> I
<save-action> I
<set-action> J
<skip-action> I
<system-action> I
<unexecute-action>
<vhile-action>

Rather than describing the <action>s in succession, each will be
explain~d as needed in the examples of the next section.

The omission of a trace primitiv~ action, present in
virtually all previous debugging systems, should be noted. In
OiSpeL a trace primitive is unnec~ssary since it is implied by
the syntax of a <command>. Tracing can be implemented using the
<when-clause> and the <display-action>.

The examples presented here are designed to show the extent
and paver of RAIDE as well as to demonstrate Dispel , It is
assumed that the host source language is block-structured and
contains the segment-generics PROCEDURE, BLOCK, and STATEMENT
and the data-generics VARIABLE and PARAMETER . Furthermore, the
existence of three segment-generic relat~d system functions is
assumed. These functions are CURRENT_PROCEDUBE, CURRENT_BLOCK,
and CURRENT_STATEMENT; they yield specifics indicating the
procedure, block, or statemBnt most recently active when the
function is invoked. Like the generics, these segment-gen~ric
related functions are language-dependent and must be supplied
for €ach language interfac€1l to the system. The languag~
independent RAIDE system functions are described as neqded
below.

1 0

The examples are presented in the form: a description of
the debugging request, the DiSpeL code corr~spondinq to the
request, and an explanation and comments concerning the code.

1 . Change the value of the variable •var• in the procedure
'foo• to the value of •n•.

This command is entered when execution of the program has been
suspended and RAIDE is in the interactive request mode. The§~
action changes the value of some user program er debugging
variable.

2. List the names and current values (if any) of all variables
accessible to the currently ezecuting procedure which have
not been accessed more than •n• times.

for each VARIABLE in CURRENT PROCEDURE-> var SQ
- if-tACCESSES(var)-<= n - ·

!h~n gi§£1~1 SKIP, var,"=", VALUE(var).

The for action is a control structure allowing repetitive
initiation of some <action>. tACCESSES is a system functiot
yielding the number of times which the indicated data-specific
has be€n accessed during total program execution. SKIP is a
system function causing the items following to be displayed
starting on a new line. Notice that displaying the specific
variable •var• causes the source-level name of the variable
indicated by the specific to be printed. The current value of
some specific is obtained via the VALUE system function.

3. Write a ~ebugging procedure to trace all subroutine calls of
a procedure indicating the location of the call, the name of
the subroutine called, and the names and values of all of
its formal parameters.

~~fin~ trace_proc (§ll£ifi~ proc) g§
f2I f~Eh PROCEDURE i£ froc -> subr SQ
h~gil!

before_subr_entry_trace:
before subr ENTRY
---S.!.§E!2I SKIP, "trace at statement 11 , CUR:RENT~"STATEMENT,

"in", CURBEHT_PROCEDURE
after_subr_entry_trace:
~.t~! subr ENTRY

!!~gin

.§!lg
.2.n!! -

£l§Ela1 SKIP, CURRENT_PROCEDURE,
"entered with the following param~ters:", SKIP ;

!~ !.s£h PARAMETEB in CURRENT_PROCEDU.RE -> parm .9.Q
.lli&E1~.Y pa rm , " = 11

, V ALU E (par m}

1 ,

This example demonstrates a procedure of sufficient utility to
merit inclusion within a d~bugging library. The body of the !QI
action establishes tvo deferred actions, one which is initiat~d
in t..he environment of the calling procedure {.R§!Q&1 subr ENTRY)
a~d one which is initiated in the environment of the called
subroutine (~,! subr ENTRY). Notice how the procadure is
capable of setting many traps, all of which are identified by
only two labels.

4. Write a debugging procedure to produce the ALGOL-W postmor
tem dump [Site 71 (pp. 125-127)].

gef_i.n,g postmortems§
Qgg.i!!

§~2.£.!!i£ segment, caller;
g,i.§.E.!s.I SKIP (3) , "-= > postmortem dump of active segments" ;
.§il segment 1.Q CURR ENT_ BLOCK ;

!lll§ DEPINED{segment) ~Q
b€gin

_sis.Ela! SKIP (2) r 11 => segment name: 11
, segment, SKIP (2) •

"value of local variables:", SKIP ;
fo_I _gg_£,h PARAMETEB in segment-> parm ~2

call print_param~ter_value(parm) ;
£QI 2.fh VARIABLE 1!! segment-> var SQ

£~11 print_variable_value(var) ;
§~! caller 1.Q CALLER(segment) :
if DEFINED(caller)
!.h~n li~l~I SKIP(2), segment, "was activated from",

call~r, 11 , n~ar coordinate 11 ,

CURRENT STATEMENT in caller;
gj; segment !Q caller--

~mg ;

gis,E,l~.I SKIP (2), "=> end of postmort,=,.m dump", SKIP
~!!9.•

The while action is another control structure allowing
repetitive initiation of some <action>. Using it and appro
priate system functions, it is possible to trace back thru
execution of the program. The system function DEFINED yields a
true value if the variable indicated has a value . CALLER is a
system function which accepts a segment-specific as an argument
and yields a specific indicating the segment which called the
argument 5pecific. The procedure above assumes two debugging

12

procedures •print_parameter_value• and •print_variable_valu~•
have been d~fin~d elsewhere.

The examples above should give a f ,q,el ing for DiSpeL and for
the depth and breadth of BAIDE itself.

Th~ principal attributes of RAIDE which distinguish it from
pr8vious debugging systems are summarized her ~.

1. The kernel of RAIDE contains a small Stt of primitiv~s
sufficient to implement all the traditional debugging actions.
Unlike previous debugging systems which have been designed
rather haphazardly, BAIDE's design is based upon the concept of
minimum sufficiency.

2. T.he tradi~ional de bugging primitiv es ("",9 " , traces, dumps,
and traps), hav~ bee n ge n raliz e d in RAIDE. An example of this
generalization is the lack of a primi t iv e t race action. All
traditional debugging aids are available to th€ user thra
d~bugginq proc~ ure s. This qe n~raliza t ion of debugqing concepts
should allow for the easy inclusion of futur e debugging aids.

3. RAIDE is one of the f~w debugging system to hav8 language
independence as
pr,:?,Vious system
mentation.

a primary design criterion Virtually all
have bean language-dependent by design or imple-

4. The RAIDE dPbugging language is more extensive and
orthogonal than that of any previous debugging system. Dispel
represents a compromise between an interactiv~ command language
and a special-purpose programming language.

5. RAIDE potentially provides more run-time and analysis
debugging information than any previous system. It has been
designed to filter, not mask, this information so that the user
can obtain maximum benefit from the dehuqginq environment.

6. RAIDE is one of the few systems which can be used to debug
multilingual collections of programs. s~veral preceding systems
have provided an interface to machine-language subroutines;
RAIDE enables subroutines to be written in any high-level
language for which an interface has been provided .

A subset of RAIDE is currently being implemsnted
university of British Columbia by th~ author- A more
description of the system and its i n:-ple m,en-tat ion can b€
(John 76].

at the
detail<=>d
found in

1 3

The author acknowledges with gratitude the comments,
criticisms, and encouragements of his supervisor Dr. Harvey
Abramson and of his fellow graduate students Greg Wilbur, Ted
Venema, and Bill Appelbe.

(Ashb 73] Ashby, G., Salmonson, L., and Heilman, R. 01:?sign of
an interactive debugger for FORTRAN: MANTIS.
~Qi!~~.£§ - g~~.£1!~ ~nd]!MEi~ll~§, 3:1 (1973
Jan.-March), 65-74.

(Bair 75] Baird, G.N. Program debugging usinq COBOL '74,
f~Q~• JilR~ ~£~, vol. 44 (1975), 313-318.

[Balz 69] Balzer, R.M. EXDAMS -- EXtendable Debugging and
Monitoring SystBm. ~Q£• AFJf§ ~~ff, vol. 34 (1969),
567-580.

[Baye 67] Bayer, R., Gries, D., Paul, M., and Wiehle, H.R. The
ALCOR Illinois 7090/7094 post mortem dump. ~Q~~.
jCM, 10: 12 (1967 Dec.), 804-808.

(Bern 68] Bernstein, W.A., and Owens, J,T, Debugging in a

[Bo br 72]

time-sharing environment. RIQ£. !11J~..§ L!~f, vol. 3 3,
pt. 1 (196 8) , 7-14.

Bobrow, D. G, Requirements for
systems for list processing.
July), 618-627.

advanced programming
fQ.ID!!· A£~, 15:7 (1972

(Boul 72] Boulton, P.I.P., and Jeanes, D.L. The structure and
performance of PLUTO, a teaching oriented PL/I
compiler system. l~lQ], 10:2 (1972 June:·), 140-153.

[conw 73] Conway, R. w., and Wilcox, T.R. Design and
tation of a diagnostic compiler for PL/I.
16:3 (1973 March), 169-179.

implemen
Comm. ACM,

(Cuff 72] Cuff, R. N. A conversational compiler for full PL/I.

[Evan 66]

£2.!!.E.!!~§.I ~ • , 1 5 : 2 (1 9 7 2 Ma y) , 9 o - 1 0 4 •

Evans, T.G.,
techniques: a
(1966), 37-50.

and Darley, D. L, on-line debugging
survey. fIQ£• Jllf~ I~£~, vol. 29

[Ga in 6 9] Gaines, B. s. The]2~.Qygging QJ ~.Q~I>!!.t~!: g~_g_g_Ig.!!L§.
Ph.D. Th., Dept, of Elec. Enge, Princ<?,ton U., 1969
Aug. 170pp.

1 U

(Gr is 71] Grishman, R. Criteria for a debugging language. In
(Rust 71), pp. 57-75.

[John 76] Johnson, !.S. "The Design and Implementation of a
Run-Tim~ Analysis and Interactive Debugging Environ
mi=.>nt (RAIDE)" • .Ph.D. Th. Draft, Dept of Comp. ScL,
u. Of British Columbia, 1976 Nov. 80pp.

(Ledg 75] Ledgard, H.F. Pr£gil~!iD~ RAQ~gI£§· Hayden Book
Co., 1975, 134pp,

[Mann 73] Mann, G.A. A survey of debug systems. B2D§~~~11
f Q.!!.12Y.t~£ ~ • , 7 : 3 (1 9 7 3) , 1 8 2 - 1 9 8 •

[Moul 67] Moult.on, P. G., and Muller, M. E. DITFAN -- a comJ;ilE:r
emphasizing diaqnostics, ~.Q!!!.ID· .A~~, 10:1 (1967
Jan.), 45-52.

[Rust 71] Rustin, R. (€:di tor-) .Q~J2_yggjJJg
~I.§1f l!!§ • Pr en t ice - Ha 11 , 1 q 7 1 .

Technigues
14 8pp

(Sali 73] Salisbury, R. "The Symbolic Debugging system",
Computing Centre, u. of British Columbia, 1973 Jan.
5 3pp.

(Satt 72] Satterthvai-te, E.H. Debugging tools for high lc.v~l
la nguaq~s, Soft ware - Practice and E X,Eeri"\nC~, 2: 3
(1972 July-Sept.), 197-217.

(Site 71] SitE"S, R. L. "ALGOL-W Reference Manual". Tech. Rep.
STAN-CS-71-230, Comp. Sci. D-?pt., Stanford U., 1971
Aug. 16<'.lpp

[Watt 7~] Watt, J.1'!., Peele, ,1. E.L., and Sintzoff, M. Fevised
ALGOL 68 syntax char+.. .§.HH~LA.~ .NQ:!i.~ff, 9:7 (1974
July) , ::!9,

[Wolm 72] Wolman, B. 1 Debugging PL/I programs in the Multics
environment. Proc. AF1PS F,1CC, vol. 41 , pt. 1
(1972), 507-514.

r---------,
I utterance I
L~------.J

I ' .---------,
.. ->fexplanationl ~ills.ill keyphrase
I L----------J
I
I r------,
..,_> I inquiry I .i.ng.!!.i.!:~ sentence
I '-------.J
I
I r-
.. -> I declaration f
I L,---------J r .,
I I lin!~g~f I
1 L---------->1g~n~Ii£ , id!,
I I §_2~ci.fi.£ I
l L J

' I ,.--------,
.. ->Jdefinitionf de!J.n,g id declaration I; _g.§ -,

I L---------J +-----------------+ I
I r---------------------------------------J
' I r .,
I I I command I
I L-) I r----------, !
I f lprocedurR-bodylf
I I l~----------J'
I L I J

I L-> begin declaration I; ; command I; ~nd
I +--------------+
I
I r--------, r---,
L-) I command I id : I when I action

t. _______ .J +---+ L-T--.J r ,

+--------+--+ l~~~D condition I
L---->IQ~ exc~ptionl, I

IB~iQ~~ specificl,I
l~i!§f specific!, I
L J

15

16

r-----,
I action I
L~---.J

I
J--> !?.f .91:] command I ; .fil}_g

' J--> !?.!§ a k messag13
I +-----+

' f-) 911 id (oexpressionl,)
I +----------------+
I
I r ,

' I id I, I
.. _ > .£! n~§.! I integer I , I
I

I

' .. ->
I
I
I
I

' I
' ' ' I
J-->
I

' I
I
I
1-->
t
1-->
I

' J-->
1

' 1-->
I
I
1-->
t
I
J-->

' '

I .!.!f IY.1.h.i!l.9 I
L .J

+----------+
,---,

S.i2.El!I {fit~ml s.§ type}!. gn file-name-
L-~.J +------+

t r ,
I I specific I
L-) I message I

I expression I
I debug-item I
L J

+-----------+

r
texpression

,
segment-generic!

I
1.!!.n!.i.!
I ~.h.il~

+-------------+I
condition I
condition I

L J

+---------------------------+
!2! specific!, -> id gQ action

.i! condition !.h~Jl act.ion ~.!§~ action
+----------+

.il!.l?.Y! file-name
+-------+

g_yj_~ messag~
+-----+

I~.&£1:1!1£~ segment-designation
+-----------------+

!~§!.9.I~ id §ll.i.!1.9 id
+--------+

r---------------,
jaction (continued) 1
L-T-------------'

' .. -> §~.!~ id
I
I r ,

' J--> §.!!
I
I

'

!variable 12 expression I
lid ~Q segment-designationJ,I
lid !Q specific-expression 1
L .J

J--> §!!£ segment-generic
I +-------------+
' .. -> §~§!~~ system-command
I
I

+------------+

' I
r
texpression

,
segment-generic I

1--> .Y.D~.ll£.Y" I
1.!m!.l!
1.tfhil~

♦-------------+!
I

' I L

condition
condition

.J

I
I

+---------------------------+
L-> ~hile condition QQ action

r------,
I specific I
L--r-----'

I r-------------,
L-> ~A£Il variable fgeneric-incid~ntl

+--+ L-T _____________ .J

+-+--------------+
1 r ,
I I gn!ll I
L-> I ~xi.1; I

11£5:fl.§.§I
I !!£.'1.~1.§ I
L .J

17

18

,------,
I variable I
L~----.J

I ---·----------, ,---- -,
L-> generic . . I un gualified-variabl~ I I segment-qualifiert

+--------+ ._,_____ _ ___ J L~--------_..
I
I

' ' I
I

+-t---------------+ ____ _..

I
1..-> in seqment-designation

L-> {id (expression I ,) } I
♦----------------+

r-------------,
1segment-designation1
L~--------__J

I r ,
, Junqualified-variablel
L-> generic : I,--------"' I segment-qualifier

+--------+ llsegment-rangel I +---------------+
,L-T --- J f
L I .J

I r , r ,
'--> I integer I . . I in teqer I

I id I lid I
L J L .J

+--- ------ -- +

Syntax chart notation:

,-----
1
I ,-.,
I I A I B
I Lr_.
I •-> C
I L-) D
I ..
I
I AfB
I
I

·-----------------------,

A is defined as
either B, c, or D

I
r , ~
IAI choose one of A, B, 1
IBI or C t
IC! I
L .J I

I I
-------+------------ 1---4

I I
A, ABA, ABABA, • • • I abc abc is optional '

I +-+ I
I I

l--------- _ _.______ ---- -4

1
I (A .B}
I
L--·---

treat A and Bas one construct
I
I
I ________________________ _..

