MMM

MEMM MMM
MM M MM
M M
.| M MMMMMMMMM
MH MM MMMY MMM
MMM MM MM MMM
MMM MMH MM MMHN
MMM MMMMMMHY MMMMMMN MM
MMMMMMN MMMN MMM MM MMMMM
MMM MM MMY M MM
M MHN H M
M MM MMM HHM
HMMM MMMMMM MMM
MMM MMM
MMM
MMM M
MMMMHM

e e o o ok o ok ok o ook ok oK ok ok ok e sk ok ok ok koK K oK Kk Kok KoK

* *
* The Design of a *
* High-Level, Language-Indepandent *
* Symbolic Debugging Systenm *
* *
* *

s o 3 s s o kol ok ok ok ok ok ok o ok ok ook o ok bk ok ook ek ok ok ok

by

Mark Scott Johnson

Technical Report 76-10

Copyright (c) 1976, Mark Scott Johnson,
Permission to reprint this document, except for profit, is
hereby granted subject +o proper acknowledgement,

December 1976

Department of Computer Science
University of British Columbia
Vancouvar, B. C.

n

(o H

Abstract

Th2 design of a language-independent, interactive system *o
facilitate the analysis and symbclic debugging of computer
programs written in high-level languages is presented. The
principal features of the system are: (1) host source langquage
independence is supported by the abstracticen of language
antities and constructs with a language interfacer providing the
system with 1language-dependent details, (2) translators can
cooperate with the system at varying levels of detail, (3) +the
user interacts with the system and an exscuting object progranm
thru an extendable debugging langquage, and (4) debugging
primitive actions are kept to a minimum and nonprimitive actions
are provided by user-supplied and library debugging procedures.
The design criteria of such a system are presented, and a
realization of such a system is illustrated by examples of
debugging commands and procedures encoded in a debugging
language.

Keywords and Phrases: symbolic debugging, debuqgging systems,
interactive debugging, error detection, automated programming
aids, program analysis, dynamic debugging, problem-oriented
languages

CR Categories: 4.42, 4.22, 4.30

ii

Table of Contents

Introducticn LI B B B R B B B BN O BN BN BN B B B B N BN B L RE B DN BE N B BN B BN BT R B BN B BN BN I AN
The Debugging SYSELRE .ivi--insassssssssvosrsibosnviyisesns
2-1-. DGSign criteria "8 4 & 400 PN Se 4 4 AT A DA TS 8N e NN E R
2.20 BﬁSiC Concepts lll‘ll.ll.l.l..lll.ll.l.l".".-'.-
2.3, The Debugging LangUAGE .esssvssssessovsisssesvsa
2-“- Exa'ples .‘i'll"ll'l.l...l.ltlll....l".l‘l.l..'
CODClUSiOH ll...l'Iltiilll.‘l.l.l“....‘.‘.'li'll‘.l..‘.l
RCk“culedgements .0.-!0..0_...!" .II.I 4 & 9 48 98 8 b BB F A E S e B

References 59 0 989 P 140 TP IS S DAY PEBE S0 O TS S0 SNBSS

Appendix: DiSpel SYNtAX CRATE s ssvssess s seeeoiis s ie

L L B 2
. 8 -3
& e » u
& 7
ses 9

o 12

oo 13

L I 15

1. Introduction

The computaer program development cycle consists primarily
of six phases: specification, functioral decomposition, coding,
testing, debugging, and evaluation. In recent years software
angineers have focused much attention on the second and third of
these phases. This is exemplified by +the attention paid ¢to
language design and the advocacy of structured programming.
Altho these two points are certainly important components in the
production of quality software, their emphasis has distracted
from progress in the other phases., Emphasizing the design of
languages which make the inclusion of logical errors difficult
and programming methodologies which encourage error-free pro-
gramming is important. Nevartheless, it is still necessary for
all programs to enter +he testing and debugging phases.

This paper presents the design of a language-independent,
interactive system to facilitate <the analysis and symbolic
debugging of computer prcgrams written in high-level 1lanquages.
The primary purpose of the debugging system is to provid=s an
environment in which ¢he user can detect the presence of errors
and trace their cause and, thereby, to reduce the total time
spent on the debugging phase of the program davelopment cycle.
T'he need for such a system is apparent from the proliferation of
language precessing systems which provide inadequate run-time
debugging aids.

The concept of an interactive, run-time debugging system is
not new., Before the invention of batch processing, debugging
was carried out directly at the operator'’s console using the
console switches and lights to provide clues as to why a program
behaved incorrectly. Af*er the development of batch precessing,
this activity was automated +o produce memory and register
dumps. In the early days of interac*ive computing, the value of
an interactive debugging system became apparent and was first
applied to the detection of errors in machine-language programs.
Virtually every interactive computing environment provides some
such aid [Bern 68, Evan 66, Gain 69, Sali 73]

The trend away from machine-language programming has
amphasized the need to develop debugging tools which provide the
high-level lanquage user with <+¢he ability +0 monitor the
execution of a program using source-level names and notations,
One common way in which such aid has been provided is thru
language processor supplied symbolic postmortem dumps (e.g.,
ALCOR ALGOL 60 [Baye 677 and ALGOL-W [Satt 721 .

A significant advance in high-level lanquage debugging has
be=n afforded by the implementation of special diagnostic trans-
lators, These translators sacrifice efficiency to provide
extensive run-time checks to aid in the detection of 1logical
program errors (#.9., subscripts out of range). Examples of
such translators include PLUTO ([Becul 72] and PL/C for PL/I
programs, DITRAN {[Moul 67] and WATFIV for FORTRAN programs,

WATBOL for COBCL programs, and ALGOL-W [Site 7117,

Another common way in which the high-level languaqe user
has been given access to debugging tools is thru extensicn *to
the hos* source language itself [Bair 75, Conw 73, Wolm 72],

Systems have also bean developed %o provide high=-level
language users wi‘h essentially the same facilities available *o
the machine-lanqguage user via low-level debugging systenms.
High-level interactive debugging systems have almost invariably
bsen developed around one particular source lanquage (e.q.,
MANTIS ([Ashb 73] and FORTRAN, EXDAMS [Balz 69] and PL/I, the
INTERLISP system [Bobr 72)], 1IBN's PL/I Checkout Compiler
[Cuff 72), and PL/I under Multics [Wolm 727]). Altho some of
these systems have actually 1involved integrating debugging
capabilities directly 4into an interpretive environmsnt (e.qg.,
INTERLISP and the PL/I Checkou* Compiler), others have been
designed explicitly as run-time systems manipulating translated
code (#.g., EXDAMS and MANTIS). Nevertheless, in both cases a
debugging environment has been established which is applicable
to a single high-level language.

In view of the current state of interactive debugging, the
advantages of a single system which is capable of dealing with
programs written in various source lanquagzss should be obvious.
A language-independent debugging system minimizes the duplica-
tion of effort needed in providing a debugging environmen* with
the introduction of new programming languagess. It also mini-
mizes the user's overhead in learning a new debugging system for
2ach new languags. A language-independent environment allows
collections of programs wri*ten in more than cone source lanquage
to be debugged in a unifcrm mannar.

2. TIhe Debugging System

/* As a famous philosopher once almcst said,
"Give me a suitable debugqging environment and a
tool-building facility powerful (and simple) enough,
and T will debug the world,"
Rober+ M. Balz=r - [Balz 69], p. 567 *,

The debugging system described in +his paper is called
RAIDE (Run-time Analysis and In*teractive Debugging Environment),
named after another preduct successfully emplcyed to =liminate
bugs from the user's environmesnt.

2.1. Design Criteria

Many criteria have been taken into account in the design of
RAIDE [Gain 69, Gris 71, Mann 73]. The most important of these
is that the system should be lanquage-independent over a large
class of source languages, This virtually dictates *hat the
system run using translated code since to provide a system which
can interpret a broad class of source languages 1is currently
infeasiblse.

While 1languages-independence is an advance over previous
debugging systems, this approach does have several disadvan-
tages, Foramost among these is that run-time changes *to correct
the source program are virtually impossible in a noninterpretive
anvironment. Also, using one or more of the host scurce
languages to specify debugging actions may encourage confusion.
It is thus desirable to provide a separate debugging langquage
which the user must 1learn, 2 third disadvantage, which 1is
inherent in any language-independent system, is that it may not
always be possible to cater to the peculiarities of particular
source languages, @ither existing or future.

Altho the debugging syst2m shonld b2 lanquage-indepandent,
1t should appear lanquage-dependant from the wuser's point of
view, For example, if an array bound is exceeded during program
execution, RAIDE should respond with a message couched in the
terminology of the source 1language, Thus, for ALGOL 68 the
nessage "INDEX EXCEEDS THE BOUNDS SPECIFIED 1IN THE DEFINING
OCCURRENCE OF THE MULTIPLE VALUE" might be producad.

Another goal is that RAIDE should be usable on multilingual
collections of programs. Thus, the user can debug a set of
programs written in more than one source language,

Another major design critesrion is that the system should be
orien*ted toward interactive processing, but it ought also tc¢ be
usable in a batch processing snvironment. Obviously, many of
the interactive fea*tures will be of marginal value from the
batch streanm, Nevertheless, . there still exists a kernel of
debugging facilities which are apgplicable to both 2nvironments.

Another major requirement is +hat all debugging should be
done within terms of the source language(s). Knowlsdge of the
underlying machin2 =nvironment should be unnecessary

NDne consequence of *he preceding cri*=rion is that lanquage
translators will need to supply +*he debugging system with
substantial amounts of information concerning the source
program. Data such as the identifier +table, the type table, and
aven the source code itself will need +to be provided,
Nevertheless, it should be possible for translators to provide
information in increasing layers of completeness. This will
anable RAIDE to be used when the translators are not completely
cooperating. TIf the user makes a request <o which the system is

unable to respond because of lack of translator-supplied
information, RAIDE should return a message to that effect and
allow the user to continue,

Another design criterion is that RAIDE should be capable of
supplying extensive information ccncerning the state of program
2xecution, Altho some analysis features (e.g., execution
profiles) border on the domain of program testing, as opposed to
program debugging, such facilities are needed in a powerful
program debugging environment. Nevertheless, +the debugging
information supplied should never be ovarwhelming That is, the
user should only se2 what is relevant, with detailed information
being provided upon a more precise request.

The kernel of the system should be minimal, yet sufficient.
That is, the system must include a set of primitives sufficient
to carry out all of the desired debugging actions; but this s=t
should not contain primitives which can easily be simulated
using a combination of the others, Some overlap may be
necessary, however, in order to produce a set of easily usable
primitives. This design criterion should resul+ in minimizing
the effort raquired to implement and transport the systam.

Also, to minimize the implementation effort, the systen
should aveid duplica*ing resources providable by the host
operating system. It is assumed the us=sr will be familiar with
the operating system so that alternativa facilities built into
the debugging system will merely be a source of confusion.

one final design criterion is that th2 user should not be
required to make modifications to ths source pregram in order to
carry out debugging. I+ should be possible to specify at
run-time everything the user may nesd to facilitate the
debugging of a program. This should not, however, preclude +*he
programmer from designing some debugging aids into the program
since doing so is a desirable implementation strategy [Ledg 75].

In summary, the design criteria discussed above are
enumerated in Table 1,

2.2. Basic Concepts

The user interfaces with RAIDE solely thru the debugging
system language. Before it is possible to describe such a lan~-
guage, however, it is necessary to define some terms and *o
explain some basic RAIDE concepts which are reflected in the
debugging system language itself.

A program is a collection cf proceduras which interact +*o
perform one primary task. In other words, RAIDE is designed to
debug a single program during one interactive saession. This
program may, however, consist of a main procedure and any number
of subprocedures,

I 1
I |
| 1. The system should be source language independent, |
| |
| 2. The user interface should be lanquage-dependent. |
I |
| 3. The system should be usable on multilingual collections of |
| programs. |
I |
| 4. The system should be interactively oriented, but usable in |
| batch. |
I |
| 5. Debugging should be done symbolically in source language |
| terms. |
| !
| 6. Translators should be allowed *o supply information in suc- |
| cessive layers of completeness. |
| |
| 7. The system should provide extensivs analytic information at |
| run-time. |
| |
| 8. Informa*ion supplied by *he system should be concise and |
| pertinent to the usesr's request. |
I !
| 9. A small, usable, and sufficient set of primitive actions |
| should be supplied. |
| |
| 10. Operating system resources should no* be duplicated. |
| |
| 11. No translation-time mcdifications to the source program |
| should be necessary to carry out debugging. |
| |
| I
| Table 1. Debugging System D=ssiqn Criteria |
| |
L T i

The concept which is basic to a proper understanding of
RAIDE is the distinction bz*tween a specific and a genseric. A
specific is a reference to a particular 2ntity in the user's
program. For example, X might be ons particular variable, 10
might be one particular constant, and X := 70 might be one
particular statement. Thus, X, 10, and X := 10 are specifics.
On the other hand, a generic rafers to a set of entities within
the user's program all of one homogen=ous variety For example,
VARIABLE is a reference to a class of entitiss cf which X is one
particular member. Similarly, CONSTANT and STATEMENT are exam-
ples of genarics. Furthermore, it 1is <convenient to divide
generics into two classes. A segment-generic is a gena2ric which
refers to some executable sagment of a us=r's program. For a
block-structured language, typical segmen*-generics are PROCESS,

PROCEDURE, BLOCK, and STATEMENT. A data-generic refers to a
particular class of data which the user's program can manipu-
late, Thus, for a block-structured language, VARIABLE, RESOLT,
PARAMETER, and CONSTANT are examples of data-generics

Generics are host language dependent, The only
presupposition which RAIDE makes concerning them is tha%t thers
are two classes: sagmant and data. For each language ¢ bhe

interfaced to RAIDE, it 1is necessary to supply a set of
generics. Table 2 contains =2xamples of generics which might be
defined for several well-known programming languages.

[roe— e e - — i —— — o —— — . — e —

language Segment-generics data-generics

ALGOL 68 PROCESS VARIABLE
PROGRAM IDENTITY
ROUTINE DENOTATION
CLAUSE YIELD
UNIT

FORTRAN PROGRAM VARIABLE
SUBROUTINE ARGUMENT
FUNCTION ARRAY
STATEMENT CONSTANT

1LISE 1.5 FORM ATOM
FONCTION ARGUMENT

PROPERTY~-LIST

SNOBOLY FUNCTION VARIABLE
PREDICATE ARGUMENT
OPERATOR LITERAL
STATEMENT KEYWORD

Table 2. Examplas of Possibls Generics for Various Lanquag=s

Related to the concept of a generic is that of an incident,
An incident is some activity which is associated with a generic.
The system defines both sagment-incidents and data-incidents to
correspond to segment- and data-generics. The activities . which
can be associated with the segment-generics are ENTRY and EXIT.
Thus, it is possible to speak of PROCEDURE ENTRY or STATEMENT
EXIT. Similarly, the activities associated with +he data-
generics are ACCESS and UPDATE for referencing and changing the
value of an item of data., Unlike generics, incidents are fixed
within RAIDE and are not spacified by a lanquage interfacer.

b e e i . e — — — — — —— — —— ——————— — —]

Another system concept is that of an =vent, An event is
any occurrence which can cause the user's program to stop
execution leaving RAIDE in the interactive request mode,
Examples of possible events are pressing the attention interrupt
key on the keyboard and changing the value of some variable, An
event which is defined independently of a source program (e.q.,
ATTENTION-INTERRUPT and OVERFLOW) is called an exceptiom. Cther
events are described by expressions (e.g., "before foo UPDATE"
to represent the event occurring immediately preceding an
assignment to the variable *foo'). A number of exceptions are
predefined, but language-dependent exceptions can also be
defined. For example, SNOBOLY4 might define STATEMENT-FAILURE.

When the user is interacting directly with RAIDE, many
possible actions can be requested. An action is any primitive
operation which ths system can perform., For example, display is
an action which causes information to be displayed o the usar.
A deferred actiom is any action which does not occur immediately
upon its specification. Deferred actions allow the user to set
traps within the program. Whenever the evant associated with a
deferred action occurs, +the action itself is initiated by the
system., The system maintains all deferred actions on the
deferred action list.

Altho the basic actions of the system are fixed, system
extendability is provided by debugging procedures. A debugging
procedure is a subroutine written using the primitive actions of
RAIDE as available thru the debugging system language. Thus, it
is possible to provide +the user with a library of debugging
procedures which perform any of the standard debugging ofpera-
tions which are not provided as primitive actions in RAIDE. For
a2xample, there is no vprimitive RAIDE action ¢%to causs all
procedure invocations to be traced altho it is possible *o write
a debugging procedure *o accomplish this.

Once the basic concepts described above are understood, the
RAIDE user should be capablzs of learning the system debugging
language to effectively aid in the detection of progranmming
errors.

2.3. The Debugging Language

In order for the user to communicate with RAIDE, it 1is
necessary to provide a language embodying th2 primitive system
actions and supporting future extensions of +tha debugging
environment., The debugging language of RAIDE is called DiSpel
(Debugging Specification Language). Since it is not possible to
present a complete description of DiSpel here, only enough of
the language is described *o enable an understanding of the
examples presented subsequently, The complete syntax of DiSpel
is outlined in the appendix using a syn+ax chart in the style of
[®att 74], and a detailed presentation of the lanquage can be
found in [John 76].

In the ensuing discussion, an outline of the syntax of
DiSpel is presented using a variation of the syntactic metalan-
guage Backus~-Naur Form (BNF). UOpper-case identifiers are used
to represent language-dependent entities (e.g., generic names),
incidents, exception names, and the names of system functions.
Lower-case identifiers are used to represent program-dependent
entities (e.g., specific names) and the names of dabugging
variables and procedures.

The fundamental syntactic entity of DiSpel is an <utter-
ance>,

{utterance> ::= <declaration> . |
<definition> . |
{commard> .

The <utterance> 1is the basic unit of interactive input. Until
the full-stop symbol (.) is encountered, the <utterance> is only
checked for syntactic correctness; the full-stop initiates
semantic interpretation.

A <declaration> specifies debugging variablss, as opposed
to user program variables,

<declaration> ::= integer <id-list> |

specific <id-1list>
Integer variables are especially useful as counters and as
flags. The declaration of specific variables can b2 used as a
shorthand for identifying specifics.

B <definition> identifies a debugging procedure.
<definition> ::= define <procedure-id>
' [(<declaration-1list>)]
as <command>

The most important <utterance> of DiSpel is the <command>.

<command> ::= [<when-clause>] <action>
<when=-clause> ::= [<label-id> :] <vhen>
<wvhen> :2:= on <exception-list> |

before <specific-list> |
after <specific-list>

The <when-clause> of a <command> causes the asscciatzd <action>
to become a deferred action. The <label-id> of the <when-
clause> is used to remove the action from +the deferred action
list, For a deferred action, whenever the specified event
occurs, the associated <action> is initiated.

There are three principal forms of the <when-clause>. The
on <exception-list> form specifies that the associated <action>
is to be initiated whenever one of a set c¢f ©possible <excep-

tion>s occurs. For example, "on ATTENTION-INTERRUPT break" will
cause the interactive request mode is to be entsred (i.e., a
break to occur) whenever the attention interrupt ksy is pressed.
The before and after forms of the <when-clause> cause the

associa*ed <action> *o0 be initiated before or after sone
particular incident occurs. For example,

after each STATEMENT in foo EXIT break.

sets a trap after each executable statement in the procedure
'foo'. The phrase "™each STATEMENT in foo EXIT"™ is a <specificd>;
it pinpoints the setting of a trap.

The basic actions of RAIDE are specified in DiSpel as
followus.

<action> ::= <compound-action> | <guit-action> |
<break-action> | <reference=-action> |
<call-action> | {restore-action> |
<cancel-action> | <save-action> |
<display-action> | <set-action> |
<execute-action> | <skip-action> |
<for-action> | <system-action> |
<if-action> | <unexecute-action> |
<input=-action> | <while-action>

Rather than describing the <actiond>s in succession, each will be
eaxplained as needed in the =xamples of the next section.

The omission of a trace vprimitive action, present in
virtually all previous debugging systems, should be noted., 1In
DisSpel a trace primitive is unnecessary since it is implied by
the syntax of a <command>. Tracing can be implemented using the
<when-clause> and the <display-action>.

2.4. Examplss

The examples presented here are designed to show the extent
and power of RAIDE as well as to demonstrate DiSpel. It is
assumed that the host source language is block-structured and
contains the segment-generics PROCEDURE, BLOCK, and STATEMENT
and the data-generics VARIABLE and PARAMETER. Furthermore, the
existence of three segment-generic related system functions is
assumed. These functions are CURRENT_PROCEDURE, CURRENT_BLOCK,
and CURRENT_STATEMENT; they yield specifics indicating the
procedure, block, or statement most recently active when the
function is invoked, Like the generics, these segment-generic
related functions are language-dependent and must be suprplied
for sach language interfaced to the systenm. The languag=-
independent RAIDE system functions are described as needed
below.

10

The examples are presented in the form: a description of
the debugging request, the DiSpel <code corresponding +o the
request, and an explanation and comments concerning the code,

1. Change the value of the variable ‘var' in +he procedure
'*foo' to the value of 'n!,

set var i

——

foo to n.

This command is entered when sxecution of the program has been
suspended and RAIDE is in the interactive request mode. The set
action changes the value of some user program or debugging
variable.

2. List the names and current values (if any) of all variables
accessible to the currently executing procedure which have
not been accessed more than 'n' times.

for each VARIABLE in CURRENT_PROCEDURE =-> var do

if #ACCESSES (var) <= n
then display SKIP, var, ® = ", VALUFE (var).

The for action is a control structure allowing repetitive
initiation of some <action>. #ACCESSES is a system functior
yielding the number of times which the indicated data-specific
has been accessed during total program ex=acution. SKIP 1is a
system function causing the items following to be displayed
starting on a new line. Notice that displaying the specific
variable ‘'var' <causes +the source-level name of the variable
indicated by the specific to be printed. The currsnt value of
some specific is obtained via the VALUE system function.

3. Write a debugging procedure to trace all subroutine calls of
a procedure indicating the location of the call, the name of
the subroutine called, and the names and values of all of
its formal parameters.

for each PROCEDURE ir proc => subr do
begin
before_subr_entry_trace:
before subr ENTRY
display SKIP, "trace at statement ", CURRENT_ STATEMENT,
" in ", CURRENT_PROCEDURE ;
after_subr_entry_trace:
after subr ENTRY

1

lor
L5
a
-
[(B8]

splay SKIP, CURRENT_PROCEDURE,

" entered with the following paramseters:"™, SKIP ;
or 2ach PARAMETER in CURRENT_PROCEDURE -> parm dg
display parm, " = ", VALUE(parm)

i

end
end.

This example demonstrates a procedure of sufficient utility +to
merit inclusion within a debugging library. The body of the for
action establishes two deferred actions, one which is initiat=sd
in the environment of the calllng procedure (before subr ENTRY)
and one which is inpitiated in +the @environment of the called
subroutine (after subr ENTRY). Notice how the proczdure is
capable of setting many traps, all of which are identified by

only two labels,

4, Write a debugging procedure to produce the ALGOL-W postmor-
tem dump [Site 71 (pp. 125-127)).

define postmortem as

begin

specific segment, caller ;

display SKIP(3), "=> postmortem dump of active segments" ;
set segment to CURRENT_BLOCK ;

h le DEFINED (segment) do

in

di_gl_x SKIP(2), "=> seqment name: ", segment, SKIP(2),
" value of local variables:", SKIP ;

for each PARAMETER in segment -> parm do
c ;; print_ paramn+nz value{parm) :

for

j=

E.,

Dlwl

cach VARIABLE in segment -> var do
call print_varlatle_value(var) 1

set caller to CALLER(segment)

if DEFINED(caller)

then display SKIP(2), segment, " was activated from ",
caller, ", nsar coordinate ",
CURRENT_STATEMENT inp caller ;

set segment to caller

isplay SKIP(2), "=> end of postmortem dump", SKIP

The while action 4is another con*rol structure allcwing
repetitive initiation of some <action>. Usirg it and appro-
priate system functions, it is possible +to trace back thru
axecution of the program. The syst2m function DEFINED yields a
true value if the variable indicated has a valuse. CALLER is a
system function which accepts a segment-specific as an arqument
and yields a specific indicating the segmen* which called the
argqument specific, The procedure above assumes two debugging

12

procedures 'print _parame*er_valus' and ‘'print_variable_valus!
nave been defined elsewherae.

The =2xamples above should give a feeling for DiSpel and for
the depth and bread+th of RAIDE itself,

3. Cceonclusion
The principal attributes of RRIDE which distinguish it from
pravious debugging systems are summarized here.

c I8 The kernel of RAIDE contains a small set of primitives
sufficient +o implemsnt all the traditional debugging actions,
Unlike previous dsbugging systems which have been designed
rather haphazardly, RAIDE's design is based upon the concept of
minimum sufficiency.

2. The traditional debugging primitives (e.q., traces, dumps,
and traps), have been genaralized in RAIDE. An =2xample of this
generalization is the lack of a primitive +trace action. All

traditional debugging aids are available to the wuser thru
debugqging procedur=s. This gensralization of debugging concepts
should allow for the easy inclusion of future debugging aids.

3. RAIDE is one of the fs2w debugging system to have language
independence as a primary design criterion Virtually all
previous system hav2 been language~-depsndent by design or imple-
mentat+ion.

4. The RAIDE debugging language is more extensive and
orthogonal +han that of any previous debugging system., DiSpel
represents a compromise between an interactive command language
and a special-purpose programming language.

5 RAIDE potantially provides more run-time and analysis
debugging information than any previous system. It has been
designsd +*o filter, not mask, this information so that the user
can obtain maximum bensfit from the debugging environment.

0. RAIDE is one of the few systems which can be used to debug
multilingual collesctions cf programs. S=2veral preceding systems
have provided an interface *o0 machine-language subroutines;
RAIDE enables subroutines to be written in any high-1lsvel
language for which an interface has been provided.

A subhset of RAIDE is currently being implemented at the
University of British Columbia by the author. A more detailed
description of the system and its implementation can be found in
[John 767,

13

4. Acknowledgements

The author acknowledges with gratitude +he comments,
criticisms, and encouragemsnts of his supervisor Dr. Harvey
Abramson and of his f2llow graduate students Greg Wilbur, Ted
Venema, and Bill Appelbe.

5. References

[Ashb 73] Ashby, G., Salmonson, L., and Heilman, R. Design of
an interactiva debugger for FORTRAN: MANTIS.
Software - Practice and Experience, 3:1 (1973 _
Jan.-March), 65-74.

[Bair 75] Baird, G.N. Program debugging wusing COBOL *'74,
Proc. AFIPS NCC, vol., 44 (1975), 313-318,

{Balz 69] Balzer, R.HM. EXDAMS =-- EXtendable Debugging and
Monitoring System. Proc. AFIPS SJCC, vol. 34 (1969),
567-580.

[Baye 67] Bayer, R., Gries, D., Paul, M., and Wiehle, H.R. The
ALCOR Illinois 7090/7094 post nmortem dump. Comm.
ACM, 10:12 (1967 Dec.), 804-808,

[Bsrn 68] Bernstein, W.A., and Owens, J.T. Debugging in a
time-sharing environment, Proc. AFIPS FJCC, vol. 33,
pt. 1 (1968), 7-1u4,

[Bobr 72] Bobrow, D.G, Requirements for advanced programming
systems for 1list processing. Comm. ACHM, 15:7 (1972
July), 618-627.

[Boul 72] Boulton, P,I,P., and Jeanes, D.L. Ths struc*ture and
performance of PLUTO, a teaching orientsd PL/I
compiler system. INFOR, 10:2 (1972 Jun=), 140-153.

[Conw 73] Conway, R.W., and Wilcox, T.R. Design and implemen-
tation of a diagnostic compiler for PL/I. Coanm. ACHM,
16:3 (1973 March), 169-179.

[Cuff 72] Cuff, R.N, A conversational compiler for full PL/I.
Computer J., 15:2 (1972 HMay), 99-104,

[Evan 661 Evans, T.G., and Darley, D.L. On-line debugging
technigues: a survey, froc. AFIPS FJdcc, vol, 29
(1966) , 37-50.

[Gain 69] Gaines, R.S. The Debugging of Computser Programs.
Ph.o, Th., Dept. of Elec. Engr., Princeton U., 1969

Aug. 170pp.

14

[Gris

{ John

[Ledg

[Mann

(Moul

[Rust

[5ali

[Satt

[Site

[watt

[Wolm

71]

76

751

73]

67]

711

73]

72]

71)

74]

72)

Grishman, R. Criteria for a debugging langquage. In
[{Rust 711, pp. 57-75.

Johnson, M.S. "The Design and Implementation of a
Run-Tims Analysis and Interactive Debugging FEnviron-
ment (RAIDE)"., Ph.D. Th, Draf+, Dept of Comp. Sci.,
U. Of British Columbia, 1976 Nov. B80pp.

Ledgard, H.F. Programming Proverbs. Hayden Book
Cos,; 1975, 13Upp,

Mann, G.A. A survey of debuq systems. Honeywell
Computer J., 7:3 (1973), 182-198.

DITRAN =-- a comriler

Mcul+ton, P.G., and Muller, M.E.
Comm. ACM, 10:1 (1967

smphasizing diagnostics.
Jan-) '] u5-52l

Systems. Prentice-Hall, 1971, 148pp

———

Rustin, R. (editor) D=bugging Techniques in Largse

Salisbury, R. “The Symbeolic Debugging Systen",
Computing Centre, U. of British Columbia, 1973 Jan.
53pp.

ol high leval

Satterthwaite, E.H. Debugging for
e xperience, 2:3

languages, Software - Prac*ic
(1972 July-Sept.), 197-217.

Flea (]

to
and

Sites, R.L. "ALGOL-W Referenc2 Manual". Tach. Rep.
STAN-CS-71-230, Comp. Sci., Dept., S*tanford 0., 1971
Aug. 169pp

Watt, J.M,, Peck, J.,E.L., and Sintzoff, M. Revised
ALGOL 68 syntax char*. SIGPLAN Notices, 9:7 (1974
July), 39.

Wolman, B.L Debugging PL/I programs in the Mulrtics
environmant, Proc. AFIPS F.JCC, vol., 41, pt. 1

(1972), S07-514,

6. Appendix: DiSpel Syntax Chart

L

—————i

|
4

-
| utterance|
L T J
|
I r iy
t->jexplanation| explain keyphrase
' L J
|
S s T
F=->lingquiry|] inguire sentence .
' | SESP—
|
! b 1
t—>|declaration|
| . T ! l'_ b}
[| linteger |
I b | gonaric | 141, »
!
|
|
!

Ll 1

t->|defirnition| define id (declaration|;) as ——
[S—— - D e T T, + |
| p i
| | r 1
| | { command |
| =3 r = W
| | | procedure=-body| |
| | t—y 1]
| ¢ 1 4
! L—> begin declaration|; ; command); end
| tm e ———— +
|
l | S | , ghepdnatetns: |
t->|command] id : |when| actien .,

S — 4 - -t L_.'...._J r

o e i , S 2 en condition

I¥h
t———->Jon exczaption|,
| befors specifici,

lafter specific],

e

(S |

15

16

1

. R |
|action|
L._T..._.....J
|
F-> begin command|; =2nd
|
F-> break message
| bmm——— +
|
F-> call id (expression|,)
| o ———————— - +
|
| r 1
| 1id}, |
+-> cancel \|integer|, |
| leverythingl
| L 4
[prmm—— e ——— +
|
| e 1
b-> display (litem| as type}l, on
I I._T.-._J - =
| | r 1
		specific
L->	messaqge	
	expression	
tdebug~iteml		
L J		
expression segment-genaric		
> executs $emm——- ——-—-

1
v

) l | |
v v v v

A4

e

until condition
while condition

for specific|, =-> 1id do acticn

if condition then action glse

input files-name

quit message

-—4

r = E |
|action (continued) |

L T il
|
t-> saye id
|
| r] : 1
| |variable to =2xpression |
-> set 1id to segment-designationi,|
| 1id %o specific-expression |
| t 4
|
F-> skip segment-generic
| e -
!
F-> system system-command
| e cc e c e ——— +
|
| r) 1
| |expression segment-generic|
k-> unexecute | - il
| luntil condition |
| |while condition 1
I L |
| o - *
|
t-> while condition do action
R |
| specific|
l-—r_. - |
| T 1
t-> each wvariable |generic-incident|
4= L—T 4
et +
i F v
| lentry |
t->|exit |
laccess|
updats

17

18

=y
| variable]

L — e

| r al L) |
Lt-> generic : Junqualified-variable| |segment-qualifier|
L |

O —— - - by ¥
| tofmmmmmmm—e e -
|
| |
| t-> in segment-designation
|
|
Lt-> fid (expression|,)}I

o - ——— - -

T R . -
| segment-designation|

-)
| r 1
{ junqualified-variable|
L-> generic : |g ¥ | segment-gualifier
i o + |Isegment-range| | RS e . +
([] |
L | 4
I r 1 r 1
t—>|integer| .. |integer)
1id | 1id |
L J4 L 4
e e ——-— +

Syntax chart notation:

LE
|
~ ¢
|A) B A is defined as | 14] chocse one of &, B,
Lo d either B, C, or D | IB} or C
-> C | 1C|
L=> D | L4
|
:
|
A|B A, ABA, ABABA, ... | abc abc is optional
| +=+
|

{A B} treat A and B as one construct

o e o e e o S s s B
Lo sl i e e d

