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Abstract 

i 

Four well-known methods for the numerical solution of linear discrete 

ill-posed problems are investigated from a common point of view: namely,the type 

of algebraic expansion generated for the solution in each method. A sensitivity 

analysis of each method is made, and numerical results given for some particular 

problems. These results are interpreted from this algebraic point of view, and 

some ano~lies explained. 
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1. Introduction 

In this paper we wish to examine some popular numerical methods for lin­

ear discrete ill-posed problems; that is, methods for solving the linear system 

Kf = g (1.1) 

where K is an ill-conditioned nxn matrix (in fact K could be mxn as well). Be­

cause of the ill-conditioning, standard methods give inappropriate results, usu­

ally including large oscillations. All the methods we consider modify the problem 

or solution so these large oscillations do not appear. 

Since these discrete problems arise as discretizations of continuous ill­

posed problems, such as integral equations of the first kind, it is important to 

understand themodifications·mentioned above from the point of view of the contin­

uous problem. 

For the case of an integral equation of the first kind, 

J K(s,t) f(t)dt = g(s) 

with K compact, the nature of the problem is in one sense completely specified 

by the Picard theorem (see Courant and Hilbert [2, pg 159]). There exist adjoint 

L2 orthogonal functions {~i(s)}, {wi(t)}, and real scalars Ai+ 0 so that 

and 

J K(s,t) ~- (t)dt = A. ~i(s). 
1 1 
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~ Thus if g(s) = E Si ljJ. (s), then f(t) 
1 1 

ti(t); however f € L2 only if 

00 ai 
I( - ) 2 1< 00 , and it is this (Picard) condition which specifies whether a nice 
1 ). . 

1 

solution exists to the problem. 

However when the problem is discretized, further difficulties arise: all 

expansions become finite, and the arithmetic also becomes finite. Now one is in­

terested in whether the problem (Kf = g) has a smooth approximate solution which 

is relatively insensitive to changes ~n the data. As well, we are concerned with 

whether the particular method we are using can find this solution accurately: all 

the usual methods generate a solution of the form 

k 
f = L C • y_. 

1 1. 1 
(1. 2) 

where k and k on the method and on the problem. Although the vectors {y.} depend 
i l 

there is no restriction on the vectors {yi}, we shall assume they are orthogonal. 

Using this, we can make the following (qua~itative) definition of conditioning: 

DEFINITION: The problem Kf = g is well-conditioned with respect to the vectors 

{y.}k if there is a solution f of the form (1.2) with I jKf - gl I small, and where 
1 l 

k 
the vectors {y.} do not reflect the ill-condition of K. 

1 1 

This last statement can be quantified as follows: let Yk be the nxk matrix with 

columns y
1

, ... , yk; then we mean that the condition number K(KYk) is not large. 

Here if A is an nxk matrix with singular values cr
1 

~ cr 2 ~ •.• ~ crk > 0 
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Of course we could describe this in other ways: to find a solution of the 

form (1.2), we need to solve the nxk system (KY )c = g· thus we need g to be con-
k - -' 

sistent with the columns of (KYk) and K(KYk) not large. However we describe it, 

it is clear that the condition of the discrete problem depends not only on the 

problem itself, but the method we use to solve it; thus a particular method may 

work well on some problems (where a solution like (1.2) exists) and not on others. 

This will be seen more clearly in the numerical examples. 

In the next section we describe the methods, with particular attention to 

the kind of vectors {yi} generated. We give a sensitivity analysis of the methods 

in Section 3, and describe the numerical results in Section 4. We should add that 

a similar investigation for some particular methods was made by Rutishauser [8]. 

2. The Methods 

(a) Truncated QR 

The simplest and most general method for solving Kf = g, 

cussion in the first section, is to assume some expansion f.(k) = 

given the dis­
k i c jYi for some 

given set of orthogonal vectors {yi}, and solve for the · {ci} by a least squares 

technique. If this is done by a QR factorization, we need not prescribe kin 

advance. m Indeed, let Y be the matrix of columns {yi}
1

, where m ~ n and we know 

we want to choose k ~ m. Now perform a QR factorization KY= QR, and solve the 

first k equations of 

Re T = Q g. 

In all these methods there is some free parameter to choose, some trade­

off point between smoothness and accuracy of the solution. Here it is k, and it 

should be chosen as small as possible, consistent with obtaining a good represen-
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tation of the solution. This can be measured by the residual I IKf(k) - gl 1
2

, 

T which in turn is given by the 1
2

-norm of the last (n-k) components of Q g. So 

we pick k large enough that this residual is small, but not so large that the 

condition number of (KYk) is too big. Unfortunately (and this is the main pro­

blem with this method), although this condition number is also the condition num­

ber of~= the first k rows and columns of R, it is not always reflected in the 

size of the diagonal elements of~• which is easily monitored. As with all these 

methods, the free parameter k is best determined by solving the problem interac­

tively, using several choices fork, and choosing that solution which is "best" 

in the opinion of the user. 

Notice that the success of the method is highly dependent on the choice 

of vectors {yi}; a solution giving a small residual with only a few vectors is 

most desirable, and this depends on the problem, the data g, and on the ingenuity 

of the user. See Section 4 for some numerical examples. 

(b) Truncated Singular Value Decomposition 

This well-known method (see [l], [4], [11]) forms the singular value de­

composition of K, K = UDVT, where U and V are orthogonal and D = diag(a 1 ,a2 , ••• , 

a) where a > a
2 

~ ••• ~a ~ 0 are the singular values of K. Then the system 
n 1 - n 

Kf = g is solved using this decomposition and the relevant orthogonal transformations. 

Thus if {~i} are the colunms of U 

n 
g = I: 

1 Bi~ 

and {v.} are the columns of V, 
-1. 

n 
Bi and i = I: ( ) vi 1 a. 

1. 

k 
Again the expansion for f is truncated to f(k) = t( ~) v. 

1 a. 
-1. 

1. 

(2. 1) 
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using an interactive approach to obtain the best k. 

Of course this is also a special case of the truncated QR method: the 

vectors {yi} are the singular vectors {vi}, and the triangular matrix R is now 

the diagonal matrix D (and thus incidentally there is no problem in determining 

the condition.number from the diagonal elements!). Thus if there is a good sol­

ution in terms of the first few singular vectors, this method works well; however 

this depends on the problem and the data _s,. In particular since the vectors {ui} 

and {vi} are independent of _s,, this method provides a good solution only for those 

! whose components Si~ 0 faster than do the cri. Although this looks like a dis­

crete analog of the Picard theorem mentioned irt the first section, so that one is 

tempted to say that it is only for such _s, that the problem is well-conditioned, 

this is completely misleading. For a given _s,, even though for the singular vec­

tors ui the Si never tend to zero (so the SVD gives a poor solution), there may 

be expansions in other vectors ' {yi} which give a good approximate solution for f. 

We give such an example in Section 4. 

(c) Damped Least Squares or Regularization 

This method is also very well known (see [7], [9], and [3]). The problem 

Kf = g is modified to 

(2.2) 

where a is a free parameter. This is equivalent to finding the least squares 

solution to the overdetermined linear system 

( K )f = ( g) 
al 0 
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which is in turn equivalent to the normal equations 

T 
=Kg. (2. 3) 

Since one normally must solve this using several values of a, the most 

efficient computational procedure is to again use the singular value decomposi-

T n 
Assume K = UDV and g = E e.ui; then the solution (which is easily 

1 1 
tion of K. 

modified for different a) is 

(2.4) 

Thus the solution can again be expressed in terms of the singular vectors {v.} 
1 

(compare (2.1)), so the same comments we made in (b) apply here: namely that if 

there is a good approximate solution in terms of these singular vectors, this 

method works well (and in fact this method and the truncated singular value 

decomposition produce very similar results). 

Sometimes this problem is expressed in a more geometric way as a con­

strained least squares problem: 

min 11 Kf - g I I 
f 2 

subject to 

where y is now the free parameter. Normally (see Elden [ 3]) the solution occurs 

when I !fl I = y, and the problem with an equality constraint is equivalent to 
2 

minimizing the quadratic form with Lagrange multiplier a 2 : 



This leads again to the normal equations (2.3), and the equality constraint gives 

a nonlinear equation relating the parameters a and y: 

7 

Thus the problems are equivalent, and although this constrained approach may look 

more natural, it is more difficult to solve (because of the additional nonlinear 

equation) and there is still a free parameter y to choose. 

(d) Modified regularization 

Here the minimization problem of (2.2) is modified to 

min ( I I Kf - g 11 2 + a 2 I I Lf I I 2 
) 

f 2 2 
(2.5) 

where Lis some matrix, normally a discrete approximation to some derivative 

operator. For example (and we shall use this specific one in the numerical ex­

amples) 

1 -1 

L = 1 -1 

~-1 

(2.6) 

] (n-l)xn 

which is a discrete approximation to the first derivative, except for a scaling 

factor, The geometric motivation for (2,5) is that instead of keeping I !fl I 
2 

small as in (2.2), we keep I l1fl 12 small, which should mean we find some non-

oscillatory solution f, This is of course rather vague, and we feel that a 

better understanding of the method (as with the other three we've discussed) 
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comes from an algebraic examination. As in (c), (2.5) is equivalent · to finding 

the least squares solution to the overdetermined linear system 

( K )f = ( g) 
aL 0 

which is in turn equivalent to the nonnal equations 

(2.7) 

Again a is a free parameter, and we would like to be able to solve (2.7) 

easily for different values of a. This however is not so easy, and cannot be 

effected using merely the singular value decomposition of K as in (c). Two ways 

have been devised for coping with this problem: 

(i) convert (2.5) back to a standard regularization problem 

This could be done easily if L were i~vertible, but it is not; in fact if L 

is a discrete approximation to a p-th order derivative, Lis normally an (n-p)xn 

matrix of rank (n-p). However, this can still be done using the pseudoinverse 

L~, by a technique due to Elden [3]. One can also think of L~ as the discrete 

Green's function associated with the differential operator which L approximates. 

Thus the technique is a discrete version of a technique due to Hilgers[5] who con-

nects problem (d) to problem (c) in the continuous case (i.e. assuming f is a 

functionrather than a vector) using the Green's function. 

The discrete technique of Elden goes as follows: assuming Lis nx(n-p) 

and of rank (n-p), find the QR decomposition of LT: 



so V
2 

spans the nullspace of L. 

f = Lljix + V2y for some x and y. 

,I, .T 
Then L~ = V

1
R • Now set x = Lf; then 

Now we want l!Kf - sll = !!Ax - bll 2 for some 
2 

A,b to give a problem like (2.2). But 

and if we use the QR decomposition of KV 

T Q (Kf - g) 

= (Q IQ)( .!!o ), then 
1 2 

9 

As long as KV has full rank (i.e. if Kand L have no nullspace in common), U is 
2 

nonsingular so we can determine y by demanding that the first part of this vector 

be zero. · Thus if we define A= QTKI..ljJ, b = QTg, then I !Ax - bl 12 = I !Kf - gl 12 2 2 

and we have reduced our problem to 

This is certainly a useful computational procedure, and we have verified it com­

putationally; in all the examples of Section 4 it gave the same results as solving 

(2.7) directly. There is a second way, however, of dealing with (2.7) which is 

more useful for us here. 
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(ii) the generalized singular value decomposition (van Loan [10]) 

Given Kand L, this forms the decomposition 

L = VD X-l 
b 

where Xis the eigenvector matrix of (KTK - ALTL). U(nxn) and V((n-p)x(n-p)) are 

orthogonal, Da = diag (a1 , • • •, a ) n 

b 

'"' b 
n-p 

and the generalized eigenvalues 

a i/b. , i = 1, .•. , n-p 
1 

= ~ , i = n-p+l, ••. , n. 

(n- p)x n 

Thus the last p columns of X are a basis for the nullspace of L. For conven­

a ience we set bi= 0, i = n-p+l, .•• ,n so Ai= i/bi, i = 1, •.. , n. Now consider 

(2.7) using this decomposition; 

becomes 

T DU g. 
a 



and the straightforward solution of Kf 
n I\ 

= g is f = ~ - X 
1 ai i 

11 

(2. 8) 

Thus we again have an algebraic expansion of the solution, not in the sin­

gular vectors of K (as in (b) and (c)), but in the generalized singular vectors 

of (K,L). Because of the nature of Kand L, a permutation of the {a.} (which are 
1 

the singular values of KX) tends to zero as do the singular values of K, while the 

{bi} (singular values of LX) do not, except that the last pare zero. These zero 

bi however do not correspond to small ai unless Kand L have "near-nullspaces" in 

common, which leads to instabilities; this is not the case here because the null­

space of L has very smooth vectors, yet K is nearly singular only for very oscil­

latory vectors. Thus the nature of the expansion is much like that of (c) in 

(2.4) except for different vectors {xi}. Notice also that the components in (2.8) 

corresponding to the last p vectors (i.e. the smooth nullspace basis for L) are 

independent of the free parameter a. Again we come back to the central idea of 

the first section: if there is a good approximate solution to Kf =gin terms of 

these vectors {xi}, this method works well (using a reasonable a). 

3. Perturbation Analysis 

The most important requirement of the solutions to any of the techniques 

of the previous section is that they be insensitive to changes in the data. Here 

we shall discuss this for each of the methods by perturbing the data g tog and 
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and examining what happens to the generated solution f. For this to be meaning­

ful, we must assume that the original problem Kf = g has a smooth solution f; 

that is, in the sense of the definition of conditioning made in Section 1, the 

k 
exact solution f = i ciyi, for some {yi} which do not reflect the ill-condition 

of K. 

(a) Truncated QR method 

n 
Suppose we use orthogonal vectors {zi}; then the exact solution f = idizi, 

where (KZ)~ =.&(we may need all zi, i=l, •.. , n if {zi} I {yi}). The truncated 

k- -
QR method will give f = t dizi, where {di} is the least squares solution to the 

overdetermined system (KZk)l = g. Since the {zi} are orthogonal, 

k 2 n 2 
= (d -d ) + L d i i i k+l i 

(3.1) 

Thus we see immediately that unless the {zi! are "like"· { y i} in the sense that the 

components jail are small for i > k (whatever k is chosen), the perturbed solu­

tion f cannot be close to f, even with no perturbation. 

Now perform the QR decomposition: 

KZ = QR, 

and thus 
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So we have 

and hence if we scale our perturbation so I jg - ii 1
2 

= £ , 

(3.2) 

Notice that fork small, the dominant term in (3.2) or (3.1) is I jd2 j j2 • 

Ask is increased, this decreases but the term I jR~ 1
11 2 increases as (KZ)k becomes 

more ill-conditioned. Thus the situation is like that in the definition of con­

ditioning in Section 1: if the {z.} are such that a solution for some k can be 
l. 

found with k large enough that there is a small residual, yet small enough that 

the ill-condition of K is not reflected, the generated solution f will be insen­

sitive to perturbation in the data g. Notice that there are two sources of error: 

the perturbation g ~ g, and the different definition of the exact and generated 

solutions f and f, even with no perturbation. 

(b) Truncated SVD 

As in 

solution fk = 

Thus 

(2.1), let K = UDVT, g = 
k ]"i 
I: - v , and 
1 cr. i 

l. 

Then the generated 

(3.3) 
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or 

E(k) = R(k) + T(k) 

Here again we have one term T(k) which decreases with k, and one term R(k) which 

increases with k. Clearly this error bound is minimized if we pick k that 

lsil <£for i > k. In fact on first sight it appears that this rather simple 

criterion could be used to choose kin practice, with£ being the error in the 

data. However this does not work well; other errors are involved than just the 

perturbation in g, so the lsil rarely fall below£ and the optimal k depends on 

the {ai} as well. 

One can however carry the perturbation analysis further, and estimate 

the minmum error possible, given a particular distribution of the {Si} and {oi}. 

(i) geometric distribution: ai Si = a-2i with a> 1 and£<< 1. -i 
= a 

Then assuming n > > k, (3.3) gives 

E(k) = 
£2a2(a2k - 1) + a-2k 

a 2 - 1 

which is minimized fork= k
0 

such that 
2ko 1 

a = - , with minimum error 
£a 

£a(2 - £a) £ = _...._ __ -=- =-
a2 - 1 a 

Thus the minimal perturbation error in£, given this distribution, is~. 

(ii) polynomial distribution: oi = i-p, S = i-q with q > p. 
i ' Approxi-

mating the sums in (3.3) by integrals and assuming n > > k gives 



E2k2p+l k-(2q-2p-1) 
E (k) - -2p_+_l + - 2q- -- 2p- --1 

which is minimized for k = k0 = e -l/q, giving as minl.mum e.rror 

E(k
0

) 
- (2p + 1) (2q - 2p - 1) E 

2 
2q-2p-l 

q 

Thus the minimal perturbation .error in f, taking the square root, is roughly 

2p+l 

E 
1 - 2q 

(c) damped least squares 

n 
Again assuming g + g = ra.u., and using the SVD expansion of K so that 

l l. l. 

the exact solution f = E ei vi, the generated solution is, from (2.4), 
1 -

0' i 

Thus the error is 

(3.4) 

For a close to zero, this error has large components in the high-order vi since 

15 

Moreover as a+~, f + 0 so the error . a 

is again large (but finite). Hopefully there is some intermediate value of a 

where the error is minimized, but this is not clear in general, and depends on 
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(i) geometric distribution: oi 
-i = a with a > 1. 

For this, (3.4) gives 

This is difficult to evaluate explicitly, but the sum can be bounded independent 

of a, for any n. Since the denominator is of the form (x + ..!.) 2 the maximum term 
X ' 

i in the sum occurs when aa = 1 (call this i 0). Then 

00 00 1 l 
E ~ E (aa1)2 :5 1 a-Z 
io io 

and 
10 io 

(aai) 2 
l 

E ~ E ~ 
1 - a-2 1 l 

Thus 

I If - t 11 a 2 

So .if we choose a = f', we again get a perturbation error of the order V£ (as we 

did in case (b)). 

(ii) polynomial distribution: oi 



This gives 

For general p and q this is somewhat intractable; however for q = 2p, 

the sam,e form as in (i). Now choose i 0 such that cdp = 1 (i.e. io = a-1/p). 
0 

Then 

-2 -2p+l 
io 00 00 -2 -2p a io = 

E s E a i - 2p - 1 
io io 2p - 1 

and 

io io a2i 2p+l io E s Ea2i-2P ::: 0 = 
1 1 2p + 1 2p + 1 

where we have approximated the sums hy integrals. Thus 

2p-l 

So if we choose a=~ we get a perturbation error in fa of the order e 
4P 

the same as in (b) with the same distribution. 

(d) modified regularization 

17 



18 

n 
Applying the generalized SVD mentioned in Section 2, with data g = ySiui 

~ na 
and g = ieiui' the exact solution f of Kf = g has the expansion f = E , i xi and 

ai 
the generated solution f is, from (2,8), 

a 

)x .. 
l. 

Thus the perturbation analysis can proceed just as in (c), except that the vec­

tors {xi} are not orthogonal. The minimal perturbation error will now depend on 

the rates at which Si+ 0 and ai + 0 (rather than Si and ai) and there is the ad­

ditional factor of K(X). 

4. Numerical Results 

Here we present the results of applying each of the four methods discussed 

to three different problems. We give the results for each problem separately, 

and try to interpret the results in the light of our previous discussion, with 

particular emphasis to the existence of a good approximate solution expanded in 

the basis vectors given by each method. 

I. Inverse Laplace Transform 

Given g(t), we wish to find f(a) so that 

00 -st le f(s)ds = g(t) . (4 .1) 
0 

This is a common ill-posed problem, occurring frequently in various scientific 

applications, Normally, g(t) is only measured at certain points; however to test 
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the numerical methods, we assume g(t) is given analytically, with known transform 

f(s), so that we can measure the errors in the discrete solutions. 

We discretize the problem by applying the Gauss-Laguerre quadrature rule of 

n 
degree n to (4.1) at n sample points {ti}

1
• Thus the discrete solution is obtain-

ed at the abscissae {si} of the quadrature rule. In our case, the choice of sam­

ple points is arbitrary since we know g(t) analytically, but in practice this 

must be the given data points. (Notice one could use more than n data points; · 

this would give an overdetermined system Kf = g, but each of the methods can be 

easily modified to handle this.) 

The particular problems chosen were 

and 

1 g( t) = --­
t + 0.5 ' 

1 1 =------

f(s) 

g(t) 
t t + 0.5 ' 

= e 
-8/2 

f(s) 

The actual data used was g(t) + µX(t), where X(t) is a normally distributed ran­

dom variable. This includes noise in the data, with noise levelµ (we tookµ= 0 

andµ= .001). For sample points, we took the equally distributed points t. = i 
1 

in the results below. We also tried ti= si (the Gauss-Laguerre abscissae), with 

comparable results: some results were better, others worse. 
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soln:exp(-s/2) 

n=l0,µ=0 n=l0,µ=.001 n=20,µ=0 n=20,µ=.001 

QR .183 .183 .253 .253 

SVD .099 .099 .065 .065 

LS .053 .053 .071 .071 

MLS .262 .262 .156 .156 

soln:l-exp(-s/2) 

n=l0,µ=0 n=l0,µ=.001 n=20,µ=0 n=20,µ=.001 

QR 1.0j0.93 1.0j0.93 1.0j0.72 1.010.12 

SVD 1.0 1.0 1.0 1.0 

LS 1.0 1.0 1.0 1.0 

MLS .136 .136 .136 • 136 

Results quoted are maximum errors at the abscissae {s.} for the best 
l. 

choice of the free parameter k or a. Note first of all that all the results are 

insensitive to noise. Let us examine ' the results more closely for each of the 

methods in turn. 

(a) QR: The vectors {yi} chosen for the expansion were simply the unit vectors 

{ei}. This is appropriate for the first example, because of the exponential· de­

cay. However (particularly for n=20) the condition number of KYk became large 

(giving round off error) before enough vectors could be included in the expansion. 

The best maximum errors (quoted above) occurred fork= 3. For the second ex­

ample, these vectors are clearly not appropriate, as all of them are needed to 

give a good expansion of the solution (thus explaining the errors 1.0). The 
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T vectors were modified to include e = (1,1, •••• ,1) , giving the second set of er-

rors. Again however KYk became ill-conditioned very quickly. Better results 

could probably be achieved with other choices of {yi}. 

(b) SVD: For this problem, the singular vectors {vi} of Kare oscillatory (vi 

has (i-1) sign changes), have their maximum at the diagonal component, and damp 

out very fast. Thus we can expect a good solution using the first few vectors if 

the expected solution decays to zero. This is the case with the first example 

(best solution obtained with k = 2 or 3), not with the second. 

(c) LS: The same comments apply; for the first example, the best solution was 

obtained for a= .04. 

(d) MLS: The results here are very interesting: for the first example, the re­

sults are very bad; in fact the maximum error always occurred for s large because 

the generated solution did not decay to zero, but to some other value (for exam­

ple to .262 in the case n = 10). For the second .examp.le, however, this was the 

only method which gave a reasonable result, and again the maximum error was asymp­

totic. We should also mention that this asymptotic error was very dependent on 

the choice of sample points: for the other choice of sample points (ti= si) 

given earlier, the results were better for the first example, and about the same 

for the second. 

Again, the errors should be interpreted with regard to the particular ex­

pansion used (see (2.8)): the L used was that in (2.6), and the {x.} could be ex-
1 

plicitly calculated for this K, using the QZ algorithm of [6]. In particular the 

T nullspace of Lis spanned bye= (1,1, •.. ,1) so this is the last generalized 

singular vector~· The corresponding an was in fact the largest {ai}, and the 
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other {a
1

} or {a
1
/bi} tended to zero very fast, much like the singular values 

{cri} of K. The corresponding vectors {xi} were .like the singular vectors {vi}, 

except that they decayed to x = e rather than zero. Thus there is a good approx-
n 

imation to the solution of the second example among the dominant {xi}, but not 

for the first example. 

II. Finite, Compact Kernel 

Here we apply the methods to two examples of compact kernals on finite 
1 

intervals: f K(s,t)f(s)ds = g(t) with 
0 

(i) K(s,t) s(l - t) for s ~ t 
= {t(l - s) for s ~ t (Green's function for second derivative) 

with the functions g(t) = t(l - t)e-t, f(s) = 
-s (4 - s)(s - l)e . 

(ii) K(s,t) = cos(st), g(t) = s!nt + cos:2-
1 , f(s) = s. 

Now it is appropriate to use the Gauss-Legendre quadrature rule of order 

n at n sample points {si}, which we take to be equally spaced in the interval 

[0,1]. Again other choices of sample points gave comparable results, and again 

we perturbed the data by a discrete normal random variable, giving noise levelµ. 

Green's function 

n=l0,µ=0 n=l0,µ=.001 n=20,µ=0 n=20,µ=.001 

QR .1291,167 .148 I .116 .0271 .033 .025 I .028 

SVD 3.6 3.6 3.7 3.7 

LS 3.5 3.5 3.9 3.9 

MLS .265 .289 .461 .481 
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cos(st) 

n=l0,µ=0 n=l0,µ=.001 n=20,µ=0 n=20,µ=.001 

QR .00004j.126 .0031.33 .oooosl.136 .00912.3 

SVD .425 .586 .695 .785 

LS .603 .603 .791 .723 

MLS .056 .053 .059 .056 

Again the errors given are maximum errors for the best choice of the free 

parameters. Notice that here the noise does have an effect on the solution gen­

erated. Again let us describe each method in turn. 

(a) QR: We chose for expansion vectors {yi} discrete versions of two orthogonal 

sets over [0,1]: orthogonal polynomials and Fourier series. This worked well in 

the first example, choosing k ~ 6. And orthogonal polynomials worked perfectly 

in the second example, because the solution is a linear polynomial (notice that 

when noise was introduced, the error increased to the noise level). The Fourier 

series expansion did not work well, because of the poor convergence of the Fourier 

series for f(s) = s. Noise.swamped the generated solution here, showing that the 

matrix KYk was too ill-conditioned. 

(b) SVD: For both examples, the singular vectors ' {v.} of K look like discrete 
1 

versions of the eigenfunctions of the kernel, namely sin(jTis), j = 1,2, .••. 

Thus the SVD method will work well only for solutions with a rapidly converging 

sine series. Unfortunately neither of these examples satisfies this, hence the 

poor results. 
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(c) LS: Again the same comments apply. 

(d) MLS: For the first example (the Green's function), again with Las in (2.6), 

the {ai/b1} + 0 like the singular values {ai} of K, and the corresponding {xi} 

behaved like discrete versions of cos(jlls), j = 0,1,2, ••• (j = 0 giving e = x = 
n 

nullspace vector of L). This expansion gave a better solution that SVD or LS, 

but still poor. In the second example, the structure of the {x.} was harder to 
l. 

discern, since the {a/bi} became small very quickly (all except two were below 

-6 
The two "nontrivial" 10 ) and thus the vectors contaminated each other. vectors 

were x = e and another vector which behaved nearly linearly; this is why a good 
n 

solution was found to the second example: the particular solution sought was lin-

ear. 
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