
!HIM
MMMM MMM

MM M MM
M M

M M MPIP'H1 MMMMM
MM MM MMMM MMM

MMM MM MM MMM
MMM MMM MM MMM
MMlUIM MlHUlK MMMMMMM

f'IMMMMMM MMMM
MMM

MMM MM
Ml'1 MMM

M
MMMM
MMM

M MMM
MM MMM
MMMMMM

MM
MMMMM

M MM
M M

MM
MMM
MMM
MMM

(llfl1M M
MMMMM

* *
* ANTICS - A System for Animating LISP Programs *
* *

by

Marks. Dionne and Alan K. Mackworth

Technical Report 76-7

octob~r 1976

Department of Computer Science
University of British Columbia

VancoUV.gr, B. c.

i

A system, named ANTICS, has been developed for producing

animated films, film strips, or slides depictinq the execution

of LISP programs. The design, i ■plementation, and use of ANTICS

are discussed and it is ccmpared to existing systems. ANTICS

may he used by entering very simple commands which produce r~al

time animation. The system may be "backed up" and manipulated

interactively. Advanced commands and a set of gra~hics

primitives are available which permit an instructor or film

maker to control details and to add features no~ provided.

ANTICS may therefore be used as an interactive educational tool

or as an animation system. It is inexpensive to use: a thre~

minute film showing the operation of the racursive function

MEMBER was produced for a total cost of $12.00. The

implementation is dependent on specific hardware, but the

design, which is based on the organization of the LISP EVAL

function, could be used en other systems.

1

.1.. IJ.QilJJ .Ull!.ll.Ql!

J.s..1 lfil.!Q~1fili

A syst9■ named ANTICS has been produced vhich animates

programs written in LISP [1]. The system is designed for use by

an instructor in a programming course, allowing her to make

films which will demcnstrate various features of the LISP

language and of algorithms programmed in LISP. The instructor

may control the parts of LISP which are animated and the amount

of detail which is shown. Also, the system is simple and

inexpensi•e enough to be used as an on-line interactive

instructional aid •

.l.s.l JQII!illfili

Teaching beginning computer science almost always has

involved graphic tools. Flowcharts, data structargs, system

organization diagrams, parse trees, hardware schematics and

graphic representations of certain algorithms each have an

important place in the language of computer science. Many

computer science concepts, such as the stack, tne linked list,

and the array have an implicit graphic language of their own

which is invariably taught in beginning courses. Other more

dynamic concepts do not have well established graphic

representations, since tbeir actions are not easy to convey with

fixed images. Examples of these are recursion, iteration,

binding, and algorithms such as searching, sortinq, and parsing.

2

The motive for animating computer programs is to provide

new graphic expressions for complex dynamic processes in the

field of computer science. corresponding ideas in physics have

been illustrated in several computer produced films (2, p. 313].

An excellent appreciation of a system c~n be gained by

hands-on experimentation. This is the motivation behind LOGO, a

simple programming language ~bich teaches mathematical and

programming skills by being "played Mith" by children (3]. In a

similar way, the stud~nt could explore the LISP world visually

and at her own pace if the arimation system were made

interactive.

Although computer animation has been fairly popular for~

number of years, few attempts have been made to produce animated

computer science films. Until recently, only one significant

computer animated film related to computer science {41 had been

produced. This film was produced by a system which cost

approximately $600 per 1inute of film [5].

Ba9cker and his students have done work in this area [61

which Eaecker has aptly named "program illustration" [7]. Two

systems have been produced by them. one system animates any

program written in a subset of LOGO [7, p. 160]. A fixed set of

conventions determines hov the ~xecution of statements and

evaluation of variables ~ill be displayed visually. Optional

parameter settings may be added to the program to tailor the

timing and spatial positioning of the animation. The ~ystem has

been used to animate a simple LOGO program which ~everses a

3

character string, demonstrating features of the LOGO language as

well as the concept of recursion. This system allows any LOGO

program to be animated witbcut adding special commands. The

system is too expensive for production work, however.

The second system animates programs written in a subset of

PL/I (7, p. 161]. . Pseudo-co1111ents, interspersed with the PI./I

source code, call special functions which produce t .he animation.

Producing a film with this syste11 may take several ~ours of

programmer effort since tte pseudo-comments must be written for

each program to be animated. However, more detailed contrcl of

the animation is possible than in the LOGO system. This system

has been used to produce a film illustrating a sortinq

algorithm; the film fellowed thE execution of the PL/I proqram

without showing PL/I language features explicitly. The PL/I

system can produce film clips for $100 to $200 per minute.

Both of these systems produce key frames which are used by

a computer animation language to produce the final film. (See

section 1.5.) Neither system can be used interactively.

Hopgood has produced computer animated films illustratinq

hash table algorithms [8]. His system applies various

algorithms to examples which are too large to be worked out

easily by hand, thus giving students an appreciation for the

methods when applied to non-trivial problems. This is claimed

to shov the advantage of certain algorithms more clearly than

mathematical analysis or simple examples •

.h!. llll.§ Ql !ll!U.I~.!

Four major areas in computer science are likely to benefit

4

from animation. The methods developed are likely to differ, and

when "program animation" is mentioned, the exact type should

also be specified. The areas are:

1. Animating algorithms, such as sorting, p,rsing, or

searching.

2. Animating programming language features, such as "DO" in

FORTRAN or "COND" in lISP.

3. Animating hardware operation. Animating movement of

data between registers, arithmetic units, ~~morv an~

channels.

4. Animating concepts in computer science, such as control

structures ana data structures~

Both hand animation and computer animation have made use of

the key frame animaticn technique. An image is first produced

for every "key" frame of the finished movie, and ihen less

skilled artists (or a computer) produce intermediate,

interpolated frames, resulting in the smooth movement of th~

figures from one key frame to the neit. In the case of comput9r

key frame animation systems, the key frames could be produced by

an artist u~ing a data tablet, or by another program. This

method has been used primarily to produce artistic films.

computer animation also may be produced by takinq advaptaqe

of the nature of a particular graphics system. This is

tentatively named "direct animation". The tools developed for

interactive graphics are extended to produce a sequence of

5

animated displays. Many graphics systems provide means to

displace, scale, rotate and change the intensity of sets bf

vectors. These facilities can be used to produce movement and

other animation effects. The details of producing aniaaticn in

this way are more invclved than in key fra■e animation: timing

considerations and display file organi%ation may be difficult,

and complex ■otions cf artistic figures may be impossible. on

the other hand, since most of the detailed animating is done at

high speeds by the display processor, it is generally more

feasible to produce real-time "live" animation by this method.

A frame can be set up by the main computer and movement

initiated. While the display processor is producing the

movement the main computer can be working on the next major

display change.

The overall purpose of the ANTICS system is to impart some

knowledge of the basic operation of LISP to a beginning

programaer. There are two fundamental concepts which form the

foundation of LISP: the structure of s-expressions, and the

operation of BYAL.

Although s-expressions are changed during the execution of

a typical LISP program, they generally specify "structure" in

some sense, and the first thing a student must do is understand

·:
l

6

s-expressions as static data structures. ANTICS provides the

capability of displaying arbitrary s-expressions either in

"prettyprinted" form or as CONS-cells and pointers. Figure 1

shows a CONS-cell display of a function definition. Figure 2

illustrates the actions of the destructive functions, RPLACA and

BPLACD. This figure was produced by a 25 line script which

generated the structures in a timed sequence.

The operation of EVAL is a complex, dynamic p~ocess. It

consists of a precisely ordered sequence of recursiva operations

on s-expressions, coordinated with the binding and unbinding of

variables on a stack or an association list of variables and

values (known as an a-list [1]) • ANTICS bases its animation of

LISP functions on the operation of EVAL, though it does not

presume that the student has any knowledge of EVAL itself.

ANTICS' animation simply reflects the various facets of EVAt as

they are brought into operation, by displaying them in a

suitable fashion. The details of the design have centered on

selecting the parts of ?VAL to display and devisinq suitable

graphic representations for thew.

3) :

The basic animation proceeds as follows (reter to Fiqure

1. The form which is being evaluated is printed on the

display screen and, after a short interval, a box is

displayed containing the word "EVAL". To suppress

detail and save screen space, printing only descends a

set number of levels into the structure; any non

atomic structure at this level (level 3 in this

example) is represented by an""•

C
 D

EF
UN

M

EM
BE

R
C

 TH
IN

G

L
IS

T
 l

(C
ON

 D

C
 C

 NU
LL

L

 I S
T

l
N

 1 L
 J

C
 CE

OU
AL

TH

IN
G

CC

AR

L
lS

T
 l

 l

LI
ST

 l

CT

(M
EM

BE
R

TH
IN

G

(C
D

R
LI

ST
 l

 l
 l

 l
 l

ME
MB

ER
: TH

IN
G

LI
ST

,. NI

L
,. NU

LL

LI
ST

CA
R

LI
ST

F
ig

u
r~

1

.
D

is
p

la
y

 o
f

C
O

N
S

-c
el

ls

CD
R

LI
ST

.....
.

0
0

1
-

CS
ET

Q
Z

'(

(A
l

B
ll

3

-
CR

PL
AC

R
(C

O
R

Zl

CC
RR

Z

l)

Z=

Z=

IT

t A

A

2
-

CR
PL

RC
D

(C
O

R
Zl

Zl

4

-
CR

PL
RC

O
Z

 Z
l

Z=

Z=

A

A

F
ig

u
re

2

.
T

he

e
ff

e
c
ts

 d
f

RP
LA

CA

an
d

RP
LA

CD

ME
MB

ER
:

C
 LA

M
BD

A
(T

H
IN

G

L
JS

T
 l

(M
!:M

BE
R

! E
~~

L
l

CC
ON

D
C

 CN
UL

L
. L

JS
T

 l

N
IL

 l

(
(E

Q
U

A
L

TH
IN

G

(C
A

R
L

lS
T

 l
 l

L

JS
T

 l

CT

(M
EM

BE
R·

TH

IN
G

CC

DR

L
lS

T
 l

 1
11

 l

-
--

-
-

-
-

-
--

-
-

-
-

--
--

--
-

--
--

--
-

-
--

--
--

--
--

-
·A

"[

C
A

T

ll

3
(a

)
0

:0
0

I T
HI

 N
G

=

lL
IS

T
.=

F
ig

u
re

 3
.

S
n

ap
sh

o
ts

 o
f

an
im

at
io

n
 o

f
L

IS
P

fo
rm

 e
v

al
u

at
io

n

(T
y

p
ic

al
 t

im
in

g
 i

s;
in

d
ic

a
te

d
)

.
~

.

*U
ND

EF
*

*U
ND

Ef
*

\0

M
EM

BE
R:

.
(L

AM
BD

A
CT

H
IN

G

L
JS

T
 l

CC
ON

D
C

 (N
U

LL

L
lS

T
 l

N

ll
 l

(
CE

OU
AL

TH

IN
G

CC

AR

L
IS

T
 l

 l

L
lS

T
 l

CT

(M
EM

BE
R

TH
IN

G

CC
DR

L

lS
T

 J
i

l
11

I-
'

0

-
--

--
--

-
-

-
-

-
-

-
-

-
-

-
-

--
-

-

--
~

-

-
-

-
--

--
-

-
--

-
f M

EM
BE

R
'A

' l

 C
 A

 T
)

)
:-1

,
I E

VR
L.
l

>
 , l

 C
 -

A
T

)

A

I E
~

l
I

F
ig

u
re

3

(b
).

0

:1
6

I T
H

I N
G

=

*U
N

D
EF

*
I L

I S
T

=

*U
N

O
Ef

*

M
EM

BE
R:

(L

AM
BD

A
C

 TH
IN

G

LJ
ST

)

!M
EM

BE
R

' (C
ON

D

I E
~

L
j

CC
ON

O
C

 (N
U

LL

L
JS

T
 l

N

ll
 l

C

 (E
Q

U
A

L
TH

IN
G

(C

AR

L
lS

T
 l

 l

LJ
ST

 l

CT

(M
EM

BE
R

TH
IN

G

(C
O

R
L

IS
T

 l
 l

 l
 l

 l

"A

·[
c

A
 T

ll

(
[N

U
LL

L

IS
T

 l

N
IL

 l

l
lE

O
U

A
L

TH
-lN

G

&
l

L
IS

T
 l

l T

(M

EM
BE

R
TH

 I
NG

t

l
l

l

F
ig

u
re

3

(c
).

0:

24

-

i T
H

IN
G

=

lL

IS
T

=

A

(C
A

T

l

LI
 S

T
=

*U

N
O

EF
~

TH
IN

G

=

~U

N
D

E
fl(

-.
... -

M
EM

BE
R:

(L

AM
BD

A
(T

H
IN

G

ll
S

T
 l

CC
ON

D
(
!N

U
ll

ll
5

T
 l

N

JL
 l

C
 CE

OI
JA

L
TH

IN
G

CC

AR

ll
S

T
 l

)
L

lS
T

 l

{T

(M
EM

BE
R

TH
IN

G

CC
DR

ll

S
T

ll
ll

l

(M
EM

BE
R

• A

•
(C

A

T

l
J

T

(C
O

N
D

(

(N
U

LL

L
IS

T
 l

N

IL
 l

.

(
(E

Q
U

AL

1H
lN

G

&
)

ll
S

T
 J

EV

RL
 h

..
l T

(M

EM
BE

.R

TH
IN

G

&
 l

l
l

(E
QU

AL

TH
IN

G

C
 CA

R
ll

 S
T

l
l

:Jt

I E
\JA

L
l

)
t C

AR

l
l S

T
l

A

w

I E
VR

L
I

)
Ll

 S
T

I E
~

L
]

F
ig

u
re

 3

(d
).

1

:0
0

J
TH

IN
G

=

IL

JS
T

=

A

CC

A

T
l

I-
"

N

-
-

-
-

-
--

-
--

--
-

LI
ST

=

*U

N
D

EF
*

TH
 I

NG

=

*U

N
D

EF
*

M
EM

BE
R:

(L

AM
BD

A
l T

H
IN

G

ll
S

T
 l

C
 CO

N
D

C

 (N
UL

L
L

 JS
 T

 l

N
 l L

 l
{

(E
O

U
RL

TH

IN
G

(C

A
R

L
lS

T
 l

)
L

lS
f

l

C
 T

C
 M

EM
BE

R
TH

 l
NG

(C

DR

l
l S

f
)

1
J

1
J

--
-

--
--

-
-

--
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

!M
EM

BE
R

' I
C
O
N
□

"1
/ i [M

EH
BE

R

' IC
D

N
D

I E
~~

L
I

'R

•
(C

A

 T
l

1

(
(N

UL
L

LI
 S

T
l

N
IL

 l

!
l E

QU
AL

TH

IN
G

&

 l
L

I S
T

l
{ 1

C

 M
EM

BE
R

TH
IN

G

~
l

11

TH
1f

'/G

l C
DR

L

IS
T

 l
 l

l
(N

U
LL

L

l S
T

J
N

 l l
 J

(

(E
O

U
RL

TH

IN
G

&

)
L

JS
T

 l

(T

C
 M

EM
BE

R
TH

J N
G

!.
l

J
l

F
ig

u
re

3

(e
).

1

:5
2

I T
H

IN
G

=

A

!L

IS
T

=

(A

T
l

LJ
ST

=

(C

 A
 T

l
TH

IN
G

=

A

-
-
-
-
-
-

L
 l S

T
=

*U

N
D

E
fl~

TH

I N
G

=

*U
ND

EF
~t

1-

-' w

M
EM

BE
R!

(L

AM
BD

A
CT

H1
NG

L

lS
T

 l

C
 CO

ND

{
C

 NU
LL

LJ

 S
T

l
N

 l L
 l

C
 C

 EQ
UA

L
TH

l N
G

C
 CA

R
LJ

 S
T

l
}

L
lS

T
 l

CT

C
 M

EM
BE

R
TH

1N
G

(C
DR

LJ

ST
 l

 J
 l

)
}

I M
EM

BE
R

aA

• {
 C

 A
 T

l
l

T

lC
D

N
D

(

(N
U

LL

L
lS

T
 l

N

ll
 l

T
 l

l E
QU

AL

TH
IN

G

&
 l

LJ
 S

T
)

I T

C
 M
EM

BE
R

TH
 J

NG

&
 J

l
l

! M
EH

BE
R

TH
 I

NG

{ C
DR

L

 1 S
T

l
l

T

[C
DN

D
[

l N
UL

L
L

IS
T

 l

N
IL

 J

~
 ~

iE
Q

U
A

L
TH

IN
G

&:

J
LJ

ST
 J

~
 (

M
EM

BE
R

TH
IN

G

K.
I

11

!E
O

U
RL

TH

IN
G

(C

A
R

L
lS

T
 l

l

I E
~

L
 I

A

A

F
ig

u
re

3

(
f)

.
2

:3
6

I T
H

IN
G

=

A

IL
IS

T

=

CA

T

l

LI
 S

T
=

l C

A

T

 J
TH

IN
G

=

A

-
-
-
-
-
-

LI
 S

T
=

*U

N
D

EF
*

TH
IN

G

=

*U

N
D

EF
*

.... ,I
:'-

M
EM

BE
R:

CL

AH
BD

A
C

 TH
1N

G

L
lS

T
 J

[M
EM

BE
R

T

(C
DN

D T

{M
EM

BE
R

T

[C
DN

D

I E
fRL

 I

I A
 T

l

CC
ON

D
C

 (N
U

LL

LJ
S

T
l

N
ll
 l

CC
ED

UA
L

TH
IN

G

CC
9R

L

lS
T

 1
1

L
JS

f
l

CT

·c
M

EM
BE

R
TH

 1
 NG

. C

 CD
R

L
 l S

T
l

l
l

l
l

'A

• {
 C

 A
 T

l
l

(
(N

U
LL

L

lS
T

 l

N
IL

 l

l
!E

Q
U

A
L

TH
IN

G

&
:)

LJ
ST

 J

{ T

C
 M
EM

BE
R

TH
 l

NG

&
 l

l
l

TH
IN

G

!C
D

R
L

IS
T

 l
 l

l
l N

UL
L

L
lS

T
 l

N

IL
 J

(

{ E
QU

AL

TH
IN

G

&
 J

L
IS

T
 J

IT

C

 M
EM

BE
R

TH
J

NG

~
l

l
l

F
ig

u
re

3

(g
).

2

:4
8

I T
H

IN
G

=

A

!L
IS

T
=

CR

T

l

LJ
 S

T
=

CC

R

T

 J
TH

IN
G

=-

R

-
-
-
-
-

-
L

IS
T

.=

*U
N

D
EF

¾

TH
 I

NG

=

~U

N
D

EF
*

~

I.J
1

M
EM

BE
R:

(L

AM
BD

A
C

 TH
IN

G
L

IS
T

 f

rC
DN

D
C

 (N
U

LL

L
lS

T
 l

N

ll
 l

(
CE

OU
RL

TH

IN
G

(C

A
R

L
lS

T
 l

 l

L
lS

T
 l

(T

(M

EM
BE

R
TH

IN
G

CC

DR

Ll
S

T
 l

 l
 l

 l
 l

.... C
\

-
-

-
-

-
-

-
.,_

_,

-

-
-

-
-

-
-

.....

.
-

--
-

-

--
-

-
-

-
-

-
-

-
-

-
f A

 T
l

F
ig

u
re

 3

(h
).

3:

04

I T
H

l N
G

=

*U
N

D
EF

*
I L

I S
T

=

*U
N

D
EF

*

17

2. If the fora contains arguments which must be evaluated,

then their fYaluation is recursively animated to the

right of the present display and the returne~ values

are moved into a colu•n below the present EVAL box.

After these EVLIS values have all been returned, their

bindings to the dummy variabl~s of the LAMBDA

expressions are optionally displaye4 and the old

values of the dummy variables are placed on the stack.

3. If the function being evaluated is part of the LISP

system (a SUER, a function written in assembly

language) the returned value is displayed after

removing the original form fro• the screen. If a

user-defined function is being evaluated, the

expressions which constitute the body of its

definition are eYaluated in turn. Expressions which

are conditions in a CCND or SELECT function are

animated to tbe right of the current EVAL box, while

all other expressicns are animated so as to appear

directly below it.

4. Throughout the animation, the definition of a function

may be displayed at the top of the screen, and the

portion of it that is currently being aoiaated will be

intensified.

5. The LISP stack or association list optionally may be

displayed on the screen, as well as currant variable

bindings. Changes in these are shown a~ they occur.

6. Whenever the EVAt aDimation or the stack display

encounters the bo~der of the display area, p~rt of the

18

display is "rolled off" the screen and disappears,

thus freeing · ~pace on the display screen. When the

ejaluati~n is exiting the rclled prirtions reappear on

the screen.

A co■puter system to produce general-purpose, high quality

animation probably would have to produce one frame at a time,

given the present state of the development of computer graphics

systems. A high priority in the design of ANTICS was that the

system be able to produce animation in real-time.

several reasons for this:

There were

,. The implementation of ANTICS would be very difficult if

all testing bad to be done by filming one frame at a

time.

2. The production of properly timed films for classroom use

also would be very difficult.

3. A real-time system also could be .made interactive, and

this would ptovide an extremely versatile, thouqh

perhaps expensive, tEaching tool.

4. Many animation systems have produced one frame at a

time. It would be ~aluable to help to de~onstrate

that this is not always necessary.

s. A real-time system easily can be made to display one

frame at a tiae i~ this is needed to produce hiqh

quality film.

The goal of producing a ~eal-time system caused some

implementation difficulties, but thesE were considered minor in

19

light of the first two reasons given above. In addition,

single-frame animation is ■ uch ■ore complicated or impossible if

the scan time of the display screen is longer than the lonqest

camera shutter time, and this was the case vith ANTICS and the

available equipment.

hl ~filll]llill

It was assumed that a perscn making a film with ANTICS

would be a relatively sophisticated LISP user (a course

instructor or assistant), and that the instructions necessary to

produce a film (callEd the script} would not need to be

especially simplified. on the other hand, since the system

would also be interacti~e, a relatively naive LISP programmer

should be able to produce instructive animation with only a line

or two of input. The result was the following design:

1. A single comaand, IEVALQ, will animate the evaluation of

any expression.

2. several simple commands

displays.

control the other basic

3. Additional commands provide aore elaborate control over

details of the ani aticn.

4. A sophisticated user 11ay insert "breakpoints" into the

definitions of the functions to be evaluatedr thereby

changing minor dEtails in the animation.

5. A general-purpose graphics language is available to

build special displays.

The types of comm~nds that are allowed in the script can be

broken down into several groups: one group controls the major

20

displays, a ~econd group controls details of the animation, and

a third group is concerned with details of producing films, such

as timing and camera conttol.

In order to provide flexipility to the user of ANTICS, a

general purpose graphics language was provided. The user would

most likely want to produce titles, diagrams, and explanatory

text. She also may want to highlight porttons of tAe ~nimation

by adding special effe~ts such as ~ointers or outlininq boxes.

It should be possible tc include figures sketched with the liqht

pen or data tablet.

ln obvious choice was to base the graphics language on a

subset of GLISP, a LISP based graphics language (9]. GLISP has

a useful set of primitive functions for drawing line~ and text.

It also allows the user to sketch figures with the light pen or

data tablet and to adjust their . size and position on the display

screen, and also to saYe figures in a library. Furthermore,

GLISF is easy-to-learn, supported and well-documented.

Since AN~ICS is an educational tool, human factors

considerations were important in lts design. At ond level, the

graphic representation of concepts falls under thi~ category.

At another level, the timing and sequencing ot the animation

vere considered. Because ANTICS is also ~n interactive graphics

system, response time ,and interaction methods were taken into

account.

The graphic representaticn cf s-eiFressions

established standard form, and there was not much

its design~ However, the 11ethod of ani111atinq

21

is a well

latitude in

EVAL is not

standar~; it is based on a blackboard method used in a course on

tISP, c.sc. 509, taught by Raymond Reiter at the University of

British Columbia. The well-defined natµre of EVAL tends to

limit the possibility of radically different graphic

representations. The real choices lie in the complexity of the

functions ani■ated and the a ■ount of detail shovn, and ANTICS

provides the instructor/animator the ability to match these

choices to the level of her students.

The timing and sequencing of animation were important

considerations in the design of ANTICS. Early versions of the

program produced animation that vas difficult to follow because

the action moved from one side of the display screen to the

other without warning. The idea of a ttfollover" was developed:

a moving figure on the screen naturally catches the eye and

directs the •iever•s attention to a new area of the screen.

Movement was found to be very compelling visually -- in fact,

any aove ■ent on the screen seems to lock the viever•s attention.

Because of this, the rule for lengthening ANTICS' animation

gives priority to making the static portions of the film lonqer,

since these sections allow the student to absorb the meaning of

the animation sequence. Movement is a dominating element in

entertainment animation, but its use in instructional animation

must be considered carefully (2, p. 66].

The overall speed of the animation must be slow enough for

22

the viewers to follow, and this speed is not easy to define. No

exact speeds can be recommended, but the follow~nq points were

considered:

1. Viewers gain skill at following the animation ~s they

become more familia~ with the form of representation

used in the animatioll.

2. Por naive LISP programmers, "the slower the better" is

perhaps a very realistic rule for the speed of

animation. (On the other hand, an authoritative

source claims, "It has been proved by ~xperience that

the shorter the film the more effective the

instruction is likely to be, because of the intense

concentration which the student must . " qi ve. • .

[2, p. 136])

3. A short film can be shown several times consecutively

' and different facets cf LISP can be e~phasized each
' ·

time by the instructor.

4. A saitable projector can stop the animation ~hile the

instructor makes detailed explanations.

The speed of animation can be adjusted with the #RATE command

or, interactively, using a dial.

The input to ANTICS is a series of LISP forms called a

23

script. When a movie is being produced this script must be

entirely !n a fiie so that it can be read without interruptions,

which would conf-qse the ti ■ ing of ti.e movie; bovever, the script

may be entered one line at a ti,e when the systew is being used

interactively or while experi■e~ting with ideas. A script may

consist of several lines to produce an animation of a single

LISP evaluati9n~ or it may contain a hundred or more lines to

pr6duce a Qomplete movie v~tb titles and explanatory text. The

fellowing script produces a · rudimentary aniqation:

(ISTA81)

(DEPOM "E!B!B (THING LIST)

(COND ((NULL LIST NIL)

((EQUAL THING (CAR LIST)) LIST)

(T (MEftB!' THING (CDR LIST)))))

(IDISPLAY THING LIS~)

(tW~IT 5)

(IEVALO (MEMBER 'A '(CAT)))

tSTART initializes some parameters and blanks tha display

scre~n. CEPON si ■ ply defines the function of interest in the

usual way. tDISPLAY cause~ the names and values of tha atoms

THING and LIST to be displayed on the screen. They will remain

until th~ scree!\ is blanked, and the display will be changed

lfhenever their values change,. #WAIT causes a five second pause

before the next line of the ~cript is executed. tEVlLQ causes a

complete an~ ■ation sequence, lasting perh~ps several minutes, of

the EVALuatio~ of the giYen form. puring this animation the

values of the atoms specified by the #DISPLAY command are

upd~ted constantly.

24

There are tvo additional major commands wnich could be

added to the above script anywhere before the tEVALQ command;

(ISTACK THING LIST)

(IS'lAB llEMBBR)

#STACK causes a stack to be displayed during animation shoving

the bindings of the atoms THING and LIST. No display is

produced vhen the tS'?lCK command is given -- the display is

shown during the animation PIOduced by #EVALQ. tSTAR causes the

definition of MEMBER to be shown immediately at tbe tqp of the

display screen. During the animation produced by iEVALQ the

portion of this "star" function currently being evaluated will

be intensified.

These commands are the basic bigh-leYel animation features

of ANTICS. The user can obtain a great deal of variety,

however, by using other more specialized commands, sel~ctinq

options, changing parameters, and producing additional graphical

displays with the graphics primitives included with ANTICS. It

is possible to abbre1iate certain features of the animation

after they have been displayed a set nu ■b•t of times.

The general purpose graphics language available to the user

of ANT!CS contains both graphica pri•itives and special

functions for displaying LISP structures. It can be used within

sp~cial bre~kpoints which may be ins~rtad into a function whose

evaluation is being ani ■ated. By using ·these breakpoints, which

are invisible to the viewer of the movie, the . user of ANTICS may

tailor the evaluation animation by emitting unnecessary detail

and displaying explanatory messages and figures a~ kay points in

the animation.

25

Figures 3(a) thrcqgh J(h) are snapshots oi the animation

produced by the above script. the "starred" func~ion is at the

top of the display, the current variable bindings are in the

upper right, and the stack is in the lover right corner. Figure

3(h) shows the end of the animation: the stack is empty and the

value returned by the function call is all that is laft.

Although ANTICS is designed primarily for making movies, it

is fast enough to support interactive use.

means of tbe light pen and function buttons.

Interaction is by

An overlay card

labels the functions of the various buttons. Whenever ANTICS is

waiting, both of these devices ar@ active. During animation,

tWAI! is called before and after evaluating each fora.

There are tvo modes of interactive operation STEPMODE and

AUTO ■atic. STEP"ODE is selected by pressing the STEPaODE button

or by using the light pen in any way. While in STEPMODE, the

function IWAIT always waits until either the STEP button is

pushed or the STEP light buttcn is selected with the light pen.

In AUTO modg, the tWAI! function waits the specified time,

unless the STEP button is pushed first. AUTO mode is selected

by pressing the AUTO button or by pointing the light pen at the

AUTO light button.

The light pen has two other functions as well. At any time

it ■ ay be pointed at any variable in the list created by

tDISFLAY, and a ne~ value for the atoa may be entered throuqh

the keyboard. The light pen also may be pointed to any part of

26

the evaluation display, and the animation will back up to that

fOint and restart.

There are several other buttons which may be used at any

time. These can terminate or "backup" the animation, activate

the camera, change the rate of animation, or plot the contents

of the display screen.

The implementation of ANTICS is dependent on a unique

environment of hardware and software. This is unaYoidable due

to the interactive nature of ANTICS: interactive grafhics

systeas tend to be hardware dependent. The general organization

of the implementation environment is fairly typical of graphics

systEms however, and it may be possible to modify ANTICS to work

on other systems without undu~ effort.

The ANTICS system is implemented on a

Graphics Terminal which communicates with

Mo qel 1 O Adage

an IBK 370/168

computer operating under the "ichigan Terminal System, MTS.

INTICS is written in LISP/~~s, an interpreter similar to LISP

1.5 [1]. tISP/MTS uses an internal stack rather than an a-list

as do LISP 1.5 and several other LISP systems. The animation

which is produced reflects this aspect of LISP/MTS and several

other ainor details, but since ANTICS contains its own EVAL

function these details could be changed easily. LISP/MTS

27

comJRunicates

interface.

vith the graphics terminal through a simple

W .llilll.Al !ll..l .QliJllllllQl!

The organization of the contents of the Adage Graphics

Terminal buffer, refered to bereaf~er as the display file, was

altered seYeral times in the course of the deYelopment of

ANTICS, and was a major part of the implementation effort. The

actual display file stayed fairly fa~ from the ideal due to

hardware and software limitations and design cons1derations.

All of the display file organization was implemented at the LISP

level of the system. Per more implementation details see (10].

The heart of ANTICS is a set of LISP functions constituting

a version of the LISP EVAL function. This version af EVAL is

interspersed with calls to animation routines, and this is how

all animation is produced. The stack, variable and "star"

displays are also driven by ANTICS EVAL, and user breakpoints

are detected and processed by it. As a result, tha animation

naturally follows the e~ecution of EVAL and ANTICS has a simple

underlying structure.

The routine which displays CONS-cells also uses some novel

methcds. When given a list it draws a CONS box, and then calls

itself recursively with the CAB of the list. The return value

is a pair of dimensions indicating the physical siza of the

display which was generated. These dimensions are used to

28

locate the display of the CEB which is generated by a second

recursive call. A preliminary pass detects circular lists, such

as those in Figure 2 •

.!!.a.! ~~.ll .ll] W£Yl!2.B llll

It was originally assumed that ANTICS would be expensive to

ose since it combined two relatively expensive items in terms of

computer charges: interpreted LISP and graphics. Development

and debugging costs vere not particularly low, but the cost of

producing animated films has turned out to be surprisingly low.

A three 11inute twenty second film illustrating the execution of

the recursive function M!MBER was produced for a total

co ■putation cost of $4.23 usinq 5.4 seconds of central processor

time. The cost of film and proceEsing was $7.50. The example

could ha~e been sloved down two or three times to make it easier

to follow. This would only add a slight additional computation

charge, as only the elapsed time and virtual memory usage would

increase.

h1 .&QMP!filQl! !ll!l ll!.§lll!J ~l~l!~

Few program animation systems have been developed, and it

is difficult to compare ANTICS to those that exist. ANTICS'

strong points, its chea~ness and interactive capability, are not

29

found in any other systems. Also, existing systems have been

designed to present sutject areas quite different from ANTICS'.

One thing that can be said is that ANTICS is not a general

system in · the same sense as tbe PL/I animation system descr~bed

by aa,oker [7]. ANTICS' ptimary use is to teach features of

LISP. After LISP is mastered and students are familiar with the

st1le of ANTICS' pres~ntation, the system can be used to

illustrate general properties of algorithms. The intimate

details of the process of evaluating a LISP form have been

illustrated with ANTICS by animating the application of an a

list Yersion of the function EVAL, vritten in LISP, to a simple

form.

Simply filming the display screen with a movie camera

running at normal spEed will net produce an acceptable film

because of stroboscopic effects. Automatically trippinq the

shutte~ at the start of each display frame is not totally

satisfactory either. The shutter should stay open at least as

long as the time required to display the most complex frame on

the graphics terminal. Most movie cameras have a maximum

shutter time of 1/40 second, which easily exceeded. This

problem could possibly be avoided if the camera were capable of

double ezposing single frames. However, 35mm slides have

produced excellent results; they may, in fact, be better for

pedagogical put poses. A set of 50 slides, suitable for

classroom presentation, is ayailable at cost from the authors.

I

I .

30

The success of ANTICS bas inspired us to concinQe with its

development. Next we intend to adapt it as far as possible to

ordinary display terminals to make it more widely available to

students, and to explore the possibility of producing videotapes

directly. Par more ambitiously, ve are considering the problem

of automating an introductory LISP course. Hov should we

organize our knowledge of LISP ~rogramminq to communicate it

using a graphics-based, cosputer-aided learninq system?

Ideally, such a system would have, in addition, many of the

attributes of Winograd's ptoposed programmer•s assistant [11].

Before proceeding with such automation one must ask if there

exists a need and a role for such a sys~em. In our opinion it

should not, and probably could not, supplant the traditional

forms of instruction. Finally, as various groups approach the

concept of a LISP machine ~e should conside~ desiqninq into such

machines facilities that will allow the development of systems

like ANTICS.

31

]J l'.1U~l~ll

1. J. McCarthy, M. I. levin, et. al,, ~l~i 1~~ f~~g~~Ufil~§
~AU~l, M.I.T. Press, 1962.

2. J. Halas and R. Nanvell, llt§ l~WW~ Qi fiU AJU~a!iQD,
Communication Arts Books, New York, 1971.

3. s. Papert, Teaching ~hildren Thinking, Papers of the !FIP
World conference on computer Education, pp. I/73-I/78,
Science Associates International, New York, 1970.

4. R. c. Knowlton, LG Eell Telephone Laboratories Low Level
Linked List Language, Two black and white $OUnd films,
Bell Telephone Laboratories, Murray Hill, N.J., 1966.

s. K. c. Knowlton, Computer produced movies, IDi.ll~~ 150, 1965,
1116.

6. a. N. Baecker, Towards Animating ccmputer Programs: A First
Progress Report, Proc. Third National Resea~ch council
"an-computer Communications Seminar, pp. 4.1~q.10,
National Research council, Ott~wa, 1973.

7. B. M. Baecker, Two systems which produce animated
representations of the e~ecuticn of compijter programs,
~1ggJ .ID!lleti~ 1, 1, 1915, 158-167.

8. F. R. A. Hopgood, Computer Animation Used as a Tool in
Teaching Computer science, P+oc. 1974 IFIP conf •• pp.
889-892. North-Belland Publishing co., Amsterdam.

9. i. Hall, B. Jervis and J. Jervis, GLISP - A LISP Eased
Graphic Language, University of British Columbia,
Department 9f computer science, 1973.

10. !. s. Dionne, ANTICS - A System for Animating LISP Ptoqrams,
M. Sc. Thesis, University of British Columbia Department
of computer Science, 1975.

11. ~. Winograd, Breaking the complexity barrier again, aIGf1AB
!~~!§ j], 1, 1S75, 13-22.

