MEM

MMMM MMM
MM M MM
M M
M M MMMMMMMMM
MM MM MMMHM MMM
MMH MM MM MMM
MMM MMM M MMM
MMMMMMMMHY MMMMMMM
MMMMMMM MMMM MMM MM
MMM MM MMM
M MMM
M MM MMM
MMMH MMMMMM
MMM

MY
MMMMHM
M MM
| M
MH
MMM
MMM
MMM
MMM M
MMMMH

e s oo ok ok ok o ok ol o sk ook ok Aok e ok ok ok ok s oo ok ok ok ke Kok sk ok ek Aok oK Hok kK

*

* ANTICS - A System for Animating LISP Programs

*

%*
e
&

o 3 3 e e e o ok o o o e o ofe o oo ok sk ok ofe o o ok afe e ok ofe ke ke ok e ke ol o e e ok e ok e ok ko B ok

Mark S.

by

Dionna and Alan K.

Mackworth

Technical Report 76-7

NctobeT 1976

Departm2nt of Computer Science
University of British Columbia

Vancouvar, B. C.






A systaeam, named ANTICS, has been developed for producing
animated films, film strips, or slides depicting the execution
of LISP programs. The design, imsplementation, and use of ANTICS
are discussed and it is ccmpared to existing systeams. ANTICS
may be used by entering very simple commands whick produce real-
time animation. The system may be "backed up"™ and manipulated
interactively. Advanced ccmmands and a set of grarhics
primitives are available which ©permit an instructor or film-
raker to contrcl details and to add features not provided.
ANTICS may therefore be used as an interactive educational tool
cr as an animation system. It is inexpensive to use: a three
pinute film showing the operaticn of the racursive function
MEMBER was produced for a total cost of $12.00. The
implementation is dependent on specific hardeare, but ths
design, which is based on the organization of the LISP EVAL

function, could be used cn other systenms.



b e e T || P 11 W

=il



J. PEGGRAN ANINATION

J.1 INIBQDUCTION

A system named ANTICS has been produced which animates
programs ¥ritten in LISP [1]. The syster is designed for use by
an instructor in a programming course, allowing her to make
films which will demcnstrate various features of the LISP
language and of algorithms programmed in LISP. The instructor
may control the parts cf LISP which are animated and the amount
of detail which is shown, Also, the system is simple and
inexpensive enough to be used as an on-line intaeractive

instructicnal aid.

J.2 BOTIVATION

Teaching beginning computer sScience almost always has
involved graphic tools, Plowcharts, data structur2s, systenm
organization diagrams, parse trees, hardware schematics and
graphic representations of certain algorithms each have an
important place in the 1language of computer science. Many
computer science concepts, such as the stack, the linked list,
and the array have an imglicit graphic 1lanquage of their own
which is invariably taught in beginning courses. Other more
dynamic concepts do not have well establishad graphic
representations, since their actions are not easy to convey with
fixed images. Examples of these are recursion, iteration,

binding, and algorithms such as searching, sorting, and parsing.



The motive for animating ccmputer programs is to provids
new graphic expressicns for complex dynamic processes in the
field of computer science. Correspending ideas in physics have
been illustrated in several computer produced films (2, p. 3137.

An excellent appreciaticn of a system can be gained by
hands-cn experimentation. This is the motivation behind LOGO, a
simple programming language which +teaches nmathematical and
programming skills by being "played with" by chilaren [3]. 1In a
similar way, the student could explore the LISP worid visually
and at her own pace if +he arimation system were made

interactive.

Although computer animation has been fairly popular for =
number of years, few attempts have been made to produce animated
computer science films. Until recantly, only one significant
computer animated film related to computer science [4 ] had been
produced. This film was produced by a system which cost
apprcximately $600 per minute of film [5]).

Bascker and his students have dcne work iu this area [6]
which Baecker has aptly named "prcgram illustration"™ [7]. Two
systems have been produced by them. One system animates any
program written in a subset of 10GO [7, p. 160]. A fixed set of
conventions determines how the =2xscution of statements and
evalyation of variables will be displayed visually. Optional
parameter settings may be added to the program to tailor the
timing and spatial positioning of the animation. The =ystem has

been used to animate a simple LOGO proqram which rev=rses a



character string, demonstrating features of the LOGO language as
wvell as the concept of recursion. This system allows any LOGO
program to be animated withcut adding special commands. The
syster is too expensive for production work, however.

The second system animates programs written in a subset of
PL/I [7, p. 161]. Pseudo~-comments, interspersed with the PL/I
source code, call special functions which produce the animation.
Producing a film with this system may take several hours of
programmer effort since tte pseudo-compents must be written for
each program to be animated., However, more detailed contrcl of
the animation is possible than in the LOGO system. This system
has been used to produce a film illustrating a sorting
algorithm; the film fcllowed the execution of the PL/I program
without showing PL/I lanqguage features explicitly. The PL/I
system can produce film clips for $100 to $200 per minute,

Both of these systems produce key frames which are used by
a computer animation lanquage to produce the final film, (See
Section 1.5.) Neither system can be used interactively.

Hopgood has produced computer animated filas illustrating
hash table algorithas [8]. His systen applies various
algorithms +to examples which are too large to be worked out
easily by hand, thus giving students an appreciation for the
methods wvhen applied to non-trivial problems. This is claimed
to show the advantage of certain algorithms more clearly than

mathematical analysis or simple examples.

J.4 IYPES QF ANIMATION

Four major areas in computer science are likely to benefit



from animation. The methods developed are likely to differ, and
when "program animation" is mentioned, the exact type should
also be specified. The areas are:

1. Animating algorithms, such as sorting, parsing, or
searching.

2, Animating programming language features, such as "DO" in
FORTRAN or "COND®" in LISP.

3. Animating hardware operation. Animating movement of
data between registers, arithmetic units, memory and
channels,

4. Animating concepts in computer science, such as control

structures and data structures,

1.5 ANIBATION METHODS

Both hand animation and computer animation have made use of
the key frame animaticn technique. An image is first produced
for every "key" frame of the finished movie, and then 1less
skilled artists {or a computer) produce intermediate,
interpolated frames, resulting in the smooth movement of the
figures from one key frame to the next. In the case of computer
key frame animation systems, the key frames could be produced by
an artist using a data tablet, or by another program. This
method has been used primarily to produce artistic films.

Computer animation alsc may be produced by taking advantage
of the nature of a particular graphics systen. This is
tentatively named "direct animation®, The tools daeveloped for

interactive graphics are extended to produce a sequence of



animated displays. Many gqgraphics systems provide means to
displace, scale, rotate and change the intensity of sets of
vectors, These facilities can be used to produce movement and
other animation effects. The details of producing animaticn in
this way are more invclved than in key frame animation: timing
considerations and display file organization may be difficult,
and complex motions cf artistic fiqures may be impossible. On
the other hand, since most of the detailed animating is done at
high speeds by the display processor, it is generally more
feasible to produce real-time "live"™ animation by this method.
A frame can be set up by the wmain computer and movement
initiated. While the display processor is producing the
movement the m®main computer can be working on the next madjor

display change.

2s SYSIE

5

DESIGN

2.1 DISPLAY DESIGN

The overall purpose of the ANTICS system is to impart some
knowledge of the basic operation of LISP to a beginning
programmer. There are +wo fundamental concepts which form the
foundation of LISP: the structure of S-expressions, and the
operation of EVAL.

Although S-expressions are changed during the execution of
a typical LISP program, they generally specify "structure” in

some sensa, and the first thing a student must do is wunderstand



S-expressions as static data structures. ANTICS provides the
capability of displaying arbitrary S-expressions aeither in
"prettyprinted" form or as CONS-cells and pointers. Figure 1
shows a CONS-cell display of a function definition. Figure 2
illustrates the actions of the destructive functions, RPLACA and
RPLACD. This figure was produced by a 25 line script which
generated the structures in a timed sequence.

The operation of EVAL is a complex, dynamic process. It
consists of a precisely ordered sequence of recursiva operations
on S-expressions, coordinated with the binding and unbinding of
variables on a stack or an association 1list of variables and
values (known as an a-list [1]). ANTICS bases its animation of
LISP functions on the operation of EVAL, though it does not
presume that the student has any knowledge of EVAL itself,
ANTICS' animation simply reflects the various facets of EVAL as
they are brought intoc operation, by displaying them 1in a
suitable fashion, The details of the design have centered on
selecting the parts of FVAL to display and devising suitable
graphic representations for thenm.

The basic animaticn proceeds as follows (refer to Figure
3):

1. The form which 1is being evaluated is printed on the
display screen and, after a short interval, a box is
displayed containing the word "EVAL". To Suppress
detail and save screen space, printing only descends a
set number of levels into the structure; any non-
atomic structure at this 1level (level 3 in this

example) is represented by an " ",



1SI7
o

302

ONTHL ¥3BW3W

STT29-SN0J j0 Lerdsig “1 ounS1g

1S17  ¥Bd

ONIHL MNo3 1817

1

TINN

ONOD  1ST7 ONIHL

(OO0 1SITT ¥ad)

H0auy]

I

(T +—{T]
*Y38W3N

INIHL ¥38H3W) 1)

(1SI7 (0 L1SIT ¥53) 9ONIKL 78N03))
(IN CAISIT TINN) ) ONO3J)
( 1SI7 9ONIH1) Y38W3W  NN430)



OV1d¥ PUT VOV1d¥ JO S3023)9 9yl g 2an31g

g E

g
i
COx—CTF
. =7

(Z Z 03971d4) - P (Z (Z d03) 0381dd) - ¢

— @

=7 =z

((Z ¥83) (Z ¥02) BaY1dY) - € (8 8)), 2 013S) - 1



(pe3eoTpuT ‘ST SuTwri TEsTdLl)
UOTIENTEAS WIOY JSIT Jo uorlewmrue jo sjoysdeug *¢ =2in81g

. 00:0 (®) ¢
¥J30NN¥® = ISI711 E
430NNk = 9NIHIL | (11 8 3). H. ¥38HSW]
(O ASITT ¥AJ) 9NIHL H3gW3aW) 1)

U 1SI7 (1 1S[7 HE3) 9ONIHL 7BN03))
[TIN [ 1ISIT TINN)) ONGD)
( 1SI7T 9NIH1) BO8SHET)
TY3EW3N



¥33ONN%X = 1SI71
¥J430NNx = 9NIHL |

— - —— e —— — — — — —

10

91:0 "(9) € ®andyy

H
(1 Uau_.A’ﬁ

((L B J). H. Y3IEHIW)

(CCET1SITT ¥03)  ONIHL  H38W3W) 1)
[ IS (0 ISIT ¥Y3) SONIHL 7B103))
(IIN C1SIT THNN)) aNGD)
( 1Sf77 SNIH1) BO8HY1)

*438W3IN



d30NM% = 9NIHL
¥J430NNx = [ST7]

— e B, s Sy Seees e w— ooy e—

— — — — — — — — (— {—

(L B3 = ISI1
H = 9NIHL!

— — —— we— — S e — S— m— s S——

%z:0 “(9) ¢ °@an31y

zzquEﬁmsz:Iaa
( 1SI7 (% ONIHL 8003} *

(IN C1SIT 1INND ) ONQD)

[ EA3 |
(11 8 21, Y, ¥3GW3W)

— — — — — — — — — | — o — — — — — — — — — —

(OO0 ISITT HO2) 9NIHL ¥38W3W) 1)
( 1SI7 (0 1S ¥83) 9NIHL 7BN03))
(N (1S TINN))  ONOJ)
( 1SI77 SNIHL) B0gWB1)
*Y38W3N



:T *(p) £ 2an81g
X430N% = ONIHL »

xJ430NNx = 1S

._.wﬁ.._Ti
v
( 1SI7T ¥H3} AII%

(C1S[7 ¥82) ONIHL TENO3)
(1R ONIHL ¥38W3d) 1) \{Fm3]

( 1SI7 (R O9NIHL 7BND3))
[N (1SIT TINN))  ONGD)

— e— p— m— e e— e e — — —

(183 = 1SI11 [ HA3 |
H = 9NIHL] ({1l Y 3). H., ¥3GHINH)

— — — w—— — S— S e e W S ey Gy et el G e e e e ey e S Sy S ey Sy e e ey —

(OO0 LS ¥03) ONIHL  Y38H3W) 1)
( 1SI7 0 IS ¥83) 9NIH1 7BNo3))
(AN (ISITT 7NN) ) ONOD)
( 1S[7 9NIH1) HOgWd1)
*Y38W3N

12



430NN = INIHI
X430NNX = 1SI7

— — — — — — — S — —

8 = 9NIHIL
(1 423) = 1S

— — — — — — — f—

Z6:T - (@) ¢ 2an31g

(10T ONIHL ¥38W3) L) =5
(IS0 (3 ONIHL Wno3ll ==
[N [ ISIT TIANI}  ONGI]

ﬂ

I8A3
({ ISIT1 ¥03) OSNIHL N3BHIW]

(({R ONIHL ¥38W3W) L) i3
{ 1SI7 (3 ONIHL 8N03)
LTIN CISIT TINNI) ONQD)

JBA3
({1 H 3), H. Y3BWIW]

—— m— em— S e Sy e S s S e e S— e Sy s e e m—

(CUUCISTT ¥02) 9NIHLI  ¥38W3W) 1)
( 1ST7 (U 1S d4¥3]1 ONIHLI THNo3})
(N (ISIT TINN) ) aNOD)
{ ISI7 SNIHL) HOBWHT)
*Y36HW3N



¥43ONN¥ = 9NIHL
xd30NM = 1SI7

H = 9NIHL
(L 8 31 = IS8T

— — — — — — — — — S—

— — w— — — — — w— Gw— —

(1 ¥) = ISI1]
8 = INIHL|

9¢+:T

*(3) € @2an31g

=)

ek

[C ISIT dH3) ONIHL "18N0O3)

(LT3R ONIHL  ¥38W3W) L)
( 1S (3 SNIHL T8NO31 ]
(1IN [ 1SIT TIANT) Dz\@fu_

BELEN
[01SI7 HOJ) ONIHL ¥38HIW)

(3 ONIHL ¥38W3W) L) [aag]
(1SI7 (% 9ONIHL 8NO3) )
(N [ ISIT TIN) D ONQD)

BCIEN
({1 Y J1. B ¥38H3W]

— — — — — —— — — — — — p— g— p— w— p— — w— — — — — — — — — — — — — (— —

14

(COO0ISIT ¥33) 9NTHL  ¥38H3W) 1)
(ISI7 ([ 1S[7 ¥I) 9ONIHL 7HNo3))

(N (ISTT 7NN) Y ONQD)
[ 1SIT 9NIHL) HO8WH1)
*H3EW3N



v XJ3ONNX = 9NTHL
¥430NN¥ = 1SI7

(1 8) = ISITI
8 = ONIHL|

— — — — — — — o — — —

gy:z (8) ¢ @an31y

_:.muzhiﬁmzuiclém
( ISIT (3 ONIHL Mnoal) *

[IIN [ ASITT TINNT I Dz\ﬁuH

| THAS |

(0 ISIT ¥0J3] OSNIHL Y¥38HZW]

(((2 ONIHL ¥38W3W) L} [Fga3]
(1SIT (3 SNIHL TBNO3I )
(N [ ASIT TIOND D ONGD)

(T5A3 |
({1 8 J). B, ¥3W3H)

(OO0 ASIT ¥02). ONIHL  438H3IW) 1)
(IS0 (0 1S[7 Y¥83) SNIHL "HN03))
(7IN (1S 7NNY)  ONQJ)
[ ISIT SNIHL) HOBWY1)
*H38W3N



%0i¢ *(W) £ danS1g

¥430N¥ = ISI]
¥J430NN% = INIHI | (1 8

(CO00LSTT 4¥d3) ONIHL  H38W3W)Y 1)
( 1S[7 (( 1SI1 ¥83) ONIHL "BN03))
(1IN (ISIT TINN) ) ONQJJ
[ ISTTT S9NIHL) H0skE1)
*H3GHNIN

16



17

2. If the form contains arquments which must be evaluated,
then their evaluation is recursively animated to the
right of the present display and the returned values
are moved into a column below the preseant EVAL box.
After these EVLIS values have all been returned, their
bindings to the dummy variables of the LAMBDA-
expressions are optionally displayed and the old
values of the dummy variables are placed on the stack.

3. If the function being evaluated is part of the LISP
systen (a SUER, a function written in assembly
language) the returned value is displayed after
removing the original form from the screen. If a
user-defined function is being evaluated, the
expressions which constitute the body of its
definition are evaluated in turn. Expressions which
are conditions in a CCND or SELECT function are
animated to the right of the current EVAL box, while
all other expressicns are animated so as to appear
directly below it.

4. Throughout the animation, the definition of a function
may be displayed at the top of the screen, and the
portion of it that is currently being animated will be
intensified.

5. The LISP stack or association 1list optionally may be
displayed on the screen, as well as currant variable
bindings. Changes in these are shown as they occur,

6. Whenever the EVAL animation or the stack display

encounters the border of the display area, part of the



18

display 1is "rclled off" <the screen and disappears,
thus freeing space on the display screen. When the
evaluation is exiting the rclled portions reappear on

the screen.

2.2 SINGLE-FRAME VS, BEAL-TINE ANIMATICN

A computer systesm to produce general-purpose, high quality
animation probably would have to produce one frame at a time,
given the present state of the development of computer graphics
systems. A high priority in the design of ANTICS was that the
system be able to produce animation in real-time, There were
several reasons for this:

1.-The implementation of ANTICS would be very difficult if
all testing had to be done by filming one frame at a
time,

2. The production of properly timed films for classrocm use
also would be very difficult.

3. A real-time system also could be made interactive, and
this would provide an extremely versatile, though
perhaps expensive, teaching tool.

4. Many animation systems have produced one rrame at a
time. It would be valuable to help to demonstrate
+hat this is not always necessary.

5. A real-time system easily can be made to display one
frame at a time if this is needed to produce high
quality filam.

The_ 903;, of groducjnq a ”:eal-time system caused sone

implementation difficulties, but these were considered minor in



19

light of the first +two reasons given above. In addition,
single~-frame animation is much more complicated or impossible if
the scan time of the display screen is longer than the longest
camara shutter time, and this was the case with ANTICS and the

available equipment.

223 SCBIRT DESIGN

It was assumed that a perscn making a film with ANTICS
would be a relatively sophisticated LISP user (a coursa
instructor or assistant), and that the instructions necessary to
produce a films (called the script) would not need to be
especially simplified. On the other hand, since the systen
would also be interactive, a relatively naive LISP programmer
should be able to produce instructive animation with only a line
or two of input. The result was the following design:

1. A single command, #EVALQ, will animate the evaluation of

any expressica.

2. Several simple commands control the other basic
displays.

3. Additional commands provide more elaborate control over
details of the animaticnm.

4. A sophisticated user may insert "breakpoints" into the
definitions of the functions to be evaluated, thereby
changing minor details in the animation.

5. A general-purpose graphics 1langquage is available to
build special displays.

The types of commands that are allowed in the script can be

broken down into several grcups: one group controls tha major



20

displays, a second group controls details of the animation, and
a third group is ccncerned with details of producing films, such

as timing and camera ccntrol.

224 GRAPHICS PRIMITIVES

In order to provide flexibility to the user of ANTICS, a
general purpose graphics language was provided. The user would
most likely want to produce titles, diagrams, and explanatory
text. She also may want to highlight portions of the animation
by adding special effects such as pcinters or outlining boxes.
It should be possible tc include figures sketched with the light
pen or data tablet.

An obvious choice was to base the graphics language on a
subset of GLISP, a LISP based gracrhics langquage [9]. GLISP has
a useful set of primitive functions for drawing lines and text.
It also allows the user to sketch figures with the light pen or
data tablet and to adjust their size and position on the display
screen, and also to save fiqures in a library. Purthermore,

GLISF is easy-to-learn, supported and well-documented.

2:2 HUBAN EACTORS AFFECIING DESIGN

Since ANTICS 1is an educational +tool, human factors
considerations were important in its design. At ona level, the
graphic representation of concepts falls wunder this category.
At another 1level, the timing and sequencing ot the animation
were considered. Because ANTICS is also an interactive graphics

system, response time and interaction methods were taken into



21

account.

The graphic representaticn <¢f S-exgressions is a well
established standard form, and there was not much latitude in
its design. However, the method of animpating EVAL is not
standard; it is based on a blackboard method used in a course on
LISP, C.Sc. 509, taught by Raymond Reiter at the University of
British Columbia. The well-defined nature of EVAL tends to
limit the possibility of radically different graphic
representations. The real choices lie in the complexity of the
functions animated and the amount of detail shown, and ANTICS
provides the instructor/animator the ability to match these
choices to the level of her students.

The timing and sequencing of animation were important
considerations in the design of ANTICS. Early versions of the
program produced animation that was difficult to follow because
the action moved frcm one side of the display screen to the
other without warning. The idea c¢f a "follower" was developed:
a moving figure on the screen naturally catches the eye and
directs the viewer's attention to a new area of the screen,
Movement was found to be very compelling visually -- in fact,
any movement on the screen seems to lock the viewer's attention.
Because of this, the rule for 1lengthening ANTICS*' animation
gives priority to making the static portions of the film longer,
since these sections allow the student to absorb the meaning of
the animation sequence. Movement is a dominating element in
entertainment animation, but its use in instructional animation
must be considered carefully [2, p. 66].

The overall speed of the animation must be slow enough for



22

the viewers to follow, and this speed is not easy to define. VNo
axact speeds can be recommended, but the following points were
considered:

1. Viewers gain skill at following the animation as they
become more familiar with the form of represantation
used in the animation.

2. For naive LISP programmers, "the slower the better" is
perhaps a very realistic rule for the speed of
animation. (On the other hand, an authoritative
source claims, "It has been proved by experience that
the shorter the film the more effective the
instruction is 1likely %o be, because of the intense
concentration which the student must give. . .M
(2, p. 136]))

3. A short film can be shown several times consecutively
qhd different facets cf LISP can be emphasized each
time by the instructor.

4., A suitable projector can stop the animation while the
instructor makes detailed explanations.

The speed of animaticn can be adjusted with the #RATE command

or, interactively, using a dial.

3.1 IHE ANTICS SCRIPI

The input to ANTICS 1is a series of LISP forms called a



23

script. When a movie is being produced this script nmust be
entirely in a file so that it can be read without interruptions,
which would confuse the tiling of the movie; houewef, the script
may be entered one line at a time when the sysﬁem is being used
interactively or while experimenting with ideas. A script may
consist of several 1lines to produce an animation of a single
LISP eialuatipn, or it may contain a hundred or mora lines to
ptoduce a complete movie with titles and explanatory text. The
fcllowing script produces a rudimentary animation:
(#START)
({DEFON MEMBER (THING LIST)
(COND ( (NULL LIST NIL)
( (EQUAL THING (CAR LIST)) LIST)
(T (MEMBER THING (CLCR LIST)))))
(#DISPLAY THING LIST)
(#9AIT 5)

(#EVALQ (MEMBER 'A '(C A T)))

#START initializes some parameters and blanks tha display
screen, CEFUN simply defines the functicn of interest in the
usual way. #DISPLAY causes the names and values of thz2 atoms
THING and LIST to be displayed on the screen. They will remain
until the screen is blanked, and the display will be changed
vhenever their values change, #WAIT causes a five second pause
before the next line of the script is executed. #EVALQ causes a
complete animation sequence, lasting perhaps several minutes, of
the EVALuation of the given form. During this animation the
values of the atoms specified by the #DISPLAY coammand are

updated ccnstantly.



24

There are two additional wmajor commands wnich could be
added tolthe above script anywhere before the #EVALQ command:

(#STACK THING LIST)

(#STAR MEMBER)

#STACK causes a stack to be displayed during animation showing
the bindings of the atcms THING and LiST. No display is
produced when the I¢STACK ccemand is given -- the display is
shovn during the animation produced by #EVALQ. #STAR causes the
definition of MEMBER to be shown immediately at the top of the
display screen. During the animation produced by #EVALQ the
portion of this "star" function currently being evaluated will
be intensified.

These commands are the basic high-level animation features
of ANTICS. The wuser can obtain a great deal of variety,
however, by using other more specialized commands, selz2cting
cptions, changing parameters, and prcducing additional graphical
displays with the graphics pripitives included with ANTICS. It
is possibla to abbreviate certain features of the animation
after they have been displayed a set number of times.

The general purpose graphics language available to the user
of ANTICS contains both graphics primitives and special
functions for displaying LISP structures. It can be used within
special breakpoints which may be inserted into a function whose
evaluation is being animated. By using these breakpoiants, which
are invisible to the viewer of the movie, the user of ANTICS may
tailor the evaluation animation by cmitting unnecessary detail
and displaying explanatory messages and figures at kay points in

the animation.



25

Figures 3(a) thrcugh 3(h) are snapshots orf the animation
produced by the abovs script. The "starred®™ function is at the
top of the display, the current variable bindings are in the
upper right, and the stack is in the lower right corner. Figure
3{h) shows the end of the animation: the stack is empty and the

value returned by the function call is all that is laft.

322 USING IHE SYSTEM INTERACTIVELY

Although ANTICS is designed primarily for making movies, it
is fast enough to support interactive use. Interaction is by
peans of the light pen and function buttons. An overlay card
labels the functions of the various buttons. Whenever ANTICS is
waiting, both of these devices are active, During animation,
#WAIT is called before and after evaluating each fora.

There are two modes of interactive operation STEPMODE and
AUTOmatic. STEPMODE is selected by pressing the STEPMODE button
or by wusing ¢the 1ight pen in any way. While in STEPMODE, the
function #WAIT always waits until either the STEP button is
pushed or the STEP light buttcn is selected with the light pen.
In AUTO moda, the #WAIT function waits the specified time,
unless the STEP button is pushed first. AUTO mode is selected
by pressing the AUTO button or by pcinting the light pen at the
AUTO light button.

The light pen has two other functions as well. At any time
it wmay be pointed at any variable in the ilist created by

#DISFLAY, and a new value for the atom may be entered through

the keyboard. The light pen alsoc may be pcintad to any part of



26

the evaluation display, and the animation will back up to that
Foint and restart.

There are several other buttons which may be used at any
time. These can terminate or "hackup®™ the animation, activate
the camera, change the rate of animation, or plot the contents

of the display screen.

4. IFPLEMENIATION

4.3 SYSTEM ORGANIZATION

The implementation of ANTICS is dependent on a unique
environment of hardware and software. This is unavoidable due
to the interactive nature of ANTICS: interactive grarhics
systems tend to be hardware dependent. The general organization
of the implementation environment is fairly typical of graphics
systems however, and it may be possible to modify ANTICS to work
on other systems without undue effort.

The ANTICS system is implemented on a Model 10 Adage
Graphics Terminal which communicates with an 1IBM 370/168
computer operating under the Michigan Terminal System, MTS.
ANTICS is 'written in LISP/MTS, an interpreter similar to LISP
1.5 [1). LISP/MTS uses an internal stack rather tham an a-list
as do LISP 1.5 and several other LISP systems. The animation
which is produced reflects this aspect of LISP/MTS and several
other minor details, but since ANTICS contains its own EVAL

function these details could be changed easily. LISP/MTS



27

communicates with the graphics terminal through a simple

interface.

4,2 DISPLAY EILE OBRGANIZATICN

The organization of the «contents of the Adage Grarphics
Terminal buffer, refered to hereafter as the display file, was
altered several times in the course of the desvelopment of
ANTICS, and was a major part of the implementation effort. The
actual display file stayed fairly far from the ideal due to
hardware and software 1limitations and design considerations.
211 of the display file organization was implemented at the LISP

level of the system. PFcr more implementation details see [10].

4,3 BETHODS USED IN THE PEOGRAM

The heart of ANTICS is a set of LISP functions constituting
a version of the LISP EVAL function. This version of EVAL is
interspersed with calls to animation routines, and this is how
all animation is produced. The stack, variable and "star"
displays are also driven by ANTICS EVAL, and user breakpcints
are detected and processed by it. As a result, ths animation
naturally follows the execution of EVAL and ANTICS has a simple
underlying structure.

The routine which displays CONS-cells alsoc uses some novel
methecds, When given a list it draws a CONS box, and then calls
itself recursively with the CAR of the list., The return value
is a pair of dimensions indicating the physical siza of the

display which was generated. These dimensions are wused to



28

locate the display of the CIR which is generated by a second
recursive call. A preliminary pass detects circular lists, such

as those in Figure 2.

4.4 COST AND EXECUTIQN ITIME

It was originally assunmed that ANTICS would be expensive to
use since it combined two relatively expensive items in terms of
computer charges: interpreted LISP and graphics. Davelopment
and debugging costs were not particularly low, but the cost of
producing animated films has turned out to be surprisingly 1low.
A three minute twenty second film illustrating the sxecution of
the recursive function MEMBER was produced for a total
computation cost of $4.23 using 5.4 seconds of central processor
time. The cost of film and processing was $7.50. The example
could have been slowed down two or three times to make it easier
to follow. This would only add a slight additional computation
charge, as only the elapsed time and virtual memory usage would

increase.

2s GOBCLUSJIONS

321 COMPABISON WITH EXISTING SYSTEMS

Few program animation systems€ have been developad, and it
is difficult to compare ANTICS to those that exist. ANTICS'

strong points, its cheapness and interactive capability, are not



29

found in any other systems. Also, existing systems have been
designed to present sulkject areas quite different from ANTICS®.
One thing that can be said is that ANTICS is not a general
system in the same sense as ttke PL/I animation system described
by Baecker [7]. ANTICS' primary use is to teach features of
LISP., After LISP is mastered and students are familiar with the
style of ANTICS! presantation, the system can be used to
illustrate general properties of algorithms. The intimate
details of the ©process of evaluating a LISP form have been
illostrated with ANTICS by animating the application of an a-
list version of the function EVAL, written in LISP, to a simple

form.

222 ERODUCING PILMS

Simply filming the display sScreen with a movie camera
running at normal speed will nct produce an acceptable film
because of stroboscopic effects. Autcmatically tripping the
shutter at the start of each display frame is not totally
satisfactory either., The shutter should stay open at least as
long as the time required to display the most complex frame on
the graphics terminal. Most mcovie cameras have a maximun
shutter time of 1/40 second, which easily excaeded. This
problem could possibly be avoided if the camera were capable of
double exposing single frames. However, 35mm slides have
produced excellent results; they may, in fact, be better for
pedagogical purposes., A set of 50 slides, suitable for

classroom presentation, is available at cost from the authors,



30

3.3 FUTURE DIRECTIONS

The gsuccess of ANTICS has inspired us to continue with its
development. Next we intend to adapt it as far as possible to
ocrdinary display terminals to make it more widely available to
students, and to explore the possibility of producing videotapes
directly. Far more ambitiously, we are considering the prcblem
of automating an introductory LISP course. How should we
organize our knowledqe of LISP programming to communicate it
using a graphics-based, computer-aided learning system?
Ideally, such a system would have, in addition, many of the
attributes of Winograd's proposed programmer's assistant [11].
Before proceading with such automation one must ask if there
exists a need and a role for such a system. In our opinion it
should not, and probably coculd not, supplant the traditional
forms of instruction. ©Finally, as various groups approach the
concept of a LISP machine we should consider designing into such
machines facilities that will allow the development of systenms

like ANTICS.



S.

K.

T,

31

BEEERENCES

McCarthy, M. I. levin, et. al,, LISP 1,3 PrQgranper's
Manual, M.I.T, Press, 1962,

Halas and R. Manvell, The Technigye of Eilm Apimation,
Communication Arts Books, New York, 1971.

Papert, Teaching Children Thinking, Papers of the IFIP
World Conference on Computer Education, pp. 1I/73-1/78,
Sciance Associates Internatiomnal, New York, 1970.

C. Knowlton, L6 Bell Telephone Laboratories Low Level
Linked List Language, Two black and white sound films,
Bell Telephcne Laboratories, Murray Hill, N.J., 1966.

C. Knowlton, Ccmputer produced movies, Science 150, 1965,
1116.

M. Baecker, Towards Animating Ccmputer Programs: A First
Progress Report, Proc. Third National Research Council
Man-Computer Ccmmunications Seminar, PP. 4,1-4.10,
National Research Council, Ottawa, 1973.

M. Baecker, Two systems which produce animated
rapresentations of the executicn of computer programs,

§1§.C...§B .ggllﬂ.iﬂ ...T..r 1: 1915: 158-167.

R. A. Hopgocd, Computer Animation Used as a Tool in
Teaching Computer Science, Proc. 1974 IFIP Conf., PP,
889-892, North-Hclland Publishing Co., Amsterdanm.

Hall, B, Jervis and J, Jervis, GLISP - A LISP Based
Graphic Language, University of British Columbia,
Department of Computer Science, 1973.

S. Dionne, ANTICS - A System for Animating LISP Programs,
M. Sc. Thesis, University of British Columbia Department
of Computer Science, 1975.

Winograd, Breaking the complexity barrier again, SIGPLAN
BQ&EEE .1._0!‘ 1, 1975: 13-22.



e Ty ————— N gy T N T N B





