
MMM
MMMM

MM
M

M
MM

MMM
MMM

!':MM
M MM

l'1
i1 M.MMM.MMMMM

MM MMMM MMM
MM MM MMM

MMN MM MMM
M MMMMMMM~i M

MMML'IM~M Ml~MM
MMMi'1M MM
l".Mr1 MM
MM ~MM
M MMM

M Mt1 MMM
MMMM t·HrnMf"M
MMM

M
NM

.MM M
t1M M
MMM

MM
MM.l'l Md

M MM
['1

MMM r1
MMi'!Mi'1

************************************•*
* *
* Two canonical Forms for Programs *
* *
************************************~*

by

J. L. Baker

Tecnical Raport 76-~

Septemb~r 1976

Department of Ccmputar Scienc~
University of British Columbia

Vancouver, B. c.

I
1·

TWO CANONICAL FORMS FOR

PROGRAMS

J. L. BAKER

Department of Computer Science

University of British Columbia

ABSTRACT

Since theories of computation provide (among other things) formal

framework for practical program minimization, and since a distinction between

program syntax and semantics can be based on the possiblity of performing

such minimization algorithmically, it is reasonable to formulate the theory

of computation as a theory of machines controlled by programs which are in

themselves purely syntactic.

Here the algebraic structure of programs in such a theory is presented.

Two canonical forms are exhibited, characte·rizing respectively strong (syntactic)

and weak (computational) equivalence of prog:i;ams.

0-1

0. Introduction

In this paper, I expose the outlines of a theory of programmable

machines along the lines suggested by Scott (1967), and develop fully

the part of that theory dealing only with programs. As is usual and

natural, I say two programs are equivalent if the sets of computations

they control are equal. The "canonical forms" mentioned in the title are

defined so that each canonical-form program is terminal, with respect to

homomorphisms of programs, in the subalgebra of programs equivalent to it.

There are two canonical forms because the definition of equivalence may

be based on all computations or just on terminating computations.

Since my presentation is concrete {programs being based on finite

directed graphs), it follows that these canonical-form programs are

minimal in the sense that they contain as few instructions as possible.

Since "program" is used here in a purely syntactic sense, the minimizing

constructions I offer are substantially the same as those, first given

more than fifteen years ago, for the minimization of uninterpreted program

schemes. The purpose of the present paper is to clarify the systematic

position of such constructions in the theory of computation. Their position

in the theory of programmable machines outlined here is made explicit in the

body of this paper. In the rest of these introductory remarks, I offer the

reader grounds to accept that theory as a framework for a more general

theory of computation.

One of the earliest objectives to arise in the use of programmable

high-speed electronic digital computers was that their programs should

occupy as little memory space as possible. In the early 1950's, when

machine-language programs were prepared by hand, such minimization was

a matter of ingenuity. It was, however, apparent that it should become

merely a matter of skill-- that programmers should be able to use some sort

of algebra of programs in a more or less routine way to achieve much or

all of the minimization possible. It was intuitively clear what should

comprise the domain of an algebra of programs, that is, what should be its

constants and for what its variables should stand: namely, the atomic

operations of computing--either the instructions in a machine's own

0-2

repertoire, or the operations performed by standard or arbitrary subroutines.

It was likewise clear that the laws of composition of such an algebra should

represent the sequencing, selection, and repetition of computing operations.

What remained to be seen was the content of such an algebra--its laws,

embodying useful manipulative techniques for passing from one expression

to another in search of a minimal member of a family of equivalent

programs.

In the U.S.S.R. during theperiod1953:1965, a good deal of thought

was given to the development of such an algebra of programs (Trakhtengerts,

1967). At the beginning of this period, Lyapunov propounded a notation

for its formulas, which were called "logical schemes". Many workers then

studied optimizing transformations of these schemes, mainly in restricted

applications, to particular machine architectures or to the computational

operations and sequences peculiar to linear algebra, for example. The

problem of minimizing schemes while making no assumptions concerning

the nature of their atomic operations--of minimizing completely uninterpreted

schemes, that is--was resolved by Yanov (1960).

During the same period in the West, much less attention was paid to

the problem of program size minimization, and essentially none to the

development of an algebra of programs. This can be seen as part of the

complex involving the more rapid expansion of computing in the West: The

use of high-level languages (relative to machine language) required large­

scale machines and programs for their translation. It also permitted the

creation of many programs and of large programs, reinforcing the need

for large machines. The existence of large-scale machines made program

size minimization seem unimportant. The existence of many programs and

of large programs discouraged efforts toward minimization as impossible to

be done by hand, deeply difficult to be done automatically. Furthermore,

the use of high-level languages eliminated the need for an algebra of

programs as a direct aid to programming.

Nevertheless, a problem equivalent to the minimization of uninterpreted

schemes, namely the state minimization of the "machines" of Moore (1956),

did appear in the West (as well as in the U.S.S.R.), and was resolved by

0-3

Nerode (1958). A clear and refined presentation of this result was given

by Rabin and Scott (1959), a watershed for automata theory. Its connection

with Yanov's work was pointed out by Rutledge (1963).

We may fairly describe the problem to whose resolution I have just

alluded as that of the minimization of a program using only syntactic

information. Since 1960, there has been some research into weaker notions

of program equivalence, taking into account such semantic information as

independence of instructions within a program*, but theoretical studies

have not offered any hope for automatic program minimization in such terms.

In particular, Luckham, Park, and Patterson (1970) shows that equivalence

is undecidable for program schemes with free variables. Similarly, there

are no types of infinite-state automata for which the equivalence problem

is known to be algorithmically solvable.

It seems to me that these results, identifying finite-state control

structures and uninterpreted program schemes as the class of computational

schemes with decidableequivalence, consititute the discovery of an invariant-­

so fundamental an insight that it should be represented in a theory of

computation as an aspect of definitional structure. Usual formal presentations

of automata theory do not respect this insight, nor does the "schematology"

research following Luckham, Park, and Patterson (1970). The former fuses

finite and infinite memory components in specifying transition functions,

and the latter provides at least minimal semantics for at least some

instructions. In contrast, the suggestion to represent computational schemes

mathematically as programs for machines, made by Scott (1967) and followed

here, does respect this insight.

One would hope that the systematic position of the purely syntactic

would appear fairly clearly in more abstract presentations of the theory

of computation. This hope is satisfied by Elgot (1975), where it is shown

* x:=O; y:=O are independent, x:=O; x:=l are not.

0-4

that any "sequacious function" (function computable in a highly abstract sense)

admits a "normal description" (counterpart to "program" as used here).

However, connection with minimization does not appear. On the other hand,

minimization is the focus of Arbib and Manes (1974), which presents

sufficient conditions for minimization of "machines" as defined in a very

general, category-theoretic setting. It turns out that this notion of

machine is general enough to include "program" as used here, and that the

minimization presented here does specialize the Arbib-Manes construction*

However, connection with decidable equivalence(effective minimization)

does not appear. In the discussions of Goguen (1974) and Goguen, Thatcher,

Wagner, and Wright (1975), syntax appears merely as the complete trivial­

ization of semantics.

To my way of thinking, then, the consequences of (the universally

assumed) finite programmatic control of computation are not adequately shown

in any of the abstract presentation just mentioned, or in any others I

have met. This is to be expected, considering that these are, properly

speaking, theories of computable functions rather than of computation.

The support such theories offer the development of a usable (not necessarily

effective) algebra of programs is certainly less direct than that offered

by a theory of programmable machines, and is, to my taste,too indirect

altogether.

To summarize: An important motivation for theoretical studies of

computation has been the need for an algebra of programs--the tangible

specificiations on which practical computations are based. In itself,

an algebra of programs must be, like any algebra, purely syntactic--a

matter of form. It will be useful, of course, only if it accurately

reflects the semantics of programs--the results of the computations they

specify. Theoretical studies have succeded in the syntactic domain, even

so far as to characterize its limits intrinsically. It is therefore

reasonable to formulate a theory of computation in such a way that syntax

and semantics appear as distinct non-trivial components.

* As suggested by its being called "Nerode realization" there.

0-5

Finally, I mention the pedagogical value of a programmable-machine approach

to the theory of computation: Practical experience is likely to be the strongest

reason for a student to seek the insights which theoretical study can offer.

He will proceed most quickly and securely if the formulation he uses generalizes

his experience fairly directly. My teaching, both of undergraduate and graduate

students, has had much benefit from the use of a programmable-machine approach

in presenting a variety of theoretical topics in a uniform and intuitively

well-mo.tivated manner. I confess, in fact, that I am seeking the reader's

attention here not only for the sake of the present modest results, but also

to introduce him in detail to a theory whose presentation I intend to continue

in further papers.

The following notation is used here: if Xis a set and Ran equivalence

relation in X, then X/R denotes the quotient set, and, for :xeX, [x]R denotes

the R-equivalence class of x. Card X denotes the Cardinality of X, X'\.Y

denotes the difference {XEXI XEY}. 0 denotes the empty set.

If A is a set, A* denotes the set of strings (terminating sequences) in

A. For x£A*,lxl denotes the length of x (number of componentes). (x]

denotes the string obtained by deleting the first component, if any, of x,[x)

the string obtained by deleting the last component, if any, of x.<> denotes

the empty string. ([<>)=(<>]=<>.)

"Function" here means "partial function". Specifically, f:X+Y means

that f is a function (unambiguous relation) defined for some members of

the set X and taking values in Y. dom f = {x£Xlf(x) is defined}.

Ran f={y£Yly=f(x) for some X£X}. As usual, the barred arrow specifies a function

by its action on an element. x.-.+y means (in the proper context) y=f(x).

I am grateful for the financial assistance of the National Science

foundation of the United States* and the National Research Council of Canadat

in developing the material presented here, as well as for the patience and

interest of my students at the Universities of Calgary and British Columbia.

* Grant GJ-66, administered by Dr. Hellmut Golde,

t Grant A7882.

1-1

1. A theory of programmable devices

Informally, this theory concerns devices which execute programs. A program

for a device.e is a finite directed graph with labeled edges and nodes. (Loops

and multiple edges are permitted.) A typical node r;
0

has the appearance

* Here, the label a on

r; : a.
0

~'1

~'2

1k r;k

1;
0

is one of a set of commands valid for tJ , and the

labels 11 , 12 •.• , ik on edges directed from r;
0

to r;
1

, r;
2

••• , r;k are distinct

elements of a set J:,V(a), the valence of a. A computation ex IT on tJ is a

sequence of pairs <r;,m>, where r; is a node of IT and mis an element of J3Q, the

memory set of fJ. Associated with each command a is a partial function

Jt:bQ+j3QxJ'V(a). Pairs <r;,m>, <r;' ,m'> can occur consecutively in a computation

by II on J3 only if II includes a node r;
0

as above, r;=r;
0

, and J\ (m)=<m', ij > and

r;'=r;. for some j.
J

Execution of the program step specified at r; , then, comprises
0

modification of the memory configuration of~ and (deterministic) selection of

the next program step from those specified at r; 1 , r;
2

••• , r;k.

The specification of a device Jj also includes an input set ~ S, and input

function 1\:J\+J>Q' an output set bT' and an output function fJ 0 :JJQ+JT. A

program node is terminal if it is not labelled with any command (and has no

edges leading away from it). Each program IT has a specified start node IT
8

• The

* Unfortunately, the sense in which the word "label" is used in the study of
graphs conflicts with the sense in which it is used in the study of programming.
To those who study graphs, the word denotes something that can occur more than
once, like a particular opcode in a machine-language program. To those who
study programming, the word denotes something which cannot meaningfully occur
more than once, like (the name of) a -particular node in a graph. I use "label"
in the former sense in the first two -paragraphs of this section, and avoid using
it in the rest of the paper. It is good to think of the r;1 as labels in the
programming sense.

1-2

partial function computed Q.Y. II £!}~,J)
11

:/)
8
+J}T, is determined thus: For xe:~

8
, if

there is a computation by IT onb starting with <IT ,fj (x)> and ending with some
S I

<l;;m> with 7,; terminal, thenl\(x)=.D°0 (m). Otherwise,_en is not defined atx.

The following is a more formal statement of the basic definitions for this

theory.

1.01. A program IT comprises the following:
N\A,\JV\

rrQ ,a finite set, the nodes;

ITS e: IIQ' the start node;

TIA '
a partial function with domTI A cJIQ, the action function;

ITB '
a partial function with dam ITBcdomITAxu for

and with ranIIBcIIQ, the branching

It is also convenient to define

ITT=IIQ\domTIA, the terminal nodes;

TIC=r.anIIA, the commands;

function.

some finite set U,

IIV(r,;)={il<r,;,i> e:domIIB}, the valence of z;;, defined for each z;;e:IIQ;

IIU=u{IIV(r,;)lr,;e:ITQ}, the unified set of valences.

For example, supposing the node r,; illustrated in the first paragraph of
0

The usual dots-and-arrows notation for directed graphs is convenient for

specifying programs. For a node z; in a program II: to specify that TIA(r,;)=a,

write 11 1;:a"(or just "a" if no reference tor,; is needed) near the dot representing

z;; to specify that I; is a terminal node, write "r,;:·11 or nothing near its dot; to

specify that ITB(r;,i)=z;', write "i" near the arrow representing the appropriate

edge <r;,r;'>. Designate 118 by putting its dot at the head of an arrow with noth':"'.

ing at its tail. To avoid graphic inconvenience, use an arrow with "r,;", but no

dot at its head to indicate that that arrow is to be taken as ending at the dot

1-3

for node r;.

1.02. A device f) comprises the following:
f,MNN

lq, J} 8 , /JT, sets, the memory, input, and output sets;

fJ1 : .B 8+J}Q' ~ 0 : tJQ+l'T' partial functions, :the input and output

functions;

£) C, a set, the commands;

JjG, a partial function with domJ'Gc/)CxJJQ and ran.l'Gcttxu for some

set U, the general interpretation.

it is also convenient to define, for each ae~C'

J\(a),;.{1IJ'G(a,m)=<m' ,1> for some m, m' },' the valence of a;

fJ
0

: /Jq+lJQx ~V(a.): m i-+-PG(a,m), the interpretation of a..

1. 03. If TI is a program and fJ a device, then e(II ~), the set of
~

computations by II on~, is the set of sequences <r; ,m > •• • <r; ,m > in IIQxDQ in
o o n n

which, for all j E {1,2 ••• ,n}, J"IIA(r;j_l)(mj_l)c<mj,i> and IIB(r;j_1 ,i)=r;j for some

i E IIV(r;j_l).

eT(II,f}), the set of terminati ng computations by II onJJ, is the set of

The length of a computation of the above form is n.

~ Lenuna. If II is a program, ~ a device, and < r;
0

, m
0

> E IIQ xcflQ, then

there is at most one sequence <r; ,m. > ••• <r; ,m > in eT(II A).
o o n n f¥

~ If II is a program and Jj a device, then ~II, the function computed

~ II .Q!!JJ, is a partial function defined thus:

~II :~S -+»T: x..,. ceo (m)'

where <II
8

,~
1

(x)>, •• <r;,m> E eT(II,.!') (uniquely, by (1.04)).

1-4

To illustrate the above definitions, we may consider the following:

. * * ~ Example. Specify a device IXP by: IXP Q={a, b,"i} x{a} ,

* * IXP s={a, b} , IXP T={O}, IXP I :x 1-r <x-t, <» (xda, b}) , IXP 0 : <<>, <> > 1-+ 0

(undefined otherwise), IXPc={o,P+a,+P}, and IXPG is given in the following table,

which also exhibits IXPa and IXPV(a) for aEIXPC:

a IXP G (a, <x, y>), = IXP (x ,y) IXP (a)
ex

0 <<(xJ,y>,c> if x=c(x.],cda,b,·i} {a,b,-1}
(undefined if x=<>)

P+a <<x,ay>,O> {O}

+P <<x,(y]>,a> if y=a(y] {a}
(undefined if y=<>)

* The name IXP is intended to suggest that this device is the product of a

(one-way) input device and a pushdown-store device. The first component of an

element of its memory set is the unconsumed portion of an input string, and the

second component is the pushdown store, top at left. IXP interprets commands

thus: o - consume one input symbol and branch accordingly (this is a traditional

finite-state-acceptor state transition); P+a - push an "a" onto the stack;

+P - pop one stack symbol. The input function of IXP provides an endmark, for

the input and initializes the stack to<>.

Since the output function of IXP provides no information, the only possible

interest in functions computable on IXP concerns their domains: For each program

IT, dom(IXPIT), the set of inputs for which IT halts on IXP, is a language over

{a,b}. Thus, programs for IXP are the counterparts in this theory of the

traditional deterministic one-way pushdown acceptors, In particular,{dom(IXP)ITIIT

is a program} is exactly the set of languages over {a,b} which are

* The notion of product of devices is not formally developed here. It has been
presented in a preliminary way in Baker (1975).

1-5

deterministically acceptable by traditional one-way-input pushdown-store machines.

iii Figure 1 exhibits a program A such that dom(IXP
6

)={a b iE{0,1,2, ••• }}. In

terms of definition 1.01, we have AQ={l,2,3,4,S,6,7};68=2; AA(l)=P+a, AA(2)=o,

m.; AB(l,0)=2, AB(2,a)=l, AB(2,~)=6, e.t.£.; AT={6,7}; Ac=IXPC;

Av(l)={0}, Av(2)~{a,b,-I} ••. , Av(4)={b,~} .•. ,Av(6)=Av(7)=O

0 b a
1:P+a a 5 :+P

2:0 3:+P
b a -i

6: 7:

i il Figure 1. A program A such that IXP
6

={ab iE{0,1,2, .•• }}.

(i) (ii) (iii) (iv)
<2, <aabb-f, <>>> <2,<aab-t,<>>> <2, <abb-f, <>>> <2, <aba-1, <>>>

<l,<abb~,<>>> <1, <ab-f, <>>> <l,<bb-t,<>>> <l,<ba-l,<>>>

<2,<abb-f,a>> <2, <ab-i,a>> <2, <bb-i, a>> <2,<ba-i,a>>

<l,<bb-t,a>> <l,<b-t,a>> < 3, <b-t, a>> <3,<a-f,a>>

<2,<bb--t,aa>> <2, <b-f, aa>> <4,<b-f,<>>> <4, <a--i, <>>>

<3, <b-1,aa>> <3,<-1,aa>> <S,<;,<>>>

<4,<b-1,a>> <4,<-1,a>>

<S, <-1,a>> <7,<<>,a>>

<4, <-1, <>>>

<7,<<>,<>>>

Figure 2. Four elements of e(A,IXP)

Figure 2 exhibits four elements of e(A,IXP). Each begins with <68 ,IXP1 (x)>

for some xEIXP
8

, and each is maximal in the sense that it ends with a configura­

tion <~j-l'mj-l> for which there is no <~j,mj> satisfying the conditions in

(1.03). (i) is terminating and, since <<>~<>>Edom(IXP0), shows aabb Edom

IXP
6

• (ii) is also terminating, but ·<·<> ,a>t dom(IXP 0). (iii) is maximal

1-6

because<~,<>>¢ dom(IXP+P)~dom(IXP6A(S)). (iv) is maximal because

IXP6 (4)(a~,<>)=IXP0 (a4,<>)~<<,,<>>,a> and <4,a> ¢ dom6B. (ii,iii,iv) thus show
A .

{aab,abb,aba} n domIXP6~□-

2-1

2. Homomorphism of programs, strong equivalence, first canonical form.

It is natural to explore the consequences of the above definitions by a

study of homomorphisms - functions which preserve the structure of programs or

machines. In the present paper, we study homomorphisms of programs only. The

following definition seems the natural one:

2.01.
MJVVV'

If IT and~ are programs, then a function f:ITQ+~Q is a homomorphism

if and only if

(i) dom f=ITQ;

(ii) f(rr
8

)=~
8

;

(iii) ~A(f(~))=ITA(~) for ~eITQ;

(iv) ~B(f(~),i)=f(ITB(~,i)) for ~errQ, ielluu~u·

The equations in (iii,iv) are to be understood thus: either both sides are

defined and the equation holds, or neither side is defined. Thus (iii) implies

f(ITT)c~T' and (iv) implies ~V(f(~))=Ilv(~) for all ~eITQ. It is also implied that

Ilcc~c' rru~~u· (iii,iv) may equivalently be specified by requiring that the

following· diagrams ~onnnute, where it is understood that the composites must be

equal as partial functions,

f f~c

::ru ,. "ql'u
't'B

C rrQ ;:,,, 't'Q
f

The notion of program structure which underlies this definition is very

restrictive. In fact, a program's individuality, that of it which is not

preserved by homomorphism, may be characterized in a word as its redundancy.

Consider, for instance, the following:

2-2

~- Example. Let 0 be the program of figure 3.

Define g: ~Q+ 0Q:5,-.4, i..,.i if il5, where~ is the program of example 1.06.

Then g is a homomorphism exhibiting the redundancy of {4,5} in~.

Figure 3. A program 0, homomorphic image of~ (figure 1.).

It is clear that homomorphism preserves computations - that is, that if

f:ITQ+'l'Q is a homomorphism, then {<f(~),m > .•. <f(~), m >I<~ ,m > .•. <~ m >
o .o n n o o n' n

Ee,(IT ,fJ)} c (:('I' ,Jj) for any device ,fJ, and in particular J:f. =h. The converse is
'I' II

not true, however. Consider:

2.03. -- Example. II= 'I'=

There is no homomorphism IT+'!' or '!'+II, but, for any device i),

Pl =/J.=!J, ocpocpoJ}, whereat, :mt-+ <cj>(m),i>. µIT 'I' n I ct

By these considerations, we are led to seek a notion of structural

equivalence of programs - stronger than homomorphism - which will be logically

equivalent to the correspondence of computations suggested by (2.03). The

following development is natural:

2.04. - If IT is a program, define

* the extended branching function IT-:IT xIT +IL recursively thus:
- B Q U ~

* * Define the extended action function ITA: ITQxIIU +ITC recursively thus:

ITx(~,<>)=<>;ITA(~,xi)=ITA(~,x)ITA(IIB(~,x)) if iE:IIv(ITB(~,x)).

Corolla:ry,

2-3

* If TI is a program, then, for all ~eTIQ,x,ye:TIU,

(i) TIB(~,xy)=TIB(TIB(~,x),y);

(ii) Tix(~,xy) =Tix(~,x)Tix(TIB(~,x),y). Also,

(iii) dom TI-=domTI-.
A B

2~05. ,.,.,..,..,., If JI and 'i' are programs~ then JI is str"ongly equivale-nt to 'i' if and

* only .if., for all xeU , TIA (TIB(n8 ,x))•1fA ('i'B('¥8 ,x)) and TIB(TI8 ,x)eTIT~ '11B('l18 ,x)e:'l1T'

where U=TiuuTiu.

Co r ollary. If TI and 'l1 are strongly equivalent programs, then

{xl<TI8,x> e:domIIB}~{xj<'l18 ,x> edom'l1B}. Also,strong equivalence of programs is an

equivalence relation.

We verify that strong equivalence follows from homomorphism:

2.06. Theor em. If TI and '11 are programs and there is a homomorphism f: --
TIQ+'l1Q, then TI is strongly equivalent to'¥.

* * Proof: Let xe:(Tiuu'l1u) ,ye(Tiuu'l1Uu{4}) •

By the definitions involved (2.01 and 2.04) and an easy induction, we have:

'l1A('l1B('i's,x)) ='i'A('l1B(f(TIS),x))

='i'A(f(TIB(TI8 ,x)))

=TI A (TIB (TIS' X)) •

As already remarked, (2.03) is a counter-example to the converse of (2.06).

Another apporach to the question of structural equivalence of programs

appears upon consideration that a program, as defined here, can be taken to be

the transition diagram for a Moore-type finite state machine with output (the

commands serving as outputs). As such, it is subject to the Merode

optimization process (NOp), the result of applying which to a program TI is a
,.,

canonical form TI. It turns out, not unexpectedly, that these canonical forms

have the property that programs TI ··and '11 are strongly equivalent if and only if

,., ,..,
II='¥.

2-4

For example, the programs of (2,03) have the common canonical form

a o,l ct o,1
--+• >• ~

A parenthetical remark is in order here. The traditional definition of a

species of machine is informally motivated by a diagram like Figure 4.

finite
control

push­
down
store

Figure 4. Informal motivation for traditional definition of deterministic

pushdown acceptor.

The "finite control" of machines of a traditionally-defined species is supposed

somehow to be a finite-state machine, so, one would expect, subject to NOp.

Unfortunately, traditional definitions disable any easy "factoring out" of non­

finite parts such as would be necessary to apply NOp directly. A virtue of the

formulation presented in this paper (this aspect of it due directly to Scott,

1967) is that is specifies such a factorization at the outset. In our view, the

"finite control" is a program. The rest of the structure, including any non­

finite part, is represented by a device. The resulting applicability of NOp is

not itself of any great significance, but it is symptomatic of a clarity and

intuitive appeal inherent in our view.

We turn now to the construction of the canonical form obtained by NOp, and

to verification of its relation to strong equivalence.

2.07. - If II is a program, define the canonical equivalence induced EI. II, a

* binary relation TIE in ~, , by xIIEy if and only if

*
II A (~(II 8, xz)) =rrA (rr B(n 8 ;yz)) and' II B (II 8 , xz) £II T+. JIB (rr 8 , yz) e:II T for all ze:rr u .

2-5

Corollary. If IT is a program, then ITE is an equivalence relation and

satisfies

* (i) If xITEy and ze:ITU, then xzITEyz (rrE· is right-invariant);
* (ii) ITU /ITE is finite;

(iii) If xIIEy, then rrv<rrB (ITS ,x))=Ilv(ITB(rrs 'y));
* (iv) If xIIEy, then rrx(ITB(rrs,x),z)=ITx(rrB(rrs,Y),z) for all ze:Ilu.

~- If IT is a program, then the first canonical form of IT is a program

~ *
IT specified as follows (writing [x] for [x]II e:IIU /ITE):

E ,.,
~Q={[x]j<TI8 ,x>EdomJIB}.

rr =[<>]. ,.,s >: [x] t-+ TIA (1113 (ITS ,x)).

HB!<[x],i>1--+ [xi] if ie:ITV(ITB(II8 ,x)).
,..,

By the corollary to (2.07), IT is well-defined.

* Corollary. If IT is a program, then, for all x,ye:ITU (again writing•

[x] for [x]rr) ,
~ E ~

(i) IIB([x],y)=[xy] if [xy]e:ITQ, undefined otherwise;
,.,

(ii) IIA([x],y) =ITA(ITB(rr
8
,x),y). Also,

~ *
(iii) ITT={ □ if, for all xe:ITU , IIB(II 8 , x) ¢ITT

{{xjrrB(rr
8

,x)EilT}} otherwise.
,,,,.,

~- Examples. With respect to (2.03), we have IT=~=

i {<>}:a

O,ll {0,1}:a.

O,l {00,01,10,11}:

Figure 3 exhibits the first canonical form of /J. of (1.06) and 0 of (2.02)

* (aO) a:P+a

,., ,.,
Figure 3. /J.= 0.

0

a

a
* * (aO) (ba) ba:o

. * *
(aO) (ba)

2-6

~• Theorem,. If II and 'I' are programs, then II is strongly equivalent to
"" ,.,

, if and only if II='!'

Proof: Suppose II strongly equivalent to 'I'. Then clearly xIIEy if and only

* if x'l'Ey, for all x,ye(IIUu'l'U) • By the corollary to (2.05), then, IIE='l'E and
N N NI"/

IIQ='l'Q. It follows that II='!'.

* Conversely, suppose IT='!', and let xe(Iluu'l'U) • For E=II or 'I', EB(E
8

,x) is

* ~ N N
defined only if xeEU , and in that case 3A (3B(3

8
,x))=3A (3B(3

8
,x)) and

,. /,I ,.

3B(E8 ,x)€3T~ 3B(38 , x) e3T.

It follows that IT is strongly equivalent to 'I'.

Corollary. If II and 'I' are programs and there is a homomorphism f:IIQ+'l'Q'
,.. IV

then JI:::'!'.

To complete section 2, we establish two important properties of first

canonical form, and exhibit algorithms realizing NOp in terms of our formulation.

2.11. Letmna. If II is a program and II' is defined thus:
~ -=

* II'Q={IIB(rr 8 ,x)lxeIIU },

II I s=Tis' and

TI'A,TI'B are the restrictions of TIA to II'q, IIB to TI'Qxrru, respectively;

"' "' then II' is a program and there is a unique homomorphism f:II'Q+IIQ with ran f=TIQ.

* Proof: If x,yeTIU and IIB(TI 8 ,x)=TIB(II5,y), then xITEy by definition of TIE.

Therefore f:TIB(n
8

,x) 1-+[x]TI is well-defined as a function. Clearly II', fare as
,., E

required, If -g:TI'Q+TIQ is any homomorphism, then by induction on !xi,

"' ,,,
g(TIB(n8,x))=TIB(II8,x)=[x]TI • Thus f is unique.

E

2.12.
11\N\Mf\

Theorem.

,"oJ

If TI is a program, then (rr}rr.

Proof: Define II' as in (2.11). Notice that ~TI'Q+TIQ:~ I+~ is a homomorphism.

Applying the corollary of (2.10) twice, we have (n\=(~)=IT.

2-7

"" Corollary. If IT is a program, then IT is strongly equivalent to IT.

2.13. Theorem. If IT is a program and~ is a program strongly equivalent
1/VVVY\ ,.,

to IT, then card f~ card ITQ.

,.. ,..
Proof: By (2.10), ~=IT. Obtain~, from~ as in (2.11). Then card~~ card

,., /W

~'cf- card ~Q=card ITQ.

* W· Algorithm. Given a program IT, to determine the set {ITB(IT
8

,x) lxEITU }.

Let Q
0
={rr5}. For j=l,2, ••. , compute Qj=Qj_1u{ITB(r;,i)lr;EQj-l and iEITV(r;)}.

Stop when Qj=Qj_1 • Qj is then the desired set.

2.15. Algorithm. Given a program IT, to determine the relation
ll'\IV'M

*
{ <r;, n> I ITA (ITB (I:' ,x))=ITA (ITB(n,x)) and nB (r; ,x)e:Ilr* ITB(n, x) e:ITT for all xEITU } in rrQ.

Let R
0

={<r;,n>IITA(r;)=ITA(n) and ITV(r;)=ITv(n)}. For j=l,2, ••• , compute

Rj={<r;,n>lr;Rj-ln and IIB(r;,i)Rj-lIIB(n,i) for all iEITV(r;)}.

2.16.
vVYV'-

If IT and Ware programs, then f:IIQ+~Q is a homomorphism, then f is an

isomorphism and II and Ware isomorphic if and only if f is 1-1 and ran f=~Q.

2.17. Algorithm. Given a program IT, to obtain a program IT' isomorphic to
l/11\/V\A

rJ
IT.

Let IT" ==IT and let
S S'

IT"A,IT"B be the restrictions of ITA to IT"q• IIB to II"QxITU, respectively.

Apply (2.15) to JI", obtaining a relation R.

2.18. Algorithm. Given a program II, to obtain regular expressions for
WVVv,,,

the sets {xlITB(r;,x)=r;'} for all r;,r;'EITQ.

Let JIQ={r,;1 ,r,;2 , ••• ,r;n} with

For all p,q=l,2 ••• , n, set

card IIQ=n.

X
0={ilIIB(r; ,i)=r; }u{<>lp=q}. pq p q

I

I ., .,

2-8

For . r . r-1 r-1 r-1 . * r-1 . r=l,2 ••• ,n, compute X =X ux (X) X for all pq pq pr rr rq p,q=l,2 ••• ,n.

For all p,q=l,2 ••• ,n, t1 ={xlIT-B(~ ,x)=~ }, as required. pq p q

~ "' hl9• Algorithm. Given a program IT, to obtain IT, the elements of TIQ

specified as regular expressions.

"' Apply (2.17) to obtain IT'. Apply (2.18) to IT'. TI is detenrtined by the

. I ' , . ~ isomorphism ~ t+ {x ITB(IT8 ,;x)•r;;} from n'cf to ITQ.

Proof that the. above algorithms are as claimed is completely straightforward.

(2.1'8) is a special case of algorithm 5.5 of Aho, Hopcroft, ~nd Ullman(1974).

3-1

3. Weak equivalence of programs, some semantic considerations, second canonical

form.

~

We have seen that the transformation Ill+ IT is a program optimization,

eliminating redundancy. It may reasonably be objected, however, that it is

incomplete.

Consider:

3.01. Example.
~

We have
~

TI=

{1};

TI=

{<>}:a

0
+ r){O} :S

0

a

y

a
0

{1}:

~

TII~ although the terminating computations by IT and~ are identical on any device.
~ ~

Furthermore, both IT and~ retain features that are redundant with respect to

terminating computations: a 1 f >• >• would seem a more suitable canonical orm.

In defense of first canonical form, it can be said that its simplicity of

definition and its close connection with classical finite-state-machine theory

make it attractive. A more important defense is the fact that many real-world

programs depend on interruption rather than termination for transfer of control

away from them, so that non-terminating computations should not be overlooked in

forming a general model for programs. In particular, recall that an operating

3-2

system is organized around a program which never terminates. Thus, consideration

of examples like (3.01) should include interpretations such as

a "interrupts disabled?"

S "wait (for interrupt)"

y - "set flag".

Under this interpretation, Il is non-optimal, ~ is optimal, and the distinction

between Il and~ is significant - all in accord with the notion of first canonical

form.

However, most programming is better modeled if distinctions based only on

the non-terminating computations of programs are not considered significant.

Accordingly, we seek a second canonical form, based upon the following notion of

equivalence.

3.02. If Il and~ are programs, then Il is weakly equivalent to~ if and only
,v.-.,..,;

if f) IT,/)~ for all devices tJ.

Corollary, Weak equivalence of programs is an equivalence relation.

It is certainly to be expected that strong equivalence implies weak, and it is

so. Proof of this statement and others concerning weak equivalence is facilitated

by considering a device F which traverses programs and reports commands

encountered. Such a device, which we will now define, may be thought of as

providing a free semantic interpretation of its programs "free" because

commands remain uninterpreted, "semantic" because the range of a function FTI

computable on Fis the set of sequences of commands executable by TI.

3.03 • ..,._,., ~ system of commands is an ordered pair <c,v>, where C is a set

(the commands) and v is a function with domv=C, (For ct£C,v(a) is the valence

of a.)

3.04.
~

(C,v)
If <C,v> is a system of commands, then Free is a device

3-3

specified thus (writing F for Free(c,v)):

Let U=u{v(a)lae:C}.

* * * * FQ=U x:C ,F8=U ,FT=C

FI:x..-+ <x,<>>,F
0

:<<>,y>I-+ y (undefined on <x,y> if x,<>);

F =C· C '
Fa:<ix,y>~ <<x,ya>,i> if and only if ie:v(a), for all ae:C.(thus Fv=v.)

Corollary. If <C,v> is a system of commands and II is a program, then

. ' I ' "'(II F (C 'V)) if d 1 f h i 11 <r;,x,y>,,,<r; ,x ,Y >e:~ , ree an on y i t ere s some x such that

'l' if

3.05. Theorem.
~

If IT and 'l' are programs, then IT is weakly equivalent to

and only if Free(C,v) =
IT

Free(C,v)
'l'

Proof: If IT is weakly equivalent to

definition of weak equivalenc.e,

'l', then Free(C,v) =Free(C,v) by
IT 'l'

Conversely, suppose Frr=F'l'jF=Free(C,v), and let~ be any device. If

xe:dom'IT' then there are sequences <r; ,m >, •• <r; ,m >e:e.T(IT,~), i_ ••• i, and a;. ••• oo nn 1 n 1.

:a. such that r; =IT 8 ,m =»I(x),m e:domc8 ,r; =ri-B(IT 8,i ••. i),IT-A(IT8,i1 ... i)=a1 .. ,a, n o o n on l n n n

andJ'.'a (mj_1)=<mj,ij> for all je:{l ••• ,n}. By the corollary to (3.04),
j . ,·

FIT(i1 .•• in)=a1 ..• crn, so F'l'(i1 •.. in)=a1 ••• an. Again by the corollary to (3.04),

there is a sequence n- ••• n- such that n· =1¥ 8 ,n e:'¥T, and 'l'A(n. 1)=a. and 'l'B(11·. 1,i.)
o n o n J- J J- J

=n-. for all je:{1. •• ,n}. It follows that <n ,m > ... <n ,m >£e,T('l',~),sob 1,,(x).J)II(x).
J o o n n T

The same argument applies if x£dom~'l'.

3.06. Theorem. If 'l' is a program and IT is a program strongly equivalent to
~

'l', then IT is weakly equivalent to'¥.

"' "' Proof: Suppose IT is strongly equivalent to'¥. Then, by (2.10), II='!', By the

3-4

* corollary to (2.08), if xe(Iluu~U) , then ITB(rr8 ,x)eITT if and only if ~B(~8,x)e~T'

and ITA(rr
8

,x)=~A(~
8

,x). By the corollary to (3.04), Free(C,v) rr=Free(C,v) ~' where

<c,v> is as in (3.05). By (3.05), IT is weakly equivalent to~-

Corollary 1. If IT and~ are programs and there is a homomorphism f:ITQ ~ ~Q'

then IT is weakly equivalent to~- (By (2.06,3.06))

,.,
Corollary 2. If IT is a program, then IT is weakly equivalent to IT. (By the

corollary to (2.12) and (3.06))

We turn now to the construction of the second canonical form itself. Its

relation to weak equivalence will be exactly analogous to that of the first

canonical form to strong equivalence.

3.07. If IT is a program,define the second canonical equivalence induced~ - * IT, a binary relation ITF in ITU, by xITFy if and only if: either ITB(rr 8,xz)¢ITT and

ITB(rr 8,yz)¢ITT or ITB(rr8 ,xz)eITT and ITB(rr 8,yz)e~T and

ITA(TIB(rr 8 ,x),z)=ITA(ITB(IT8 ,y),z), for all zeTIU.

Corollary. If IT is a program, then IT is an equivalence relation and

satisfies

* (i) if xTIFy and ~£ITU, then xzITFyz(IlFis right-invariant);
* (ii) nu /ITF is finite;

* (iii) If xITFy and ITB(rr8,xz)eITT for some zeITU, then ITA(ITB(rr8,x))=ITA(ITB(rr8,y));

(iv) If xITEy, then xITFy.

~- If IT is a program such that {xlrrB(rr8 ,x)eITT}; □, then the second
/\

canonical form of IT is a program IT specified as follows (writing [x] for

* [x]Il £ITU /ITF):
F~ *

~Q={[xJlrrB(rr8 ,xy)eITT for some yeITU }.

TIS=[<>].
I\
ITA:[x]I-+ ITA(ITB(Ils,x)).
~ *
ITB:<[x],i>"4- [xi] if ITB(rr8 ,xiy)eITT for some yeITU.

3-5

By the corollary (3.07), " to IT is well-defined.

" {xlnB(IT8 ,x)e:ITT}=O. Note that IT is not defined if and only if

,,..
Corollau. If IT is a program and IT is defined, then, for all

* x,ye:ITU (again writing [x] for [x]IT),

" . " F
(i) ~B([x],y)=[xy] if [xy]e:ITQ, undefined"otherwise;

(ii) ITA([x],y) =ITA(ITB(IT8 ,x),y) if [xY]e:ITQ' undefined otherwise.

Also,
I\ ,.,,

(iii) ITT=ITT={ {x I ITB(IT
8

,x) e:ITT}}.

3.09. ,_,,._ Example.
/I /\

With respect to (3.01), we have IT=~=

I\

lt{<>}:a.
{1}:

3.10. Lennna. If IT is a program such that IT is defined, then IT is weakly
~

I\
equivalent to II.

Proof: Let C=ITC, v:ai-+ U{Ifv(~) lrrA(~)aa.}. Then Free(C,v)II(x)=y

<.=;> TIB(n8 ,:ic)eTIT and y=JT:x(rr8 ,x) (By cor. to (3.04))
/\ I\. (\ /\ /\

~ ~(TI ,:it)e:IIT and y=IlA(TI8 ,x) (By cor. to (3.08))

~ Free~C,v)rt(x)=y (By cor. to (3.04)).

I\
By (3.05), IT is weakly equivalent to IT.

3~11. Theorem. If IT and~ are programs, then II is weakly equivalent to~ - " I\ I\ /\ if and only if IT=~ or both IT and fare undefined.

" I\ Proof: If IT=~, then IT is weakly equivalent to f by (3.10) and the transitivity

I\ I\
of weak equivalence. If both 1T and~ are undefined, then JlIT=~f=D for any device

Conversely, suppose IT is weakly equivalent to f, and let <C,v> be as in

(3 05) By (3 05) F (C,v) = F ,(C,v)
• • • , ree II ree ~.

if and only if xe:dom Free(C,v) 3 by the corol~ary to (3.04). I\ " Thus IT and~

3-6

are either both defined or both undefined.
I\

By the same argument, [x]IT EITQ if and
F

" only if [x]~ E~Q. Again for S=IT or~, if 3B(B 8,xz)E3T' then
F

Free(C,v)
3

(xz)=SA(s 8 ,x)~A(3B(B 8,x),z) by the corollaries to (2.04,3.04).

" " Considering the final substring of length lzJ of this, we see that ITQ=~q·

" I\ follows that IT=~ if both are defined.

It

N/11 1\1\ I\ /\
Corollary 1. If IT and~ are programs and IT=~, then IT=~ or both IT and~

are undefined. (By (2.10,3.06,3.11))

Corollari 2. If IT and~ are programs and there is a homomorphism f:ITQ+~Q'

"" " ,,.. then IT=~ or both IT and~ are undefined. (By the corollary to (2.10) and

corollary 1)

To complete section 3, we establish three important properties of second

canonical form, and exhibit algorithms for its construction.

,,..
l:11.· Theorem.

_,,,,.... ~ ,-.,,; :
If IT is·a program such that IT is defined, then

trr) = tir) = (n~ =~.
A

If IT is undefined, then so is (rr). -Proof: If IT is defined, then 6r)=rr by (3.10,3.11)
A ~

~

and (tr)=D by (2 .12) and

corollary 1 of (3.11). - If IT is undefined, then ITT=[] by the corollary to 2.08,

so (n') is undefined.

It remains to show that ,..., " assuming TI defined. This follows directly

from the fact that TIQ={n)Q, which we will now prove. By (i) of the corollary to -
(3.08), <ITS,x>EdO~B if and only if [x]rr E¾ - Thus {n)Q={[x]n l[x]rr ETIQ}, so it

F " E F "
is only necessary to show that [x]Il =[x]Il if [x]Il EilQ. Suppose [x]II EITQ • As

A A El\ * F F F
already noted, <IT

8
,x>E dom TIB, so XEIIU and [x]TI is defined.

E

3-7

if and only if ITB(rr8,yz)sITT. If this condition holds, then, again by the
I\ ,... I' ,...

corollary to (3.08) ITA(ITB(ITS,x),z)=ITx([x]rr ,z)=ITA(ITB(rrs,x),z) and likewise for
~ F

y. By definition of ITE, it follows that xITFy.

thus:

3.13. ,..,.,,.__ Lemma . If IT is a program such that IT is defined, and IT' is defined -
* IT'q={ITB(rr 8 ,x) lrrB(IT 8 ,xy)sITT for some ysITU },

IT I s=Tis' and

IT'A, rr 'B are the restrictions of ITA to IT'Q,ITB to IT'QxITU, respectively;

"' I\ then IT' is a program and there is a unique homomorphism f:IT'Q+ITQ with ran f=ITQ.

* Proof: If x,ysITU and TIB(IT8 ,x)=TIB(TI8 ,y), then xITFy by definition of ITF.

Therefore f: ITi/IT
8

, x) H-[x]TI is well-defined as a function. Clearly IT', f are
F

as required and f is unique.

,..
3.14. Lemma. If TI is a program such that TI is defined and TI' is obtained
~

,-J " as in (3.13), then IT'=TI.
,.... ,l"V

Proof: By (3.13) and the corollary to (2.10), IT1=(~L By o .12), lrr)=rr.

3.15. Theorem . .,.,....,..,.. If IT is a program such that, whenever <IT 8 ,x>sdomITB, there

* " ,., is ysITU such t hat TIB(IT 8 ,xy)sITT, then IT=IT.

" Proof: To see that IT is defined, consider x=<> in the hypothesis. Under

these hypotheses, the programs IT' of (2.11,3.13) are equal. By (2.11) and
,., ,..., ~A

the corollary to (2.10), IT=(TI~. By (3.14) JL=TI.

,.,
3.16. - Example . TI is isomorphic to TI, but

,..
II=

3-8

{<>}:a {0,1}:a {00,10}: ~. ---)~. ----...) .
0,1 0

~ ~

Thus II cannot in general be obtained from II by deleting "useless" features.

" 3.17. Theorem. If II is a program such that II is defined, and~ is a .,.._,.,._
" program weakly equivalent to II, then card ~1cardIIQ •

... "
Proof: By (3.11), ~=II. Obtain~' from fas in (3.13). Then cardfQ~card

" I'-.

~' Q,; cardf Q=cardIIQ.

~- Algorithm. Given a program II, to determine the set {r;i:::IIQ/rr8(r;,x)i:::IIT

* for some xi:::IIU } .

Let Q
0

=IIT. For j=l,2, ••• , compute Qj=Qj_1 u{r;/rrB(r;,i)i:::Qj-l for some ii:::ITV(r;)}.

Stop when Q.=Q. 1 • QJ. is then the desired set.
J J-

/\,.
3.19. Algorithm. Given a program IT, to determine if IT is defined, and, if
~ ,... ,,..

so, to obtain IT, the elements of ITQ specified as regular expressions.

* Apply (2.14) to obtain M1={ITB(rr8,x)/xi:::ITU }.
* Apply (3.18) to obtain M2,;,.{r;e;rrQ/rrB(r;,x)i:::IIT for some xi:::ITU }.

"" . If M1nM2=□, then IT is undefined.

Otherwise, Let:IT'Q =M_i,nM2 ;rr 1

8=rr 8 ;rr'A,IT'B be the restrictions of TIA to IT'q•

ITB to IT'QxITU, respectively.

,-; " Apply (2.19) to IT'. The result (IT') is II. (By (3.14))

4-1

REFERENCES

~' A.V., J.E. Hopcroft, and .T.D •• Ullman. (1974) "The design and analysis of
computer algorithms". Addison-Wesley , Reading, Mass.

Arbib,M.A. and E.G. Manes (1974), Machines in a category: an expository
""'"'-==introduction. ~Review. 16, 163:192. ,.,...
Baker, J.L. (1975) Factorization of Scott-style automata. Category Theory
= Applied to Computation and Control,(1974 Symposium). Springer Lecture

Notes in Computer Science. 25, 99:105.
"""" Elgot, C.C. (1975) Monadic computation and iterative algebraic theories.

Proceedings of Logic Colloquium (Bristol 1973), North-Holland. 175:230.

Goguen, J,A., .Jr. (1974) On homomorphisms,correctness, termination, unfoldments
and equivalence of flow diagram programs. Journal of Computer and
System Sciences. 8, 333:365.

""
Go8uen, J.A., Jr., J.W. Thatcher, E.G. ~gner, and J.B. Wright (1975) Initial

Algebra Semantics, IBM Research Report RC5243.

Luckham, D.C., D.M.R. Park, and M.S. Patterson (1970). On formalised computer
programs. Journalo1 Computer and Systems Sciences,i,,220:249

Moore, E.F. (1956) Gedanken-experiments on sequential machines. Automata Studies.
Princeton. Annals of mathematics studies no. 34. 129:153.

Nerode, A. (1958) Linear automaton transformations.
541:544.

Proc. Am. Math. Soc. 9,
M/1,

Rabin, M.O. and D. Scott (1959) Finite automata and their decision problems.
- IBM Journal of Research and Development. j.1114:125.

Rutled9e, J.D. (1964) On Ianov's program schemata. J.ACM. 11, 1:9. -
Scott, D. (1967) Some definitonal suggestions for automata theory. Journal

of Computer and System Sciences. l,, 187: 212.

Trakhtengerts, E.A. (1967)Mathematical methods for the minimization of
product1on monitoring andcontrol programs (Survey). Automation and Remote
Control. 1967 no. 8, 1181:1203.

Yanov, Yu. I. (1960) The Logical Schemes of Algorithms. Problems of Cybernetics
(Pergamon) • _l, 82: 140.

