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With a constructive, knowledge-based theory of perception 
as its foundation, this paper starts vith a review and critique 
of some artificial intelligence programs that purport to see. 
It is then argued that these computer programs for scene 
analysis offer the hope of providing a more adequate account of 
human competence in interpreting line drawinqs as polyhedra than 
do the current psychological theories. This thesis has several 
aspects. The one emphasized here is that those programs have 
explored a variety of methods of incorporating ~ R~i2Ii 
knowledge of objects throuqh the use of models. After outlining 
the range of models used, presenting a set of criteria for 
evaluating the use of model information and sketching some 
psychological theories, the various proposals are contrasted. 
This discussion leads to two nev proposals for exploiting model 
information that involve elaborations of an existing program, 
POLY. 

1 • l.n tr 2.9.!!£.:ti2!l 

In one of its many roles, artificial intelligence is cast 

as the vanguard of an army of psychologists who seek a new 

paradigm for cognitive and perceptual processes. Despite 

several clarion calls to this effect (Minsky and Papect, 1972; 

Clowes, 19j2b; Sutherland, 1973) AI may well be a vanguard 

without an army. This paper attempts to show that a small part 

of the scouted territory is ripe for capture. 

The interpretation of line drawings as polyhedral scenes 

has been the focus of most attempts to build AI vision systems. 

As such interpretation is a natural human task, several 

psychologists have also studied it. In sketching and 

1 
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contrasting various resultant theories, we will concentrate on 

how they .represent the s J2I.!QI.! knowledge of the ob iects that 

exist in the world. Of necessity, other essential themes such 

as non-model knowledge of the world (for example, knowledge of 

support and the picture-formation process itself) or the use of 

picture cues to access the models are slighted. 

Section 2 gives the necessary background in scene analysis 

to the reader unfamiliar with the field. Section 3 then 

examines the us~ of models in those programs. Section 4 

sketches the use of models in some theories of human vision and 

in Section 5 a few examples are used to contrast and evaluate 

various proposals. This leads, via the weaknBsses exposed, to 

the two new approaches in section 6. 

2. ~g£hiD~_!!§i2E 

Insistence on the need for descriptive adequacy of the 

internal representations of the perceived world and procedural 

adequacy of the interpretation process itself contrasted with 

the lack of both in simple classification mechanisms is what 

distinguishes scene analysis from earlier work in pattern 

recognition. The assumption that the world consists of objects 

with flat surfaces is a simplification of reality for the sake 

of tractability that has led to a coherent evolving body of 

research based on the notion that a polyhedral world is the 

simplest we can consider without eliminating any of the 

essential aspects of scene analysis, such as understanding the 

picture-taking process, models, lighting, support and occlusion. 
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The thesis is that once we achieve ways of dealing intelligently 

with those aspects for a simple, but nevertheless real, world we 

could then consider the fuzzy world of teddy bears (Michie, 

1974) and the like. This should not be taken as suqgesting that 

each of those aspects presents simply a separate, independent 

subproblem to be solved. The most important question to be 

faced was how to write programs that coordinate the use of these 

separate, but interrelated knowledge systems to achieve sensible 

picture interpretations. Roberts (1965) was the first to answer 

this question. 

2.1 i2~§!!§.!._R~29!!!_!£!_§£~n~_!Illil§l§ 

Roberts (1965) described a program for the interpretation 

of photographs as images of fully three-dimensional scenes. By 

assuming that the scene is composed of particular instances of 

object models that have been transformed and combined in 

well-specified vays and by using knowledge of the picture taking 

process, support and occlusion, his system is able to compute 

the exact 3D position of every object in the scene. There are 

actually two separate programs. The first reduces the 

photograph to a line drawing, the second interprets the line 

drawing. 

Roberts' program believes that the world consists of the 

models shown in Fig. 1, namely, a cube, a rectangular wedge and 

a hexagonal prism. To create simple objects the system allows 

these models to be expanded along each of the model coordinate 

axes and then rotated and translated. Compound objects are 



::.
"''

~
 ... 

.J:
'-

F
ig

u
re

 1
. 

R
o

b
e
rt

s'
 

si
m

p
le

 o
b

je
c
t 

m
o

d
el

s 



5 

created by abutting two or aore simple objects so that each 

adjacent pair shares a common surface. A typical compound 

object and its components are shown in Fig. 2. The models are 

specified by 30 homogeneous coordinates so that the 

transformation of a model to form an object is described as the 

transformation, by an initially unknown matrix R, of the 

coordinates of the corners and the normals to the surfaces. 

Similarly, the perspective picture taking process is described 

as the multiplication by a known matrix P of the object 

coordinates to produce the picture coordinates followed by the 

removal of hidden lines. So the relationships of the model, 

object and picture domains are as shown in Pig. 3 where H, the 

model~to-picture transformation, is also shown. Since H = RF, 

if a model and a transformation H can be found that account for 

a set of the lines in the picture then the proqram maintains 

that the set of lines is a picture of the object given by a 

transformation R = HP-• of that model. Thus, the object is 

identified and its location specified completely except for its 

actual distance from the camera. This distance is then computed 

from the requirement that the ■ost downward facing surface of 

the object must lie in the ground plane. This is the only 

support hypothesis used by the program. 

In this abbreviated account, the most important point 

glossed over is the decision to choose a set of picture lines to 

interpret first. This decision is followed by the choice of 

particular edges of a particular model to account for those 

lines. This is perhaps the archetypal artificial intelligence 



6 

(a) 

I. 

( b) 

( C) 

Cd ) 

( e ) 

Figure 2. A typical Roberts' compound model 
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problem - the problem of relevance, by which is meant the 

problem of invocation of appropriately relevant models or 

procedures to account for the data. 

The space of three models juxtaposed and transformed in all 

possible ways and viewed from every direction is unthinkably 

large for a blind search, (that is, generating all possible 

pictures of all possible objects until one matches the input) so 

the search space must be intelligently structured. Roberts 

noticed that all the model transformations leave the object•s 

topology invariant and that within a wide range of viewpoints 

the topology of the visible aspect of an object does not change. 

Through this invariance the topology of th~ picture can be used 

to search a much reduced space consisting of the 

from a small number of typical viewpoints. 

candidate model, points that correspond in the 

models viewed 

On findinq a 

model and the 

picture are paired. The coordinates of those pairs are used to 

calculate, rather than search for, the mc1~1-to-picture 

transformation, H. At least four pairs of points are needed to 

calculate ff; if more are available then a least squares fit 

gives H with the residual error as a measure of the 

picture-model mismatch. 

model is rejected and 

If the mismatch is too large then that 

the topology search continues. If the 

transformed model is acceptable then it "explains" a fragment of 

the picture which is then deleted and the entire process starts 

again. 

Roberts• program created a scene analysis paradigm that 

remains dominant. As a working theory, for that is what an AI 
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program is, it firmly established an active model of perception 

as a cycle of four processes: 

hypothesis, testing the 

discovering 

hypothesis, 

cues, activating a 

and inferring the 

consequences. 

then dominant 

This model of perception, so far removed from the 

pattern recognition paradigm for machine 

perception, echoes, as Clowes (1972a) remarked, the approach of 

such psychologists as Helmholtz (Southall, 1962), Bartlett 

(1967) and Gregory (1974). Minsky's recent frame systems 

(Minsky, 1975) provide a semi-formalism for this paradigm of 

perception. 

2.2 2Y.msn!Lho~_§ggm§n!at!g.!LR~2g~s~,_g] 

Guzman's SEE (1968) accepts line diagrams of polyhedral 

scenes as input and partitions the picture regions on the basis 

of the putativ.e body me111bership of the surfaces depicted. The 

program consists of tvo passes over the picture. The first pass 

makes local guesses (called links) about which pairs of regions 

depict the same body. The second pass accumulates that evidence 

to produce a grouping of the regions corresponding to bodies. 

The links are placed at the junctions shown in Fig. 4 where 

the links are shown as connections between two regions which are 

usually adjacent in t .be picture. An exception to these rules is 

the inhibition rule that no link is placed across a line at a 

junction if its other end is a barb of an ARROW, a leg of an L 

or part of the cross bar of a T. 

considering the result of the first pass to be a graph with 

regions as nodes and links as arcs then the second pass searches 
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FORK ARROW 

PS I PE AK 

BACK-TO-BACK T'S 
K 

Figure 4. The link planting rules of SEE 
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for 2-connected subgraphs which are declared to represent 

bodies. This is a highly abbreviated version of Gu~man•s final 

account which has many special case rules augmenting both 

passes. The rules that depend on being told which region is 

background can clearly be invalidated immediately by putting 

another block behind the scene being analyzed. Tbat, however, 

is not the main point; it is merely typical of the way in which 

the program developed by a process of finding counter-examples 

that both invalidated old rules and hinted at new ones (Winston, 

1973). The need to add and modify rules almost continuously to 

handle exceptions suggests that there is a basic flaw in the 

design. 

The flaw seems to be that Guzman used locally computed 

picture predicates as evidence for global scene-based 

properties. To avoid this one must ask: What do the lines in 

the picture depict? As ve shall see later in the Huffman-Clowes 

labelling algorithm, they can depict many things but only 

certain combinations of these things are scene coherent; this 

coherence decision cannot be made in the picture domain as 

Guzman tried to do. 

SEE's tendency to see holes in objects as separate objects 

(Winston, 1968) is only one consequence of the fact that the 

program ignores ambiguities inherent in the interpretation 

process that are exposed by the Huffman-Clowes labellinq 

algorithm. For example, consider Fig. S(a) (adapted fro ■ Minsky 

and Papert, 1972). That can be seen in at least three different 

vays. The first possibility is as a simple hous~ structure in 
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( a ) 

( b) 

Figure 5, Illustrating a) ambiguity and b) anomaly for SEE 
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which there is only one body. Second, as a variant of the first 

it can be seen as a pyramid sitting on top of a rectangular 

brick. Third, and quite different from the first two, it could 

simply be two wedges abutting one another. SEE reports only the 

first of these alternatives and does not see the others. 

Moreover, SEE's interpretation consists only of "one body 

composed of regions A, B, c and D"; it does not provide the 

richness of an interpretation that reports th~ nature of each 

edge. These ambiguities and that richness are provided by the 

labelling algorithm (Waltz• version is needed for Fiq. S(a)) as 

we shall see. The labelling algorithm also detects situations 

illustrated by the picture in Fig. S(b) where SEE happily 

partitions into bodies pictures that are syntactically correct 

(that is, every line bounds two different regions and so on) but 

meaningless as pictures of polyhedra. 

An interesting comparison can be made between Roberts• 

program and SEE. A one-to-onP, correspondence exists between the 

Roberts' topology tests and Guzman's junction linkinq rules (see 

~ackworth,1975b). Moreover, Roberts used knowledge of models 

explicitly in the body segmentation task. He did this in three 

ways. first, by looking for a feature (convex reqions with 3, q 

or 6 sides) common to all the models, second, by using 

model-specific topology tests to identify a picture fragment as 

part of a particular model and, third, having made an 

identification, projecting the rest of the model onto the 

picture to account for many more lines. Guzman, on the other 

hand, claims to use no knowledge of models in th~ s~gmentation. 
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This claim may indeed 

Roberts-Guzman parallel 

be doubted on the grounds of 

presented in (Mackworth,1975b). 

the 

SEE 

seems to prefer convex regions as body faces. This is confirmed 

in the analysis of SEE's underpinnings in Section 2.4. This 

claim to virtue (as it was seen by Guzman) in fact turned out to 

be an objection to SEE as it led to a vision system that was 

pass-structured with successive passes mapping into 

progressively more abstract domains (Minsky and Papert,1972). 

2.3 r~.i~2-§£fill~-fill~l~§is_~i§igm~ __ 111igg~11 

Falk's (1972) collection of scene analysis programs 

operating as a system called INTERPRET represents a qatherinq 

together of the state of the art in scene analysis £iI£~ 1970. 

Given a set of nine fixed size prototypes that appear in the 

world (Fig. 6) and the position and orientation of the ground 

plane relative to the picture plane, the system is required to 

interpret line drawings (with, possibly, a small number of lines 

missing) tc produce an exact 3D representation of the scene. 

The system consists of the five stages of Fig. 7. SEGMENT 

partitions the set of picture lines into bodies. For each body, 

SUPPORT determines the set of bodies that could conceivably 

support it. COMPLETE tries to add lines to the picture of each 

object so that RECOGNIZE will find it easier to identify it as 

one 6f the prototypes. RECOGNIZE also determines the position 

of the prototypes so that PREDICT can say what the picture 

should look like. Finally. VERIFY determines if the predicted 

and given picture match. The system is strictly pass structured 
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Figure 6. The object prototypes in INTERPRET 
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with the £ive stages called in sequence with the exception that 

a failure in VERIFY requires RECOGNIZE to produce another 

suggestion. 

SEGMENT used Guzman-type vertex classifications to assign 

edges to bodies. It assigns edges rather than regions as SEE 

did becausP- the possibility of edges not being depicted means 

that a single region could correspond to two surfaces of 

separate bodies. Each Guzman vertex category is split into two: 

GOOD<category name> and BAD<category name> on the basis of local 

context that can include adjacent junctions. The hope is that, 

for the most part, GOOD junctions show edges of only one body 

while BAD junctions show edges of more than one body. As an 

example of the GOOD/BAD distinction, an ARROW is a BADARROW if 

one of the regions flanking the shaft is background or if the 

shaft is the top of a K junction, otherwise it is a GOODABROW. 

The next step determines sets of lines such that each set 

connects a qroup of GOOD vertices. Each set then represents 

edges of a single body. 

RECOGNIZE needs to know which bodies in the scene could 

support other bodies because it infers the position of each body 

from the position of the body supportinq it, that is, workinq up 

from the known position of the table. SUPPORT creates the set 

of potential supporters for each body. It starts by 

establishing which are the base edges of each body by applying 

six elimination filters to the set of exterior lines for each 

object. For example, eliminate both lines at downward open L 

vertices. These filters all depend on the local picture 
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geometry of each line. SUPPORT then defines the potential 

supporters for the body as those bodies that have a face 

appearing adjacent to one of the base edges. If a body has only 

one potential supporter then that must be the actual supporter. 

In particular for objects supported by the background surface, 

RECOGNIZE will be able to establish the 3D position of the 

endpoints of all the base edges. 

The picture of each object may be incomplete for three 

possible reasons: (a) the original picture had some lines 

missing or (b) the object is partially occluded or (c) SEGMENT 

failed to assiqn some lines to the body. COMPLETE has three 

routines that attempt to patch up each object before 

recognition. 

INTERPRET does not recognize an object until all of its 

potential supporters have been recognized, Then the potential 

supporter with the highest horizontal surface is identified as 

the actual supporter for that object. The end points of all the 

base edges of the object can then be located in 3-space. 

RECOGNIZE attempts to name an object by matchinq features 

of its line drawing against the stored prop~rties of the 

prototypes. A succession of tests is applied to the prototypes 

until, hopefully, only one remains. If the line drawing is 

complete (which is determined by a simple heuristic picture 

topology test) then the first test looks at the number of 

visible faces and vertices, otherwise the topology of the 

complete visible faces is used. The second test comµares 

lengths of base edges while the third test compares angles 
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between the base edges. The fourth test assumes that lines 

vertical in the picture correspond to vertical edges if they are 

not labelled as base edges. The length of such an edge can be 

calculated and compared with the prototypes. 

When the object bas been named and three corners of the 

base edges of it have been 

positioned by identifying 

prototype. 

located 

three 

in space, 

corresponding 

the object is 

points on the 

VERIFY predicts the picture appearance when every object 

has been recognized and located. If a body has more than 3 

lines in the prediction that do not appear in the input or if 

there are any lines in the input that have not been predicted 

then VERIFY reports back to RECOGNIZE and asks for a new 

suggestion. 

Falk's program is a good attempt at overcoming imperfect 

line data but, as he has taken from Guzman an almost total 

reliance on local picture-based heuristics, INTERPRET is open to 

the objections raised against SEE above. In fact, Falk extends 

their usage beyond body segmentation to include su~port and 

completion heuristics of the same general nature. It is easy to 

find examples that mislead such heuristics (see Mackworth,1975b) 

quite simply because in the picture, gy~ picture, there is no 

basis for deciding which of two possible segmentation, 

completion or support decisions makes more sense. 

"makes more sense" is a remark that applies not to the 

picture itself but to vhat is depicted, the scene. It is clear 

that the program must have some kind of 3-dimensional 
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interpretation before evaluating predicates such as •same body', 

•supports• and •missing edge•; however- the only way Falk has of 

getting a 3D interpretation is hy recognizing the objects. This 

is a chicken and egg problem: the program needs to recoqnize the 

objects to get a 3D grip on the scene in order to recognize the 

objects. 

The way to break this circularity is to realize that 

recognition, that is, the identification of an object as a 

particular member of a set of prototypes, is not the only way of 

getting a grip on the scene. There are general principles about 

the picture-taking process and the nature of opaque polyhedra 

that one can incorporate 

diagrams that does not use 

(1971) and Clowes (1971) 

in a procedure to interpret line 

any specific prototypes. Huffman 

working at the same time as Falk 

independently proposed such a procedure which can now be seen as 

a step towards the solution of the chicken and egg problem of 

scene analysis. 

2.4 Ih~-H~1!!ll=flQ~§_l~B~lling_slgQ¼l!h! 
As ve remarked earlier, Guzman's SEE somewhat surprisingly 

deduces body membership of two surfaces from the appearance of 

the corners that they share. The most obvious question tc ask 

is: why does it work? Another question might be: what else can 

we infer from the junction geometry? The answer to the latter 

question will indeed help us answer the former. To start with 

we note that it makes more sense to infer local (rather than 

global) scene properties from local picture evidence. In 
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particular, if we rely on the shape of junctions as evidence we 

should be making inferences about the corners they depict. 

Restricting themselves to 2-line and 3-line junctions and 

3-surface corners, Huffman and Cloves observed that each Guzman 

junction cat~gory must have one of a small number of corner 

interpretations which are d~scribed by 

concave and occluding applied to 

the predicates convex, 

the edges meeting at the 

corner. In Huffman's notation, + labels a convex edge with both 

surfaces visible; labels a concave edge and an arrowhead 

labels an occluding edge b~longing to the surface on the right 

as you move in the direction of the arrow. The surface on the 

left is behind the edge and partially occluded by the surface on 

the right. See Fiq. 8 for an illustration of these labels. 

Fig. 9 shows the interpretations for each legal junction 

type (L, FORK, ARROW, and T). For all but the T these 

interpretations are actually corners. considering all four 

possible labellings for each line gives 42 = 16 for the L, 43 = 

64 for the others as against the reality of 6 for the L, 5 for 

the FORK and so on; hence, it is apparent how useful these legal 

corner interpretations could be. In order to use this table of 

interpretations the only further scene coherence rule is that an 

edge must have the same interpretation at both of its visible 

endpoints. The labelling algorithm described by Clowes starts 

with the background region and constructs all interpretations in 

parallel whereas Huffman suggested a d~pth-fir~t search, 

backtracking when coming upon a iunction that has no 

interpretation consistent with the labels that h~ve already been 
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+ - -

Figure 9. The Huffman-Clowes junction interpretations 



24 

placed on some of its lines. Both procedures not only label the 

edges of the scene but also recover some of the hidden structure 

in that occluding edges have attached to them surfaces that are 

turned away from the viewing direction. 

There are several reasons to judge this algorithm to be an 

important step forward in scene analysis. Let us start with 

impossible objects. There is theoretical satisfaction in having 

a procedure that returns no interpretations of a picture such as 

the one reminiscent of the devil's pitchfork, Fig. 10 (from 

Clowes, 1971), if we ourselves cannot assign a plausible 

three-dimensional interpretation. Moreover, this ability would 

be of practical use in a seen~ analysis program. Fig. S(b), 

which SEE happily accepted and parsed, can be rejected as a 

candidate for object status because it cannot be labelled. This 

is a sufficient but, unfortunately, not necessary condition that 

the object be impossible as Huffman show-d; but to be able to 

make this discrimination suggests that the method has greater 

descriptive power than SEE. A comparison of the scene 

description generated by this algorithm with that given by SEE 

shows how true that is. Here we have edges known to be convex, 

concave or occluding, the visible part of a surface defined by 

edges belonging to that surface or to another known surface and 

some conclusions about hidden surfaces that share an edge with a 

visible surface. 

The question "Why does SEE work?" can now bg answered in 

detail. suppose that we were only concerned with convex 

objects, then from the set of corner interpretations used by the 
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labelling algorithm (Fig. 9) eliminate all corners with concave 

edges, including those for the L that imply a hidden concave 

edge, leaving the set of Fig. 11. Notice that the L, FORK and 

ARROW junctions now have unique corner interpretations. The 

concave edges that appear when one body abuts or rests upon 

another are here taken to be occluding edges as they ~ould be if 

the bodies were slightly separated. In this world of convex 

polyhedra, convex edges (+) join surfaces of the same body while 

surfaces of different bodies appear at occluding edges ( ➔-

and~-) so using this corner set a body partitioning is easy 

to achieve. That's what Guzman did! The links were planted at 

unambiguously convex edges. The link-planting rules of Fig. 4 

are derived from the corner interpretations of Fig. 11 by 

replacing + by a link and occluding by no link. The link 

suppression rules, "no link is placed across a line at a 

junction if its other end is a barb of an ARROW• a leg of an L 

or the crossbar of a T", can be seen from Fig. 11 to suppress a 

link across an edge if its other end shows it to be 

unambiguously occluding. The accumulation of link evidence 

relies on 2 links between surfaces which means in effect that 

both ends of an edge must agree that it is convex for it to be 

so taken as in the Huffman-Clowes algorithm. If only one end 

says so there is a conflict which must be heuristically 

resolved. This provides a scene-coherent account of why 

Guzman's picture-based heuristics worked and incidentally 

explains why SEE doesn't work on concave objects (Winston. 

1 96 8) • 
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+ 

Figure 11. The junction interpretations for convex polyhedra 
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It is shown in (Mack~orth,1975b) that the Huffman-Clowes 

labelling algorithm does away with some but not all the 

difficulties in Falk•s program; however, there are some problems 

with the labelling algorithm as described here. It can make 

mistakes. In Fig. 12(a) it incorrectly labels a legitimate view 

of a cube (it will of course produce all the correct labellings 

as well) and in Fig. 12 (b) (adapted from Huffman, 1971) it labels 

an object that cannot be a polyhedron with planar surfaces. 

Both mistakes can be avoided by an extension of the labelling 

algorithm: if two lines (a and b) shared by a pair of regions (A 

and B) are not collinear then the lines cannot both depict 

convex er concave edges. However, that g~ h2£ extension evades 

the key issue which is that the algorithm has no requirement 

that surfaces be planar nor is there any way that it can by 

systematically introduced without radical changes in the 

algorithm. Beyond saying that a surface cannot change from 

visible to hidden unless, of course, it is partially occluded 

there is no coherence required of a surface. This can be 

further illustrated by noting, as Huffman did, that the 

algorithm finds a labelling for the impossible triangle of 

Penrose and Penrose (1958). That object can only be realized if 

some of the surfaces are highly skewed. 

In order to handle some other problems w~ich arise such as 

many-surface corners, alignments of bodies in the scene, 

coincidence of viewing direction and object surfaces, sbadoY 

edges and so on, does one simply add ad semi-infinitum to the 

lists of corner interpretations? Waltz has shown that that is 
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+ 

b 
- a A - B 

(a) 

( b ) 
Figure 12. Labelling problems 

a) An anomalous interpretation of an object 

b) An interpretation of an anomalous object 
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in fact a partial answ~r to those problems. 

Walt~ made two important 

algorithm. He expanded the 

contributions to the labelling 

set of line tabels from the four 

used by Huffman-Cloves and he improved the mechanism of search 

for coherent interpretations. 

His first addition to the set of 

crack a flat edge. Next. he 

boundaries of objects usually appear 

edges or at cracks. To account 

possible edges was the 

noticed that the visible 

at occluding or concave 

for this he subdivided the 

concave and crack edge categories into separable and 

non-separable. An edge is separable if two or three bodies meet 

there. All cracks are separable but some concave edqes are 

internal edges of a body. A separable edge has. in addition to 

its concave/crack label. labels showing the status of the edges 

of the separate bodies. 

The other expansion of edge possibilities derives from a 

crude account of lighting. Assuming a single concentrated light 

source surfacas are either illuminated. turned away from the 

light (self-shaded) or shaded by a shadow cast by another 

surface. Waltz expanded the line labels to give the 

illumination status of the two surfaces appearing at the edge 

and allowed lines to depict shadow boundaries as well as real 

edges. The number of possible line labels has increased from 

the original 4 to 53. 

Following a graphical representation used by Winoqrad 
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(1972) to depict the networks of features associated with 

grammatical units by his systemic grammar, we can more easily 

see the structure of the set of possible interpretations of a 

line in the network of Fig. 13. In that network, the choice of 

illuminatiori status for each surface has not been shown so there 

are only 11 distinct line interpretations (paths through the 

network). 

Tu.rni.ng to the possible corners and their picture 

appearance, Waltz used the Huffman-Cloves junction categories 

and also all 4-line and some 5-line junctions. Following a 

straightforward procedure, Waltz considered all possible object 

configurations viewed and lit from all possible octants to 

generate the possible corners list for each junction category. 

The length of the corner list for each category varies from 10 

to 826 with a grand total of 3256. The actual earners are all 

either trihedral or formed by more than one convex trihedral 

object but he also includes some interpretations of junctions 

formed by accidental alignments in the -scene. 

With so many possible corners for each junction, Waltz 

realized that time and space limitations ruled out a simple 

depth or breadth-first search, so he devised a more efficient 

two pass procedure. The first pass through the junctions, the 

filtering p.rocedure, is a modified breadth-first search that 

weeds out the possible corner list for each junction by checking 

in the lists of every adjacent junction that has previously been 

processed for at l~ast one corner with the same label for the 

connecting line. If that check is not successful then that 
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possible corner is weeded out of the list for that junction. 

This discarding causes the program to reconsider junctions it 

has already looked at so the discarding action may have an 

effect that propagates through many junctions. Since this 

procedure does not actually construct complete interpretations 

as it goes, it need not find gll pairs of corners with the same 

label for the connecting line as Clowes• procedure does; hence, 

it avoids •the intermediate expression bulge' of the earlier 

procedure. This weeding process drastically reduces the 

possible corner lists so that the second pass can easily 

backtrack to find complete interpretations without requiring 

exponential time as Huffman's procedure does. For a detailed 

treatment and eitensions of this and related algorithms see 

Mackworth (1975a). 

Fig. 14 shows a typical scene labelled by Waltz• program. 

The convex and occluding edges are shown as they were for the 

Huffman-Clowes labelling. The concave edges here are separable 

so they are additionally labelled with an occludinq arrowhead 

indicating the sense of occlusion the edge would have if the 

object vere picked up. Cracks are labelled with a C and a 

similar occlusion arrowhead. Shadow boundaries are shown with 

arrows pointing across the line into the shadowed reqion. 

2.6 fQtI1-~n!2illig_§.1U!g£~_£2h~£gngg_~n1_1h~-~gg~hi~£~£ch1 

An approach to scene analysis that can only be summarised 

here is the author's program POLY (Mackworth,1973,1974a). It 

uses a representation for surface orientati~ns suggested by 
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Huffman (197i), the gradient space. We do not have the space to 

re-examine the design of POLY but an understanding of the 

underlying representation will be required later in this paper 

so here we present its crucial features. 

Given a picture that is an orthographic projection of a 3-D 

line, Fig. 15(a), then the tilt of that line from the picture 

plane is unknown. The tilt can be represented by a vector 

called the gradient whose direction is in the direction of the 

picture line and whose length i~ the tangent of the angle the 

scene line makes with the picture plane. The sense of direction 

of the vector which is sho~n in Pig. 15(b) is such that end 2 of 

the scene line is farther from the picture plane than end 1. In 

general, the gradients of all scene lines that could correspond 

tp that picture line are scalar multiples of the vector in 

Fig. 15(b). In particular, a scene line parallel to the picture 

plane has the zero gradient vector. 

Consider the gradients of all the lines lying in a surface 

tipped away from the picture plane, Fig. 16(a). Suppose that 

line a in the surface is parallel to the picture plane so that 

its gradient is zero. If that line is rotated in the surface, 

the gradient increases until the line arrives at position b 

where it is perpendicular (both in the picture and in the scene) 

to its previous position and the gradient has its maximum value. 

Thereafter, the gradient decreases again. It is easy to show by 

simple trigonometry that the locus of the gradient of the lines 

in the surface is a circle passing through the origin as shown 

in Fig. 16(b). By convention, we call the diameter passing 
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Figure 15. a) A picture of an edge 

b) A gradient of that edge 
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through the origin the gradient of the surface. Thus, the 

gradient of the surface is the gradient of the set of parallel 

lines in the surface having the steepest inclination to the 

picture plane (the 'fall line• to skiers). Three points on the 

circumference define a circle so, since these circl8s all pass 

through the origin, the gradients of two lines in the surface 

fix the gradient of that surface. 

suppose the gradient of only one line in the surface is 

given as in Fig. 17(a); how does that constrain the gradient of 

the surface? If the gradient of the line is given as oc in 

Pig. 17Cb), then the gradient of the surface could be at D. 

Angle DCO is the angle subtended at the circumference by a 

diameter so it is a right angle. The result is that the 

gradient of any surface containing that line lies on a line 

perpendicular to ihe known line gradient and passinq through its 

end point. If on the other hand, it is only given that two 

surfaces such as A and Bin Fig. 17(a) have the common edge 

shown, (without being given the tilt of that edge or, 

correspondingly, the length of OC) then since the edge thereby 

lies in both surfaces~ one can infer that the line joining the 

gradients of those two surfaces is perpendicular to the picture 

line depicting the common edge. 

By sacrificing grammar to brevity, an edge that connects 

two visible surfaces may be called a connect edge. Again, 

consider Fig. 17 (a) where a connect edge common to surfaces A 

and Bis shown. If the gradients of the edge and surfaces A and 

B are Ge, GA and Gs respectively, then Fiq. 18 shows the six 
rv l'V /\/ 
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Figure 17. a) Two surfaces, A and B, meeting in an edge 

b) The relationship between the gradients of the surfaces 
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ways in which they can be arranged in relation to each other in 

the gradient space (we temporarily ignore the special cases 

where two or more gradients are coincident). Considering these 

cases individually shows that for (i)-(iii) the edge must be 

convex, while for (iv)-(vi) the edge must be concave. This 

distinctio.n is concisely captured by ignoring the position of ~ 

and noting for cases (i)-(iii), GA is on the one side of G8 ,v ,,..,_, 

while in cases (iv)-(vi), the positions of GA and G8 are 
~ ,,.._,, 

reversed on the line. comparing the ordering of the gradients 

with the relationship of the regions in the picture, a rule 

emerges. If the gradients are in the sama relative position as 

the corresponding surfaces appear at the common connect edge, 

then that edge is convex but if the relative position of the 

gradients is reversed, then the edge is concave. If the 

gradients coincide then the edge is flat, that is, it is a 

crack. These crucial facts allow the exploitation of the 

gradient space for convex/concave/crack interpretations~ But, 

clearly, confining its exploitation to that would represent a 

degradation of the descriptive power available, sine~ the degree 

of convexity/concavity is also specified for any particular 

choice of the origin and scale of the gradient space. However, 

working only from the picture (that is, not introducing 

extra-pictorial information such as, for example, knowinq the 

orientation of the support plane, or requiring some form of 

model to make sense of the picture) the origin and scale of the 

gradient space will be unspecified. 

As an illustration of the use of the rules that gradient 
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Figure 18. The possible relationships between the gradients of 

two surfaces and the gradient of their common edge 
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·l 

configurations must satisfy, consider a FORK junction, Fig. 19, 

(familiar from the earlier labelling procedures) for which it is 

known that the three edges are connect. The configuration of 

the gradients of surfaces A, B and C (GA, G 8 and Ge) can only 
rv "-' I"'/ 

take on one of the two forms of Fig. 20 if the gradients are to 

satisfy the requirement that the mutual vector difference of a 

pair of gradients be perpendicular to thB line depicting the 

edge that connects the two surfaces. These configurations can 

be translated and expanded in the gradient space and still 

satisfy the requirement. Comparing the relative positions of 

the gradients in Pig. 20(a) with the ordering of the regions in 

the picture shows that all the edges must be convex for that 

interpretation while for the interpretation given in Fig. 20(b) 

all the edges must be concave. That switch of interpretations 

w.hich can be achieved by mapping every gradient G into its 
rv 

negation -G. is simply the Necker reversal. 
"V 

Using those aspects of the gradient space, POLY 

hypothesizes and makes inferences about surface and edge 

orientations and positions exploiting heavily the hierarchical 

stucture of the network of interpretations of a line (see Fig. 

13; the version of POLY implemented did not make the shadow or 

separable edge distinctions) thereby dispensing ijith the lists 

of possible corners. The only backtracking search in POLI is at 

the connect/occlude level of distinction in the edge hierarchy; 

the other features of the edges are then inferred directly from 

the surface, edge and corner representations used. While the 

size of the underlying search space has been drastically 
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reduced, the resulting interpretation is richer in descriptive 

power including as it does relative information on surface and 

edge orientation and position. This descriptive adequacy or 

higher level of scene coherence not only makes the 

interpretation more useful but also ensures that 

anomalies such as those of Fig. 12 do not arise. 

3. ~Qgg1§_in_b~hinLllii2D 

various 

The noun "model" is taken to mean a representation of a 

fragment of the world that a vision system uses to understand or 

model the reality it perceives. For our purposes, we can 

identify four aspects of models and their use that serve as 

dimensions for comparison: 

1) plasticity 

2) scope 

3) degree of embedding 

4) variety 

By Bls§!i~i!i is meant the degree to which the model can be 

changed to fit the world. Both size and shape plasticity are 

considered. ~2E~ indicates the physical extent of the world 

that an individual model embraces: a corner, an edge, a surface, 

an object or an entire room. An ~!Bedg~g set of models form a 

hierarchy in which one model may be a part of or a 

specialization of another. None of the programs discussed in 

Section 2 have any substantial degree of embedding. !atig!~ is 

the variation in the -orld that can be explained by the set of 

models. Thus, the variety of each program is limited by the 
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:1 

polyhedral assumption but some are further restricted. 

Falk's nine objects have no size or shape plasticity, 

greater scope than any other program considered in Section 2 but 

less scope than Winston•s architectural models (Winston, 1970) 

and the least variety. Por these reasons they could be called 

object prototypes. Robert's three simple models have indefinite 

size plasticity and some shape plasticity; their scope is an 

entire object or a part of an object. The programs of Guzman, 

Huffman, Clowes and Waltz all have as scope an object's corner. 

As we have seen, they range in variety from Guzman's single 

trihedral convex corner through the four corners of the 

Huffman-Cloves algorithm (the trihedral corners in which the 

object occupies ,, 3, 5 or 7 •octants•) to the large nufflber 

allowed by Waltz. The corners in all cases have no further 

shape specificity than that provided by specifying the number of 

surfaces and the convexity/concavity of the edges in which they 

meet. 

The model information in POLY is minimal but varied, 

including requirements that surfaces be planar and edges be 

either occluding or connect with a marked preference for connect 

edges. A certain amount of embedding is provided by exploiting 

a subset of the edge hierarchy (Fig. 13). It is one of the 

purposes of this paper to show how POLY can be extended to 

augment the plasticity, scope, degree of embedding and variety 

of polyhedral models available. 
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Attempts to provide psychological theories of the 

interpretation of line drawinqs have not usually provided an 

algorithm by which interpretation may proceed; though, 

presumably. some of the usual monocular depth cues are thought 

to be relevant. Rather, such theories seem to assume the 

existence of such an algorithm and concentrate on the tension 

set up between the 3D (scene} and 20 (picture) organizations. 

Kopferman (1930) held that the impression of tri-dimensionality 

varies with the degree to which the scene organization is 

simpler than that of the picture. In extending that theory, 

Hochberg and Brooks (1960) provided experimental evidence for a 

quantified measure of pictorial complexity as the sum of a) 

twice the number of line segments ignoring intersections b) the 

number of interior angles and c) the number of different angles 

divided by the number of angles. Thus, for example, this 

measure correctly predicts that subjects will rank the scenes of 

Fig. 21 in the following order of increasing perceiv~d 

tri-dimensionality: 1, 3, 2, 4. Attneave and Frost (1969) 

presented a similar theory in which the competition between the 

scene and the picture is resolved by figural simplicity 

criteria. 

Finally, Hochberg (1968) almost anticipated the 

Huffman-Clowes algorithm as he demonstrated, with an ingenious 

experiment, that junctions act as 'local depth cues•. That is, 

the shape of a junction implies depth relations between the 

surfaces and edges at the corresponding corner but such effects 
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are only exerted over a limited distance. 

5 • ~Q.!!!!LE.!illle.§ 

The discussion of this section uses, as examples, the two 

pictures in Pig. 22, which the reader should look at without 

reading further. The usual impression given by Fig. 22(a) is 

that it remains obstinately flat on the page (provided one can 

supress the tendency to see an edge that is not depicted and to 

ignore one that is thereby transforming the picture into 

Fig. 22(b)). Fig. 22(b) has a solid, three-dimensional 

appearance. This major difference which holds even though both 

are equally faithful depictions of polyhedra is a phenomenal 

fact requiring explanation. 

The Huffman-Clowes algorithms do not offer that 

explanation. The pictures are successfully labelled with equal 

ease. The corners are all trihedral and both interpretations 

require three hidden surfaces to complete the object. 

Perhaps the scene interpretation of Fiq. 22(b) derives from 

its familiarity as Falk's program suggests: the L-beam is one of 

its nine prototype objects. took then at Fig. 2ij(a) which is 

surely unfamiliar to the reader (although it is derived from 

pictures used by Shepard and Metzler (1971)); is that object any 

less solid than the one depicted in Fiq. 22(b)? 

Both Fiq. 22(b) and Fig. 24(a) are interpreted by Roberts' 

program as compound objects made from cuboids (two and four, 

respectively). However, that program cannot, contrary to 

expectation, similarly interpret the two objecta in Fig. 23. 
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The traditional depth cue theory of picture interpretation 

has nothing to say. In four of the pictures (Figs. 22(a), 

22(b), 23(b), 24(a)) there are no traditional depth cues a: all! 

(The traditional monocular depth cues include apparent size, 

partial occlusion, varieties of shading and· perspective, and 

some colour effects.) Yet, in Fig. 24~) for example, corner 1 

is clearly nearer the observer than corner 2. 

The Hochberg-Brooks criterion doesn't contradict the 

phenomenon. By that criterion, the pictures have equal 

complexity while the scene in Fig. 22(b) is just marginally 

simpler than that in Fig. 22(a). And yet, that does not take us 

very far. What mechanisms produced those scene interpretations 

in the first place? ffochberg (1968) has provided an excellent 

rebuttal of the earlier theory of Hochberg and Brooks by 

pointing out, for example, that it fails to make any sense of 

the various experimental phenomena that surround "impossible 

objects". 

On the other hand, Hochberg•s claim (1968) that the 

junction configurations act as 'local depth cuas• is not very 

powerful. In making that claim, Hochberg somewhat enlarged the 

usual meaning of the word "depth" taking it to include such 

relationships as the convexity and concavity of edges in 

addition to its usual reference to the relative distance of two 

scene fragments from the viewer. The only real depth evidence 

given by Clowes-Huffman edge labelling is provided by the 

occluding edges; that is the traditional depth cue of partial 

occlusion. Even if the edges of Fig. 24(a) are appropriately 
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Figure 24. A rectangular object and its gradient space configuration 
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labelled convex, concave or occluding there is still no evidence 

that corner 1 is closer to the observer than corner 2; that is, 

an ordinary polyhedron with that appearance and those edge 

labels can be constructed for which that is not true. 

surely the solidity of Fig. 22(b) and Fiq. 24(a) as 

contrasted with the 'flat• appearance of Fig. 22(a) can be 

explained as follows: in the former cases, the polyhedron 

interpretation can be seen as made up of surfaces of very 

familiar shape (in this case rectangular) whereas in the latter 

that is not possible. This explanation suggests extensions to 

POLY that use the shapes of surfaces as mod~ls. Here t~o such 

extensions are presented. 

Bectangularity is often a major feature cf the worlds we 

build for ourselves. The first proposal shows a 

straightforward extension to POLY can exploit that feature. The 

second proposal is mer€ of a substantial upheaval than an 

extension in that it suggests integrating the use of prototypes 

into the interpretation process. 

Consider the rectangular object of Fig. 24(a). For this 

object POLY produces the gradient configuration that appears as 

a triangle in Fig. 24(b). The object has three families of 

mutually parallel surfaces so there are only three possible 

values for the surface gradients. The gradients of each surface 
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of the family are superimposed at each position. Every pair of 

surfaces meeting in a connect edge is joined by a line 

perpendicular to the picture line showing that edge. Neither 

the position of the origin nor the size of the gradient triangle 

is yet Sfecified but note that E and A are ordered in the 

gradient configuration just as they are across their common edqe 

in the picture so that edge is convex whereas the relative 

positions of B and care reversed in the picture and qradient 

spaces so that edge 1-2 is concave; however, as the actual 

values of the gradients are not determined, we still cannot say 

that corner 1 is closer than 2. 

At any corner such as corner 1 in Fig. 24(a) there are 

three edges (which may not all be visible). Each pair of edges 

defines a surface at that corner. Each edge is normal to the 

surface defined by the other two. Since the direction of the 

gradient vector of a surface is the direction in the picture in 

which the surface normal appears to point, the direction of the 

gradient of each surface at the corner is given by the direction 

of the edge that does not belong to it. Thus qradient A must be 

in the direction of picture line 1-2. Since the vector 

difference between gradients B and C is required to be 

perpendicular to picture line 1-2, the origin must be on a 

perpendicular dropped from gradient A to the opposite side of 

the gradient triangle. Hence the origin must be at o shown in 

Fig. 24(b). The scale is immediately determined by the 

rectangularity requirement that the product of the magnitudes of 

the gradient of A and the gradient of edge 1-2. G1_2 , mast be 
~ 
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unity. Now that the orientations of all the surfaces and edges 

are defined, it is an obvious consequence that corner 2 -is 

further from the picture plane than ccrner 1; that is shown by 

the fact that G~2 points up to the left (not down to the 
r,../'-

right). 

The idea of using specific prototypes is attractive but as 

suggested in Section 5 complete polyhgdral prototypes are, in a 

sense~ too monolithic; ve need hierarchies of embedded models of 

varying scope. In this section, we show how the use of surface 

and object models can be integrated directly into the POLY 

interpretation process. 

Consider Falk's list of nine prototype obiects. They have 

in all fifty-four separate faces; yet those f~ces have only 

fourteen distinct polygonal shapes. The size-specifi~y of these 

shapes will be dropped for the sake of this argument although it 

could be retained. Dropping size-specifity (so that a 1 by 2 

rectangle represents itself and the 2 by 4 rectangle etc.) 

leaves a total of twelve distinct surface shapes. 

First, a geometrical fact must be stated (Mackworth, 

1974a). Suppose one is given i) the true shape of a surface in 

the form of a polygon whose dimensions may be uniformly scaled 

up or down by a factor, k ii) the projected shape of that 

surface and iii) three or more pairs of non-collinear points on 

the true and projected shapes that correspond. From this 

information, it is easy to compute whether the trtie shape could 
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produce the projected shape and, if it does, the value of k and 

the gradient of the surface. 

For each picture region, by considering the topologically 

identical surfaces, a set of possible surfaces each with a 

corresponding k and gradient could be computed. If that set is 

empty then the region must depict a partially occluded surface. 

This is nova labelling situation comparable to the ccrner 

labelling algorithms of Huffman, Clowes and Waltz. In those 

algorithms each junction has associated with it a set of 

possible corners; the aim of the interpretation is to discover a 

unique corner corresponding to each junction. Here, besides 

labelling each edge, the aim is to assign a unique surface to 

each region. Agreement between the interpretations of adjacent 

regions is necessary if the edge is taken to be connect. The 

agreement takes two distinct forms. First* the POLY coherence 

rules must be satisfied and second# model-based coherence rules 

must be used. such model-based rules would# at the lowest 

level, be of the form: Are there two such surfaces maetinq at an 

edge in the set of prototypes? If so# do those surfaces meet at 

this dihedral angle? Do they agree on the scale factor? Higher 

levels would also be reguired: Are there three such surfaces 

meeting at a corner? 

Procedurally, this approach need not be implemented in a 

depth or breadth first fashion. It is amenable to the two-stage 

Waltz search procedure ~hich would first weed out the lists of 

possible surfaces (just as Waltz weeded out the lists of 

possible corners) based on consideration of the mutual 
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interpretation of each pair of adjacent regions and only then 

try to build complete, coherent interpretations. 

7. ~Qn£1Y~i2Il 

World knowledge of the type incorporated as models in scene 

analysis programs is an essential component of any psychological 

theory that attempts to explain human competence in interpreting 

lifie drawings as polyhedra. Furthermore, in those proqrams that 

knowledge is used in a procedural fashion; they demonstrate, at 

the very least, how a scene interpretation can be achieved. 

The discussion of Section 5 has pointed out some of the 

ways in which the available range of models is deficient for 

purposes of psychological explanation. The two proposals of 

section 6 are designed to provide mechanisms that reflect 

particular human competence in this task domain. 
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