
MMM
lUUlM MMM

llM M MM
M fl!

M M Mt'IMMl'IMMIU!
MM MM M.MMft MMM

MMM MM Mlll MMM
!UtM MJUJ MM .ftMPI
M Ml'U'l.MMMl! lU! MM.!1MMMM

MMM MM
MM

MHMMM fUU!MMtU!_ l'J!MM
MMP! MM MMM M KM

M MMM
M MM MMM

MMMM HMl!UU!M
.M1H!

M M
IHI

MMM
l!IMM
MM.l'I

MMM M
r!MMMM

* *
* TEXTURE: *
* A Document Processor *
* *

by

.Michael Gorlick
Vince Manis

Tom Rushworth
Peter van den Bosch

Ted Venema

Technical Report 76-1

June 1976

Department of computer science
University of British Columbia

Vancouver, B. c.

Michael Gorlick, Vince Manis, Tom Rushworth,
Peter van den Bosch, and Ted Venema

Department of computer Science
University of British Columbia

1

What are the benefits of a document processor? Since
source documents stored within a computer system are easily
changed using the system's editing programs the tedious job of
re-typing a page or more of a document in order to correct a few
minor mistakes i- eliminated. In addition, documents produced
by a computer based system are uniform in appearance.
Justification, margins, page sizes and capitalization are
algorithmically determined; leaving the user with complete
control over the format of the final output. Finally, the
computer is tireless. Human preparation and typing of long
documents can lead to fatigue and a corresponding deterioration
in the quality of the output docuaents, while the computer
assures that output material is uniform in appearance and
quality from beginning to end. once a source document has been
entered into a computer system, successive drafts and multiple
copies can be produced easily and at low cost.

The document processor described in this paper was
originally developed by Peter N. van den Bosch [1]. This
system has been further refined [2] and is currently in fairly
wide use at u.a.c.

Categorizing document processing facilities by the basic
function they perform we can distinguish roughly four types.

• Early in the history of computing, realizing that some
functions of typesetting could be automated, researchers
were led to the development of typesetting software. These
programs originally drove mechanical typesetters, perforainq
little more than line justi.fica tion. Toda v, using
.high-speed photo-typesetting devices, human intervention in
many typesetting jobs, with the exception of data entry, can
be eliminated. Manufacturers of photo-typesetters usually
make available a computer typesetting system designed
specifically for their equipment. The languages
incorporated in such systems vary widely in sophistication
and elegance. Examples of this class are PAGE-1 (3], Harris
composition System (HCS) [4) and CypherText [5]; the latter
an attempt at defining a computer typesectinq language
without reference to specific equipment.

• A second class of document processing systems is based on
the line printers and typewriter terminals availabld at many

TEXTURE: A Document Processor 2

computer installations. These grew out of a desire to
produce and update documentation quickly, without much
concern for the permanence or appearance of the final
document. IBM has developed, mainly for their own large
volume of docu~entation, several systems of this class.
Examples include FOR~AT [6], TEXT360 [7] and, to some
extent, ATS [8]. Members of a family of programs called
Runoff (9] are found on several computer systems, and PKT
[10], a FOR~AT-based facility, is available ac installations
supporting the operating system MTS.

• nword processing systems" are making an appearance.
Combining a typewriter with mass storage (cassette tape,
floppy disk) and a minicomputer these devices oft.en include
rudimentary facilities for text arrangement but the concept
of a document processing language is usually absent. IB!•s
MTST [11] and MT/SC [12] are early efforts for which
documentation is available. Astrotype [13] is also typical
of this rapidly 8Volving field.

• The fourth group of systems concerned with document
processing is the .highly experimental work. with interactive
text manipulation. A good, if erratic, survey of this wo .rk
is given by Theodore H. Nelson [14]. such systems are
outside the scope of this paper and will not be discussed
further.

The following design principles are at the heart of
TEXTURE:

• The Bauhaus principle (form follows function). aany
computer languages and systems force the user into a
framework where he must know everytbing before using
anything. TEXTUBE attempts to avoid this syn~rome through,
for example, the use of reasonable defaults.

• Occam's Razor (it is vain to multiply entities beyond need).
TEXTURE attempts to find generalities beneath specific
needs. Thus, for example, there is only one command
language and only a few simple concepts.

With these principles as a foundatioj, the problem of what
paradigm to use for various docuaentation ques~ions can be
confronted. As there is little documented research, or, for
that matter, agreement in the area of decision models for
document processing, the decision models used in the development
of TEXTURE were: what a type~riter would do, what a secretary
would do and what a typesetter would do according to a manual of
style--not necessarily in that order.

TEXTURE: A Document Processor 3

TEXTURE DATA FLOW--THE T]JT HIERARCHY

The basic function of a document processor is to transform
unformatted source text into formatted output text. In TEXTURE
this is accomplished via a !~~1 hi~IsI£aI• A text hierarchy is
defined in terms of six units: .s;;hs~sctg~§, !!Qtg§, §g,gmfill.t§,
!ill.s!§, R!Q£&2 and lsIQ!ll§, an element of each unit (except for
character) consists of on~ or more elements of the preceding
unit. TEXTURE controls the transfer of text from the input
device to the output device via the text hierarchy.

The source text which is input to TEXTURE is regarded as a
straam o.f ch.ais£liI§• The set of characters consists of
letters, digits, punctuation, special symbols and two control
characters to indicate the end of a source line or source file.
Characters form the basic unit from which TEXTURE builds all
other uni ts.

At any time during the operation of TEXTURE, the set of
characters can be divided into two disjoint subsets, the !Q£g
te1:m.ins1ing and !Q~g 12.:.ming characters. As lonq as TEXTURE
continues to input word forming characters, it concatenates thea
to form an internal ~2£.9.• This process is continued until a
word terminating character (for example, a blank or
end-of-source-line character) is encountered. In this case the
word is terminated and a new one begun when the next word
forming character appears. A word is indivisible, remaining
together throughout all further processing.

As TEXTURE completes the building of words, it combines
them into §iilg!!ts. A segment is the text Uill.t in which
justification occurs, where the current till.g~ ghg~.9£.tll
(usually a blank) is inserted between the various words to
effect the current justification method. The current
justification method can be one of: flush with the left segment
edge (BAGBIGHT), flush with the right segment edge (RAGLEFT),
center the text within the segment (CENTERED), flush with both
edges by inserting filler characters uniformly betwean the words
of the segment (JUSTIFIED) or flush with both edqes by inserting
all necessary filler characters at a specified point in the
segment (SPLIT).

The segments are assembled into lin~2 • A line is a single
string of text to be output, usually consisting of only one
segment. In certain cases, such as tabbing to various columns,
a line will consist of more than one segment since the action of
tabbing terminates a segment.

Each completed line is added to a ~12£&· If a line is
viewed as a piece of text with length only, then a block is a
rectangular piece of text consisting of a number of lines, all
of which have the same length, together witn a piece of
,nngatQII 1~-1.t which is associated with each block. Before any
text is assembled into a block, the mandatory text (which may be

TEXTURE: A Document Processor 4

null) associated with that block is inserted at the head of the
input stream.

When a block has been filled, subsequent input text is
assembled into the next block of a l~YQY1• A layout is a
description of how text is to be sent to the current output
davice and is expessed in terms of a sequence of blocks. When
TEXTURE has filled one block of a layout, it begins to fill the
next block in the sequence. This continues until all the blocks
of the layout are filled at which point all the text within the
layout is sent to the output device. The text which is output
in this way is known as a~, thus a layout describes a page
of text. As no restriction is placed on the ord~r of blocks
within a layout or the location of blocks with respect to each
other on a page, it is possible both to fill a block near the
bottom of an page before a block near the top of a page and to
construct overlapping blocks.

Although the text hierarchy describes data movement through
TEXTURE, it alone is insufficient to handle complete formatting.
Other information (e.g. indents, spaces tone left between
lines and capitalization conventions) also affects the way in
which text is passed through the text hierarchy. This extra
information forms a set of construction rules which determine,
together, with the text hierarchy, the manner in which TEXTURE
processes text.

The TEXTURE system actually consists of two processors: the
i~~1 hi~~~~£hY E~£~§§QI (TP) described above. and the ms£~Q
~Q£~§22I (MP) which enables the user to alter the set of
construction rules used by the TP. If at any time during th9
asseably of characters into words the TP encounters the
macro-begin symbol (by default, '<'), control is passed over to
the MP. The string of text from the macro-begin symbol up to
the balancing macro-end symbol (by default, '>') is d ~~~~Q to
be evaluated by the MP. A macro which does no~ contain any
further macros nested within it is known as a £Al!•

The MP finds, within the macro, the leftmost Cdll which is
then evaluated and replaced by its result. This is repeated
until all calls, and hence the macro, have been evaluated. A
more detailed discussion of this technique is given in [15].

The following is a legal macro (using the default symbols):

<#EQ 6 <REMAINDER,<PN>,2>,1,0NE 6 ZEBO>

The leftmost call is '<PN>' which returns the current page
number. After evaluation of this call, the ~esult yielded is
(assuming the current page number is 19):

TEXTURE: A Document Processor 5

<iEQ,(REMAINDER,19,2>,1,0NE,ZERO>

The leftmost call is now '<BEMAINDER,19,2> 1 which returns
the remainder upon dividing its first argument by its second.
The result after evaluation of this call is:

<tEQ,1,1,0NE,ZERO>

The leftmost call is now the final macro and, as •tEQ'
compares its first and second arguments numerically, returning
the third argument if they are equal and tha fourth otherwise.
The result is:

ONE

since there are no further macros this string i~ passed on
to the TP,

The MP calls can be broken down into four categories: those
which affect the environment in which the TP constructs text
units in accordance with the text hierarchy (c.f., Figure 1),
those vhich affect the current values of the various text
hierarchy units (c.f., Figure 2), those which are arithmetic in
nature (c.f., Piqure 3) and those which manipulate strings of
text (c.f., Figure 4).

calls also exist for the user definition of new macros.
The tvo calls which accomplish this are 'STRING' and 'SEGftENT'.
The 'STRING' call defines a naw macro whose name and value are
specified by th€ parameters passed to the 'STRING' call. Thus:

<STRING,STR,The_value_is_x>

associates with the name 'STR' the string 'The_value_is_x•. The
call <STR> is now defined and returns the value:

The_value_is_x

The 'SEGMENT' call · allows the
defined by the 'STRING' call into a
consider the following example:

user to convert a macro
macro with arguments.

<SEGMENT,STR,value,x>

The string of text associated with 1 STR' is scanned
left to right for any occurrence of the substring •value•.
occurrence of this substring is removed from the string and

from
Each
the

I

TEXTURE: A Document Processor 6

<LI,5> set the left indent to 5

<SPLIT> mark the current point in the line as a point at which
to use SPLIT justification

<DOWN> from this point on, shift all upper-case characters to
their lover-case equivalents

<BLOCK,TEXT,5,58,5,68,xxx> define 'TEXT' to be a olock extending
from line 5 to line 58, from column 5 to column 68 and with
mandatory text •xxx•

<LAYOUT,LYT,B1,TEXT,B2> define 1 LYT' to be a layout consisting
of the three blocks 'B1', 'TEXT' and 'B2' in thdt order

<INVOKE,LYT> beginning with the next page, use 'LIT' as the page
layout

I
I <L> end the current line, justifying the last segment

line using the current global justification method
of that I

I
I
I
I
I
I
I
I
I
I

I

<L,,RAGLEFT> end the current line, justifying the last segment
of that line using RAGLEFT

<TAB,n> tab to column n relative to the left edge of the block
currently being built, justifying the previous segment on
the same line using RAGRIGHT

I
I
I
I
t
I

' I
I
I
I

I <BEMAINDER,m,n> return the remainder on dividing •m• by 'n'
I
I
I
I
I
I
I ..

<tLT,m,n,true,false> if •m• is numerically less than
return •true•, otherwise return 'false•

<SUM,m.n> return the sum of •m• and •n•

'n' 'then

<LT.a,b,true,false> if •a• is less than 'b' in a character by
character comparison under a standard collating sequence
return •true•, otherwise return 'false•

<STEM,str,n> return the first I Il I characters of the string •str•

<LENGTH,str> return the length of the string •str•

, _______________________ __J

TEXTURE: A Document Processor 7

number 1 is associated with the locations in the string from
which the substring vas removed. This process is repeated for
•x• as well, associating the number 2 with each of the locations
where the substring •x• occurred.

At this point the original string of text associated with
1 STR' has become a function with two parameters. The results of
calling this function are illustrated as follows:

<STR>
<STR,name,Pater>
<ST.B., name>
<STR,,Peter>
<STR,name,Peter,extra>

1 The __ is_ 1

'The_name_is_Peter•
'The name_is_•

1 The __ is_Peter•
'The_name_is_Peter•

In each case, the i-th argument is inserted at any
locations which have the number i associated with them. Any
missing arguments in the call are assumed to be null strings.

An ~.!!t!!l is an occurrence within the TP whicn cou.ld be of
interest to the user (e.g. the completion of a line, block or
page). The user is able to make use of an event by associating
a string of characters with it. A copy of this string is
inserted at the head of the input stream whenever the event
occurs. The call which associates a string of text with an
event is:

<HANG,event-name,text>

For example, the LINE event occurs when a line has ~een
up, with the text of the event starting the next line.

<HANG,LINE,I>

filled
Thus:

causes each subsequent line to be prefixed with the character
'I'• The text associated with an event can also be discarded by
using the call:

<E!PTY,event-name>

The following example illustrates the method in which
macros are used in TEX~URE and provides a description of the
default layout (braces are used to delay detection of a call):

(STRING, LEFT-TITLE, ><STRING, RIGHT-TITLE, (<PN>} >
<STRING,TITLE, [<LEFT-TITLE><SPLIT><RIGHT-TITLE>}>
<STBING,FOOTER,>
<BLOCK,STANDARD-HEADER,5,68,1,1,{<TITLE><NEXT>}>
<BLOCK,STANDARD-TEXT,5,68,5,58>
<BLOCK,STANDARD-FOOTER,5,68,60,60,(<FOOTER><NEIT>i>

TEXTURE: A Document Processor

<LAYOUT,STANDARD-LAYOUT,STANDABD-HEADER,
STANDABD-TEXT,
STANDARD-FOOTER>

<INVOKE,STANDARD-LAYOUT>

8

The above layout is active at the time TEXTURE begins
processing. For many documents, this layout is adequate.

In order to assemble text into the hierarchy, the TP has a
l!Q~.tlug Ql~li.n1 of each of the six units: caaractar, word,
segment, line, block and layout.

Each working element (e.xcept for the working 1.ayout) is
destined to .become part of the £.J!~;J;:.iUAj; or the ~~!.:t working
element of the succeeding type. Thus the working word, when it
is finished, will become part of the current working segment (if
there is room), or it will become part of the next. Tue act of
adding a lower order element to a higher one may in turn cause
the higher to be completed. For example, when a line is done it
may fill up a block, which may in turn fill up a layout. This
upwards control path is implicit in the process of formatting
text. It is internal to the TP and inaccessible t.o t.he ftP.

There is a second, downward path accassibld to the MP and
external to the TP which is used to cause the termination of a
text hierarchy element. This path is distinct from the internal
one since to end a line the working segment must be ended (and
to do that, the working word must be ended) before control can
resume up the internal path.

There are two types of information which the TP must have
in order to operate. The top two text hiel:archy elements
(blocks and layouts} have in addition to a working element, a
definition which is used to set it up. For eiample, the
definition of a layout is a vector of its blocK d~finitions.
When a working layout is need~d, the list of workinq blocks is
created one at a time from the definitions in the vector. The
TP also needs information about such matters as spacing,
justification method and capitalization conventions.

The MP is a stream oriented one, similar to those described
in [15], with one major difference. A normal straam oriented
macro processor prints the result of evaluation, while the nP
passes its output to the TP for further processing. The TP
usually disposes of all the text it receives, but may return
some if an event occurs.

Some of the primitive functions can trigger avents, leading
to another complication in the macro evaluation: the TP must be

TEXTURE: A Document Processor 9

dispose of all MP output together with any ~ext generated by an
event, before evaluation of a macro can begin. If this were not
done, the text from an event triggered in the process of
evaluating a macro could appear ahead of some of the source text
which was in front of the macro.

The MP and TP are .implemented as co-routines, with tvo
communication paths: the neutral-active string and the routines
which make up the external control path of the TP.

To the MP the TP looks like a subroutine that disposes of
evaluated text together with a number of routinas for teminating
elements of the various types in the text hi~rarchy. These
routines may perform only the action requested, or they may
return some text which aust be evaluated before the action can
be performed. <PAGE> is an example. If there is a footer, the
text in it must be evaluated and placed on the paqe before the
layout can be completed.

To the TP the MP looks like a subroutine
to be broken into words and placed on
evaluates event texts, together with a number
make requests for various actions.

which returns text
the page, or which
of routines which

There , are synchronization pro bl ams between the TP and the
KP. When the KP starts there may be a number of definitions and
changes to the environment to be made before starting the TP.
For example, the standard layout may not be the one desired for
the first page, but once the TP has been started the first
layout has been set up and it can not be changed until the next
page. In order to make this seem reasonable to the usar, the MP
simply throws away any leading blanks and end of source line
characters which would ordinarily go to the TP, until a
non-blank text character appears before starting the TP (and
thus setting up the first layout).

The worst synchronization problem comes from events. If a
call occurrs while the MP is .avaluating arguments to some other
macro and trigtjars an event, the question of when ~o evaluate
the event and where to put the resulting text arises. Also, the
event must be evaluat~d as if it were at the top l~vel (i.e.,
text which has been evaluated goes to the TP, not into the
argument list of some pending call). The solution adopted vas
to stack the neutral-active string and restart the MP at the top
level on the event text, unstacking the neutral-active string
and returning to the previous level of evaluation only when the
event text has been processed.

TEXTURE: A Document Processor 10

The text hierarchy as described so far is adequate for
positioning text on a page. Navertheless, many documents
include photographs or figures which must be accomodated by
temporary changes to an otherwise constant layou~. There are
two types of temporary changes.

Suppose the user wishes to leave space on the pag~ to place
a photograph or draw a figure. A change of this sort can be
made by cutting blocks (either horizontally or vertically) in
the existing layout into smaller blocks and removing some of
them from the layout (e.g. in the diagram, making the cuts 1, 2
and 3 and removing block PH). Of course, this mus~ be done

------,
lr----1
I I I I
jL-~-~11
I I I I
I PH I 1 I
I I I J
Ir a. 412
11 3 11
11 II
I '-----..JI

before the blocks to be cut have been
filled vith text. Since this is done to
the working layout, the current page is
changed; but as a new working layout is
created from the definition of the layout
for the next page, the changes are
temporary.

If, instead of leaving space, the user
wishes to insert a block of text such as a
footnotei, cutting and removing blocks from
the layout is not enough. In order to fill
the block to be insarted without
terminating the block cu~ren~ly being

filled, the TP must be able to suspend the process of filling
one block, fill another (or several others) and than resume
filling the original. Once the block to be inserted has been
filled, it must be placed in the working layout. Spaca on the
page for the block being inserted is obtained automatically by
the TP in the same way the user obtains space for a photograph
(described above). However, there may be blocks in the layout
that are already full of text (and so cannot be cut) which
overlap the block being inserted. For example, two footnotes on
the same page where both would normally appear at the bottom of
the page would overlap. In this case one of the blocks is moved
out of the way of the other by changing its position on the page
and re-inserting it into the working layout.

TEXTURE appears to be fairly easy to learu--even for the
non-programmers who have tried it. over the last few months
since its introduction, the TEXTURE community at UBC has grown
to over 100 users, many of whom had made little or no use of

1 The actual algorithmn followed by the TP when processing a
footnote is very complicated, possibly bgcause footnotes are
intrinsically more difficult to automate than straight text
formatting.

TEXTURE: A Document Processor 11

computers before. Of course, there are the usual troublesome
areas inherent in any text processor. For example, there is
little possibility of ever making footnotes completely
automatic, as the correct use of footnotes requires a keen
typographic eye. The average user, of course, does not use such
features.

Paradoxically, TEXTURE's main strength and its primary
weakness are identical: the use of the EUREKA macro processor as
a command language. our system does not suffer from the
plethora of command languages found in some other processors.
For example, FNT (the most commonly used document processor at
UBC) has tiv~ di.fferent command languages. Such a
simplification must be one of the main factors in the ease of
learning TEXTURE.

The set of commands available in EUREKA is comple~e in the
sense that all reasonable actions may be specified (though not
always easily). This would not be profound if it were not for
the fact that most document processors, no matter how many
different command modes thay have, are incomplete--often, for
example, there are poor string definition facilities. One of
TEXTUBE's main strengths is that tha command lanquage is a full
scale programming language. Often a problem which would require
great ingenuity from the user of a "traditional" document
processor is easily done in TEXTURE.

One of the unfortunate aspects of the EUBEKA processor is
that writing complex code is difficult. One can becoma quite
proficient in the use of EUREKA llacros; still, EUREKA
programming is a convoluted process. This phanomenon is
familiar to anyone who has made much use of macro processors.

Communication problems betw£en the HP and the TP are more
complex than one might think. The problem is that TEXTUBE
cannot operate in the manner that the user might reasonably
expect; efficiency and internal consistency dictate otherwise.
As an example, the system appears to the user to operate
character by character, while, in actuality, input is
lin-3-buffered.

Another area of difficulty is the basic orientation of
TEXTURE. The system of blocks and layouts described above can,
in principle, describe any page for ■at; however, in practice,
some desired text formats are very difficult to implement.
Although it is unlikely that any user will evar want an
eitremely intricate layout, there are some structures ~hich can
be used only with great difficulty. Consider, for example, the
"parallel text" problem (14]: there are many uses for documents
containing two texts which run in parallel from page to page.
An example of this is the Instructor's Edition of a textbook.
such a document contains tha actual text of tha Student's
Edition, but each page contains, in addition, another column of
text with items keyed to corresponding sections of the main

TEXTURE: A Document Processor 12

text. TEXTURE is not designed to merge multiple input streams;
thus such a document is remarkably difficult to produce via
TEXTURE.

Although TEXTURE is most conveniently used from a terminal
in a time-sharing system, in no sense can it be called
"interactive". Once TEXTURE is initiated, it runs to completion
in a strict "batch" mode. Documents are entered and updated by
means of the text editor provided with the host operating
system. It is a matter for further research to determine
whether a TEXTURE-like systew may be made int~ractive in any
useful sense of the word. It is quite· likely that a fully
interactive -document processor might resemble TEXTURE a lot less
than, for example, NLS[16].

There are a number of problems due to the implementation: a
trial version was written in PL/I, but due to the PL/I
implementation available at UBC (an obsolete issud of PL/I (F)),
this version was too expensive to use. Therefora, a new version
was written in PL360. What~ver the merits of PL360, portability
is not one of them--thus, the current TEXTURE system will only
run on a 360 or 370. One day, the current version may be
transcribed into a higher level, portable language such as
optimising PL/I, BCPL[17], or C[18]. The user's manual is
another defect: while it might gladden the heart of a computer
scientist, it is hard going for a non-technical user. A primer
is currently in preparation.

From this litany of complaints, the reader might assume
that TEXTURE is riddled with defects. A fairer assessment might
run as follows: TEXTURE is an attempt to push forward the scope
and usage of document processor systems--its defects qenerally
are not those that a user of a traditional Runoff program would
encounter. we feel that the merits of TEXTURE far outweigh its
faults.

TEXTURE: A Document Processor 13

[1] Peter N. van den Bosch. 1h~ g~§ifill ~ng !!!.2l~m~~~1i2n Qt s
gQ£Y!!~n1 EIQ£~a§2£• Master's thesis, The University of
British Columbia, 1974.

[2] TEXTURE Support Group. I .~ll!I!i~ !!~&!.2 ttsllYil•
of Computer Science, The University of British
1975.

Department
Columbia,

[3) PAQE-1 Com12osition 1an.9ua.9e.:=Reference !12.f!!lgJ:. Form
Rep. 73-06-003P. RCA, January 1971.

[4] !!2:&:!:i.2 ~Q!!.EQ2i:ti2n .§Y.§!~.ID;:=ltslHIY.sS~ l2sll!!ll• Harr is
Intertype Corporation. March 1970.

[5] c.G.Moore and R.P.Mann. "Cyphertext: An extensible

[6]

composing and typesetting language". f~Q£eeging§ lsll
Joint Com,Eute~ ~onference Vol. 37(1970); pp. 555-561.

G.M. Berns. "Description of
Program". ~QfilfilYili£~11Q!l§ Qf
(!'!arch 1969); pp. 141-146.

FORMAT, a
!,,hg j~t!,

Text-Processing
vol. 12, No. J

[7] I~l!=J~Q _ Ini£Qg~ti9n ~nd ~~!~~~n£g ~s~Ygl. IBM Form
C35-0002-0. March 1969.

(BJ ~~§!g!LJ~Q Agmini§!~~~iv~ Ig~~ingl ~Y§Sgm J!I§t: tgI!!in~l
0Eerations Manual. IBM Form GM20-0589-2. April 1970.

[9] L. Wade. f.Qf=11 i.YllQII· Digital Equipment Corporation
Users Society. October 1971.

(10] W. Webb. !!~~ 1111· University of Brit.ish Columbia
computing centre. April, 1976.

IBM Forms

(12] "The IBN Selectric Composer
1HH!.§s££h ~gg De!g!QE!!~Ilt•
pp. 3-91.

(MT/SC)"• l~~ ~QY~Ilgl Qi
Vol. 12, No. 1 (January 1968);

[13] A§!£QURg• Form 130, Automatic Office Division.
Information Control Systems, Inc.

(14] T.H. Nelson. £Qfil.EYig£ 1iRL~£gg,!! l!s£!1:in~.2• Hugo's Book
service 1 Chicago p.o.b. 2622, 1974.

(15 J P. Wegner. f.:Qg!:,2!!!!11.Qg !&!!9.!!~9~§, !ni2£•gli2n ~:tIJ!£1YI~§,
gl}g ll~£hi!g Q:£9:j!!i~atj,Q!l• McGraw-Hill, 1968.

(16] D,C. Engelhart and W.K. English. "A Rasearcu Centre for
Augmented Human Intellect". fro£gzeginS12 lQJJ. .!12in!
&Q!!IDA!sa: ~2nt:~~fill£~ v 01 3 3 < 19 6 a> ; pp. 3 9 s- 41 o.

TEXTURE: A Document Processor 14

[17] M. Richards. uBCPL--A Tool for Compil>:r Writing and
system Programming". f.Ul.~~~.!lin.9§ ~.E!ing J2l.D1 C.QJ!JHI!~~
~.Q.Iltil~n£~ !Ql 35 (1969) ; pp. 557-566.

[18] D.M. Ritchie. ~ ~il~~~~£~ n~n~gl. Bell Laboratories
(Murray Hill, New Jersey), 1974.

