
• r
I

t

r

* *
* PASCAL/UBC User's Guide *
* *
* by *
* *
* Eary w. Pollack *
* Robert A. Fraley *
* *
* Technica.1 Manual TM-2 *
* *
* Nov 8, 1976 *
* *
* Revised Nov 22, 1977 *
* *
* *

Department of Computer Science
The University of British Columbia

Vancouver, British Columbia V6'I' 1W5

Abstract

TECHNICAL
REPORT

PASCAL/UBC is a PASCAL compiler for the IBM 360/370 computers
running under the MTS op€ rat. i ng system. It p race sses a version
of PASCAL producing standard OS object mo,inlEs. 'IhE" language
accepted contains Standard Revised PASCAL as a ~roper subset.

,.:

I
entre

ofurnbia

This work has been supported, in part, by the National Research
Council of Canada, grant number A3606, and by the Department of
Computer Science, University of British Columbia.

..

PASCAL/USC User's Guide i

o.

1.

2.

TABLE OF CONTENTS

Introduction
Compiling and Running a PASCAL Program ••••••••••••••••••
1. 1 Compiling a PASCAL Proqram •••••••••••••••••••••••••
1.2 Running a Previously Compiled PASCAL F~ogram •••••••
1.3 Compiling and Running with LOADNGO •••••••••••••••••
1.4 Compiling and Running with LINK····••••···••·•••··•
1.5 Options••••••••••••••••••••••••••••••·•••••••••••••
1.6
1. 7

File Assignments•·••••••••••··••••••
Examples•·•··•·••·••·••••••···••••·••••·•·•····•·•·

Running PASCAL under the Student Terminal System ••••••••

1

1
2
2
3
4
4
5
6

6

3. Compiler Options •••••••••••••••••••••••••••••••••••••• .•• 7

4. Input/Output ... 9
4.1 GET, PUT, and PASCAL Files•••••••••••••••••••••••• 10
4.2 I/0 Using READ and WRITE •••••••• •• •• •••••••••• •• •• 11
4.3 Using PASCAL Interactively •••••••••••••••••••••••• 17
II. 4 Extension to non-TEXT Files ••••••••••••••••••••••• 19
4.5 BESET and REWRITE ••••••• •• •• •• •••• •• •••••••••• •• •• 19
4.6 PASCAL/UBC I/0 Functions •••••••••••••••••••••••••• 21

5. PASCAL Libraries, standard Functions and Procedures •••• 22
5.1 The Standard PASCAL Library: CS:PASCALLIB ••••••••• 22
5.2 Constructing a User Library··••••••••·•··•·••·•·•• 23
5.3 Standard Functions and Procedures·•••·••·•••···••• 24

6. Language Differences and Extensions•••·••••••····••••·• 25
6.1 Differences and Extensions from the User Manual ••• 25
6.2 Differences and Extensions from the Report •••••••• 32
6.3 The STANDARD Option••••••••••••••••••••••••••••••• 39

7. Miscellaneous Implementation Notes·•····••····•••··••·• 39
7.1 Communication with POBTRAN •••••••••• •·•••·•••·•••• 39
7.2 Communication with Asse.mbly Language •••••••••••••• 41

a. Snapshot and Post Mortem Dump Packages•··••··•····••••• 41

9. Warning and Error Messages···•••••··••·••••••••••··•••• 44

10. References 50

Index ••••• 51

PASCAL/USC User's Guide 1

PASCAL/UBC is a PASCAL [1,2] compiler for the IBM 360;370
computers running under the M~S operating system. It was
originally developed at Stanford University (31 and then
partially rewritten at the University of British Columbia. It
processes a version of PASCAL producing standard OS obiect
modules. These modules may be executea ander the supervisicn of
a run time monitor. PASCAL may be run in batch or frcm a
terminal.

The most recent version of this manual usually will be
found (in TN-chain ready form} in the file PASC:WHITEUP.
Revisions to the last publish d version of this manual are
indicated by vertical bars in the eight-band marqin such as
those in the margin of this sentence. Current news r e qardinq
the state of the PASCAL system may be found in the fil e
PASC:NEWS.

This work has been supported, in part, by the National
Research Council of Canada, grant number A3606, and by the
Department of Computer Science, University of British Columtia.

j. ~Q~.2.ili.ng ~!!Q Running a PASCAL PCQ.9.!fil!! I
I
I

PASCAL/UBC uses standard MTS conventions: the sourcP. I
program and/or data are read from SCARDS; the compilation I
listing, error diagnostics, and execution output are written on I
SPRINT; and the object code (i£ any) is sent to SPONCH. The PAR I
field is used for the specification of various options ana to I
make file assignments. If SPRINT is different from *SINK* the I
number o1: syntax ·errors is sent t ·o both places. The error count I
always is reported on SPRINT. I

I
I

A semicolon (;) may (optionally) terminate the PAR field I
and anything to the right cf the semicolon is ignored by the I
system. If a semicolon is present, it must te preceded by at I
least one space. The entire PAR field may be retrieved from I
within a program using a standard ~TS library routine. f

I
I
I
I
I

PASCAL/UBC User's Guide 2

The PASCAL programmer may:

a. Com pile a PASCAL proqr am, s av in q (or discardin q) the
object code;

b. Bun a previously compiled PASCAL program;

c. Compile and run a PASCAL program in a "compile, lead,
and go" fashion;

d. Compile and run a PASCAL program in a "compile, link,
lead, and go" fashion.

The PASCAL translator may be invoked by using the following
command:

$RUN CS:PASCAL SCARCS=fdname SPRINT=fdname SPUNCH=fdname
PAR=o~ticns; comments

If no SPUNCH file is specified the compiler will send the obiect
code to file -P.OBJ.

The options pertinent during ccmpilation are: EX, NEERS,
NEW, and TINE.

PASCAL object modules may be executed directly by usinq the
following command:

$RUN object SCARDS=fdname SPRINT=fdname SPUNCH=fdname
PAR=options file-assignments ; comments

If SCARDS is not specified it defaults to *SOURCE*; if SPRINT is
not specified it defaults to *SINK*.

The options pertinent during execution are: BATCH. EX,
NERRS, NEW, NOPMD, and TIME.

The object modules may be a single file or a concatenation
of files (e.q., a main program and possibly several su~fort
routines).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
f
I
I
I
I
I
I
I

' I
I
I
I
I

' I
I
I
I
I
I

' I
I
I
I
I
I
I
I
I
I
I
I

PASCAL/UBC User•s Guide 3

ihenever a main program is compiled the last line of the
object file always will ccntain

$CONTINUE WITH CS:PASCALLIB

Thus the user need not explicitly concatentate the run-time
library when running the object file.

If NOPMD is specified the user may wish to concatenate the
"dummy" PMD routines to his object modules:

$BUN PASC:DPMD+object • • •

This ~ill save the memory charge for the full PMD package which
otherwise would have been loaded.

j.J Ccm12iling and Running with 1Q!DNgQ

The PASCAL system will operate in a "compile, lead, and qo" f
fashicn if the following command is issued: I

I
$RON CS:PASCAL SCARDS=fdname SPRINT=fdname SPUNCH=fdnamE I

PAR= ••• ,LOADNGO, ••• file-assignments ; comments I
I

Under LOADNGO no object modules will be generated unless the I
user specifies the compiler option $OBJFILE+$ (See below). The I
object code is leaded directly into memory, and after the I
compilation phase is finished the resultinq cede is executed. I

I
I

The only restriction under LOADNGO is that no reference may I
be made to a routine not present in the standard PASCAL library. I
This implies that a program will not execute correctly under I
LOADNGO if it declares procedures FORTRAN or EXTERNAL, or if has I
any unresolved FORWARD reference. This restriction is necefEary I
because the MTS leader is not used. I

I
I

The options pertinent durinq LOADNGO execution are: BATCH, I
EX, NEW, NOPMD, SIZE, and TIME. I

I
I
I
I
I
I
I
I
I
I
I

PASCAL/UBC oser 1 s Guide 4

1-~ ComQiling and Running with 11!!

The PASCAL system will operate in a "compile, link, lead,
and go" fashion if the following command is issued:

$RUN CS:PASCAL SCARCS=fnname SPRINT=fdname SPUNCH=fdna~E
PAR= ••• ,LINK, ••• file-assignments; comments

Under LINK object code is emitted as usual. Following code
generation a dynamic link (actually an XCTL) is performed. The
standard PASCAL library CS:PASCALLIB is referenced as well as
*LIBEAEY and any other libraries the user has set up with MTS.

If you wish to explicitly specify a library to be included
in the linkage process, you may issue the following command:

$RON CS:PASCAL SCARDS=fdname SPRINT=fdname SPUNCH=fdname
PAR= ••• ,LINK, ••• ,LI=library, •••
file-assignments; comments

The order of LINK and LI is
library may be a concatenation
always be accessed to resolve
accessing the specified library.

irrelevant. The specified
of files. CS:PASCALLIB ~ill

any open references ~ft~f

The options applicable under LINK execution are: EATCH,
EX, NEW, NOPMD, and TIME.

I
t
I
I
I
I
I
I
I
I
I
I
t
t
I
I
I
I
l
I
I
I
I
I
1
I
1
I
I
I
I

The first field after the PAR= is for specification of the
options: BATCH, EX, LI, LINK, L0ADNGO, NERRS, NEW, N0PMD, SIZE, 1
and TIME. The options are separated by commas, and the options I
field is terminated by one or more blanks. No blanks may appear
within the options field. · ·

Options occur in two forms -- those taking values and those
whose presence/absence is significant. The syntax for those
options taking values is <option>=<value>.

The BATCH option disables all interactive features. The
snapshot and post mortem dump packages are forced to act in
batch mode.

r

PASCAL/OBC User•s Guide 5

EX=<value>
be acquired
a value £or
compilation

specifies the maximum number of memory paqes to
for the execution stack. If the user specifies
EX, this value will be used both durinq proqram
and execution. The default value is 10 raqes.

LI=<value> (Submonitor only) specifies the name of a user's
object file (a user• s library file) which is to be
concatenated with the standard PASCAL monitor PASC :MON
prior to execution of the translated program.

LINK specifies that tbe user wishes to compile, link, lcaa,
and execute. A dynamic link (actually an XCTL) ~ill be
performed. This option must be present if the user wishes
to use the LI= option.

LOADNGO specifies that the user wishes to compile, lead,
and execute without punching object code onto SPUNCH. No
FORTRAN or EXTERNAL routines may be accessed. The ccm~iler
assumes $OBJFILE-$.

NERBS=<value> specifies the maximum number
errors allowed befor€ the run is terminated.
value is taken to be 4.

of run time
The default

NEW: <value> specifies the maximum number of memory paqes to
be acquired for the NEW stack. If the user specifies a
value for NEW, this value will be used both during prcqram
compilation and execution. The default value is 20 ~aqes.

NOPMD specifies that in the event of a run error, no ~ost
mortem dump is to be generated. This option has no effect
on the execution of the standard SNAPshot procedure.

SIZE:(value> specifies the number of pages of memory to be
used for the object code when running under LOADNGO. The
default value is 10 pages.

TIME=<value> specifies the maximum allowed execution time
for the running program in seconds. The usual MTS variants
are allowed.(e.g., TINE=1.5S·, T:.057, TIME=1.25M, etc.).
If TIME is not specified, one minute is taken as the
default.

j.§ 11!~ Assignments

Subsequent fields of the PAR= .field (aftEr the options) are
used for file assignments. Each such assignment must be bounded
by cne or more spaces. The pattern is PASCAL_NAME=MTS_NAME,
where PASCAL_NAME .is the name given in a FILE declaration in the
source program, and MTS_NAME is the name of an MTS file or
device.

PASCAL/UBC User's Guide 6

Examples of valid PAR fields are:

PAR=NEW=25,EX=50 ; THIS IS A COMMENT (1)

PAR= PFILE=MTSPILE (2)

PAR=NOP1HrNEW=15 P1FILE=M'ISFILE1 P2FILE=*SINK* (:l)

(1) indicates that the program is to be executed ~ith a maximum
of 25 pages allocated for the NEW stack and 50 pages for the
execution stack.

(2) indicates that the PASCAL file PFILE is to be associated
with the MTS file MTSFILE during execution.

(3) indicates that no fast mortem dump is tote qenerated if a
run error occurs. allocate 15 NEW paqesr associate P1FILE ~ith
the ~1S file MTSFILE1r and associate P2FILE with *SINK*.

The PASCAL translator is invoked under the Student Terminal
System (STS) by use of the $PASCAL control card. The rest of
this card (currently) is ignored. When runninq under S1Sr one
is unable to set any of the submcnitor options or make file
assignments. These are all set by the STS supervisor. It is
impossible to link to user-suppli€d external routines under STSr
althcuqh many of the more commonly used MTS system routines are
available in the standard library.

The defaults effective under STS are BATCHr EX=40r LGACNGOr
NERRS=O, NEW=40, PAGES=12, SIZE=25r and TIME=S.OS.

Under STS no $DATA card separates the PASCAL source prcqram
from the following data. Thus it is extremely important to
remember that all PASCAL programs end "END."• If a $DATA card
is included in the sourcer it will be read by .YQUr program
durin~ execution.

PASCAL/UBC User•s Guide 7

Compiler options are delimited by t$• and are separated by
commas or semicolons. Tbey consist of a keyword fellowed ty a
plus ·or a minus siqn indicating •on• or •o.ff 1 , respectively.
One need supply only as much of the keyword as is necessary to
distinguish it uniquely frcm among the other options. If the
'+' or 1 -• is omitted, a '+' is assumed. Extraneous blanks
within the options field are ignored.

_!LIGN - off

+ on

]!TEALlOC - off

fASENEXT + on

]EBUG + on

.QUNPTABLE + on

]JECT - off

Allows nonalignment of data. Normally the
compiler forces correct alignment of all
data (half-, full-, or double-word, as
required). This OFtion allows the compiler
to ignore "correct" alignment, ccnservinq
some amount of storage in the process.
Execution speed may be slowed somewhat as a
result.

Permits underhar (_) to be used a~ an
alphabetic character.

Allows byte allocation. Normally the
smallest unit of storaqe allocated by the
compiler is the half-word. This option
allows the use of byte storage for all
objects having the range 0 •• 255.

Forces an error if a CASE index is out of
range.

Forces generation of dehuqqing information.
The DEBUG option is equivalent to setting
all of CASENEXT, INDEXCHECK, RANGECHECK,
and DUMPTABL.E.

Produce debug tables for snapshots and ~ost
mortem dump. This optic n m us_t be tu z:n e n
on/off before the first dEclaratiou of a
procedure (or the main program) for it to
be effective.

Forces a page
begin a
automatically
used.

eject: the current line will
new paqe. This c~tion
resets itself to off whenever

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I

' I
I
I
I
I
I
I
I
I

' I
I
I

PASCAL/UBC User's Guide 8

.fULLXREF - off

IBM370 + on

!J:IST - off

. !!! DFXCHECR + on

11ST + on

!aCCABTHY + on

Q~JFILE + on

.Q1IST - off

fRECEIENCE + on

]ANGECHECK + on

SEQUENCE - off

~JANDARD - off

Forces the generation ct a cross-reference
listing of all symbols (including those
within options fields. This option foices
XREF+ and XPREDEF+.

Compile code for IBM 370 if on; otherwise
IBM 360.

Print object code as each statement is
processe a. (Intralist)

Check index range in subscripts •

List source proqra m; lines con ta ininq
syntax errors always are listed.

McCarthy evaluation. This feature fcrces
optimal evaluation of Boolean expressicns.

Produce object cede on SPUNCH (even if
PAR=LGADNGO) •

Print object code after each procedure or
function is processed and all fix-ups have
been made.

Normal arithmetic precedence. If on, the
"usual" rules for arithmetic and logical
precedence are used, in evaluat.inq
expressions; if off, the PASCAL precedence
is used. If R is on, t.he "extra"
parentheses that PASCAL sometimes requires
in order to correctly interpret relational
expressions are not needed.
(E.g., IF A+B>C-D THEN •••).

Perform subrange checking on assignments.

Sequence number mcide: if on, only columns
1-72 are read by the compiler; if off,
columns 1-100 are read.

If on,
allows
forces

forces Standard PASCAL; if off,
PASCAL/UBC extensions. This option

$ DFEUG+, MCCARTHY-, PRECEDENCE-, BAR-$

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
t

PASCAL/UBC User 1 s Guide 9

~QETITLE

!ITLE

QNDERLINE

1EREDEFS

- off

- off

This option accepts a string delimited by
quotes and uses it for the subtitle line on
all subsequent pages.
E.g., SUBTITLE= 1 THIS IS A SUBTITLE'

This option accepts a string delimited by
quotes and uses it for page titling on all
subsequent pages.
E.g., TITLE= 1 THIS IS A TITLE'

± on/off Forces automatic underlining of all PASCAL
reserved words. The default is off if
running from a terminal. The default is on
if running in batch.

- off

- off

Forces
listinq
symbols.

the generation of a cross-reference
of all predefined PASCAL/UBC

Forces the generation of a cross-reference
listing of all user-defined symbols.

The compiler implicitly uses the defaults

$ ALIGNED+~ DUMPTABLE+, RANGECHECK+, INDEXCHECK+, C~SENEXT+,
IBM370+, LIST+, PRECEDENCE+, MCCARTHY+, OBJFILE $

at the beginning of a compilation.

This section describes the I/0 facilities of PASCAL/UBC.
It auplicates some portions 6£ the PASCAL User Manual and
Report, but clarifies a number of points. It also describes the
I/0 interface with MTS and a number of built-in procedures which
have been added for file handling.

The~e are basically two levels of I/0 in PASCAL:
READ/WRITE and GET/PUT. ~hile the READ /W RI~ procedures are the
most useful, GET and PUT are described first since they provide
the tasis f or the READ/WBI1E level.

I
f
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
f
I
I
I
I
I
I
I
I
I
I
I
l
I

PASCAL/UBC User's Guide 10

A PASCAL file is defined U3ing the FILE type generator:

VAR F: FILE OF TY;

There are two basic file classes in PASCAL -- TEXT files and dll
others. A file is a TEXT file when TY=CHAR. Fer non-!EXT
files. each line is one element of type TY. For TEXT files,
each line is an ARRAY OF CHAR, and readinq progresses alonq one
line before advancing to the next.

Each file P has a buffer variable F~, which is that
component of the file which is cuLrently accessible. The
function GET(F) advances the buffer to the next component of the
file. Successive calls to GET allow Pa to reference successive
lines of the file (or successive characters in a 1EXT file).
When no components remain in the file. the function EOF(F)
becomes TRUE.

ihenever EOF(F) is TRUE it is possible to add new
components to a file. This is accomplished by placinq the
component in the buffer F@ and calling PUT (F) to appsnd it to
the file. This may be repeated any number of times. Note: if
you wish to transport your prog~ams to another system, ycu nust
assume that the contents of F@ are destroyed durinq the
execution of PUT(F).

Text files have a number of peculiar properties. Firstly,
all blanks are removed frcm the end of input lines. If F~ is
positioned after the last character of a line, lNiJ will be set to
a special character: EOL. At the same time, the built-in
function EOLN (F) becomes TRUE. The next ca 11 to GET (F) advances
F@ to the first character of the next line and returns EOLN(F)
to its FALSE state.

Prcgrammi119 Notes

1. EOF(F) may become TRUE only whEn F@ contains EOL
and a call is made to GET(F).

2. In Standard PASCAL, EOL doesn't exist; a blank is
in Fiil when EOLN ("F) is TRUE.

3. In PASCAL/UBC, a blank input line contains a
single blank (rather than no tlanks).

I
l

PASCAL/UBC User's Guide

4. ECLN is short for EOLN(INPUT). INPUT is the
standard file INPOT, not a user-defined file of that
name.

5. GET (F) is only allowed while EOF (F) is FALSE;
PUT(F) is only allowEd while EOF(F) is TRUE.

6. Due to the operation of MTS files, if a file is
extended by reading until EOF(F) becomes TBUE and then
writing on the file using POT (F) , one line number wi 11
be skipped.

11

An MTS file must be associated with each PASCAL file. The
association is made via the PASCAL name. The fcllowinq default
associations are provided by PASCAL/UBC:

INPUT
OUTPUT
GUS ER
SERCCN
ether

Effectively all PASCAL/UBC
specified. {But see the
described below.)

logical unit SCARDS
logical unit SPRINT
lcgical unit GUSER
logical unit SERCOM
file name specified in PAR field
of the $RUN command

files are
extensions

external and must be
to RESET ann REWRITE

If declarations are provided for INPUT er CUTPUT they will
completely override the standard assignments. (Use of READ
and/or WRITE without a file name will refer to the standard
file, BQ! the declared file.)

~-l 1L~ Q§ing ~~A~ 2nd HB1I] I
I
I

The BEAD and WRITE functioni are the most convenient I/0 I
mechanisms in PASCAL. There are, however, a few "qlitches" I
because the GET/PUT mechanism historically was designed first. I
This section describes how to best use these furcticns. I

I
I
I
I
I
I
I
I
I
I

PASCAL/UBC User's Guide 12

The basic READ accepts two arguments:

READ (F, X)

where F is a !EX! file and Xis a character. This call is
equival~nt to the code segment:

X :-= Fw; GET (F).

Note that Xis assigned before the GET, so that t will DQ! be
the same as F@ following READ(F,X).

1. P@ can be used as a look-ahead character.

2. When F@=EOL, the call READ(F,X) will set X to a
blank. This aspect of READ is compatible with
Standard PASCAL. Note that when Xis Ret to blank at
the end of a line:

a. The EOLN(F) flag has just been turned gff.

b. The next input line has already been read.
This is significant when F@ is associated with a
physical terminal •

.PASCAL/USC includes a number of extensions to the basic
READ function:

1. READ(P,I)
format. An
skipped until
replaces I,
the integer.
is s.kipped as

with I an integer: reads an inteq ~r in free
arbitrary number of blanks {and lines) are
the inteqer is found. The integer value
and F@ contains the next character tollo~inq
(If a ", 11 immediately follows the number, it
well.)

2. BEAD(F,R) with Ra real: same as READ(~,I) except that
a real number is read.

3. 8EAD(F,S) with S an ARRAY (•••) CF CHAR: reads
characters (starting with 1@) ana fills s. If EOLN(F)
becomes TRUE before sis full, the remaindEr of sis filled
with blanks. (If EOLN (F} is TRUE when READ (F,S) is called,
the next line is read.)

4.
• • •

READ(F,X1,X2, ••• Xn)
Ii.EAD(F,Xn) •

means READ(F,X1); READ(F,X2);

PASCAL/UBC User's Guide

5. READ(INPUT,X, •••) may be abbreviated BEAD(X, •••).

6. BEADLN {F) skips to the next input line (i.e., Fal
be the first character of the next line).

7. READLN(F,x •••) is
RE.AD (F,X, •••); READLN (F).
READLN(INPUT).

Pro.9rammi.!!.9 Notes

an abbreviation for
READLN is an abbreviation

1. Fixed format input of numbers is not (yet)
available.

2. A library routine, SKIPBLANKS, may be u~ed to skip
blanks before reading a character or string.

3. If an EOF(F) condition occurs within a READ(F,X),
the variable X will not be changed (except when X is
of type CHAR) • 'Ihe EOF condition should be checked
before the next BEAD, REACLN, or GET is att~mpted. If
EOF(F} occurs when readinq field X in RcAD(F,X) or
READLN(F,X) an error will occur (since RH,DLN(F,X) is
equivalent to READ(F,X); RE1\DLN(F), and REAC(F,X,Y) is
eguivalent to READ(P,X); READ(F,Y)).

4. When no file is specified in READ or READLN, the
standard INPUT file (rather than a user-defined file
named INPUT is used.

5. The table below summarizes the synchronization
between the input, the buffer variable F@, and the
variable CH on successive calls READ{F,CH): The input
consists of the characters A, B, EOL, c, D, EOL, EOF:

1]

will

for

I
I
I
I
I
I

' I
' I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I

PASCAL/UBC Oser•s Guide 14

Effect of READ (F ,CH)

Input * A E EOL C D ECL EOF
I

IOF(F) p p F F F F F T
EClN (F) T F F T F F T UNO
Pi EOL A B EOL C D EOL UND
CH UNO ** A B SP C D SP

* - this column is prior to the first GE'I, READ, or
RESET

** this column is internal to READ (F ,CH) , so the
value of CH is undefinEd.

T - TRUE
F - FALSE
SP - space {a blank character)
UND - undefined

Note that EOF(F) is defined as FALSE before the first GET I
or READ. PASCAL/UBC differs from standard PASCAL by the I
presence of the EOL character, and the existence of the first I
column in the above table. If READ is ·used instead of GET, the I
only difference is that PASCAL/UBC allows a linE to be printed I
before the first input line is read. I

I
I

The procedure WRITE is analagous to READ, but is used for I
output. It has a number of features for controlling the output I
format. I

I
I
I

' I
I
I
I
I
I
I
I
I
I
I
I

' I
I
I
I
I

PASCAL/UBC User's Guide 15

The basic character form WRITE(F,CH} is equivalent to: I
I

F@ := CIT; PUT(P). I
I

It writes a single character into file F. WRITE {F, X) will f
convert variable X to character format and write it into a fixed I
width field. The table below shows the available data types and I
their default field widths: t

;!,I.eg

CHAR
ALFA
BOOLEAN
INTEGER
REAL

Default Field-Width

1
10
10
10
22

ARRAY (M,. N) OF CHAR ORD(N)-ORD(M)+1

In situations where the default field width is not
adequate, an explicit field width may be given:

READ (F,X:W)

W may be any expression which yields an integer value. Numeric
values are right-justified in the field, while characters,
strings, and Booleans are left-justified. If a numeric value
can•t fit in a field, the field width is expanded to acco~mcdate
the value. If a string, character, or Boolean doesn't fit, the
string is truncated (on the right).

Some additional formatting details, with other formattinq
opticns, are described below:

1. If w is O for inteqers or reals, the number is printed
in the minimum number of columns required for the value.
This is useful when printing text to avoid unwanted blanks.
Be sure to provide spacing around the numbers.

2. Hexadecimal output of integers may
making W negative. ABS (W) columns will be
the value.

be achieved by
used to print

3. Real numbers are normally printed in "guess" format.
The number of significant digits is always maximized. In a
field of width W, the first column is always blank, one
column is reserved for the decimal point, and one more is
used for the sign of the number if it is neqative. one
digit is always printed on §~£h side of the decimal pcint.
Let R be the number of columns remaining. If
-4<=log(value}<R, the value is printed in fractional format
(e.g., 123.45); otherwise it is printed in exponential
format (e.g., 1. 2345E-17). Reals are always rounded before

PASCAL/USC user's Guide 16

output. If the numeric value was exactly zero, no
fractional part is printed. Otherwise, the precision is
maximized to the limit of th€ field width or the numeric
precision of the value, whichever is less.

4. Explict control over the precision and format of reals
may be achieved using the call:

WRITE(F,R:W:D)

The "D" value gives the number of digits to the riqht of
the decimal ~oint. D also has some non-obvious effects on
the output format:

a. If D is positive, the number is always output in
fractional form.

b. If D is zero, no decimal point is pr-inted (an
integer is output).

c. If D is negative, the value is output in
exponential format. ABS(D) is the number of digits to
the right of the decimal point.

1. Some day we hope to improve the notation for
formatting so that discontinuous events don't occur,
truncation rules are more flexible, and the notation
is more transparent.

2. Al.! formatting rules, even the justification and
truncation rules, may differ in other implementations
of PASCAL. The PASCAL standard is very vague in this
area.

The WRITE function has a number of variations which
correspond to the READ variations:

1. iRITE(F,X1,X2, ••• ,Xn) is equivalent to WRITE(F,X1);
W!HTE(F,X2); ••. WRITE (F,Xn).

2. WRITELN(F) starts a new output iine.
is an abbreviation for WRITE(F,X, •••);

WRITELN(F,X, •••)
WIUTELN (F).

3. iRITE(OUTPUT,X) and WRITELN(OUTPUT) may be abbreviated
by WRITE{X) and WRITELN, respectively, when OUTPUT is the
standard PASCAL output file.

PASCAL/UBC User's Guide 17

In PASCAL/USC and certain older PASCAL compilers, thEre is
a character, EOL, which will terminate the output line. This
character may be used as a parameter to WRITE instead of makinq
several WRITELN calls. Note that EOL is no lcnqer part of the
standard PASCAL language.

At UBC and many other PASCAL implementations, the first
character of each line which is sent to the printer is a
"carriage control" character. It controls the line spacinq on
the printed page. This mu st be provided by the programmer
(since the PASCAL compiler doesn •t know (or care) which files
eventually will be printed). While any MTS carriage control
character may be used, those standard at a number of
installations are:

' • Single space (before printing)
•o• Double space (before printinq)
•-• Triple space (before printing)
•1• Skip to new page (befoce printing)
••• No space (overprint)

In an attempt to avoid the use of
characters, Standard PASCAL has introduced
PAGE(f). In PASCAL/UBC, this is
WRITE (F, EOL, 1 1 1 , EOL) •

charriaqe contcol
the function,

equivalent to

1. EOP(F) may become TRUE only when F@ ccntains EOL
and a call is made to GET(F).

2. Because PASCAL has no way to specify the maximum
line length for a TEXT file, the programmer is
responsible for starting new lines when needed.
PASCAL/USC will automatically start a new line only
when 255 characters have been placed on a single line.
The formatting routines do riot currently check to see
if ample space remains on a line for an entire number
or string. (See ·the LINELENGTH function below.)

g.J Using PASCAL Int~ractivel1

The standard PASCAL BE~D and WRITE procedures described
above and in r1,2J are designed more for a batch environment
than an interactive one. The following paragraphs describe how
PASCAL/UBC may be used interactively under MTS.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PASCAL/OBC Oser•s Guide 18

READLN(•••) has three effects: 1) it copies information
from the system•s internal input buffer into the variables
specified in its argument list; 2) it flushes the buffer; 3) it
refills the buffer from the file (device) specified. If RFADLN
is used from a terminal it will ask for a nev line before the
program prompts the user. The sequence: REAtLN; READ(•••)
ignores all input currently in the input buffer, and begins
reading after retrieving a new input line.

This may be undesirable if several data items are to be
input and the programmer desires to.be notified if one or more
items are missing. Instead of READLN; READ(X,Y) the
following sequence may be prefered:

BEADLN;
BEAD (X) ;
WHILE INPUT@=' 1 DO GET(INPUT);
IF INPUT~=EOL THEN WRITELN(1 ENTER Y 1);

BEAD (Y) ;

Since READLN discards unread input
loss of information may occur. You
problem by using a sequence such as:

WHILE INPU'I@=' ' DO GET (INPUT) ;

in the input buffer,
may wish to solve this

IF I.NPUTah=EOL THEN WBITELN(1 .EXTRA DATA SUPPLIED');
READLN;

If you wish to enter data en the same line as the prompt
message, use the carriage control character specified in UBC
TERMINALS [5]. Currently the appropriate control character is
the ampersand (&). For instaice:

WRITELN ('&ENTER X: 1);

READLN; :READ{X);

It is important to remember that PASCAL will disFlav output only
after an EOL bas been· transmitted. ~his may be accomplished
either by WRITE(••• ,EOL, •••) or by WRITELN(•••). Other-wise,
the "written" information is held in a system output buffer
until an EOL is sent.

PASCAL/UBC User• s Guide 19

In some applications it may be desirable to read an entire
line at once, rather than item by item or character by
character. INPUT may be redefin€d as

VAR INPUT : FILE OF ARRAY (1 •• 100) OF CHAR;

(or any other appropriate size). You may now issue a GET and
the entire line will be read (with blank fill on the right, if
necessary). Note that any numeric conversions must now be done
manually by the programmer.

In the corrections to the PASCAL User Manual and Repcrt,
the READ and WRITE procedures are extended tc non-TEXT files as
follc-ws: Given

VAR

READ(N,X)
WRITE (N, X)

X
N

--. . TY;
FILE OF TY;

X : = N@; GET (N)
N :-= X:; PUT (N)

No other forms of READ and WRITE are allowed.

In the future it is expected that we will expand the
non-TEXT R!AD and WRITE definitions to be entirely compatible
with the definitions for the TEXT versions of these routines.

PASCAL provides
RESET (F) positions
line, and places •its
EOP(F) becomes TRUE,

two functions for positioninq a file.
a file at· the beginning, reads the first
contents in P@. If the file was em~ty,
otherwise it is FALSE.

BEWRITE(F) positions the file at the beginning, and
EOF{F) to TRUE. This allows the file to be written.
previous information in the file will be lost.

sets
Any

I
I
I
I
I
I
I
I
I
I
I
j

I
I
I
I
I
I
I
I
I
I

PASCAL/USC User's Guide

1. Due to the nature of MTS line files, a call tc
REWRITE will perform an MTS $EMPTY command to empty
the file. If a line number range is specified,
however, the file is no_t emptied. When line number
ranges are used it is the responsibility of the
programmer to see that unwanted lines will net remain
in the file.

2. Standard PASCAL has no provision for extending a
file except to read all lines of the file.

3. Standard PASCAL requires that all files except
INPUT be RESET or REWRITEn before use. PASCAL/UEC
makes no such requirement.

20

PASCAL/USC offers extended forms of RESET and REWRITE which
accept a seccnd parameter. The parameter may be:

a. An integer value in the range 0 •• 19 representing an MTS
logical unit.

b. The name of an MTS logical unit:
'INPUT'• 'OUTPUT'•

1 SEBCCM 1 , 'GUSE R 1 ,

Note:

i. The trailing blank is required.

ii. INPUT and OUTPUT replace SCARDS and SPRINT,
respectively.

iii. SPONCH is not currently available.

c. An MTS file name:
e.g.,

Note:

'-ABC I

'FILE1 '
'USER:DATAFILE'
'-XYZ(55,128)+QRS~IC '

i. The trailing blank is required.

ii. The MTS logical unit names listed above cannot
be used as a file name unless a line number
range or modifier is specified.

PASCAL/OBC User•s Guide

1. REWRITE(F,'FILE(*L+1) 1) may be used to extend
file FILE without first reading through the entire
file. However, a later RESET~) will position Fat
the first adggg line, not the first line of the file.

21

The functions described in this section have been added to
facilitate the interface with MTS line files.].£:n~ of them are
standard.

D.ELFTELIN E (F, line) f .irst POSITIONS F to the specified 1 ine,
then deletes the line from the file (if it exists), and leaves
the file POSITIONed at line. After a DELETELINE either a GE! or
a PUT is valid. Readinq/writinq will beqin at the specified
line.

LINELENGTH(F) returns the length of the last line read from
file F. This is the length of the line as it appEar€d in the
file. If Fis a TEXT file being used fer output, LINELENGTH(F)
is t he length of the current line (not including any character
still in Fw which has not yet been PUT to F).

LINENO(F) returns the integer line number of the last line
read or written to file F. This line number is the MTS line
number times 1000.

OPENED(F) returns TRUE if a RESET, REWRI!E, GET, PUT, or
POSITION has been issried to this file, and it returns FALSE
otherlllise.

POSITION(P,line) is a procedure which positions file F to
the specified line. Fellowing a POSITION, EOF (F) remains
unchanged, hut either a GET or a PUT is valid. If the specified
line dces not exist, a GET will retrieve the next line cf the
file, or will set EOF (F) if "line" is beyond the end of the
file. In all other cases, EOF(F) will be FALSE following a GET,
and LINENO may be called to determine whether "line" actually
existed. After PUT is called following a POSITION, ECF(F)
always will be TRUE.

PASCAL/UBC User's Guide 22

When POSITION is used with TEXT files, several additcnal
acticns occur:

1. If the file has been used for
POSITION, the current huff er
LINELENGTH (F) >O.

output prior
is written

2. After the PO SIT ION, EOLN (F) is TRUE.

to the
out if

1. If OPENED (F) is FALSE (the file has not been
used). a call to LINENO(P) or LINELENGTH(F) will cause
an addressing exception.

2• RA~CA1 Libraries, Standard Functions .!!.!!.Q Procedures

Users may reference functions in the standard PASCAL
library PASC:LIB, libraries of their own, and functions in any
of the system libraries.

The PASCAL library includes system routines for perfctminq
input/output plus various other procedures and functions. The
source programs for CS:PASCALLIB reside in files PASC:LIH.S and
PASC:MON.S and these files should be examined to determine the
library's precise contents. currently PASC:LIB.S includes two
random number generators: RAND, RANDO; three exponentiation
functions: PWR (integer raised to an integer fOWer), RPWR (real
raised to an integer power), and RRPWR (real raised to a real
power); a routine (SKIPBLANKS) to skip over blanks in the
standard input; and the SNAPshot and post mortem dump packaces.

All routines in CS:PASCALLIB have names beginning with the
three characters ttpA#". To avoid possible conflicts, the user
should avoid using these three characters as the initial
segments of any external routine•s name.

You may include FORWARD declarations for all the standard
PASCAL library routines by saying

$CONTINUE WITH PASC:LIB.5(100,199) RETURN

PASCAL/UBC Oser•s Guide 23

In additicn to the run-time support routines mentioned
above, the standard library contains the assembly language
PASCAL monitor PSCLMON#. The monitor performs various I/0
tasks, acquires and releases NEW space, interfaces with MTS,
etc. The source for the monitor resides in PASC:MON.S.

Users may wish to construct their own libraries of PASCAL
programs in oh;ect form to save the ccst of repeated
compilations. Object modules may be accumulatEd £rem everal
compilations and ~laced in a single file. ~fter a recompilation
of several routines, the MTS program *ROBJ may be used to
replace obsolete modules. For selective loading cf routines the
MTS routine *SGEN may be used to precess the file, forming an
MTS library. *RCBJ and *SGEN documentation may be found in UBC
LOADER [6 J.

To create a PASCAL library ·qi ven a scurce program in
MYSOURCE one should run the compiler as follows:

$RUN CS:PASCAL SCARDS=MYSOURCE SPUNCH=MYLIBRARY

where MYLIBBABY is the name of the litrarv file. After the
11 END; 11 of the final procedure, a period "•" indicates the end of
the Eource program. (A main program may be present if aestred.)
Data , if a n y , ma y beg in on th e first 1 i n e f o l lo w i n q t h e " • " •

Cne then might use the newly created library as follows:

$RUN CS:PASCAL SCARDS-=MYPROGRAM+DATA PAR=LINK,LI=MYLIERARY

Each procedure (function) included in a libcary (or those
compiled separately and 1 ater linked to qet her) mu st sa tisf v the
following restriction:

"Each procedure (function) should be compiled in thP
presence of identical declarations (LABEL, CONST,
TYPE, VAR)."

This restriction may be relaxed somewhat -- CONST and TYPE
declarations which are not used in the current ccmpilation need
not be present. However, it mcst often will be simplest to
maintain a file containing all requisite global declarations and
$CONTINUE WITH it prior to each compilation. This will ensure
that the above restriction always is satisfied.

PASCAL/USC User's Guide 24

If the global VAR section is totally absent, the resultinq
library may be used with ~fil PASCAL program.

Due to restrictions imposed by MTS the names of every
external procedure or function which is to be separately
compiled must be unique in their first seven characters. No
warning is issued if this restriction is not heeded.

2•2 ~1~DQ~£g Functions ~B£ Procedures

The following tables list those routines whose actions are
modified from the corresponding routines in Standard Revised
PASCAL and these routines which are unique to PASCAL/UBC.

Modified Routines

HALT INSFRT PACK READ READLN RESET REWRITE UNPACK WRITE
WBITELN

DECR DELETELINE INCR LINELENGTH LINENO MARK MAX MIN OPENED
EOSITION RELEASE SNAP SOBSTR

Refer to the Index for descriptions of the actions of all
of the above routines.

"

PASCAL/UEC User•s Guide 25

There are numerous differences between standard revised
PASCAL [1,2] and the PASCAL/UBC language precessed by this
compiler. These are described below, in section-by-section
correspondence with the PASCAL User Manual and Report r11. In
the discussion below:

R

E

D

C

{Restriction). A violation or conflict with
Standard Revised PASCAL. Prcqrams may require
modification to work under PASCAL/UBC.

(Extension). An upwards compatible extension to
Standard Revised PASCAL.

(Deviation). A dev ia tio n from standard Revise a
PASCAL which may or may not require modification
to work under PASCAL/UBC.

(Clarification). The specification of somethinq
the User Manual or Report leaves undefined or
unspecified. Such items may or may not require
modification to work under PASCAL/OBC.

Section 1 - Notation and Vocabulari

E Names may be composed of any number of upper or lower
alphabetic characters, the digits O - 9, and underbar
the BAR option is'+'). The first character of a name
be alphabetic (or_).

case
(if

must

C PASCAL/UBC only retains the first 10 characters of names;
thus the user must ensure that he forms unique names within
the first 10 characters. Na~es of external functions and
procEdures must be unique within their first 7 characters
due to restrictions imposed by MTS.

E

E

ASCII braces are now sufported as comment delimiters.
Comments also may be delimited by pairs of double quotes
"<comment>"• (* *) are the standard comment symbols.

The dollar sign ($)
The text between
proper.

is used to delimit compiler options.
pairs of $•sis ignored by the compiler

PASCAL/UEC User's Guide 26

R The biliteral ,= and the ~ord VALUE are special syrnbcls,
as are I,&, and,.

E Square brackets to define array subscript expressions may
be replaced by parentheses. Alternatively, they roay be
replaced by the bili tera ls (. and •) •

D An uparrow to denote pointer and file references is
replaced by the symbcl@.

E Brackets
biliterals

to define
(. and

powersets .) . may be replaced by the

C The compiler reads columns 1 to 100 of each input line; the
rest of the line is ignored. The ccmpiler may be
instructed to read only columns 1 to 72 through use of a
ccmpiler option.

E The symbols &, I, and ,
and NOT, respectively.
place of <>.

may be used in place of
The biliteral ,: may be

AND, OR,
use a in

Section 2 - The ConceRt of Data

R Integ€rs have the range 2-31 •• 231-1.

R Reals are defined according to the IBM 360/370 lcnq real
floating point format. A 5 4-bi t ma tissa is used J:rov id ing
a precision of approximately 16 decimal digits.

E Hexadecimal quantities may be
represents the decimal value 76).
treated as being of type INTEGER.

specified (e.q., #4C
Hexadecimal numbers are

Section 3 - The Progr_am Heading and the Declaration J_grt

D Program headings, i.e., 'PROGRAM <identifier>; •, are not
currently used. FBOGEAM is not a reserved word in
PASCAL/UBC.

E Initial values may be declared for simple qlobal variables
and one-dimensional global arrays. SETs may not be
initialized using VALUE. This facility is relatively
untested and is NQI rEcommended. Almost nc tvpe checking
or bounds checking is done. £~.Y.§~:! __g.!!!£!~! The values are
declared after the global VAR declarations. Any procedure
or function may have a VALUE section as well as the main
routines. Initialization occurs g~£h !i.!!J,g the procedure or
function is entered. The syntax in BNF is:

PASCAL/UBC User's Guide

<value-part>::= <value-part> <value-assigment>
I VALUE <value-assigment> ;

<value-assigment> ••-<identifier>= <constant>

27

I <identifier>= (<constant-list>)

<constant-list>::= <constant-list>, <dup-const>
I <dup-const>

<dup-const> . ·­.. <constant> I <integer>* <constant>

Section 4 - The Cc~£~ gt Jctj.Q!!

See below: section 9.2, subpart "Section 9, Statements".

No changes.

E The word PACKED is ignored.

R The UNPACK and PACK procedures may be used for their data
transfering functions between all (length-) com ~a tible
pairs of arrays. No actual (un)packing occurs as data is
implicitly "packed" on byte addressable machines such as
the IBM 360/370.

Section 7 - Record TJ:J!es

c PASCAL/UBC does not detect duplicate labels in the variant
portions of record declarations.

Section 8 - The Set I.I.I!g§

R Restrictions on sets are: the base type can have a maximum
of 256 values. Subranges of integers must te between O ~nd
255. CHAR is now allowed as a base type.

PASCAL/UBC User•s Guide 28

Section 9 - File T~Ees

E The standard functions RESET and REWRITE may be applied to
any files (including INPUT and OUTPUT).

R Files may not be com~onents of ARRAYs, RECCRDs, or FILEs.

R The NEW function cannot (yet) create a file.

Section 10 - Pointer Ty£es

R The function DISFOSE in the cld standard does not €xist.

E standard procedures MARK and RELEASE have been added to
maintain the 'NEW' stack. Each takes an inteqer variable
as an argument. Execution of KARK stores the current stack
fainter in the argument. Execution of RELEASE restores the
stack pointer to the location indicated by the arqument.
The argument must not be used for any other purpose in the
program. These are dangerous functions since ~cinters may
no longer be valid following a RELEASE.

section 11 - Procedures and Functions

E PACKED is ignored in PASCAL/UBC.

R Any procedure/function which is used before it is defined
must be declared with all its parameters as 'FORWARD'
before its first use. Then when its body is defined the
parameter list and result type must be omitted.

E Separate compilation of global procedures/functions is
allowed. If the compiled procedure (s) is (are) to be
ccmbined with other procedures, then t .he q lob a 1
declarations for all compilations must be identical.
Procedure and function declarations for any qlobal level
procedures or functions which are not included in the
compilation must be declared FORWARD in order to generate
the proper argument lists an~ to allcw the external
references to be resolved. There must be a"·" at the end
of the program. (The main program -- from BEGIN to END
may be omitted.)

E A procedure or function may be declared 'FORTRAN' in which
case the compiler will produce the correct calling sequence
to the named FORTRAN subprogram. Thus the entire FOR1RAN
library is available to the user, as are Assembly Language
and other routines ~ritten using standard FORTRAN callinq
conventions. An optional string may follow FORTRAN, (e.g.,
PROCEDURE PBOC1; FORTRAN I FNAME';), in which case t.he
FORTRAN routine FNAME will be invoked as a result of any
PASCAL reference to FBOC1.

PASCAl/UBC User•s GuidB 29

E A procedure or functicn may be declared 'EXTERNAL'. At the
top level, this has the same effect as 'FOEWARD'. But used
in an inner procedure EXTERNAL will force the compiler to
reference the routine as if it were declared at the top
level (as an outermost procedure) so that an inner
procedure may refer to a separately compiled top level
procEdure which is not present during the current
compilation.

Section 12 - In£Ut and Oui.Qut

E PASCAL/UBC has a special character, EOL, designating the
end of a line.

D If Fis a TEXT file, then F@=EOL initially.

C Note that even when F@=EOL, READ(F,C) will set C to tlank
as in standard PASCAL. WRITE(F,EOL) may be used instead of
WRITELN (F).

E PASCAL/UBC recognizes READ (F,S), wheres is of type ARRAY
(i •• i) OF CHAR for any i and j. This reads characters from
the current line and places them into S (i), S (succ (i)),
••• , until (j-i+1) characters have been read. If, however,
an EOL character is encounterEd before input is complete,
the remainder of Sis filled with blanks. In this case F@
is the EOL character.

E WRITE(F,C:W), where C is of type CHAR, will left ;ustify c.
SimilaLly, WRITE will left justify strings.

E READ(F,X) and WRITE(F 1 X), where F is not TEXT are both
recognized.

E RESET {F,G) and REWRI'IE (F ,G) both accept an optional second
argument, G, an ARRAY(••) OF CHAR which contains the name
of an MTS file to be dynamically associated with the PASCAL
name F. The file name must be left justified and have at
least one t~ailing blank. In both cases, remaining output
is sent to file F, Fis closed, Fis associated with the
file G, and then F (G) is opened for readinq or writing,
respectively. Alternatively, G mav be an integer value in
the range o •• 19, in which case G refers to the
corresponding MTS logical unit.

Section 13 - PASCAL 6000-3.4

R Segmented files de not exist, nor do the associated
standard functions EOS, · PUTSEG, GETSEG.

PASCAL/UBC User•s Guide 30

E PASCAL/UBC provides access to "external 1=rcced uresH throuqh
use of the FORWARD, EXTERNAL, and FORTRAN declaraticns.
EXTERN does not exist in PASCAL/UBC; however, its effect
may be achieved by using a FORWARD or EXTERNAL declaration.

R No program headings are allowed.

D The standard identifier MAXINT is defined as

CONST MA.XIN'I = 2147483647; (* = 23l-1 *)

R The statement IP ABS(I) > MAXINT THEN WRITE(' TOO BIG•) is
essentially useless because nc integer may be larqer than
MAXINT. The statement IP I< -MAXINT THEN••• may be
useful since the smallest integer possible in the
PASCAL/UBC implementation is -MAXINT-1.

D The type REAL is defined according to the IBM 360/370 lonq
real floating point fcrmat. A mantissa of 54 bits is
provided, corresponding to approximately 16 decimal digits.
The maximum absolute value is approximately 10+ 75 , and the
minimum non-zero absolute value is approximately 10- 75 •

D A value of type CHAR is an element in the EBCDIC character
set. 256 distinct values exist, although many are not
printable characters. EOL is defined as CHR(O).

R The word SEGMENTED
PASCAL/UBC.

has no special significance in

E The maximum cardinality of the base type of a set is 2~6.

c The standard types ALFA and TEIT are predefined as

TYPE ALFA = .ARRAY (1 •• 10) OF CHAR;
TEXT= FILE OF CHAR;

•

PASCAL/UBC User's Guide 3 1

D The entire MTS library is available to the user via the
FORTRAN declaration. Thus the pcedefined procedures and
functions defined in this section are available as fellows:

PASCAL 6000-3.4

DATE
HALT
lINELir!IIT
MESSAGE
TIME
CARD
CLOCK
EXPO
UNDEFINED
EOS

PASCALLUBC

UBC DATE
HALT
Use $RUN XXX P=yyy
Ne corres~onding functicn exists
UEC THIE
Not (yet) iirplemented.
UEC TIME
Not {yet) inplemented.
Not implemented.
Net implemented.

PUTSEG, GETSEG, and the corresponding extensions
to REWRITE and RESET do not exist in PASCAL/UBC.

Section 14 - How to use the PASCAL 6000-3.4 System

R Since DISPOSE has been removed from the list of "standard
functions", it is not supported at UBC.

C A jump intc the
outside its range
produced.

range of a POR or wI!H statement from
is undefined; no error message is

E Function LINENO{file) returns the line number of the most
recently read line. This function must not be used before
the first read from the file. The line number is the MTS
line number times 1000.

E Integer and real valued maximum and m1n1muff functions have
heen implemented: MAX(a1,a2, •••) and MIN(a1,a2, •••). 'Ihese
functions accept an arbitrary number of integer and/or real
arguments, and will return an integer value if all
arguments are integers or a ~eal value if not •

E A limited substring function has been added:
where V is a constant or variable, I is an
expression, and L is a £Qnst~!!.!• V must be
characters. The result is the su bstr in g cf
at character I and is L characters long. If
and B, then A<=I<=(I+L-1)<=B.

SUBS'IR (V ,I,L)
integer valued

an array of
V which starts
V has bounds A

PASCAL/USC User's Guide 32

E The standard variable RCODE is predefined to be cf type
-3276 8 •• 32767. It functions as a "r et urn code" and is
available as a "global variable" to all PASCAL routines.
Routines declared FOBTRAN will automatically set RCODE to
the appropriate return code value prior to return to their
invoking PASCAL procedure.

&•1 Differences .2M Extensions frg.J!! .th~ E~.22£.!:

Section 3 - Notation, Terminolog,1, and Vocabular_y

D The character set used by PASCAL/UDC is the IBM
character set, with one modification: There
character EOL=CHR(O). This character causes a new
be started on output to a TEXT file. It follows
character on an input from a TEXT file.

c PASCAL/USC <letter>•s now include lower case.

E Alternate symbols
. . may be used for . .
-,: " " " II <>
(. " II 11 " [.) " n 11 " 1
& " 11 11 " AND

I " " If " OR
-, 11 II 11 " NOT
a replaces t

R All reserved words must appear in upper case.
PBOGBAM is not reserved.
VALUE is reserved.

EEC DIC
is the

line to
the last

E Comments may be delimited by braces, doutle quot.es ("), or
the biliterals (*and*).

E Dollar signs ($) are used to delimit compiler options.

Section 4 - Identifiers,]Y~.£~£.§, and Strings

E " - " may appear as a <letter> in an identifier.

R Only 10 characters of an identifier are significant.
Procedure and function identifiers must differ in their
first 7 characters fer proper program execution.

D INTEGERS are restricted to the subranqe -231 •• (231-1).
REALs are restricted in magnitude to approximately
±1Q+7s •• ±1Q-75 and o. Approximately 16 digits of precision
are retained.

~

PASCAL/UBC User•s Guide 33

R String constants must fit on one source line.

E Hexadecimal numbers may be referenced by preceding them
with "#tt. These numbers are treated as if they had inteqer
type.

Section 5 - Cgnstant. Definitions

E The definition CONST NULL=NIL; is permitted in P~SCAL/UBC.

Sect.ion 6 - Data T,1.E,e Definitions

E The word PACKED is ignored.

R ARRAYS, FIL Es, and RECORDS may net have FILES as
comfonen ts.

R SETs are restricted tc a subrange o •• 255, and to scalar
types having at most 256 elements.

E Parentheses may be used instead of brackets in array
declarations.

C A type identifier may only be referAnced after (not inside)
its declaration. The only exception is a type identifier
in a pointer declaration (@typeid). This identifier can he
defined after such a use.

E There is the standard type ALFA:

TYPE ALFA= ABBAY (1 •• 10) OF CHAR;

Section 7 - Declarations and Denotations QI Y2£1~B1.fil!

E Parentheses may be used instead of brackets in a.rra y
1:eferences.

E There is a· standa·rd variable RC ODE. It ~ill contain the
return code upon return from FORTRAN routines. It also may
be used with in a PASCAL program.

E A pointer
followed by

~ill be dereferenced
a"•" and a field name.

automatically if it is

section 8 - ExJ?ressions

E The square brackets "[n and "l" in <set> may be replaced by
"(." and "•) "•

PASCAL/DEC User's Guide 34

R The set <element> form 0 <expression> •• <expression>" is not
implemented.

c No range check is made on intermediate results of
expression ccmpu taticns.

c No range check is made on set elements.

R A label may have at most four digits. (This adopts the
suggested restriction at the end of the Report.)

F. An expression having type ARRAY ••• OF CHAR mav be assiqned
to any ARRAY ••• OF CHAR variable which is at least as lonq
as the expre~sion. Blank extension occurs en the riqht if
necessary.

c A VAR actual parameter must have the identical type as the
corresponding formal parameter. One cannot be a sutranqe
of the other.

c A GOTO into the range of a FOR or WITH from outside the
range bas unpredictable results. No warning message is
given.

E A 11 ; 11 may optionally precede "ELSE" in an IF statement.

E The symbol fl()" may appear as a label in a CASE statement.
The corresponding statewent is executed if the value of the
expression does not appear in any ether label of the
statement.

C If a CASE statement is executed and the expression has no
corresponding constant value an error occurs (unless there
is a<> label). If the CASENEXT option is off, the next
statement is executed with no message. If the CASENEXT and
RANGECHECK options are beth off and there is no <> latel,
no Iange check is made on the expression. Label>

R CASE labels must lie in the range -32768 •• 32767.

c In PASCAL/UBC the method of statement selection for CASE
labels depends on the density of labels within their
numeric range. Thus it is ;:ossible to have only label~ 1:
and 1000: without undue memory overhead.

C In a FOR statement, if the initial value is gceater than
the TO value (less than the DOWNTO value), no assignment is
made to the control variable. Otherwise, its value is the
limit value. The control variable thus is accessible
outside of the loop after normal loop termination.

..

PASCAL/USC User•s Guide 35

E A WITH statement may contain a pointer to a record.
will be dereferenced automatically.

It

Sections 10 and 11 - Procedure Function Declaration

R A procedure or function declaration must appear before the
first reference to that procedure or function. Recursive
routines still may be defined by separatinq the procedure
(function) heading from the i::rocedure {function) bo,iy.
When this is done, an alternative form of <procedure
declaration> is used:

E

E

<procedure heading> FORWARD

(That is, the word FORWARD replaces the code block.) An
analogous extension is made for functions. The code block
is presented later, preceded by a procedure (function)
introduction:

PROCEDURE <identifier>; <block> or
FUNCTION <identifier>; <block>

Note that the parameter list is Q2i repeatEd with the cod~
body.

FORTRAN-compatible routines may be called usinq the
declaration:

<procedure heading> FORTRAN or
<procedure heading> FORTRAN '<name>'

VAR parameters should be used when the routine returns a
value in a parameter. If such a result is irrelevant, a
value parameter may be usEd. An optional strinq may fellow I
FORTRAN designating the name to be used in the ESD entry I
for the specified routine. For example, PROCEDURE FOO; I
FORTRAN I ALIAS'; I

Separate compilation of procedures and functions is
possible. Such a procedure ·(function) may be invoked by
including a FORWARD declaration in the main program block.
The user is responsible for seeing that the procEdure
(function) declaration used while compilinq the proqram is
identical to that used in referencing the program. If a
separately compiled procedure refers to any main prcqram
variables, the CONST, TYPE, and VAR sections must be
identical with those in the calling program.

E If an inner procedure refers to a procedure which is not
present in the current compilation the procedure should be
declared EXTERNAL rather than FORWARD.

PASCAL/UBC User's Guide 36

E The RESET and REWBITE procedures opticnally may take a
seccnd parameter.

R The NEW (P) procedure will not work pro per 1 y when P is a
pointer to an object of type FILE.

R The DISPOSE procedure found in some editicns of the Manual
and/or Report is not implemented.

No argument of PACK or UNPACK needs the word PACKED in its
declaration.

E PUT(F) is valid when EOF(F) is false if there has been no
prior use of F, or when POSITION has been called prier tc
the PUT.

E Additional functions:

INSEFT(I,J,K:INTEGE'R): INTEGER
The result is (I*2**J ORK). J must be non-negative.
A full-word logical OR is performed.

LINELENGTH(F:FILE) : INTEGER
The integer result is the length of the last line which
was obtained via GET or READ.

LINE NO (F: FILE} : INTEGER
The integer result is
(printed line number*
file F.

the MTS internal line number
1000) of the last line read from

MAX(a1,a2, •••) and MIN(a1,a2, •••).
These functions accept an arbitrary number of inteqer
and real arguments, and will return an inteqer value if
all arguments are integers or a real value ctherwise.

OPENED(F:FILE) : BOOLEAN
Returns TRUE if F has been opened and FALSE otherwise.

SUBSTR(S,F,L) : ARRAY (1 •• L) OF CHAR
s is a character string, F ·a scalar,
£Qil£!~rrl• The result is the substring
with the character at position F
characters.

and L an in teg_g_!:
of S startinq

and containinq L

PASCAL/UBC User's Guide 37

E Additional procedures:

DECR(V:variable)
V is a variable of any simple scalar type. DECR(V) is
equivalent to: V := PRED(V).

DELETELINE(F:FILE; N:INT~GEH)

HALT

F is a file and N is an MTS line numter. The file is
positioned at the specified line and the line is
deleted (if it was present). 'Ihe file is l eft
positioned so that thA next GET, READ, POT or WRITE
will occur beginning at the specified line.

stops execution and returns to the system.

INCB (V: variable)
V is a variable of any simple scalar type. INCR(V) is
e qui va 1 e n t to: V : = S UC C (V) •

MARK (VAB N:INTEGER)
Saves the current NEW stack position in N.

POSITION(F:FILF; N:INTEGER)
Fis a file and N is an MTS line number. The file is
positioned so that the next GET, READ, POT, or WRITE
will occur beq~nninq at line N. If line N dceEn't
exist in the file, the next line will be used. LINENO
may be used to deter~ine the actual line which was
accessed.

RELEASE(N:INTEGER)
Bestores the NEW stack to the state indicated by N.
All allocated storage made subsequent to the MARK(N) is
now inaccessible. Note that this procedure is
§Xt£f~~l.Y dangerous because pointers may now refer to
inaccessible memory.

SNAP (N: INTEGER)
Invokes the snapshot package and requests that the last
N activations be display~d. N should be a positive
integer. If no arguments ace given, the default value
is N=1. A display of all activations back to the
PASCAL mcnitor may be obtained by saying SNAP(MAXINT).

Section 12 - In,e11 t and OUtEJ!t

C READ and WRITE now may be used on both TEXT and non-TEXT
files.

PASCAL/UBC User's Guide 38

E READ may be used to read a character string. Warning: the
input line will be extended with spaces to fill any number
of string variables. READLN should be used to start a new
line.

E A WRITE of a REAL number uses exponential format when :W:D
is specified and Dis negative. The absolute value oft is
the number of digits to be printed to the right of the
decimal point. If :D is not specified, fractional or
exponential format is selected based on the size of the
number.

C The output generated by a WRITE is right justified for
reals and integers, and is left justified for all ether
types.

D When EOLN(P) becomes TRUE, F@ will have the value EOL
instead of • •. :Exe cut ion of READ (F, C} where c has the
type CHAR, will set C to 1 1 as in standard PASCAL.

C !11 blanks are eliminated from the end of input line~ of
TEXT files.

Section 13 - Programs

R Program headings are not implemented.
11 <block> •" •

A proqram is

E Procedures and functions may be separately compiled by
eliminating the <statement part> from the proqram <blcck>.
The period is still required.

E A <value part> may follow the <variable declaration fart>
to provide initial values for simple variables and
one-dimensional arrays. SETs may not be initialized with
VALUE. This feature is relatively error-prcne, and its use
should be avoided. The syntax is:

<value-part>::= <value-part> <value-assigment>;
· I VALUE <value-assigmen t> ;

<value-assigment> ··-<identifier>= <constant>
I <identifier>= (<constant-list>

<constant-list>::= <constant-list>, <dup-ccnst>
I <dup-const>

<dup-const> ::= <constant> I <integer>* <constant>

PASC!L/UBC User•s Guide 39

A check for compatibility with standard PASCAL may be made
by specifying the option $STANDARD+$. Use of the extensions
described above are generally marked as errors under this
opticn. Differences are no:t marked, and restrictions are still
in effect. A few extensions are _not flaqqed:

Alternate symbols, such as & and" still may be used.

10 characters are still used to distinguish identifiers,
instead of 8 as suggested at the end of the Re~ort.

The use of PACKED variables is not distinguished from the
use of unpacked variables.

A call to WRITE having a :D expression will not check for
the use of a negative value to produce exponential format.

The use of the RCODE variable is not flagged.

Some built-in procedures found in other implementations
also are not flagged.

]. Miscellaneous ImElementation]Q1~2

A complete descripticn of the PASCAL/UBC ireplementaticn may
be found in the Isplementation Guide r11. These notes are
designed to aid the casually interested usAr.

1■ 1 Communication ~ith fQ,ETRA!!

This section is designed to aid the uEer who wishes to
write PASCAL programs which communicate with routines written in
other languages (e.g., FORTRAN, ~ssembler).

PASCAL/USC User's Guide

PASCAL/UBC uses the following storage allocations:

IlE§

CHAR
BOOLEAN
INTEGER
SET
REAL

scalar and subrange types
•character string•

1
2
4

2-32
8

2,4
length of strinq

40

Note that if the BYTALLOC option is on, scalar types may have
length 1. Scalar, subrange, and set types are aligned on
half/full/double-word boundaries unless the ALIGN option is on.

The constant FALSE is represented internally by the
halfword #0000; the constant TRUE is repres€nt€d internally by
the halfword #0001.

PASCAL files are not compatible with FORTRAN or MTS files.
They should not be used as parameters. Their internal
representation is subject to change.

PASCAL will generate a standard FORTRAN calling sequence if
the word "FORWARD" is replaced with "FORTRAN". In ether
re~pects the procedure heading is standard. Either value er VAR
parameters may be passed to FORTRAN (Assemblv Language, etc.)
and will work correctly. I.e., if the called program modifies a
value parameter, the corresponding actual parameter in the
PASCAL program vill ~Q! be changed. Procedure parameters should
not be passed, although predictable resulls will occur if the
procedure lies in an outer nesting level. Note that an
interface is generated for all routines declared FORTRAN, so
these routines should not be passed out as parameters.
{However, they may be passed as parameters to other PASCAL
procEdures.)

When a FORTRAN routine returns to PASCAL the predefined
variable RCODE is set to the value of the FORTRAN return code.
Thus PASCAL may distinguish between a RETURN and a RETURN i.
(And similarly, PASCAL may obtain the return code value set by
any system routine which is accessed via the FORTRAN mechanism.)

The names of all FORTRAN routines and all external routines
declared FORWARD must be unique within their first 7 characters
due to restrictions imposed by MTS.

"

PASCAL/UBC User's Guide 41

].2, Communication }!:!!.h Assemblj Lan_g_ya_ge

~n Assembler program which has been called by a PASCAL
prcgram can, in turn, call another external PASC~L procedure so
long as certain rule~ are fellowed. The calling routine must:

1. Restore registers 2 and 12 from its callinq program.

2. use register 2 as a base register fer a DSECT. The
DSECT contains the foll6wing fields:

SAVE
RESULT
PARAM1

DS
DS
DS
DS

18F
F . ·• .
•••

only ~resent for functions

~- Store register 12 in SAVE.

b. If the routine is a function, place the address of
the result field in RESULT. Results from PASCAL
functions are placed directly in memory.

c. Each parameter, in the order declarEd. For a VAR
parameter, use DS F and insert the address of the
actual parameter. For a value parameter, use a DS
for the variable itself, and place the value cf the
variable in this field. All 2-, 4-, and 8-byte
scalar, set, and pcinter fields are half-, full-,
and double-word alignEd, respectively, unless the N
option was on when the program was compiled. The
parameters app~ar in the order in which they are
declared.

3. Use registers . 13, · 14, and 15 as usual. The external
name consists of the first 7 characters of the PASCAL
rot1tine name, followed by enough "$"' s to ma .k e the
total name length 8. (E~g., FN becomes FN$$$$$$, and
PASCALPROG becomes PASCALP$.)

4. On return, register 15 will ~£1 contain a return code.
A function result will be in the result field, not in
register O.

To call a PASCAL main program, invoke the PASCAL monitor at
entry point PSCLMON#. An alternate (completely equivalent)
entry point is PSCLMN.

The names of all Assembly Language routines must be unique
within their first 7 characters due to restrictions im~osed by
MTS.

PASCAL/UBC user's Guide 42

An Assembly Language routine may send tack a return code to
its parent PASCAL program by setting register 15 in the usual
vay during the exit sequence. The parent PASCAL proqram may
retrieve the value of the return code via the RCODE standard
variable.

PASCAL/UBC User•s Guide 43

This section contains a Qreliminary description of the
snapshot and post mortem dump packages. The packages are
currently under development, and are subject to change with
little notice. I~ interactive facilities are currently
available (even though the documentation below impliEs that they
are).

Usually when a run error occurs the PASCAL monitor is
invoked and it transfers control to a special run error
supervisor. This supervisor allows NERR run errors to occur,
after which it calls the standard HALT procedure. If a
compil~tion is done with the Debug cption turned on (this is the
default) special tables are produced which allow PASCAL to print
an informative display of all currently active variables with
their associated values each time th€ run errcr supervisor is
activated.

If one is running interactively and Debuq is on, the run
error monitor will instead of producing its standard display and
continuing execution, enter an interactive loop. It then will
process user requests for the display and/or modification of any
active variable(s), after which the user may continue (or
terminate) the execution. This interactive feature may be
disabled by running with PAR=EATCH.

The snapshot package may be invoked directly by the user
via the standard
variables will be
running in batch
entered if running

procedure SNAP. The values of all current
displayed and execution will continue if
mode, or the special interactive loop will be
interactively.

SNAP takes an optional inteqer argument specifyinq the
number of levels back in the executicn stack which are to be
displayed. The default value · is one. Display of Al1 levels
back as far as the mcnitcr may be achieved by sayinq
SNAP(MAXINT). The integer argument should be positive; neqative
values are reserved for future use.

PASCAL/OBC User's Guide 44

Source errors are flagged ty the compiler as they cccur and
are summarized at the end of the compilation. Each erior is
flagged by a vertical bar (I } under the last character of the
offending word or symbol. Several errors may be detected at the
same position in the input leading to a sequence of two or more
vertical bars in a row. Each bar corresponds to its respective
error number printed on the right of the same line.

The text corresponding to each errcr number is shown below.
Not all error conditions have been thoroughly tested. The error
messages are sent to SPRINT. In many cases PASCAL is able to
generate correct code even though an error has occurred.
However, correct code cannot be guaranteed unless the source
program is error free.

1 Expecting •. 1

2 Number out of range
3 Identifier expected
4 Expecting'='
5 Field already defined
6 Illegal subrange bounds
7 Tag must be integer or enumeration
8 Identifier already defined
9 Expecting •) '

10 Expecting•:•
11 Procedure/function ill~qal
12 Identifier not defined
13 Subrange error
14 Expecting 'OP'
15 Expecting •.) •
16 More than 9 errors en a line
17 Variable not of record type
18 Type declaration error
19 Error in code generation
20 Expecting ', • or ') •
21 Division by zero ·
22 Only variables defined in this procedure may be initialized
23 Ignoring parameter list of FORWARD-declared proc/function
24 Procedure body must start with BEGIN
25 Statement expected
26 □ npacking illegal types
27 Variable not ARRAY ty~e
29 Expecting'('
30 File type illegal
31 Range error
32 Incorr€ct data type

PASCAL/UBC User's Guide

33 Expression too complicated -- all registers full!
34 Identifier not ARRAY type
35 Expecting constant
36 Incorrect index type
37 Non-standard PASCAL feature used
38 Variable in 'WITH' clause not of type record
39 Record field undefined
40 'ELSE' has no preceding 'IF', or extra • ;' used
42 Expecting factor
43 LabEl not defined
44 File error
45 Error in expression
47 Incorrect argument in standard procedure/function
48 Label value illegal
49 Closing string quote not found
50 Illegal data types fer previous operation
51 Illegal data types for this operation
52 Expecting•:=•
53 Illegal assignment
54 End of statement expected
55 Illegal use of symbol
56 Expecting 'THEN'
57 variable required for V!R param€ters
58 Expecting•;•
59 Expecting •no•
60 Parameter error
61 Expecting label
62 Illegal set elements
63 External procedures may not be forward declared
64 Illegal function tyfe
65 Too many files
66 Illegal arguments in 'NEW'
67 Expecting 'UNTIL'
68 Expecting 'END'
69 Illegal control variable
70 Expecting 'TO' or 1 DOWNT0 1

72 Bad repetition constant for VALUE
73 Too many array elements
74 Too many labels
75 Illegal option name
76 Expecting',' or 1 $ 1

77 Label redefined
78 Cede area exhausted
80 Expecting•,•
81 Too many procedures for 'load-and-go•
82 Load-and-go code area exhausted
83 ~issing 'FORWARD' or 'EXTERNAL' procedures
84 Object file not allowed at Student Terminal System
85 compiler error
88 Expecting digit
89 Undeclared type(s)

45

PASCAL/UBC User's Guide 46

90 Expecting type identifier
91 '@' does not follow pointer or file variable
92 Top-level procedure names are not unique in first 7

characters
93 Error in case label
94 'FORTRAN' not allowed at student terminal system
95 Illegal use of :W or :D
96 Label did not appear in a LABEL declaration
97 Input line too long
98 Unexp€cted end of file er.countered
99 Unimplemented feature

Runtime warning and error messages are printed on SPRINT as
soon as they occur. Generally recovery will be attempted NERR
times, after which the run will be terminated. Each message is
pr€ceded by '****' or '$***'• If the latter form occurs, no
recovery is possible and the run will be terminated immediately.
These messages are indicated by 1 $• below. The texts of the run
messages are relatively self-explanatory.

$ Keyword error in parameter list

An illegal option has been used in the PAR field.

$ Error in file assignments

An erroneous file assignment has been attempted in the PAR
field.

$ Too many files

Currently, at most 16 file assignments are allowed in the
PAR field.

$ PASCAL error return

An error has occurred in the PASCAL/UBC mcnitor during the
exit sequence. Please show your · p~oqram to Bary Pollack,
Department of Computer Science.

$ Operation exception

An attem~ to execute an unknown operation code has
occurred.

$ Priviledged operation exception

An attempt to execute a priviledged (system) operation code
has occurred.

PASCAL/UBC User's Guide 47

$ Execute exception

An attempt to execute an illegal execute instruction has
occurred.

* Protection exception

An attempt to branch to or change a memory location out~ide
cf your program area has occurred. This usually means that
a pointer is NIL. If the X and K options are off, this
also could mean a bad array reference or CASE index.

* Addressing exception

An attempt to access memory outside of your data area has
occurred. Possibly an attempt to use NIL as a pointer. If
the X and K options are off, it also could mean an
cut-of-bounds array access or CASE index.

$ Specification exception

Illegal use of a general or floating point register was
attempted.

* Data exception

A decimal instruction had invalid data fields.

* FixEd overflow exception

An integer has been computed which does not fit into one
full word. This condition is not normally checked. The
result is truncated. Sign inversion may occur.

* Fixed division exception

An attempt to divide an integer by zero has occurred.

* Decimal overflow

A decimal number has been domputed which does not fit into
the specified field.

* Decimal division exception

An attempt to divide a decimal number by Z€ro has occurred.

* Exponent overflew exception

During a floating point operation, an exfonent has been
developed which is greater than is allowed.

PASCAL/OBC User's Guide 48

* ExFonent underflow exception

During a floating FOint operation, an expon~nt has been
developed which is smallec than is allowed. This condition
is not normally checked; a zero result is used.

* Significance exception

Loss of significance has occurred during a floating Feint
operation. This condition is not normally checked; a zero
result is used.

* Floating division exception

An attempt to divide a floating point aumter by zero has
occurred.

$ Stack overflow

PASCAL 1 s execution stack is full. Rerun the proqram with
EX= a larger number.

* File not assigned

Reference has been made tc a PASCAL file which has no
corresponding HTS file assignment.

* Unable to open file

An illegal operation was attempted on a file before the
file was opened.

$ Get on EOF=TRUE I
I

A GET or READ has occurr€d while the file was empty, or t
while no data remains in the file. I

$ Input too long

A source program input line is toe
limit for PASCAL source programs
At run time, a line lcnger than the
will have been read. The line is
size.

* Put on IOF=FALSE

long. currently the
is 100 characters/line.

declared line lenqth
truncated to the buffer

A PUT or WRITE has been attempted on a file while pointing
somewhere other than the end of the file without a prior
call to POSITION.

I

r

~

PASCAL/UBC User's Guide 49

$ 'NEW' space overflow

The NEW stack is out of space. Rerun your program with
NEW= a larger number.

* Reset file failure

An attempt to RESET a file has occurred and the file ~ame
in question is improper or has no associated MTS file name.

$ Local time limit exceed€d

Your program has taken longer than was specified in the PAR
field. Choose a longer time and rerun your program.

$ Local page limit exceeded

A Student Terminal ·system
execution output than is
output format.

• Assignment value out of range

job has tried
allowed. Use

to print more
a more concise

An attempt to assign a value to a variable when the value
is outside the range declared for the variable.

* Index value out of range

An index to an array is outside the range permitted in the
declaraticn for the array.

* Case value out of range

A CASE expression has resulted in a value for which there
is no corresponding constant label.

* Rewrite file failure

An attempt to REWRITE a file has occurred and the file name
in question is improper or has no associated MTS file ~ame.

*Callon a formal procedure doesn't match actual parameters

The actual arguments to a function or procedure which has
been passed as a parameter do not match the types declared
for them in the formal argument declaration.

$ Compiler object file unavailable

The compiler is unable to write on the file specified for
its object cede (binary) output.

PASCAL/UBC User•s Guide 50

• Elementary function error

A (FORTRAN) elementary
illegal argument. E.g.,

function has been invoked with an
SQRT (- 1. 0).

1Q. Ref eren,ces

[1] Jensen, K., and Wirth, N.
PASCAL User Manual and .Rfilfil!:
Lecture Notes in Computer Science, No. 18.
Springer-Verlag, New York, 1974.

[2] Wirth, N.
SJstematic Programming
Prentice-Hall, New York, 1973.

[3] Russ e 11, D • L • , a n d sue , J • Y.
"Stanford PASCAL .360 Implementation Guide"
SLAC CGTM No. 89
Stanford University
Stanford, California, November, 1974.

(41 Computing Centre
11 UBC BATCH"
University of British Columbia
Vancouver, British Cclumbia, August, 1975.

[5] ccm pu ting centre
"UBC TERMINALS"
University of British Cclumbia
Vancouver, British Columbia, April, 1974.

[6] Computing Centre
11 UBC LOADER"
University of British Cclumbia
Vancouver, British Columbia, October, 1976.

[7] Pollack, B.W.
"PASCAL/UEC Implementation Guide"
Technical Manual TM??
Department of Computer Science
University of British Columbia
Vancouver, British Cclumbia, forthcoming.

PASCAL/UBC User's Guide 51

INDEX

$DATA .. 6
ALFA••••••••••••• •••••••••••••••••• •1 30,33
ALIGN .. • • • • • • • • • • • • • • • 7
ALIGNMENT OF STORAGE .. 7

41
41

8

ASSEMBLER ...
..•••.......•..•............. ASSEMBLY LANGUAGE

ASSIGNNftENT RANGE CHECKING BAR
BATCH ·• • • • • . . • • 1

• • • • • • • • •
EOOLIAN EXPRESSION EVALUATION

~,41
8

BUFFER VARIABLE • •
BYTE ALLOCATION ••••••••••••••••• •• 10

7
7

34
BYTEALLOC •
CASE CASENEX'l'
CHARACTER SET 7,34

25,32
COM~ENTS ••••••• ••••••••••••••••••••••••••••••• • • • • • • • • ·• • • • • • 2 5
COMMUNICATION WITH FORTRAN 39
COMPILER OPTIONS • • • • • 7
COMPILING A PROGRAM••••••••••••• 1,2

2 ... CS:PASCAL
CS:PASCALLIB .. 3,22
DEBUG •••••••••••• -.......... . • • • 7
DEBUG TABLES ..•................•.............. • • • • • • • • • • • • • • • 7
DEBUGGING••• • • • • 4 3
DECR ... • . • . • • • • • • . • • . 37 .. ·• ·• • • •••••••••••••• 34 DEFAULT CASE
DEFAULT OPTIONS ... 9
DELETELINE .. ••• • 21,37
DEREFERENCING OP POINTERS 33,35
DIFFEBENCES
DISPOSE
DUMP TABLE

................................... ..
....•........•.....•............. . .

•••••••••••••• 25
•••••••• 28,31,36
. . . . • • • • • . • • . • . 7

EJECT•••••••••• .. 7
34 ELSE

EOF
..

....................................... 81 •••••••••••• 10,13,36
10,13,29,30

10,13,38
EOL ••••••••••••••
EOLN ...
ERROR MESSAGES • • • • 44
EFRORS ••••••••• ... 46

5
1

•• 22
25

EX= ..
EXECUTING A PROGRAM••••••••••••••••• . . . -..

•• EXPONENTIATION
EXTENSIONS
EXTENSIONS TO READ

... • • • • • • • • • • • • • • 1 2
EXTERNAL••••••••••••••• 29,30,35

30 EXTERNAL PROCEDURES .
FALSE • • • • • • . • • • • • • • 40
FIELD-WIDTH•••••••••••• 15
FILE 28,33

5 FILE ASSIGNMENTS

PASCAL/USC User's Guide

PILES
FOR

... ...
FORMATTING OUTPUT

52

10
34
1.S

FORTRAN•••••••• . 28,30,32,3':,39 ... 28,30,35 FORWARD
FULLXREF
PU NCTION

... 8 .. • • • • • • • • • • 3 5
GET ••••••••••••••••••••• • ••••••• 10
GOTO
GUSER
HALT

... ~
•••••••••••••• 34 11,20
• ••••••••••••• 37

HEXADECIMAL NUMBERS 26,3.3
I/0 FUNCTIONS • • • • • • • • • • • • • • 2. 1
IF ... a a a e ♦ • • • • I • • • • 3 4
IL IST •••••••••• 8 •••••••••••••• 37 INCR
INDEXCHFCK ... 8
INPUT .. 9,11,20
INSERT••••••••••••••••••••••••••••••••
IN'IERACTIVE USE • • • •
LABEL••....•..•...•.•.•....•....••.•.......•....••...•.•

.

36
17
34

25
LA NG UAGE
LANGUAGE
LANGUAGE

DIFFERENCES
F:XTENSIONS
BESTRICTIONS • • • • • • • • • • • • • • 2 5

LI= ... • • • 5
22 • • • • LIBRA RIES

LINELENGTH ••••• • • • 2 1 , 36
21,~1,36 LINENO ...

LINK ••••••••••• 4,5
8 LIST

LOADNGO
MARK

.. . • . • • • 3, 5
• • • • • • • • • • • • 2 8

MAX •••••••••••• • •••••••••••••••••••••••••••••••••• 111 •••••• 31,36 ·• •• •• •• •• • • •• • .31.,36 MA XI MOM
MAX.INT
MCCARTHY

.. 30
8 .

MCCABTHY EVALUATION
MIN .. ·• ~1,36

31,36 MINIMUM ••••••••••••••••
MONITOR • • • • • • • • • • • • • • • • 41
MTS LOGICAL UNITS••••••••••• 11,20

5 . NERRS
NEW ••••••••••••• 5,28,36
NEW PAGE
NEWS

. 7
1

NON-'IEXT FILES••••• • • • • 4 • • • • • • • • • • • • • • • • • •
NOH1D
OBJECT MODULES ...

19
5
1
8
8

...................................... OBJFILE
OLIST
OPENED••••••••• • • • • • • • • • . • • • • • • • • 21
OPTICNS ••••••••••••• .
ORDER OF EVALUATION .
OU'IPUT • •

. ••••••• 4,7
8 9,11,20

:)

PASCAL/USC User's Guide 53

.. 27 PACK
PACKED
PAGF EJECT

. •••••••••••••••• 27,28,3.3
PAR FIELD••••••
PARAMETEBS •••••

• • • • • • • • • • • • • • • • • 7
• • • • • • • • • • • • • • • 4 ·• 40

5 PASC: MCN
PASC:MON.S
PASC: NEWS

..
.
• • .. • • • • • • • • • • • • • 2 3
• •

PASSING PARAMETERS
POINTER••••••••
POSITION•••••••
POST MORTEM DUMP

..................... 1
•• 40 • • • • • • •• • • •• • 33w35

•••••••••••• 21,36,37 • . • • • • •• • •• ·•. 5,22,43 PR:ECEDFNCE
PRIOBITY RULES

• • • • • • • • • • • • • • • • • • • 8
. 8 . PROCEDURE

PROGRAM •• •• •• ••
PROGRAM HEADING

.... • • • • • • • • • • • • • • • • • • 3 5 ·• . 26 .. 32 • 26 PSCLMN
PSCLMCN#

• • • • • • • • • • 41 • •••.•••••••• 23,41
PUT •••••••••••• . 10,36
RANDCM NUMBERS
RANGECHECK

. • 2 2 •••••••••••••• 34
RCCDE ••••••••••
READ •••••••••••
READLN •••••••••

.................................... 32,33,.40,42
11,29,37 18

28 RELEASE
RESET •••••••••• . 19,28,29 .. 36 •••••••••••••••• 25 RESTRICTIONS
BETOBN CODE
REWRITE••••••••

32 .. 40,42
••••••• 19,28,29 .. 36

.. RUN ERRORS
RUNNING A PROGRAM

• ••••••••••••• 46
. 1,2

1 , 1 1
30

SCAB CS ••••••••••••••••••••••••••••••••••••••
SEGMENTED
SEPARATE COMPILATION OF PROGRAMS••••••••••••
SEQUENCE•••••••

. ·•
•••••••••••••••• 23
• • • • • • • • • • • • • • • • • 8 SERCCM

SET ,. 11,20
26,27,30,33,3~ .. 38

SIZE••••••••••• .. 5
SKIP BL.A NKS • • • • .. • • • • • • • • • • • 2 2
SNAP 37,43 . ·• SNAPSHOT •••••••
SNAPSHOT PACKAGE
SOURCE CARD FORMAT

•••••••• ,. • ·• • • • • • 4 3
.

.
SOU.BCE ERRORS .

. 22
8 ... ·• .. .••••••••••••••• 44 . SPRINT

SPUNCH
STANDARD

.................... 1, 11
1

.
STANDARD PASCAL CHECK 8,3<;!

8 ~ 3 <:I
STANDARD PASCAL LIBRARY ••••• ■ •••••••••
STORAGE ALIGNMENT •••••••••••••••••••••••••
STORAGE ALLOCATION ••••••••••••••••••••••••••
STS
STUDENT· TERl!INAL SYSTEM ••••• ., •••••••••••••••

. .
• •
• •

.
• •

• • • .. • • • ? 2
.. • • • • • • • 7
.

PASC~L/UBC User's Guide 54

SUESTR • • • • • . . • • ... 31,36
SUBTITLE • • • • • • • • • • • • • • • . . • ••• •• ·•. 9
TEXT 30,33
TEX'!' FILES . . . •• • • • • • • • • • 10,38
TIME •••• • • • • • • •• . . . 5
TITI.E • • • • . . • • • • • • • • • • • • .. • • • • • • . .. • • • • •• •• 9
TRUE . . . • • •• • • • • • . . . • • • • • 40
UNDEREAR CHARACTER • • • • • • • • • . . •• • • • • . . • • • • • • 7
UNDERLINE 9 ~

•• . . • • •• • • • •
UNPACK • • • • • • • • • . . •• • • • • • • • • • • • • 27
VALUE .. • • • • . . • • • • • • • • • • • •• 26,32,38
WARNING MESSAGES ••• • • • •• .. • ••• . . . ·• • • 44
WITH . . . • • • • • • • • . . ••• ·• • • 34,35
WRITE . . • • • • • • •• • • . .. • •• • • . . • • • • . . • • • • . • 11,29,37
WRITFLN • • •• . . • • .. •• • • • • • • • • • . . •• • • 411 • • • • 29
XPREDEF • • • • • • • • • • • • • • • • • • . . • • 9
X:REF • • • • • • • • • • •• • • 9

