T -~

TECHNICAL
REPORT

e s ok ok o o o ok ok ok ek ok ok ok ok ok ok o sk ok ke sk ok ol ok ok ok ok skl ok ok R ok Kok & ok
PASCAL/UBC User's Guide
by

BRary W. Pollack
Rotert A. Fraley

Technical Manual TM-2
Nov B, 1976

Revised Nov 22, 1977

03 W O e O O o4 3 3 9 # #

*
%*
F
*
*
%
*
*
*
%
*
*
*
*
*
%

d ko ok e s ok ook % ko sk B S ke sk ook 3 sk R ook ko e ok sk ik ook ok ik e sk Sk ok ok sk

Department of Computer Science
The University of British Colunmbia
Vancouver, BRritish Columbia V6T 1H5H

Abstract

PASCAL/UBC is a PASCAL compiler for the IBM 360/370 computers
running under the MTS operating system. It processes a version
of PASCAL producing standard 0S object modules. The langquage
accepted contains Standard Revised PASCAL as a froper subset.

REABENF ROOM

This work has been supported, in part, by the Naticnal Research
Council of Canada, grant number A3606, and by the Department of
Computer Science, University of British Columkia.

PASCAL/UBC User's Guide

2.
3.

4.

7

8.
9.

10.

TABLE OF CCONTENTS

Introduction B 59 ® 28 & 5 90409 80 6 O 0SS OB 8O EC 8 TS DS 00 OO O e S OGO OO B e

i
1 Conpiling a PASCAL PTOQTIral sissessevsaasesssnsenesse
«2 PRunning a Previously Compiled PASCAL FIOQLAM escssee
«3 Compiling and Running 9ith LOADNGO .cescsscscosscacas
«4 Compiling and Running with LINK .ceeeeessncsscnscscss
e ODELOINE wis snnnm o s cmsias oo enessssenassessssssssssssess
«6 TPlle ASSIgNNONES wsssvw 5o 08 666608 65 5008 §56 8§ 6888
.7

Examples ® 5 6 85 5 5 Q9 S 0 000 00 S O DA DE VS DS DY LA SO B SN DS S B
Running PASCAL under the Student Terminal SyStem eeesseee
Compiler options @ P & B 60 9 09 B O 9 0 SO PO O B S0 9N OO OB PSSO O S0

Input/output 2 2 20 20 9T ESE S S Oe SO 90 SO 8L S0 DB B8 SO SD SO0 TS OB NSNS
u.1 GET, PUT' and PASCAL Files e 20 06 9O DY OS 08 A S S SDHI LD

4.2 I/70 Using READ anNd WRITE .ceccanscanssoscsncscaansoeasn
§e3 Using PASCAL INtOTACEIVELY socvssasn sutsssussnns snios
4.4 Extensicn to NON=TEXT FileS s ecscccvscsecccscsscossnse
14.5 RESET and REWRITE © 5 ¢80 5005 0D 005 OB G SN 20080 0ESBN S
4,6 PASCAL/UBC I/0 FUN'CLLONS ecosswsnsosonsensnesnesssse

PASCAL Libraries, Standard Functions and Procedures
5.1 The Standard PASCAL Library: CS:PASCALLIB cesccscsse
5.2 Constructing a@ User LIDTArY ceseassssssnmsssnsnasssse
53 Standard Functions and ProceduresS .cacsscesscccccsse

Language Differences and EXtenSioNS sceceesccssccccscnce
6.1 Differences and Extensions from the User Manual ...
6.2 Differences and Extensions from the Report ...ceess
6.3 The STANDARD option S 00 O 099 2% 9P P SV OO 6P OO OW 9O B OO
Miscellaneous Implementation NoteS .icaccacsscssssccansns
7.1 Compunication with FOBTBAN ..c.ceccscecsscncconcassoss
7.2 Ccmmunication with Assembly Language .cscsccccaseascs
Snapshot and Post Mortem Dump PackageS sseccsacscassescse
iarning and Error Hessages ® 9@ ® 5 9 90 5590 89 00 2O 68 S0 S0 SN e e

References "5 8 0 8 AN 9D P B A 90 IS SO0 PSS NSO S A0 0O SO 88 69O SO s a0

Index 2 9 € 89 % 060 9 550 ¥ S PSP P S 0B O 52D DN PSSO S SO DO 96 28 PO e N 89N

b

AN E S WNN -

9
10
11
17
19
19
21

22
22
23
24

25
25
32
39

39
39
41

44

50

PASCAL/UBC User's Guide 1

PASCAL/UBC USER'S GUIDE

0. 1Introduction

PASCAL/UBC is a PASCAL (1,2] compiler for the IBM 360,370
computers running under the MTS operating systenm. It was
originally developed at Stanford University [37 and then
partially rewritten at the University of British Columbia. It
processes a version of PASCAL producing standard O0S object
modules., These modules may be executed under the supervisicn of
a run time monitor. PASCAL may be run in batch or frcm a
terminal. '

The most recent version of this manual wusually will be
found (in TN-chain ready form) in +the file PASC:WRITEFUP,
Revisions to the last published versicon of this manual are
indicated by vertical bars in the right-hand margin such as
those in the margin of this sentence. Current news regarding
the state of the PASCAL system may be found in the file
PASC:NEWS.

This work has been supported, in part, by the Naticnal
Research Council of Canada, grant number A3606, and by the
Department of Computer Science, University of British Columtia.

1. Cecmpiling and Running a PASCAL Program

PASCAL/UBC uses standard MTS conventions: the source
program and/or data are read from SCARDS; the <compilation
listing, error diagnostics, and execution ocutput are written on
SPRINT; and the object code (if any) is sent to SPUNCH. The PAR
field is wused for the specification of various options and to
make file assignments. If SPRINT is different from *SINK* the
number of syntax errors is sent to koth places. The error ccunt
always is reported on SPRINT.

A semicolon (3;) may (optionally) terminate the PAR field
and anything to the right cf the semicolon 1is ignored by the
systen, If a semicolon is present, it must ke preceded by at
least one space. The entire PAR field may be retrieved from
within a program using a standard MTS library routine.

PASCAL/UBC Usert's Guide 2

The PASCAL programmer mays:

a., Compile a PASCAL program, saving (or discarding) the
okject code;

B. Fun a previously compiled PASCAL program;

c. Compile and run a PASCAL program in a “"compile, 1lcad,
and go" fashion; '

d. Compile and run a PASCAL program in a "compile, link,

lcad, and go" fashion.,

1.1 Ccmpiling a PASCAL Program

The PASCAL translator may be invoked by using the following
commands:

$RUN CS:zPASCAL SCARLCS=fdname SPRINT=fdname SPUNCH=fdname
PAR=opticns ; ccmments

If no SPUNCH file is specified the compiler will send the obiject
code to file -P,0BdJ,

The options pertinent during ccmpilation are: FX, NEERS,
NEW, and TIME.

1.2 Funning a Previously Ccmpiled PASCAL Progranm

PASCAL object modules may be executed directly by using the
following ccmmand:

$RUN object SCARDS=fdname SPRINT=fdname SPUNCH=fdname
PAR=options file-assignments ; comments

If SCARDS is not specified it defaults to *SOURCE*; if SPRINT is
not specified it defaults to *SINK%,

The options pertinent during execution are: BATCH, EX,
NERRS, NEW, NOPMD, and TIMNE.

The object modules may be a single file or a concatenation
of files (e.g., a main program and possibly several sufgport
routines).

W — — — — T —— — . — T — e — o — —— W —— —— — ———— — — —— —— — ——— — — ——— — ——— —

PASCAL/UBC User's Guide 3

Whenever a main program is compiled the last line of the
object file always will ccntain

$CCNTINUE WITH CS:PASCALLIB
Thus the user need not explicitly concatentate the run-time
library when running the object file,

If NOPMD is specified the user may wish to concatenate the
"dummy®” PMD routines to his object modules:

$RUN PASC:DPMD+object ...
This will save the memory charge for the full PMD package wkich

otherwise would have been lcaded.

1.3 Cgmpiling and Running with LOACNGO

The PASCAL system will operate in a "compile, lcad, and go"
fashicn if the following command is issued:

$RUN CS:PASCAL SCARLCS=fdname SPRINT=fdname SPUNCH=fdname
PAR=,..+ ,LOALNGO,... file-assignments ; comments

Under LOATNGO no object modules will be generated unless the
user specifies the compiler option $OBJIJFILE+$ (See belcow). The
object code is 1lcaded directly into memory, and after the
compilation phase is finished the resulting code is executed.

The only restriction under LOADNGO is that no reference may
be made to a routine not present in the standard PASCAL library.
This implies that a program will not execute correctly under
LOADNGO if it declares procedures FORTRAN or EXTERNAL, or if has
any unresolved FORWARD reference. This restriction is necessary
because the MTS lcader is not used.

The options pertinent during LOADNGO exescution are: BATCH,
EX, NEW, NOPMD, SIZE, and TIME.

PASCAL/UBC User's Guide 4

1.4 Comppiling and Running with LINK

The PASCAL system will cperate in a "compile, 1link, 1lcad,
and go" fashion if the following command is issued:

$RUN CS:PASCAL SCARLS=fdname SPRINT=fdname SPUNCH=fdnane
PAR=.,,,LINK,..., file-assignrments ; ccmments

Under LINK object code is emitted as usual. Following code
generation a dynamic link (actually an XCTL) is performed. The
standard PASCAL library CS:PASCALLIB is referenced as well as
*LIBRARY and any other litraries the user has set up with M1S.

If you wish to explicitly specify a likrary to ke included
in the linkage process, you may issue the following command:

$RUN CS:PASCAL SCARDS=fdname SPRINT=fdname SPUNCH=fdname
PAR=.. o'LINK'- e ,LI=librarV,. .
file-assignments ; comments

The order of 1INK and LI is irrelevant. The specified
library may be a concatenation of files., CS:PASCALLIB will
always be accessed to resolve any open references after
accessing the specified library.

The options applicakle under LINK execution are: EATCH,
EX, NEW, NOPMD, and TIME.

1.5 QOptions

The first field after the PAR= is for specification of the
options: BATCH, EX, LI, LINK, LOADNGO, NERRS, NEW, NOPMD, SIZE,
and TIME, The options are separated by commas, and the ortions
field is terminated by one or more blanks. No blanks may appear
within the options field.

Cptions occur in two forms -- those taking values and those
vhose presences/absence is significant. The syntax for those
options taking values is <option>=<value>,

The BATCH cption disables all interactive features. The
spapshot and post mortem dump packages are forced to act in
batch mode.

— . e i G — — —— e, — —— Ty D — — i ——— — — — — — —

PASCAL/UBC User®’s Guide 5

EX=<value> =pecifies the maximum number of memory pages to
be acquired for the execution stack. If the user specifies
a value for EX, this value will be used both during progran
compilation and execution. The default value is 10 fages.

LI=<value> (Submonitor only) specifies the name of a user'’s
object file (a user's 1library file) which is to be
concatenated with the standard PASCAL pmonitor PASC:MON
prior to execution cf the translated progranm.

LINK specifies that the user wishes to ccmpile, link, lcad,
and execute, A dynamic link (actually an XCTL) will bhe
performed. This opticn must be present if the user wishes
to use the LI= option.

LOADNGO specifies that the user wishes to compile, 1lcad,
and execute without punching object code onto SPUNCH. No
FORTRAN or EXTERNAL routines may be accessed. The ccmpiler
assumes $0BJFILE-3.

NERRS=<value> specifies the maximum number of run time
errors allowed before the run is terminated. The default
value is taken to be 4.

NEW=<value> specifies the maximum number of memory pages to
be acquired for the NEW stack. If the user specifies a
value for NEW, this value will be used both during prcqram
compilation and execution. The default value is 20 rages.

NCPMD specifies that in the event of a rum error, no rost
mortem dump is to be generated. This option has no effect
on the execution of the standard SNAPshot procedure.

SIZE=<value> specifies the number of pages of memory to bhe
used for +the object code when running under LCADNGO. The

default value is 10 pages.

TIME=<value> specifies the maximum allowed execution time
for the running program in seconds. The usual MTS variants
are allowed (e.g., TIME=1.5S, T=.057, TIME=1,25M, e€tc.).
If TIME 1is not specified, one nminute is taken as the
default.

1.6 File Assignments

Subsequent fields of the PAR= field (after the options) are
used for file assignments., Each such assignment must be bounded
by cne or more spaces. The pattern is PASCAL_NAME=MTS_NAME,
where PASCAL_NAME is the name given in a FILE declaration in the
source program, and MTS_NAME is the name of an MIS file or

device.,

PASCAL/URBRC User'!s Guide 6

1.7 Exanples

Examples of valid PAR fields are:

PAR=NEW=25,EX=50 ; THIS IS A COMMENT (N
PAR= PFILE=MTSPILE (2)
PAR=NOPML,NEW=15 PI1FILE=MTSFILE1 P2FILE=*SINK* (3)

(1) indicates that the program is to be executed with a maximum
of 2% pages allocated for the NEW stack and 50 pages fcr the
execution stack.

(2) indicates that the PASCAL file PPILE is to be associated
with the MTS file MTSFILE during execution.

{3) indicates that no fost mortem dump is to te generated if a

run error occurs, allocate 15 NEW rpages, associate PI1FILE with
the MTS file MTSFILE1, and associate P2FILE with *SINK*,

2. BRunnipng PASCAL under the Student Terminal System

The PASCAL translator is invoked under the Student Terminal
System (STS) by use of the $PASCAL control card. The rest of
this card (currently) is ignored. When running under SIS, one
is unable to set any of the submcnitor options or make file
assignments, These are all set by the STS supervisor. It is
impossible to link to user-supplied external routines under STS,
althcugh many of the more commonly used MTS system routines are
availaktle in the standard library.

The defaults effective under STS are BATCH, EX=40, LCALKNGO,
NERRS=0, NEW=40, PAGES=12, SIZE=25, and TIME=5.0S.

Under STS no $DATA card separates the PASCAL source prcqram
from the following data. Thus it 1is extremely important to
remember that all PASCAL programs end “END.", TIf a $DATA card
is included in the source, it will be read by your program
during execution.

PASCAL/UBC User*s Guide 7

3. Compiler Opticns

Ccmpiler options are delimited by '$' and are separated by
commas or semicolons. They consist of a keyword fcllowed Ly a
plus or a minus sign indicating ‘'on' or ‘off?!, respectively.
One need supply only as much of the keyword as is necessary to
distinguish it uniquely frcm among the other options. If the
'+ or '-' dis omitted, a '+' is assumed. Extraneous blanks

within the options field are ignored.

Opticn Default Meaning

ALIGN - off Allows nonalignment of data., Normally the
compiler forces correct aligoment of all
data (half-, full-, or double-word, as
required). This ortion allows the compiler
to ignore "correct" alignment, ccnserving
some amount of storage in the process,
Execution speed may be slowed somewhat as a
result,

on Permits wunderbar (_) to be used as an
alphabetic character,

Lo}
fo
=
*

BYTEALLOC - off Allows byte allocation, Normally the
smallest unit of storage allccated by the
compiler is the half-word. This option
allows the use of byte storage for all
objects having the range 0..255,

CASENEXT + on Forces an error if a CASE index is out of
range.

DEBUG + on Forces generation of debugging information.
The DEBUG option is equivalent to setting
all of CASENEXT, INDEXCHECK, RANGECHECK,
and DUMPTABLE.

DUMPTABLE + on Produce debug tables for snapshots and fpost
mortem dump. This option must be turned
on/off before the first declaration of a
procedure (or the main program) for it to
be effective,

EJECT - off Forces a page eject: the current line will
begin a new page, This cption
autcratically resets itself to off whenever
used,

PASCAL/UBC User?®s Guide 8

Opticn

FULLXREF

ILIST

INDEXCHECK

LIST

MCCARTHY

OBJFILE

OLIST

PRECELCENCE

RANGECHECK

SEQUENCE

STANDARD

Default

- off

- off

- off

- off

- off

Forces the generation cf a cross—-reference
listing of all symbols (including those
within options fields. This opticn forces
XREF+ and XPREDEF+,

Compile code for IBRM 370 if on; otherwise
IBM 360.

Print object <code as each statement is
processed. (Intralist)

Check index range in subscripts.

List source program; lines <containing
syntax errors always are listed.

McCarthy evaluation. This feature fcrces
optimal evaluation of Boolean expressicns,

Produce object ccde on SPUNCH (even if
PAR=LCADNGO) .

Print obiject code after each procedure or
function 1is processed and all fix-ups have
been made.

Normal arithmetic precedence. If on, the
"ysual" rules for arithmetic and logical

precedence are used- in evaluating
expressions; if off, the PASCAL precedence
is used. If R is on, the "extra®

parentheses that PASCAL sometimes requires
in order to correctly interpret relational
expressions are not needed.
(E.gs, IP A#B>C-D THEN ...).

Perform subrange checking on assignments,

Sequence number mode: if on, only columns
1-72 are read by the compiler; if off,
columns 1-100 are read.

If on, forces Standard PASCAL; if ©off,
allows PASCAL/UBC extensions. This option
forces

$ DEFUG+, MCCARTHY-, PRECEDENCE-, BAR- $

e — A — — e G — — — — — — — O — — — — — — — i W — —— ——— — — — — — —— — — — o — — — —— — —

PASCAL/UBC User?s Guide 9

Opticn Default Meaning

SUBTITLE = off This coption accepts a striprqg delimited by
gquotes and uses it for the subtitle line on
all subsequent pages,

E.ge., SUBTITLE='THIS IS A SUBTITLE®

TITLE - off This option accepts a string delimited by
quotes and uses it for page titling on all
subsequent pages.

E.g., TITLE='THIS IS A TITLE"®

on/off Porces automatic underlining of all PASCAL
reserved words. The default is off if
running from a terminal. The default is on
if running in batch.

UNDERLINE

4+

XPREDEFS = off Forces the generation of a cross-reference
listing of all predefined PASCAL/UBC
symbols.

REF = of k& Forces the generation of a cross-reference
listing of all user-defined symbols.

The compiler implicitly uses the defaults

$ ALIGNED+, DUMPTABLE+, RANGECHECK+, INDEXCHECK+, CASENEXT+,
IBM370+, LIST+, PRECEDENCE+, MCCARTHY+, OBJFILE $

at the beginning of a compilation.

4. Input/Output

This section describes the I/0 facilities of PASCAL/UBC.
It duplicates some portions of +the PASCAL User Manual and
Report, but clarifies a number of points. It also descrihbes the
I/0 interface with MTS and a number of built-in procedures shich
have been added for file handling.,

There are basically two levels of I/0 in PASCAL:
READ/WRITE and GET/PUT. While the READ/WRITE procedures are the
most useful, GET and PUT are described first since they provide
the tasis for the READ/WRITE level.

PASCAL/UBC User's Guide 10

4.1 GET, PUT, and PASCAL Files

A PASCAL file is defined using the FILE tyrpe generator:
VAR F : FILE OF TY;

There are two basic file classes in PASCAL -~ TEXT files and all
others. A file is a TEXT file when TY=CHAR. Fcr non-TEXT
files, each 1line is one element of type TY, For TEXT files,
each line is an ARRAY OF CHAR, and reading progresses along one
line kefore advancing to the next.

Each file F has a buffer variable F@, which 1is that
component of +the file which 1is currently accessible. The
function GET (F) advances the buffer to the next component of the
file. Successive calls to GET allow F@ to reference successive
lines of the file (or successive characters in a 1TEXT file).
When no components vremain in the file, the function EQF (F)
becomes TRUE.

Whenever EOF(F) is TRUE it 1is possible +to add new

components to a file. This 1is accomplished by rplacing the
ccmpecnent in the buffer Fd and calling PUT (F) to append it to
the file. This may be repeated any number of times. ©Note: if

you wish to transport your programs to another system, ycu must
assume that the contents of F@ are destrcyed during the
execution of PUT(F).

Text files have a number of peculiar properties, Firstly,
all blanks are removed frcm the end of input lines. If F@ is
positioned after the last character of a line, ¥® will be set to
a special character: EQL., At the same time, the built-in
function EOLN(F) kecomes TRUE. The next call to GET(F) advances
F® to the first character of the next line and returns EOLN (F)
to its FALSE state.

Prcgramming Notes

1. EOF(F) may become TRUE only when Fa@a contains EOL
and a call is made to GET(F).

2. In Standard PASCAL, EQL doesn't exist; a blank is
in F@ when EOLN{(F) is TRUE.

3. In PASCAL/UBC, a blank input 1line contains a
single blank {(rather than no tlanks).

PASCAL/UBC User's Guide 11

4, ECLN is short for EOLN (INPUT). INPUT is the
standard file INPUT, not a user-defined file of that

names.

. GET(F) is only allowed while EOF(F) is FALSE;
PUT {F) is only allowed while EOF(F) is TRUE.

6. Due to the operation of MTS files, if a file is
extended by reading until EOF{F) becomes TRUE and then
writing on the file using PUT(F), cne line number will
ke skipped.

An MTS file must be associated with each FASCAL file. The
association is made via the PASCAL name. The fcllowing default
associations are provided by PASCAL/UBC:

PASCAL name MIS file

INPUT logical unit SCARDS

CUTPOT logical unit SPRINT

GUSER lcgical unit GUSER

SERCCHM logical unit SERCOM

cther file name specified in PAR field

of the $RUN command

Ef fectively all PASCAL/UBC files are external and must be
specified. {But see the extensions to KESET and REWRITE

described below.)

If declarations are provided for INPUT cr CUTPUT they will
completely override the standard assignments, (Use of READ
and/or WRITE without a file name will refer to the standard
file, not the declared file.)

4.2 I/0 Using READ and WRITE

The RFAD and WRITE functions are the @most convenient I/0
mechanisms in PASCAL. There are, however, a few "qglitches"
because the GET/PUT mechanism historically was designed first.
This section describes hcw to best use these furcticns.

—— — —— — T— ——— —— — — — i, it

PASCA

wvhere
equiv

Note

the s

Progr

READ

L/UBC User's Guide 12

The basic READ accepts two arquments:
READ (F, X)

P is a TEXT file and X is a character. This call is
alent to the code segment:

X := F@; GET(F).

e

that X is assigned before the GET, so that X will pot be
ame as F® following READ({F,X).

amming Notes

1« F® can be used as a look-ahead character,

2. When F@=FOL, the <call READ(F,X) will set ¥ to a
blank. This aspect of READ 1is compatitble with
Standard PASCAL. Note that when X is set to blank at
the end of a line:

a. The EOLN(F) flag has just been turned off.

b. The next input line has already been read.
This 1is significant when F2 is associated with a
physical terminal.

PASCAL/UBC includes a number of extensions to the tasic
function:

1. READ(F,I) with I an integer: reads an inteqer in free
format. An arbitrary number of blanks (and lines) are
skipped until the integer is found, The integer value
replaces I, and Fa@ contains the next character following
the integer. (If a ",% immediately follows the number, it
is skipped as well.)

2. BEAD(F,R) with R a real: same as READ (F,I) except that
a real number is read.

3is READ (F,S) with S an ARRAY (...) CF CHAR: reads
characters (starting with F®@) and f£fills S. If ECLN (F)
beccmes TRUE before S is full, the remainder of S is filled
with blanks. (If EOLN({F) is TRUE when READ(F,S) is called,
the next line is read.)

4., READ(F,X1,X2,...Xn) means READ(F,X1); READ (F,X2) ;
eee READ{F,Xn).

- —— o ——— — — — — — — a— — N — — — —— W= ——— — — —— — o — ———— — — ——— — —— —— - — n — i w—— — i w— —

PASCAL/UBC User's Guide 13

5. READ({INPUT,X,...) may be abbreviated READ(X,...).

6. READLN(F) skips to the next input line (i.e., F& will
be the first character of the next line).

7. READLN(F,X...) is an abbreviation for
READ(F,X,...); READLN(F). READLW is an abbreviation for
READLN (INPUT) .

Programming Notes

1. Fizxed format input of numbers is not (yet)
available,

2. A library routine, SKIPBLANKS, may be used to skip
blanks before reading a character or string.

3., If an EOF(F) condition occurs within a READ (F,X),
the variable X will not be changed (except when X 1is
of type CHAR). The EOF condition should be checked
before the next READ, REALLN, or GET is attempted. If
EGF (F) occurs when reading field X in READ(F,X) or
READLN (F,X) an error will occur (since READLN(F,X) 1is
equivalent to READ(F,X); READLN(F), and REALC(F,X,Y) is
equivalent to READ(F,X); READ(F,Y)).

4, When no file is specified in READ or READLN, the
standard INPUT file (rather than a user-defined file
named INPUT is used.

5. The table below summarizes the synchronization
between the input, +the buffer variable F@d, and the
variable CH on successive calls READ (F,CH): The input
consists of the characters A, B, EOL, C, D, EOL, EOF :

PASCAL/UBC User's Guide 14

Effect of READ(F,CH)

Input * A B EOL c D lECL EQOF
ECF (F) F F F F F F F T
ECLN (F) T F F T F F T UND
Fa EOL A B EOL & D EQL UND
CH UND *% A B sp C D SP
* - this cclumn is prior to the first GET, READ, or
RESET
*% - this column is internal to READ (F,CH), so the
value of CH is undefined.
T - TROUE
F - FALSE
SP - space (a blank character)

UND - undefined

Note that EOF (F) is defined as FALSE before the first GET
or READ. PASCAL/UBC differs from standard PASCAL by the
presence of the EOL character, and the existence of the first
column in the above table. If READ is used instead of GET, the
only difference 1is that PASCAL/UBC allows a line to be printed
before the first input line is read.

The procedure WRITE is analagous to REAL, but is used for
output. It has a number of features for controlling the output
format.

——— A — —— o — —— —— — — T— — — — — —— —— — ——— —— —

PASCAL/UBC User's Guide 15

The basic character form WRITE(F,CH) is equivalent to:

Fa

LX)

= CH; PUT(F).

It writes a single character into file F. WRITE(F,X) will
convert variable X to character format and write it into a fixed
width field. The table below shows the available data types and
their default field widths:

Type Default Field-wWidth
CHAR 1

ALFA 10

BOCLEAN 10

INTEGER 10

REAL 22

ARRAY (M..N) OF CHAR ORD{N) =ORD (M) +1

In situaticns where the default field width is not
adequate, an explicit field width may be given:

READ (F,X:W)

¥ may be any expression which yields an integer value. Numeric
values are right-justified in the field, while characters,
strings, and Booleans are left-justified. If a numeric value
can?t fit in a field, the field width is expanded to accommcdate
the value. If a string, character, or Boolean doesn't fit, the
string is truncated (on the right).

Some additional formatting details, with other formatting
opticns, are described below:

1. If W is 0 for integers or reals, the numker is printed
in the minimum Dpumber of columns required for the value.
This is useful when printing text to avoid unwanted tlanks.
Be sure tc provide spacing around the numbers.

2. Hexadecimal output of integers may be achieved by
making W negative. ABS (W) columns will be wused to print
the value.

3. Real nunkters are normally printed in "quess" format.
The number of significant digits is always maximized. 1In a
field of width W, the first column is always blank, one
column is reserved for the decimal point, and one more is
used for the sign of the number if it is negative. One
digit is always printed on geach side of the decimal pcint.
Let R be the number of columns remaining. If
-4<=1og(value) <R, the value is printed in fractional format
(€age, 123.45); otherwise it 1is printed in exfponential

format (e.g., 1.2345E-17). Reals are always rounded before

———— ——— —— ——— — — ——— — —— — o —

PASCAL/UBC User's Guide 16

output. If the numeric value was exactly zero, no
fractional part is printed. Otherwise, the precision 1is
maximized to the 1limit of the field width or the numeric
precision of the value, whichever is less.

4, FExplict control over the precision and format of reals
may te achieved using the call:

WRITE(F,R:¥:D)

The "D" value gives the number of digits to the right of
the decimal point. D also has some non-obvious effects on
the output format:

a, If D is positive, the number is always output in
fractional form.

b. If D is zero, no decimal point 1is printed (an
integer is output).

c. 1If D is negative, the value is output in
exponential format. ABS(D) is the number of digits to
the right of the decimal point.

Programming Notes

1. Some day we hope to improve the notation for
formatting so that discontinuous events dcn't occur,
truncation rules are more flexible, and the notation
is more transparent.

2. All formatting rules, even the Jjustification and
truncation rules, may differ in other implementations
of PASCAL. The PASCAL standard is very vague in this
area.

The WRITE function has a number of variations which
correspond to the READ variations:

1. WRITE(F,X1,X2,....,Xn) 1is equivalent to WRITE(F,X1);
WRITE{(F,X2); +.. WRITE(F,Xn).

2. WRITELN(F) starts a new output line, WRITELN(F,X,4..)
is an abbreviation for WRITE(F,X,ee.) WRITELN (F).

3. SRITE(OUTPUT,X) and WRITELN (OUTPUT) may be abbreviated
by WRITE({X) and WRITELN, respectively, when OUTPUT 1is the
standard PASCAL output file.

PASCAL/UBC User's Guide 17

In PASCAL/UBC and certain older PASCAL compilers, there is
a character, EOL, which will terminate the output line. This
character may be used as a parameter to WRITE instead of making
several WRITELN calls. Note that EOL is no lcnger part of the
standard PASCAL language.

At UBC and many other PASCAL implementations, the first
character of each line which 1is sent to the printer is a
“carriage control"™ character. It controls the line spacing on
the printed page. This must be provided by the programmer
(since the PASCAL compiler doesn®t know (or care) which files
eventually will be printed). While any MTS carriage control
character may be used, those standard at a number of

installations are:

LR Single space (before printing)

0 Double space (before printing)

LR Triple space (before printing)

11 Skip to new page (before printing)
LR No space (overprint)

In an attempt to avoid the use of charriage control
characters, Standard PASCAL has introduced the function,
PAGE({¥). In PASCAL/UBC, this is equivalent to
WRITE (F,ECL,*1',EOL) .

Programming Notes

1. EOF(F) may become TRUE only when F® ccntains EOL
and a call is made to GET(F).

2. Because PASCAL has no way to specify the maximum
line length for a TEXT file, the programmer is
responsible for starting new 1lines when needed.
PASCAL/UBC will automatically start a new 1line only
when 255 characters have been placed on a single line.
The formatting routines do not currently check to see
if ample space remains on a line for an entire number
or string. (See the LINELENGTH function below.)

4.3 Using PASCAL Interactively

The standard PASCAL READ and WRITE procedures described
above and in [1,2] are designed more for a batch environment
than an interactive one. The following paragraphs describe how
PASCAL/UBC may be used interactively under MTS.

PASCAL/UBC Dser's Guide 18

READLN(...) has three effects: 1) it copies information
from the system!s internal input buffer into the variables
specified in its arqument list; 2) it flushes the buffer; 3) it
refills the buffer from the file (device) specified. If RFADLN
is used from a terminal it will ask for a new line before the
prograr prompts the user. The sequence: REACLN; READ(«..)
ignores all input currently in the input buffer, and begins
reading after retrieving a new input line.

This may be undesirable if several data items are tc be
input and the prcgrammer desires to be notified if one or more
items are missing. Instead of READLN; READ({X,Y) the
following sequence may be prefered:

READLN;

READ (X) ;

WHILE INPUT@=' * L[O GET(INPUT);

IF INPUT?=FOL THEN WRITELN('ENTER Y');
READ (Y) 3

Since READLN discards unread input in the dinput buffer,
loss of dinformaticn may occur. You may wish to solve this
problem by using a sequence such as:

WHILE INPUT®=* ' DO GET(INPUT) ;
IF INPUT@~=ECL THEN WRITELN('EXTRA DATA SUPPLIED?');
READLN;

If you wish to enter data cn the same line as the prompt
message, use the carriage control <character specified in UBC
TERMINALS [5]. Currently the appropriate control character is
the ampersand (6). For instance:

WRITELN (*SENTER X:) ;
READLN; READ({X);

It is important to remember that PASCAL will display output only
after an EOL has been transmitted. This may be accomplished
either by WRITE(e..,EOL,...) or by WRITELN{...). Otherwise,
the "written" information is held in a system output buffer
until an EOL is sent.

PASCAL/UBC User's Guide 19

In some applications it may be desirable to read an entire
line at once, rather +than item by item or <character by
character. INPUT may be redefined as

VAR INPUT : FILE OF ARRAY (1..100) OF CHAR;
(or any other appropriate size). You may now issue a GET and
the entire line will be read (with blank fill on the right, if

necessary). Note that any numeric conversions must now be done
manually by the programmer.

4.4 Extension to non-TEXT Files

In the corrections to the PASCAL User Manual and Repcrt,
the READ and WRITE procedures are extended tc non-TEXT files as

follcus: Given

VAR
X 3 TY3
N 3 FILE OF TY;
the call heans
READ (N, X) X == N®; GET(N)
WRITE (N,X) N z= X; PUT(N)

No other forms of READ and WRITE are allowed.

b

In the future it is expected that we will expand the
non-TEXT READ and WRITE definitions to be entirely compatible
with the definitions for the TEXT versions of these routines.

4.5 RESET and REWRIT

PASCAL provides two functions for positioning a file,
RESET(F) ©positions a file at the beginning, reads the first
line, and places its contents in F@, If the file was enfty,
ECOF(F) becomes TRUE, cotherwise it is FALSE,

BEWRITE (F) positions the file at the beginning, and =sets
EOF(F) to TRUE. This allows the file to be written. Any
previocus information in the file will be lost.

—— —— — — — — —— — — . ——— —— o — — —

PASCAL/UBC User?'s Guide 20

Erogramming Notes

1. Due to the nature of MTS line files, a call tc
REWRITE will perform an MTS $EMPTY command to empty
the file. If a 1line number range 1is specified,
however, the file is not emptied. When 1line number
ranges are used it 1is the responsitility of the
programmer to see that unwanted lines will pct remain
in the file,

2. Standard PASCAL has no provision for extending a
file except to read all lines of the file.

3. Standard PASCAL reguires that all files ezxcept

INPUT be RESET or REWRITEn before use., PASCAL/UBC
makes no such requirement.

PASCAL/UBC offers extended forms of RESET and REWRITE which
accept a seccnd parameter. The parameter may be:

a. An integer value in the range 0,.19 representing an MTS
lcogical unit.

b. The name of an MTS logical unit: *SERCCM ', 'GUSEER ',
*INPUT *, *'OUTPUT °*.
Note:

i. The trailing blank is reguired.

ii, INPUT and OUTPUT replace SCARDS and SPRINT,
respectively.

iii., SPOUNCH is not currently available.

c. An MTS file name:

€.q.,
1-ABC
"FILE1 °*
'"USER:DATAFILE !
'-XYZ {55, 128) +QRS~IC !
Note:

i. The trailing blank is required.

ii. The MTS logical unit names listed akove cannot
be used as a file name unless a line number
range or modifier is specified.

PASCAL/UBC User's Guide 21

1. REWRITE(F,*FILE(*L+#1) 'Y may be used to extend
file FILE without first reading through the entire
file. However, a later RESET(F) will position F at
the first added line, not the first line of the file.

4.6 PASCAL/UBC I/0Q Functions

The functions described in this section have been added to
facilitate the interface with MTS line files. Ncne of them are

standard.

DELETELINE (F,line) first POSITIONs F to the specified line,
then deletes the line from the file (if it exists), and leaves
the file PCSITIONed at line. After a DELETELINE either a GET or
a PUT is valid. Readingy/writing will begin at the specified

line.

LINELENGTH (F) returns the length of the last line read from
file F. This 1is the length of the line as it appeared irn the
file. If F is a TEXT file being used fcr output, LINELENGTH (F)
is the 1length of the current line (not including any character
still in P@ which has not yet been PUT to F).

LINENO(F) returns the inteqer line number of the last line
read or written to file F. This line number is the MTS 1line

number times 1000.

OPENED (F) returns TRUE if a RESET, REWRITE, GET, PUT, or
POSITICN has been issued to +this file, and it returns FALSE

otherwuise,

PCSITION(F,line) is a procedure which positicns file F to
the specified 1line. Fcllowing a POSITION, EOF(F) remains
unchanged, but either a GET or a PUT is valid. If the specified
line dces not exist, a GET will retrieve the next 1line c¢f the
file, or will set EOF(F) Aif "line" is beyond the end of the
file. In all other cases, EOF(F) will be FALSE following a GET,
and LINENC may be called to determine whether "line"™ actually
existed. After PUT is <called following a POSITION, ECF(F)

always will be TRUE,

PASCAL/UBC Oser's Guide 22

When POSITION 1is used with TEXT files, several additcnal
acticns occur:

1. If the file has been used for output prior to the
EOSITION, the current buffer is written out if
LINELENGTH (F) >0.

2. After the POSITION, EOLN({PF) is TRUE.

Programming Note

1. If OPENED(F) is FALSE (the file has not been
used), a call to LINENO(F) or LINELENGTH (F) will cause
an addressing exception.

5. PASCAL Libraries, Standard Functions and Procedures

Users may reference functions in the standard PASCAL
library PASC:LIB, 1libraries of their own, and functicns in any
of the system libraries.

5.1 The Standard PASCAL Library: CS:PASCALLIB

The PASCAL library includes system routines for perfcrming
input/output plus varicus other procedures and functions. The
source programs for CS:PASCALLIB reside in files PASC:LIB.S and
PASC:MCN.S and these files should be examined toc determine the
library's precise contents. <Currently PASC:LIB.S 1includes two
random number generators: RAND, RANDU; three exponentiation
functions: PWR (integer raised to an integer fpower), RPWR (real
raised to an integer power), and RRPWR (real raised to a real
power) ; a routine (SKIPBLANKS) to skip over blanks in the
standard input; and the SNAPshot and post mortem dump packaces.

All routines in CS:PASCALLIB have names beginning with the
three <characters "“PA#", To avoid possible conflicts, the user
should avoid using these three <characters as the initial
segments of any extermnal routine’s pnanme.

You may include FORWARD declarations for all the standard
PASCAL liktrary routines by saying

$CONTINUE WITH PASC:LIB.S (100, 199) RETURN

PASCAL/UBC User's Guide 23

In additicn to the run-time support routines wmentioned
above, the standard 1library contains the assembly language
PASCAL mcnitor PSCLMON#, The monitor performs various I/0
tasks, acquires and releases NEW space, interfaces with MTS,
etc. The source for the monitor resides in PASC:MON.S.

5.2 Constructing a User Litkrary

Users may wish to ccnstruct their own likraries of PASCAL
prograns in object form to save the <c¢cst of repeated
compilations. Object modules may be accumulated frcm several
compilations and placed in a single file, After a recompilation
of several routines, the MTS program *ROBJ may be used to
replace obsolete modules., For selective loading cf routines the
MTS routine *SGEN may be used to prccess the file, forming an
MTS library. *RCBJ and *SGEN documentation may be found in UBC

LOADER [6].

To create a PASCAL 1library given a socurce program in
MYSOURCE one should run the compiler as follows:

$RUN CS:PASCAL SCARDS=MYSOURCE SPUNCH=MYLIBRARY

where MYLIBRARY is the name of the 1likrary file, After the
WEND;" of the final procedure, a period "." indicates the end of
the source program. (A main progqram may be present if desired.)
Data, if any, may begin on the first line following the ".,",

Cne then might use the newly created library as follows:

$RUN CS:PASCAL SCARCS=MYPROGRAM+DATA PAR=LINK,LI=MYLIBRARY

Fach procedure (function) included in a library (or those
compiled separately and later linked together) must satisfy the
following restriction:

"Each procedure (function) should be compiled in the
presence of identical declaraticns (LABEL, CCNST,
TYPE, VAR),"

This restriction may be relaxed somewhat ~-- CCNST and TYPE
declarations which are not used in the current ccmpilation need
not be present, However, it mcst often will be simplest to
maintain a file containing all requisite global declarations and
$CONTINUE WITH it prior to each compilation. This will ensure
that the above restriction always is satisfied.

PASCAL/UBC User's Guide 24

If +the global VAR section is totally absent, the resulting
library may be used with any PASCAL program.

Due to restrictions imposed by MTS the names of every
external procedure or function which 1is to be separately
compiled must be wunique in their first seven characters. No
warning is issued if this restriction is not heeded.

5.3 Standard Functions and Procedures

The following tables list those routines whose actions are
modified frcm the corresponding routines in Standard Revised
PASCAL and thcse routines which are unique to PASCAL/UBC,.

Mcdified Routines

HALT INSFRT PACK READ READLN RESET REWRITE UNPACK WRITE
WRITELN

=

nigue Routines
CECR DELETELINE INCE LINELENGTH LINENO MARK MAX MIN OPENED
EOSITION RELEASE SNAP SOUBSTR

Refer to the Index for descriptions of the actions of all
of the above routines,

PASCAL/UEC User'!s Guide 25

6. Lanquage Differences and Extensions

There are numerous differences between standard revised
PASCAL [1,2] and the PASCAL/UBC 1language prccessed by this
compiler. These are described below, in section-by-section
correspondence with the PASCAL User Manual and Report [11. In
the discussion below:

Code Meaning
R {Restriction). A violation or «conflict with
Standard Revised PASCAL. Prcgrams may require

modification to work under PASCAL/UBC.

E (Extension). An upwards compatible extemnsion to
Standard Revised PASCAL,

D (Deviation). A deviation from Standard Revised
PASCAL which may or may not require mcdification
to work under PASCAL/UBC.

C (Clarification). The specification of something
the User Manual or Report 1leaves undefined or
unspecified., Such items may or may not require
modification to work under PASCAL/OBC.

E Names may be composed of any number of upper or lower case
alphabetic characters, the digits 0 - 9, and underbar (if
the BAR option is '+'), The first character of a name nust
be alphabetic (or _).

C PASCAL/UBC only retains the first 10 characters of names;
thus the user must ensure that he forms unigue names within
the first 10 characters., Names of external functions and
procedures nrust be unique within their first 7 characters
due to restrictions imposed by MTS.

E ASCII braces are now supported as comment delimiters,
Comments also may be delimited by pairs of double guotes
" Lcomment> ", (* *) are the standard comment symbols,

E The dollar sign ($) is used to delimit compiler opticns.
The text between pairs of $'s is ignored by the compiler

proper.

PASCAL/UBC User's Guide 26

-]

o]

The biliteral -~= and the word VALUE are special symbcls,
as are |, &, and -,

Square brackets to define array subscript expressions may
be replaced by parentheses, Alternatively, they may be
replaced by the biliterals (. and .) .

An uparrow to denote pointer and file references 1is
replaced by the symbcl @ .

Brackets to define powersets may be replaced by the
biliterals (. and .) .

The compiler reads columns 1 to 100 of each input line; the
rest of the 1line 1is ignored. The ccmpiler mav be
instructed to read only columns 1 to 72 through wuse of a
ccmpiler option.

The symbols &, |, and -~ may be used in place of AND, OR,
and NOT, respectively., The biliteral -= may ke used in
place of <> .

ection 2 - The Concept of Data

Integers have the range 2—31,,231-1,

Reals are defined according to the IBM 360,370 1lcng real
floating point format. A S54-bit matissa is used fproviding
a precision of approximately 16 decimal digits,

Hexadecimal gquantities may be specified (e.g., #uc
represents the decimal value 76). Hexadecimal numbers are
treated as being of type INTEGER.

Section 3 - The Program Heading and the Declaration Part

Program headings, i.e., "PROGRAM <identifier> ; ', are not
currently used, FROGEAM is not a reserved word in
PASCAL/UBC, ‘

Initial values may be declared for simple glotal variatles
and one-dimensional gqlchal arrays. SETs may not be
initialized using VALUE, This facility 1is relatively

untested and is NOT recommended. Almost nc type checking
or bounds checking is done. Caveat emptor?! The values are
declared after the global VAR declarations. Any procedure
or function may have a VALUE section as well as the main
routines, Initialization occurs each time the procedure or

function is entered. The syntax in BWNF is:

PASCAL/UBC User's Guide 27

<value-part> ::= <value-part> <value-assigment> ;
| VALUE <value-assigment> ;

<value-assigment> ::= <identifier> = <constant>
] <identifier> = (<constant-list>)

<constant-list> ::= <constant-list> , <dup-const>
{ <dup-const>

<dup-const> ::= <constant> | <integer> * <constant>

ection 4 - The Ccncept of Action

See below: section 9.2, subpart "Section 9, Statements®.

Scalar and Subrange Types

No changes.,

Section 6 - Structured Types in General--—the Array in Particular

E The word PACKED is ignored.

R The UNPACK and PACK procedures may be used for their data
transfering functions between all (length-) compatible
pairs of arrays. No actual (un)packing occurs as data is
implicitly "packed" on byte addressable machines such as
the IBM 360/370.

Section 7 - Record Types

C PASCAL/UBC does not detect duplicate labels in the variant

ta

R

pcrticns of record declarations,

ection 8 - The Set Types

Restrictions on sets are: the base type can have a maximunm
of 256 values. Subranges of integers must te between 0 and
255, CHAR is now allowed as a base type.

—— — —

PASCAL/UBC User's Guide 28

=

=

0

ection 9 - File Types

The standard functions RESET and REWRITE may be applied to
any files (including INPUT and OUTPUT) .

Files may not be components of ARRAYs, RECCRDs, or FILEs.

The NEW function cannot (yet) create a file.

Section 10 - Pcinter Types

==)

The function DISPOSE in the cld standard does not exist.,

Standard procedures MARK and RELEASE have been added to
maintain the *NEW' stack. Each takes an integer variable
as an argument. Execution of MARK stores the current stack
rointer in the argument. Execution of RELEASE restores the
stack pcinter to the location indicated by the arqument.
The arqument must not be used for any other purposes in the
program. These are dangerous functions since pcinters may
no longer be valid following a RELEASE.

Section 11 - Procedures and Functions

PACKED is ignored in PASCAL/UBC.

Any procedure/function which is used bhefore it 1is defined
nust be declared with all its parameters as *'FORWARD'
before its first use. Then when its body is defined the
parameter list and result type must be omitted.

Separate compilation of global procedures/functions |is
allowed. If the <compiled ©procedure(s) is (are) to be
ccmbined with other procedures, then the glchbal
declarations for all compilations must be identical.
Procedure and function declarations for any qlobal level
procedures or functions which are not included in the
compilation must be declared FORWARD in order to generate
the proper argument 1lists and to allcw the external
references to be resolved. There must be a "." at the end
of the program. (The main program -- from BEGIN to END --
may be omitted.)

A procedure or function may be declared *FORTRAN' in which
case the compiler will produce the correct calling sequence
to the npamed FORTRAN subprogram. Thus the entire FORTRAN
library is available to the user, as are Assembly Language
and other routines written using standard FORTRAN calling
conventions. An optional string may follow FORTRAN, (e.g.,
PROCEDURE PROC1; FORTRAN *FNAME"';), in which <case the
FORTRAN routine FNAME will be invoked as a result of any
PASCAL reference to PROC1.

PR ——

PASCAL/UBC User's Guide 29

E

A procedure or functicn may be declared 'EXTERNAL'. At the
top level, this has the same effect as 'FOEWARD'. But used
in an inner procedure EXTERNAL will force the comgiler to
reference the routine as if it were declared at the top

level (as an outermost procedure) so that an inner
procedure may refer to a separately compiled top level
procedure which is not present during the current

compilation.

Section 12 - Input and Output

=

=}

R

ection 13

PASCAL/UBC has a special character, EOQOL, designating the
end of a line,

If F is a TEXT file, then FA=EQL initially.

Note that even when F3=EQOL, READ|(F,C) will set C to klank
as in standard PASCAL., WRITE(F,E0L) may be used instead of

WRITELN(F).

PASCAL/UBC recognizes READ (F,S), where S is of type ARRAY
(i..j) OF CHAR for any i and j. This reads characters from
the current line and places them into S(i), S (succ(i)),
esey uUntil (j-i#1) characters have been read. If, however,
an EQL character is encounter€d before input is complete,
the remainder of S is filled with blanks. In this case F@
is the EOL character.

WRITE (F,C:W), where C is of type CHAR, will left djustify C,
Similarly, WRITE will left justify strings.

READ{F,X) and WRITE(F,X), where F 1is not TEXT are both
recognized.

RESET {F,G) and REWRITE(F,G) both accept an optional second
arqument, G, an ARRAY(..) OF CHAR which contains the onpanme
of an MTS file to be dynamically associated with the PASCAL
name F, The file name must be left justified and have at
least one trailing blank. 1In both cases, remaining output
is sent to file F, F is closed, F is associated with the
file G, and then F (G) is opened for reading or writing,
respectively. Alternatively, G may ke an integer value 1in
the range Ds 19, in which case G refers to the
corresponding MTS logical unit.

PASCAL 6000-3.4

Segmented files dc¢ not exist, nor do the associated
standard functions EOS, PUTSEG, GETSEG.

PASCAL/UBC User?'s Guide 30

E PASCAL/UBC provides access to "external fprccedures™ through
use of +the FORWARL, EXTERNAL, and FORTRAN declaraticns.
EXTERN does not exist in PASCAL/UBC; however, its effect
may be achieved by using a FORWARD or EXTERNAL declaration,

R No program headings are allowed.
D The standard identifier MAXINT is defined as
CONST MAXINT = 2147483647; (* = 231-1 %)

R The statement IF ABS(I) > MAXINT THEN WRITE (' TOO BIG') is
essentially useless because nc integer may be larger than
MAXINT. The statement IF I < -MAXINT THEN ... may be
useful since the smallest integer possible in the
PASCAL/UBC inmplementation is -MAXINT-1.

D The type REAL is defined according to the IBM 360,370 long
real floating point fcrmat. A mantissa of S4 bits is
provided, corresponding to approximately 16 decimal digits.
The maximum absolute value is approximately 10+75, and the
minimum non-zero absolute value is approximately 10-75,

D A value of type CHAR is an element in the EBCDIC character
set., 256 distinct values exist, although many are not
printable characters. EQL is defined as CHR{0).

R The word SEGMENTED has no special significance in
PASCAL/UBC.
E The maximum cardinality of the base type of a set is 2%e.
C The standard types ALFA and TEXT are predefined as
TYPE ALFA ARRAY (1..10) OF CHAR;

TEXT FILE OF CHAR;

PASCAL/UBC User®s Guide 31

D

Section 14

0

The entire MTS 1library 1is available to the user via the
FCRTRAN declaration., Thus the predefined procedures and
functicns defined in this secticn are available as fcllows:

3.4 PASCAL/UBC

DATE UBC DATE

HALT HALT

LINELIMIT Use $RUN xxx P=yyy

MESSAGE Nc correstronding functicn exists
TIME UBC TIME

CARD Not (yet) irmrplemented.

CLOCK UBC TIME

EXPO Not (yet) implemented.

UNDEFINED Not implemented.

EOS Nct implemented.

PUTSEG, GETSEG, and the corresponding extensions
to REWRITE and RESET do not exist in PASCAL/UBC,

How to use the PASCAL 6000-3.4 Systen

Since DISPOSE has been removed from the list of "standard
functions", it is not supported at UBC.

A Jjump 1intc the range of a FOR or WITH statement from
outside its range 1is undefined; no errcr message 1is
produced.

Function LINENO{file) —returns the line number of the rost
recently read line. This function must not be used before
the first read from the file, The line number is the MTS
line number times 1000.

Integer and real valued maximum and minimur fubnctions have
been implemented: MAX{(al,a2,...) and MIN(al,a2,...). These
functions accept an arbitrary number of integer and/or real
arguments, and will return an integer value if all
arquments are integers or a real value if not.

A limited substring function has been added: SUBSTR(V,I,L)
where V 1is a constant or variable, I is an integer valued
expression, and L is a constant. V must be an array of
characters. The result is the substring of V which starts
at character I and is L characters long. If V has bcunds A
and B, then A<=I<=(I+L-1)<=B .

PASCAL/UBC User's Guide 32

The standard variable RCODE is predefined to be cf type
-32768, .32767., It functions as a ‘Yreturn code" and is
available as a '"glcbal variable™ to all PASCAL routines.
Routines declared FORTRAN will automatically set RCODE to
the appropriate return code value prior toc return to their
invoking PASCAL procedure,

6.2 Differences and Extensions from the Report

192]

o

=]

ection 3 - Notation, Terminology, and Vocabulary

The character set used by PASCAL/UBC is the IBM EEBCDIC
character set, with one modification: There is the
character EOL=CHR (0). This character causes a new line to
be started on output to a TEXT file. It follows the last
character on an input from a TEXT file.

PASCAL/UBC <letter>!s now include lower case.

Alternate symbols

. may be used for :
_— " U]] " <>

(" " " L] 1'

-) " " 1] " 'l
& " n " " AND
l L] n " " OR
— H " n n NOT
a replaces

All reserved words must appear in upper case.
EROGEAM is not reserved,
VALUE is reserved.

Comments may be delimited by braces, doukle quotes ("), or
the biliterals (* and *).

Dollar signs ($) are used to delimit compiler options.

Section 4 - Identifiers, Numbers, and Strings

E

R

" " may appear as a <letter> in an identifier,

only 10 characters of an identifier are significant.
Procedure and function identifiers must differ in their
first 7 characters fcr proper program execution.

INTEGERs are restricted to the subrange -231,,(231-1),
REALS are restricted in magnitude to approximately
+10+75,,+10—75 and 0., Approximately 16 digits of precision
are retained.

PASCAL/UBC User's Guide 33

R String constants must fit on one source line.

E Hexadecimal numbers may be referenced by preceding thenm
with "#", These numbers are treated as if they had integer
type.

Section 5 - Constant Definitions

E The definition CONST NULL=NIL; is permitted in PASCAL/UBC.

Secticn 6 - Data Type Definitions

E The word PACKED is ignored.

R ARRAYs, FILEs, and RECORDs rwmay nct have FILEs as
comgponents,

R SETs are restricted tc a subrange 0..255, and to scalar
types having at most 256 elements.

E Parentheses may be wused instead of brackets in array
declarations.

C A type identifier may only be referenced after (not inside)
its declaration. The only exception is a type identifier
in a rointer declaration (dtypeid). This identifier can he
defined after such a use.

E There is the standard type ALFA:

TYPE ALFA = ARRAY (1..10) OF CHAR;

Section 7 - Declarations and Denotations of Variables

E Parentheses may be used instead of brackets in array
references,

E There is a standard variable RCODE., It will contain the
return code upon return from FORTRAN routines. It alsc may
be used within a PASCAL progranm.

E A pointer will be dereferenced automatically if it is

followed by a "." and a field name.

Section 8 - Expressions

E The square brackets "[" and "]" in <set> may be rerlaced by
” (." and ”') ".

PASCAL/UBC User's Guide 34

(@]

The set <element> form "<expression>,.<expression>" is not
implemented,

No range check 1is wmade on intermediate results of
expression ccmputaticns.

No range check is made on set elements.

Section 9 - Statements

R

E

A label may have at most four digits. (This adopts the
suggested restriction at the end of the Report,)

An expression having type ARRAY ... OF CHAR may be assiqgned
to any ARRAY ... OF CHAR variable which is at least as long
as the expression. Blank extension occurs cn the right if
necessary.

A VAR actual parameter must have the identical type as the
corresponding formal parameter., Omne cannot be a sukrange
of the other.

A GOTO into the range of a FOR or WITH from outside the
range has unpredictable results, No warning messaqge 1is
given.

A ";" pmay optionally precede "ELSEY in an IF statement.

The symbol ¥<>" may appear as a label in a CASE statement,
The corresponding statement is executed if the value of the
expressicon does nct appear in any cther 1label of the
statement.

If a CASE statement is executed and the expression has no
corresponding constant value an error occurs (unhless there
is a <> label). If the CASENEXT ortion is off, the next
statement is executed with no message. If the CASENEXT and
RANGECHECK options are both off and there is no <> 1latel,
no range check is made on the expression. Label)>

CASE labels must lie in the range -32768,..32767.

In PASCAL/UBC +the method of statement selection for CASE
labels depends on the deasity of 1labels within their
numeric range. Thus it is fpossible to have only labels 1:
and 1000: without undue memory overhead.

In a FOR statement, if the ipitial value 1is greater than
the TO value (less than the DOWNTO value), no assignment is
made to the control variable. Otherwise, its value is the
limit value. The <contrcl variable +thus is accessible
outside of the loop after normal loop termination.

PASCAL/UBC User?s Guide 35

R

ections 10 and 11

A WITH statement may contain a pointer to a record. It
will be dereferenced automatically.

Procedure Function Declaration

A procedure or function declaration must appear bhefore the
first reference to that procedure or function. Recursive
routines still may be defined by separating the procedure
(function) heading frem the rfprccedure (function) body.
When this is done, an alternative form of <gprocedure
declaration> is used:

<procedure heading> FORWARD

{That is, the word FORWARD replaces the code block.) An
analogous extension is made for functions. The code block
is presented 1later, preceded by a procedure {(function)
introduction:

PROCEDURE <identifier> ; <block> or
FUNCTION <identifier> :; <block>

Note that the parameter list is not repeated with the code
body.

FORTRAN-compatible routines may be called using the
declaration:

<procedure heading> FORTRAN or
<procedure heading> FORTRAN '<name>?

VAR parameters should be used when the routine returns a
value in a parameter. If such a result is irrelevant, a
value parameter may ke used. An optional string may fcllow
FORTRAN designating the name to be used in the ESD entry
for the specified routine. For example, FPROCEDURE FOQGQC;
FCRTRAN ' ALIAS';

Separate compilation of procedures and functions 1is
possible. Such a procedure (function) may be invoked by
including a FORWARD declaration in the wmain program blcck.
The user is responsible for seeing that the procedure
{(function) declaration used while compiling the program is
identical to that used in referencing the program. If a
separately compiled procedure refers to any main prcqgranm
variables, the CONST, TYPE, and VAR sections must be
identical with those in the calling progranm.

If an inner procedure refers to a procedure which is not
present in the current compilation the procedure should be
declared EXTERNAL rather than FORWARD.

— . — —

PASCAL/UBC User's Guide 36

The RESET and REWRITE procedures opticnally may take a
seccnd parameter.

The NEW(P) procedure will not work properly when P is a
pointer to an object of type FILE.

The DISPOSE procedure found in some editicns of the Manual
and/or Report is not implemented.

No argument cf PACK or UNPACK needs the word PACKED in its
declaration.

PUT(F) 1is wvalid when EOF (F) is false if there has been no
prior use of F, or when POSITION has been called pricr to
the PUT.

Additional functions:

INSERT (I ,J,K:INTEGER) : INTEGER
The result is (I*2*%*J OR K). J must be non-negative.
A full-word logical OR is performed.

LINELENGTH (F:FILE) : INTEGER
The integer result is the length of the last line which
was obtained via GET or READ.

LINENO(F:FILE) : INTEGER
The integer result is the MTS internal 1line number
(rrinted line number * 1000) of the last line read from
file F.

MAX(al1l,32,...) and MIN(a1,22,e00e)
These functions accept an arbitrary number of integer
and real arguments, and will return an integer value if
all arguments are integers or a real value ctherwise.

OPENED (F:FILE) : BOOLEAN
Returns TRUE if F has been opened and FALSE otherwise.

SUBSTR(S,F,L) = ARRAY (1..L) OF CHAR
S 1is a character string, F a scalar, and L an integer
constant. The result is the substring of S starting

with the character at position F and containing L
characters.,

PASCAL/UBC User's Guide 37

Additional procedures:

DECR (V:variable)
V is a variable of any simple scalar type. DECR{(V) is

equivalent to: V := PRED(V).

DELETELINE(F:FILE; N:INTEGER)
F is a file and N is an MTS line numker. The file is
positioned at the specified 1line and the 1line is
deleted (if it was present). The file 1is left
positioned so that the next GET, READ, PUT or WRITE
will occur beginning at the specified line.

HALT
Stops execution and returns to the systen.

INCR (Vzvariable)
V 1is a variable cof any simple scalar type. INCR(V) is
equivalent to: V := SOCC({(V).

MARK (VAR N:INTEGER)
Saves the current NEW stack position in N.

POSITION(F:FILE; N:INTEGER)
F is a file and N is an MTS line number., The file 1is
positioned so that the next GET, READ, PUT, or WRITE
will occur beginning at line N. If line N dcesn't
exist in the file, the next line will be used. LINENO
may be used to determine the actual 1line which was
accessed.

RELEASE (N:INTEGER)
Restores the NEW stack to the state indicated by \N.
All allocated storage made subsequent to the MARK(N) is
now 1inaccessible. Note that this procedure is
extremely dangercus because pointers may now refer to

inaccessible memory.

SNAP (N: INTEGER)
Invokes the snapshot package and requests that the last

N activations be displayed. N should be a positive
integer. If no arquments are given, the default value
is N=1. A display of all activations back to the
PASCAL mcnitor may be obtained by saying SNAP (MAXINT).

Section 12 = Input and Output

READ and WRITE now may be used on both TEXT and non-TEXT
files.

PASCAL/UBC User's Guide 38

E READ may be used to read a character string. Warning: the
input line will be extended with spaces to fill any number
of string variables. READLN should be used to start a new
line.

E A WRITE of a REAL number uses exponential format when :W:D
is specified and D is negative. The absolute value of [is
the number of digits to be printed to the ©right of the
decimal point, If :D 1is not specified, fracticnal or
exponential format is selected based on the size of the

number,

C The output generated by a WRITE is right justified for
reals and integers, and is left Jjustified for all <cther
types.

D When EOLN{(F) becomes TRUE, F@ will have the value EOL

instead of * ¢, FExecution of READ (F,C) where C has the
type CHAR, will set € to ' ' as in standard PASCAL.

C All blanks are eliminated from the end of input lines of
TEXT files,

R Program headings are not implemented, A program is
"<hlock> ." .

E Procedures and functions way be separately compiled by
eliminating the <statement part> from the program <blcck>.
The period is still required.

E A <value part> may follow the <variable declaraticn rpart>
to provide initial values for simple variables and
one-dimensicnal arrays. SETs may not be initialized with
VALUE. This feature is relatively ertor-prcne, and its use
should be avcided. The syntax is:

<valune-part> ::= <value-part> <value-assigment> ;
| VALUE <value-assigment> ;

<value-assigment> ::= <identifier> = <constant>
| <identifier> = (<constant-list>)

<constant-list> ::= <constant-1list> , <dup-cocnst>
{ <dup-const>

<dup-const> ::= <constant> | <integer> * <constant>

PASCAL/UBC User's Guide 39

6.3 The STANDARD Option

A check for compatibility with standard PASCAL may be made
by =specifying the option $STANLDARD+$. Use of the extensions
described above are generally marked as errors under this
opticn. Differences are not marked, and restrictions are still
in effect. A few extensions are ngt flagged:

Alternate symbols, such as & and " still may be used.

10 characters are still used to distinguish identifiers,
instead of 8 as suggested at the end of the Rerort.

The use of PACKED variables is not distinquished from the
use of unpacked variables.

A call to WRITE having a :D expression will not check for
the use of a negative value to produce expcnential format.

The use of the RCODE variable is not flagged.
Some built-in procedures found in other implementations

also are not flagged.

7. Miscellaneous Implementation Notes

A complete descripticn of the PASCAL/UBC implementaticn may
be found in the Irplementation Guide [7]. These notes are
designed to aid the casually interested user.

7.1 Communication with FORTRAN

This section is designed to aid the user who wishes to
write PASCAL programs which communicate with routines written in
other languages (e.g., FORTRAN, Assembler).

PASCAL/UBC User's Guide 49

PASCAL/UBC uses the following storage allocaticns:

Iype No. Bytes
CHAR 1
BOOLEAN 2
INTEGER 4
SET 2-32
REAL 8
scalar and subrange types 2,4
‘character string? length of string

Note that if +the BYTALLOC option is on, scalar types may have
length 1. Scalar, subrange, and set types are aligned on
half/full/double-word boundaries unless the ALIGN option is on.

The constant FALSE 1is represented internally by the
halfword #0000; +the constant TRUE is represented internally by
the halfword #0001.

PASCAL files are not compatible with FORTRAN or MTS files.
They should not be wused as parameters. Their internal
representation is subject to change.

PASCAL will generate a standard FORBTRAN calling seguence if
the word "FORWARD"™ 1is replaced with "FORTRAN". In cther
respects the procedure heading is standard. Either value cr VAR
parameters may be ©passed to FORTRAN (Assembly Langquage, etc.)
and will work correctly. I.e., if the called program modifies a
value parameter, the corresponding actual garameter in the
PASCAL program will not be changed. Procedure parameters should
not be passed, although predictable results will occur if the

procedure 1lies in an outer nesting level, Note that an
interface 1is generated for all routines declared FORTRAN, so
these routines should not be passed out as parameters.

(However, they may be passed as parameters to other PASCAL
procedures,)

When a FORTRAN routine returns to PASCAL the predefined
variable RCODE is set to the value of the FORTRAN return code.
Thus PASCAL may distinguish between a RETURN and a RETURN i.
(And similarly, PASCAL may obtain the return code value set by
any system routine which is accessed via the FORTRAN mechanism.)

The names of all FORTRAN routines and all external routines
declared FORWARD must be unique within their first 7 characters
due to restrictions imposed by MTS.

—— — — — ——

PASCAL/UBC User's Guide 41

7.2 Communication with Assemkly Language

an Assembler ' program which has been called by a PASCAL
pregram can, in turn, call another external PASCAL procedure so
long as certain rules are fcllowed. The calling routine must:

1. Restore registers 2 and 12 from its calling progran.

2. Use register 2 as a base register fcr a DSECT. The
DSECT contains the following fields:

SAVE DS 18F
RESULT DS F cnly rresent for functions
PARAM1 DS ...
e e s DS LR B 2

a. Store register 12 in SAVE,

b. If the routine is a function, place the address of
the result field in RESULT. Results from PASCAL
functions are placed directly in memory.

c., Each parameter, in the order declared, For a VAR
parameter, use DS F and insert the address of the
actual parameter, For a value parameter, use a DS
for the variable itself, and place the value cf the
variable in this field. all 2-, u4-, and 8-byte
scalar, set, and ©pcinter fields are half-, full-,
and double-word aligned, respectively, unless the N
option was on when the program was compiled. The
parameters appear in the order in which they are
declared.

3. Use registers. 13, 14, and 15 as usual. The external
name consists of the first 7 characters of +the PBASCAL
routine name, followed Lty enough "$"'s to make the
total nawme length 8. {E<g., FN becomes FN$$$$$$, and
PASCALPROG becomes PASCALPS.)

4, oOn return, register 15 will nct contain a return code,
A function result will be in the result field, not in
register 0.

To call a PASCAL main program, invoke the PASCAL monitor at
entry pcint PSCLMON#. An alternate (completely equivalent)
entry point is PSCLHMN,

The names of all Assembly Language routines must be unique
within their first 7 characters due to restrictions imposed by

MTS.

PASCAL/UBC User's Guide 42

An Assembly language routine may send tack a return code tc
its parent PASCAL program by setting register 15 in the usual
vay during the exit sequence. The parent PASCAL program may
retrieve the value of the return code via the RCODE standard
variatle.

PASCAL/UBC User's Guide 43

8. Snapshot and Post Mortem Dump Packages

This section contains a preliminary description of the

snapshot and post mortem dump packages. The rpackages are
currently under development, and are subject to change with
little notice, No interactive facilities are <currently

available (even though the documentation below implies that they
are) .

Usually when a run errcr occurs the PASCAL monitor 1is
invoked and it transfers control to a special run error
supervisor, This supervisor allows NERR run errors to occur,
after which it calls the standard HALT procedure. If a
compilation is done with the Debug cption turned on (this is the
default) special tables are produced which allow PASCAL to print
an informative display of all currently active variables with
their associated values each time the run errcr superviscor is

activated.

If one 1is running interactively and Debugq is on, the run
error monitor will instead of producing its standard display and
continuing execution, enter an interactive locp. It then will
process user requests for the display and/or modification of any
active variable(s), after which the user wmay continue (or
terminate) the execution. This interactive feature may be
disabled by running with PAR=EATCH.

The snapshot package may be invoked directly by the user
via the standard procedure SNAP, The values of all current
variables will be displayed and execution will continue if
running in Dbatch mode, or the special interactive loop will bhe

entered if running interactively.

SNAP takes an optional inteqer arqument specifying the
number of levels back in the executicn stack which are tc be
displayed. The " default value 1is one., Display of all levels
back as far as the nmcnitcr may be achieved by saying
SNAP (MAXINT). The integer arqument should be positive; negative
values are reserved for future use,

PASCAL/UBC User's Guide yy

9. HWarning and Error Messages

- A e e i e e e e ot

Source errors are flagged Lty the compiler as they cccur and
are summarized at the end of the compilation. Each error is
flagged by a vertical bar (|) under the last character of the
of fending word or symbol. Several errors may be detected at the
same position in the input leading to a sequence of twe c¢r more
vertical bars in a row. Each Lkar corresponds to its respective
error number printed on the right of the same line.

The text corresponding tc each errcr number is shown below.
Not all error conditions have heen thoroughly tested. The error
messages are sent to SPRINT. In many cases PASCAL is able to
generate correct code even though an error has o¢ccurred.
However, correct code cannot be gquaranteed unless the source
program is error free.

Expecting ',?

Number out of range

Identifier expected

Expecting '=*

Field already defined

Illegal subrange bounds

Tag must be integer or enumeration
Identifier already defined
Expecting ') !

10 Expecting *:°¢

11 Procedure/function illegal

12 Identifier not defined

13 Subrange error

14 Expecting fOF!

15 Expecting *',)!

16 More than 9 errors cn a line

17 variable not of record type

18 Type declaration error

19 Error in code generation

20 Expecting ', or *)°?

21 Division by zero

22 Only variables defined in this procedure may be initialized
23 Iqgnoring parameter list of FORWARD-declared proc/function
24 Procedure body must start with BEGIN
25 Statement expected

26 Unpacking illegal types

27 Variable not ARRAY tyre

29 Expecting ' (? ’

30 File type illegal

31 Range error

32 Incorrect data type

OCOJANEWN =2

PASCAL/UBC User's Guide

33
34
35
36
37
38
39
40
42
43
Ly
45
47
us
49
50
51
52
53
54
55
56
57
58
99
60
61
62
63
64
65
66
67
68
69
70
72
73
74
75
76
77
78
80
81
82
83
8u
85
88
89

Expression too complicated -- all registers full!
Identifier not ARRAY type

Expecting constant

Incorrect index type

Non-standard PASCAL feature used

Variable in *WITH! clause not of type record
Record field undefined

ELSE has nc preceding *'IF?, or extra ';' used
Expecting factor

Label not defined

File error

Frror in expression

Incorrect arqument in standard procedure/functicn
Label value illegal

Closing string quote not found

Illegal data types fcr previous operation
Illeqgal data types for this operation
Expecting *:="

Illegal assignment

End of statement expected

Illegal use of symbol

Expecting 'THEN?

variable required for VAR parameters
Expecting ;!

Expecting *DO°

Parameter error

Expecting label

Illegal set elements

External procedures may not be forward declared
Illegal function tyrpe

Too many files

Illegal arguments in *NEW?

Expecting *UNTIL®

Fxpecting 'END'

Illegal control variable

Expecting 'TO' or *'DOWNTO®

Bad repetition constant for VALUE

Too many array elements

Too many labels

Illegal option name

Expecting ',?* or '§?

Label redefined

Ccde area exhausted

Expecting ! ,°?

Too many procedures for ?load-and-go!
Load-and-go code area exhausted

Missing *FORWARD? or 'EXTERNAL' procedures
Object file not allowed at Student Terminal System
Ccmpiler error

Expecting digit

Undeclared type(s)

45

—— — — —

PASCAL/DBC User's Guide 46

90 Expecting type identifier

91 '@' does not follow pointer or file variable

92 Top-level procedure names are not wunique in first 7
characters

93 Error in case label

94 "FORTRAN'! not allowed at student terminal systen

95 Illegal use of :W or :D

96 Label did not appear in a LABEL declaration

97 Input line too long

98 Unexpected end of file ercountered

99 Unimplemented feature

Runtime warning and error messages are printed on SPRINT as
soon as they occur. Generally recovery will be attempted NERR
times, after which the run will be terminated. Each message is
preceded by '¥*x*' or 1§x*%x?, TIf the latter form occurs, no
recovery is possible and the run will be terminated immediately.
These messages are indicated by *$* below. The texts of the run
messages are relatively self-explanatory.
$ Keyword error in parameter list

An illegal option has been used in the PAR field.
$ Error in file assignments

An erroneous file assignment has been attempted in the PAR
field.

$ Too many files

Currently, at most 16 file assignments are allowed in the
PAR field.

$ PASCAL error return
An error has occurred in the PASCAL/UBC mcnitor during the
exit sequence. Please show ycur program to Bary Pollack,
Department of Computer Science.

$ Operation exception

An attempt to execute an unkncwn operaticn code has
cccurred,

$ Priviledged operation exception

An attempt to execute a priviledged (systenm) operaticn code
has occurred.

PASCAL/UBC User's Guide 47

$ Execute exception

An attempt to execute an illegal execute instruction has
cccurred.

* Protection excerption
An attempt to branch to or change a memory locaticn outside
cf your program area has occurred. This usually means that

a pointer is NIL. If the X and K options are off, this
also could mean a bad array reference or CASE index.

* Addressing exception
An attempt to access memory outside of your data area has
occurred. Possibly an attempt to use NIL as a pointer. If

the X and X options are off, 1t also could mean an
cut-of-bounds array access or CASE index.

$ Specification exception

Illegal use of a general or floating point register was
attempted.

* Data exception

A decimal instruction had invalid data fields.

* Fixed overflow exception
An integer has Dbeen computed which does not fit into one

full word. This condition is not normally checked. The
result is truncated. Sign inversion may occure.

* Fixed division exception
An attempt to divide an intecer by zero has occurred.

* Decimal overflow

A decimal number has been ccomputed which does not fit into
the specified field,

* Decimal division exception
An attempt to divide a decimal numker by ze€ro has cccurred.
* Fxponent overflcw exception

During a floating point operation, an exponent has Leen
developed which is greater than is allowed.

PASCAL/UBC User's Guide u8

Exgcnent underflow exception
During a floating ©foint operation, an exponent has kbeen
developed which is smaller than is allowed. This condition
is not normally checked; a zero result is used.
Significance exception
Lcss of significance has occurred during a flocating gcint
operation. This condition is not normally checked; a =zero
result is used.

Flocating division exception

An attempt to divide a floating point numkter by zero has
occurred.

Stack overflow

PASCAL'*s execution stack is full. Rerun the ©program with
EX= a larger number.

File not assigned

Reference has been made tc a PASCAL file which has no
corresponding MTS file assignment.

Unable to open file

An illegal operation was attempted on a file before the
file was opened.

Get on EQF=TRUE

A GET or READ has occurred while the file was empty, or
while no data remains in the file,

Input too long

A source program input line is toc 1long. Currently the
limit for PASCAL source programs is 100 characters/line.
At run time, a line lcnger than the declared 1line 1length
will have been read. The line is truncated to the buffer
size,

Put on EOF=FALSE
A PUT or WRITE has been attempted on a file while rfpcinting

somewvhere other than the end of the file without a prior
call to POSITION.

PASCAL/UBC User's Guide 49

$ 'NEW? space overflow

The NEW stack 1is out of space. Rerun your program with
NEW= a larger number.

* Reset file failure

An attempt to RESET a file has occurred and the file rame
in question is improper or has no associated MTS file name.

$ Local time limit exceeded

Your program has taken longer than was specified in the PAR
field. Choose a longer time and rerun your progranm.

$ Local page limit exceeded

A Student Terminal System job has tried to print wmore
execution output than 1is allowed. Use a more cocncise

output format,
* Assignment value out of range

An attempt to assign a value to a variable when the value
is outside the range declared for the variable.

* Index value out of range

An index to an array is outside the range permitted in the
declaraticn fcr the array.

* Case value out of range

A CASE expression has resulted in a value for which there
is no corresponding constant label,

* Rewrite file failure

An attempt to REWRITE a file has occurred and the file name
in question is improper or has no associated MTS file rame.

* Call on a formal procedure doesn't match actual parameters
The actual arquments to a function or procedure which has
been passed as a parameter do not match the types declared
for them in the formal arqument declaration.

$ Compiler object file umavailable

The compiler is unable to write on the file specified for
its okject ccde (binary) outfput.

PASCAL/UBC User's Guide

* Elementary function error

[1]

(2]

(31

(4]

£5]

(6]

[7]

A (FORTRAN) elementary function has been
illegal arqument. E.g., SQRT(-1.0).

Beferences

Jensen, K., and Wirth, N.

PASCAL User Manual and Report

Lecture Notes in Computer Science, No. 18.
Springer-Verlag, New York, 1974.

Wirth, N.
Systematic Programming
Prentice-Hall, New York, 1973.

Russell, D.L., and Sue, J.Y.

"Stanford PASCAL 360 Implementation Guide"
SLAC CGTM No. 89

Stanford University

Stanford, California, November, 1974,

Computing Centre

“YUOBC BATCHY

University of British Columbia ,
Vancouver, British Cclumbia, August, 1975.

Ccmputing Centre

WUBC TERMINALS"

University of British Cclumbia

Vancouver, British Columbia, April, 1974,

Computing Centre

"GBC LCADER"™

University of British Cclumbia

Vancouver, British Columbia, October, 1976.

Pollack, B.W.

"PASCAL/UBC Implementation Guide"®
Technical Manual TM 27

Department of Computer Science

University of British Columbtia

Vancouver, British Cclumbia, forthcoming.

50

invoked with an

PASCAL/UBC User?s Guide 51

INDEX

6

ALFA ‘........-l.Ill.....l...‘l.....‘ll|-ll.0llil.l..\l‘..l. 30'33
ALIGN 2 G 9 % 9 90 0 00 S 9V L QPO T 89O P DD e PO VDS O PN OO PO SO PO SN 0L e NN 7
ALIGNMENT OF STORAGE ® 99 0 98 0P 9O 0 G DO S DO D DS O AL SN WS O DLD S OSSO0 7
ASSEEBLEB LI B B BE IR B BE B IR I BN DR N BN b B BN B B BE B BE B BRI BN BE BN I BN B BE BE IR BN IR I R RN IR BN BN BN I NN B BN B B AN) u1
ASSEHELY LANGUAGE e 8 § 9 90 5 050D DO HE T OO HE 5O OS SN S T8 AN SRS S SN e u1
ASSIGNNHENT RANGE CHECKING ® % 5 © 99 9O DD SO PVE SO DO SO NS OP OO S S OO SN SBe 8

7

BATCH ® 5 2 800 59000 SOV DO O IPID D OAN 00 LDAY PO OD L0 0SNG SS0ONESE u'u3
BOOLFAN EXPRESSION EVALUATION scsecsvecscscecscsccscssscosscacsnsace 8
BUFFER VARIABLE cicsecoeccvsesscesoscscocssnsenscsasssescssssasascse 10
BYTE ALLOCATION 9 955 048000080008 PED00S 050000 ED S80S SNENEEBSEOEES 7
BYTEALLOC 49 0008 0099000500000 00L0 050005 200009000000 V0000000SS e Fi
CASE 2 68 59 506 2000 0 VEUO S0 ESL0DDENS S0 80O OSOH DDA NS VISDO NS S 3“
CASENEXT 9 00 9 5080 00V O P09 0 ECBTOADEID 0OV DS VS SS C6 0P 90O OSSO BAESS 7,3“
CHARACTER SET © 5 605469 5000 5560 208D 0SB0 AT H O PESSSI0 O BN 25'32
COMMENTS © 98 99 006 520600 000D 0 PO0 DS LS ST NS ON SN0 DI O VS SS ST NS DS 25
COMMUNICATION WITH FORTRAN ccuceccsscsssssscscsancssanssssacsse 39
COMPILER CPTIQNS @99 95 009600000 F 0D 5O OGPD OV OO 5090 0000 SEONNS SIS 7
COMPILING A PROGRAHM 2% 606 2 508058000 5558300080098 88 6069 B BCCEs O 1'2
CS:PASCAL 20 520 09 0090 H AND L 00000V ALDOON DO SN 08 D VNS LDELESSLSNN 2
CS:PASCALLIB © 85 050N SO0 9 OOV OLCY DS NGO ED SEDe OGS NN S8 O0800 e SN 3'22
DEBUG €S 2 8 90 9O 0O 0900 BEE NP OSSN S S eSS 0SS EE 0N A0 eET 0008 STE NS 7
DEBUG TABLES ® 89 90 0° 0000000000000 2800000 S8 00 S0 OB6LSS6SSSESOOSS 7
DEBUGGING IR A R NN R RN RN EERERERICE I IR T I A IR B u3
DECR 00 0% 200D SAE S5O0 A0RDNSS0 0PN 006VSIT 500 LY S BN GEeEBANE RS 37
DEFAULT CASE 629 009 90 VD D TSLOLNOD 00 COON PO EUN S T O SIS OB SOIION NS 3“
DEFAULT OPTIONS <scscvccscacsncaseavccsasscsscscasscscscsscosssssnnss J
DELETELINE 92DV D OSN L OO0 POS0O IO OO BN SO OD IS IS OO S OEB OB ON G 21,37
DEREFERENCING OF POINTERS acecesscvecnsscsccasassccssansesss 33,35
DIFFERENCES I IENEERENERNEENERENNEENNENRRIXIENNIEEERERNEBIREIE NI IR R IR N) 25
DISPOSE 60569980 6090 0008 0908083900 00965000 9e SN S8 02BN 28'31'36
DUOMPTABLE T D 95 95 2 0 BOD SO0V OOB O OSSO OPHLOH S0 0 E BS 0SS SN 0SSN EEDNE LGN 7

EJECT ® @ 0 84 9O B S 4 E QR OO S H O O BE O ST O S DD O S 6650 e OO 49 66 559 S 6O SO S SS 7

$DATA 9 9 ® 5 0 80 00T O 00D 9SS0 O VDD 06 P ST S0 S0 0P OO N O VO IO 6N OO OO 6B BB Nl 0D

BAR S % D9 M Q50 S0 0SS 2008 9 YOS G SO BSOSOV H SO AT OS O8 ES 08 BT O AN 808N

ELSE sasscasesseassnadsnsssenessas e goesnenisnsesnessssie s hanse 33U
EOF S 02 9 90 00 8 B B D 9 00 P 9O OO D SA DS PSSP S SO OO P I PO SR S SRS 0o 10’13'36
EQL 840200000098 0009° 0880200000005 2000000000000 800 10'13'29,30
EOLN ...-..-..........'....'..'l......‘.......‘......." 10'13'38
ERROR MESSAGES Gesesswanossososssnossssassnnssnsssssansnssiseee 4U
ERROES ® 8 9 0 95 &9 6 508 S S 9O S 0O 9O A0SO 2O SHE S A SO S ST 20 OB S0 OS8O e uﬁ
Ex-_- S O B O 5 0 20 0O OO S0 S OH SO S B OSSOSO 0D OO OV OB DO SO OO O PO OO SO O OOV S e S
EXECUTING A PROGRAM scesscsssnconcssossssancsecnsscsccscsssssas |
EXECHNENTIATION s eoscvasnisscivocosssscsiossossnsssnsssossoonsson 22
EXTENSIONS ® ® 5 00 » &89 9 0 B S 8 9 OO ST O VO W S SV 0D SO OV S A S0 S QS 9 TSRS SN 25
EXTEN510NS TO READ 9 0 O P @ 5 PO P S D ST H O OO 08 O PO SO OGS T A SO NSO 0B Oe E s 12
EXTEBNAL % ® 8 % 60 9 9SO G 0N O SO PO O 9 I OO H 0 S O a s O SB HS A S SE s 29'30’35
EXTERNAL PROCEDURES scvecsvccacscssonacnavonscsessssonsoss avesisss 30
FALSE wmastssamae waommnsas sa:nsdnenanamesesessesss somesmnsswesos 50
PIELD-WIDTH ccesvssnovosnsosnmeses sossnsansessssnssonesnensesss 15
FILE ® 8 8 5 9 5% 9 0 0% @ O 9SS SO TR OSSO SV OO OB 9O S8 SIS A8 S P SO ES S0 S 80 28’33

FILE ASSIGNHENTS ® D 90 2 9 9 9 9 S9N PO S S OO H 0P S ON B DD 08 0O 5SS O S0 N0 0 s 5.

PASCAL/UBC User's Guide 52

FILES ® @ 0 @00 29 80 089S D OE S W DO S0 9O 00 S H G SO S 20 5° S8 0O 8O DB S8 S 10

FOR 2 900 PP S PO O IO O OO T A 0SSO S U EDO OO RO OSSP TN TN S SO DT D SO PSS D OSSR 3!"‘

FORMATTING OUTPUT 2 9 % 5 5% & O 00 A S O O8N DSOS DS PO GO WO 0D OO SO SO0 S a0 e e 15
FORTRAN © 6 09 90V 0 PN L ON L RE NS DO 90 0O0T DB DO S0 G090 S0 0N 28'30'32,35'39
FORWARD ® 5 08580600 57098 6008 00560 @58 08 CENOTO S 20 50 08028 D 28'30'35

PULLXREF ® 8 9 5 9 9O 00 D HO 0D OO SO O S0P S OI PO OSSO H IS ST ST SE S CEEESINN e e 8
FUNCTION ® 8 8 & 0 958 2 85 68 9 S0 0 DSOS SO0 OSSO0 N 0O B S 0O BT OO SO 00O A A EN S 35
GET 9 0 89 © 6 58 OO OO 8P OO0 0 SO 9 O ID BRSSO .S OO PD L OB PE DD OO Be SO O 10
GOTO @ 9 9 2 0 00 5 O 3O O 00D RGOS S ASS D S H GO HEGE 9B S 0SS 8C TE BSOS 5SS 888 a0 3“
GUSER @ 9 @8 0 8B 99 SO 9D A DO O O RSO S SO SO PO AT T O 0O GO O TE OHN SO O e O 11'20

HALT ® 6 8 4 80 &8 09 6O 5T SO SO 0 9L 0D OO O TS OSSO 4T A8 0% SO0 G0 S LSO SO0 E DO 37

HEXADECIMAL NUMBERS I..l.'......'......\..........l.'..'... 26’33
I/O FUNCTIONS @8 % 069 B 0TS OO Q0D SIS AC HE eSO DO OO B8 W O HNB Q8BS GENS S 21

IF ® 9 0 90 08 9% NSO 00D O 0N O O OO S 0O DO VDO PO OO O 9 SO A SRR C TSRS 3“
ILIST 4 %5 9 00 9@ A0 43D 0P E S PSS A DO OO ¢S EHS O SO SO S S0 00 S O8G0 SO S S B 8
INCR ® @ 0 90 O SO OD 99 TR A OD S OB BD PO NP O SO A IO O T S OO PO OS DO O N OO OE '37
INDEXCHFCK ® % 9 20 2 O & O 0 5D O B S ARS OO ON S8 LB OH ANS O SO S O e B OR S SS SO S B 8
INPUT ® 9 0 080 5 0 OD 006 06 00 OO DS SO PSP e VS SO OV SO VD 2 SR AP S SO ST 9'11'20
INSERT cccsaccasvsccanoncssnsscscsnsosnsscacsasassncosscsscsssnsnse 30
INTERACTIVE USE 5 09 0220 0 D0 H T 9O ¢S 08 OB B H 00 0O SO ST 2O SO OO O 9S S &N S 17
LABEL 4 8 0 5 58 599 8 9 60 8O A T O e 9 eSO S S 0% USSP H D SO NS S8 A9 OO 00 040 S0 e 8N B 3“
LANGUAGE DIFFERENCES secececesccessnssccscsacncsssssssssanasnsns 25
LANGUAGE FXTENSIONS secesvsacsscscnscsssonscassascasasscananss 2D
LANGUAGE BESTRICTIONS 2 @ & 9090 90 08¢0 0SB S DO L DO O OO PO BSOS 0 LA NN 25

LI= sesnavsapsanssiiesssessvasidsasonsiasenssniss snes soigeaesesss D
LIBRARIES isecvovcsasscssstcsncssonenaansonresnsscoansssenansses 22
LINELENGTH sesseonsnmeconsasnssssnssnnnsetssyass s teias sans s 21,36
LINENO cosnnusonmsannssomsasonsnsousoeaae s soinsssos soss 21,31,36
LINK cecessanosnossvasasasnsssstssvsssbenss ssssdsmonsssstnssanins U,S
LIST cossosassssdisanisinemssssonsisdaisssnssinss bsndidspeosssesn O
LOADNGO e esnccsecscscasssnncsacsssensnasssnssasnnsesssssisneed 3,5
MARK sismosnsass smmanonsoasesnsosniosssenswsssansnssasesssansssnns 28
MAX cescassscancsssanssensiosnansosssassnsnesssdnstanssasnnae 31,36
MAXIMUOM sceveecssosncsansennosassosnssacsnsssassnsnnosdscens 31,36
MAXINT cssssnncscsancsassssasnsessnssasssnssonsnsssencnssnnassss 30
MCCARTHY ssunssnasnnossvissoessssssasises sassambses s dassspswss O
MCCAETHY EVALUATION ccccscssascossscssscaccsscnancsassassansasse B
HIN snesomnsaenssenseesssscasansensee 609ssesess aise s enssessss 31'36
MINTHMUN sasawssnnsamnmunss susanioss s smes sadeanos seesssnns eo 31,36
MONITOR sssssasonsinons snesavasyonosassases vaan asondsasasesss 01
MTS LOGICAL UNITS weuasaccasssssassccnscsnsncsscscsasannsscas 11,20
NEBRRS comssenssnsonssensmnanssessos oinseses sesessneasessesnsess I
HER wossnsnacsssseso snotesoansssnnas smnsesnes ssnnes s sessss 5,28'36
NEW PAGE iscciacovososessasssnosrsasssssnscssssssnossoaesninnssonsea 1
NEWS| elatals 5. 5 o tala talt ol aleisasienzaloasaxsresniisdn sk aionis SEeTe, eeielilaite & wisonareratatels’ stsi
NCN-TEXT FILES ® 9290 202098000 9000 S5 B0 00 0800 4SS A VERIESIANEESS 19
NOEND sswnssssesosssmansstassness isnsnas étassnnsasspesnsareesen I
OBJECT MODULES ssvsssassddosasssvdsissiinmisndosn gpssndadsssas |
OBIFILE awsssnamomssnmnsssmnsmassnne emeonas anBanmnssanasmenss s B
OLIST e simmn siaiais ow wimianis simwiosmon soms snne esss s Bonsannbeedeessim O
CPENED cecsosccssassancecssenanssssssssnenscasassosasnsassnnnsas 21
CPTICNS cessvsasasesscodsosnosnacssosseoasesessnnasaesnnnnnoess g7

CBDER OF EVALUATION ® 998 @ PO T O N 2O O GO S0 0D 09 PO O PE D S S 0e S 0E 8

OU'IPUT ® ¢ 0508 00 09 ° 0 QO @008 OO A DO EL B OO TS BEI N SO O SO S0 9O 0N 06N e 9,11'20

PASCAL/UBC User's Guide 53

PACK ® 8 9 % 506 B0 00 S PO S N SN DS S S 0 9O S0 T SS S SR 08 S8 00 9P 9SS OO B OB AT 27
PACKED ® 99 99 0 9 P90 D O S SS DS D 0SSP 9SS 5O O OO OO PV 60 DS SO e SD O D 27'28'33
PAGFE EJECT acceccssssoscssscnccasassnctosssscontssosssssosasanascsas [
PAR PIELD ® 5 095 9D 90 08 9 VO S 800D 0D AN POV OGP GO D O VP OO 0O 80 O OO OO WO O SO u
PARAHETERS 2 49 0 ¢ 8 49 60638 9 2D 00 52 PR DG 0SS e VS SO DN HB B S O D OIS SN uo
PASC:MCN B 9 5 9 0 8 0 2 9% S P ST DO T OO PO DD DO OO OO SO DO SO 0O SO N PO OSSR N 5
PASC:HON.S ® 5 8 89 8 09O B OB S D OB S D SO SO SOOI S 2O SS SO P 00 B OS S D SO SIS OB 23
PASC:NEWS ® 9 5 96 5 08O 90T OV D H DO DO PS SD OO OO 9 0 P B0 O OD OGO S B OO O OSs 1
PASSING PARAMETERS e ccaccessnascacenasccncssnssncsecssncassnannas 40
POINTER ® 99 0 28 0D 9 00T D S DN O DSOS 0D DO S5O DO OO SO O0E BH OB PR O OC e S QY S 33'35
POSTTICON ccesccescscascssnasscsncesssascscsannsssssanscssncsaasnse 21,36,37
POST MORTEH DUHP 9 5 ® D 250 99 600 0P S0 29O 20 B9 9O 20 O 69 S 0 0SB 5’22'“3
PRECEDENCB ® 3 & 20 6 &5 8 008 H 2 H O S0 9 PSS S0 8BS S 0 SN A S0 S8 80 OO S 8 D a8 B
PRIOBITY RULES ® 9 099 OSSO0 0 9O GO OO PO OH OB PP DO 6O O E G OS V O S SS B SO 8
PROCEDURE T 9 8 3 8 S 52 00 B 9SS H S 0SS H SS 00 S SO SE 2SO SN O LB S0P S e Pe e B 35
PROGRAH P 8 90 8% 09 P OB D SD 9 OSSO0 S DO SO DO DO S S 9D PO 0P PO VS OSSN eSS 26'32
PROGEAM HEADING 9 65 0 @6 % DD RO OGN OO OO OS99 BS DSBS e e oS PSS e D O A e 8 26
PSCLHN B 9 8 0 06O 085 5 H OO SOV 0 H O S D 9O OI P PO LS 6 VO IS V6 2P SO SO PSSO S e 41
PSCLHCN# S ® 5 85 88 5 9 00 A0 29 O &D O 9 S5 S8 B O OO SE SO PO SO SO S eSS O 23'“1
PUT ©0 00 090000800 0000009500000 00005068000 009090 2000 IS0 NGS 10,36
RANDOH NUMBERS ®? ® 85 9 6 © 0 O B 5SS OSSNSO OO SO e S 208G NS 20 .‘0 9 5 8 & 5 05 08 5o 22
RANGECHECK ® 8 2 99 999 P S OP O DO AP S T SO O OSSO0 PO OPL SE O DS VOSSO S SO OO N 3“
RCCDE ceesesccasssassscasncssncosnsasnassasacasnnasncse 32,33,40,U2
READ ccecavcosasscssasosssosssssosssascsensosssenssacsannae 11,29,37
READLN ® @ 2 9 ¢ O 5 92 006 O OOV O 20D Y S S8 OO O SO0 N T SO DS IO SH 0O 96 S8 6B OB e 0 18
RELEASE ® 0 00 OV GO S0 QD O SO OV OODOS 00 O8O0 0T VO 0 VS 00 S0 60 GO OSSO 28
RESET cececescacecncsonssnsacsscscscnasnsnsesssnscsssassnss 19,28,29,36
RESTRICTIONS T 99 0 5 O 00 9P O P 9 O QS 9 S OO O W OO SR 9O S P OF VO SR TS VO SO SO O 8 25
RETUBN CODE S ® 85 ® 9 08 9 9 S8 5 00 E D ED 0O SS9 4O E O SO SO De DS SO e S 32 ’uO’uz
REWRITE cccsvenscsesnosccccscsssnssnncsssncsenssonssness 19’28,29'36
RUN ERRORS S 6 5 99 €85G 58 8 5 009D 0D PO A SO H DN RO S0 "6 HAE DY OO B A S0 eSS u6
RUNNING A PROGRAH ® D 9 & ® 02 0 900 9D U S SO SV SO O N SO O P OO PSSO e S e S 1'2
SCARES S & @ 05 8 5 08 55 0O 9 HH 0 S8 D0 SO SN OO0 SGE O 6D SO SN SO SO SO 68 S AN S 1,11
SEGMENTED ® 0 5 9 0 @5 VP OO S I B O LD S HDOH 0D DO IS 9O OD SO 0P OO OO PO OO O VS O 30
SEPARATE CCMPILATION OF PROGRAMS csvcoecceccsscssancscsccacscnns 23
SEOUENCE B 8 ¢ O 0 00 O 9 0 O 0 9 E D OO VNSO OSSP 9O DSOS O TN 00 OO SV OO 00 S 09SO e 0 8
SERCCH 9 ® 9 9§ % $ 8 G0 95 49 D 0SB S L OO P HE A 5D SO E S S 2O 2O 99D SO O S e 11'20
SET sevsscensnnsascccsensessssesnssscsassnssacessnsa 26,27,30,33,3“,38
STZE sovcvansnses s6aenssemaiosnesnsssanssann e snessesssessessssndss 5
SKIPBLANKS © 90000 9000000450009 00000 0505000000099 00 0000000000000 22
SNAP ® ® @ 5 & 00 05 90 5 OO0 T T S PO W 0TS S P OO AT SE I PSSO S NSO SO DA SN 37'43
SNAPSHOT ® 99 ® 0 99 59 90 DO O N O DB OO LD ODP DO SN OO S e S 20 S0 "D DO DSOS P e u3
SNAPSHOT PACKAGE cesescucncscasonscsnoscscsasanssncanssncssscans 22
SOURCE CARD FORMAT eseacsovcosssanscsccsassssssseascscsesnssssasancne B
SOURCE FRRORS cecseassenssessesccasossnseasssssssasessoncnsnocss uy
SPRINT 5 5 00 9 09 99 C 5 9 9O B OO OO H DIV P S0 SO OD 00 PO 69 O 2O S OO SO SRS 1'11
SPUNCH ccccecccssccscancsscssscsnsacsscsssnsssssesscsssancanccsccesns 1
STANDARD ® 5 ¢ 2 0 OS5 9O DS QB SO E SV O O P AL DD DS S GS S S DO PO SIS OO R OC PSS 8’39
STANDARD PASCAL CHECK eccscescesesonsccsensnsscssssssencsses 85,39
STANDARD PASCAL LIBRARY sccscsccsvsasesncecssncossasnsssonasas 22
STORAGE ALIGNMBNT @ 8 5 © 50 5 65 08 P B S A NS A S S 4 A S 8 SO S Q80O D RS B OB A A E s 7
STORAGE ALLOCATION ccessccssscosscscsanscessncsssessosscnanacsscssne [,40
STS e B 8 9 9 8 6 5 8 S ST SN GO0 S 4SO O BB T H A RS S S S SN AN SO R SR SS 8T e A e 6

STUDENT TERHINAL SYSTEH ® 0 5 00 P QS I S SO AN ST AN TN TSNS e e F“

PASCAL/UBC User's Guide 54

SUBSTR 5 0 9@ 9 9 08 50 ¢ 0 5SS H LS OO GO S S S OB BE 9O O S 40 DO BB Y 08NN SN s " 31'36
SUBTITLE ® 99 08 80 &P OO SO PO I OO D SO L S VSR 00 28 O VI SAD 2B 09 e BS SO S 0P 9
TEKT e B 8 6 6% 0 % 90 9 0 NS 08 O S S S 080 S AW SS A S0 S SO NS S TS OO NS B8 se 30'33
TEXT FILES 4 85 90 2000 29D O S VOO0 PO OO DS DS SR SO 2 28 OO SV OSSN 10'38
TIME e 8B @ @0 2 0O OB O OO 00 2 00N SO SN SO DS DD 0SS A PO OS S O8N0 WEO S HE 6 08 5
TITI‘E ® 9 90 29 5599 5880 S T OO D OO S S 00 SH OO0 S 4O DS S S 0O SO 500 O VS O6DP GOSN 9
TRUE ® 80 5 @ 50 2090 68 000 N e S DO BS S OS e OSSN OB S 26 EH 00 A0 65 TE 206 SO Ga 0D L"O
UNDEREAR CHARACTER ® B 9 5 8 9 98D D 09 0O L9 0SB 00 VS DA NS SV 0O DES OSSO S e e oo 7
[]NDERLINE S 6 5 0 0 0 ¢ 50D S OA D OO E DO R DD SO G4 A N DO S D EE AN SN NS S S S e 9
UNPLCK ® 9 90 450 0 9 5T 00 B S 0O B P OD O S PN PO AN S SO S S P A eSS e D O 27
VALUE 5 % @ 5 8 9 08 %0 50 80 O 0H D S S SO PGS PE T OO S HESS SA G SO 80 e B 26'32'38
WARNING HESSAGES e 9 ® 5 H 02 O S H0 VA B 9SS 2D 0O SO 0O IS 5O PO 6O PO P DB SO OO S B u“
HITH ® 9 0 GO H NS 0L DN SO D B RD OO VS S OS O SO 0N EN S0 C O 00 e OE S ¢HE S 08 3“’35
WRITE @ ® 2099 00 29 0 PSS D OO D AN 09O 00 O VD OO N CH OO ON SO S8 0E S 11'29'37
wRITELN ® 9 0% 5 3 5O 0 0 OO S SD 8 SO S0 B O S O LSS SNBSS0 AN 9O &8 S8 9E EEEE SN E S 29
XPREDEF 5 @ 0 @000 00D OO0 SO S VSS9 SO OB HE A OO O A S0 DS 0O 8O0 8 0L DP e 8D 9

XREF L BE B BN BE BE NN BN B BN R B BE BN NE BE OB BN RN NN NN BE NN NN ORE N RECRE B BN RE RN R I N N I BN N I B TR N I R L B B B 9

