
r-
(
I

e: ~- .' n
.,.~ ··: ;,J

r.- a
t · ' J
()

< ll
{ .,
f l •
(

MMM
MMMM MMM

MM M MM
M M

M M tlMM.MMMMMM
MM MM MMMM MMM

MMM MM
MMM MMM
MMMNMMMM.MM

MMMNMMM MMMM
MMM

MM .MMM
MM M.MM

MHfUU1MM
MIU! MM
MM MMM
M MMM

M l!l'I MMM
MMMM MMMMMM
MMM

MM
MM!!MM

M H,
M M

MM
MMM
MMM
MMM

MMM M
MMMMM

* * * PASCAL/UBC User's Guide *
* *

by

Bary w. Pollack

and

Robert A. Praley

Technical Manual 76-00

sep 24, 1976

Department of computer Science
University of British Columbia

Vancouver, B. c.

PASCAL/OBC User's Guide i

o.

1.

2.

3.

5.

TABLE OF CONTENTS

Introduction ... 1

Running Under the PASCAL submonitor 1

1. 1
1.2

Options··••·•······•··•···••••··••···••·•·········· 2
File Assignments •••••••••••.•••••••••••••••••••• • • • • 3

Compiling a PASCAL Program

Running a Compiled Program

Directly

Directly

• ••••••••••••••••••••

........ ·• ,.
Running PASCAL under the Student Terminal System

Compiler Options ·•

4

4

4

5

6. Input/Output···••·••···••··•·•····•··•··•·•·••··~,·····• 6

7.

8.

9.

1 o.

6. 1
6.2
6.3
6.4
6.5
6.6

GET and READ ·•
PUT and WRITE•••••••••••••••••••••••••••••••
RESET and REWRITE ·•
Sta·nda ·rd Files •..•.••...•..•. ~ •..•.•••..
Carriage Control•··•···•••·•••••••••••••·•••
Using PASCAL Interactively····••••••••·•·••·

. ·•

7
8
9

10
10
12

PASCAL Libraries ·• 13

7. 1
7.2

The Standard
Constructing

PASCAL Library:
a User Library

PASC:LIB ,, ·• .. . 13
13

Language Differences and Extensions • :Ji 15

8.1
8.2

Differences and Extensions from the User Manual ••• 15
Differences and Extensions from the Revised Report 21

Miscellaneous Implementation Notes ·• .. . 25

9, 1
9.2
9.3

DUMP Format ••••••••••••••••••••••••••••••••••••••• 26
Communication with FORTRAN··•••·••·••·••·••··•·••• 26
Communication with Assembly Language•••••••••••••• 27

snapshot and Post Mortem Dump Packages , 29

11. Error Mess.ages .. • • .. • • • • • • • .. • .. • • • • • • • 30

12. References • • • • • • • • • ·• • • • :e • 33

Index . ·• ,. ,. 34

PASCAL/UBC User's Guid~ 1

PASCALLUBC USEi'S QQIIl~

Q. In trod uc tion

PASCAL/UBC is a PASCAL [1,2] compiler for tha IBM 360/370
computers originally developed at Stanford University [31 and
then partially rewritten at the University of British Columbia.
It processes a version of PASCAL producing standarl OS obiect
modules. Th~se modules may be executed under the suparvision of
a run tima monitor. PASCAL may be run in oatch or from a
te:!:minal.

The most recent version of this manual always will be found
(in TN-chain ready form) in the file PASC:WRITEUP.

Curr~nt news regarding the state of the PASCAL system may
be found in the file PASC:NEWS.

Most PASCAL users will wish to run under the submonitor.
It provides extended error diagnostics and Eliillinates the
necessity for separate compilation and execution steps. To run
PASCAL under the submonitor, the user should issue tha followinq
MTS command:

$RUN PASC:GO SCARDS~fdname SPRINT=fdname SPUN:tl=fdname
PAR=options file-assignments ; ::;omments

A semicolon (;) may (optionally) terminate the r:un ::;ommand and
anything to the right of the semicolon is ignored by the
submonitor. If a semicolon is present, it must be preceded by
at least one space.

PASCAL/UBC takes its input from SCARDS, sends its printed
output to SPRINT, and sends its binary output (the translated
program) to SPUNCH. If no SPUNCH file is given explicitly, it
defaults to -P.OBJ.

Programs need not be translated nor run under the
submonitor (?ee below); howavsr, it usually is mu::;h a1sier to do
so.

. -

PASCAL/UBC User's Guide 2

The first field after the PAR= is for specification of the
options: BATCH, DUMP, EX, GO, LI, NERRS, NEW, NJGO, NOPMD,
PAGES, TIME, and TR. The options are separated by commas, and
the option field is terminated by one or more blanks. No blanks
may appear within an option.

Options occur in two forms -- those taking values and those
whose presence/absence is siqnificant. The syntax
options taking values is <option>=<value> with
allowed on either side of the equal sign.

for those
no spaces

The BATCH option disables all interactive features. The
snapshot/post mortem dump package is forced to act in batch
mode.

The DUMP option requests a dump of the PSW, registers, and
execution stack when a run time error occurs. It defaults
to <absent> -- no dumping. This flag is primarily of use
to systems programmers. A partial description of the
format of the dump is given below in Section 9,
Miscellaneous Implementation Notes~

EX=<valu@> specifies the maximum number of paqes to be
acquired for the execution stack. If the user specifies a
value for EX, this value will be used both during program
compilation and execution. The default value is 20 pages.

GO specifies that the default object file (-P. OBJ) is to be
loaded and executed immediately with no pri~r ~ompilation
step.

GO=<value> specifies the name of an object tile with is to
be loaded and executed immediately with no prior
compilation step.

LI=<value> specifies the name of a user's object file (a
user's library file) which is to be concatenated with the
standard PASCAL library PASC:LIB prior to execution of the
translated program.

NERRS=<value> specifies the maximum number
errors allowed before the run is terminatel.
value is taken to be 4 •

of run time
rile default

NEW=<value> specifies the maximum number of pagas
acquired for the NEW stack. If the user specifies
for NEW, this value will be used both durinq
compilation and execution. The default valua is 20

to be
a valua
pr oq r a 1n
pages .

PASCAL/UBC Usdr's Guide .3

NOGO specifies ~hat the PASCAL translator is to ba invoked,
but that the object program is not to be executeJ.

NOPMD specifies that in the event of a run ecro~, no post
mortem dump is to be gen9rated.

PAGES=<value> specifies the maximum numbsr Jf pages of
execution output allowed i£ running at the Student Terminal
System. It has no effect otherwise.

TIME=<value> specifies the maximum allowed exacution time
for the running program in seconds. The usu~l rlrs variants
are allowed (e.g., TIME=1.5S, T=.057, TIME=1.25M, etc.).
If TIME is not specified, one minute is taken as the
default.

TR=<value> specifies which translator is to b~ used. If
absent, the default translator is PASC:COMP {which always
is the current stable translator). PASC:PASC may be
selected instead. It is the current experimental
translator (and it is not guaranteed always to pcoduce the
results expected).

1-l File Assi~nments

subsequent fields of the PAR= field (after the options) are
used for file assignments. Each such assignment must oe bounded
by one or more spaces. The pattern is PASCAL_•AME=MTS_NAME,
where PASCAL_NAME is the name given in a FILE declaration in the
source program, and MTS_NAME is the name of an Mf5 file or
device. Examples ar~:

PAR=NEW=25,EX=50; THIS IS A COMMENT

PAR= PFILE=MTSFILE

PAR=DUMP,NEW=15 P1FILE=MTSFILE1 P2FILE=*SINK*

(1)

(2)

(3)

(1) indicates that the program is to be executed witt1 a maxim um
of 25 pages allocated for the NEW stack and 50 paqas for the
execution stack.

(2) indicates that the PASCAL file PFILE is to ba associated
with the MTS file MTSFILE during execution.

(3) indicates that the program is to dump the exa~utiJn stack if
a run error occurs, allocate 15 NEW pages, associate P1FILE with
the MTS file MTSFILE1, and associate P2FILE with *SINK*.

l -

PASCAL/UBC User's Guide 4

l• ~Q.!!!£1JJ,.111 ~ PASCAL Program Qir2£1lY

The PASCAL translator may b~ invoked directly wit~out the
submonitor by usinq the following command:

$RUN PASC:COMP PAR=options file-assignments; co~ments

The formats of the options and file-assignments fields are as
described above. The options valid during compilation are DUMP,
EX, NEW, and TIME.

PASC~L obiect modules may be executed directly without the
submonitor by use of the following command:

$RUN object+PASC:MON PAR=options file-assigm3nta; comments

The formats of
described above.
DUMP, EX, NERRS,

the options and file-assignments fialds are as
The options valid during executLon are BATCH,

NEW, NOPMD, PAGES, and TIME.

The object module may be a single file or a concatenation
of files (e.g., a main program and possibly sevecal support
routines).

The PASCAL translator is invoked under the Student Terminal
System (STS) by use of the $PASCAL control card. rbe rast of
this card {currently) is ignored. When running under STS, one
is unable to set any of the submonitor optioa.s or make file
assignments. These are all set by the STS supervisor. It is
impossible to link to user-supplied external routines under STS,
although many of the more commonly used MTS syste~ routines are
available in the standard library.

The defaults effective under STS are BATCH, no DUMP, EX=20,
LI=PASC:STUD.LIB, NERRS=4, NEW=20, PAGES=4, and TIME=0.5S.

Under STS no $DATA card separates the PASCAL source program
from the following data. Thus it is extremely important to
remember that all PASCAL programs end "END.". If a iDATA card
is included in the source, it will be read by Y2Y£ proqram
during execution.

PASCAL/UBC us~r•s ~uida 5

A comment whose first character is a dollar siqu indicates
a compiler option request. The options are separ~ted by commas
and consist of a letter followed by a plus or a minus sign
indicating 'on' or 'off', respectivgly. A blank will terminate
the option list, separating it from the rest of the cJmmen~.

A

B

C

D

K

L

N

p

+ on

- off

- off

- off

- off

+ on

+ on

- off

- off

Perform subrange ch~cking on issiqnments.

Allows Jyte allocation. No~mally the
smallest unit of storage allocated by the
compiler is the half-.word. :ruis option
allows the use of byte storage for all
objects having the range o •• 255.

Print object ~ode as eac~ statement is
processed.

Produce Qebuq tables for snapshots and post
mortem dump. This option mY§t be turned
on/off before the first declar4tion of a
procedure (or the m~in proqralll) for it to
be effective.

Forces a page J j e c~ : the curcent lin~ will
beqin a new page. This option
automatically resets itself to off whenever
used.

Forces an error if a ~ASE inda~ is out of
ranqe .

List source program;
syntax errors always ar9

lint::s
listed.

containing

Allows nonalignment of data. Normally the
compiler forces correct aliqnmdnt of all
data (half-, full-. or double-word, as
required). This option allows the compiler
to ignore "correct" aliqnm2nt 1 conservinq
some amount of storage in tha process.
Execution speed may be slowed somewhat as a
r2sult.

frint object code after each procedure or
function is processed and all f~x-ups hava
been made.

PASCAL/UBC User's Guide 6

Q - off

s - off

SeQuence number mode: if on, only columns
1-72 are read by the compiler: if off,
columns 1-100 are read.

If on, forces ~tandard PASCAL;
allows PASCAL/UBC extensions.

if off,

T + on Forces Testing; the T option is aquivalent
to setti;q all of A, K, and x.

U ton/off Forces automatic Qnderlininq of all PASCAL
reserved words. The default is off if
running from a terminal. Tha default i on
if runninq in batch.

X + on Check indeJ range in subscripts.

7 + on

+ on

Compile code for IBM 310 if on; otherwise
IBM 360.

Permits underbar (_) to ba used as an
alphabetic charactar.

The compiler implicitly uses the defaults

at the beginning a compilation.

This s~ction describes the manngr in which inpuc and output
work in PASCAL/UBC. Of particular importance is tha existence
of the special character, EOL, which designates and-of-line.
EOL may ba used in the same manner as any other character. It
has the side-effact, on output, of terminatinq the output line.

Assume F is a PASCAL file {or is absent, in which case F
defaults to INPUT or OUTPUT for READ and WRITE, respectively);
CH is declared CHAR; and X, Y, Z are any collection of CHAR,
INTEGER, or REAL on input, or CHAR, INTEGER, REAL, or ALFA on
output; then,

READ(F,CH) is equivalent to the sequence
CH : = Fw; GET (F)

WRITE{F,CH) is equivalent to the saquence
Fro ! = CH; PUT (F)

PASCAL/UBC User's Guide 7

READ(F,X,Y,Z, ...) is equivalent to tha sequence
READ(F,X); READ{F,Yl; READ(F,Z); •••

WRITE(F,X,Y,Z, •••) is equivalent to the sequence
WRITE(F,X); WRITE(F,Y); WRITE (F,Z); q.

READLN(F) is equivalent to the sequence
WHILE F@~=EOL DO GET(F); GET(F)

READLN(F,X,Y, ••• , Z) is equivalent to the sequence
READ (F,X); READ{F,Y); • • • READ {F,Z); READLN (F)

WRITELN(F) is equivalent to WRITE(F,EOL)

WRIT ELN (F, X, Y, ••• , Z) is equivalent to the sequence
WRITE (F, X) ; WRITE (F, Y) ; • • • WRITE (F, Z); WRIT ELN (F)

The, following example will help
m- nner in which READ operates. Remember

tandard functions, EOF and EOLN, which
h · v g r~ad an EOF and EOL, respectively,
The input consists of the characters A,

to explain the precise
that PASCAL has two

are TRUE iust after they
and are FALSE otherwise.
B, EOL, C, D" EOL, EOF :

------------------INPUT------------------
AFTER READ(F,CH) * A B .EOL C D EOL EOF

EOF (F) E' F F F F F T
EOL
F
CH ,

(.) '1' F F T F F r UND
SOL A B EOL C D EOL UND

af "3 r READ (FI CH) u D SP A B SP C D SP

* - this column is prior to the first GET, READ, or RESET
T - TRUE
F - FALSE
SP - space (a blank character)
UND - undefined

Note that EOF(F) is defined as FALSE before the first GET
or READ. Note also that commas and multiple blanks disappear
when READing integers or reals. The built-in numeric read
routines must read one character beyond the end of the number in
order to tell when the number ends. A number !Y§t ba followed
by a blank, a comma, or the end of the line. If a comfila follows
a number, F@ is the character beyond the comma; othe~wise F@ is
the character after the number.

PASCAL/UBC Us➔r 1 s Guide 8

If a file has not been used at all, PUT (F) is valid ?.Ven
though EOF (F) is FALSE. Once the file is in use, PUT {F) is
valid only if EOF(F) is TRUE.

The arguments of WRITE may appear with or
field-width specification. If no field-~idth
explicitly, the following values are used:

CHAR
ALPHA
BOOLEAN
INTEGER
REAL
ARRAY(H •• N) OF CHAR

Default_Field-~idt~

1
10
10
10
22

ORD(N)-ORD(~1) +1

without a
is given

An gxplicit field-width specification consists of a
constant, integer, or integer valued expressiou prdceded by a
colon (:W or :W:D). Assume that N is a datum or expression
(which may be CHAR, ALFA, INTEGER, REAL, BOOLEAN, or d suitable
subrange of the aforementioned), then a WRITE a=qument may
appear in one of two forms:

N:W or
N:W:D

where Wis the total number of spaces to be used in printing,
and Dis the number of digits to the right of tha decimal point.

The following rules govern the operation of ~RITE:

The :W form is valid regardless of the type of N.

Unless N is of type REAL, the :W:D form is invalid.

If N is a number and Wis negative, the numoer will be
printed in hexadecimal in -w columns.

If N is of type CHAR, it will be printed left justified,
with W-1 trailing spaces. If w is zero a field width of
z~ro will be used, and no character will be printed.

If N is of type ARRAY OF CHAR it
justifi9d with trailing blanks.
truncation occurs on the right.

will
If

be printed l~ft
W is too small,

PASCAL/UBC User's Guide 9

If Nia of type INTEGER it will be printed right iustified.
If W is too small, the value will be printed in as many
columns as necessary to represent it accurately.

If N is of type BOOLEAN it will print as TRUE or FALSE,
right justified in a field of W columns. Truncation occurs
on the right if Wis too small.

If N is of type REAL it will print right justified in W
columns. RE AL numbers always are precedad o y at least one
blank.

In the following paragraphs assume that there
specification. If no :W is present, the
paragraphs apply assuming the default value.

is a : W
following

Real numbers always have at least one digit on each side of
the decimal point. Fractions will force a minimum field
size of 4 (5 if negative), while scientific notation forces
a minimum field size of 8 (9). If D=0 the minimum size is
2 and no decimal point is printed.

If there is no :D specification, an appropriate value is
selected bas~d on Wand the number size. E format is used
if more significance can be printed that way.

The :D specification determines the precise tormat of the
number. If D is zero, N will be rounded to the nearest
integer. If Dis positive, N will be roundad so that D
digits are correctly printed to the right of tne decimal
point. D digits §1!~I§ will be printed aftec tne decimal
point whan Dis positive, even if the value than occupies
more than w columns. If D is neqativa, scientific
(exponential) notation will be used to print tha value in i
columns.

In PASCAL/UBC both RESET and REWRITE accept an opti nal
second argument -- the name of an MTS file. This name must b
character string (ARRAY(••) OF CHAR). The file name mus b
left justified within the string, and it must have a~ l e st one
trailing blank.

If F is a FILE and G is a filename, RESET(F.G) has the
following effects:

1. Plushes out any output remaining to be sent to file F,
2. Rewinds F,
3. Associates the MTS file G with the PASCAL nam~ F,
4. Opens F (G) for reading.

PASCAL/UBC Us~r•s Guide 10

If F and Gare as above, REWRITE(F,G) has the followinq
effects:

1. Flushes out any output remaining to be sent to file F,
2. Rewinds F,
3. Associates the MTS file G with the PASCA~ nama F,
4. Opens F (G) for writing.

Note that th•~
computed dynamically.
do not need to appear
command's PAR field.

MTS files whose nam9s ace in G may be
And in particular, note that these names
in the file assignments field of the $RUN

PASCAL/UBC provides several standard fil6s and file
associations. These may be overridden in the file-assignments
field of th3 $RUN command if desired.

INP UT
OUTPU1'

OSER
SER COM

SCARDS
SPRINT
GlJSER
S IlCOM

Declaratio.r..

N f nrt her declaration required
No f rther declara~ion required
VA GUSER: TEXT;
VA R SERCOM: TEXT;

If a~clarations are provided for INPUT or OUTPUr they will
completely override the standard assiqnmants. GUSER and SERCOM
may be declared TEXT or FILE OF X, where Xis any typa.

PASCAL ~2!§ n2! automatically insert ca~ria~a control
information into column one of output lines this is the
responsibility of the programmer. MTS demands that all files
sent directly to printing devices must have cacria~a control
characters insert9d before the first data character as per UBC
BATCH [4]. Thus a typical program fragment doing output to a
printing device might look lik4:

PASCAL/UBC User's Guide

CONST
0 = ' + 1 ; (* OVERPRINT THE LAST LINE
s - • I • {* BLANK F R SINGLE SPACE •
D = J QI ; {* ZE.BO 'FOR DOUBLE SPACE
T -- ' -.. {* MINUS FOR TRIPLE SPACE • p = • 1 t ; {* 0 E F R NEW PAGE

. ~
WRITSLN (P, 1 START ON A NEW PAGE');
WRITELN (S, 'SINGLE SPACE THIS LINE');
WRITELN (D,'DOUBLE SPACE THIS ONE');
WRI ELN (T, 'TRIPLE SPACE THIS LINE');

11

*)
*)
*)
*)
*)

WRITELN (O,' OVERPRINT THE LAST LINE');
WRITELN (S, 1 DEMONSTRATION',EOL,D,'OF',EOL,S, 1 EOL');

which would produce the following output:

START ON A NEW PAGE
SINGLE SPACE THIS LINE

DOUBLE SPACE THIS ONE

TRIPLE SPACE THIS LINE OVERPRINT THE LAST LINE
DEMONSTRATION

OF
EOL

The effect of the PAGE(P) standard function is:

F@ :=
F@ :=
Fa> ·-.-

EOL;
' 1 1 i
EOL;

PUT (P) ;
PUT (F) ;
PU (F} ;

Note PAGE does not allow one to print on the first line of
the new page. To achieve this effect, you should use:

WRITELN (' 1.MESSAGE');

PASCAL/UBC Us~r•s Guide 12

§.~ Q1ing PASCAL Interactively

The standard PASCAL READ and WRITE procedures ddscribed in
[1,2] ar~ designed more for a batch environment than an
interactive one. The following paragraphs describe how
PASCAL/UBC may be used interactively under MTS.

RE .ADLN{ •••) has three effects: 1) it copies information
from the system's internal input buffer into tha variables
specified in its argument list; 2) it flushes the buffer; 3) it
refills the buffer from the file (device) specified. If READLN
is used from a terminal it will ask for a new lina Q!fQ~~ the
program prompts the user. The sequence: READLN; R~AD(•••)
ignores all input currently in the input buffer, dnd begins
reading after retrieving a new input line.

This may be undesirable if several data items ar8 t o be
input and the programmer desires to be notified it ona or more
items are missing. Instead of READLN; READ(X,Y) t h~
following sequence may be preferable:

HEADLN;
READ (X) ;
WHILE INPUT@=' 1 DO GET(INPUT);
IF INPOT@=EOL THEN WRITELN('ENTER Y');
READ(Y);

Since READLN discards unread
loss of information may occur. You
problem by using a sequence such as:

input in the input buffer,
may wish ~o solve this

WHILE INPUT@=' ' DO GET(INPUT);
TF INPUTiil-.=EOL THEN WRITELN ('EXTRA DAT/\ SUPPLIED');
REI\DLN;

If you wish to enter data on the same line as the prompt
message, use the carriage control character specified in UBC
TERMINALS [5]. Currently the appropriate control character is
the ampersand (&). For instance:

WRITELN('&ENTER X: ');
READLN; READ(X);

It is important to remember that PASCAL will display output only
after an EOL has been transmittgd. This may be aGcomplished
either .by WRITE(••• ,EOL, •••) or by WRITELN(•••). Otherwise,
the "written" information is hBld in a system output buffer
until an EOL is sent.

PASCAL/UBC User's Guide 13

In some applications it may be desirable to read an entire
lin~ at oncg, rathar than item by item or character by
character. INPUT may be redefined as

VAR INPUT : FILE OF ARRAY (1 • • 100) OF CHAR;

(or any other appropriate size). You may now issue a GET and
the entire line will be read (with blank fill on the right, if
necessary). Note that any numeric converstions must now be done
manually by tha programmer.

Users may refgrence functions in the standard PASCAL
library PASC:LIB, libraries of their own, and functions in any
of the syst~m libraries.

1•1 !hg ~tl!!!9&£Q PASCAL Library: PASC:LIB

The PASCAL library includes system routines for performing
input/output plus various other procedures and functLons. The
source programs for PASC:LIB reside in file PASC:LIB.S1 and this
file should be examined to determine the libraryts precise
contents. currently it includes two random numner qdnerators:
RAND, RANDU; an exponential function EXP; integer valued MAX and
MIN functions: three exponentiation functions PiR (integer
raised to an integer power), RPWR (real raised to an integer
power), and RdPWR (real raised to a real power). Of course the
user always has access to the entire contents of *LIBRARY and
any additional libraries he wishes to specify. You way include
FORWARD declarations for all the standard PASCAL library
routines by saying

$CONTINUE WITH PASC:LIB.S1 (100,199} RETURN.

l•l constructing a User Library

Users may wish to construct their own librarias of PASCAL
programs in object form to save the cost of repeated
compilations. Any collection of PASCAL object modules may serve
as a library regardless of whether it has been cr~ated with
*SGEN (although one normally will want to use *SGEN in order to
speed loading and provide for selective module inclusion).
*SGEN documentation may be found in UBC LOADER [6].

PASCAL/UBC User's Guide 14

To create a PASCAL library given a sourc~ program in
MYSOURCE one should run the submonitor as follo~s:

$RON PASC:GO SCARDS=MYSOURCE SPONCH=MYLIBRARY PAR=NOGO

where MYLIBRARY is the name of the library file. A null main
program (specified with a single period rather than BEGIN END.)
normally should be used.

One then might use the newly created library as follows:

$RUN PASC:GO SCARDS=MYPROGRAM PAR=LI=MYLIBRAHY

Each procedure (function) included in a library (or those
compiled separately and later linked together) must satisfy the
following restriction:

"Each procgdure (£unction) should be compiled
presence of identical declarations (LABEL,
TYPE, VAR)."

in the
:ONST,

This restriction may be rglaxed somewhat CONSf and TYPE
declarations which are not used in the current compilation need
not be present. However, it most often will ba simplest to
maintain a file containing all requisite global daclacations and
$CONTINUE WITH it prior to each compilation. This ~ill ensure
that the above restriction always is satisfied.

If the global VAR section is totally absent, the resulting
library may b3 used with ~DY PASCAL program.

Due to restrictions imposed by MTS the nam9s of every
ext8rnal procedur8 or function which is to be separately
compiled must be unique in their first seven characters. No
PASCAL warning is generated if this restriction is not h9eded.

PASCAL/UBC User•s Guide 15

There are numerous differences between standard revised
PASCAL [1,2] and the PASCAL/UBC language procassed by this
compiler. These are described below, in section-by-section
correspondence with the PASCAL User Manual and Report [11. In
the discussion below:

R (Restriction). A violation or conflict with Standard
Revised PASCAL. Programs may require modiiication to
work under PASCAL/UBC.

E (Extension). An upwards compatible extension to
Standard Revised PASCAL.

D (Devia--1:ion). A deviation from Standard Revised PASCAL
which may or may not required modification to work
under PASCAL/UBC.

c (Clarification). The specification of somathing the
User Manual or Report leaves undefined or uuspecified.
Such items may or may not require modification to work
under PASCAL/DEC.

~-1 Differences 1n4 Extensions !£Qfil !h§ YI§£ ~!1~11

Section 1 - Notation and vocabulary

E Names may be composed of any number
alphabetic characters, the digits O - 9,
the_ option is on}. The first character
alphabetic (or_).

or upper case
d underbar (if

fa name must be

C PASCAL/UBC only retains the first 10 characters of names;
thus the user must ensure that he forms unique names within
the first 10 characters. Names of external functions and
procedures must be unique within their first 7 characters
due to restrictions imposed by MTS.

D Brac~s do not exist in the EBCDIC character set.
may be delimited by pairs of quotes (tt <comment>"
by the the biliterals (*<comment>*) •

Comments
) , or

R The biliteral ~= and the word VALUE are spEcial symbols.

D Square brackets to define array subscript axprassions are
replaced by parentheses. Alternatively, th~v may be
replaced by the biliterals (. and .) •

PASCAL/USC Us8r 1 s Guid~ 16

D An uparrow to denote pointer and file references is
replac9d by th8 symbol@.

D Brackets
SET (•••) •
bi literals

to define powersets are replaced by ~he notation
Alternativaly, thay may be replaced by the
(. and •) •

c The compiler reads columns 1 to 100 of each input line; the
rest of the line is ignored. The compiler may be
instructed to read only columns 1 to 72 throuqn use of a
compiler option.

E The symbols &, I, and .,
and NOT, respectively.
place of <>.

may be used in place of AND, OR,
The biliteral ,= mav oe used in

Section 2 - The conce2t of Data

R Integers have the ranq8 2- 31 •• 2 3 1-1).

R Reals are defined according to the IBM 360/370 long real
floating pain~ format. A 54-bit matissa is used providing
a precision of approximately 16 decimal digits.

E Hexadecimal quantities may be
represents th~ decimal value 76).
treated as being of type INTEGER.

specified (e.q.,
Hexadecimal numbers

Section 3 - The Program Heading and the Declaration Part

#4C
are

D Program headings, i.e., 'PROGRAM <identifier> ; ', are not
used. PROGRAM is not a reserved word in PASCAL/UBC.

E Initial values may be declared for simple q~obal variables
and one-dimensional global arrays. This facility is
relatively untested and is NQ! recommended. Al~ost no type
checkinq or bounds checking is done. ~Al§At !illetQ~! The
values are declared after th~ global VAR deciarationa. The
syntax in BNP is:

<value-part>::= <value-part> <value-assigment>
f VALUE <value-assigment>;

<value-assiqment> ::=<identifier>= <constant>
I <identifier>= (<constant-list>

<constant-list>::= <constant-list>, <dup-const>
I <dup-const>

<dup-const> ··- <constant> I <integer>* <constdnt>

.,

PASCAL/UBC UsAr 1 s Guide 17

No changes.

No changes.

Scc-tion 6 - Structured T.YJ~es in G9neral--the f!&!gi· in Particular

R The word PACKED is ignored.

R The UNPACK and PACK procedures may be used for
transfcring functions between all (length-)
pairs of arrays of characters. No actuil
occurs as data is implicitly "packed" on byte
machines such as the IBM 360/370.

c. e i r d a +
om pa ibl <:

(n) packinq
ddr _ssab1'a

R The standard procedures PACK and UNPACK only tran~fer data
between objects of type ARRAY OF CHAR.

No chanq9s.

section 8 - The S@t TyQes

R Restrictions on sets are: the base type can hava a maximum
of 32 values. Subranggs of inteqers must be between O and
31. CHAR is not an allowed base type.

Section 9 - Fila Ty2es

E The standard functions RESET and REWRITE may be applied to
any files {including INPUT and OUTPUT).

R Files may not be components of ARRAYsr RECORUs, or FILEs.

s~ction 10 - Pointer Ty£es

R The standard function DISPOSE does not exist.

E Standard procedures MARK and RELEASE have been added to
maintain the 'NEW' stack. Each takes an inteqar variable
as an argument. Execution of MARK stores the current stack
pointer in the argument. Execution of RELEASE rastores the
stack pointer to the location indicated by thd argument.
The argument must not be used for any other purposa in the

. ,

PASCAL/UBC User's Guid8 18

proqram. These are dangerous functions as pointecs may no
longer b0 valid following a RELEASE.

Section 11 - Procedures and Functions

R PACKED is ignored in PASCAL/UBC.

R Any pracedure/function which is used before it is dgfined
must bg declared with all its paramete~s as 1 FORWARD 1

before its first use. Then when its body is defined the
parameter list and result type must b9 omitted.

E Separate compilation of global procedures/functions is
allowed. If the compiled procedure (s) is (ara) to be
combined with other procedures, then tha global

E

dee lara tion s for all compilations must oe j.g~nt i~al•
Procedure and function declarations for any global level
procedurgs or functions which are not included in the
compilation must be declared FORWARD in order to q~nerate
the proper argument lists and to allow tbs external
references to be resolved. There must be a"·" at the end
0£ the program. (The main program -- from BEGIN to END
may be omitted.)

A procedure or function may be declared 'POHTRAN' which
case the compiler will produce the correct calling usnce
to the named FORTRAN subprogram. Thus the entice ORTRA
library is available to the user, as a re Assa mbl y Languaq _
and other routines written using standard FORTRAN call~nq
conventions.

Section 12 - In£Ut and Out£Ut

E PASCAL/UBC has a sp~cial character, EOL, desi~nating the
end of a line. If F is a TEXT file, then F@ = EOL
initially. F@ will be the first character~£ the fila
before performing GET{F) or RESET (F). Note that aven when
F@=EOL, READ (F ,C) will set C to blank as in standard
PASCAL. WRITE{F,EOL) may be used instaad of WRirBLN(F).

E PASCAL/UBC r~cognizes READ(F,S), where Sis of typ3 ARRAY
(i •• j) OF CHAR for any i and j. This reads characters from
the current line and places them into s (ii , s (succ (i)),
••• , until {j-i+1) characters have been read. It, however,
an EOL character is encountered before input is complete,
the remainder of Sis filled with blanks. In this case F@
is the EOL character. To avoid infinite loops, usg
READLN(F,S) instead of READ(F,S). READLN will skip the EOL
character.

E WRITE(F,C:W) 1 where C is of type CHAR, will lef~ justify C.
Similarly, WRITE will left justify strinqs.

PASCAL/UBC Usar•s Guide 19

E ~ESE (F , ,, } and REWRITE(F,G} both accept an optiondl second
· rq u rnen , G, an ARRAY(.-) OF CHAR which contains the name
of an Mrs file to be dynamically associated with the PASCAL
name F. The file name must be left justified and have at
1~ - on trailing blank. In both cases, remaining output
i s~n~ to F, F is closed, F is associated with ~he file G,
and F () is opened for reading or writing, respectively.

Section 13 - PASCAL 6000-3.4

R Segm~nted files do not exist, nor do the associated
standard functions EOS, PUTSEG, GETSEG.

E PASCAL/UBC provides access to "external procedures" through
use of the FORWARD and FORTRAN declarations. EXTERN does
not exist in PASCAL/UBC; however, its effect may be
achiaved by using a FORWARD declaration.

R No proqram headings are allowed.

D The standard id~ntifier MAXINT is defined as

R

D

D

R

CONST MAXI NT = 214 748364 7; (* = 232-1 *)

BIG')
larger

will
the

The statement IF ABS{I) > MAXINT THEN WRITE(1 TOO
will not execute correctly because no integer may be
than MAXINT. The statement IF I< -MAXINT •••
execute correctly, as the smallest integer possible in
PASCAL/UBC implementation is -MAXINT-1.

The typ~ R lL ~s e iined according he IBM 360/370 lonq
real fl atin pin f m t . Provid dis a mantissa of 54
bi ~s , c rrespo ding o approximat 0 ly 16 decimal digits.
Th~ maximum absolute value is • • • . BARY •••• , and the
minimum absolute value is •••• BARY •••••

A value of type CH~R is an element in the ~HCDIC character
set. 256 distinct values exist, although ma v are not
printable characters. CHR{O) is defined as EOL .

The word SEGMENTED has no special significance in
PASCAL/OBC.

R The maximum cardinality of the base type of a set is 32.

C The standard types ALFA and TEXT are predefined as

TYPE ALFA = ARRAY (1. .10) OF CHAR;
TEXT= FILE OF CHAR;

PASCAL/USC User's Guide 20

D The entire MTS library is available to the user via the
FORTRAN declaration. Thus the predefinad proceduras and
functions defined in this section are available as follows:

PASCAL 6000-3.4

DATE
HALT
LINELIMIT
MESSAGE
TIME
CARD
CLOCK
EXPO
UNDEFINED
EOS

UBC DATE
HALT
Use $RUN XXX P=yyy or PAR=P=yyy
No corresponding function exists
UBC TIME
Not {yet) implemented.
UBC TIME
Not (yet) implement8d.
Not implgmented.
Not implemented.

PUTSEG, GETSEG, and the corresponding extensions
to REWRITE and RESET do not exist in PASCAL/OHC.

Section 14 - HQ~ !2 use the PASCAL 6000-3.4 System

R DISPOSE is the only "standard function" not supported by
PASCAL/UBC, and since now has been removed from the list of
"standard functions", it will not be supported at uac.

C A jump into the range of
outside its range is
produced.

a FOR or
undefined;

WITH statement from
no error messaqe is

E Function LINENO(file} returns the line number of the most
recently read line. This function must not be used before
the first read from the file. The line numbar is the MTS
line number times 1000.

E A limited substring function has been added: SUBSTR(V,I,L)
where Vis a constant or variable, I is an inte~er valued
expression, and L is a £2natsili• V must be au array of
charactgrs. The result is the substring of V which starts
at character I and is L characters long. If V has bounds A
and B, then A(;I<=(I+L-1}<=B.

E The standard variable RCODE is predefined to be of .type
-32767 •• 32767. It functions as a "retu~n code" and is
available as a «global variable" to all PASCAL routines.
Routines declared FORTRAN will automatically set RCODE to
the appropriate return code value prior to return to their
invoking PASCAL procedure.

PASCAL/UBC Us9r's Guide 21

Section 3 - Notation, Terminology, and Vocabular1

D The character set used by PASCAL/UBC is the IHM EBCDIC
character set, with one modification: There is the
character EOL = CHR(O). This character causas a naw line
to be started on output to a TEXT file. It follows the
last character on an input from a TEXT file.

R In PASCAL/UBC <letter> does not include lower case.

E Alternate symbols
. . may be used for
-,= II II 11 "
(. II II u 11

.) u II 11 "
& " " " n

11 " n u
-, II fl H u
ii) ri:pl a C9S

H All r.-~served words must appear
PROGRAM is not reserved.
VALUE is reserved.

<>
[
1
AND
OR
NOT
t

in upper case.

Comments may be delimited by quotes (") or (*and*).

R Left and right braces may n2t be us~d as comment
delimi~'9rs.

E 11 _ 1• may appear as a <letter> in an identifier.

D INTEGERS are restr-icted to the subrange -2H •• (231-1).
REALS are restricted to ±1Q+7s •• ±10-1s and O.
Approximately 16 digits of precision are retained.

R String constants must fit on one source line.

E Hexadecimal numbers may be referenced by prBcedinq them
with "I". These numbers are treated as if tuey had integer
type.

~g£iiQB 5 - Constant Definitions

No changes.

I
I
I
I .
I
I

I
I
I
I

. .

PASCAL/UBC as~r•s Guide 22

R The word PACKED is iqnorEd.

R ARRAYs, FILEs,
components.

and RECORDS may not have FILES as

R SETs are restricted to a subrang~ o •• 31, and to scalar
types havinq at most 32 elements.

D Parentheses may be used instead of bracke&s in array
declarations.

R A type identifier may only be referenced after (not inside)
its declaration. The only exception is a typ3 idgntifier
in a pointer declaration (itypeid). This idantitier can be
defined after such a use.

E There are the standard types ALFA and TEXT:
TY PE ALF A = ARR A Y (• 1 • • 1 0 •) 0 F CHA R ;

TEXT= FILE OF CHAR;

Section 7 - Declarations and Denotations Q! Variabl~s

E Parenthesgs may be used instead of brackets in array
referenc11s.

Section 8 - EXEressions

E The square brack8ts tt[" and"]" in <set> may ba replaced by
"SET(" and")", respectively.

R The set <element> form "<e·xpression> •• <expression>11 is not
i mpL~mented.

Section 9 - Statements

R A label may have at most four digits.

E An expression having type ARRAY ••• OF CHAR way ba assigned
to any ARRAY ••• OF CHAR variable which is at laast as long
as the expression.

C

C

E

A VAR actual parameter must have the identical type as the
corresponding formal parameter. One cannot be a subrange
of the other.

A GOTO into the range of a FOR or WITH fcom ~utside the
range may be done. However, no warning message is given,
and the results are unpredictable.

A 11 ;" may optionally precede "ELSE" in an IF statement.

PASCAL/UBC User's Guide 23

E The symbol"<>" may appear as a lab9l in a CASE statement.
The corr~sponding statement is executed if the value of the
expression does not appear in any other laDel of the
statem,ent.

c In a FOR statement, if the initial value is greater than
the TO value (lass than the DOWNTO value), no assignment is
made to the control variable. Otherwise, its value is the
limit value. The control variable thus is accessible
outside of thg loop after normal loop termination.

sections 10 and 11 - Procedura Function Declaration

R A procedure or function declaration must appear before the
first reference to that procedure or function. Recursive
routines still may be defined by separating the procedure
(function) haadin q from the procedure (function) bod v.
When this is done, an alternative form of <procedure
declaration> is used:

E

<procedur~ heading> FORWARD

(That is, the word FORWARD replaces the code block.) The
code block is presented later, preceded by a procedure
function) introduction:

PROCEDURE <identifier>; <block> or
FUNCTION <identifier>; <block>

Note that the parameter list is n21 repeated with the code
body.

FORTRAN-compatible routines may be called
declaration:

<procedure heading> FORTRAN

using the

VA R parameters should be used when the routiue returns a
value in a parameter. If such a result is irrelevant, a
valu - parameter may be used.

E Separate compilation of procedures and functions is
possibl9. Such a procedure (function) may be invoked by
including a FORWARD declaration in the main proqram block.
The user is responsible for seeing that thd procedure
(function) declaration used while compiling the program is
identical to that used in referencing the program. If a
separately compiled procedure refers to any main program
variabl9s, the CONST, TYPE, and VAR sections must be
identical with those in the calling program.

E The RESET and REWRITE procedures optionally may take a
second parame~er. This is a string expression which is the

PASCAL/UBC Us~r•s Guide 24

~xternal fil9 name for the file. The external name must
end with a blank. The names 'INPUT', 'OUTPUT', 'GUSER ',
and 'SERCOM ' refer to MTS logical units instead of
external files.

R The NEW {P) procedure will not work properly when P is a
pointgr to an object of type FILE.

R The DISPOSE procedure found in some editions of the Manual
and/or R8port is not implemented.

E Neither argu~ent of PACK or UNPACK needs the word PACKED in
its declaration.

R PACK and UNPACK only work on ARRAYS OF CHAR.

E PUT(F) is valid when EOF(F) is falsg if thare has been no
prior USG of F.

E Additional functions:

INSERT(I,J,K:INTEGER) :INTEGER
Result is I*2**J+K. J must be non-neqative.

SUBSTR(S,F,L) :~RRAY {1 •• L) OP CHAR
Sis a character string, Fa scalar, and L
£Qil§i~lli• The result is the substring
with the character at position F and
characters.

LINENO(F) :INTEGER

an i.n.:.tgg~f
of s sta rtinq
containing L

The integer result is
(printed line number*
file F.

the MTS internal line number
1000) of the last line read from

E Additional procedures:

HALT
Stops execution and returns to the system.

Section 12 - IR£Ut and 0Ut£Ut

R READ and WRITE may be US8d only on TEXT files.

E READ may be used to read a character string. Warning: the
input line will be extended with spaces to till any number
of string variables. READLN should be used to start a new
line.

E A WRITE of a REAL number uses exponential forma~ when :W:D
is specifi9d and Dis negative. The absolutd value of Dis
the numbar of diqits to be printed to the right of the
decimal point. If :D is not specified, fractional or

PASCAL/UBC User's Guide 25

C

exponential format is selected based on the size of the
number.

The output generated by a
reals and integers, and
types.

WRITE is right justified for
is left justified for all other

D When EOLN{F) becomes TRUE, F@ will have the value EOL
instead of • Execution of READ(F,C) whara c has the
type CHAR, will set c to • • as in standard PASCa1.

C All blanks are eliminated from the end of input lines of
TEXT files.

Section 13 - f£QS£Afil§

R Program headings are not implemented.
"<block> "

A pcoqram is

E Procedures and functions may be separataly compiled by
eliminating the <statment part> from the program <block>.
The period is still r~quired.

E A <value part> may follow the <variable declaration part>
to providg initial values. This feature is relatively
error-prone, and its use should be avoided. The syntax is:

<value-part> <value-part> <value-assiqment>
l VALUE <value-assigment>:

<value-assigment> ::=<identifier>= <constant>
I <identifier>= (<constant-list>)

<constant-list> ··=<constant-list>, <dup-const>

<dup-const> .. -.. -
I <dup-const>

<constant> I <integer>* <constant>

2• Miscellaneous Im£lementation NOt§S

A complete description of the PASCAL/UBC implemclntation may
ba found in the Implementation Guide [7]. Thase notes are
designed to aid the casually interested user.

PASCAL/UBC User's Guide 26

The dump routina is invokgd after an interrupt (r~al or
im lat~d) h1s occurre d . output is produced by calling the

system DUM - rou i e gi ving i he address of a 72-byte region
containinq th3 P nd gene ral registers 0-15 in ~hat order.
F llowi,q hi :s s ump f the execution stack associated
with each active procedure.

DUMP output is normally of use only to systews programmers
maintaining tha PASCAL system.

j.J Communication !iih lQIIliA!

The following notes are designed to aid the user who wishes
to write PASCAL programs which communicate with routines written
in other languages (e.g.r FORTRAN, Assembler).

PASCAL/UBC uses the following storage allocations:

CHAR
BOOLEAN
INTEGER
S~T
REAL

'character strinq'

1
2
4
4
8

lenqth of strinq

The constant FALSE is represented internally by the
halfword #0000; the constant TRUE is reprgsented internally by
the halfword #0001.

PASCAL will gen9rate a standard FORTRAN callinq s~qugnce if
the word "FORWARD" is replaced with "FORTRAN". In other
respects the procedure heading is standard. Eithar value or VAR
parameters may be passed to FORTRAN (Assembly Lanquaqer 9tc.)
and will work correctly. I.e., if the called program modifies a
value parameter, the correspondinq actual parame~ar in the
PASCAL program will IlQ! be changed.

When a FORTRAN routine returns to PASCAL the predefined
variable RCODE is set to the value of the FORTRAN return code.
Thus PASCAL may distinguish b~tween a RETURN and a HETDRN i.
(And similarly, PASCAL may obtain the return code valug s9t by
any system routine which is accessed via the FORTRAN rudchanism.)

I
J

[

PASCAL/UBC User's Guid~ 27

Tha names of all FORTRAN routines and all extarnal routines
declared FORWARD must be unique within their first 7 characters
due to restrictions imposed by MTS.

2-1 fQfilffiYili~~ti2n ~iih Assembly Language

An Assembler program which has been called oy a PASCAL
program can, in turn# call another external PASCAL procedure so
long as certain rules are followed. The callinq routine must:

1. Restora registers 2 and 12 from its calling proqram.

2. Use register 2 as a base r ➔qister for a DSECT.
contains the following fields:

SA V E: DS 18F

Th,~ DSECT

PESULT OS F only present: for functions
I? Aft M1 DS DS ...

a. Store register 12 in SAVE.

b. If the routine is a function, place thd address of
the result field in RESULT. Results from PASCAL
functions are placed direc~ly in memory.

c. Each parameter, in the order declared. For a VAR
pararnater, use DS F and insert t~e address of
the actual parameter. For a value paramet~r, use
a DS for the variable itself, and place the
value of the variable in this field. All 2-, 4-,
and 8-byte fields ar8 half-, iull-, and
double-word aligned, respectively. The parameters
appear in the ordsr in which they are d8clared.

3. Use regist-3rs 1.1, 14, and 15 as usual.

4 . On return, register 15 will n2! contain a return code.
A function result will be in the result field, not in
register O.

To call a PASCAL main program, invoke the PASCAL monitor at
entry point PSCLMONiil. An alternate (ccmpletely equivalent)
entry point is PSCLMN.

The names of all Assembly Language routines wust ne unique
within their first 7 characters due to restrictions imposed by
MTS.

PASCAL/UBC User's Guide 28

An Assembly Language routine may send back a return code to
its parent PASCAL program by setting register 15 in the usual
way during the exit sequence. The parent PASCAL pcoqram may
retrieve the value of the return code via the liCODE standard
variable.

PASCAL/UBC Us➔ r•s Guide 29

This section con~ai Er e l~minary description of the
snaps o / p s mart m dump packa e . ~he packaqe is currently
und _r de v~ lop m~nt , an i is sub i e c o change with little
no~ice . NQll~ f h~ snapshot facilities are currently available
(e ven thouqh h ~ ocumen~ation bel w implies that thay are).

Usually when a run error occurs the PASCAL monitor is
invok~d and it transfers control to a special run error
supervisor. This supervisor allows NERR run errocs to occur,
aftqr which it calls the standard HALT procedure. If a
compilation is done with the Debug option turned on {this is the
default) special tables are produced which allow PASCAL to print
an informative display of all currently active variables with
their associated values each time the run error supervisor is
invok,:id.

If one is running interactively and Debuq is on, the run
error monitor will instead of producing its standard display and
continuinq 9xecutio~, enter an interactive loop. It then will
process user reguasts for the display and/or modification of any
active variable(s), after which the user may continue (or
terminate) the execution. This interactive teature may be
disabled by running with PAR=BATCH.

The snapshot package may be invoked directly by the user
via the standard procedure SNAP. The values ot all current
variables will be displayed and execution will ~ontinue if
running in batch mode, or the special interactive loop will be
entered if running interactively.

The following commands are understood by the interactive
snapshot package:

To be continuad •••

I
I

!
I
I .

I
I
I
11

P~SCAL/UBC User's Guide 30

source errors are flagqed by the compiler as thay occur and
are summarized at the end of the compilation, Each error is
flagq3d by a vertical bar (I) under thB last character of th8
offending word or symbol. Several errors may be detected at the
same position in the input leadinq to a sequence of two or more
vertical bars in a row. Each bar corresponds to its respectiv9
error number printed on the right of the same line.

The text corresponding to each error number is shown below.
Not all error conditions have been thoroughly tested. The error
messages are sant to SPRINT. In many cases PASCAL is able to
g~nerate correct code even though an error has occurred.
However, correct code cannot be guaranteed unlass the source
proqram is error fre8.

1 Expecting •. ,
2 Number out of range
3 Identifier exp~cted
4 Expecting '='
5 Field already defined
6 Illegal subrange bounds
7 Tag must be integer or enumeration
8 Identifigr already defined
9 Expecting ') •

10 Exp3cting ':'
11 Procedure/function illegal
12 Identifi~r not defined
13 Subrange error
14 Expecting 'OF'
15 Expecting ' •) '
16 More than 9 errors on a line
17 Variable not of record type
18 Type declaration error
19 Error in code generation
20 Expecting 1 , 1 or •) •
22 Value clause at wrong level
23 Ignoring param8ter list of FORWARD-declared proc/function
24 Procedure body must start with BEGIN
25 Statement expected
26 Unpacking illegal types
27 Variable not ARRAY type
29 Expecting ' ('
30 File typ8 ill~gal
31 Rang':' grror
32 Incorract data type
33 Expression too complicated -- all r~gisters full!
34 Identifier not ARRAY type
35 Expecting cocstant
36 Incorrect index type

PASCAL/UBC User's Guide

37 Non-standard PASCAL feature used
38 variable in 1 WITH' clause not of type record
39 Record field undsfined
40 'ELSE' has no preceding 'IF'~ or extra '; 1 used
42 Expecting factor
43 Label not defined
44 File error
45 Error in expression
47 Incorrect argument in standard procedure/function
48 Label value illegal
49 Closing string quote not found
50 Illegal data types for previous operation
52 Expecting •:=•
53 Illegal assignment
54 End of statement expected
55 Illegal use of symbol
56 Expecting 'THEN'
58 Expecting';'
59 Expecting 'DO'
60 Parameter error
61 Expecting label
62 Illegal set elements
63 Not a constant
64 Illegal function type
65 Too many files
66 Illegal arguments in 'NEW'
67 Expecting 'UNTIL'
68 Expecting 'END'
69 Illegal control variable
70 Expecting 'TO' or 'DOWNTO'
71 Error in CASE statement
74 Too many labels
76 Procedures too deeply nested
77 Label redefined
78 Code area exhausted
80 Expecting ','
82 WITH/procedure nest too deep
85 compiler error
88 Expecting digit
89 Undeclared type(s)
90 Expecting type identifier
91 '@' does not follow pointer or file variable
92 Too many forward defined types
93 Error in case label
95 Illegal use of :W or :D
96 Label did not appear in a LABEL declaration
98 unexpected end of file encountered
99 Unimplemented feature

31

PASCAL/DEC User's Guide 32

Run errors are printed on SERCOM as soon as ~hey occur.
Generally recovery will be attempted NERR times, after which the
run will be terminated. Each error message is preceded by
'****' or '$***'• If the latter form occurs, no recovery is
possible and the run will be terminated immediately. These
errors are indicated by•$• below. The texts of the run error
messages are relatively self-explanatory.

$ Keyword error in parameter list
$ Error in file assignments
$ Too many .files
$ Operation exception
$ Priviledged operation exception
$ Execute exception

Protection exception
Addressing exception

$ Specification exception
Data exception
Fixed overflow exception
Fixed division exception
Decimal overflow
Decimal division exception
Exponent overflow exception
Exponent underflow exception
Significance exception
Floating division exception

$ stack overflow
File not assigned
.File not opened
Get on .EOP=TRUE
Input too long
Put on EOF=FALSE

$ 'NEW' space overflow
Reset file failure

$ Local time limit exceeded
$ Local page limit exceeded

Assignment value out of range
.Index value out of range
case value out of range
Rewrite file failure
Parameters to a procedure do not match actual parameters

..

PASCAL/UBC User's Guide

[1] Jensen, K., and Wirth, N.
£!~£!1 Q§~. ~~n~al g~g E§EQti
Lecture Notes in Computer Science, No. 18.
Springer-Verlag, New York, 1974.

{2] Wirth, N.
~Y§!gmali& Pr.Q£1~s!~ing
Prentice-Hall, New York, 1973.

[3] Russell, D.L., and sue, J.Y.
Stanford PASCAL 360 Implementation Guide
SLAC CGTI'I No. 89
Stanford University
Stanford, California, November, 1974.

[4] Computing Centre
"UBC BATCH"
University of British Columbia
Vancouver, British Columbia, August, 1975.

[5] Computing Centre
"UBC TERMINALS 11

University of British Columbia
Vancouver, British Columbia, April, 1974.

[6] Computing centre
11 UBC LOADERU
University of British Columbia
Vancouver, British Columbia, Jun@, 1974.

(7] Pollack, B.W., and Fralay, R.A.
"PASCAL/UBC Implementation Guide"
Technical Manual TM 76-??
Department of Computer Science
University of British Columbia
Vancouver, British Columbia, forthcoming, 1976.

33

..

PASCAL/UBC user's Guide

INDEX

Assembler ••••••••••
Assembly language

.............................. • •

34

27
27

BATCH • • • . • • • . . 2, 29
carriage control ••••••••••••••••••••••••••••••••••••••
com men ts •••••••••••••• 10

15
Compiler options·••••••••••••••••·••••·•••••••·•• ••••• • • • • • • • 5
DISPOSE 20
DUMP • • • .. • • • • • • • • 2 DUMP format ••••••••
Debugging •••••••••••• • • ■ I • • • • a a a ■ • • • a ■ • 26

29
Default options ••••. ·······•••·••·••·•···• •••••••••••• • • • • • • • 6
Dif.f erence.s • \ii •• 15
E OF • • • .. • • • 7
EO-L ••••••••••• .••• 6,7,18
EOLN ••• ·• " 7
E.X • • • • • • • • • • ... • • • • • • • • • • • .. • • .. • • • • • • • • • .. • • • .. • • 2
End-of-line character 6

30
32
15
26

Error messag-9s
Errors . • • Exte.nsions •••••••••
FALSE ••••••••••
FORTRAN ••••••••••••
FORWARD ••••••••••••

.
. ·• 18,26

18
Field-width . • • • • • .. • • • • • • • • • • • • • • • • • • 8
File assignments ••• ,. ·• ·• .. :• 3
GET •••••••••••••••• . • • • • • .. • • • .. • . • .. . 7
GO •••••••••••••••••
Hexadecimal numbers ·•
Interactive use
Input •.

.
2

16
12

1,6 . .
LT •••••
LIN ENO •••••
Language differ~nces
Language ~xtensions
Libraries •.••••••••
MARK ••••••••.• ·• •••
N: W
N:W:D
NERRS

.
NEW ••••.••••••

....

.
. -- ·• • • ·• ·•
.

.

2
20
15
15
13
18

NOGO •••••••••

8
8
2
2
3
3
1
1

NOPMD . ·•
News· ••••••••••••••
Object modules •••••
Opt ions ••••••••••••
output •••••••••••••
PAC .K •••••••••••••••
PACK ED ••••••••• ,. •••

PAGE•••••••••••••••

. ·• • . • • • • • • • • 2, .5

.

. ·• ...
• • • • • 1 , 6

17
17
11

PAGES •• •••••• •• .. 3

•

PASCAL/UBC Us~r•s Guide 35

PAR field •• . ·• ·• • •••••••••• ·• 2
PASC: LIB •••••••••••
PASC:NEWS •• ••••••••
PUT ••••••••••••.••••

• • • -• ·•
.. ·• ·• .. ·• .

Parameters ·• .. .
Passing parameters ••••••••• ~
Post mortem dump
Program heading

..
. ~ .

13 ,
8

26
26
29
16

Punch , .. . 1
20,26,28 ., RCODE •••••.•••••••••

READ••••••••••••••• ••• • • • • • • • • • 7, 18
READLN .. 12

18
9,19
9,19

20,26,28

RELEASE •••••••••••••••••• ·•
RES ET •• ·• . ·•
REWRITE •••••••••••• . ·• Return code ••••••
Run errors •••••
SCARDS •••••••••••••

.
.. · • • • • .. • • • • .. • .3 2

s·ET ••••••••••••••••
SNA.P •••••••••.••••••

. ·• ·•

.
.
.

SPRINT
S.PUNCH •••••••••••••
SUBSTR ••• ·• ·•
Separate compilation of programs ,.
Snapshot ••••••• ·• Source errors ••
Standard PASC~L library ·• ·•
Standard files , ·• . ,. ·• Storage allocation
student Terminal System
Submonitor ..
TIME ••••••••• . ~
TR •• .••••••••••••••••• ·• ·• ·• .. ·• ·•
TRUE •••••••••
UNP \CK •••••••••.••••
VAL ltt'f ,. ••••••••••••• • ••• • • • • •

.

1
17
29 ,

1
20
14
29
30
13
10
26

4
1
3
3

26
17
16

W: D ••••••• ·• •••••••• ·• 8
8,18 WRITE ·• ·•

