
MMM
MMMM MMM

MM !1 MM
M Pl

M M MMMMMM.!UH1
MM MM MMMM MMM

MMM MM
MMM MMM
MMfUIMMMMMM

MMMMMMM M!H1M
MMM

MMMM
MMM

Ml'l MMM
MM M.MM

MM!1MMl'1M
MMM MM
MM M11M
M M~M

M MM MMt'l
MMMMMM

M.M
MMMMM

M t1 M
M M

MM
MMM
MMM
MMM

MMM M
PHUU'IM

* * * A Case-Driven Parser for *
* Natural Language •
* •
**********••··················

by

Brock H. Taylor and Richards. Rosenberg

Technical Report 75-5

(To appear in the American Journal of
comEutational Linguistics, 1975)

October 1975

Department of Computer Science
University of British Columnia

Vancouver, B. c.

ii

This paper describes a system for analysing natural
language based on the concept of case. After a preliminary parse
using an augmented transition network, the case routines attempt
to find the appropriate verb meaning. These routines search for
parts of the syntactic structure which best satisfy the
requirements of the verb case frames and under back-up are able
to weaken gradually the conditions for success. The resulting
structure is similar to the conceptual dependency networks of
Schank, and is an attempt to represent as fully as possible the
meaning of the input sentence. The system has been designed to
be quite flexible and allows for the incorporation of domain
specific knowledge. This knowledge has its effect both in the
nature of the dictionary and in modifications in the search
routines. At present the system incorporates procedures for
resolving anaphoric references which depend on examining
previous sentences.

1. Introduction .
2. Cases and Verbs

2.1 A Partial List o.f Cases
.2. 2 Deterl!linat ion of CaSE:lS
2.3 Verb S1->ecific Cases . . . • • • • •
2.4 v~rb Definitions

). A Detailed Example .

1

3
4
5
7
7

1 1

4. Other Fxamples ••••••••••••••••••••••••·••••••••• 20

5. Anaphoric R~farence •••••••••••••••••••.••••••••• 26

6. Conclusion . 28

Bibliography•••••••••••••••••••••••••••••••••••• 2g

Appendix •.••••••••••••••••••••••••••..•••••••••• 30

iii

A CASE-DRIVEN PARSER FOR NATURAL LANGUAGE

Brock H. Taylor and Richards. Rosenberqt

1. Introduction

1

It has been apparent for some time now that a line~r
approach to natural language processing consisting of succes~ive
syntactic, semantic, and retrieval or inference phases is
inadequate. An important advance was made by Winograd[9,10] i11

integrating these phases into a system which utilizAs the
various kinds of linguistic knowledge at the appropriate time.
The approach described in this paper is somewhat less ambitious,
but this is partly compensated for by its very flexible
structure. In fact, it is useful to view this system as a
skeleton which can be fleshed out to serve a wide variety of
purposes.

Although called a parser, it is far more powerful than a
traditional parser because it incorporates semantic knowledge to
produce a representation of the input sentence which is . as ri~h
as possible in terms of the system's basic knowledge. Since t!1e
detailed operation of the system will be described subsequently,
we will now present the majoc influences on this work, some
similar systems, and what we believe the important contributions
to be.

Beginning at the end, we decided to represent an input
sentence with a structure which is very similar to tha
conceptual dependency networks of Schank[S,6]. This does Hot
imply agreement with the overall philosophy of Schank, but
rather a recognition that an underlying representation should
contain as much knowledge as possible, as it may be crucial for
subsequent analysis. As will be seen, our representation, in
addition to the basic syntactic relations, also reveals semantic
relations not explicitly given in the input sentence. This
latter knowledge is derived from a complex semantic lexicon
organized around the concept of case as first formulated ny
Fillmore[3]. One point should be emphasized: Fillmore, as a
linguist, was concerned with formulating a theory to explain
data which a transformational approach seemed unable to do. As
such, he felt the need to worry about the number and nature ot

1 contact R. s. Rosenb~rg for information on (8].

2

the cases necessary to treat the linguistic data adequately.
This is to be contrasted with our approach which is to use an
extended version of case in order to represent the meaning of a
sentence as fully as possible. The basic difference is revealed
in Fillmore's description of five or six cases, whereas our
system uses. at present, twenty-four cases.

Perhaps the term "case" is inappropriate here, but there is
enough similarity with, and motivation from, Fillmore's work
that we decided to use the term. The most comple% part of the
lexicon is the verb with its associated case frame: actually an
environment of obligatory and optional cases associated with the
verb. One basic problem of sentence analysis is to choose among
alternate verb meanings for an appropriate candidate. This
selection process is governed, in part, by attempting to satis.fy
the constraints imposed by the case frames associated with each
verb meaning. But prior to activating the case-driven part of
the system, a preliminary stage of analysis must be initiated.
This is an almost purely syntactic phase carried out by a rather
simple augmented transition net work (ATN) , (Woods[11, 12]) • The
ATM has proven to be very useful in natural language processing
mainly because of the ease of representing complicated and
interrelated syntactic structures.

For our purposes, the ATN is used to produce a very fast
pr~liminary parse of the input sentence which indicates gross
structural relations. Using this parse, the case-driven
component seeks to select the appropriate verb meaning. It is
important to note that if the case procedures fail on the first
pass, conditions for success are progressively weakened until
the most suitable meaning is chosen. Although not a feature of
the present system, it would be possible to re-enter the ATN
phase in order to produce another parse if the case phase were
unable to complete its task in a satisfactory manner.

We would like to stress those aspects of the system which
make it flexible and useful for a wide range of language
processing applications. It is straightforward to incorporate
different kinds of knowledge necessary for adequate processing.
For example, the current system has a procedure for resolving a
fair range of anaphoric references for pronouns. If additional
procedures are developed, they can also be incorporated into the
system, and will exert their influence by modifying the search
procedures for candidates which satisfy the requirements of the
case frame for verbs. Another important feature is the facility
within the dictionary entries of nouns for providing information
about relevant properties, such as superset and subset. Thus a
kind of semantic network links nouns of the dictionary, and this

3

knowledge is available to aid in the processing.

The user can construct the dictionary appropriate for his
purposes and can readily add necessary domain specific features.
This system is considerably more than just a front-end for a
traditional linear language processor. It integrates syntactic
and semantic linguistic knowledge in a particularly transparent
and flexible manner.

There are other current language systems which are based on
notions of case but which differ mainly in the way the processed
sentence is represented. We might mention Simmons[?], Ma~tin[4J,
and Bruce[1].

The system is written in LISP/MTS, and runs on an IBM 370-
168 under the ~TS operating system at the University of British
Columbia. The code occupies 240K bytes, and the current
dictionary of 450 words occupies an additional 90K bytes. When
the system is running the total space used is 470K bytes. In
spite of its large size, it is relatively fast. For example, the
total time taken to parse sentence (11) below, is .90 CPU
seconds, executing interpretively. A compiled version of tbe
program ~ould run approximately 10 times faster.

The question of bow many cases we need to describe English
is a contentious one. Fillmore{)] is vague on the issue, whereas
Celce-Murcia[2] claims that five cases will do. The purpose of
this work is to capture as much of the meaning of a sentence as
is possible. and to make it explicit in a formal struc~ure.
case, then, is an explanation of the semantic function of a
sentence part; therefore a fairly large number of cases have
been used, one for each of these "semantic functions". We are
not adamant about our set of cases. The system is flexible and
structured enough. that the addition or deletion of cases is a
simple operation.

The system was originally designed with Martin 1 s{4]
odd cases as its basis. There are currently twenty-four
cases implemented, plus numerous verb-specific cases.
Martin's cases have been dropped completely, some have
not been implemented yet, and several new cases have been

thirty­
general
Some of
simply
added.

For a complete list of these cases we refer you to

4

Taylor[8]. A few will be listed here, and they will later be
used to aid in the description of the system. The underlined
phrases represent the appropriate cases.

Aggn!:
Ihe ll!! in white says he has 1no friends.
I got wiped out by several charismatic holy m~n•

fgtient
He trained a hyndr~d women just to kill

g,n J:!nbQI!l £hi!g.
I washed ll ~~lids in the rain.

We started up the mountain.
Through ihe gli!~ the wind is blowing.

Flagged by by, about, along, up, dovn, around, across.

!!£!l!!lgg
I bought it with g ~i£~!~ and I sold it for~ dili.
He wants to trade the game he plays for 2 heJ.1g1;:.

Flagged by vith, for.

!!filH~f i£.igU
I fought every man for hg£ until the night was o~er.
I sing this to 1hg £ri£tet§, I sing this for

the !£.!!Y•
Flagged by for, to, before.

~~§£!'.i£tiE (A case of the Noun)
Suzanne takes you down to her place n~ar thg £iYgI•
The woman in £!Yg i s asking for revenge.
The hand of .IQ.!!£ !2,,g,g9.s£ is burdened down with money.

Flagged by of, from, at, in, on, with, by, near, beside, before,
after, along, up, down, around, across, under.

En!!!!g
I had to kick you down the stairs so I £Qyld

savour uneulQ.Yment once s5iain.
We put her away so we could get back tQ !he ~Y•

Flagged by so.

!QE.!£
It is time we began to laugh about ii all again.

5

Lets not talk of lQll QI £,hgi!l§•
sometimes I find I get to thinking of !h~ !@St.

Flagged by of, about.

Most of the cases listed above are associated with the
prepositions that flag them. This is, of course, a gross over­
simplification of the relationship between verbs, prepositions,
and cases. A preposition which flags one case for one verb may
very well flag another case for a different verb.

(1) I walked about the room.
(2) I talked a.bout the room.

For verbs of movement like "walk", "about" flags the path
case as in (1), but for verbs of communication like "talk", it
usually flags the topic case as in (2). Kartin[4] notes this,
and proposes for each verb meaning to list all of the cases
flagged by each preposition. This involves a great deal of
repetition, however, since most prepositions flag almost the
same set of cases for most verbs. For this system, therefore, we
set up a master-table of all the cases flagged by each
preposition, then for each verb, just the irregularities are
noted.

(3) The scandal was whispered about the room.

Sentence (3) illustrates that "about" £~n flag the path
case for a communication verb, so ve do not vant to rule out the
path case: we just want topic to be tried first. In (3) the
topic slot will already be filled by "the scandal", so topic
will be rejected, and the path case will be tried next.

This foregrounding of cases is specified in the dictionary.
For instance, for the verbs talk, laugh, whisper, etc., it is
specified that the occurrence of the preposition "about" should
trigger the topic case before the path case.

There is another obvious way of determining case names for
prepositional and noun phrases. Consider the sentences:

6

(4) Fred bought the car for Mary.
(5) Fred bought the car for one dollar.

The preposition "for" flags many cases. In (4) it flags the
beneficiary case, and in (5) it flags the exchange cas9.
Associated with each case is a test which a phrase must pass to
be accepted. In the beneficiary case the test is:
(MUST-BE ANIMATE), indicating that the beneficiary has to bB
animate, while the test for the exchange case is: (NOT (SHOULil­
BE HUMAN ABSTRACT)), indicating that one does not usually
exchange something for a person or something abstract. Thase
tests correctly sort out the cases in sentences (4) and (5).

In general, tests on cases are very difficult to design
adequately. What test would be appropriate for the topic case?
What could not be talked, laughed, or cried about? Perhaps some
complex verb and context dependent test could be concocted, but
one has not been designed foe this system. The test for the
topic case is therefore one which will always pass. One must
therefore be careful when invoking the topic case.

The exchange case has similar problems. Anything can ne
exchanged for something. The weak test

(NOT (SHOULD-BE HUMAN ABSTRACT))

is put in, which will at first fail if a human or an abstract
noun is the candidate, but will pass if nothing else seems to
fit either. This simple test runs into problems with certain
sentences.

(6) I paid the mon8y for my mother's release.
(7) I paid the money for my mother.
(8) I paid the money for the prostitute.

It will initially force the exchange case to reject "for my
mother's release" in (6) because it is abstract, but later on it
will accept it since all of the other cases flagged by "for"
will also reject it. Sentence (7) is ambiguous, uut "mother 11 is
almost certainly in the beneficiary role here, so again the test
works correctly by rejecting the exchange case. Sentence (8) is
also ambiguous, but our interpretation would usually be that
"prostitute" is in the exchange case here. The system will,
however, assign it the beneficiary case as it did in (7).
Additional work must be done on case tests if this paradigm is
to be useful.

7

ftany verbs have special constructs or cases which are not
used vith most other verbs. These irregularities are handled by
writing special functions to find these cases. A few examples
vill illustrate.

The verb nto be" has eight meanings in
third meaning i~ "to have the property •• ",

(9) The house is red.

this system.
as in sentence

The
(9) •

This meaning is the one being used if an adjective phrase
immediately follows the verb. An adjective phrase in this
position is therefore a special case of the verb "to be", and
there is a special function, ADJ-LIST, which looks for it.

The sixth meaning of "to be" is "to be fro ■ ••
sentence (10).

(10) The lady is from Ouagadougou.

" . , as in

This could be interpreted as an example of the source case,
which is the case that "from" usually flags: but what the
sentence really means is that the lady has been living in
Ouagadougou. This is, therefore, not the source case, but
another special case of "to be".

The verb is treated as the focal point of the sentence. A
verb can have many meanings. The system discovers which meaning
is intended by looking at the rest of the sentence. In so doing,
it builds a structure representing a parse of the sentence.

As stated above, each verb has associated with it a case­
frame, which is a set of cases of the verb: some obligatory,
some optional, and some conditionally optional. These cases are
embedded in a form on the property list of the verb. Consider

the verb "to order." Its dictionary entry is as follows:
(ORDER V

S-ED
PREP-CASE ((WITH WitH))
V-MEAN
{IF ((AGENT (MUST-BE HU.HAN))

AG
(OPT (GETR PASSI VE) 'SOMEONE)
(PATIENT (MUST-BE ANIMATE))
PA
OBL
(TO-COMP (GETR PA))

TDC
OBL)

(BUILDQ ("<==>" ? "+" ("<--" ORDER 11 +11)) AG TNS TOC)
((AGENT (MUST-BE HUMAN))

AG
(OPT (GETR PASSIVE) 1 SOMEONE)

8

(PATIENT (AND (MUST-B.E THING) (NOT (MUST-BE HUMAN))) ·
PA
OBL)

(BUILDQ ("<=-=>" ? "+" ("<--" ORDER ?)) AG TNS PA)))

Under the indicator V-MEAN there is a form beginning
(IF ((AGENT • • • IF is a function which takes an even, but
otherwise variable, number of arguments, each paic representing
a meaning of the verb. The first element of each pair is a set
of cases to be looked for, and the second is the structure to be
built if they are found. It is in the first element of the pair
that the complexity lies. Let us look at it more closely.

The list of cases is, in fact, a list of triples. The first
element of the triple is a form to be EVALed. It is usually .
looking for a case, but any form is admissible. The second
element of the triple is an atom: a register name. If the first
form EVALs to a non-NIL value, the value is put into this
register. Iu our example, for instance, ·the first triple is:

(AGENT (MUST-BE HUMAN)) AG (OPT (GETR PASSIVE) 'SOMEONE)

The function of the first form is to find the agent of the
sentence. If it succeeds, this agent is put into register AG.

The third element of the triple indicates what to do on
failure. If it is the atom "OBL", this indicates that the case
was obligatory; so if it was not found, IF should fail on this

9

meaning of the verb. If the atom is "OPT", then the case is
optional, the register is left empty, and IF continu~s with this
meaning. The third possibility is that this third element is a
form, in which case it is EVALed. If it returns "OBL" or "OPT",
then the result is as described above. If it returns anything
else, then that is put into the register, and IF continues with
this meaning of the verb.

The third element of the first triple for "to order" is
(OPT (GETR PASSIVE) 'SOKEONE). OPT is a very simple function
which, if its first argument is non-NIL, returns its second
argument. Other-wise it returns "OBL". (GETR PASSIVE) is true if
the sentence is in the passive voice. The first triple can be
read as follows:

Look for an agent which must be human. If you find one, put
it in register AG. Otherwise, if the sentence is passive, make
SOKEONE the agent. Otherwise fail.

The second triple is simpler. It merely says: If you find
an animate patient, then put it in register PA, else fail.

The third triple is equally simple: it is not looking for a
case, but a to-complement.t If these three elements are found in
the sentence, then the system will look no further, but assume
that it has found the correct meaning of the verb. It will EVAL
the second form of the pair, in this case:

(BUILDQ ("<==>"? + ("<--"ORDER+)) AG TNS TOC)

which builds the basic structure for the sentence.

BUILDQ takes a variable number of arguments. The first is a
kind of template with slots in it. The rest of the arguments
fill the slots. The"+" denotes a slot which is filled by the
contents of a register. NOUN-PUT returns the structure of the
noun phrase asso~iated with the noun in this register. The "?"
is filled by the application of the function NOUN-POT to the

con ten ts · of a register. Finally, the "t 11 (see Appendix)
indicates that a form is to be EVALed, and the result put into
the slot. The slots are filled in order by the s~cond, third,
etc , arguments. It should be noted that the form of BUILDQ has

a An example of a to-complement is: "Fred took the hook lQ fil!£1g.r
11~!:Y• 11

been strongly motivated by its use in Woods' ATN [11 J.

So in this case:

(NOUN-PUT (GETR AG)) is put in for th~?.

(GETR TNS) in place of the first+.

(GETR TOC) for the second+.

where GETR returns the contents of a register.

11

1 1

Programming details do no-t belong in a paper of this kiHd.
All of the code is in Taylor(8] for those interested. In tne
following example, then, function cames and excessive details
will be, on the whole, left out. A detailed account of the ba,;ic
algorithm and control structure will be given. We will look at a
simple sentence. More complex structures such as relative and
subordinate clauses are treated in much the same way as their
parent sentences. Consider the sentence:

(11) The man beside the window played the piano foe Mary.

As stated above, the first step in the process is a partial
parse using an ATN. The structural description usually derived
from this parse is incomplete. That is, no decisions are mad P
about what modifies what, what meaning of the verb is being
used, etc. The basic idea behind the ATN is to find the verb but
while it is doing this, it seems useful to chop the sentence up
into its parts. There are problems with just how this chop~icq
should be done, but with most sentences it is straightforward.

The ATN parse returned for sentence (11)
following form:

will have the

s
NP NIL

DET THE
N MAN

NUMBER SG
PP NIL BESIDE

NP NIL
DET THE
N WINDOW

NUMBER SG
VP NIL

TNS
PAST
VOICE ACTIVE

V PLAY
NP NIL

DET THE
N PIANO

NUMDER SG
PP NIL FOR

NP NIL
NPR MARY

IT IS ON THIS PRELIMINAEY PARSE THAT THE PROGRAM WORKS.

First, the main verb is found, and a function is invoked
which controls the top-level back-up. This function EVALs the
form on the property list of the verb under the indicator
V-MEAN. This form for PLAY is a very long one, and is given in
the appendix. The form in question is a call to IF, whose
mechanism has been briefly described above. In this instance IF
has ten arguments,· indicating that there are five meanings to
the verb PLAY in the system. The first meaning is "to play a
musical instrument."

The first case looked for is the AGENT. This agent should
be a musician, and must be human. This search is initiated by
EVALing the first form in the first triple of the first argument
to I.F: (AGENT (AND (SHOULD-BE MUSICIAN) (MOST-BE HOMAN))). AGENT
is fairly complex, but basically it looks for a component of the
ATN parse (in future called the "p-parse", for partial-parse)
which is in an appropriate position to be an agent, and which
passes the test {the argument to AGENT.) By •appropriata
position• is meant, for instance, that if the sentence is in the
active voice, the agent is E£2bah!Y the first noun phrase in the
sentence.

13

For this situation, AGENT immediately finds "the man" as
the obvious candidate, and it applies the test
(AND (SHOULD-BE MUSICIAN) (lWST-BE HUt'IAN)) • Now, unless
something special has been put on the property list of MAN
previously, the (SHOULD-BE MUSICIAN) part of the test will fail.
(There are two levels of tests in this system: SHOULD-BE tests
and ftUST-BE tests. This mechanism is very useful for forcing a
verb like .PLAY to look very hard for a musician to play an
instrument -- but to accept any human if it fails at first. This
is especially powerful for resolving anaphoric references). Thu3
AGENT fails, which invokes the third element of the AGENT
triple: (OPT (GETR PASSIVE) 'SOMEONE). This may be read as:
AGENT is optional if the sentence is in the passive voic~, in
vhich case put SOMEONE in as the agent; otherwise AGENT is
obligatory. since the sentence is not passive, AGENT i5
obligatory. As the AGENT case was not found, this first meaning
of PLAY fails.

IF then goes on to the next pair of arguments. This pair is
designed to pick up the meaning of PLAY as in "to play music."
Note that the test on AGENT is just like the previous one, which
means failure here as well. The program moves on to the third
meaning of to PLAY: "to play a sport." Here the test on AGENT is
(AND (SHOULD- BE SPORTS-MAN) (MUST-BE HUMAN)) • Once aqai n,
providing ftAN does not have SPORTS-MAN on its property list,
this attempt fails. The program therefore goes onto the fourth
meaning which is designed to pick up the ergative usage of 11 tu
play" as in "The music played from the room." Since the test for
this meaning is (MUST-BE NUSIC), this meaning will also fail. Ou
to the fifth, and last, meaning, which is a sort of catch-all.
It is the meaning of "to play" as in "to entertain oneself."
Here the test on AGENT is (MUST-BE ANIMATE). "The man" passes
this test, since MAN has the property ANIMATE. Since AGENT is
the only case looked for, this meaning is taken to be the
correct one, and the following structure is built by the call to
BUILDQ:

<==>
n man

number sg
<-definite- the

past
<-- do
<-cause-

<==>
n man

number sg
<-definite- the

present
<-- have-prop entertained

14

IF has completed its job. It has found what it takes to be
the correct meaning of the verb. Now the rest of the sentence
must be processed. The second element of every top-level list in
the p-parse is a flag which is initially NIL, but which is
turned on when that part of the sentence is considered to be
correctly dealt with. In our example, so far only two parts are
flagged: the first noun phrase: "the man", and the verb phrase.
The function which takes care of the rest of the sentence simply
goes down t'be p-pa.rse checking these flags. If it finds one
which is NIL it works on that part of the sentence until it
either succeeds, or fails -- causing back-up.

For this example, then, the first phrase it comes upon
needing work is the prepositional phrase: "beside the window".
As mentioned above, there is a master-table in the system which
associates each preposition with the cases it may flag. BESIDE
flags the cases: LOCATION and DESCRIPTIVE. All of the cases hut
DESCRIPTIVE are cases· of the verb. DESCRIPTIVE is a special casa
which is used for preposition phrases which modify nouns.

When the list of cases associated with a pre~osition is
retrieved, there is a question as to which case to try first.
For this there is a foregrounding routine, with several criteria
for foregrounding:

First of all, in the dictionary definition of the verb, the
user may specify that a certain preposition trigger a particular
case program. since there is no such specification for: "to play 11

in the current dictionary, nothing happens here. Secondly, on
the property list of each verb is kept a record of which
prepositions flagged which cases in the previous sentences. Tue
cases associated with the preposition in question (if there are

15

any) are foregrounded, so that they will be tried first (the
most recent case first, etc.) Finally, if DESCRIPTIVE is one of
the cases in the list of cases for this preposition, and if a
noun phrase or a prepositional phrase immediately precedes the
phrdse in question, and if the noun in that noun phrase or
prepositional phrase is not a proper noun, then DESCHIPTIVE is
put at the front of the list, and is thus tried first.

This seemingly obscure rule for foreqrounding the
DESCRIPTIVE case is just a heuristic. If the tests associated
with each case are good enough, it makes no difference to the
final outcome if the foregrounding is done or not. In some
instances, however, if tbe DESCRIPTIVE case is not tried first,
it will never be tried. In our example, for instance, it is the
man who is beside the window (DESCRIPTIVE case); he did not play
the piano beside the window (LOCATION case). But it is perfectly
feasible for him to have played it beside the window (if we know
nothing about the location of the piano.) Therefore either of
the cases will succeed. It is only the position of tn~
prepositional phrase that indicates which case is correct.

Continuing with our example: the DESCHIPT1VE case 1s
foregrounded, and so the descriptive case function, DESC, is
invoked with the phrase "beside the window" as its argument.
Since the descriptive case almost always involves a
prepositional phrase modifying the noun phrase or prepositioual
phrase immediately before it, DESC first checks to see if
"beside the window" is a possible descriptor of ''the man."

Since we do not have a data base to check to see if thare
is a man beside a window, our check must be a general one. Most
nouns have a size associated with them under the indicator
OBJ-SIZE. This is a very crude breakdown of physical objects
into eleven size categories. "The woz:-ld" is size 10 and "a pin"
is size O. (These sizes should be ablB to b~ changed by
classifiers, adjectives, oz:- modifyinq phrases. A toy elephant is
probably not the same size as an elephant. This feature is
currently not implemented..) The check for 41 beside" is mecely
used to rule out things like "the pin beside Canada." Because
abstract nouns have no size information, sentences like "Re had
a thought beside the ocean" are not ambiguous. In any event,
"beside the window" is found to be a likely modifier of tithe
man", and DESC succeeds. since "beside" is a locative
preposition, DESC returns the structure:

(<-LOC- BESIDE (NP (N W.INDOW (NUMBER SG) C<-DEFINATE- THE))))

16

A form is stacked which will put this structure into the
main sentence structure if the rest of the sentence can he
handled. Just where it is placed is determined by DESC. Since
the prepositional phrase modifies "the man", it will be put in
as follows: ·

N MAN
NUMBER SG
<-DEFINITE- THE
<-LOC- BESIDE

N WINDOW
NUMBER SG
<-DEFINITE- THE

SO THE PREPOSITIONAL PHRASE "BESIDE THE WINDOW" IS FLAGGBD AS
COMPLETED, AND THE NEXT UNFLAGGED PHRASE, "THE PIANO", IS PICKED
UP.

Here we run into problems. Where does "the piano~ fit into
the structure? What does it modify? What is its case? There are
relatively few ways a noun phrase can be used at this point. It
could be an example of the TIME case, as in "I came home 1hi§
!2[.!UJ!g.", but "piano" fails the TIME-test. It could be a
classifier, but the phrase following it would hdve to be a noun
phrase for this to be the case. so failure has occurred.
something has gone wrong. IF must have chosen the wrong meaning
of the verb. The program must back up.

All the parts of the sentence flagged as used are un­
flagged, and back-up occurs into IF again. Here it is found that
there are no meanings of the verb left to try. One of the
meanings that was rejected earlier must have been the correct
one. so IP fails entirely, and the program enters the top-level
back-up mechanism.

There are two possible reasons failure has occurred:

1) Either the program did not look back far enough in an
attempt to resolve an anaphoric reference, or 2) The tests were
too severe. (ie: the SHOULD-BE tests caused failure when they
should not have.)

The anaphoric part of the system has not been explained
yet, but as there were no pronouns in the sentence, the first
reason can be ruled out. In order to weaken the tests, a flag is
set to shut off the SHOULD-BE tests. That is, all SHOULD-BE
tests will succeed in future . The process begins again with IF.

17

The beginning is the same, but this time the first
invocation of AGENT will succeed, because the test
(AND (SHOULD-BE MUSICIAN) (MUST-BE HUMAN)) succeeds. Tue
structure it returns is put in the r a ~ister AG. IF contin11es
with the second triple of parameters, and the form (PATIENT
(MUST-BE MUSICAL-INSTRUMENT)) is EVALed. Now, PATIENT is very
similar to AGENT: it looks i11 the appropriate place in the
sentence for the patient of the verb. It then applies its i EST
to it. In an active sentence, such as our example, the candidate
for PATIENT is the first noun phrase after the verb. "The piano''
is found, and since it passes the test (MUST-BE MUSICAL­
INSTRUMENT), PATIENT returns "the piano" ~s the patient of ti1e
sentence.

Once again it seems that the correct meaning of the verb
has been found, therefore IF EVALs the BUILDQ associated with
that meaning. The following structure is built:

<==>
N MAN

NUMBER SG
<-DEFINITE- THE

PAST
<-- DO
<-CAUSE-

<==>
N PIANO

NUMBER SG
<-DEFINITE- THE

PAST
<-- EMIT

NP
N SCOND

It now remains to try to clean up the unflagqed parts of
the sentence. The first one, again, in "beside the window••, and
exactly the same thing is done as was done previously: it is
decided that "beside the window" is a locative descriptor of
"the man", and this decision is stacked for later action.

The only other part of the sentence to be handled is ''for
Mary." As with "beside", the cases associated with "for" are
returned from the CASE-TABLE. They are: DURATION, BENEFICIARY,
EXCHANGE, and IND-SUBJ. (IND-SUBJ has not been implemented yet.)
Assuming that there have been no relevant previous sentences,
the foregrounding of cases will have no effect on this ordering.

18

The DURATION case is tried first. DURATION is a
particularly simple case. Basically it checks to see that the
noun phrase in the prepositional phrase has the property TittE
under the flag N-PROP. "Mary" fails this test, and DURATION is
rejected.

The next case is BENEFICIARY. The only test for this caso
is that the noun phrase be animate. "Mary" passes this test
since it has the SUPERSET WOMAN and WOMAN has the N-PROP
ANIMATE. Therefore BENEFICIARY succeeds and returns:
(<-BENEFICIARY- (NPR MARY)). Unlike "beside the window", this
phrase is a case of the verb. Because all cdses of the verb (but
AGENT and PATIENT) are considered to be essentially parallel
vith respect to the verb, they are put into the structure at the
same level, that of the verb symbol"<--", ~nd their order is
arbitrary. A form is stacked to put the above structure into the
main sentence structure in the correct location.

Next the p-parse is checked for any unused phrases. None
are found, and the program terminates by placing the two forms
into the structure. which is returned as the "meaning" of the
sentence:

<==>
N MAN

NUMBER SG
<-DEFINITE- THE
<-LOC- BESIDE

N WINDOW
NUMBER SG
<- DEFINITE- THE

PAST
<-- DO
<-CAUSE-

<==>
N PIANO

NUMBER SG
<-DEFINITE- THE

PAST
<-- EMIT

NP
N SOUND

<-BENEFICIARY-
NPR MARY

A gloss of this structure might be: the man, who has

19

location "beside the window", in the past did something wnich
caused the piano to emit sound. The beneficiary of his action
was Mary.

20

A few examples of sentences handled by the system are given
here. space constraints do not allow us to include parses, for
all the sentences but the remainder are in Taylor[B].

The man with the wife who is bigger than he goes to Vienna with
a woman who is smaller than he.

> PARSE:
> s
> NP NIL
> DET TUE
> N MAN
> NUMBER SG
> pp NIL WITH
> NP NIL
> DET THE
> N WIFE
> NUMBER SG
> REL NIL
> RELPRO WHO
> VP NIL
> TNS
> PRESENT
> VOICE ACTIVE
> V BE
> <-ADJ- NIL BIG
> COMP-SUP COMPARATIVE
> THAN-PH NIL
> NP· NIL
> PRO HE
·> VP NIL
> TNS
> PRESENT
> VOICE ACTIVE
> V GO
> pp NIL TO
> NP NIL
> NPR VIENNA
> pp NIL WITH
> NE' NIL
> DET A
> N WOMAN
> NUMBER SG
> REL NIL
> RELPRO WHO

>
>
>
>
>
>
>
>
>
>
>
>
* y

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

VP NIL
TNS

PRESENT
VOICE ACTIVE

V BE
<-ADJ- NIL SMALL

COMP-SUP COMPARATIVE
THAN-PH NIL

NP NIL
PRO HE

BY HE I ASSUME YOU MEAN THE MAN
IS THAT CORRECT?

<==>
N MAN

NUMBER SG
<-DEFINITE- THE
<-DESC- WITH

N WIFE
NUMBER SG
<-DEFINITE- THE
<==>

N WIFE
NUMBER SG
<-DEFINITE- THE

PRESENT
<-- HAVE-PROP

BIG
<-COMPARED-TO­

N MAN
NUMBER SG
<-DEFINITE- THE

P.BESENT
<-- MOVE
<-SOURCE- SOMEPLACE
<-DESTINATION-

NPR VIENNA
<-CO-AGENT-

N WOl'iAN
NUMBER SG
<-INDEFINITE- A
<==>

N WOMAN
NUMBER SG
<-INDEFINITE- A

PRESEN'r
<-- HAVE-PROP

SMALL

21

>
>
>
>
>
>

<-COt1PAR ED-TO­
N MAN

NUMBER SG
<-DEFINITE- THE

FRED LOVED THE OLD WOMAN BEFORE HE CAME TO CANADA.

22

MANY CASES CAN APPEAR AS EMBEDDED SENTENCES AS WELL AS
PREPOSITIONAL PHRASES. PRONOUN REPERENCES WITHIN SENTENCES
CAN BE RESOLVED.

FRED PLAYED JACK TENNIS.

SO~E VERBS ALLOW THE CO-AGENT CASE TO APPEAR IN THIS FORM.

THE MUSIC PLAYED LOUDLY FROM , THE SlULL HOOM.

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
)

>
>
>
>
>
>
>
>

parse:
s

np nil
det the
n music

number sg
vp nil

tns
past
voice active

V play
<-adv- nil loud
pp nil from

np nil
det the
n room

number sg
<-adj- small

<==> someone
past
<-- play

n music
number sg
<-definite- tb.e

<-source-
n room

number sg
<-adj- small

>
>
>
>

<-definite- the
<-adv- loud

It is idiotic that Fred went to India to play football.

> PARSE:
> s
> NF NIL
> PRO IT
> SUBJ
> OBJ
> NUMBER SG
> VP NIL
> TNS
> PRESENT
> VOICE ACTIVE
> V BE
> <-ADJ- NIL IDIOTIC
> THAT-COMP NIL
> <==>
> NPR FRED
> PAST
> <-- MOVE
> <-SOURCE- SOMEPLACE
> <-DESTINATION-
> NPR INDIA
> <-PURPOSE-
> <==>
> NPR FRED
> PRESENT
> <-- PLAY
> N FOOTBALL
> NUMBER SG
> <==>
> <==>
> NPR FRED
> PAST
> <-- MOVE
> <-SOURCE- SOMEPLACE
> <-DESTINATION-
> NPR INDIA
> <-PURPOSE-
> <==>
> NPR FRED
> PRESENT

>
>
>
>
>
>
>
>

<-- PLAY
N FOOTBALL

NUMBER SG
PRESENT
<-- HAVE-PROP

IDIOTIC

THERE IS A SMALL PEN IN THAT BOX.

THE "THERE 15 8 CONSTRUCT IS A SPECIAL CASE OF "TO BE."

THE HOUSE WITH THE PIANO IN IT WAS GIVEN TO FRED BY HIS WIFE.

> parse:
> s
> np nil
> det the
> n house
> number sq
> pp nil with
> np nil
> det the
> n piano
> number sg
> PP nil in
> np nil
> pro it
> subj
> obj
> number sg
> vp nil
> tns
> past
> voice passive
> V give
> PP nil to
> np nil
> npr fred
> pp nil by
> np nil
> det
> posspro his
> n wife
> number sg
> by his i assume you mean fred

24

>
• y
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

is that correct?

<==>
n wife

number sg
<-poss-by- fred

past
<-- transfer

n house
number sg
<~definite- the
<==>

n house
number sg
<-definite- the

present
<-- contain

n piano
number sq
<-definite- the

<-.c:ecipient-
npr fred

<-source-
n wife

number sg
<-poss-by- fred

26

Anaphoric references are resolved in the c~se analysis part
of the system. As the system is developed around a specific
domain or data base, these routines will be modified to givA
them more power. currently they work solely by looking at the
previous sentences.

Resolution of anaphoric references fits very well into a
case system. since a pronoun is only encountered in a search for
a particular case, this gives the anaphoric routines a great
deal of information about what kind of referent to look for.
Here we will give just a brief cutline of a fairly intricate
procedure.

When a pronoun is found in the sentence, it triggers a call
to the function ANAPHORIC. ANAPHORIC takes four arguments:

1. A list of cases to look for.

2. A test that the referent must pass.

J. A number indicating how far back in the history to
look.

4. The pronoun referenced.

The search is breadth first, in that the program tries very hard
to find the referent in the earliest possible sentence. The test
is an arbitrary form. SHOULD-BE and MUST-BE elements of the test
are shut off on failure as they are in the rest of the back-up
procedure.

Say, for instance, that the system is given the sentence:

(12) He played the piano.

The call to AGENT would be the form:
(AGENT (AND (SHOULD-BE MUSICIAN) (MUST-BE HUMAN))). Since the
obvious candidate for the agent is a pronoun, ANAPHORIC would be
invoked. Its TEST would be:

(AND (SHOULD-BE MUSICIAN) (MUST-BE HUMAN)).

ANAPHORIC would look back through the parses and p-parses of the
recent sentences which are kept as global variables, lookinq for
a noun phrase that will pass this test. As it becomes more and

27

more desperate it will make the test less stcict. Since "he" is
the pronoun, ANAPHORIC is smart enough to insist that the
referent be male.

Most pronoun references within a sentence itself can also
be resolved. For instance:

(13) f£g~ went to London so kg could visit the guee11.
(14) 4g£! took you up in hi2 airplane.

References to events and places can also be handled:

(15) !1 was unfortunate that the children we~e ~ill~g.
(16) I went to figll£~• Fred lives 1h~£g.

The resolution of locational references ("here" and "th~re") is
a difficult problem. By treating "there" as a pronoun whose
referent must be a location, "there" is handled fairly well by
the system. "Here" is much more difficult, since its resolution
is highly context dependent.

Another difficult problem is illustrated by sentence (17).

(17) Mary was aboard the Titanic when she sank.

This sentence is ambiguous: Mary could have sunk in a swimmiuq
pool while she was on the Titanic, but this is probably not the
intended meaning. If "to sink" is defined with a test like

(SHOULD-BE BOAT)

then the system will pick up "Titanic" correctly. Its first
choice as a candidate is "Mary", however; thus if the test does
not rule "~ary" out, the system will choose her as its initial
guess.

This illustrates a difficulty with the current system's
anaphoric routines. The first candidate found which passes the
test is chosen, rather than all of the candidates being look~d
at, and the most likely accepted.

28

In summary, then, what we have implemented is a powect11l
parser for English sentences. It employs case frames to discover
the intended meaning of the verb, then continues to use case in
its analysis of the rest of the sentence. Each case has one or
more tests associated with it, and each verb can add furth~r
tests to the cases in its case frames. These tests are qradually
weakened on failure, giving the careful user complete control
over the back-up.

The system is carefully structured to allow easy extension
or modification. As mdre world knowledge is added to the system,
the tests on the cases, and in the case frames can be made to
employ this knowledge, thus making them more selective.

The structure building routines are completely general,
allowing the user to return any structure he desires within the
constraints of the general knowledge he puts into the system.

We feel that this system illustrates
flexibility, and expressive power of case in
computational linguistics.

the simplicity,
applications in

21

BIBLIOGRAPHY

1. Bruce, Bectram. "Case Systems for Natural Lan<:Jua ,1~- 11

2.

Computer Science Department, Rut~ers, CBM-TT-31, 1974

Celce-Murcid, M. "Pdradigms for Sentence
System Developement Corp. Final
15092/7907. 1972

Recognition", i~
Report No. J?T-

3. Fillmore, Charles. "The Case for case" in Bach an~
Harms(eds.), UDiversals in Liguisitic Theory. New YorK!
Holt, Rinehart, and Winston, 1968. 1-90.

4. Martin, Willidm A. "Translation of English into M~PL Usinq
Winograd's Syntax, state Transition Networkz, ana a
Semantic Case Grammar" Automatic Programminq Group
Internal Memo 11, MIT Project MAC, 1973

5. Schank, R. c. "Conceptual Dependancy: A Theory of Natural
Language Understanding" Cognitive Psicholog~ 3,4 (1972)
552-631

6. Schank R. c., "Identification of Conceptualizations
Underlying Natural Language" in Schank and Colby(eds.),
con~yter ~odels of Thought snd Language. San Fransico:
w. H. Freeman & co. 1973. 187-247

7. Simmons, R. F. "Semantic Networks: Their Computation and Use
for Understanding English Sentences" in Schank and
Colby 1973, 63-113

8. Tayloe, Brock H. "A Case-Driven Parser", unpublished Masters
thesis, University of British Columbia, Vancouver, 1~75

9. Winograd, T. Understanding NE1~~~l 1angYa1~• New York:
Academic press, 1972

10. Winograd, Terry "A Procedural Model of Lanquag3
Understanding" in Schank and Colby, 1973, 152-186

11. woods, w. A. "Transition Network Grammars for Natural
Language Analysis" ~Qfil~• !~n Vol 13 (Oct. 1970) 591-606

12. woods, w. A. "An Experimental Parsinq System for Transiti0n
Net work Gram ma rs", in Rust in (ed.) Natural k_anguag~
grQ~§§ing New York: Algorithmics Press, 1973. 111-154

30

A.E.E,g.ngix: The Dictionary Entry for "to play"

(PLAY V
S-ED
V-MEAN
(IF ((AGENT (AND (SHOULD-BE MUSICIAN) (MUST-BE HUMAN)))

AG
(OPT (GE'rR PASSIVE) 1 SOMEONE)
(PATIENT (MUST-BE MUSICAL-INSTRUMENT))
PA
(COND ((AND (NOT FAIL-TEST)

(DEFAULT 'PATIENT (NOUN-GET (GETR AG)))))
(T 1 081)))

(BUILDQ ("<=-=>" ? "+ 11 ("<-- 11 DO)
(11 <-CAUSE- 11

("<-==>" ? +
("<--" EMIT (NP (N SOUND))))))

AG TNS PA TNS)
((AGENT (AND (SHOOLD-BE MUSICIAN) (MUST-BE HUMAN)))

~G
(OPT (GETR PASSIVE) 1 SOMEONE)
(PATIENT (MUST-BE MUS IC))
PA
OBL)

(B U IL D Q (11 < -== > 11 ? 11 + 11
("< - - " PL A Y ?)) A G T NS PA)

((AGENT (AND (MUST-BE HUMAN) (SHOULD-BE SPORTS-MAN)))
AG
(OPT (GET R PASSI VE) • SO MEO NE)
(IND-OBJ (~UST-BE HUMAN))

CO-A
OPT
(PATIENT (MUST-BE SPORT))
PA
(COND ((NOT PAIL-TEST)

(DEFAOLT 'PATIENT (NOUN-GET (GETR AG))))
{T 'OBL)))

(BUILDQ (ii) ("<==>") (?) ("+") (("<--" PLAY ?)) #)
AG TNS PA
(PROG (TEMP)

(RETURN
(COND ((SETQ TEMP (GETR CO-A))

(LIST (LIST '"<-CO-AGENT-"
(SOFT-NOUN-LIST-GET

(NP-BUILD TEMP))))))
((AGENT (MUST-BE MUSIC)) PA OBL)
(BUILDQ (11 <-=-=> 11 SOMEONE + ("<--" PLAY ?)) TNS PA)
((AGENT (MUST-BE ANIMATE)) AG OBL)
(BUILDQ ("<-=-=>"?

"+"
("<--" DO)
("<-CAUSE-" ("<==>" ? "+"

("<--" HAVE-PROP
ENTERTAINED))))

AG TNS AG TNS)))

31

