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Abstract

This is not a comprehensive survey of machine vision
which, in its broadest sense, includes all computer
programs that process pictures. Restricting attention
to scene analysis programs that interpret line data as
polyhedral scenes makes it possible to examine those
programs in depth, comment on revealing mistakes and
anomalies, explore the interrelationships and exhibit
the thematic development of the field. Starting with
Roberts' seminal work which established the paradigm,
there has been an evolutionary succession of programs
and proposals each approaching the problem with a
different emphasis. In addition to Roberts' program
thiis paper expounds in detail work done by Guzman,
Falk, Huffman, Clowes and Waltz. These programs are
presented, compared, contrasted and criticized in
order to exhibit the development of a variety of
themes including the representation of the
picture-formation process, segmentation, support,
occlusion, lighting, the scene description, picture

cues and models of the world.

Presented at the NATC Advanced Study Institute on Machine

Representations of Knowledge, Santa Cruz, Ca., July 1975.



0. Preamble

As this paper is primarily an exegesis of computer programs
for polyhedral scene analysis, it should not be read as a review
of all work in compatational vision. The semantics of
polyhedral scenes are so cleaan that we can re-view that body of
work and see it as a coherent whole. On the other hand m@much
recent work outside that area is so diverse and fragmented in
character that it is hard to place it all within a single
framevork. However, the associated 1lectures will cover such
topics as the interpretation of more coaplex scenes and the
gquestion of bhow image analysis (for example, line and region
formation) can be guided by partial scene analysis. #ithin the
area covered here the major omission is the MIT COPY DENO which

is so ably described by ¥Winston (1973).

Caveat lector: one of the techniques used in this review is
to point to non-trivial bugs in the programs discussed. These
are useful for gaining insight into the weaknesses of the
descriptions and inference mechanisms available to a program;
hovever, it must be emphasised that, for the most part, these
have been discovered not through running the program in question
but through a careful reading of the published accounts. To
seek refuge in the fact that most of these bugs could be fixed
by admittedly ad hoc patches would be to mistake the symptonms

for the disease.



1. Introduction

The Platonic assumption that the world is made up entirely
of objects with flat surfaces obviously does not hold; and vyet,
as with so many other simplifications of reality for the sake of
tractability, it has been immensely productive in establishing a
paradigm for scene analysis. There is a coherent evolving body
of research based on the notion that a polyhedral world is the
simplest we can consider without eliminating any of the
essential aspects of scene analysis, namely, the picture-taking
process, models, 1lighting, support, occlusion and so on. The
thesis is that once we achieve ways of dealing intelligently
with those aspects for a simple, but nonetheless real) wvorld we
could then consider the fuzzy world of teddy bears (Michie,
1974) and the like. This should not be taken as suggesting that
each of those aspects presents simply a separate, independent
subproblem to be solved. The most important guestion to be
faced was how to write programs that coordinate the use of these
separate, but interrelated knowledge systems to achieve semsible
picture interpretations. Roberts (1965) was the first to give
an answer to this question. We shall examine his answer in some
detail, because he exposed in it the issues that became thenmes

of the first decade of scene analysis.



2. Roberts' program for sceme apalysis

Roberts (1965) described a program for the interpretation
of photographs as images of fully three-dimensional scenes. By
assuming that the scene is composed of particular instances of
object models that have been transformed and combined in
well-specified ways and by using knowledge of the picture taking
process, support and occlusion, his system is able to coapute
the exact 3D position of every object in the scene. There are
actually two separate programs. The first reduces the
photograph to a line drawing, the second interprets the 1line
drawing. The reduction to a line drawing does not concern us
here because an adegquate treatment of that topic is beyond the
scope of this paper amnd because more recent work omn line finding
(Shirai, 1973; O'Gorman and Clowes, 1973) suggests that the
simple, pass-oriented line-following procedures Roberts
describes are not usually powerful enough to produce the
complete line drawing required by the subsequent interpretation

program.

Roberts' program believes that the world consists of the
models shown in Fig. 1, namely, a cube, a rectangular wedge and
a hexagonal prism. To create simple objects the system allows
these models to be expanded along each of the model coordinate
axes and then rotated and translated. Compound objects are
created by abutting two or more simple objects so that each

adjacent pair shares a common surface. The models are specified
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Figure 1. Roberts' simple object models
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Figure 2, Roberts' domains and transformations



by 3D homogeneous coordinates so that the transformation of a
model to form an object is described as the transformation, by
an initially unknown matrix R, of the coordinates of the corners
and the normals to the surfaces. Similarly the perspective
picture taking process is described as the multiplication by a
known matrix P of the object coordinates to produce the picture
coordinates followed by the removal of hidden lines. So the
relationships of the model, object and picture domains are as
shown in Pig. 2 where H, the model-to-picture transformation, is
also shown. Since H = RP, if a model and a transformation H can
be found that account for a set of the lines in the picture then
the program maintains that the set of lines is a picture of the
object given by a transformation R = HP-! of that model. Thus
the object is identified and its location specified conmpletely
except for its actual distance from the camera. This distance
is then computed froama the requirement that the most dowvnward
facing surface of the object must lie in the ground plane. This

is the only support hypothesis used by the progranm.

In this abbreviated account the most important point that
has been glossed over is the decision to choose a set of picture
lines to account for. This decision is followed by the choice
of particular edges of a particular model to account for those
lines. This is perhaps the archetypal artificial intelligence
problem - the problem of relevance, by which is meant the
problem of invocation of appropriately relevant models or

procedures to account for the data.



The space of three models juxtaposed and transformed in all
possible ways and viewed from every direction is unthinkably
large for a blind search, (that 1is, generating all possible
pictures of all possible objects until one matches the imput) so
the search space must be intelligently structured. Roberts
noticed that all the model transfarmatiqns leave the object's
topology dinvariant and that within a wide range of viewpoints
the topology of the visible aspect of an object does not change.
Through this invariance the topology of the picture can be used
to search a much reduced space consisting of the models viewed
from a small number of typical viewpoints. On finding a
candidate model, points that correspond in the model and the
picture are paired. The coordinates of those pairs are used to
calcalate (rather than search for) the model-to-picture
transformation, H. At least four pairs of points are needed to
calculate H; if more are available then a least squares fit
gives H with the residual error as a measure of the
picture-model nmismatch. If the mismatch is too large then that

model is rejected and the topology search continues.

Consider the topology search in detail. It is based on the
notion of an approved polygon which is simply one of the shapes
of the model surfaces. PFor the three models used, an approved
polygon is any convex polygon of 3, 4 or 6 sides. Since the
topology search attempts to find the largest picture fragment

that could correspond to a model, it proceeds in stages each of



which 1looks for a smaller fragment than the one preceding. The
four stages, which are called in sequence until one succeeds,

are:

1e Find a picture vertex surrounded by 3 approved

polygons.
2. Pind a line with an approved polygon on each side.

3. Pind an approved polygon with an extra line coming froa

one vertex.

4. As a last resort find a point with 3 lines coming from

it.

When a suitable fragment is found the program searches the
models in sequence (cube followed by wedge followed by prism) to
find a topological structure that corresponds to the fragment

recovered from the picture.

Fig. 3(a) shows a typical compound object considered by
Roberts. The topology search finds no fragments of type 1, but
two of type 2: both lines 2 and 3 have approved polygons on each
side of thems The cube has guadrilaterals on both sides of an
edge so the geometry matcher tries A and B as surfaces of a
transformed cube as shown 1in Fig. 4, but discovers that the
residual error of the least squares fit of the corresponding

object-model point pairs is too large and rejects it. Similarly



(a)

(c) @
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Figure 3. Interpreting a compound object
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Figure 4.

Seeing a transformed cube in a compound object
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for 1line 3. The topology search then turns up a type 3
fragment: polygon A with 1line 9 attached. The five points
defined by that fragment match a transformed cube exactly as in
Fig. 3(b). This is removed from the original picture and the
process continues by finding the parts shown im Fig. 3(c) and

(d) with the final compound object shown in Fig. 3(e).

There are some very real difficulties with this program
which can be illustrated by considering specific cases. 1In the
example above, take the rejection of a cube model for surfaces A
and B across line 2. Certainly if the projection 1is without
perspective so that lines 1, 2 and 3 are parallel as are 5 and
6, 7 and 8 then a transformed cube fits exactly as the
rectangular solid im Fig. 4 shows. This would be disastrous for
the subsequent analysis. Thus Boberts® claim (1965, p.166) that
"the process accounts for but does not depend on perspective
information" seems to be wrong. In the perspective case the
convergence of lines 5 and 6 can be used to reject it. Even
assuming that the line fitting is so accurate that such fine
distinctions can be made reliably, doubts must be raised about a

system that depends on such distinctions.

Another example is the compound object of Fige. 5{(a). Given
the three basic models the program could be expected to split it
into the two simple objects of Fig. 5(b). But in fact it will
first remove a cuboid from the top surface as in Pig. 5(c) which

leads into a muddle because it has not taken the appropriate
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(a)
(b)
(€)

Figure 5. Two decompositions of an object
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first step. This drises because the models are tested in strict
sequence: cube, wedge, prism. That ordering is used to avoid

splitting a cube into two vedges!

Finally consider the simple picture in Pig. 6. This object
is simply a wedge on top of a cuboid. But as the program is
followed through on this picture it appears that whenever the
topology tests succeed the model suggested will not pass the
geonmetric transformation test, and so the program fails

completely.

The topology test finds the two quadrilaterals flanking
line 4 but if one face of the cube is fitted to region A the
rest of the cube will fall outside the complete figure as
Fig. 7 (a) shous. Attempts to fit wvedges or cubes using
quadrilaterals wvwith an extra line from one corner will all fail.
In particular Fig. 7 (b) shows a wedge that might be thought to
fit but it is incorrect as only rectangular wedges are alloved.
Finally even withdrawing to just three lines from a vertex will
not succeed. Looking at lines 1, 2 and 3 of Fig. 7(c) they can
be seen to be three significant edges of a cube model that could
be made to fit but the program does not find that context as it
only looks for contexts concentrated at vertices. Finin
(Winston, 1973) has defined the skeleton of a cuboid to include

the sort of context needed here.

Despite the difficulties uncovered above, Roberts' progran

created a scene analysis paradigm that remains dominant. As a
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Figure 6.

—3

Another compound object



Figure 7.

Possible decompositions of the object
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vorking theory, for that is what am AI program is, it firaly
established an active model of perception as a cycle of four
processes: discovering cues, activating a hypothesis, testing
the hypothesis, and inferring the consequences. This model of
perception, so far removed from the then dominant pattern
recognition paradigm for machine perception, echoes, as Clowes
(1972) remarked, the approach of such psychologists as Helmholtz
(Southall, 1962), Bartlett (1967) and Gregory (1974). HMinsky's
frame systems (Minsky, 1975) provide a semi-formalism for this

paradigm of perception.

3. Guzpan's body segmentation proqgram, SEE

Guzman's SEE (1968) accepts 1line diagrams of polyhedral
scenes as input and partitions the picture regions on the basis
of the putative body membership of the surfaces depicted. The
program consists of two passes over the picture. The first pass
makes local guesses (called links) about which pairs of regions
depict the same body. The second pass accumulates that evidence

to produce a grouping of the regions corresponding to bodies.

The links are placed at the junctions shown in Fig. 8 where
the links are shown as connections between two regions which are
usually adjacent in the picture. An exception to these rules is
the inhibition rule that no link is placed across a line at a

junction if its other end is a barb of an ARROW, a leg of an L
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Figure 8. The junction categories and link planting rules of SEE
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or part of the cross bar of a T.

Considering the result of the first pass to be a graph with
regions as nodes and links as arcs then the second pass searches
for 2-connected subgraphs which are declared to represent
bodies. This is a highly abbreviated version of Guzman's final
account which has many special case rules augmenting both
passes. The rules that depend on being told which region is
background can clearly be invalidated immediately by putting
another block behind the scene being analyzed. That, however,
is not the main point; it is merely typical of the way in which
the program developed by a process of finding counter-examples
that both invalidated old rules and hinted at new ones (Winston,
1973) . The need to add and modify rules almost continuously to
handle exceptions suggests that there is a basic flaw in the

design.

The flaw seems to be that Guzman used locally computed
picture predicates as evidence for global scene-based
properties. To avoid this one must ask what do the lines in the
picture depict? As vwe shall see latgr in the Huffman-Clowes
labelling algorithm they can depict many things but only certain
combinations of these things are scene coherent; this coherence
decision cannot be made in the picture domain as Guzman tried to

do.

SEE's tendency to see holes in objects as separate objects

(Winston, 1968) is only one consequence of the fact that the
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program ignores ambiguities inherent in the interpretation
process that are exposed by the Huffman-Clowes labelling
algorithm. Por example, consider Fig. 9(a) (adapted from Minsky
and Papert, 1972). That can be seen in at least three different
vayse. The first possibility is as a simple house structure in
vhich there is only one body. Second, as a variant of the first
it can be seen as a pyramid sitting on top of a rectangular
brick. Third and quite different from the first two, it could
sinply be two wedges abutting one another. SEE reports only the
first of these alternatives and does not see the others.
Moreover, SEE's interpretation comsists only of "one body
composed of regions A, B, C and D"; it does not provide the
richness of an interpretation that reports the nature of each
edge. These ambiguities and that richness are provided by the
labelling algorithm {(Waltz*' version is needed for Fig. 9(a)) as
we shall see. The labelling algorithm also detects situations
illustrated by the picture in Fig. 9(b) where SEE happily
partitions into bodies pictures that are syntactically correct
(that is, every line bounds two different regions and so on) but

meaningless as pictures of polyhedra.

An interesting comparison camn be made between SEE and
Roberts' program. Roberts initially hopes to find a picture
fragaent that corresponds to a part of one of his three
prototypes so that the regions offered up should at least belong
to the same body. Recalling that an acceptable polygon must be

a convex region, if the first stage of the topology matching



20

Figure 9.

(a)

o~

(b)

Illustrating a) ambiguity and b) anomaly for SEE
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succeeds (3 acceptable polygons around a vertex) them it will
return a FORK vertex with all three regions hopefully depicting
surfaces of one body. This corresponds directly to the nmost
poverful Guzman heuristic - the PORK that plants three links.
If the first stage of Roberts' topology matching fails and the
second stage (2 acceptable polygons flanking a line) succeeds
then that line is almost certainly the shaft of at least one
ARROW, so the second stage of Roberts' topology matching
corresponds to the second most powerful Guzman heuristic linking
the two regions flanking the shaft of an ARROW. Furthermore, in
both the above cases, Guzman's inhibition of a link across a
line at a junction if the other end of that line is a barb of an
ARROW or a leg of an L corresponds directly to the convex region

requirement of Roberts.

This comparison could easily be continued (consider the
corresponding uses of T-junctions) but it has gone far enough to
make three points beyond observing the intriguing parallels. 1In
the first place it is now obvious that Guzman's work is not as
radically new as it appeared to Dbe. In the light of the
analysis, Waltz' (1972) clainm that "indeed his approach was a
dramatic departure from what had been done before him" appears
to be over enthusiastic. Second, we notice that Guzman did not
even use such simple properties of regions as 'convex' but
instead tried to express such a slightly less locally confined
picture property in teramas of his complicated inhibition rule

based entirely on junction geometry. Third and far more



22

important, Roberts used knowledge of prototypes explicitly in
the body segmentation problem. He did this in three ways, first
by using a general property (acceptable polygon) of all the
prototypes, and prototype-specific topology tests to identify a
picture fragment as part of a prototype and then, having made an
identification, projecting the rest of the prototype onto the
picture to account for many more lines. Guzman on the other
band claims to use no knowledge of prototypes in the
segmentation. This claim may indeed be doubted on the grounds
of the Roberts-Guzman parallel presented here. SEE seems to
prefer convex regions as body faces. This is confirmed in the
analysis of SEE's underpinmnings in section 6. This claim to
virtue (as it was seen by Guzman) in fact turned out to be an
objection to SEE as it led to a vision system that was
pass—-structured with successive passes mapping into

progressively more abstract domains (Minsky amd Papert,1972).

4. PFalk's scene_analysis system: IRTERPRET

Falk®s (1972) collection of scene analysis Programs
operating as a system called INTERPRET represents a gathering
together of the state of the art in scene analysis c¢irca 1970.
Given a range of nine fixed size prototypes that appear in the
world (Fig. 10) and the position and orientation of the ground
plane relative to the picture plane, the system is required to

interpret line drawings (with, possibly, a small number of limes
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missing) to produce an exact 3D representation of the scene.

The system consists of the five stages of Fig. 11. SEGMENT
partitions the set of picture lines into bodies. Por each body,
SUPPORT determines the set of bodies that could conceivably
support 1it. COHNPLETE tries to add lines to the picture of each
object so that RECOGNIZE will find it easier to identify it as
one of the prototypes. RECOGNIZE also determines the position
of the prototypes so that PREDICT can say what the pictuare
should look 1like. Pinally VERIPY determines if the predicted
and given picture match. The system is strictly pass structured
with the five stages called in sequence with the exception that
a failure in VERIFY requires RECOGNIZE to produce another

suggestioan.

SEGHENT used Guzman-type vertex classifications to assign
edges to Dbodies. It assigns edges rather than regioms as SEE
did because the possibility of edges not being depicted means
that a single region could correspond to two surfaces of
separate bodies. Each Guzman vertex category is split into two:
GOOD<category name> and BAD<category name> on the basis of local
context that can include adjacent junctions. The hope is that,
for the most part, GOOD junctions show edges of only one body
while BAD junctions show edges of more than one body. As an
example of the GOOD/BAD distinction, an ARROW is a BADARROW if
one of the regions flanking the shaft is background or if the

shaft is the top of a K junction, otherwise it is a GOODARROW.
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The next step determines sets of 1lines such that each set
connects a group of GOOD vertices. Each set then represents
edges of a single body. The total set of lines thereby assigned
does not necessarily exhaust the set of lines in the picture.
SEGMENT then assigns regions to bodies based on the line
segmentation and a few extra heuristics for splitting regioans

that correspond to more than one body.

RECOGNIZE needs to know which bodies in the scene could
support other bodies because it infers the position of each body
from the position of the body supporting it, that is, working up
from the known position of the table. SUPPORT creates the set
of potential supporters for each body. It starts by
establishing which are the base edges of each body by applying
six elimipation filters to the set of exterior lines for each
object. For example, eliminate both lines at downward open L
vertices. These filters all depend on the local picture
geometry of each line. SUPPORT then defines the potential
supporters for the body as those bodies that have a face
appearing adjacent to one of the base edges. If a body has only
one potential supporter then that mast be the actual supporter.
In particular for objects supported by the background surface,
BECOGNIZE will be able to establish the 3D position of the

endpoints of all the base edges.

The picture of each object may be incomplete for three

possible reasons: (a) the original picture had some lines
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missing or (b) the object is partially occluded or (c) SEGMENT
failed to assign some lines to the body. COMPLETE bhas three
routines that attempt to patch up each object before
recognition. Fig. 12 shows dotted lines where ADDLINE, JOIN and
ADDCORNER fill in lines. ADDLINE seems intended for case (a),
JOIN and ADDCORNER for case (b). ADDLINE puts a line between

two L vertices that open upwards and have parallel arms.

INTERPRET does not recognize am object auntil all its
potential supporters have been recognized. Then the potential
supporter with the highest horizontal surface is identified as
the actual supporter for that object. The end points of all the

base edges of the object can then be located in 3-space.

RECOGNIZE attempts to name an object by matching features
of its line drawing against the stored properties of the
prototypes. A succession of tests is applied to the prototypes
until, hopefully, only one remains. If the 1line drawing is
conplete (which is determined by a simple heuristic picture
topology test) then the first test 1looks at the number of
visible faces and vertices, otherwise the topology of the
complete visible faces 1is  used. The second test compares
lengths of base edges while the third test compares angles
between the base edges. The fourth test assumes that lines
vertical in the picture correspond to vertical edges if they are
not labelled as base edges. The length of such an edge can be

calculated and compared with the prototypes.
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(a)
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(c)

Figure 12. The contexts for COMPLETE
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When the object is named and three corners of the base
edges of it are located im space then the object is positioned

by identifying three corresponding points on the prototype.

VERIFY predicts the picture appearance when every object
has been recognized and located. If a body has more than 3
lines in the prediction that do not appear in the input or if
there are any 1lines in the input that have not been predicted
then VERIFY reports back to RECOGNIZE and asks for a nev

suggestion.

Falk's program is a good attempt at overcoming imperfect
line data but, as he has taken from Guzman an almost total
reliance on local picture-based heuristics, INTERPRET is open to
the objections raised against SEE above. 1In fact, Palk extends
their usage beyond body segmentation to include support and
completion heuristics of the same general nature. To
demonstrate the problems involved, we will present for each of
those stages of INTERPRBET a specific example of a picture where
the program (at least, that version of it described in (Falk,
1972)) appears to go astray. These simple examples using only
Falk's prototypes are not malevolently constructed using
degenerate views or unlikely alignments, nor can the problems be
attributed to insufficient data as the pictures are perfect line
diagrams (except for the one missing line that COMPLETE should

insert).
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SEGMENT finds only 2 bodies in Fig. 13. It matches the
back-to-back T's of the partially occluded wedge to get one
body, (that is, it matches junctiom 1 with junction 2, 3 with 4,
and 5 with 6) but the two stacked wedges in front are seen as
one body because the 2 circled junctions are both classified as

GOOD T.

SOPPORT eliminates line 1 of Pig. 14 as a base edge of that

wedge because it is a line at a downward open 1 vertex.

Finally in Fig. 15 there is a line missing from the picture
of an L-beam. COMPLETE has a routine ADDLINE to deal with this.
ADDLINE is activated by a context of a pair of 1L vertices with
parallel sides. 1In Fig. 15 there are two such contexts: AB and
BC. The first context to be picked up is not defined but if it
is AB and ADDLINE puts a line between A and B it destroys the
second context, BC. Regardless of which context is found first,
ADDLINE certainly has no way of knowing that line BC makes more
sense than AB because in the picture domain there are no grounds

for preferring one over the other; both are correct as pictures.

“"makes more sense"™ 1is a remark that applies not to the
picture itself but to what is depicted, the scene. Similar
comments apply to the failures of SEGMENT and SUPPORT and so it
becomes clear that the program pust have sonme kind of
3-dimensional interpretation before evaluating predicates such
as 'same body', "supports' and 'missing edge®. But the only way

Falk has of getting a 3D interpretation is by recognizing the
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Figure 14, Illustrating SUPPORT
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Figure 15. TIllustrating COMPLETE
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objects. This 1is a chicken and egg problem: the progranm needs
to recognize the objects to get a 3D grip on the scene in order

to recognize the objects.

The way to break this circularity is to realize that
recognition, that is, the identification of an object as a
particular member of a set of prototypes, is not the only way of
getting a grip on the scene. There are general principles about
the pictuare-taking process and the nature of opaque polyhedra
that one can incorporate in a procedure to interpret line
diagrams that does not use any specific prototypes. Huffman
(1971) and Clowes (1971) working at the same time as Palk
independently proposed such a procedure which can now be seen as
a step towards the solution of the chickem and agg probleam of

scene analysis.

5. The linquistic_approach

Before we examine that procedure, another approach to
picture processing must be mentioned. In the nineteen-sixties a
scattered group of people were trying to find suitable
representations for picture descriptions as suggested by Minsky
(1961). Struck by the persuasive analogy between pictures and
natural language and influenced by Chosmsky's (1957, 1965)
account of syntactic structures, some, such as Kirsch (1964),

Ledley (1964), Narasimhan (1966) and Anderson (1968) vwrote



35

grammars for restricted classes of pictures while others such as
Clowes (1969), Evams (1969), Shaw (1969) and Stamton (1970)
attempted more gemeral picture description languages. Like all
analogies the linguistic approach eventually collapsed and died
(for the obituary notice and postmortem see Stanton (1972) and
Clowes (1972a)) but it left a legacy of insights. For example,
following Chomsky's emphasis on the uses of anomaly, a coaron
technigue in the linguistic approach exploited pictures of
impossible objects in order to tease out the rules whereby we
assign structure and meaning to pictures. Both Huffman (1971)
and Clowes (1971) used this technique to examine the

interpretation of line diagrams as polyhedra.

6. The Huffman-Clowes labelling algoritha

As we remarked earlier Guzman's SEE somewhat surprisingly
deduces body membership of two surfaces from the appearance of
the <corners that they share. The most obvious question to ask
is: why does it work? Another question might be: what else can
we infer from the junction geometry? The answer to the latter
question will indeed help us answer the former. To start with
ve note that it makes more sense to infer local (rather than
global) scene properties from 1local picture evidence. In
particular if we rely on the shape of junctions as evidence we
should be making inferences about the corners they depict.

Restricting theaselves to 2-line and 3-line Jjunctions and
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3-surface corners, Huffman and Clowes observed that each Guzman
junction category must have one of a small number of corner
interpretations which are described by the predicates convex,
concave and occluding which apply to the edges meeting at the
corner. In Huffman®s notation, + labels a convex edge with both
surfaces visible; - labels a concave edge and én arrovhead
labels anm occluding edge that belongs to the surface omn the
right (as you move in the direction of the arrow). The surface
on the 1left is behind the edge and partially occluded by the

surface on the right.

Fig. 16 shows the interpretations for each 1legal Jjunction
type (L, FORK, ARROW, and 7T). For all but the T these
interpretations are actually corners. Considering all four
possible 1labellings for each line gives 42 = 16 for the L, 43 =
64 for the others as against the reality of 6 for the L, 5 for
the FORK and so on; hence, it is apparent how useful these legal
corner interpretations could be. In order to use this table of
interpretations the only further scene coherence rule is that an
edge must have the same interpretation at both of its viéible
endpoints. The 1labelling algorithm described by Clowes starts
vith the background region amd constructs all interpretations in
paralliel whereas Huffman suggested a depth-first search,
backtracking when coming upon a Jjunction that has no
interpretation consistent with the labels that have already been
placed on some of its lines. Both procedures not only label the

edges of the scene but also recover some of the hidden structure
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in that occluding edges have attached to them surfaces that are

turned awvay from the viewing direction.

There are several reasons to judge this algorithm to be an
important step forward in scene analysis. Let us start with
impossible objects. There is theoretical satisfaction in having
a procedure that returns no interpretations of a picture such as
the one reminiscent of the devil's pitchfork, Fig. 17 (taken
from Clowes, 1971), if we ourselves cannot assign a plausible
three-dimensional interpretation. But this ability would also
be of practical use in a scene apnalysis program. Pig. 9(b),
which SEE happily accepted and parsed, can be rejected as a
candidate for object status because it cannot be labelled. This
is a sufficient but unfortunately not necessary condition that
the object be impossible as Huffman showed. But to be able to
make this discrimination suggests that the method has greater
descriptive power than the only other prototype-free program,
SEE. A comparison of the scene description generated by this
algorithm with that given by SEE shows how true that is. Here
we have edges known to be convex, concave or occluding, the
visible part of a surface defined by edges belonging to that
surface or to another known surface and some conclusions about

hidden surfaces that share an edge with a visible surface.

The question ®Why does SEE work?" can now be answered in
detail. Suppose that we were only concerned with convex

objects, then from the set of corner interpretations used by the
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labelling algorithm (Fig. 16) eliminate all corners with concave
edges, including those for the L that imply a hidden concave
edge, leaving the set of Fig. 18. Notice that the L, FORK and
ABRO® junctions now have unique corner interpretations. The
concave edges that appear when one body abuts or rests upon
another are here taken to be occluding edges as they would be if
the bodies verer slightly separated. In this world of convex
polyhedra, convex edges (+) join surfaces of the same body while
surfaces of different bodies appear at occluding edges
( > and < ) so using this corner set a body partitionimng is easy
to achieve. That's what Guzman did! The links were planted at
unambiguously convex edges. The link-planting rules of Fig. 8
are derived from the corner interpretations of PFig. 18 by
replacing +# by a link and occluding by no link. The 1link
suppression rules, "no 1link is placed across a line at a
junction if its other end is a barb of an ARBO¥, a leq of anm L
or the crossbar of a T*, can be seen from Fig. 18 to suppress a
link across an edge if its other end shows it to be
unambiguously occluding. The accunmulation of 1link evidence
relies on 2 links between surfaces which means in effect that
both ends of an edge must agree that it is convex for it to be
so taken as in the Huffman-Clowes algorithm. If only one end
says so there 1is a <conflict which must be heuristically
resolved. This provides a scene-coherent account of why
Guzman's picture-based heuristics worked and incidentally

explains why SEE doesn't work om concave objects (Winston,
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Figure 18,

¥y

The junction interpretations for convex polyhedra
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1968) .

The next step 1is to use the scene as labelled by the
Huf fman-Clowes algorithm as a more reliable basis for body
segmentation. A first guess might say: the visible aspect of a
body is a maximal set of surfaces joined by convex or concave
edges. This 1isn't quite right because by that criterion the
labelled cube in Fig. 19 1is part of the same body as the
background, by virtue of the two concave edges. Such concave
edges define body boundaries. Waltz (1972) as we shall see
called them "separable® and used a further subcategorization of

concave edges to solve this segmentation problen.

Returning to Falk's INTERPRET, the labelling algorithm is
considerable potential bhelp 1in solving the chicken and egg
problem. Consider the three stages where INTERPRET was seen (in
section 4) to get into trouble: SEGMENT, SUPPORT and COMPLETE.
The above discussion of a scene-based approach to body
segmentation applies to the problem with SEGMENT. The specific
problem illustrated in Fig. 13 requires more interpretations for
the T djunction than shown in Pig. 16 but the extension is
straightforward as will be shown in tﬁe discussion of Waltz®

program.

SUPPORT rejected edge 1 of Fig. 14 as a potential base
edge. A labelling of that picture gives edges 1, 2, 3, % and 5
as occluding edges and 6, 7 and 8 convex. Purthermore edges 1,

5 and 4 are attached to a single hidden surface while edges 2
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Figure 19.

An interpretation of a picture
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and 3 are attached to a different hidden surface of the same
body. A support algorithe given that information only has to

decide that the former surface is the support surface.

The first thing COMPLETE should do is decide if an edge is
in fact missing. If the object cannot be 1labelled then that
must be the case. PFor Pig. 15 no labelling is possible as shown
by the «conflict at the circled junction of Pig. 20(a). That
labelling for that junction is not a legal interpretation of an
L (see Pig. 16). Since lines can only be added to the picture
and junctions in a picture of a single body are not allowed more
than three lines, a line must be added to the circled junction
of Pig. 20(a) Joined to either of the facing L junctionms.
Either of the lines AB or BC can be inserted and the picture
labelled as Pig. 20(b) and Fig. 20 (c) show but clearly omly (c)
makes sense in terms of the prototypes. This 1leads us to
consider the nmatching procedures in INTERPRET. They should
operate in a domain of surfaces (visible and hidden), corners
and edges (convex, concave and occluding) rather tham directly
in the picture, as do the picture topology matching routines of
RECOGNIZE and VERIFY. Besides being more sensible, matching in
the scene domain is also clearly nmore efficient because the
program has richer structures to compare. For example, a match
could be quickly aborted in the scene domain if an edge were of

the wrong type.

The 1labelling algorithm does not sweep away all the
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difficulties in Falk's program but it points in the right
direction; however, there are some problems with the labelling
algorithma as described here. It can make nmistakes. In
Pig. 21(a) it incorrectly labels a legitimate view of a cube (it
will of course produce all the correct labellings as well) and
in Pig. 21(b) (adapted from Huffman,1971) it labels an object
that cannot be a polyhedron with planar surfaces. Both sorts of
mistakes can be avoided by an extension of the labelling
algorithm: if two lines (a and b) shared by a pair of regions (A
and B) are not collinear then the 1lines cannot both depict
convex or concave edges. But that ad hoc extension evades the
key issue which is that the algorithm has no requirement that
surfaces be planar nor 1is there any way that it can by
systematically introduced without radical changes in the
algorithm. Beyond saying that a surface cannot change fronm
visible to hidden (unless, of course, it is partially occluded)
there 1is no coherence required of a surface. This can be
further illustrated by noting, as Huffman did, that the
algorithm finds a 1labelling for the impossible triangle of
Penrose and Penrose (1958). That object can only be realized if

some of the surfaces are highly skewed.

In order to handle some other problems which arise such as
many-surface corners, alignments of bodies in the scene,
coincidence of viewing direction and object surfaces, shadow
edges and so on, does one simply add ad semi-infinitum to the

lists of corner interpretations? Waltz has shown that that is
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Figure 21. Labelling problems:
a) An anomalous interpretation of an object
b) An interpretation of an anomalous object
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in fact a partial answer to those probleas.

7. WHaltz' extension of the labelling algorithms

Waltz made two important contributions to the labelling
algorithm. He expanded the set of line labels from the four
used by Huffman-Clowes and he improved the mechanism of search

for coherent imterpretations.

His first addition to the set of possible edges was the
crack - a flat edge. Next, he noticed that the visible
boundaries of objects usually appear at occluding or concave
edges or at cracks. To account for this he subdivided the
concave and crack edge categories into separable and
non-separable. An edge is separable if two or three bodies meet
there. All «cracks are separable but some concave edges are
internal edges of a body. A separable edge has, in addition to
its concave/crack label, 1labels that show the status of the

edges of the separate bodies.

The other expansion of edge possibilities derives from a
crude account of lighting. Asuming a single concentrated light
source then surfaces are either illuminated, turned away from
the 1light (self-shaded) or shaded by a shadow cast by ancther
surface. Waltz expanded the line labels to give the
illumination status of the two surfaces appearing at the edge

and allowed lines to depict shadow boundaries as well as real
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edges. The number of possible line labels has increased from

the original 4 to 53.

Following a graphical representaton used by Winograd (1972)
to depict the networks of features associated with grammatical
units by his systeaic grammar, we can more easily see the
structure of the set of possible interpretations of a 1line in
the netvwork of PFig. 22. In that network the choice of
illumination status for each surface has not been shown so there

are only 11 distinct line interpretations.

Turning to the possible corners and their picture
appearance, Waltz used the Huffman-Clowes junction categories
and also all 4-line and some 5-line Juactions. Following a
straightforward procedure, Waltz considered all possible object
configurations viewed and 1lit froa all possible octants to
generate the possible corners list for each junction category.
The length of the cormer list for each category varies from 10
to 826 with a grand total of 3256. The actual corners are all
either trihedral or formed by more tham one convex trihedral
object but he also includes some interpretations of junctioas

formed by accidental alignments in the scene.

With so many possible corners for each junction, Waltz
realized that time and space limitations rule out a simple depth
or breadth-first search, so he devised a more efficient two pass
procedure. The first pass through the juanctions, the filtering

procedure, is a modified breadth-first search that weeds out the
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possible corner list for each junction by checking in the 1lists
of every adjacent junction that has previously beem processed
for at least one corner with the same label for the connecting
line. If that check is not successful then that possible corner
is veeded out of the list for that junction. This discarding
causes the prograam to reconsider junctions it has already looked
at so the discarding action may have an effect that propagates
through many junctions. Since this procedure does not actually
construct complete interpretations as it goes, it need not find
all pairs of corners with the same label for the conanecting line
as Clowes' procedure does; hence, it avoids 'the intermediate
expression bulge' of the earlier procedure. This weeding
process drastically reduces the possible corner lists so that
the second pass can easily backtrack to find complete
interpretations without requiring exponential time as Huffman's
procedure does. For a detailed treatment and extensions of this

and related algorithms see Mackworth ({1975).

Fig. 23 shows a typical scene labelled by W#altz' program.
The convex and occluding edges are shown as they wvere for the
Huffman-Clowes labelling. The concave edges here are separable
so they are additionally labelled with an occluding arrowhead
indicating the sense of occlusion the edge would have if the
object were picked up. Cracks are labelled with a C and a
similar occlusion arrowhead. Shadovw boundaries are shown with

arrows pointing across the line into the shadowed region.
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Figure 23.

A scene 1abelled by Wa

1tz" program
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Waltz' achievement was to show that the labelling technique
can be extended to handle more realistic scenes then previously
although it has yet to be incorporated in a scene analysis
program using grey scale picture data. Most of the remarks made
above about the Huffman~-Clowes procedure apply egqually to Haltz!?
extension of it. In particular, the twin problems of anomalous
interpretations of legitimate scenes and acceptance of
impossible objects demonstrated im Fig. 21 for the earlier
procedure still remain. In fact, there is a further scene
(Pig. 24) to which Waltz' program assigns the anomalous
interpretation shown. But this anomaly cannot be avoided by the
simple stratagem suggested to cope with the problems of Pig.
2.21 hecause the requirement that the common edges of
intersecting surfaces appear collinear is satisfied here. What
is required to reject this anomaly is a chain of reasoning
involving hypotheses and deductions about surface and edge
orientations. It is left to the reader to construct the

argument.

The form of Waltz® input assumes the ability to see every
edge perfectly including all those inside the shadow regions
even though there is only a single light source (Fig. 2.23)a
Is this having your shadow cake and eating it too? W#altz does
consider simple cases of missing edges but as he emphasized the
labelling technique uses only the topology of the line drawing
and local junction shape iaformation. He gives many good

exarples of pictures egquivalenat on that basis that seem to



Figure 24.

An anomalous interpretation of a scene
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require very different interpretations or missing edge

completions.

As we pointed out in the criticism of the Huffman-Clowes
algorithm an interpretation procedure for line drawings must use
more than the picture topology and agreement between adjacent
corners if it is to be satisfactory in its treatment of all the

various aspects of scemne analysis discussed above.

8. POLY: exploiting surface coherence and the edge hierarchy

One approach that can only be briefly mentioned here is the
author®s program POLY (Mackworth, 1973, 1974a). Using a
representation for surface orientations suggested by Huffman
(1971), the gradient space, POLY hypothesizes and makes
inferences about surface and edge orientations and positions
exploiting heavily the hierarchical stucture of the network of
interpretations of a 1line (see Fig. 22; the version of POLY
implemented did not make the shadow or separable edge
distinctions) thereby dispensing with the 1lists of possible
corners. The only backtracking search in POLY is at the
connect/occlude level of distinction in the edge hierarchy; the
other features of the edges are then inferred directly from the
surface, edge and corner representations used. While the size
of the underlying search space has been drastically reduced, the

resulting interpretation is richer in descriptive power
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including as it does relative information on surface and edge
orientation and position. This descriptive adegquacy or higher
level of scene coherence not only makes the interpretation more
useful but also ensures that the anomalies of Fig. 21(a), Fig.

21(b) and Fig. 24 do not arise.

In a paper on descriptive langquages and problem solving
Hinsky (1968) sees artificial intelligence as an attempt to
achieve adequate descriptions and procedures for mamipulating
them for specific task domains. This view provides the best
framework for understanding the first decade of scene analysis.
Starting with Roberts, there has been a comtinual struggle to
achieve adequate picture and scene descriptions and procedures
for relating the two with considerable progress being made.
But, pace Chonmsky, descriptive adegquacy is not enough. The
representation issue may be in a reasonably satisfactory state
but the control issue is not. Of the work described here, only
Roberts and Waltz have paid it sufficient attention; 0f work
not described here for space reasons, MIT's COPY DEMO
(¥inston, 1973) and, more recently, Shirai's context-sensitive
linefinder (Shirai,1973) are the wmost adequate from that
viewpoint. Shirai's program, for example, uses a procedural
model of the picture that is essentially a very 1loose

characterization of all 1line drawings of scenes of convex
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polyhedra to direct the image analysis which consists ?f line
and junction detection in grey-scale pictures. If we dare risk
a linguistic amalogy, that appears to be a syntactic model while
ve have an entire spectrum of semantic models ranging from
Falk's size-specific polyhedral prototypes through Robert's
transformable prototypes, the architectural models of Winstoa's
thesis (Winston,1970), the Guazman-Huffman-Clowes-Waltz corner
models, the hierarchy of 1line interpretations, to size or

shape-specific surface models (Mackworth,1974b).

If we choose the active model of perception suggested to us
by Roberts' program, how are we to cope with this abundance of
models? How do they sensibly interrelate? How should they be
invoked? #®Hhen should they be invoked? And yet cope we nust,
for surely the availability of a wide variety of effective
schemata conjoined with the ability to invoke the relevant
subset of them at the appropriate time 1is the hallmark of

intelligence.
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