
MMM
MMMM

M £1
M M

t1 M
MM MM

MMM MM
MMM MMM
MMMMMMMMMM

MMM
M MM

MMMMMl.'1.MMM
MMMM MMM

MM MMM
MM MM1'l

MMl1MMMM
MMNMMMM MMM.M MMM MM

MMM MM MNM
M Ml1M

M MM MMM
MMMl1 MMMMMM
MMM

M
M

MM
MMM
i'IMM
MMM

MM
MMMMM

MM
M

MMM M
MMMMM

**
* *
* CONSISTENCY IN NET~ORKS OY RELATIONS *
* *
**

by

Alan K. Mackworth

Technical Report 75-3

July 1975

Department of Computer Science
University of British Columbia

Vancouver, B. c.

Abstract

Artificial intelligence tasks which can be formulated as constraint

satisfaction problems, with which this paper is for the most part concerned,

are usually solved by backtracking. By examining the thrashing behaviour

that nearly always accompanies backtracking, identifying three of its

causes and proposing remedies for them we are led to a class of algorithms

which can profitably be used to eliminate local (node, arc and path)

inconsistencies before any attempt is made to construct a complete solution.

A more general paradigm for attacking these tasks is the alternation of

constraint manipulation and case analysis producing an OR problem graph

which may be searched in any of the usual ways.

Many authors, particularly Montanari and Waltz, have contributed to the

development of these ideas; a secondary aim of this paper is to trace that

history. The primary aim is to provide an accessible, unified framework,

within which to present the algorithms including a new path consistency

algorithm, to discuss their relationships and the many applications, both

realised and potential, of network consistency algorithms.

\

1

1. Introduction

A concern for the efficiency of our programs is not a major component of

the current artificial intelligence zeitgeist, and yet, as the focus shifts

from small, toy problems to large ones, that concern should become more central.

Even if, as some claim by way of excuse, the technology is advancing at an

exponential rate, if our programs consume a quantity of resources that is

n exponential in the size of the task, O(k), then each doubling of available

resources only means an additional (ln2/lnk) words, regions or clauses can be

handled. This paper is concerned with the effectiveness of algorithms designed

to solve a certain class of problems.

2. The task

Many tasks can be seen as constraint satisfaction problems, In such a

case the task specification can be formulated to consist of a set of variables,

each of which must be instantiated in a particular domain and a set of predicates

that the values of the variables must simultaneously satisfy. Restricting the

discussion for the moment to unary and binary predicates the task consists, then,

of providing a constructive proof for the wff:

where P .. is only included in the wff if i<j for we require
. lJ

P .. (v., v.)=P .. (v., v.). Imposing a further restriction that the variable domains
J l J l lJ l J

each consist of a finite number of discrete values then there are several

candidate solution schemes. Among these are generate-and-test, formal theorem

proving methods and backtracking.

2

3. Backtracking and three of its maladies

Backtracking consists, in general, of the sequential instantiation of the

variables from ordered representations of their domains. As soon as all of the

variables of any predicate are instantiated its truth value is tested. If it is

true the process of instantiation and testing continues but if it is false the

process fails back to the last variable instantiated that has untried values in

its domain and reinstantiates it to its next value. The intrinsic merit of

backtracking is that substantial subspaces of the generate-and-test search

space, the Cartesian product of all the variable domains, are eliminated from

further consideration by a single failure.

On the other hand, backtracking can still be grotesquely inefficient.

See Sussman and McDermott [1] and Gaschnig [2] for particular samples of patha

logical behaviour. Bobrow and Raphael [3] have labelled this class of behaviour

"thrashing". In particular, the time taken to find a solution tends to be

exponential in the number of variables both in the worst-case and on the

average. It is important to identify the causes of this poor behaviour and to

suggest remedies.

A) The most obvious source of inefficiency and the easiest to prevent

concerns the unary predicates. If the domain for variable v., D., includes
l l

a value that does not satisfy P. (x) then it will be the cause of repeated
l

instantiation and failure which could be eliminated by simply discarding once

and for all those domain elements that do not satisfy the corresponding unary

predicate.

B) A second source of inefficiency occurs in the following situation.

Suppose the variables are instantiated in the order v1, v2 ... , vn and for

3

v.=a, P .. (a,v.) (where j>i) does not hold for any value of v .. Backtracking
1 1J J J

will try all values of v., fail and try all values of v. 1 (and for each of
J J -

these try all values of v.) and so on until it tries all combinations of values
J

for v. 1 , v.
2

, ••• , v. before finally discovering that a is not a possible
1+ 1+ J

value for v .. What's worse this identical failure process may be repeated for
1

all other sets of values for v1 , v2 , ... vi-l with vi=a.

C) A third phenomenon that causes gross inefficiency and replication of

effort occurs when v.=a, v.=b, and P. (a), P.(b)
1 J 1 J

is no value x for a third variable vk such that

and P .. (a,b) do hold but there
1J

Pik(a,x), Pk(x) and Pkj (x,b)

are simultaneously satisfied as they must be in any solution. As in the

previous case, this is not only expensive to discover but may also be redis

covered many times by a backtracking solution process.

It is the purpose of this paper to provide a unified treatment of these

phenomena and algorithms designed to prevent their occurrence thereby leading

to solution strategies that do not require exponential time for particular task

domains.

4. Consistency: A state of affairs that forstalls thrashing

It is convenient to view the task specification as a network which con

sists of a labelled, directed graph in which the variables are represented by

the nodes each with an associated set representing the variable's domain, the

unary predicates are represented by loops on the nodes, and the binary predic

ates by labelled, directed arcs. For each arc from node i to node j correspon

ding to P .. (i<j) there is an arc from node j to node i corresponding to
1J

P .. (v.,v.)=P .. (v.,v.). Suitable terms to name each of the state of affairs
J l J 1 lJ 1 J

that lead to the three phenomena described above are, respectively, node incon-

sistency, arc inconsistency and path inconsistency. Conversely, the state of

4

affairs that ensure that those phenomena do not occur can be defined as follows.

5.

A) Node consistency

Node i is node consistent iff

B) Arc consistency

(xeDi) ➔ P. (x)
1

Arc (i,j) is arc consistent iff

(xED.)J\P.(x) ➔ (3y) ((yeD.)J\P.(y)J\P .. (x,y))
1 1 J J lJ

C) Path consistency

A path of length m through the nodes (i0,i 1, ... ,im) is path

consistent iff

(3z
1

) S z2) ... (3z)(z1ED.)J\(z2ED.)J\ ... A(z 1ED.)
m-, 11 12 m- 1m- l

AP. (z 1)AP. (z2)A ... AP. (z 1)
11 12 lm-1 m-

(The example of path inconsistency given in section 3 was only for

path length m=2,)

A network is said to be node, arc or path consistent iff every node,

arc or path of its graph is consistent.

How to achieve node consistency

Since node consistency is concerned only with the unary predicates, in

achieving it there is no interaction between the nodes; thus, it is achieved by

a simple one-pass algorithm NC-1 that applies the node consistency procedure

NC to each node i.

,,
,·
I.

5

procedure NC(i):

D. + D.n{x jP. (x)}
1 1 1

begin

for i +1until n do NC(i)

end

NC-1. the node consistency algorithm

6. How to achieve arc consistency

The algorithms in this section are all based on the following observation

(first made by Fikes [4]): Given discrete domains, D. and D., for two variables
1 J

v. and v. which are node consistent, if XED. and there is no yED. such that
1 J 1 J

P . . (x,y) then x can be deleted from D .. When that has been done for each
lJ . 1

XED. then arc (i,j) (but not necessarily arc (j,i)) is consistent. As this is
1

the basic action of the arc consistency algorithms we embody it in a Boolean

procedure:

6

procedure REVISE((i,j)):

begin

DELETE+ false;

for each xe:D. do
1

if there is no ye:D. such that P .. (x,y) then
J 1J

begin

delete x from D.;
1

DELETE+ true

return DELETE

end

Note that immediately after applying REVISE to arc (i,j) it must be

consistent; however, it may not remain consistent because values in D. may
J

subsequently be removed by applications of REVISE to some arc (j,k). A single

pass through all the arcs applying REVISE to each is not sufficient. The

simplest algorithm to achieve arc consistency, AC-1, iterates such a pass until

there is no change on an entire pass at which point the network must be arc

consistent.

begin

for i + 1 until n do NC(i);

Q + {(i,j)l(i,j)e:arcs(G),i#j}

repeat

begin

CHANGE+ false

for each (i,j)e:Q do CHANGE+(REVISE((i,j)) or CHANGE)

end

until -,CHANGE

end

AC-1: the first arc consistency algorithm

7

The obvious inefficiency in AC-1 is that a single, successful revision of

an arc on a particular iteration causes all the arcs to be revised on the next

iteration whereas in fact only a small fraction of them could possibly be

affected.

In noting this fact Waltz [5] implemented an elegant algorithm that he

described as fol lows: (to convert to our framework, for "junction" read "node",

for "label" read "value" and for "branch" read "arc")

"[The result] is obtained by going through the junctions in numerical

order and:

(1) Attaching to a junction all labels which do not conflict with

junctions previously assigned i.e. if it is known that a branch must be labeled

from the set S, do not attach any junction labels which would require that the

branch be labeled with an element not in S.

(2) Looking at the neighbors of this junction which have already been

8

labeled; if any label does not have a corresponding assignment for the same

branch, then eliminate it.

(3) Whenever any label is deleted from a junction, look at all its

neighbors in turn, and see if any of their labels can be eliminated. If they

can, continue this process iteratively until no more changes can be made. Then

go on to the next junction (numerically) . "

The idea behind this algorithm is that arc consistency can be achieved in

one pass through the nodes by ensuring that following the introduction of node i

all arcs (k,m) where k,m<i and krm are made consistent. When node i+l is

introduced all arcs leading from it and all arcs leading to it (to and from

nodes introduced earlier) may be inconsistent and so must be revised. If any

REVISE((k,m)) is successful (i.e. modifies Dk) then the only additional arcs

that need to be reconsidered are all those that lead to k, {(p,k)}, with the

important exception of (m,k). (m,k) is excepted because it cannot have become

inconsistent as a direct result of the deletions made in Dk by REVISE((k,m)):

any deletions were made precisely because there was no corresponding value in D .
rn

These notions are captured in AC-2 which follows that Waltz' filtering

algorithm in spirit.

9

1 begin

2 for i + -1 until n do

3 begin

4 NC(i);

5 Q + {(i,j) I (i,j)e:arcs(G),j<i}

6 Q' + { (j ,i) I (j ,i) e:arcs (G) ,j <i}

7 while Q not empty d~

8 begin

9 while Q not empty do

10 begin

11 pop (k,m) from Q

12 if REVISE((k,m)) then

13 Q' + Q'U{(p,k) I (p,k)e:arcs(G),p.2,i,pfm}

14 end

15 0 + Q'

16 O' + empty

17 end

18 end

19 end

AC-2: the second arc consistency al gorithm

When node i is introduced on the ith iteration of lines 3-18, Q and Q'

are initialised on lines 5 and 6 to contain all arcs directed away from and to

wards node i respectively. When Q is exhausted by the iteration of lines 10-14,

Q is set to Q' and Q' emptied ready to hold all arcs directed at nodes one arc

removed from node i that need to be revised. At the start of the sth (s~2) iter

ation of lines 8-17, Q consists of all arcs directed at nodes (s-2) arcs remo

ved from i that are to be revised while Q' is ready to hold all the arcs

10

directed at nodes (s-1) arcs removed from i that need to be revised as a

result of the revising of the arcs on Q. ·This process initially spreads out

from node i but may return to it if there are any cycles in the graph of arc

length greater than 2. The particular form of AC-2 derives, in part, from

considering just such a situation in which the spreading wave of arc revision

will cross itself.

Another approach to the arc consistency problem abandons the idea of

making the network arc consistent on a single pass through the nodes. Instead

simply make a queue of all the arcs in the network and apply REVISE to them

sequentially. If REVISE is successful on any arc (reduces a node domain) then

one need only (re)apply REVISE to those arcs that could poss~bly have the result

of applying REVISE changed from false to true. (Contrast this with AC-1 which

would subsequently reapply REVISE to all the arcs.) Some of these arcs may

already be waiting on the queue. If so, they should not be reentered on it.

AC-3 embodies this approach.

begin

for i + l until n do NC(i);

Q + {(i,j) I (i,j)£arcs(G),i#j}

while Q not empty do

begin

select and delete any arc (k,m) from Q;

if REVISE((k,m)) then Q + QU{(i,k)i (i,k)£arcs(G),ifk,i#m}

end

AC-3: the third arc consistency algorithm

11

Although AC-2 appears more complex than AC-3 it is just a special case of

the latter algorithm corresponding to the choice of a particular ordering of

AC-3's priority queue, with the exception of one minor discrepancy. The

discrepancy is that in AC-2 it is possible if the graph has cycles of arc

length greater than 2 for an arc to be waiting on both Q and Q' simultaneously.

7. How to achieve path consistency

Montanari [6] has provided an elegant, formal treatment of the concept of

path consistency. The purpose of this section is to introduce some of

Montanari's notation and theorems and his algorithm for achieving path consis

tency and, furthermore, to show how the same result can be achieved by doing

considerably less computation by refining the algorithm in a manner somewhat

analogous to the progression from AC-1 to AC-3.

7.1 Representing relations

The arc consistency algorithms operate on an explicit data structure

representation of the unary predicates, (i.e. the sets of all values that

satisfy them, D.) deleting values that cannot be part of a complete solution
1

because of the restrictions imposed on adjacent nodes by the binary predicates.

However, it is a matter of indifference to those algorithms whether the binary

predicates are represented by a data structure or a procedure. The path

consistency algorithms can be seen as generalizations in that although the

predicate P13 (x,y) may allow a pair of values, say, P13 (a,b) that pair may in

fact be forbidden because the indirect constraint on v1 and v3 imposed by the

fact that there must be a value, c, for v2 that satisfies P12 (a,c), P2 (c) and

P23 (c,b). If there is no such value then that fact may be recorded by deleting

12

the pair (a,b) from the set of value pairs allowed initially by P13 , in a

fashion directly analogous to the deletion of individual values from the

variable domains in the arc consistency algorithms. In order to perform that

deletion it is necessary to have a data representation for the set of pairs

allowed by a binary predicate. If the variable domains are finite and discrete

then a relation matrix with binary entries is such a representation. Predicate

P .. is represented by a relation matrix R .. whose m. rows correspond to them.
lJ lJ l l

values of v. and whose m. columns correspond to them. values of v ..
l J J J

A useful example of the concepts involved is the set of n-queens problems.

Used by Floyd [7], Fikes [4] and Djikstra [8] to illustrate backtrack program

ming, REF-ARF and structured programming respectively, this example is also of

historical and comparative interest. The task is to place n queens on an nxn

chessboard so that no queen is on the same row, column or diagonal as any other.

Since each queen must be in a different column the task can be put in the

constraint satisfaction paradigm by creating n variables (v1,v2 , ... vn)' one for

each column. The value of each variable is the row number of the queen in that

column. Consider the 5-queens problem of Figure l(a). The queen shown in

column 2,(v2=3), forbids the values v1=2, v
1
=3 and v

1
=4 hence column 3 of the

initial value of R12 is as shown in Figure l(b). For uniformity the currently

permitted values for each variable are not given by a set D. as for the arc
l

consistency algorithms but by a matrix R .. whose off-diagonal entries are
'.Ll

required to be zero.

7.2 Operations on relations

Two operations on relations are needed: intersection and composition.

Colau,ns

2 J 4

r-----T ~- ---T---1

I I I I I
1 I I I x I I

I I I I I I
t----+-----T------•1----+---~
l I I J I I

2 I x I I x I I I
I I I I I I
~-----t----T-----t-----f-----i
I I I I I I

Hows 3 Y. I <.l I x I x l x I
I I I I I I
~-----+----+-----+-----+----~
I I I i I I

4 I X I I X I I I
I I I I I I
~-----t------ t---+---+----f
I I l I I I

5 l J I I x I I
l I I I I I L----~-----~---~----~----~

0

0

1

1

1

(a)

0

0

0

1

1

(b)

1

0

0

0

1

1

1

0

0

0

1

1

1

0

0

Figure 1. Illustrating the 5-gueens problem

13

14

7.2.1 Intersection of relations

If two separate relations are both required to hold between v. and v. ,
1 J

R' .. and R" .. , then their intersection is written R .. =R' .. +R" .. where the entry
1J 1J 1J 1J 1J

in the rth row and sth column of R . . : R. . =R' AR " 1J 1J,rs ij,rs ij,rs

7.2.2 Composition of Relations

Suppose relati_on R12 holds between v1 and v2 and R23 between v2 and v3

then the induced relation transmitted by v2 is the composite relation

R13=R12 •R23 . A pair (a,c) is allowed by R13 only if there is a pair (a,b)

allowed by
m2

R -\ ~1
13,rs-t"l

R12 and a pair (b,c) allowed by R23 . That is, R13=R12 -R23 iff

(R12 ,rtAR23 ,ts) In the matrix representation, composition is simply

binary matrix multiplication.

7.3 Direct and induced relations

0 If, in the example above, R13 was the original direct relation between

v1 and v3 then it can be intersected with the induced relation R12 -R23 to give

I 0
a new and possibly more restrictive constraint R13=R13+R12 •R23

7.3.1 Two examples of induced relations

7.3.1.1 5-queens

0 In Figure 2, R25 permits the pair of queens shown but there is no value

of v1 that satisfies both R21 and R15

queens shown. In the matrix notation

R'2s,31=0.

Columns

2 3 4 5

r-----T----T----,-----T----1
I I I I I I

1 J x I x I x I x I Q I
I I l I I I
t----- f---- t----+---+----1
I I I I I I

2 I x I I x I .x I I
I I 1 I 1 l
t-----t----i----,......---+---~
I 1 I I l l

Rows 3 I x I Q I x I x I x I
I I I I I I
t----- -t ----+--+----+----~
I I I I I I

4 I x I x I x I I I
I I I I I I
t----+----+-----t-----~--,
l I I I I I

5 I x I I I x I I
I I I I I I
L-----~------L----~----~----~

Figure 2. Induced relations in the 5-gueens problem

15

16

7.3.1.2 Arc consistency

The basic arc consistency procedure of section 6, REVISE((i,j)), can be

written in the current notation as:

0 R' .. =R .. +R .. •R .. •R ..
11 11 1J JJ J1

(7.1)

T To see that this is so, note that R .. =R .. and R .. =R .. ·R .. so (7.1) can be
J1 1J JJ JJ JJ

written as

· 0 T R' .. =R .. +R .. •R .. •R .. •R ..
11 11 lJ JJ JJ 1J

0 T R' .. =R .. +(R .. •R ..)•(R .. •R ..)
11 11 1J JJ 1] JJ

Each row of R . . , corresponding to each value of v., has a 1 for each value of
1] 1

v. allowed. R .. •R .. is the same except that all columns corresponding to non-
] 1]]]

permitted values of v. will be zeroed. (R .. • R ..) • (R .. • R ..) T will have a 1 at
J 1J J J 1J J J

position rr on the main diagonal iff R .. •R .. has at least one 1 in row r (that
lJ JJ

0 is, there is at least one value for v. for the rth value of v.). R .. is zero
J 1 11

off the diagonal and 1 at position rr if the rth value of v. was previously
1

allowed; this position is zero in R' .. iff there is no corresponding value of 11

v ..
J

Thus the effect of (7.1) parallels exactly the side effect of

REVISE((i,j)).

7.4 The minimal network

Having introduced the notion of induced relations it is natural to enquire

if there is an algorithm that makes explicit all the induced relations implicit

in a network. To specify the task properly we need two definitions:

(a) Two networks N1 and N2 each with n nodes are equivalent iff the set of

n-tuples satisfying N1 is identical to the set of n-tuples satisfying N2

(b) A network Mis minimal iff

R. . -+ (3x1)(3x2) ... (3x)(\Jk)(~p) Rk 1J,x.,x. n p,xkx
1 J p

In English, in a minimal network the remainder of the network does not

17

add any further constraint to the direct constraint R .. between v. and v .. If
1J 1 J

any pair of values is permitted by its direct constraint then it is part of at

least one solution. The task that Montanari calls the central problem is to

compute for a given network N, a network M that is minimal and equivalent to N.

The central problem is clearly solvable: generate the set of all solutions by

backtracking and then for all i and j set R .. b=l iff there is a solution
1J ,a

(x1,x2, ... ,xn) where xi=a and xj=b. However, that is expensive.

In fact, the central problem is NP-complete. (Montanari [9] credits

this observation to a private communication from R.M.Burstall.) It is easy to

see that this must be so. If it is solvable in polynomial time then so is the

problem of deciding if a planar, undirected graph with at most four edges

incident at a node has a chromatic number of at most 3 which in turn is known

to imply that P=NP (which conjecture is thought unlikely to be true)[lO].

The chromatic number of a graph is the minimum number of different colours

needed to paint the nodes so that each node is a different colour from every

adjacent node. The relations R in this case can all be 3x3 Boolean matrices.

R .. is the 3x3 identity matrix while R .. (i~j) is O on the main diagonal and 1
11 1)

off it if there is an arc (i,j) otherwise the entries of R .. (i~j) are all 1.
1J

If the central problem for this network can be solved in polynomial time then

one can simply inspect any R .. :if there is a non-zero entry then the
11

3-colourability decision problem is answered affirmatively otherwise nagatively.

7.5 Path consistency

Given that the central problem is not likely to admit of an efficient

(polynomial time) solution, it seems judicious to attack an easier problem:

the task of computing a path consistent network equivalent to a given network.

To recall, a network is path consistent iff any pair allowed by any direct

18

relation R .. is. also allowed by all paths from v. to v.. A pair is allowed by
lJ 1 J

a path from v. to v. if at every intermediate vertex values can be found that
1 J

satisfy the unary and binary predicates along the path. The following theorem

due to Montanari [6] can be used to justify the first path consistency algorithm.

Theorem: If every path of length 2 of a network with a complete graph is path

consistent the network is path consistent.

Proof: By straightforward induction on the length of the path.

Observe that in our notation a path of length 2 from node i through node

k to node j is consistent iff R .. =R .. +R.k•Rkk.Rk .. The algorithm given by
lJ lJ 1 J

Montanari to compute a path consistent network equivalent to R is then as

follows.

1 begin

2

3

4

5

6

7

8

9

repeat

10 end

fork+ 1 until n do

for i + 1 until n do

for j + 1 until n do

k k-1 Y .. + Y ..
1] 1]

11 until Yn

12 Y + Yn

13 end

PC-1: the first path consistency algorithm

k-1 y
kj

\:
I

19

Montanari [6] gives an inductive proof for the correctness of PC-1.

Another justification derives directly from the theorem above. On the iteration

of lines 4-10 that the algorithm halts on Y=Yn=YO=Yk (l~k$11) and so line 9 has

had no effect at all:

for all i,j,k Y .. =Y .. +Y.k.ykk.Yk .•
lJ lJ 1 J

All paths of length 2 (v.,v.,vk) are consistent so Y is path consistent.
1 J

Parenthetically, Algorithm PC-1 should be compared to Algorithm 5.5 of

Aho, Hopcroft and Ullman [10] which is a generalization of Warshall's [11]

transitive closure algorithm and Floyd's [12] shortest path algorithm.

Algorithm 5.5 needs only one iteration of the equivalent of lines 4-10 because

they require that • be distributive over+ whereas here there is no guarantee

that composition is distributive over intersection of binary matrices.

PC-1 is correct but it consumes more time and space than it need. In

pursuing this thought it is profitable to see that PC-1 is a generalization of

AC-1. PC-1 essentially becomes AC-1 if we substitute

k k-1 k-1 k-1 k-1 8 yii ~ yii + yik • ykk • yki

for lines 8-9 of PC-1. (See section 7.3.1.2 if this is not clear.)

Pursuing the comparison with AC-1, we ask if it is necessary to keep

n+2 copies of the network of relations: R, YO and Yk(l~k~n), each of which will

be very large even for moderate n. R is clearly unnecessary. To avoid keeping

YO use a flag which is set to true when any Yij is changed. Line 9 requires

that one k-1 k-1 , Ykk and Ykj even though one or more of the updated

versions k and Ykj may already have been computed. Analysis reveals that

it makes no difference at all to Y~. if any of the updated versions of those
lJ

relations are used. The outcome is then that only a single copy of Y which is

continually updated need be used.

20

d . d" b h f k k-1 Secon ly, some computations pre 1cta ly ave a null e feet (e.g. Ykk=Ykk)

so need not be done. Third, since Y .. =Y:. almost half the computation can be Jl lJ ·

avoided.

But these improvements are matters of detail not substance. A substantial

improvement can however be effected by pursuing further the analogy with AC-1.

There we noted that whenever an arc was made consistent by deleting values from

the node at its tail rather than require another complete iteration through the

entire set of arcs one could specify just which arcs might be affected and put

them on a queue either to be dealt with when the current set of arcs was

exhausted (AC-2) or whenever was convenient (AC-3). Here we can see that we

are considering the entire set of paths of arc length 2. If a path is not

consistent we make it so by changing the necessary l's to O's in the binary

matrix relating the two terminal nodes of the path. When we do so every path

of length 2 that has as one of its component arcs the arc between the terminal

nodes of the path just made consistent must be (re)checked for consistency.

However, some of these paths may already be waiting in the queue to be

considered. As in the case of arc consistency we define a procedure REVISE

which checks a path of length 2 from node i through node k to node j for

consistency. If it must be made consistent by modifying Y .. REVISE returns . lJ

true otherwise false.

procedure REVISE((i,k,j))

begin

z + yij+Yik.ykk.ykj

if Z=Y .. then return false
lJ --

end

else Y .. +Z; return true
lJ

We also need a procedure RELATED PATHS((i,k,j)) that returns a set of

length 2 paths that need to be REVISEd if REVISE((i,k,j)) returns true. Since

T Y .. =Y .. we need only compute Y .. if i~j so RELATED PATHS has two cases to
1J J 1 1J

consider: a) i<j and b) i=j.

a) i<j. i and j are distinct nodes so we want the set of all paths of

length 2 that have arc (i,j) or arc (j,i) as one of their arcs. Also, we want

to exclude paths (i,j,j) and (i,i,j) because on both REVISE will predictably

return false.

In this case, the set of paths to be returned is

S ={(i,m,j)l(i~msn),(m,j)}
a

U { (m,j ,i) I (l~m$j), (m#j)}

U { (j , m, i) I j <msn}

U{(m,i,j) I l:a;m<i}

S has 2n members.
a

b) i=j. In this case Y .. has changed so every path of length 2 that
11

uses i as its intermediate node must be checked with the exception of paths

(i,i,i) and (k,i,k). The set of paths to be returned is

Sb = { (p, i, m) I (l:.p$m), (l$m:.n) ,-,(p=i=m), ,(p=m=k)}

Sb has n(n+l)/2-2 members. The paths (i,i,i) and (k,i,k) are excluded because

they would result in REVISE returning false.

Note that the exclusion of (k,i,k) from the set of paths related to (i,k,i)

corresponds exactly to the exclusion of arc (m,k) when REVISE((k,m)) was

predictably false there as REVISE((k,i,k)) is predictably false here.

Finally,

21

22

procedure RELATED PATHS((i,k,j)):

if i<j then return S else return Sb a-----

Now we have the components for a more efficient path consistency

algorithm, PC-2.

1 begin

3 while Q is not empty do

4 begin

S select and delete a path (i,k,j) from Q;

6 if REVISE((i,k,j)) then Q + QURELATED PATHS((i,k,j))

7 end

8 end

PC-2: the second path consistency algorithm

The order of path selection from Q does not affect the outcome of the ..•.

algorithm but it may affect its efficiency. In particular if it.is ordered on

the value of k then the initial set of paths is processed in essentially the

same order as in PC-1. If the relations are such that composition does

distribute over intersection then we are guaranteed that the value of Yn a£ter

the first iteration of PC-1 lines 4-10 will be its final value, Y: on the

second iteration there will be no further change. (This is so because in that

case the task is that of Aho, Hopcroft and Ullman's [10] Algorithm S.S. See

that reference for a precise specification of a set of conditions sufficient

to ensure that only one iteration of PC-1 is necessary.) Thus, if Q is so

23

ordered in PC-2 then only on the original set of paths in Q (of which there

are (n3+n2-n)/2) will REVISE return true and hence possibly increase the length

of Q. Any other ordering may not have that effect.

8. The use of consistency methods in problem solving

The consistency methods discussed were initially motivated here by

reference to three situations that caused pathological thrashing behaviour in

a backtracking problem solver. How then are these consistency algorithms to be

used? Clearly, applying PC-2 before backtracking will ensure that none of the

thrashing behaviours discussed in section 3 will occur; however, it is possible

to do better. As Fikes showed in REF-ARF alternating constraint manipulation

and instantiation of a variable is a good strategy for Boolean constraint

problems. Burstall [i3] in a program for solving cryptarithmetic puzzles

alternated constraint manipulation and the bisection of variable domains. A

formulation that includes these two approaches as special cases is the alter

nation of constraint manipulation and case analysis. By case analysis is meant

the creation of p subproblems by adding to each of p copies of the network an

additional case constraint where the p case constraints OR'ed together consti

tute a tautology. (The additional tautological constraint may involve more than

one variable.) The resultant OR graph may be searched in any of the usual ways

[14]; a solved subproblem has a unique instantiation of the variables after

PC-2 has been applied (i.e. each Y .. has exactly one 1 on the diagonal) where-
11

as an unsolvable subproblem h.as some Y .. with all entries O (in fact in that
1J

case all Y .. will have all entries zero after PC-2 has been applied.)
1J

9. Applications

24

9.1 Finite, discrete state space problems

9.1.1 Puzzles

The most obvious applications of these techniques are to the traditional

puzzle-solving problems. Gaschnig [2], for example, has used an iteration of a

modification of AC-3 and instantiation to solve Instant Insanity and cryptar

ithmetic puzzles and has shown how the search space is drastically reduced.

That version of AC-3 does not, however, distinguish between the arc (i,j) and

the arc (j,i) so that the equivalent of REVISE((i,j)) must check every value of

D. and find a corresponding value in D. and also must similarly check every
1 J

value of D. for the existence of a compatible value in D., although as shown in
J 1

section 6 when REVISE is called on a pair of adjacent nodes it is known which

of the two arcs is possibly inconsistent.

Other puzzles to which these methods apply are magic square problems

and then-queens problem. The list could be longer.

9.1.2 Other Combinatorial problems

It remains to be seen whether the approach suggested will lead to more

effective algorithms for algorithms for such traditional combinatorial tasks

as computing the chromatic number of a graph and the graph isomorphism problem

although it is clear that Unger's [15] approach to graph isomorphism contains

some of the seeds of this approach. In a similar vein Suzman and Barrow [16]

have been applying an arc consistency algorithm to clique detection.

9.2 Continuous variable domains

The requirement that the relations between variables be explicitly

represented does not lead of necessity to the Boolean matrix representation.

As Montanari points out, any representation of the relations that allow

composition and intersection is sufficient. For example, using as the domains

n subsets of R allows one to treat space planning [17] and n-dirnensional space

packing problems such as cloth cutting [18] and the FINDSPACE problem [19].

9.3 Vision

25

In the Waltz filtering algorithm the variables are picture junctions

whose values are their possible interpretations as corners. The initial variable

domains arise from the shape of the junctions; the unary predicates arise from

lighting inferences while the binary predicates simply require each edge to

have the same interpretation at both of its ends. An interesting question to

pursue is to ask how the processing time depends on the complexity of the pic

ture. From the available results [SJ, the dependence could well be linear.

Waltz suggests that this is so because when each new junction is introduced

the propagation of arc revision is restricted for the most part to that set of

lines forming the image of a single body of which that junction is a part. The

effect is so restricted because T junctions do not transmit constraining action

from the stern to the crossbar or vice versa. Unless this decoupling effect

obtains in other domains there is no reason to expect linear behaviour from

AC-2 or AC-3. Moreover, in this domain, the interpretation of pictures of more

and more complex individual polyhedra rather than of more and more polyhedra of

fixed complexity would not presumably display linear behaviour. Worst case

analysis of AC-1 suggests that the processing time is O(a2) where a is the

number of arcs in the graph.

26

The author has previously proposed (20] the use of arc consistency

algorithms in the task of interpreting pictures of polyhedral scenes. In that

application, the variables are the regions whose values are the positions and

orientations of their possible interpretations as surfaces. The unary and

binary predicates arise both from

a) Constraints on the surface positions and orientations taken

individually and pair-wise together, if they intersect in an edge, imposed by

the geometry of the picture formation process. (These are the constraints

exploited by the author's earlier program, POLY (21])

b) Constraints on surface size, shape and pairwise connectivity im

posed by~ priori knowledge of the objects that can appear in the world.

Barrow and Tenenbaum (22] have an application of arc consistency in

which the variables are picture regions and the values are the names of their

interpretations as surfaces (such as, 'door', 'wall' and 'picture'). Rather

than just satisfy the constraints they seek an assignment of values to variab

les that will maximize the likelihood of the region interpretations being

correct. In a related study, Rosenfeld, Hummel and Zucker (23] investigate

various probabilistic models using AC-1.

Finally, Montanari (6] suggested that the variables be distinctive,

recognizable subpictures of the picture one is interpreting. If the values

are the pictorial location of these subpictures then one could use the

consistency algorithms and subpictures already located to constrain the search

area for an as yet tmlocated subpicture.

27

9.4 AI programming languages

Consistency methods could well solve some of the problems of retrieval

from a data base that essentially takes the form of a semantic network. The

criticisms that Sussman and McDermott [l] levelled at the crucial position

occupied by automatic backtrack control in PLANNER were well founded and yet it

is also clear that, unless we are to abandon completely the goal of a high

level p~ogramming language for AI, default search and data base retrieval

mechanisms should be available to the user. (And yet again, these 'should not be

forced upon the user. If he wants to program his own, the primitives should be

available as they are in Conniver.)

The consistency methods advocated here are clearly more effective than

automatic backtracking and so deserve to be considered as a default database

retrieval mechanism.

As an example, "Find a large rectangle which is touching a triangle

and inside a circle" could appear in MICRO-PLANNER as

(THPROG (X Y Z)

(THGOAL (OBJ $?X RECTANGLE))

(THGOAL (SIZE $?X BIG))

(THGOAL (TOUCHING $?Y $?X))

(THGOAL (OBJ $?Y TRIANGLE))

(THGOAL (OBJ $?Z CIRCLE))

(THGOAL (INSIDE $?X $?Z))

(THRETURN $?X))

or in network form as in figure 3. One need not enumerate again all the

28

RECTANGLE

TRIANGLE

Figure 3. A network representation of a retrieval task

29

thrashing problems that the execution of that MICRO-PLANNER code would

encounter in various configuration of the world. As a simple example, just

consider a situation in which there is a large number of rectangles only one of

which is inside the only circle. Backtracking could thrash for a very long

time before discovering the right rectangle whereas a 'truly smart' procedure

would take the circle, find out what is inside it, The effect of that

smart procedure would be achieved by the consistency algorithms described here.

10. Conclusion

In this paper, we have been concerned with a class of algorithm, which

could be named network consistency algorithms, designed to aid in the discovery

of a situation that satisfies a set of simultaneous constraints that has been

imposed on any candidate solution.

By being presented and extended in a uniform framework these algorithms

will perhaps become more accessible to others as will the pursuit of their

development in the context of a variety of applications many of which have

been discussed here.

Acknowledgements

I am indebted to F. O'Gorman for some initial conversations on this

topic. The support of the National Research Council of Canada, under Grant A9281,

is gratefully acknowledged.

30

References

1. Sussman, G.J. and McDermott, D.V. Why Conniving is better than Planning.

Artificial Intelligence Memo. No. 255A, MIT, 1972.

2. Gaschnig, J. A constraint satisfaction method for inference making.

Proc. 12th Annual Allerton Cortf. on Circuit and System Theory,

U. Ill, Urbana-Champaign, 1974

3. Bobrow, D.G. and Raphael, B. New programming languages for AI research.

Computing Surveys _§_: 3 (1974), 153-174.

4. Fikes, R.E. REF-ARF: A system for solving problems stated as procedures.

Artificial Intelligence.!_: 1 (1970), 27-120.

5. Waltz, D.L. Generating semantic descriptiens from-drawings of scenes

with shadows. MAC AI-TR-271, MIT, 1972.

6. Montanari, U. Networks of constraints: fundamental properties and

applications to picture processing. Information Sciences 7 (1974),

95-132 .

7. Floyd, R.W. Nondeterministic algorithms J.ACM _!±:4 (1967), 636-644 .

8. Dahl, O.J., Djikstra, E.W. and Hoare, C.A.R. Structured Programming

Academic Press, 1972.

9. Montanari, U. Optimization methods in image processing. Proc. IFIP

Congress 1974, North-Holland, 727-732.

10. Aho, A.V., Hopcroft, J.E. and Ullman, J.D. The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.

11. Warshall, S. A theorem on Boolean matrices. J.ACM 9:1 (1962), 11-12.

12. Floyd, R.W. Algorithm 97: shortest path. Comm. ACM ~6 (1962), 345.

13. Burstall, R.M. A tree searching method for solving integer linear

inequalities. Experimental Programming Report No. 10, University

of Edinburgh, 1965.

31

14. Nilsson, N.J. Problem-solvirtg 'Methods in Artificial Intelligence. McGraw

Hill, 1971.

15. Unger, S.H. GIT - a heuristic program for testing pairs of directed line

graphs for isomorphism. Comm. ACM 2_:l (1964), 26-34.

16. Suzman, P. and Barrow, H.G. Private communication. 1975.

17. Eastman, C.M. Automated space planning. Ar tifici a l Intelligence A:1

(1973). 41-64.

18. Haims, M. On the optimum two-dimensional allocation problem. Ph.D. Thesis,

Dept. of Electrical Engineering, New York University, New York, 1966.

19. Sussman, G.J. The FINDSPACE problem. Artificial Intelligence Memo. No.

286, MIT, 1973.

20. Mackworth, A.K. Using models to see. Proc. Artificial Intelligence and the

Simulation of Behaviour Summer Conf. (1974), University of Sussex,

pp. 127-137.

21. Mackworth, A.K. Interpreting pictures of polyhedral scenes. Artificial

Intelligence _i:2, 121-137

22. Nilsson, N. (ed.) Artificial intelligence - research and applications.

Progress report, Stanford Research Institute, 1975.

23. Ro~enfeld, A., Hummel, A. and Zucker, S.W. scene labelling by relaxation

operations. Computer Science TR-379, Univ. of Maryland, 1975.

