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Abstract 

Artificial intelligence tasks which can be formulated as constraint 

satisfaction problems, with which this paper is for the most part concerned, 

are usually solved by backtracking. By examining the thrashing behaviour 

that nearly always accompanies backtracking, identifying three of its 

causes and proposing remedies for them we are led to a class of algorithms 

which can profitably be used to eliminate local (node, arc and path) 

inconsistencies before any attempt is made to construct a complete solution. 

A more general paradigm for attacking these tasks is the alternation of 

constraint manipulation and case analysis producing an OR problem graph 

which may be searched in any of the usual ways. 

Many authors, particularly Montanari and Waltz, have contributed to the 

development of these ideas; a secondary aim of this paper is to trace that 

history. The primary aim is to provide an accessible, unified framework, 

within which to present the algorithms including a new path consistency 

algorithm, to discuss their relationships and the many applications, both 

realised and potential, of network consistency algorithms. 
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1. Introduction 

A concern for the efficiency of our programs is not a major component of 

the current artificial intelligence zeitgeist, and yet, as the focus shifts 

from small, toy problems to large ones, that concern should become more central. 

Even if, as some claim by way of excuse, the technology is advancing at an 

exponential rate, if our programs consume a quantity of resources that is 

n exponential in the size of the task, O(k ), then each doubling of available 

resources only means an additional (ln2/lnk) words, regions or clauses can be 

handled. This paper is concerned with the effectiveness of algorithms designed 

to solve a certain class of problems. 

2. The task 

Many tasks can be seen as constraint satisfaction problems, In such a 

case the task specification can be formulated to consist of a set of variables, 

each of which must be instantiated in a particular domain and a set of predicates 

that the values of the variables must simultaneously satisfy. Restricting the 

discussion for the moment to unary and binary predicates the task consists, then, 

of providing a constructive proof for the wff: 

where P .. is only included in the wff if i<j for we require 
. lJ 

P .. (v., v. )=P .. (v., v.). Imposing a further restriction that the variable domains 
J l J l lJ l J 

each consist of a finite number of discrete values then there are several 

candidate solution schemes. Among these are generate-and-test, formal theorem

proving methods and backtracking. 
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3. Backtracking and three of its maladies 

Backtracking consists, in general, of the sequential instantiation of the 

variables from ordered representations of their domains. As soon as all of the 

variables of any predicate are instantiated its truth value is tested. If it is 

true the process of instantiation and testing continues but if it is false the 

process fails back to the last variable instantiated that has untried values in 

its domain and reinstantiates it to its next value. The intrinsic merit of 

backtracking is that substantial subspaces of the generate-and-test search 

space, the Cartesian product of all the variable domains, are eliminated from 

further consideration by a single failure. 

On the other hand, backtracking can still be grotesquely inefficient. 

See Sussman and McDermott [1] and Gaschnig [2] for particular samples of patha

logical behaviour. Bobrow and Raphael [3] have labelled this class of behaviour 

"thrashing". In particular, the time taken to find a solution tends to be 

exponential in the number of variables both in the worst-case and on the 

average. It is important to identify the causes of this poor behaviour and to 

suggest remedies. 

A) The most obvious source of inefficiency and the easiest to prevent 

concerns the unary predicates. If the domain for variable v., D., includes 
l l 

a value that does not satisfy P. (x) then it will be the cause of repeated 
l 

instantiation and failure which could be eliminated by simply discarding once 

and for all those domain elements that do not satisfy the corresponding unary 

predicate. 

B) A second source of inefficiency occurs in the following situation. 

Suppose the variables are instantiated in the order v1, v2 ... , vn and for 
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v.=a, P .. (a,v.) (where j>i) does not hold for any value of v .. Backtracking 
1 1J J J 

will try all values of v., fail and try all values of v. 1 (and for each of 
J J -

these try all values of v.) and so on until it tries all combinations of values 
J 

for v. 1 , v. 
2

, ••• , v. before finally discovering that a is not a possible 
1+ 1+ J 

value for v .. What's worse this identical failure process may be repeated for 
1 

all other sets of values for v1 , v2 , ... vi-l with vi=a. 

C) A third phenomenon that causes gross inefficiency and replication of 

effort occurs when v.=a, v.=b, and P. (a), P.(b) 
1 J 1 J 

is no value x for a third variable vk such that 

and P .. (a,b) do hold but there 
1J 

Pik(a,x), Pk(x) and Pkj (x,b) 

are simultaneously satisfied as they must be in any solution. As in the 

previous case, this is not only expensive to discover but may also be redis

covered many times by a backtracking solution process. 

It is the purpose of this paper to provide a unified treatment of these 

phenomena and algorithms designed to prevent their occurrence thereby leading 

to solution strategies that do not require exponential time for particular task 

domains. 

4. Consistency: A state of affairs that forstalls thrashing 

It is convenient to view the task specification as a network which con

sists of a labelled, directed graph in which the variables are represented by 

the nodes each with an associated set representing the variable's domain, the 

unary predicates are represented by loops on the nodes, and the binary predic

ates by labelled, directed arcs. For each arc from node i to node j correspon

ding to P .. (i<j) there is an arc from node j to node i corresponding to 
1J 

P .. (v.,v.)=P .. (v.,v.). Suitable terms to name each of the state of affairs 
J l J 1 lJ 1 J 

that lead to the three phenomena described above are, respectively, node incon-

sistency, arc inconsistency and path inconsistency. Conversely, the state of 
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affairs that ensure that those phenomena do not occur can be defined as follows. 

5. 

A) Node consistency 

Node i is node consistent iff 

B) Arc consistency 

(xeDi) ➔ P. (x) 
1 

Arc (i,j) is arc consistent iff 

(xED.)J\P.(x) ➔ (3y) ((yeD.)J\P.(y)J\P .. (x,y)) 
1 1 J J lJ 

C) Path consistency 

A path of length m through the nodes (i0,i 1, ... ,im) is path 

consistent iff 

(3z
1

) S z2) ... (3z )(z1ED. )J\(z2ED. )J\ ... A(z 1ED. ) 
m-, 11 12 m- 1m- l 

AP. (z 1)AP. (z2)A ... AP. (z 1) 
11 12 lm-1 m-

(The example of path inconsistency given in section 3 was only for 

path length m=2,) 

A network is said to be node, arc or path consistent iff every node, 

arc or path of its graph is consistent. 

How to achieve node consistency 

Since node consistency is concerned only with the unary predicates, in 

achieving it there is no interaction between the nodes; thus, it is achieved by 

a simple one-pass algorithm NC-1 that applies the node consistency procedure 

NC to each node i. 

,, 
,· 
I. 
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procedure NC(i): 

D. + D.n{x jP. (x)} 
1 1 1 

begin 

for i +1until n do NC(i) 

end 

NC-1. the node consistency algorithm 

6. How to achieve arc consistency 

The algorithms in this section are all based on the following observation 

(first made by Fikes [4]): Given discrete domains, D. and D., for two variables 
1 J 

v. and v. which are node consistent, if XED. and there is no yED. such that 
1 J 1 J 

P . . (x,y) then x can be deleted from D .. When that has been done for each 
lJ . 1 

XED. then arc (i,j) (but not necessarily arc (j,i)) is consistent. As this is 
1 

the basic action of the arc consistency algorithms we embody it in a Boolean 

procedure: 
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procedure REVISE((i,j)): 

begin 

DELETE+ false; 

for each xe:D. do 
1 

if there is no ye:D. such that P .. (x,y) then 
J 1J 

begin 

delete x from D.; 
1 

DELETE+ true 

return DELETE 

end 

Note that immediately after applying REVISE to arc (i,j) it must be 

consistent; however, it may not remain consistent because values in D. may 
J 

subsequently be removed by applications of REVISE to some arc (j,k). A single 

pass through all the arcs applying REVISE to each is not sufficient. The 

simplest algorithm to achieve arc consistency, AC-1, iterates such a pass until 

there is no change on an entire pass at which point the network must be arc 

consistent. 



begin 

for i + 1 until n do NC(i); 

Q + {(i,j)l(i,j)e:arcs(G),i#j} 

repeat 

begin 

CHANGE+ false 

for each (i,j)e:Q do CHANGE+(REVISE((i,j)) or CHANGE) 

end 

until -,CHANGE 

end 

AC-1: the first arc consistency algorithm 

7 

The obvious inefficiency in AC-1 is that a single, successful revision of 

an arc on a particular iteration causes all the arcs to be revised on the next 

iteration whereas in fact only a small fraction of them could possibly be 

affected. 

In noting this fact Waltz [5] implemented an elegant algorithm that he 

described as fol lows: (to convert to our framework, for "junction" read "node", 

for "label" read "value" and for "branch" read "arc") 

"[The result] is obtained by going through the junctions in numerical 

order and: 

(1) Attaching to a junction all labels which do not conflict with 

junctions previously assigned i.e. if it is known that a branch must be labeled 

from the set S, do not attach any junction labels which would require that the 

branch be labeled with an element not in S. 

(2) Looking at the neighbors of this junction which have already been 
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labeled; if any label does not have a corresponding assignment for the same 

branch, then eliminate it. 

(3) Whenever any label is deleted from a junction, look at all its 

neighbors in turn, and see if any of their labels can be eliminated. If they 

can, continue this process iteratively until no more changes can be made. Then 

go on to the next junction (numerically) . " 

The idea behind this algorithm is that arc consistency can be achieved in 

one pass through the nodes by ensuring that following the introduction of node i 

all arcs (k,m) where k,m<i and krm are made consistent. When node i+l is 

introduced all arcs leading from it and all arcs leading to it (to and from 

nodes introduced earlier) may be inconsistent and so must be revised. If any 

REVISE((k,m)) is successful (i.e. modifies Dk) then the only additional arcs 

that need to be reconsidered are all those that lead to k, {(p,k)}, with the 

important exception of (m,k). (m,k) is excepted because it cannot have become 

inconsistent as a direct result of the deletions made in Dk by REVISE((k,m)): 

any deletions were made precisely because there was no corresponding value in D . 
rn 

These notions are captured in AC-2 which follows that Waltz' filtering 

algorithm in spirit. 
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1 begin 

2 for i + -1 until n do 

3 begin 

4 NC(i); 

5 Q + {(i,j) I (i,j)e:arcs(G),j<i} 

6 Q' + { (j ,i) I (j ,i) e:arcs (G) ,j <i} 

7 while Q not empty d~ 

8 begin 

9 while Q not empty do 

10 begin 

11 pop (k,m) from Q 

12 if REVISE((k,m)) then 

13 Q' + Q'U{(p,k) I (p,k)e:arcs(G),p.2,i,pfm} 

14 end 

15 0 + Q' 

16 O' + empty 

17 end 

18 end 

19 end 

AC-2: the second arc consistency al gorithm 

When node i is introduced on the ith iteration of lines 3-18, Q and Q' 

are initialised on lines 5 and 6 to contain all arcs directed away from and to

wards node i respectively. When Q is exhausted by the iteration of lines 10-14, 

Q is set to Q' and Q' emptied ready to hold all arcs directed at nodes one arc 

removed from node i that need to be revised. At the start of the sth (s~2) iter

ation of lines 8-17, Q consists of all arcs directed at nodes (s-2) arcs remo

ved from i that are to be revised while Q' is ready to hold all the arcs 
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directed at nodes (s-1) arcs removed from i that need to be revised as a 

result of the revising of the arcs on Q. ·This process initially spreads out 

from node i but may return to it if there are any cycles in the graph of arc 

length greater than 2. The particular form of AC-2 derives, in part, from 

considering just such a situation in which the spreading wave of arc revision 

will cross itself. 

Another approach to the arc consistency problem abandons the idea of 

making the network arc consistent on a single pass through the nodes. Instead 

simply make a queue of all the arcs in the network and apply REVISE to them 

sequentially. If REVISE is successful on any arc (reduces a node domain) then 

one need only (re)apply REVISE to those arcs that could poss~bly have the result 

of applying REVISE changed from false to true. (Contrast this with AC-1 which 

would subsequently reapply REVISE to all the arcs.) Some of these arcs may 

already be waiting on the queue. If so, they should not be reentered on it. 

AC-3 embodies this approach. 

begin 

for i + l until n do NC(i); 

Q + {(i,j) I (i,j)£arcs(G),i#j} 

while Q not empty do 

begin 

select and delete any arc (k,m) from Q; 

if REVISE((k,m)) then Q + QU{(i,k)i (i,k)£arcs(G),ifk,i#m} 

end 

AC-3: the third arc consistency algorithm 
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Although AC-2 appears more complex than AC-3 it is just a special case of 

the latter algorithm corresponding to the choice of a particular ordering of 

AC-3's priority queue, with the exception of one minor discrepancy. The 

discrepancy is that in AC-2 it is possible if the graph has cycles of arc 

length greater than 2 for an arc to be waiting on both Q and Q' simultaneously. 

7. How to achieve path consistency 

Montanari [6] has provided an elegant, formal treatment of the concept of 

path consistency. The purpose of this section is to introduce some of 

Montanari's notation and theorems and his algorithm for achieving path consis

tency and, furthermore, to show how the same result can be achieved by doing 

considerably less computation by refining the algorithm in a manner somewhat 

analogous to the progression from AC-1 to AC-3. 

7.1 Representing relations 

The arc consistency algorithms operate on an explicit data structure 

representation of the unary predicates, (i.e. the sets of all values that 

satisfy them, D.) deleting values that cannot be part of a complete solution 
1 

because of the restrictions imposed on adjacent nodes by the binary predicates. 

However, it is a matter of indifference to those algorithms whether the binary 

predicates are represented by a data structure or a procedure. The path 

consistency algorithms can be seen as generalizations in that although the 

predicate P13 (x,y) may allow a pair of values, say, P13 (a,b) that pair may in 

fact be forbidden because the indirect constraint on v1 and v3 imposed by the 

fact that there must be a value, c, for v2 that satisfies P12 (a,c), P2 (c) and 

P23 (c,b). If there is no such value then that fact may be recorded by deleting 
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the pair (a,b) from the set of value pairs allowed initially by P13 , in a 

fashion directly analogous to the deletion of individual values from the 

variable domains in the arc consistency algorithms. In order to perform that 

deletion it is necessary to have a data representation for the set of pairs 

allowed by a binary predicate. If the variable domains are finite and discrete 

then a relation matrix with binary entries is such a representation. Predicate 

P .. is represented by a relation matrix R .. whose m. rows correspond to them. 
lJ lJ l l 

values of v. and whose m. columns correspond to them. values of v .. 
l J J J 

A useful example of the concepts involved is the set of n-queens problems. 

Used by Floyd [7], Fikes [4] and Djikstra [8] to illustrate backtrack program

ming, REF-ARF and structured programming respectively, this example is also of 

historical and comparative interest. The task is to place n queens on an nxn 

chessboard so that no queen is on the same row, column or diagonal as any other. 

Since each queen must be in a different column the task can be put in the 

constraint satisfaction paradigm by creating n variables (v1,v2 , ... vn)' one for 

each column. The value of each variable is the row number of the queen in that 

column. Consider the 5-queens problem of Figure l(a). The queen shown in 

column 2,(v2=3), forbids the values v1=2, v
1
=3 and v

1
=4 hence column 3 of the 

initial value of R12 is as shown in Figure l(b). For uniformity the currently 

permitted values for each variable are not given by a set D. as for the arc 
l 

consistency algorithms but by a matrix R .. whose off-diagonal entries are 
'.Ll 

required to be zero. 

7.2 Operations on relations 

Two operations on relations are needed: intersection and composition. 
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r-----T ~- ---T---1 
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0 

0 

0 

1 

1 

1 

0 

0 

Figure 1. Illustrating the 5-gueens problem 

13 
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7.2.1 Intersection of relations 

If two separate relations are both required to hold between v. and v. , 
1 J 

R' .. and R" .. , then their intersection is written R .. =R' .. +R" .. where the entry 
1J 1J 1J 1J 1J 

in the rth row and sth column of R . . : R. . =R' AR " 1J 1J,rs ij,rs ij,rs 

7.2.2 Composition of Relations 

Suppose relati_on R12 holds between v1 and v2 and R23 between v2 and v3 

then the induced relation transmitted by v2 is the composite relation 

R13=R12 •R23 . A pair (a,c) is allowed by R13 only if there is a pair (a,b) 

allowed by 
m2 

R -\ ~1 
13,rs-t"l 

R12 and a pair (b,c) allowed by R23 . That is, R13=R12 -R23 iff 

(R12 ,rtAR23 ,ts) In the matrix representation, composition is simply 

binary matrix multiplication. 

7.3 Direct and induced relations 

0 If, in the example above, R13 was the original direct relation between 

v1 and v3 then it can be intersected with the induced relation R12 -R23 to give 

I 0 
a new and possibly more restrictive constraint R13=R13+R12 •R23 

7.3.1 Two examples of induced relations 

7.3.1.1 5-queens 

0 In Figure 2, R25 permits the pair of queens shown but there is no value 

of v1 that satisfies both R21 and R15 

queens shown. In the matrix notation 

R'2s,31=0. 



Columns 

2 3 4 5 

r-----T----T----,-----T----1 
I I I I I I 

1 J x I x I x I x I Q I 
I I l I I I 
t----- f---- t----+---+----1 
I I I I I I 

2 I x I I x I .x I I 
I I 1 I 1 l 
t-----t----i----,......---+---~ 
I 1 I I l l 

Rows 3 I x I Q I x I x I x I 
I I I I I I 
t----- -t ----+--+----+----~ 
I I I I I I 

4 I x I x I x I I I 
I I I I I I 
t----+----+-----t-----~--, 
l I I I I I 

5 I x I I I x I I 
I I I I I I 
L-----~------L----~----~----~ 

Figure 2. Induced relations in the 5-gueens problem 

15 
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7.3.1.2 Arc consistency 

The basic arc consistency procedure of section 6, REVISE((i,j)), can be 

written in the current notation as: 

0 R' .. =R .. +R .. •R .. •R .. 
11 11 1J JJ J1 

(7.1) 

T To see that this is so, note that R .. =R .. and R .. =R .. ·R .. so (7.1) can be 
J1 1J JJ JJ JJ 

written as 

· 0 T R' .. =R .. +R .. •R .. •R .. •R .. 
11 11 lJ JJ JJ 1J 

0 T R' .. =R .. +(R .. •R .. )•(R .. •R .. ) 
11 11 1J JJ 1] JJ 

Each row of R . . , corresponding to each value of v., has a 1 for each value of 
1] 1 

v. allowed. R .. •R .. is the same except that all columns corresponding to non-
] 1] ]] 

permitted values of v. will be zeroed. (R .. • R .. ) • (R .. • R .. ) T will have a 1 at 
J 1J J J 1J J J 

position rr on the main diagonal iff R .. •R .. has at least one 1 in row r (that 
lJ JJ 

0 is, there is at least one value for v. for the rth value of v.). R .. is zero 
J 1 11 

off the diagonal and 1 at position rr if the rth value of v. was previously 
1 

allowed; this position is zero in R' .. iff there is no corresponding value of 11 

v .. 
J 

Thus the effect of (7.1) parallels exactly the side effect of 

REVISE((i,j)). 

7.4 The minimal network 

Having introduced the notion of induced relations it is natural to enquire 

if there is an algorithm that makes explicit all the induced relations implicit 

in a network. To specify the task properly we need two definitions: 

(a) Two networks N1 and N2 each with n nodes are equivalent iff the set of 

n-tuples satisfying N1 is identical to the set of n-tuples satisfying N2 

(b) A network Mis minimal iff 

R. . -+ (3x1 )(3x2) ... (3x )(\Jk )(~p) Rk 1J,x.,x. n p,xkx 
1 J p 

In English, in a minimal network the remainder of the network does not 
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add any further constraint to the direct constraint R .. between v. and v .. If 
1J 1 J 

any pair of values is permitted by its direct constraint then it is part of at 

least one solution. The task that Montanari calls the central problem is to 

compute for a given network N, a network M that is minimal and equivalent to N. 

The central problem is clearly solvable: generate the set of all solutions by 

backtracking and then for all i and j set R .. b=l iff there is a solution 
1J ,a 

(x1,x2, ... ,xn) where xi=a and xj=b. However, that is expensive. 

In fact, the central problem is NP-complete. (Montanari [9] credits 

this observation to a private communication from R.M.Burstall.) It is easy to 

see that this must be so. If it is solvable in polynomial time then so is the 

problem of deciding if a planar, undirected graph with at most four edges 

incident at a node has a chromatic number of at most 3 which in turn is known 

to imply that P=NP (which conjecture is thought unlikely to be true)[lO]. 

The chromatic number of a graph is the minimum number of different colours 

needed to paint the nodes so that each node is a different colour from every 

adjacent node. The relations R in this case can all be 3x3 Boolean matrices. 

R .. is the 3x3 identity matrix while R .. (i~j) is O on the main diagonal and 1 
11 1) 

off it if there is an arc (i,j) otherwise the entries of R .. (i~j) are all 1. 
1J 

If the central problem for this network can be solved in polynomial time then 

one can simply inspect any R .. :if there is a non-zero entry then the 
11 

3-colourability decision problem is answered affirmatively otherwise nagatively. 

7.5 Path consistency 

Given that the central problem is not likely to admit of an efficient 

(polynomial time) solution, it seems judicious to attack an easier problem: 

the task of computing a path consistent network equivalent to a given network. 

To recall, a network is path consistent iff any pair allowed by any direct 
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relation R .. is. also allowed by all paths from v. to v.. A pair is allowed by 
lJ 1 J 

a path from v. to v. if at every intermediate vertex values can be found that 
1 J 

satisfy the unary and binary predicates along the path. The following theorem 

due to Montanari [6] can be used to justify the first path consistency algorithm. 

Theorem: If every path of length 2 of a network with a complete graph is path 

consistent the network is path consistent. 

Proof: By straightforward induction on the length of the path. 

Observe that in our notation a path of length 2 from node i through node 

k to node j is consistent iff R .. =R .. +R.k•Rkk.Rk .. The algorithm given by 
lJ lJ 1 J 

Montanari to compute a path consistent network equivalent to R is then as 

follows. 

1 begin 

2 

3 

4 

5 

6 

7 

8 

9 

repeat 

10 end 

fork+ 1 until n do 

for i + 1 until n do 

for j + 1 until n do 

k k-1 Y .. + Y .. 
1] 1] 

11 until Yn 

12 Y + Yn 

13 end 

PC-1: the first path consistency algorithm 

k-1 y 
kj 

\: 
I 
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Montanari [6] gives an inductive proof for the correctness of PC-1. 

Another justification derives directly from the theorem above. On the iteration 

of lines 4-10 that the algorithm halts on Y=Yn=YO=Yk (l~k$11) and so line 9 has 

had no effect at all: 

for all i,j,k Y .. =Y .. +Y.k.ykk.Yk .• 
lJ lJ 1 J 

All paths of length 2 (v.,v.,vk) are consistent so Y is path consistent. 
1 J 

Parenthetically, Algorithm PC-1 should be compared to Algorithm 5.5 of 

Aho, Hopcroft and Ullman [10] which is a generalization of Warshall's [11] 

transitive closure algorithm and Floyd's [12] shortest path algorithm. 

Algorithm 5.5 needs only one iteration of the equivalent of lines 4-10 because 

they require that • be distributive over+ whereas here there is no guarantee 

that composition is distributive over intersection of binary matrices. 

PC-1 is correct but it consumes more time and space than it need. In 

pursuing this thought it is profitable to see that PC-1 is a generalization of 

AC-1. PC-1 essentially becomes AC-1 if we substitute 

k k-1 k-1 k-1 k-1 8 yii ~ yii + yik • ykk • yki 

for lines 8-9 of PC-1. (See section 7.3.1.2 if this is not clear.) 

Pursuing the comparison with AC-1, we ask if it is necessary to keep 

n+2 copies of the network of relations: R, YO and Yk(l~k~n), each of which will 

be very large even for moderate n. R is clearly unnecessary. To avoid keeping 

YO use a flag which is set to true when any Yij is changed. Line 9 requires 

that one k-1 k-1 , Ykk and Ykj even though one or more of the updated 

versions k and Ykj may already have been computed. Analysis reveals that 

it makes no difference at all to Y~. if any of the updated versions of those 
lJ 

relations are used. The outcome is then that only a single copy of Y which is 

continually updated need be used. 
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d . d" b h f k k-1 Secon ly, some computations pre 1cta ly ave a null e feet (e.g. Ykk=Ykk) 

so need not be done. Third, since Y .. =Y:. almost half the computation can be Jl lJ · 

avoided. 

But these improvements are matters of detail not substance. A substantial 

improvement can however be effected by pursuing further the analogy with AC-1. 

There we noted that whenever an arc was made consistent by deleting values from 

the node at its tail rather than require another complete iteration through the 

entire set of arcs one could specify just which arcs might be affected and put 

them on a queue either to be dealt with when the current set of arcs was 

exhausted (AC-2) or whenever was convenient (AC-3). Here we can see that we 

are considering the entire set of paths of arc length 2. If a path is not 

consistent we make it so by changing the necessary l's to O's in the binary 

matrix relating the two terminal nodes of the path. When we do so every path 

of length 2 that has as one of its component arcs the arc between the terminal 

nodes of the path just made consistent must be (re)checked for consistency. 

However, some of these paths may already be waiting in the queue to be 

considered. As in the case of arc consistency we define a procedure REVISE 

which checks a path of length 2 from node i through node k to node j for 

consistency. If it must be made consistent by modifying Y .. REVISE returns . lJ 

true otherwise false. 

procedure REVISE((i,k,j)) 

begin 

z + yij+Yik.ykk.ykj 

if Z=Y .. then return false 
lJ --

end 

else Y .. +Z; return true 
lJ 



We also need a procedure RELATED PATHS((i,k,j)) that returns a set of 

length 2 paths that need to be REVISEd if REVISE((i,k,j)) returns true. Since 

T Y .. =Y .. we need only compute Y .. if i~j so RELATED PATHS has two cases to 
1J J 1 1J 

consider: a) i<j and b) i=j. 

a) i<j. i and j are distinct nodes so we want the set of all paths of 

length 2 that have arc (i,j) or arc (j,i) as one of their arcs. Also, we want 

to exclude paths (i,j,j) and (i,i,j) because on both REVISE will predictably 

return false. 

In this case, the set of paths to be returned is 

S ={(i,m,j)l(i~msn),(m,j)} 
a 

U { (m,j ,i) I (l~m$j), (m#j)} 

U { (j , m, i) I j <msn} 

U{(m,i,j) I l:a;m<i} 

S has 2n members. 
a 

b) i=j. In this case Y .. has changed so every path of length 2 that 
11 

uses i as its intermediate node must be checked with the exception of paths 

(i,i,i) and (k,i,k). The set of paths to be returned is 

Sb = { (p, i, m) I (l:.p$m), (l$m:.n) ,-,(p=i=m), ,(p=m=k)} 

Sb has n(n+l)/2-2 members. The paths (i,i,i) and (k,i,k) are excluded because 

they would result in REVISE returning false. 

Note that the exclusion of (k,i,k) from the set of paths related to (i,k,i) 

corresponds exactly to the exclusion of arc (m,k) when REVISE((k,m)) was 

predictably false there as REVISE((k,i,k)) is predictably false here. 

Finally, 
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procedure RELATED PATHS((i,k,j)): 

if i<j then return S else return Sb a-----

Now we have the components for a more efficient path consistency 

algorithm, PC-2. 

1 begin 

3 while Q is not empty do 

4 begin 

S select and delete a path (i,k,j) from Q; 

6 if REVISE((i,k,j)) then Q + QURELATED PATHS((i,k,j)) 

7 end 

8 end 

PC-2: the second path consistency algorithm 

The order of path selection from Q does not affect the outcome of the ..•. 

algorithm but it may affect its efficiency. In particular if it.is ordered on 

the value of k then the initial set of paths is processed in essentially the 

same order as in PC-1. If the relations are such that composition does 

distribute over intersection then we are guaranteed that the value of Yn a£ter 

the first iteration of PC-1 lines 4-10 will be its final value, Y: on the 

second iteration there will be no further change. (This is so because in that 

case the task is that of Aho, Hopcroft and Ullman's [10] Algorithm S.S. See 

that reference for a precise specification of a set of conditions sufficient 

to ensure that only one iteration of PC-1 is necessary.) Thus, if Q is so 
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ordered in PC-2 then only on the original set of paths in Q (of which there 

are (n3+n2-n)/2) will REVISE return true and hence possibly increase the length 

of Q. Any other ordering may not have that effect. 

8. The use of consistency methods in problem solving 

The consistency methods discussed were initially motivated here by 

reference to three situations that caused pathological thrashing behaviour in 

a backtracking problem solver. How then are these consistency algorithms to be 

used? Clearly, applying PC-2 before backtracking will ensure that none of the 

thrashing behaviours discussed in section 3 will occur; however, it is possible 

to do better. As Fikes showed in REF-ARF alternating constraint manipulation 

and instantiation of a variable is a good strategy for Boolean constraint 

problems. Burstall [i3] in a program for solving cryptarithmetic puzzles 

alternated constraint manipulation and the bisection of variable domains. A 

formulation that includes these two approaches as special cases is the alter

nation of constraint manipulation and case analysis. By case analysis is meant 

the creation of p subproblems by adding to each of p copies of the network an 

additional case constraint where the p case constraints OR'ed together consti

tute a tautology. (The additional tautological constraint may involve more than 

one variable.) The resultant OR graph may be searched in any of the usual ways 

[14]; a solved subproblem has a unique instantiation of the variables after 

PC-2 has been applied (i.e. each Y .. has exactly one 1 on the diagonal) where-
11 

as an unsolvable subproblem h.as some Y .. with all entries O (in fact in that 
1J 

case all Y .. will have all entries zero after PC-2 has been applied.) 
1J 

9. Applications 
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9.1 Finite, discrete state space problems 

9.1.1 Puzzles 

The most obvious applications of these techniques are to the traditional 

puzzle-solving problems. Gaschnig [2], for example, has used an iteration of a 

modification of AC-3 and instantiation to solve Instant Insanity and cryptar

ithmetic puzzles and has shown how the search space is drastically reduced. 

That version of AC-3 does not, however, distinguish between the arc (i,j) and 

the arc (j,i) so that the equivalent of REVISE((i,j)) must check every value of 

D. and find a corresponding value in D. and also must similarly check every 
1 J 

value of D. for the existence of a compatible value in D., although as shown in 
J 1 

section 6 when REVISE is called on a pair of adjacent nodes it is known which 

of the two arcs is possibly inconsistent. 

Other puzzles to which these methods apply are magic square problems 

and then-queens problem. The list could be longer. 

9.1.2 Other Combinatorial problems 

It remains to be seen whether the approach suggested will lead to more 

effective algorithms for algorithms for such traditional combinatorial tasks 

as computing the chromatic number of a graph and the graph isomorphism problem 

although it is clear that Unger's [15] approach to graph isomorphism contains 

some of the seeds of this approach. In a similar vein Suzman and Barrow [16] 

have been applying an arc consistency algorithm to clique detection. 

9.2 Continuous variable domains 

The requirement that the relations between variables be explicitly 



represented does not lead of necessity to the Boolean matrix representation. 

As Montanari points out, any representation of the relations that allow 

composition and intersection is sufficient. For example, using as the domains 

n subsets of R allows one to treat space planning [17] and n-dirnensional space 

packing problems such as cloth cutting [18] and the FINDSPACE problem [19]. 

9.3 Vision 
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In the Waltz filtering algorithm the variables are picture junctions 

whose values are their possible interpretations as corners. The initial variable 

domains arise from the shape of the junctions; the unary predicates arise from 

lighting inferences while the binary predicates simply require each edge to 

have the same interpretation at both of its ends. An interesting question to 

pursue is to ask how the processing time depends on the complexity of the pic

ture. From the available results [SJ, the dependence could well be linear. 

Waltz suggests that this is so because when each new junction is introduced 

the propagation of arc revision is restricted for the most part to that set of 

lines forming the image of a single body of which that junction is a part. The 

effect is so restricted because T junctions do not transmit constraining action 

from the stern to the crossbar or vice versa. Unless this decoupling effect 

obtains in other domains there is no reason to expect linear behaviour from 

AC-2 or AC-3. Moreover, in this domain, the interpretation of pictures of more 

and more complex individual polyhedra rather than of more and more polyhedra of 

fixed complexity would not presumably display linear behaviour. Worst case 

analysis of AC-1 suggests that the processing time is O(a2) where a is the 

number of arcs in the graph. 
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The author has previously proposed (20] the use of arc consistency 

algorithms in the task of interpreting pictures of polyhedral scenes. In that 

application, the variables are the regions whose values are the positions and 

orientations of their possible interpretations as surfaces. The unary and 

binary predicates arise both from 

a) Constraints on the surface positions and orientations taken 

individually and pair-wise together, if they intersect in an edge, imposed by 

the geometry of the picture formation process. (These are the constraints 

exploited by the author's earlier program, POLY (21]) 

b) Constraints on surface size, shape and pairwise connectivity im

posed by~ priori knowledge of the objects that can appear in the world. 

Barrow and Tenenbaum (22] have an application of arc consistency in 

which the variables are picture regions and the values are the names of their 

interpretations as surfaces (such as, 'door', 'wall' and 'picture'). Rather 

than just satisfy the constraints they seek an assignment of values to variab

les that will maximize the likelihood of the region interpretations being 

correct. In a related study, Rosenfeld, Hummel and Zucker (23] investigate 

various probabilistic models using AC-1. 

Finally, Montanari (6] suggested that the variables be distinctive, 

recognizable subpictures of the picture one is interpreting. If the values 

are the pictorial location of these subpictures then one could use the 

consistency algorithms and subpictures already located to constrain the search 

area for an as yet tmlocated subpicture. 
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9.4 AI programming languages 

Consistency methods could well solve some of the problems of retrieval 

from a data base that essentially takes the form of a semantic network. The 

criticisms that Sussman and McDermott [l] levelled at the crucial position 

occupied by automatic backtrack control in PLANNER were well founded and yet it 

is also clear that, unless we are to abandon completely the goal of a high

level p~ogramming language for AI, default search and data base retrieval 

mechanisms should be available to the user. (And yet again, these 'should not be 

forced upon the user. If he wants to program his own, the primitives should be 

available as they are in Conniver.) 

The consistency methods advocated here are clearly more effective than 

automatic backtracking and so deserve to be considered as a default database 

retrieval mechanism. 

As an example, "Find a large rectangle which is touching a triangle 

and inside a circle" could appear in MICRO-PLANNER as 

(THPROG ( X Y Z) 

(THGOAL (OBJ $?X RECTANGLE)) 

(THGOAL (SIZE $?X BIG)) 

(THGOAL (TOUCHING $?Y $?X)) 

(THGOAL (OBJ $?Y TRIANGLE)) 

(THGOAL (OBJ $?Z CIRCLE)) 

(THGOAL (INSIDE $?X $?Z)) 

(THRETURN $?X)) 

or in network form as in figure 3. One need not enumerate again all the 
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RECTANGLE 

TRIANGLE 

Figure 3. A network representation of a retrieval task 
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thrashing problems that the execution of that MICRO-PLANNER code would 

encounter in various configuration of the world. As a simple example, just 

consider a situation in which there is a large number of rectangles only one of 

which is inside the only circle. Backtracking could thrash for a very long 

time before discovering the right rectangle whereas a 'truly smart' procedure 

would take the circle, find out what is inside it, .... The effect of that 

smart procedure would be achieved by the consistency algorithms described here. 

10. Conclusion 

In this paper, we have been concerned with a class of algorithm, which 

could be named network consistency algorithms, designed to aid in the discovery 

of a situation that satisfies a set of simultaneous constraints that has been 

imposed on any candidate solution. 

By being presented and extended in a uniform framework these algorithms 

will perhaps become more accessible to others as will the pursuit of their 

development in the context of a variety of applications many of which have 

been discussed here. 
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