
1 Introduction

Code comp~ction for minicomputers

with INTCODE and MINICODE

J.E.L.Peck, V.S.Manis and W.E.Webb

University of British Columbia

1

The INTCODE system, originated by M.Richards (Rl], is a
means for programming ccmputers, at a low l e vel, in a machine
independent manner. Tlie basic philosophy involves the design of
a simple ideal machine, and the interpretation of this id al
machine on various pieces of hardware . The idea is not nove l,
but the INTCODE machin e is particularly successful, in that it
has been used for the transportation of BCPL compiler from one
computer to another.

A crucial pact of the system is a compiler [R3] from BCPL
to an assembler language for the ideal machine. The success of
INTCODE lies in the 8ase with vhich it may be assembled and in
terpreted on, or translated to and run directly on, any piece of
hardware.

Richards gives an assembler and interpreter [R2] for the
ideal machine, with word size at least 24 bits, but does not
show<•> how to deal with a machine whose word size is smaller,
nor how to produce relocatable code. Since many minicomputers
have a word size of l~ss t~an 2q bits, and since relocatable
code brings essential flexibility, a more general assembler and
interpreter is ne eded.

In this paper we discuss
a) an assembler and interpreter which is universal, in the

sense that its word size and character size are run time
parameters,

b) the compaction of this universal machine code by using rel-
ative addressing,

c) the production of relocatable load modules,
d) the production of assembler code for some real hardware,
e) the humanizing of INTCODE to a more readable form which we

shall call MINICODB, and

< 1 > In a private communication he suggests how to do it.

Code compaction for minicomputers

f) the didactic possibilities in MINICODE.

1.1 The system

2

The system works in the following manner. A program writ
ten in BCPL, e.g.,

£112!?~! { start:1; writes:74 }
!i~ start Eg writes("hello")

when fed to the BCPL-to-INTCODE compiler, produces the following
INTCODE assembler code.

JL2
$ 1 LL499 SP4 LIG60 K2 X4 2 X22
499 CS C72 C69 C76 C76 C79
G1L1
z

This assembler code, together with a similar standard
transput library is then f9d to an assembler which produces re
locatable load modules, a few lines of which (for word size= 16
and -Gh.a-Gte-r. size = 8) are

,i-iMtrc t'ev

P 000000
033407,
002510,

G 000001
• END

070000, 003406, 012004, 005074, 060002, 070004, 070026
042514, 046117

0+000001

Th e octal code is then loaded and interpreted by an interpreter.
Observe that, since a BCPL-to-INTCODE compiler, written in
INTCODE, is available, this allows for the transportation of an
interpretive BCPL compiler.

An alternative route, if a full BCPL compiler is not local
ly available, is to translate the INTCODE assembler code
directly to the assembler language of some real hardware. This
will, of course, produce f ster executing, but possibly larger
object code. A fe~ lines of such automatically produced 370
assembler code from th Q given example are shown here.

·• ..
USING *,12

COL1 L 12,=A(CO)
USING C0,12
LR B,A
LA. A,COL4<J9
SRL A, 2
ST A,4*4(-P)
LR B,A
L A,60
•••

The remainder of the process can now be
software provided by the manufacturer.

completed using the
Note that, in order to

Code compaction for minicomputers 3

generate more efficient code, a BCPL compiler for a specific
machine (as opposed to the ideal machine we discuss) will nor
mally bypass INTCODE.

1.2 Machine independence

It is important to observe that not all these steps need be
done on the same machin~. A transfer of INTCOD! assembler
source or of octal load modules from one machine to another may
be made. This could be of importance in places where several
minicomputers of different . kinds are in ~se for supporting some
large system. To have a universal programming system, it is
then only necessary to write an INTCODE interpreter for each
minicomputer. If some large computer is also available, then it
could be used to produce the relocatable octal load modules for
loading to each minicomputer. This means that the target ma
chines might even differ in word length or use different integer
arithmetic. Of course, the programmer would not be able to make
assumptions about word length or arithmetic formats.

2 The ideal machine

Since the basis of this system is an ideal machine, it is
important to describe it here, although much of this has already
appeared elsewhere [82]. It has a simple architecture. ·Its
memory consists of a sequence of words, starting from the ad
dress 0, and increasing in steps of 1. The number of words of
memory is not specified, except that the address field of an
instruction will impose an upper limit. The number of bits per
word (word size) is also not specified, except that 12 is prob
ably· the lower limit of practicality. The number of bits per
character (character size) is not specified. The two values,
word size and character size, which can be run-time parameters,
are used by the library routines for packing characters into
words.

The machine has five registers called A, B, G, P and C,
where,

A and Bare accumulators used £or executing dyadic operations,
G and Pare index registers, G pointing to a global array (a

sequence of memory words) and e pointing to the stack (an
other sequence of memory words),

C. is the program countar (containing the address of the next
instruction).

At run time there are three independent areas of storage in
use, the global vector, the executable code plus constant data
and the stack. In the algorithms of the ~INICOD! users guide
[P], the storage sequence is in the order just stated, but this
is an arbitray choice. If one does not mind a sacrifice in
flexibility, one may even dispense with the G- register, by lo
cating the global vector in some fixed memory area. on a
machine with base-page addressing, e.g., PDP-15 or HP2100, this
might be most convenient.

Code compaction for minicomputers

2.1 Machine operations

The machine has eight operations; these are

operation

Load
Store
Add
Jump
True jump
False jump
K call a procedure

execute

code

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7) •

4

Each machine instruction has one operand which is interpreted
sometimes as an integral value and sometimes as an address.
When an instruction is analyzed, this operand may be modified by
one or more of three flags called thE I, P and G flags. For
example, L1 means load 1 into the A register (after moving the
content of the A register to the B register); LP3 means load the
address of the third word of the present environment. LIG13
■ eans load the content of the 13th global word to the A regis
te1:.

The operand modification is as follows:

a) if the P flag is on, then add the content of the P register
to the operand,

b) if the G flag is on, then add the cont~nt of the G register
to the operand,

tj if the I flag is on, then fetch a new operand from an ad-
dress which is the old operand (indirect addressing).

It is important to note that the P and G flags cannot both be
on. Also the G register does not change during program execu
tion whereas the P register changes. The latter points to the
most recent environment on the stack.

2.2 The instruction repertoire

The instruction repertoire is described below, where it is
assumed that dis the value of the operand after index modifica
tion and relative and indirect address calculation, if any, has
been completed. When au ·ustruction is fetched, then the C reg
ister is first incremented by one so that it points to the next
instruction.

0) Ld (Load d) copies the content of the A
register and t-hen loads the operand d into

1) Sd (Stored) copies the content of the A
word at address d.

registet to the B
the A register.
register to the

2) Ad (Add d) adds d to the content of the A 'tegister
the sum in the A register.

leaving

3) Jd (Jump to d) places din the control register c.

Code compaction for minicomputers 5

4) Td (jump to d if True} places din the control register C
if the content of the A register is -1.

5) Fd (jump to d if False) places din the control register C
if the content of the A register is o.

6) Kd (call in an environment of length d) places the content
of P at position (P) +d (stack link), places (C) at (P)+d+1
(return address) places (P) +d in P (new environment) and
places the content of A inc (address of procedure).

7) Xd (execute the operation number d). The operation speci
fied is executed using registers A and B. Usually the
result is placed in A. For example, X8 adds the content of
B to the content of A, and X5 multiplies the content of A by
the content of B.

Further details of the register operations (there are about 30)
can be found in section 4.2. One of them, X23, introduces a
case statement.

3 Implementation

Implementation of the system involves the writing of an
assembler and an interpreter, each of which is only a modest
effort. Both of these are given in BCPL [P, R2] and in other
languages. If a BCPL-to-INTCODE compiler is available, then
only the interpreter need be written for any new machine.

3.1 The instruction format

The implementation of the ideal machine described by
Richards [82] uses an instruction format in which each instruc
tion occupies one word of memory. For each ideal machine

Instruction format
r-~----T-,- T t

I I I I I I
I I F I II Pl GI D

I I I I I I

Figure 3.1

instruction then

a) 3 bits are used for the instruction
b) 1 bit is used for the I flag,
c) 1 bit is used for the p flag,
d) 1 bit is used for the G flag, and
e) the remaining bits are used for the

---,

code

I
I
I

F,

operand D.

Fo~ interpretation, these may be ~laced where one pleases in the
word. The scheme shown in figure 3.1 is a common choice, and is
used in the algorithms given in the ~INICODE users guide [P].

If one insists that at least 14 bits are needed to repre
sent the address in a machine of reasonable size, then, since
the operand D is sometimes an address, it would seem that at

Code compaction for minicomputers 6

least 20 bits are required per word in the ideal machine. This
is more than one has on many minicomputers, so other schemes
should be considered.

3.2 Single and double word instructions

For computers with a small word size, an alternative layout
for an instruction is as in figure 3.2. Here one uses a single

Double word instruction

r-r---•--1--r-T-T--------,
I I I I I I I
111 F IIIPIGI I
I I I I I I I

..
I
I
I
L----

Single word instruction

r-~--7-T-~T----------,
I I I I I I I
JOI F IIIPIGI D I
I I I I I I I
L---L----~-.&..-J..-.J-_________ J

Figure J.2

---------,
I

r; I
I

.J

word if the operand, D, can fit into what remains of a single
word, otherwise two words are used. Of course, an extra bit (it
could be the sign bit) in the first or only word of an instruc
tion is used to distinguish these two formats.

3.3 Memory size

Another problem ~ith small comfuters is memory size. All
too often it happens that an important program will just about
fit into memory. The possibility of compacting code as much as
possible is therefore an important consideration, even though
one may have to work hard to accomplish it.

Experience shows that a large number of memory references
within the code, in particular for jumps, are a short distance
forward or backward from the address of the current instruction.
This suggests that the use of r~lative addressing, i.e., rela
tive to the address of the current instruction, an address
contained in register Cat the time of fetching, will signifi
cantly reduce the number of instructions which must occupy two
words. Relative addressing is a well known technique and is
available, for example, on the IBM 1130, the NOVA and the PDP-
11. The last machine has a single-word instruction, Branch,
which will jump to a location within ±128 words of the currant
one, and a double-word instruction, Jump, which will transfer
control to any cell in memory. The saving with this relative
addressing technique may be as much as ten percent. While this
is not spectacular, if it makes the difference between having a
crucial program on the computer or not, then the effort to pro-

Code compaction for minicomputers

duce such code may be well worthwhile.

3.4 Relative addressing

7

But why is this production of relatively addressed code an
effort? Well, INTCODE contains no provision for relative ad
dr essing (and should not contain it, in order to maintain
machine independence), so the job must be done automatically by
the assembler. Moreover, one cannot easily relativize a piece
of machine code while assembling it, since one does not know
some addresses unless a special pass is made over the assembler
code to locate all those assembler instructions which are la
belled. But even this extra pass could only be a first step in
the process, because making some address references relative
will compact the code and this, in turn, will allow some other
address references to be made relative. Complete compaction of
code by making addresses relative, wherever possible, is there
fore an iterative process which must be repeated until no
further compaction can be done.

With this in mind, and considering that the code for the
minicomputer can be produced on a large computer, it is probably
easier to produce nonrelative code, in the first instance, and
then to massage and compact the code after it bas been produced.
But this involves comple.xi ties similar to those encountered · in
garbage collection and is therefore sufficient reason for de
scribing at least one solution here. Close inspection of the
octal load module in the introductory section will reveal that
it was produced in this way. For a discussion of a similar
problem of code compaction, see a paper by D.L.Richards (84]
(another Richards!).

3.5 The assembly process

The initial pass of the assembler on each segment of
IHTCODE p~oduces octal code with nonrelative addresses. To do
this it uses an array with one entry for each label definition
in the segment, an array for global values, and an area of stor
age for storing the code that is produced. An instruction is
assembled into one word if its unmodified operand is an integral
value which can be held in the D part and the sign bit is set to
O; otherwise, two words are used, the operand is placed in the
second word, and the sign bit of the first word is set to 1. At
this stage, instructions which reference a location usually
occupy two words. Since the machine code produced can contain
either instructions vith memory references or data words with
memory references, and since there is no way to tell the dif
ference between an instruction and a data word, the assembler
also keeps an array of pointers, one for each instruction or
datum which contains a memory reference. If it is not an in
struction, this pointer is stored negatively.

The assembler operates by reading a segment of INTCODE and
assembling it into memory. Next, it applies the massaging pro
cess described below, and then writes out the resulting code.
Prior to massaging, the memory looks as in figure 3.5.

Code compaction for minicomputers 8

3.6 Code massaging

After a segment of machine code has been produced, the last
array of pointers described above is used to help in the compac
tion process. This is achieved, essentially, as in the

,---r--~--"T--T--,---~~-
1 o I O I I I I I I label array
L-t-L-+_J.---L--L---L---L--~--

1 L--- -,

L--, I

' ' ■-~-r---r-T--T--T---.---_--

1 I I I I I I I I machine code
L----L--.L----'--..L----L---'--------'----..

L, r--- --~ I
I I .------·----'

r-+~-+~--T-f-T---r--.---.---
f O I O I o I O I I I I pointers to memory references
L---.L--_J._f--L---~--L---L-~

I
r-----.-.J

' r--~--·r--T---r---r---
1 I I I I I global array

J.

Figure 3.5

folloving BCPL routine:

let --r compact() !!~
done:= true
relat~ () ----
i! done I!!.t.!!I!!
adjust{)
shift() } t~E~at

vhere •relate()' modifies the boolean
•compact• consists of three parts,
•shift•.

variable 'done'. Thus,
•relate•, •adjust•, and

The procedure •relate• examines each instruction of the
code to determine whether an address can be made relative or
not. If this is possible, it sets 'done• to !al!!, computes the
relative address, sets the R (relative) flag in the instruction
(see below) and sets the following word (which originally con-
tained the address), to -1 to indicate that there is a "hole"
which may be eliminated later.

The procedure •adjust• now examines every address refer
ence, whether relative or not, and counts the number of holes
betveen it and the word it references. This number is then sub
tracted from the address (whether relative or not), if it is a

,I

Code coapaction for minicomputers 9

forward reference, and added .to it if it is a backward refer
ence.

The procedure •shift• now shifts the code to the left in
order to remove the holes. At the same time, it adjusts the
non-relative addresses by the amount of the shift and corrects
the sign bit. The whole process is then iterated until the pro
cedure •relate• finds no more addresses which can be made
relative, i.e., it no longer sets the boolean variable 'done• to
!~l!!•

In all of this, special care must be taken with addresses
in the global vector, since these do not get shifted, although
they arnst be adjusted. Examination of the code for this compac
tion (P] will reveal that it is the trickiest part of the
assembly process. Nevertheless in some applications compactifi
cation may be well worthwhile.

It is interesting to note that. to the best of our know
ledge, the assemblers for most minicomputers which exhibit
instruction formats similac to our ideal machine, do not perform
the compaction discussed above (the INTERDATA assembler is an
exception). Instead, the programmer is forced to guess whether
or not a single-word instruction will do the trick.

3.7 The relative flag

Of course, if one uses relative addressing, then another
bit, the R bit, must be sacrificed to indicate this. However.
since the use of the P, G and R flags is mutually exclusive, one
may superimpose flags in the following manner.

000 no flags
x10 P flag
x01 G flag
x11 R flag (relative address)
1xx I flag

The layout of the first word of an instruction may then be pic
tured as follows.

r-~---r-r-r-r---------------,
I I I I Pl GI I
I I F I I f--t-1 D I
I I I l~- 1------- I L_,L ____ _.i,.--L-.L--L--____________ _J

3.8 The load module

Since it is desirable to produce relocatable octal code,
the array of pointers which were used in the compaction process,
and which wece continually adjusted during it, may now be used
to determine which words require a relocation factor from the
loader. To do this, the octal load module of each section is
pcoduced after compaction of its code has been completed. The
module is preceded by an appropriate loading address, relative

Code compaction for minicomputers 10

to zero, and each vord needing relocation is preceded by the
characters •o+•. The values to be loaded in the global array
are produced at the end of the secticn. The example in the in
troductory paragraph, 1.2, shows a load module consisting of one
section followed by its (only) global value. Of course this is
not the most concise representation for a load module. However,
this module simplifies debugging and does not cost much more.

3.9 Comments on performance

Some remarks on spaed saem appropriate here. The inter
preter for most small machines would execute between 10 and 20
instructions for each INTCOOE instruction. At first sight, this
may seem to be an intolerable slowdown. Yet many programs which
run on minicomputers spend most of their time waiting for input
or output operations to complete. Viewed in this light, the
decrease in speed may not even be noticeable. Of course, in
many non-real-time minicomputer applications, we may not even
care whether the program runs in one minute or two, a luxury not
available on a large machine. Also, if on may run more complex
programs now, because INTCODE is more compact than a machine's
native order code, then the slowdown in speed may still be tol
erable.

In any case, the simplicity of the interpreter shewn in · the
users guide (P] suggests that it may be microprogrammed fairly
easily on a machine with such a facility. Such a micropro
gramme4 interpreter might reasonably be expected to run at about
the speed of the interpreters provided by the manufacturers.

4 The assembler language

The assembler language, as accepted by the algorithms of
the users guide (P], has

executable instructions,
storage reservation instructions,
pseudo instructions, and
pragmats (run-time option settings).

For the executable instructions, the mnemonics are L, S, A, J,
T, F, Kand X, as explained in section 2.1. These may be fol
lowed by an optional I, indicating indirect addressing, and then
by an optional P or G, indicating index register modification of
the operand. This is followed by the operand prcper, which is
either a non-negative integer or a label reference. A label
reference is the letter L tallowed by a small non-negative inte
ger (<500). Note that there is no ambiguity between the use of
the letter L for load, and the use of the same letter in a label
reference. Examples of executable instructions are 113, LG13,
LIP6 and LL499. Defining occurrences of labels are just non
ney~tive integers, e.g., 499, and both executable and storage
reservation instruction may be preceded by one or more defining
~ccurrences of a label.

There are three storage reservation instructions, each

Code compaction for minicomputers 11

using one of the the letters D, c or G. on indicates a data
word vitb value n, where n is an integer, and DLn indicates a
data word storing the address of label number n. en indicates
storage of a character vhose ASCII or EBCDIC value is n. GnLm
indicates storage of the address of label number mat then-th
global word.

A pseudo-instruction which indicates the end of a control
section is z~ Label references may not refer to label numbers
of other control sections.

The assembler given in the users guide (P] allows for the
inclusion of pragmats. These pragmats may appear in the INTCODE
source as an asterisk followed by the pragmat item.
Alternatively, a sequence of pragmat items may be passed as a
parameter string when the assembler is loaded. The details of
these pragmat items may be found in the users guide. It is suf
ficient to say here that they specify the following things:

word size (in bits), character size (in bits), internal char
acter coding (ASCII or EBCDIC), listing of the source,
suppression of code compaction, insertion of special instruc
tions at entry points, e.g., the PDP11 trap instruction, and
the generation of run time tracing instructions.

Comments may appear and consist of the symbol"/" and then
everything up to the newline character. A dollar symbol, S, may
be used at a procedure entry. It allows generaticn of the trap
instruction discussed above. If this precedes a defining latel,
then the load address of that label may be displayed as a com
ment in the octal load module. This i~ useful for debugging
purposes. The use of a dollar symbol at a procedure entry also
helps a translator to recognize an entry place in a load module.

4.1 Strings and the case statement

Character strings are generated as sequences of storage
reservation instructions, e.g., Cm Cn1 Cn2 ••• Cnm, where m is
the number of characters in the string and n1, ••• , nm are the
ASCII or EBCDIC values of those characters. To be of any use,
this should be preceded by a label. Characters are packed into
words by the assembler in accordance with the values in pragmats
following •wand *C, e.g., *W16 and •ca will mean two characters
per word.

Case statements are generated by the BCPL-to-INTCODE compi
ler in the form X23 On DLd Dv1 DLd1 ••• Ovn DLdn, where n is
the number of cases, dis the default lab9l number, v1, ••• ,
vn are the case values, and dt, ••• , dn are the corresponding
case label numbers. The assembler given in the users guide will
accept all of this, digest it, and then produce whatever code is
less wasteful of storag~, i.e., a linear search if the values
are widespread and an indexed jump otherwise. This optimization
might be done, instead, by the compiler.

Code compaction for minicomputers 12

4.2 ftINICODE - a humanized INTCODE.

The INTCODE language was designed to be compact and easy
for a machine to translate or assemble. It was not intended for
use as a programming language for humans. Despite this, its
simplicity, and the simplicity of the machine on which it runs,
allow one to read it quite easily. This tempts one to determine
whether small changes in the assembler will bring further im
provements in readability. One obvious candidate is a character
string. For example, it is easier to read

499:C"F(~N) = ~N•N"
than

499 C11 C40 C37 C78 C41 C32 C61 C32 C37 C78 C42 C78
and the additional work for the assembler is minimal. For char
acter constants it is easier to read

L'S' SP7 L'I' SP8 1 1 D1 SP9
than it is to read

L83 SP7 L73 SP8 168 SP9.
For the execute instruction it is easier to read

LIP2 LIP3 :X+ SP4
than it is to read

LIP2 LIP3 X8 SP4.
The improvements suggested here. all of them easy to add to the
assembler, have led to a new more general assembler language
which we shall call MINICODE. The users guide (P) shows a ver
sion of the BCPL compiler which translates to MINICODE (except
for character constants).

With readability in mind, the assembler given in the users
guide will accept either the original INTCOCE or the new
KINICODE which includes INTCODE. This opens up the possibility
that it might be understood more easily as a primitive assembler
language by humans. The symbols chosen for the register execute
operations in MINICODE are as follows:

X1 X! dereference register A
X2 XN arithmetic negation
X3 x-. logical negation
X4 XR return from procedure
XS x• multiply
X6 X/ divide a:=b/a
X7 X/* remainder a:=b/*a
X8 X+ add
X9 x- subtract a:=b-a
XlO X= equal
X 11 x ... = not equal
X12 X< less than a:=b<a
X13 X>= greater equal a:=b>=a
x14 X> greater than a:=b>a
X15 X<= less equal a:=b<=a
X16 X<< shift left a:=b<<a
X17 X>> shift right a :=b>>a
X18 X/1 and
X19 XI/ or
X20 XE equivalent
X21 X-.E not equivalent

4.3 An example

Code compaction for minicomputers

X22
X23

XF
X?

finish
Case

13

To illustrate the use of MIN~CODE we give an example in
which the comments show the original BCPL source. Observe that
it is now easier to follow what is happening. Indeed, it would
be possible to use sueh an example to show the relationship be
tween a high level language and the low level code into which it
translates.

JL3
I

S 1:LIP2 LOX<= FLS XR /
I

4:LIP2 L1 X- SP8 LIP3 SP9

LET HANOI(N, S, I, D) BE
$(IF N <= 0 RETURN
HANOI(N-1, S, D, I)

LIPS SP10 LIP4 SP11 LIL2
WRITEP("NOVE IN FROM JC

N, S, D)
I
I

LL499 SP8 LIP2 SP9 LIP3
I

LIP2
XR

11 X- SPB LIP4 SP9

3:JL6
S 5:7:LIG70 K2 SP2

LIP2 LOX<= FLB XF

I
I
I
I
I

8:LIP2 SPS L'S' SP6 L'I'
JL 7 XR /

6 :XF
2: DL1

SP10 LIPS SP11 LIG76 K6
HANOI(N-1, I, S, D)

LIP3 SP10 LIPS SP11 LIL2 K6
$)
LET START() BE
$ (LET N= READN ()
IF N<=O DO FINISH
HANOI (N, S, I, D)

SP7 L'D' SP8 LIL2 K3
$) REPEAT

499:C"MOVE IN FROM %C TO ic•N"
G1L5

z

5 The interpreter

K6
TO IC*N",

The loader-interpreter is fairly simple, involving about
two hundred lines of BCPL code. It has already been written in
several languages, as the listings in the users guide show.

5.1 Implementation of the interpreter

Implementation of the loader and interpreter is not diffi
cult. In the first inst~nce it requires only two routines to be
supplied by the user, viz., those which read and write one char
acter. One may then choose a varsion in one of the languages
listed in the users guide.

Pragmats may be supplied to the interpreter either on com
ment lines, i.e., after a semicolon, in which case each pragmat
item is preceded by an asterisk, or as a parameter string on the
system run co~mand. These pragmat items allow one to control

word size, character size, internal character coding (ASCII or

Code compaction for minicomputers 14

EBCDIC) and various run time tracing features.
For the details see the users guide [P].

5.2 The library routines

There is a miniaal set of library routines consisting of
procedures written originally in BCPL, These can be kept as
IBTCODE source and assembled vith eacb program, or kept as sepa
rate pre-assembled octal load modules to be loaded concurrently
with the program. In the ■inimal library there are just two
routines which are primitive in the sense that they communicate
with the operating system and must therefore be provided by the
implementer. These are the BCPL character input and output rou
tines, • rdch () • and • wrch (c) •.

system routines may be added
in the language of the interpreter
structions. For example, if we
called •t•, then the BCPL source of
(assuming global 33 is available),

g!Qh!! (execute:33 l

to the library by coding them
as additional execute in
wish to introduce a function
the library should contain

!!! f(a, b) = execute(n, a, b)

where n is the number of the execute instruction, xn. When this
library is translated to INTCODE, only the following additional
hand coded line need be added:

S100 LIP4 LIP3 XIP2 X4 G33L100

(assuming that label 100 is available). This hand coded frag
ment transfers the second and third parameters to the A and B
registers, where the function 'f' may, or may not, use them.
Any value delivered is left in the A register. Examination of
the library in the users guide should make this process clear.

Further primitives may be provided if one wishes to handle
files or service interrupts, but the two given are sufficient
for the definition of the other standard input and output rou
tines of the usual BCPL library. Two of the routines
• putbyte (s, i, byte) • and • getbyte (s ,i) • help in the packing and
unpacking of characters into words. These are written to use
machine defining constants as follows:

!!A!!.!!i~! (chars. pe1c. word= 4; char. size=B; char. mask=fXFF
ch.p.w.m.1=1)

.!!! putbyta(s, i, byte) B~
(!!! j = i / chars.per.word
!ag shift= (ch.p.w.m.1 - i ~! chars.per.word) • char.size
!i! mask= !!.Q~ (char.mask<< shift)
!!!.g char= (byte & char.mask) << shift
slj := (s!j & mask) I char }

s!~ getbyte(s, i) =
(s ! (i/chars. per. llord) >>

Code compaction for minicomputers 15

(ch.p.v.m.1 - i !~! cbars.per.vord)•char.size) & char.mask

and are included in the library to be used in the first in
stance. Eventually more efficiency can be achieved by treating
these two also as primitives which are supplied by the implemen
ter.

6 Didactic possibilities

The teaching of computer science often begins with some
high level language, in order to study algorithms, and then con
tinues with the examination of machine architecture using the
assembler language of the computer at hand. very often these
two things are not closely related, in particular, because the
compiler for the high level language is as a closed book to the
student and usually also to the instructor. Moreover, many
modern computers are quite complex, and it often happens that,
in teaching machine architecture, the basic principles which
should be taught become bo~ged down in a morass of complex de
tail •. In addition, the high level languages supplied by the
manufacturer, such as FORTHAN and BASIC, do not lend themselves
to the teaching of structured programming, nor to instruction in
such basic principles as stack manipulation and recursion. What
should be done about it?

The answer seems to lie in the choice of a simple machine
from which the basic ideas are derived naturally. From what has
been said above, it is clear that the INTCODE machine may have
interesting possibilities. some may argue that this is not the
redl world, and that teaching toy computers is not effective.
In answer to this, it may be said that INTCODE is surprisingly
close to the structure of some minicomputers, and that, with the
great surge in the use of minicomputers, INTCODE may be closer
to most of the real world than the structure of some large com
plex machine.

Consider then an introductory course in computer science
using the INTCODE ideal machine. The student first studies the
ideal machine, its simple construction and its modest set of
operations. He then studies some simple programs written in
ftINICODE. These could well be the MINICODE versions of the dec
imal input and output routines •readn()' and •writen(i) • of
BCPL. Remember that these routines are written in terms of just
tvo primitives, the character input and output routines 'rdch() •
and •wrch(c) •• The emphasis here would be on how machines work
rather than on how to program them. Study of existing well
written algorithms would be the first step in the inculcation of
good programming habits.

At this stage the student would understand the ideal ma
chine and how it works and would be able to read, but perhaps
not write, MINICODE. It is then time to introduce the high
level language BCPL. This can be done by looking at the BCPL
versions of the same input and output routines. Now one may
branch out into the task of writing other algorithms in BCPL.

Code compaction for minicomputers 16

Since both the assembler and the interpreter are written in
BCPL, the study of algorithms could soon take these as examples.
The whole process would then become clear. There would be no
mystery. The student would understand what an assembler is,
what an interpreter is, and he could study the algorithms for
assembly and interpretation for himself. He could then under
stand that there is a compiler from BCPL to INTCODE, for he
could examine and check the INTCODE produced from his favourite
program. The curious could also study the BCPL-to-INTCODE co~
piler, which is written in BCPL. A detailed examination of it
would not likely be made in an elementary course, although parts
of it could be studied with profit.

consider then the advantages. In one short course, the
student will have seen

a) machine architecture,
b) assembler language,
c) a good high level language,
d) the construction of an assembler,
e) the construction of an interpreter,
f) and, for the adventurous, an inside look at an in

teresting compiler.

A further advantage is that the basic machine is stack
oriented, so that the ideas of recursion are immediately clear
and natural rather than being some strange mystery that one has
to struggle with at a later stage.

6.1 MINICODE and the high schools

Both the assembler and the interpreter are easy to imple
ment even on a small machine. This can make one independent of
the manufacturer's software at an early stage. These last facts
are of some critical importance when one considers that a large
pact of introductory computer science is nov moving down to the
high schools, where it is natural that the computer to be chosen
is a minicomputer, and where the manufacturer's software will
have undue influence. The ~INICODE system, as outlined above,
now offers a way in which the essence of computer science can be
taught, all within one pro~ramming system.

Heferences

[P] J.E.L.Peck, The ~INICODE system users guide, U.B.c.,
Vancouver, 1975.

(Rl] a.Richards, Bootstrapping the BCPL compiler using INTCODE,
Cambridge University, August 1973.

(R2] K.Richards, INTCODE An interpretive machine code for
BCPL, Proceedings of the IFIP Trondheim Conference on
Machine Oriented Higher Level Languages, North-Holland,
1973.

(R3] M.Richards, BCPL - A tool for compiler writing and system

Code compaction for minicomputers 17

programming, Spring Joint Computer Conference, 1969, pp.
557-566.

(R4] D.L.Richards, How
Assoc. for Comp.

to keep the addresses
Plach., Vol 14 (1971) pp.

short,
346-349.

Comm.

(S] stoy,J.E. and Strachey,c., 0S6 - An experimental operating
system for a small computer, The Computer Journal, 15, Nos 2
and 3 1972.

8£S1-eHINTER CO 11[)
VAN(;OlNFR, 8 C

