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The Essence of Computer Science 

J. E. L. 

Pruface 

The aim of this little booklet is to explore the possibili­
ty, for the teaching of computer science, of the language BCPL 
and its associated ideal machine, which was originally developeJ 
for portability. 

All too oiten it happens that we introduce computer scien~e 
by teaching a high level language, and an assembler languag~, 
where the two are unrelated. How many instructors, for example, 
n~ve ever seen (let alone understood) the compiler for their 
favourite language. Sometimes we use a fictitious machine to 
teach about mdchine structure because the actual ~achine is too 
complicatdd. The ldnguag8 MIX is an example. But how many com­
pilers are written in MIX, and is there a translator from some 
hign lev3l language into MIX? In short, our complaint is that 
the vehicles for the teaching of computer science are dis­
jointed. 

The DCPL - MINICODE system seems to offer a unique answer 
to the usual dilemma of what t0 teach. Here ~e have one hiqh 
l~vel language in which a whole system is written. There is a 
translator, written in BCPL, from BCPL to an assembler language 
for a simple machine. we have also an assembler and a loader 
and interpreter for this machine written in BCPL. Thus, in 
th~ory,. with a small loader and interpreter, we have a complete 
portabl8 systPm which we can use for instructidn. Another point 
is that BCPL, despite some criticisms we may have such as lack 
of types, contains control structur~s well suited to the teach­
in1 of safe programming techniques. Those who have some belief 
that a unified complete system is the way to go, may find these 
few pages of interest. 

Vanco~ver 
1975 July. 
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Chapter I 

The Computer 

1 

Chapter on3 is a d~scription of an ideal computer, its con­
struction, and the operations that it may perform. 

1.1. Introduction 

In this exposition we shall describe the essence of comput­
~r science by using one high level language and a related ideal 
machine on which it may ba implemented. As we progress we shall 
liscover that this is all that we need in order to explain the 
oasic concepts of machine architecture, instruction sets, assem­
bler language, assemblers, loaders, interpreters, compilers, 
subroutines, functions, parameter passing, recursion and the 
like. 

1. 2. Number systems 

In the sys~em which we shall describe, it will often be 
necessary to write integers in more than one base. In fact, the 
three ways of writing integers that will frequently be used are 
the familiar decimal representation (base 10) 1 the octal repre­
sentation (base 8) and the binary representation (base 2). 
Since integers in each of these three ways will be scattered 
throughout the text, we need soma convenient way in which to 
distinguish some of them. Accordingly, we shall adopt the con­
v,~ntion that an octal integer (.base 8) is preceded by an 
octothorp, 11 if 11 • Thus we may write 33 = #41 and understand that 
it means 33 in base 10 equals 41 in base 8. Naturally 7 - #7, 
so that for some small integers it will not matt~r how we write 
them. For binary integers (base 2) we shall not need a particu­
lar conv~ntion since it is usually clear from the context what 
is meant. An integer in which the digits are only 0 and 1 is 
~ften in binary (base 2). 

1.J. An ideal computer 

The computer<1> that we des6ribe here does not need to 
exist as an actual piece of hardware, for it can always be simu­
lated or emulated. However, for the purpose of describing the 
essence of computing, we may think of it as a piece of hardware. 
Its two main components are: 

a) a memory consisting of a sequence of storage cells, and 
b) some registers (or special storage cellsl where most of the 

wo r .k is Jone. 
Rach of these storage cells, both in the memory and in the reg-

<1> This computer was first described by MaLtin Richards 
[ n 1 J. 
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ist~rs, con8ists of a number of bits each of which is either 
"on" (1) or 11 off 11 (0). Each .bit may be considered as a binary 
digit, and in this way an integer can be represented in a cell 
i11 binary. The actual number of bits in each storage cell, the 
"cell size", is a matter of tast.e, and we sha 11 not specify it 
here. You will find that cell sizes on some typical machines 
ar~ 64, 32, 24, 16 and 12. In many of the illustrations in this 
text wa shall use a cell size of 16 bits, since this is the size 
appropriate to many of today's minicomputers, but we are seldom 
concerned with cell size. 

n fact of importance is that our ideal computer stores in­
t-2q-=?rs .in what is known as the "two's complement" form. In this 
~orm, the first bit is taken to be the sign, 0 for + and 1 
for-, in fact, the bits arise from representing an integer k 
(positive or negative) by the rightmost n bits in ( (2 to the 
pow-2r (n+ 1)) + k) , wher:e n is the cell size. To unde1·stand this 
it is easiest to suppose, for the moment, that the cell size is 
thc2e, in which case the integers are as follows: 

cell content signed integer 

011 3 
010 2 
001 1 
000 0 
111 -1 
110 -2 
101 -3 
100 -4 . 

Notic~ a curiosity in this system, viz., that the largest nega­
tive number is alway~ one less than the negative of the largest 
positive number.· 

~nether: fact of importance is that our ideal computer can 
communicate with the outside world, i.e., it may read one char­
acter at a time and it may write one character at a time. This 
may appear too primitive a capability to be really useful, but 
it has conceptual simplicity and the power that we need, espe­
cially since newline and newpage are considered as characters. 
In fact, a rather versatile set of input and output routines 
11.:.;es only these facilities. A character is represented within a 
computer cell as an integer, e.g., in the ASCIIClJ system, the 
character "B" is represented by #102, "7 11 by #67 and 11 +" by t53. 

1.3.1. The memory 

The memory consists of a sequence of consecutive storage 
cells. The number of storage cells in the memory is of no con­
cern here. We may always assume, in what follows, that there 
will be enough. Of course, on any practical computer the memory 

--- Ct> ASCII stands for American Standard Code for Information 
Int :3rchan-1e. 
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is limited, but this limitation need not bother us now. 
think of the cells as being numbered consecutively from 
upwards. A mental picture of the first few cells of memory 
bB something like the following. 

We 
zero 

may 

r------.-----....--------r 
I 

.a._ _______ __, 

0 1 2 3 4 5 6 

The consecutive numbers assigned to the cells are known as their 
"addresses". Thus, the address of the first cell is O, that of 
the second is 1 and so on. 

1.3.2. The registers 

Our ideal computer has five registers (or specialized stor­
age cells). Two of these cells are accumulators, i.e., they 
participate in arithmetic and other operations. Another two are 
index registers, i.e., their content is always interpreted as an 
address. The fifth register is the instruction counter. This 
register contains the address of the next instruction. The two 
accumulators are known as the A- and the B-registers, the index 
registers are the P (program) and the G (global) registers and 
the fifth is the c (instruction counter) register. Our mental 
picture of the ideal computer with memory and registers is now 
something like the following. 

r-----, T 

A. I I I 
~ ~ 

B I I 0 1 2 3 4 
I ~ memory cells 

C I I . ~ 
P I I 

!-----~ 
G I I 

L ____ J 

registers 

1.3.3. The operations 

An operation which the computer performs may copy informa­
tion (bits) from a memory cell to a register, from a register to 
a memory cell or may manipulate the content of registers partic­
ularly the A- and B-cegisters. Each operation is performed as a 
result of the analysis of an "instruction". Each instruction is 
a sequence of bits which have been fetched from a memory cell. 
Our ideal computer has only eight basic operations. · These are: 
load (0), stor-e (1), add (2), jump (3), jump if true (4), jump 
iE false (S), call a routine (6) and execute an accumulator 
operation (7). we shall examine each of these in detail when we 
look at the instructions. For the moment, it is enough to know 
that the store op~ration (1) copies the content of register A to 



4 The Essence of Computer Science 

sowe memory cell. It is the only way of moving information into 
the memory. The load operation (0) first copies the content of 
register A to register B, then moves a new value to register A. 
This value may, or may not, come from memory. The execute in­
struction (7) may perform a specified operation (possibly 
arithmetic) on th~ content of the two accumulators, for example, 
if its operand is 8, it adds the content of the A- and the B­
registers, leaving the result in the A-register. 

1.3.4. The instructions 

As mentioned above, an instruction is a sequence 
tbe content of some memory cell which has been fetched 
ysis. These bits specify three things: 

of bi ts, 
for anal-

a) the operation, 
b) the modifiers, and 
c) the raw operand. 

The operation is specified by three 
other three and some of the remaining 
we may then picture an instruction as 

P IIIPIGI 

bits, the modifiers by an­
bits specify the operand. 
follows 

D L_----•~ ... • -,1,__,,...._ __ -,--__ , ______ .. 

where Fis the operation, I, P and Gare the modifiers and Dis 
the raw operand. 

Observe that the three F bits are sufficient to represent 
the numbers from O to 7 and therefore can specify eight dif­
ferent operations. The modifiers consist of three bits known as 
the I-flag, the P-flag and the G-flaq. Their effect is to cause 
further calculation to be done on the operand. 

If we use a sixteen bit cell and do not, for the moment, 
use the first bit, then some examples of instructions, in octal 
and in binary are: 

instruction 

load 1 
store 3 
add 2 

octal 

#000001 
#010003 
#020002 

in which none of the modifiers is on. 

1.3.5. Operand modification 

binary 

0 000 000 000 000 001 
0 001 000 000 000 011 
0 010 000 000 000 010 

When an instruction is analyzed, its D part is extracted, 
as a non-negative integer, and is considered as the raw operand. 
This raw operand is subject to modification determined by the 
modifiers. As mentioned above, the modifier field of the in­
struction consists of three bits, the I-, P- and G-flags. 
Operand modification is done as follows: 

a) if the P-flag is on, then the content of the P-register is 
added to the raw operand to give a modified operand; 
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b) if the G-flag is on, then the content of the G-register is 
added to tha raw operand to give a modified operand. 

It is convenient to know that in any one instruction the P- and 
G-flags cannot both be on. ~fter steps a) and b) above, then 

c) if the I-flag is on, then the operand (possibly modified as 
ahove), is considered as the address of a cell in memory, 
the content of which will bB used as the modified operand. 

Some examples might be in order here. Assuming a cell size 
of 16, the instruction #001002 (in binary O 000 001 000 000 010) 
has its G-flag on; consequently its modified operand is 2 plus 
the content of the G-register. The instruction 1002002 has its 
P-flag on; consequently its modified operand is 2 plus the con­
tent of the P-register. The instruction #006002 (in binary 0 
000 110 000 000 010) has both the I-flag and the P-flag on. Its 
modified operand is therefore obtained by adding 2 to the con­
tent of the P-register ~nd using this as the address of a memocy 
cell from which the final modified operand is fetched. In each 
of these instructions the operation is load. The instruction 

C 

I 
r--+ 
I .-- I 
I I I 
I global I program t 
t I I 
I --J L I 
I I 
I I 
I stack I 
I I 
L J 

- J:'\. I P j 

Fi gure 9 

#006002 therefore loads the content of some memory cell into the 
A-register. 

1.1.6. Memory layout and machine operation cycle 

During the execution of a program the memory of the comput­
er may be considered as having three independent areas: the 
program, containing the constants and the sequence of instruc­
tions to be executed; the global array, which allows for 
communication between program segments; and the stack, ~hich has 
the property that it may grow and shrink during program execu­
tion. The three registers P, G and Care associated with these 
areas in the following way. 

a) The P-register points to (i.e., contains the address of) 
some cell in the stack. 

h) The G-register points to the first cell of the global 
area y. 

c) The c-registec points to an instruction in the program. 
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A mental ~icture of the memory layout might therefore be as re­
presented in figure 9. 

ThB basic cycle of operation of the computer is as follows: 
a) the instruction pointed to by the c-register is fetched and 

analyzed and the content of the c-register is incremented by 
one, and 

L) the operation specified by the instruction is executGd. 
The basic cycle consists then of two parts -- fetch and execute • 
This cycle is repeated as often as is necessary, i.e., fetch, 
execute, fetch, execute, fetch, execute, and so on. 

ChapteC' II 

The assembler language 

This chapter des~ribes an assembler language which makes it 
easier to study the operation of the ideal computer more closely 
and allows us to construct some simple illustrative programs. 

2.1. Mnemonics 

~he discussion of computer instructions and their illustra­
tion using octal oc binary integers is tedious. It is not easy 
to remember, e.g., that the jump operation is #03xxxx (here x 
indicat~s an un specified oct&l digit), or that a combination of 
the I- and P-flays is i0x6xxx. Instdad, we use letters of the 
alphabet to represent these things. 

The mnemonics for a computer instruction set can be a 
matter of choice. Those which we use for our ideal machine are 
as follows: 

a) the representation of each instruction begins with one of 
the letters L, S, A, J, T, F, Kand X, 

b) then come the optional modifiers, first the letter I, then 
P or G, and 

c) then follows the operand, which is either a decimal inte­
ger, a character betweBn apostrophes or a label reference. 
A label reference is the letter L followed by a small non­
n8qative decimal integer. 

To make this more readable, we also allow some letters or spe­
cial characters after an X, e.g., XR is equivalent to X4 and X+ 
is eguivalent to X8. 

A little piece of pcogram using these mnemonics might be 

$ 1:LL499 SP4 LIG60 K2 XR 
499:C"HELLO" , 

wh3re 1499 is a label reference and XR is the operation "Return 
to caller" which is equivalent to X4. 

Although we are not yet ready to follow what it does, it is 
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instructive to compare this with the instructions for a sixteen 
bit machine in octal which it represents 

003405, 012004, 005074, 060002, 070004, 002510, 042514, 046117 
1:LL499 SP4 LIG60 K2 XR 499:"H E L LO" 

and observe that it is probably worthwhile learning these mne­
monics before going any further, especially since mnemonics are 
more concise. 

2.1.1. The assembler 

A set of operation mnemonics, as described above, together 
with a few other aids is usually called an ~assembler language". 
Very little programming is now done by writing instructions in 
binary, or even in octal, although this was the way it was done 
in the early days of computing. A better way is to use an as­
sembler language, although, even this has now fallen into 
disfavour. The modern way to program is to use a high level 
language, i.e., a language more suitable for problem solving. 
Our eventual aim is to become familiar with the hiqh level lan­
guage BCPLCl>, but first we need to understand a machine on 
~hich it runs and an assembler language for that machine. 

Of course, the machine itself does not operate directly 
from the assembler language: for example, the machine does not 
know how to interpret LIG60 directly. But machines are very 
good at tedious clerical tasks, and the translation of a program 
from assembler language to its eguivalent in binary is just such 
a task. This process is known as "assembly" and the program 
which does it is called the "assembler". Before long we shall 
be studying the details of just such an assembler. To do this, 
and to understand the details of machine instructions, we shall 
soon concentrate our attention upon an assembler language. 

2.1.2. A loader 

While the assembler is translating the mnemonics to machine 
instructions, it does not execute them. It may either store 
them somewhere in the memoty for later execution, or, more fre­
quently, it may write them out for later use. If it does the 
latter, then we need some way in which to load the machine in­
structions back into the memory. This job is done by a program 
known as the ''loader". At some point we shall study how the 
loader works, but for the moment we need only knov that it ex­
ists, that it knows how to load a set of instructions into the 
memory and how to transfer control to the first instruction of 
the progr~m. 

C1> The language BCPL was developed and implemented by 
Martin Richards (R2]. 
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2. 2 MI NI CODE< 1 > 

The assembler language which we choose to use on our ideal 
machine is called MINICODE. First let us get an overall view of 
MINlCODE by glancing at the following lines. 

,J L 3 
$ 1:LIP2 LOX<= FL4 XR 4:LIP2 11 X- SP8 LIP3 SP9 LIPS SP10 

LlP4 SP11 LIL2 K6 LL499 SP8 LIP2 SP9 LIP3 SP10 LIPS SP1i 
LIG76 K6 LIP2 L1 X- SPB LIP~ SP9 LIP3 SP10 LIPS SP11 LIL2 
K6 XR 3:JL6 

$ 5:7:LIG70 K2 SP2 LIP2 LOX<= FLB XF 8:LIP2 SP5 L'S' SP6 
L'I' SP7 L'D' SP8 LIL2 K3 JL7 XR 6:XF 
2:D11 499:C"MOVE %N PROM %C TO %C*N" 

G115 
z 

We see in this that a sequence of instructions is represented 
rdther compactly and in a form in which we might read it more 
~asily than in octal (once we get used to it!). 

The language MINICODE is made up from: 
a) executable instructions, 
b) storage reservation instructions, 
c) labels, 
d) pseudo-instructions (messages to the assembler), and 
e) comments. 

In the example above LIP2 is an executable instruction, D11 is a 
storage reservation instruction, 499: is a label and Z is a 
pseudo-instruction. There are no comments in the example, since 
this MINICODE was produced by machine fcom a program in BCPL. 

2.2.1. Executable Instructions 

The precise form (syntax) of an executable instruction is 
as follows. 

( L ) 
( s ) 
( A ) ( p ) 
( J ) I ( G ) n 
( T ) +-+ ( L ) 
( F ) +-----+ 
( K ) 
( X ) 

Hert, ( ) indicates a select ion of dlterna ti ves, +-+ indicates 
that what stands above it is optional, i.e., may be left out, 
and n stands for a decimal integer (usually non-negative) oc a 
chardcter within apostrophes. After the letter X, the integer n 
may be replaced by an equivalent sugyestive symbol (see below). 
~xamples of executable instructions are LIG70 K2 SP2. We . should 
take these and examine them together with the corresponding in-

<1> MINICODE is a derivation of the language INTCODE first 
d~scribed by Martin Richards [R3]. 
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struction in octal and binary. Thus 

LIG70 #005106 0 000 101 001 000 110 

means that the operation is 'load 1 , the I- and G-flags are on 
and the raw operand is 70 or #106. The instruction 

K2 #060002 O 110 000 000 000 010 

means that the operation is •call' and the raw operand is 2. 
There are no flags on. The instruction 

SP2 #012002 0 001 010 000 000 010 

means that the operation is 'store• the P-flag is on and the raw 
operand is 2. 

A more systematic description of the operations of the 
ideal computer is now in order. If some of the details are not 
clear, then we should not worry for the moment but should remem­
ber this list for later reference. 

Here it is assumed that dis the value of the operand after 
index modification and indirect a4dress calculation, if any, has 
be1;::n completed. When an instruction is fetched, then the C-reg­
ister is first incremented so that it points to the next 
instr:uction. 

0) Ld (boad d) copies the content of the A-register to the B­
register: and then loads the operand d into the A-register. 

1) Sd (~tor:e d) copies the content of the A-register to the 
cell at address d. 

2) Ad (Add d) adds d to the content of the A-register: leaving 
the sum in the A-register. 

3) Jd (Jump to d) places din the control register c. 
4) Td (jump to d if Irue) places din the control register C 

if the content of the A-register is -1. 
5) Fd (jump to d if false) places din the control register c 

if the content of the A-register is 0. 
6) Kd (call a routine, with stack length d) places the 

content<i> of Pat address (P)+d (stack lin~, places (C) at 
(P)+d+1 (return address), places (P)+d in P (new environ­
ment) and places the (A) in C (address of routine). A 
detailed explanation of the meaning of this instruction will 
be giver. later. The curious may be interested to know that 
the address of the routine to be called is already in the A­
register. 

7) Xd (eJecute the operation number d). The operation speci­
fied by dis executed using registers A and B. Usually the 
result is placed in A. For example, X8 (or X+) adds the 
content of B to the content of A, and XS (or X*) multiplies 
the content of A by the content of B. It is important to 
notice that none of the execute instructions involves a 

--- c 1 > We shall often abbreviate "content "or P" to 11 (P) ''· 
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memory address directly. 

Note that Ld and Sd differ in that 
its~lf, ~hereas Sd stores a value 
treats d as a number ands treats d as 
useful, at this stage, to list all the 
tions. They are: 

instruction meaning 

XO no operation 
X1 X! dereference register 
X2 XN arithmetic negation 
X3 x-, logical negation 
X4 XR return to caller 
XS X* multiplication 
X6 X/ division 
X7 XI* remainder 
XS X+ addition 
X9 x- subtraction 
X10 X= equality 
xn X-.= inequality 
X12 X< less than 
X13 X>= not less than 
X14 x> greater than 
X15 X<= not greater than 
X16 X<< shift left 
X17 X>> shift right 
X18 X/1 and 
X19 XI/ or 
X20 X-.E not eguivalent 
X21 XE eguivalen·t 
X22 XF finish 

Ld loads the operand 
at the address d. Thus L 
an address. It may be 
standard execute instruc-

in BCPL-like notation 

A A . -.- !A 
A .. -.- -A 
A := -.A 
C := P!1, p . -.- P!O 
A := B * A 
A . - B I A .-
A . -.- B REM A 
A : ·= B + A 
A . - B - A .-
A := B = A 
A : ·= B ~-= A 
A := B < A 
A := B >= A 
A . -.- B > A 
A := B <= A 
A --.- B << A 
A . -.- B >> A 
A ':= B /I A 
A ·-.- B l/ A 
A ·-.- B NEQV A 
A . -.- B EQV A 
FINISH 

X2J X? case (seguen tial search) 
X24 casa (indexed jump) 
X25 read a character- A :-= RDCH () 
X26 write a character WRCH (A) . 
The operation X! takes the content of the A-register as an 

address of a cell and fetches the content of that cell into the 
A-register. The operation x-. reverses every bit in the A-regis­
ter, i.e., every O bit becomes a 1 bit and vice versa. The 
operations X/lr XI/, X-.E and XE are bitwise logical operatioris 
on the contents of the A- and B-registecs whichr for each pair 
of bits, delivers a corresponding bit in the A-register, accor­
ding to the following table 

A B /I I/ -,E E 

0 0 I 0 0 0 1 
0 1 I 0 1 1 0 , 0 I 0 1 , 0 
1 1 I 1 1 0 1 

An explanation of other operations will be given in the subse-
quent text. 
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2.2.2. The storage reservation instructions 

It is important to remember that a storage reservation in­
struction is not executed. Its purpose is to help in storing 
data items (constants) needed by the program. There are storage 
reservation instructions for 

a) cell storage, 
b) character storage, and 
c) global storage. 

The first two reserve storage in the program section of memory 
and the third involves storage in the global array. An example 
of a cell storage instruction is D39, which sets aside the next 
cell with the value 39 in it, or DL499, which sets aside the 
next cell with the value (address) of label number 499 in it. 
since characters may possibly be stored more than one per cell, 
there is a special storage instruction for them. ~n example is 
C65, where 65 is the ASCII value of the character A. It is also 
possible to use the characters themselves, within guotes, e.g., 
C"HELLO" is equivalent, in ASCII, to the sequence of instruc­
tions CS C72 c6q C76 C76 C79, the first instruction, CS, gives 
the length of the character string. 

2.2.3. Labels 

A label is of the form n: , where n is some small positive 
decimal integer, e.g., 5: • It is important to note that the 
number which appears in the label is not necessarily the actual 
address of the cell containing the instruction which it pre­
cedes. For example, 5: does ~2£ mean that the next instruction 
is stored in cell number 5. The relation between the label 
number and the actual cell at which its instruction is stored is 
usually a well-kept secret, known only to the assembler and the 
loader. 

2.2.4. Pseudo-instruction 

There are two pseudo-instructions in the MINICODE assembler 
language. One is the letter Z which indicates the end of a sec­
tion. A section is a piece of code across which labels may be 
referenced. This means that if a label appears in one section 
of code, then it may not be referenced from another section. In 
the following example 

4:LIP2 SPS LIG143 K3 JL4 Z 
JL4 Z 

the second occurrence of "JL4" will reference label 4 which does 
not exist in its section. An error will therefore result. All 
communication between sections of a program is done via the ad­
dresses in the global array. 

The othgr pseudo-instruction is a dollar symbol. It marks 
the entry to a routine or a function, and is mostly used to aid 
readability. 



12 The Essence of Computer Science 

2.2.5. Comments 

Comments are remarks which m~ght be useful to the human 
reader in understanding the code. In MINICODE, a comment con­
sists of a solidus, "I", together with all characters to its 
right and up to the end of the line. An example of a line of 
MINICODE with a comment is: 

LIP3 SP7 LIG14 KS/ This writes one character 

Note that there are four occurrences of a solidus which do llQ! 
begin a comment. They are in X/, X/*, X/1 and XI/, which are 
equivalent to X~, X7, X18 and X19 respectively. 

2.3. A small example 

We are now perhaps ready to study a small program written 
in MINICODE. Do not be.disturbed by the fact that what it does 
is trivial. We need to start with the simplest of things so 
that the basic principles can be well established. The program 
will read two characters and then print one of them, the larger. 
The program is as follows. 

X25 SP2 X25 SP3 
LIP2 X> TL4 
LIP2 ,115 

4: LIP3 
5: X26 XF 
z 

/ read tvo characters 
/ compare them 
/ select the first 
/ select the second 
/ print a character 

We read it in the following way. The instruction X25 reads one 
character from the outside world and leaves it, as a binary num­
b er, in the A-register. For e xa mple, if the character read were 
•R•, then the number in the A-register would be 66 or #102 (in 
binary O 000 000 001 000 010). The instruction SP2 stores the 
content of the A-registec in th stack at the cell pointed to by 
the content of the P-register plus 2 c,,. The instruction X25 
rea s one more character from the outside world into the A­
register and SP3 stores it in the next consecutive cell, P3. A 
picture of the stack at this stage is 

J 
p 

I char1 I char2 I 

The next instruction, LIP2, loads the content of stack position 
P2 into the A-register after pushing the previous content of the 
A-register into the B-register. The two registers now have the 
content as shown below. 

--- <1> we shall often shorten "the cell pointed to by the con­
tent of the P register plus n" to "Pn". 
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A 

B 

char 1 I 

' char2 I 

13 

The instruction X> compares the content of the two registers (as 
integers). i.8 •• it determines whether the relation "char2 > 
char1 11 is true. If it is true it puts -1 (true) in the A-regis­
ter, otherwise it puts O (false) in the A-register. 

The instruction TL4 performs a jump to the label 4 if the 
content of the A-register is true (-1). The instruction LIP2 
first loads the content of stack position P2 (the first charac­
ter) into the A-register and JL5 jumps to the label 5. At label 
4 the content of stack position PJ (the second character) is 
loaded into the A-register by the instruction LIP3. At labels. 
the content of the A-register is written to the outside world, 
by x26. as a character. The program finishes ~ith the instruc­
tion XF. 

Having seen the details of this program, it might now be 
instructive to examine the MINICODE for the same program genera­
ted automatically from the high level language BCPL. The 
instructions in that language are 

GLOBAL$( START:1; RDCH:13; "irlRCH:14 $) 
LET START() BE 

$ ( LET A = RD CH () 
LET B = RDCH () 
WRCH(A > B -> A, B) $) 

The strange numbers, 13 and 14, are there because the BCPL 
system happens to store the entry address to the read-a-charac­
ter routine. RDCH, in global cell number 13. Similarly the 
entry to WRCH is stored in global cell 14, and the entry to the 
START routine is always in globdl cell 1. The expcession A> B 
-> A, B, means "if A is greater than B, then the value is that 
of A; otherwise, the value is that of B". 

The MINICODE generated automatically by a compiler is as fol­
lows. 

$ 1:LIG13 K2 SP2 LIG13 K3 SP3 LIP2 LIP3 X> FL4 
LIP2 SP6 JL3 4:LIP3 SP6 

3:LIG14 K4 XR 
G1L1 
z 

The dollar symbol marks the entry to the START routine. The 
instruction G1L1 ensures that the entry address to the START 
routine is loaded into global cell 1. Upon comparing this code 
with that developed above, it will be clear that code produced 
by a compiler is usually not as concise as that which might be 
produced by hdnd, since the compiler must try to treat many dif-
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ferent things in a uniform manner. At the present time ve shall 
not analyze further either the program in BCPL or the code pro­
iuced automatically, since our immediate aim is the 
understanding of MINICODE. 

2.3.1. Another example 

The next example prograw prints the content, n, of some 
memory cell as a non-negative octal number, in a given number, 
d, of print positions. For example, the 16 bit binary integer 

0 101 010 110 011 111 

would be printed in 6 print positions as 

052637 

Observe how easy it is for a human to do this translation! It 
is only necessary to split the binary integer into groups of 
three bits each, starting from the right. Each group then is 
r e presented by some octal digit. For example, the binary number 
01011110 should he viewed as 01 011 110 and then printed as 136. 

An interesting solution arises by arguing as follows. If 
the value of d, the number of print positions, is one, then we 
can print only one digit, which is the octal digit representing 
the rightmost three bits. If the value of dis greater than 
one~ then detach the rightmost three binary digits, print the 
left hand part in d-1 print positions and then print the digit 
representing the rightmost three bits. Since there is a subtle­
ty here, we shall say this again in terms of the example given 
above. Thus, to print the binary integer 

0 101 010 110 011 111 

in 6 print positions, all we need do is to prigt the binary in­
teger 

0 101 010 110 011 

in 5 print positions, i.e., 05263, and then to print the octal 
digit representing the binary integer 111, i.e., 7. 

What we have shown is that the problem of printing a non­
negative integer in octal with d print positions can be reduced 
to that of printing an integer, in octal, in d-1 print posi­
tions, and therefore, eventually to that of printing an integer, 
in octal, in one print position. 

The principle involved in this solution is known as recur­
sion, and the program is expressed in BCPL as follows: 

GLOBAL$( WRCH:14 $) 
LET wRITEOCT (N, D) BE 

$( IF D > 1 THEN WRITEOCT(N>>3, D-1) 
\\RCH(N /I 7 + '0') $) 
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We do not intend to make a systematic study of BCPL yet. That 
will come later. For the moment the display, in BCPL, of some 
programs under discussion, may be helpful, and occasional re­
marks will be made to aid the understanding of them. Since, in 
this chapter, every BCPL program vill be accompanied by its 
translation to MINICODE, the meaning of any construct can be 
determined from the translation. In the above, the expression 
N >> 3 yields the value of N shifted right by 3 bits, the va­
cated positions on the left being filled with zeros, and N /I 7 
yields the rightmost three bits of N, all the other bits being 
set to O. In MINICODE, for example, if the content of the B­
register is #0325 (in binary O 000 000 011 010 101), and that of 
the A-register is 7, then after the instruction X>>, the content 
of the A-register will be O 000 000 000 000 001 in binary. With 
the same initial conditions, the content of the A-register, in 
binary, after the instruction X/1, will be O 000 000 000 000 
1 O 1. 

But we should write this program in MINICODE. 
that n is in P2 and dis in PJ, this might be: 

3:LIP3 T..1 X> FLS 
LIP2 13 X>> SP6 
LIP3 L1 X- SP7 
LL3 K4 

5 : L 7 LI P 2 X/ I A ' 0 1 

X26 XR 

2.3.2. The stack 

I is d > 1? 
/ store n>>3 in P6 
/ store d-1 in P7 
/ call the routine starting at 
/ n /I 7 + '0' in register A 
/ write and return 

Assuming 

label 3 

In order to follow what is happening here, we should exam­
ine the content of the stack at each stage. Initially, 
supposing n=t54 and d=2, we have 

I #541 2 I 
-----~---
• p 

After the instructions LIP3 11 X>, and because 2>1 is true, we 
have -1 (true) in the A-register, and the stack is unchanged. 
The instruction FL5 therefore does not result in a jump. After 
the instructions LIP2 L3 X>> SP6, the stack is 

.f. 
p 

#541 2 I 5 I 

since X>> shifts the content of the B-register right by a, where 
a is the content of the A-register and with the result deposited 
in the A-register. After the instructions LIP3 L1 X- SP7, the 
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stack is 

-.-
1 I #541 21 51 1 I 

• 

The instruction LL3 puts the address of label 3 in the A-regis­
ter ready for a call, and the instruction K4 executes that call. 
This has the effect of changing the P-register so that it points 
four cells beyond where it pointed before. The stack is now 

I #541 21 SJ 1 I 

The next instructions to be executed are at the label 3, viz., 
LIP3 L1 X>. This will result in a O (false) in the A-register, 
since 1>1 is false, and PLS causes the instruction counter to be 
changed so that control jumps to label S. The next instructions 
are L7 LIP2 X/1 A'O', vhich calculate the ASCII n~mber repre­
senting the rightmost three binary digits of the value in P2. 
~n more detail, after L7 and LIP2, the A- and B-registers con­
tain 5 and 7 respectively. In binary these are 101 and 111. 
The operation X/1 now takes the logical-and of these t~o binary 
oull'ber-s, which is 101 and deposits this in the A-register (r-~ 
dundant in this case). The instruction A'0' will convert this 
to the internal coding of a digit as a chacacter, since we know 
that the decimal digits are encoded consecutively. The instruc­
tion X26 prints the character 5. The instruction XR then 
returns to the callee. It moves the stack pointer back and exe­
cution resumes at the point after the last call, i.e., at label 
5. The stack now appears as 

~----T-· 

I I 

• p 

I #541 21 

and the instructions 5:17 LIP2 X/1 A'O' calculate, in the A-reg­
ist~r, tne ASCII numb€r corresponding to the digit 4. The 
instructions X26 XR now print the character 4 and return to the 
callee. This shows, for example, how the content of some cell 
will be printed in two ~riot positions. 

2.3.3. The stack linkage 

In the example just given we discover that a routine is 
called. The effect of a call is to "move" the stack pointer P 
forward by n cells, were the call is Kn. The return "moves" the 
stack pointer back to where it was before the call. The mechan­
ism used involves the first two stack cells, PO and P1, to help 
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in this process. Cell PO is used to store the previous content 
of P, and P1 is used to store the return address, i.e., the ad­
dress of the next instruction after the call. 

A more complete picture of the stack, after the call, K4, 
in the above example, is 

, 
r I 

-.---
I I #541 21 (I) 5: I 51 1 I 

.. 
p , 

where "5:" indicates that the address of label 5 has been stored 
in P 1. 

We may see now how the intruction XR (return to caller) can 
work. our machine accomplishes this by copying the content of 
stack cell P1 to the c-register and by copying the content of 
the stack cell PO to the P-register. Thus the return-to-callee 
is accomplished easily. 

The mechanism of a call is a little more complicated. It 
must first set up two cells ready for the return. The steps, 
with the call Kn, are as follows: 

a) copy the content of . P to Pn, this sets up the backward 
stack link, 

b) copy the content of C to P(n+1), this stores the return 
address, 

c) add n to P, this moves the stack pointer forward n cells, 
and 

d) copy the content of A to c, this loads the address of the 
entry to the called routine into the c-register. 

Since at the time of a call, register A contains the address of 
the routine to be called, this means that the next instruction 
will be taken from the entry to that routine. 

2.3.4. A variation 

It is easy to divide a non-negative integer by eight using 
a shift instruction. One must shift right by 3, since each 
right shift by one bit divides the content by 2. On most compu­
ters a shift instruction is faster than the divide instruction. 
This is why we used it in the example above. If we were to 
print a non-negdtive number in decimal ih a given number of 
print positions, then the routine needs to be altered a little. 
In BCPL it would be 

GLOBAL $ ( ~RCH: 14 $) 
LET WRD (N, D) BE 

$( IF D > 1 THEN WRD(N / 10, D - 1) 
WR D ( N R EM 1 0 +· ' 0 ' ) $) 

In this, tha shifting is replaced by division, i.e., we have 
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~ / 10 instead of N >> 3. Also N REM 10 delivers the remainder 
after division of N by 10, and replaces N /I 1. which for octal 
is usually faster. The code produced by the compiler is: 

$ 1 : / LET WRD(N. D) BE 
LIP3 11 X> FL4 /$(!FD> 1 THEN 
LIP2 110 X/SP6 I N/10 
LIP3 11 x- SP7 I D-1 
LIL2 K4 I WRD( ••• , ••• ) 

4:LIP2 110 X/* A'0' SP6 LIG14 K4 I WRCH(N .REM 10 + • 0') 
XR I $) 

2:DL1 • 

Compare this code with the hand coded version in section 16 
above. Apart from replacing X>> by X/ and X/1 by X/*, the 
compiler-produced code treats WRCH as a routine like any other 
routine, and it is called in a standard way, viz., SP6 LIG14 K4. 
The 14-th global cell contains the address of the routine WRCH. 
Note that the 2:DL1 is the compiler's way of remembering the 
entry to the routine WRD. It uses this on the line LIL2 K4 when 
the routine is called. 

2.3.5. Printing in decimal 

In general, the routine defined in the above section is not 
too useful because a) it does not work when the number is nega­
tive and b) it does not suppress leading zeros. as is the usual 
custom. Instead, we shall now considec a coutine which will 
print a number, in decimal, in the minimum number of print posi­
tions. For example, the number 237 should take three print 
positions and the number -7 should take two. A solution, if the 
number is non-negative, might be 

GLOBAL$( iRCH: 14 $) 
LET WRPD (N) BE 

$( IF N > 10 THEN WRPD(N/10) 
WRCH(N REM 10 + 1 0') $) 

The difference between this and the preceding routine is that it 
stops calling itself when N <= 10 ·rather than when D = 1. Its 
translation to MINICODE is 

$ 1: 
LIP2 L10 X> FL4 
LIP2 110 X/ SPS LIL2 K] 

4:LIP2 L10 X/* A'0' SPS 
LIG14 K3 
XR 

2:DL1 

/ LET WRPD(N) BE 
/$(IF N > 10 THEN 
/ WR PD ( N / 1 0) 
/ N REM 10 + '0' 
/ WRCH( ••• ) 
/ $) 

• 

Again, this does not work if the number is negative, so we 
might consider the following additional routine 

GLOBAL$( WRCH:14 $) 
LET W RD (N) BE 

TEST N < 0 THEN 
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$ ( WRCH { 1 - 1 ); :WRPD (-N) $) 
OR WRPD (N) 

Here the command TEST b THEN c1 OB c2 tests the condition b; if 
it is true then the command c1 is executed; otherwise, the com­
mand c2 is executed. The translation to MINICODE is 

$ 4: 
LIP2 LOX< FL7 
L1 -' SP5 LIG14 K3 
LIP2 XN SP5 LIL2 K3 
JL8 

7:LIP2 SP5 LIL2 K3 
B:XR 
2:DL1 5:DL4 

/ LET WRD(N) BE 
/ TEST N < 0 THEN 
/ $( WRCH( 1 -') 

/ WRPD (-N) $) 

/ OR WRPD (N) 

• 

The reader should now experiment with this to see whether 
it really works. He will find, in fact, that it will work cor­
rectly on all numbers except one. The one on which it does not 
work is the largest negative integer, i.e., the integer -(2 to 
the power(n-1)), where n is the cell size. The problem here is 
that the negative of such a number is too large for a memory 
cell, in two's complement form, so the results will be unpre­
dictable. But there is a way ou~- We may program it instead as 
follows 

GLOBAL$( WRCH:14 $) 

LET WRD (N) BE 
TEST N < 0 THEN 

$ ( WRCH ( 1 -'); iRPD (N) $) 
OR WRPD (-N) 

AND WRPD .{N) BE 
$( IF N < -10 THEN iRPD(N/10) 

WRCH(-(N REM 10) + 1 0 1 ) $) 

This solution depends upon feeding only negative numbers to the 
routine WRPD, and in changing that routine to manipulate only 
negative numbers. It also dep~nds upon the knowledge that the 
expression 

A REM B 
is always equal to 

A - ( (A / B) * B) 

for all values of A and B, whether positive or negative. For 
example, -7 / 5 is -1 and ~7 REM 5 is -2. This fact may disturb 
some mathematicians interested in number theory, but it turns 
out to be convenient here. 

2. 3. 6. More printing of decimals 

Often our requirement is not to print an inteqer in the 
minimum of print positions, but to print it in a given number of 
print positions, but with leading zeros replaced by spaces and 
with the negative sign, if appropriate, appearing in front of 
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the first significant digit. This is the most helpful way if 
integers are to be printed in columns. A solution to this along 
the lines given above is not easy. Instead, ve display now the 
routine from the BCPL library. 

WR ITED (N, D) BE LET 
$(1 LETT= VEC 20 // create an array of 21 contiguous cells 

AND I, K = O, -N 
IF N<O THEN D, K := D-1, N 
T!I, K, I:= -(K REM 10), K/10, I+1 REPEATUNTIL K=O 
FOR J = I+1 TOD DO WRCH(' ') 
IF N<O DO WRCH('- 1 ) 

FOB J = I-1 TO O BY -1 DO WRCH (T!J+'0 1 ) $) 1 

Its translation to MINICODE is 

$ 8: 
LP7 SP4 
LO SP5 LIP2 XN SP6 
LIP2 LOX< FL60 
LIPJ 11 X- SP3 LIP2 SP6 

60:61:LIP6 110 X/* XN SP28 
LIPS AIP~ SP29 LIP28 SIP29 
LIP6 L10 X/ SP6 
11 AIPS SP5 
LO LIP6 X= FL61 
11 AIP5 SP28 
LIPJ SP29 JL62 
63:L' 1 SP32 LIG14 K30 
LIP28 A 1 SP28 

62:LIP28 LIP29 X<= TL63 
LIP2 LOX< fL64 
L'-' SP30 LIG14 K28 

64:LIPS 11 X- SP28 JL65 
66:LIP28 AIP4 X! A1 0' SP31 LIG14 

LIP28 AIL499 SP28 
65:LIP28 LOX>= TL66 

XR 
499:D-1 

2.3.7 Arrays 

/ LET WRITED{N, D) BE 
/ $(1 LETT= VEC 20 
/ANDI, K = O, -N 
I IY N < 0 THEN 
/ D, K : = .D- 1 , N 
/ -(K HE~ 10) 
/ T!I := ••• 
/ K := K / 10 
I I:= I+ 1 
/ REPEATUNTIL K = 0 
/ FOR J =I+ 1 
/TOD 
/ WRCH(' ') 
I / I increment :r 
I ••• DO 
/ IF N < 0 THEN 
/ WRCH('-') 
/ FOR J = I-1 

K29 / WRCH(T!J+'O') 
/ BY -1 
/TOO DO 
I $) 1 

It is worth taking a close look at this routine, for it 
introduces us to the concept of an array, i.e., a set of contig­
uous storage cells reached by the same name. The declaration 
LETT= VEC 20 reserves 22 cells on the stack. Note that its 
translation is LP7 (DQi LIP?) SP4, which places the address of 
P7 into the cell P4. The 21 cells from P7 to P27 may now be 
usea as an array and accessed as T!O to T!20. After the decla­
ration AND I, K = O, -N, two more cells PS and P6 are reserved 
with values placed in them. The stack now looks as follows 
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' 01 -NI t 

D T I K T!0 T! 1 
• 

The cext point of importance is the manner in which the 
e l eme nt s of the array are accessed. If the value of I satisfies 
0 ~ I $ 20, then the value of the expression T+I is the address 
of the I-th element of the arLay T. Notice that this is com­
pute d by the instructions 

L.IPS AIP4 SP29 , 

where I is in PS and Tis in P4. The value of T+I is then 
stored in P29, ready to be used as an address. 

The routine WHITED works by dividing the given integer suc­
cessively by 10 until the quotient is zero, storing the 
successive remainders in the array T and counting bow often this 
is done. When this i~ complete, then the j-th element of the 
array T holds the j-th decimal digit, from the right, of the 
integer to be printed, and I contains the number of its s~gnifi­
cant digits.. If the int"eg,er is non-negative, then ve must first 
print D-I spaces and then the significant decimal digits in the 
reYerse order from that in which they were found • .If the inte­
ger is negative, then we must also allow space for the minus 
sign .. 

Observe that the basic calculation of the digits to be 
printed is made in the command 

T!I, K, I:= -(K REM 10) r K/10, I+1 REPEATUNTIL K=0 

Here T!I should be read as "T subscript I", indicating that we 
want the I-th element of the array T. Its address is the value 
of I+ T. Note also that the significant digits of the given 
integer are printed by the command 

FOR J = I-1 TOO BY -1 DO WRCH(T!I+'0') 

in which the value of Dis not used! The allowance for the neg­
ative sign is accomplished by the command 

IF N < 0 THEN D, K := D-1, -N 

A rather good feature of the routine WRITED is that, if the 
value of Dis too small, then the complete integer is neverthe­
less printed, with no information lost. Thus the effect of the 
call WRITE(N, 0) is equivalent to the call WRD(N) as discused in 
the precading section. 
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2.3.8. Printing in hexadecimal 

It is somet~mes convenient to be able to print numbers in 
hexadecimal (base 16). The usual convention is to allow the 
first six letters of the alphabet, A to F, to represent the 
digit values ten to fifteen. Thus a hexadecimal integer FF is 
255 in decimal and hexadecimal 100 is 256 in decimal. 

A routine for writing a non-negative integer in hexadeci­
mal, in a given number of print positions is 

GLOBAL$( WRCH:14; WRITEHEX:75 $) 
LET wRITEHEX(N, t) BE 

$( IF D>1 DO WRITEHEX(N>>4, D-1) 
wRCH ( (N/115) !TABLE 

1 0I, 1 1 1 , I 2 1 , t 3 I I~ 4 I I I 5 1 1 I 6 1 , t 7 I, 

1 8 1 , 1 9 1 , 1 A 1 ,'B','C 1 , 1 D','E','F') $) 

This routine displays an interesting new feature. The value of 

TABLE 3, 1, 2 , 

for example, is the address of a set of contiguous cells con­
taining the constants which follow TABLE. It is thus an array 
and can be treated as such. The expression N/115, which yields 
the rightmost four bits of N, is then used to subscript the 
table in WRITEHEX. The translation to MINICODE is 

$ 14: I LET WRITEHEX(N, D) BE 
LIP3 11 X> FL82 / $( IF D > 1 THEN 
LIP2 14 X>> SP6 I N>>4 
LIP3 11 x- SP7 I D-1 
LIG75 KU I WRITEHEX( ••• , ••• ) 

82:115 LIP2 X/1 AL83 X! SP6 I (N/I15) ! TABLE . . . 
LIG14 K4 XR I WRCH { ••• ) $) 

83:D'O' D' 1 ' D'2 1 D1 3 1 D 1 4 1 o•s• D1 6 1 D1 7 1 

o•s• DI 9 I D'A' 0 1 B 1 D'C' D'D' D1 E' D'F' 
G75L14 

The reader should consider now the possibility of generali­
zinq the routines given here to print numbers in any base. 

2.4. Character strings 

A character is represented within a computer cell by a non­
negative integer. In the ASCII system this integer lies in the 
range O to 127 and in the EBCDic<1> system in the range Oto 
255. Thus, the ASCII system needs only seven bits and the 
EBCDIC system requires eight. If our ideal computer allows 
eight bit characters, then it may accomm6date both systems, so 
this is what ~e shall do. Moreover, since a common cell size is 

<1> EBCDIC stands 
Interchange Code. 

foe Extended Binary-Coded-Decimal 
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sixteen bits, the choice of eight bits per character means that 
we may conveniently store two characters per cell. If we were 
to store strings of characters, one per cell, then this would be 
wasteful of space, although occasionally it is useful to do 
this. The standard way for storing strings in the BCPL language 
is to use an array of cells. There is thus one cell containing 
an address of a set of contiguous cells. Into these cells is 
placed, in successive eight bit "bytes", first the number of 
characters in the striny, followed by the integers which repre­
sent the characters. For example, the string "HELLO" would be 
stored as follows. 

, 

' 
f#S HI E LI L Of 

-------'--.&.------- - -----
observe that this limits the number of characters in a string to 
255 (or 28-1) at most, but this is not a severe limitation. On 
a computer with a cell size of 32 bits one may store four char­
acters per cell. 

The routine for printing a string in the BCPL library is 

GLOBAL$( WRCH:13; WRITES:60; GETBYTE:85 $) 
LET WRITES (5) BE 

FOR I = 1 TO GETBYTE (S, 0) DO WRCH (GET BYTE (S, I)) , 

which depends upon another more primitive routine GETBYTE. The 
call GETBYTE(S, I) yields the I-th byte of the string S. For 
example '!;he v,alue _ of GiTBY.TE (!''liELLO'-', 0) is 5 , (,the le-ngth of the 
string),,_ ~nd t~e value of -GET.$YTE("HELLO", 2) is 1 E1 • ·· The trans­
lation ' ot WRITES into MINICODE is 

$ 4: 
11 SPJ LIP2 SP6 LO SP7 LIG85 K4 
SP4 JL32 

33:LIP2 SP9 LIP3 SP10 LIG85 K7 
SP7 LIG14 KS 
LIP] A1 SP3 

32:LIPJ LI~4 X<= TL33 XR 

/ LET WRITES(S) BE 
I FOR I=1 ••• GETBYTE(S,0) 
I II upper limit in P4 
/ GETBYTE (S, I) 
I WRCH( ••• ) 
I II increment I 
I TO ••• DO 

It is also interesting to observe that the translation of 

LET START() BE WRITES{"HELLO") 

is as follows 

$ 1:11499 SP4 LIG60 K2 XR 
499:C"HELLO" 

We have seen this before, but now we may understand that the 
instruction 11499 loads the address of the string into the A­
register, SP4 stores that address at P4, LIG60 loads the address 
of the WRITES routine into the A-register and K4 calls the rou-
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tine WRITES. 

If we assume that Cll.P.C is the number of characters per 
cell, CELL.SIZE is the number of bits per cell, CHAR.SIZE is the 
number of bits per character, and CHAR.MASK is (2 raised to the 
power CHAR.SIZE)-1, then a completely general version of GETBYTE 
for any machine might be 

GLOBAL$( GETBYTE:85 $) 
LET GETBYTE{S, I) = 

(S!(I/CH.J".C) >> 
((CH.P.C-1) - I REM CU.P.C) * CHAR.SIZE) /I CHAR.MASK. 

If the cell size is 16 and the CHAR.SIZE is 8, then this may be 
written, for faster execution, in the form 

GLOBAL$( GETBYTE:85 $) 
LET GETBYTE(S, I) = 

(S! (I >> 1) >> ( (-.I /I 1) << 2) ) /I 255 

It would be a useful exercise for the reader to determine that 
this does indeed deliver what is expected. Its translation to 
~INICODE is 

$ 1: 
LIP3 L1 X>> AIP2 X! SP4 
LIP] X-. L1 X/1 L2 X<< SP5 
LIP4 LIPS X>> 1255 X/1 
XR 
G85L1 

/ LET GETBYTE(S, I) = 
/ S ! (I >> 1) 
/ ((-,I /I 1) << 2) 
I C~-- >> ••• ) /I 255 

Actually, some machines might be able to treat this function as 
a basic machine instruction, in which case further efficiency in 
execution is to be expected. There is an associated routine 
PUTBYTE which has the opposite effect from GETBYTE. Thus the 
call PUTBYTE (S, I, C) will store the character C in the I-th 
byte of the strings. For the details of PUTBYTE the reader 
should consult the source listing of the BCPL library. 

2.4.1. The remaining library routines 

This is almost the place for us to abandon our discussion 
of MINICODE, in favour of BCPL instead and the reader might wish 
to heave a sigh of relief! Up to the present our intention was 
to understand the machine and its assembler language. our know­
ledge of BCPL has been derived by some kind of "osmosis". We 
shall soon need to be more systematic. But before we make this 
change, we shall look at two more of the BCPL library routines 
as they appear in MINICODE, for these are an excellent source of 
well coded examples to use for illustration. The two are: that 
function which reads a decimal (base 10) integer, READN. and the 
focmatted output routine iRITEF. 

A simple minded-function for reading a decimal {base 10) 
integer might be 
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GLOBAL$( RDCH:13; Cil:71 $) 
LET RDN() = VALOF 

$(1 LET N, B = O, FALSE 
IF CH= 1 - 1 THEN 

$ ( B := TRUE; CH := RDCH () $) 
WHILE 1 0 1 <=CH<= '9 1 DO 

$ ( N : -= N * 10 + CH - 1 0' ; CH : = R DC H () $) 
RESOLTIS B -> -N, N $) 1 

In BCPL, the construction VALOF c, where c is a command, becomes 
an expression which yields a result. The command c must some­
where contain the command RESULTIS e, where e is an expression. 
Note that the function RDN expects that CH already contains the 
first character of the integer to be read. It depends upon the 
primitive function RDCR whose call, ROCH(), yields the next 
character from the input stream. The expression 

b -> e1, e2 

in BCPL, is interpreted as follows: if the value of bis tcue, 
then the value of the expression is that of e1; otherwise, it is 
that of e2. Observe carefully the code generated by B -> -N, 
N, in toe translation of RDN to"MINICODE. 

$ 1 : I LET RDN () = VALOF 
LO SP2 LO SP3 I $ ( LET N, B = o, FALSE 
L'-' LIG71 X= FL5 I IF CH-= ,_' THEN 
LIL499 SP3 LIG13 K4 SG71 I $ ( B . - TRUE; CH ·- ROCH() $) .- .-

5:JL7 / WHILE ... 
6:110 LIP2 X* AIG71 L'O' x- SP2 I $( N . - N * 10 ♦ CH - I O t .-

LIG 13 K4 SG71 I CH . - ROCH () $) .-
7:L 1 0 1 LIG71 X<= FLB I IO t <= CH 

LIG71 1'9' X<= TL6 I . . . <= I 9 I DO 
8: LI P3 FL10 LIP2 XN SP4 JL9 I B -> -N, 
10:LIP2 SP4 I N 
9: LI P4 JL4 4:XR I RESULTIS ... 
2:D11 499:D-1 I TRUE 

The 
tI:'ivial 
that the 

reader is expected to · wock through this MINICODE with a 
example to determine how it works. Suppose for example 
variable CH contains the character 1 2• and that the 

next two 
space. The 
integer 21. 

characters on the input stream are '1 1 followed by a 
result delivered must be the value of the decimal 

Although the function given above may be easy to follow, it 
suffers from the disadvantage already mentioned: one must assume 
that the first character of tha integer to be read has already 
been swallowed by RDCH. The function from the BCPL library, 
READN, which is reproduced below, overcomes this and other dis­
advantages. It is: 

GLOBAL$( RDCH:13; TERMINATOR:71 $) 

LET READN() = VALOF 
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$(1 LET SUM, NEG= O, FALSE 
$(1 TERMINATOR:= RDCH() 

SWITCHON TERMINATOR INTO 
$(CASE' ': CASE '*T': CASE '*N': LOOP 

CASE '- 1 : NEG:= TRUE 
CASE 1 +': TERMINATOR := RDCH() $) 

BREAK $)L REPEAT 
WHILE 'O'<=TEBMINATOR<= 1 9 1 DO 

$(SUM:= 10*SUM + TERMINATOR - 1 0 1 

TERMINATOR := RDCH () $) 
RESULTIS NEG-> -SUM, SUM $)1 • 

This furiction is rather similar to RDN as defined above, but it 
dlso allows for the possibility of ceading over blanks, new 
lin~s ('*N') and tabs ('*T') before reaching the integer. Also, 
it allows that the integer may be preceded by a plus sign ('+'). 
Another feature to notice is that when this function has yielded 
the integer, then t.he value of the variable TERMINATOR is the 
n~xt character from the input stream beyond that integer. The 
trdnslation to MINICODE is: 

$ 42! 
LO SP2 LO SP3 

131:LIG13 K4 SG71 
,JL 132 

LET READN() = VALOF 
$(1 LET SUM, NEG= O, FALSE 
$(L TERMINATOR:= RDCH() 
SWITCHON ••• 

134: 135: 1.36: 

/ 
/ 
/ 
/ 
I 
I 
/ 
I 
I 

$ ( CASE ' 1 : CASE 1 *T': CASE '*N': 
,JL 131 LOOP 

137:LIL443 SP3 CASE•-•: NEG:= TRUE 
118:LIG13 K4 SG71 JL133 
132:LIG71 X? 05 D1133 

CASE 1 +': TERMINATOR:= RDCH{) $) 
••• TERMINATOR INTO 

D' ' DL 13 4 D' *T' DL 13 5 
133:JL139 JL131 
139:JL141 

D'*N' 

140:LIP2 L10 X* AIG71 L'0 1 

SP2 
LIG13 K4 SG71 

141:L'O' LIG71 X<= FL142 
LIG71 L'9' X<= TL140 

142:LIP3 FL1U4 
LIP2 XN SP4 JL143 

144:LIP2 SP4 
143:LIP4 JL130 
1 30: XR 

I 
I 

x-
i 
/ 
I 
I 
I 
I 
I 
I 

DL136 D'-' D1137 D'+' DL138 
BREAK $)L REPEAT 
WHILE ••• 

/ 10 *SUM+ TERMINATOR - '0' 
$ ( SU.M := ••• 
TERMINATOR : = RDCH () $) 

1 0 1 <= TERMINATOR 
• • • <= '9' DO 
RES □LTIS NEG-> 

-:SUM, 
SUM 

$) 1 

443: D-1 / TRUE 

This example displays many interesting features. 
these is the switchon command, with the form 

One of 

SiITCHON v INTO 
$( CASE v1: s1 

CASE v2: s2 

··-CASE vn: Sn 
DEFAULT: Sd $) • 

This command allows for the choice of several different actions 
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depending upon the value of a variable. For example, if the 
value of v is v2, then control is transferred to command s2. 
Note how this is translated to MINICODE 

X? DLd Dv1 DL1 Dv2 DL2 .. - Dvn DLn 

~here the value in the A-register is to be compared successively 
with then values v1, v2, ••• 1 vn. If it is egual to one of 
them, say vi, then control is transferred to the instruction at 
the label Li; otherwise, control is transferred to the instruc­
tion at the label Ld (the default label), if that label is 
present, and otherwise to the command that follows the switchon 
command. 

Another interesting feature is the REPEAT, which modifies 
the command preceding it by making it into a loop, i.e., a com­
mand which is executed repeatedly. 

An associated command is LOOP, which transfers control to 
the end of the loop ready for another repetition. Another asso­
ciated command is BREAK. This command transfers control to the 
command that follows the loop. 

A better perspective on REPEAT, LOOP and BREAK might be got 
by knowing that the framework 

$ ( . . . ... LOOP 

BREAK 
. . . $) REPEAT 

is equivalent, in this instance, to the following chaotic mess 
of jumps 

L 1: ... ... GOTO L2 ... 
GOTO L3 ... 12: GOTO L1 
L 3: . 

2.4.2. Formatb~u write 

we consider now the formatted output routine WRITEF. 
Before giving the BCPL source, a few remarks about what it is 
supposed to do, are in order. The call WRITEF("HELLO") will 
produce exactly the same output as the similar call 
WRI·r.Es {uHELL0 11 ), but it is usually not used for writing strings 
only •. Another call, WRITEF("VALUE = %N", V), will write 

VALUE= 234 

supposing the value of Vis 234. Thus WRITEF acts like iRITES 
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on its first parameter except when that string contains a per­
cent symbol. If a percent symbol is present, then following 
that symbol may be one of two layout symbols. The layout sym­
bols and their purpose are summarized below, where it is assumed 
that the value of the next unused parameter is v. 

symbol action 

C 
s 
N 
Iw 
Ow 
Xw 

WRCH (v) 
WRITES (V) 
WRITED(v, 0) 
WHITED (v, w) 
WRITEOCT (v, v) 
WRITEHEX(v, w) 

Here it is understood that the character used for the layout 
symbol, w, is one hexadecimal (base 16) digit, i.e., O, 1, 2, 
••• , 9, A, B, ••• , F. If the character following the percent 
symbol is not a layout character, then the perce nt symbol is 
ignored and the character following it is written in the normal 
way. This allows the percent symbol itself to be written usinq 
11 %% 11 • The WRITEF routine in BCPL is: 

GLOBAL$( WRCH:14; WRITES:60; WRITED:68; WRITEHEX:75 
WRITEOCT:77; GETBYTE:85 $) 

LET WRITEF(FORMAT, A~ B, C, D, E, F, G, H, I, J, K) BE 
$ ( 1 L-ET T = @A 

FOR P = 1 TO GETBYTE(FORMAT, 0) DO 
$(2 LET CH= GETBITE(FOR~AT, P} 

TEST CH='%' THEN 
$(3 LET F, ARG, N = WRITED, !T, 0 

p := p + 1 
$ ( LET TYPE = GE·rBYTE (FORMAT, P) 

SWITCHON TYPE INTO 
$(4 DEFAULT: WRCH(TYPE); LOOP 

CASE 1 S': F := WRITES; GOTO DO.IT 
CASE 'C': F := WRCH 
CASE 1 N': GOTO DO.IT 
CASE 1 0 1 : F := WRITEOCT; ENDCASE 
CASE 'X': P := WRITEHEX 
CASE 1 I 1 : ENDCASE $)4 

P := P+1; N := GETBYTE(FORMAT, P) 
N := ( 1 0 1 <=N<= 1 9 1 ) -> N- 1 0 1 , N+10- 1 A1 

DO.IT: F(ARG, N); T := T+1 $)3 
OR WRCH (CH) $) 2 $) 1 

Note that the operator@, on the second line, yields the 
address of its right operand. Also, it will be useful to know 
that 

TEST b THEN s1 OR s2 

executes command s1 if bis true and otherwise executes the com­
mand s2. In the routine above, it is used to test whether we 
have a percent symbol or not. The translation of WRITEF to 
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MINICODE is: 

$ 17: 
LP3 SP14 
L1 SP15 LIP2 SP18 LO SP19 
LIG85 K16 SP16 
JL42 

43:LIP2 SP19 LIP15 SP20 
LIG85 K17 SP17 
L'%' LIP17 X= FL44 
LIG68 SP18 
1IP14 X! SP19 LO SP20 
L 1 l\I P 15 SP 15 
LIP2 SP23 LIP15 SP24 
LIG85 K21 SP21 
JL48 

50:LIP21 
52:LIGfiO 
53:LIG14 
54:JIL47 

SP24 LIG14 K22 JL51 
SP18 JIL47 
SP18 

55:LIG77 SP18 JL49 
56:LIG75 SP18 
57: JL49 

JL49 
48:LIP21 X? D6 DLSO 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

LET wRITEF(FORMAT, A, ••• , 
$ ( LET T = @A 
FOR P = 1 ••• FORMAT, 0 

GETBYTE( ••• , ••• ) 
DO 

K) BE 

FORMAT, P 
$(2 LET CH= GETBYTE( •• , ••• ) 
TEST CH='%' THEN 
$(3 LET F, •••=WHITED, ••• 

ARG, N = •••• !T, 0 
p := p + 1 

/ FORMAT, P 
/$(LET TYPE= GETBYTE( ••• , ••• ) 
/ SWITCHON 
/ $(4 DEFAULT: WRCH(TYPE); LOOP 
/ CASE 'S':F:=WRITES;GOTO DO.IT 
/ CASE 1 C 1 :F:=WRCH 
/ CASE 'N': GOTO DO.IT 
/ CASE 'O':F:=WRITEOCT; ENDCASE 
/ CASE 1 X1 :F:=WRITEHEX 
/ CASE j I I: 
/ $)4 
I ••• CH INTO 

ENDCASE 

D'S' D152 D'C' DL53 D'N' D154 D1 0' D155 D'X' DL56 D'I' D157 
49:11 AIP15 SP15 

LIP2 SP24 LIP15 SP25 
LIG85 K22 SP20 
1'0' LIP20 X<= FL59 
LIP20 L'9' X<= FL59 
LIP20 1'0 1 X- SP22 JL58 

59:110 AIP20 L 1 A1 X- SP22 
C,8:LIP22 SP20 
46:LIP19 SP24 LIP20 SP25 

LIP18 K22 
11 AIP14 SP14 
JL45 

44:LIP17 SP20 LIG14 K18 
45:51:LIP15 Al SP15 
42:LIP15 LIP1o X<= TL43 

XR 
47:DL46 

I P := P + 1 
I 
I 
I 
I 
I 
I 

FORMAT, P 
N := GETBYTE( ••• , ••• ) 
('O•<=N 

•••(=I 9 I) -> 
N - '0' 
N + 10 - 'A' 

/ N := • • • 
I DO. IT: ••• ABG, N 
I 
I 
I 
I 
I 
I 
I 

F( ••• , ••• ) 
T : = T + 1 $) 3 
OR 
WRCH (CH) $) 2 

// increment P 
TO ••• 

$) 1 

In this BCPL example there is a jump, GOTO DO.IT. In 
general, the use of jumps is poor programming practice and 
should be avoided. The reason is that source code containing 
jumps tends to be difficult to follow and even more difficult to 
establish correct. Moreover, since eKperience has shown that 
the major cost of software is in its maintenance, programs 
should be clear to those who did not create them. Programs with 
jumps are usually less clear. But despite this, Knuth [K] has 
shown that there are occasions when the use of a jump can be 
justified by the efficiency it brings. The routine WRITEF seems 
to be one of these. Moreover, this routine is probably one of 
tbe roost frequently used output routines in the BCPL library, 
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ana one should perhaps resist attempts to make it more 
11 structured 11 and possibly less efficient. All of this is a war­
ning that beginning programmers should n.gy~f use jumps in a high 
level language but should leave them only to the most ex­
p2~ienced. In the same way, amateur composers should never use 
discords. Only the masters know just where they can be tolerat­
ed. 

~ feature of the above routine, obs~rvable in its transla­
tion, is the knowl~dge that the address of a routine is a value 
which may be assigned. Thus, in the execution of the call 
WIU'i'EP ("V'I\LUE = %06", V), since the layout symbol following the 
~ercent symbol is the letter o, the variable Fis assigned the 
~adress oi the routine WRITEOCT. Consequently the call F(ARG, 
N) is equivalent, in this instance, to the call W~ITEOCT(V, 6). 

Obs~rve that WRITEP is defined as accepting twelve pacame­
t~rs, but that the routine works with any number up to twelve. 
Th~ paramete rs, of course, ace loaded consecutively onto the 

t ck before the call. The address of parameter A is captured 
by th e variable Tin the declaration 

LETT= @A 

whose translation to MINICODE is 

LP3 SP14 • 

Subsequently, whgn we must look for the next parameter, Tis 
incremented by the command 

T := T + 1 

on the line following the label DO.IT. 

2.5. The towers of Hanoi 

we take one more example to illustrate MINICODE. This is 
the famous puzzle whose solution nicely illustrates the power of 
recursion in a programming language.· 

The puzzle assumes that there are three pegs labelled the 
"source", the "intermediate" and the "destination". On the 
source peg are a number of discs of increasing size piled in 
pyramid fashion. 

I 
xx,xx 

XXXIXXX 
xxxx1xxxx 

xxxxx1xxxxx 

(source) 

The puzzle is to move this pile to the destination using only 
acc~ptable moves. An acceptable move moves only one disc from 

' 
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the top of one pile to the top of another, but never moves a 
disc on top of a smaller one. 

Observing that there is nothing to do if the number, n, of 
discs is zero, we solve the problem inductively. Assuming then 
that we know how to move n-1 discs from any one peg to any 
other, using the third as an intermediate, the solution is as 
follows. 

I 
XXIXX 

xxx,xxx 
XXXXfXXXX 

xxxxx,xxxxx 

(source) (intermediate) (destination) 

Move n-1 discs from the source to the intermediate. 

I 
I 
l 
I 

xxxxxrxxxxx 

I 
I 

XXfXX 
XXXIXXX 

XXXXt XX·XX 

Then move the bottom disc from the source to the destination, 

I 
I 

XXIXX 
XXXIXXX 

XXXXIXXXX 

I 
I 
I 
I 

XXXXXflXXXX 

Then move the n-1 discs from the intermediate to the destina­
tion. 

I 
I · 
I 
I 
I 

I 
XXIXX 

xxx,xxx 
XXXXIXXXX 

x:xxxx I xxxxx 

The routine, in BCPL, for performing the solution given 
above is 

LET 
$ ( 

HANOI (N, S, I, D) BE 
IF N = 0 RETURN 
HANOI (N-1, S, D, I) 
WRITEF("MOVE %N FROM 
HANOI(N-1. I, S, D) 

%C TO %C*N", N, S, D) 
$) 

and its call is included in the following routine 

I 
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LET START() BE 
$( LET N = BEADN() 

IF N = 0 FINISH 
HANOI(N, 'S', 'I', 'D 1 ) $) REPEAT 

The solution for the case n = 3, printed by the program 

MOVE 1 FROM s TO D 
MOVE 2 FROM s TO I 
110VE 1 FROM D TO I 
MOVE 3 FR0l1 s TO D 
MOVE 1 FROM I TO s 
MOVE 2 FROM I TO D 
MOVE 1 FROM s TO D 

The translation of these two routines to MINICODE is 

JL3 
$ 1: 

LO LIP2 X= FL4 XR 
4:LIP2 L1 X- SP8 

/ LET 
I $ ( 

I 
I 

HANOI(N, s, I, 
IF N = 0 RETURN 

N-1 
s, 

is: 

D) BE 

D, I LIP3 SP9 LIPS SP10 LIP4 SP11 
LIL2 K6 I . HANOI( ••• , . . . , ... , ... ) 
11499 spa LIP2 SP9 
LIPJ SP10 LIPS SP11 LIG76 K6 
LIP2 L1 X- SP8 
LIP4 SP9 LIP3 SP10 
LIPS SP11 LIL2 K6 
XR 

3:JL6 
$ 5:7: 

LIG7 0 K2 SP2 
LO LIP2 X= FL8 XF 

8:LIP2 SP5 L'S' SP6 
L'I' SP7 L'D' SP8 LIL2 K3 
JL7 XR 

6:XF 
2:D11 
499:C"MOVE IN FROM %C TO %C*N" 

G115 
z 

I II " N ... , 
I iiRITEF( .... , • • • I s, D) 

I N-1 
I I, s, 
I HANOI( ••• , ... , . . . , 
I $) 

/ LET START() BE 
/ $ ( LET N = R EADN () 
/ IP N ~ 0 FINISH 
/ N, 1 S', 

D) 

/ HANOI( ••• , ••• , 'I', 'D') 
/ $) REPEAT 

The loader arranges that the return address from the START 
routine is always the first cell of the program area. The com­
piler is therefore. careful to place in to this cell an 
instruction which jumps eventually to an XF (in the above exam­
ple by JL3, 3:JL6, 6:XF). In this particular program this turns 
out to be unnecessary, since a FINISH command is included expli­
citly. 

To use the assembler, no knowledge of its structure is 
ndeded; however, if we wish to understand how it works, tben a 
more detailed study of the software system is necessary. This 
is accomplished in the next chapter. 
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Chapter III 

The software system 

This chapter explains the basic software system associated 
with the ideal machine. Its purpose is a) to provide further 
examples of a variety of programming techniques, b) to round out 
our description of a complete programming system, and c) to 
clarify the distinction between an assembler, a loader and an 
interpreter, by a close study of each one. The assembler trans­
lates MINICODE programs into instructions, coded in octal, ready 
for loading. The loade~ loads the instructions into the comput­
er and the interpreter performs the fetch-execute cycle on the 
loaded instructions. Each of these will be explained as a BCPL 
program. It is assumed here that a knowledge of the BCPL lan­
guage has already been gained from elsewhere [R4]. 

3.1. The assembler 

Up to this point we have regarded the assembler as some 
kind of "black box" that does the right job. A complete under­
standing of the system, however, can only come with a detailed 
study of the construction of the assembler. Its purpose is to 
translate MINICODE instructions into octal integers representing 
instructions for execution by the ideal machine. This may at 
first appear to be a simple task. However, examination of the 
following sample of MINICODE 

1:LIP2 TL3 LIP3 LIP4 X< FL3 JL1 3:XR 

reveals a problem. How can one translate the instruction TL3 
without having yet encountered the defining occurrence of the 
label at 3:XR? The solution to this problem is one of the im­
portant things to learn about assemblers, but first we shall 
begin with the simple parts. 

We shall examine the assembler in stages and then put the 
pieces together later. The simplest routine, for a start, is 

GLCBAL $( RDCH:13; CH:101 $) 
LET RCH (} BE 

$(1 CH := RDCH() 
UNLESS CH= 1 / 1 RETURN 
UNTIL CH = 1 *N' DO CH : = RDCH () $) 1 .REPEAT 

Thus the purpose of RCH is to assign the next significant char­
acter from the input stream to the variable CH, ignoring 
comments. 

3.1.1. Reading constants 

The next function is RDCNST. Its purpose is to read a dec­
imal integer, or a character constant from the input stream, on 
the assumption that CH already 'contains its first character. 
The function is: 
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LET RDCNST() = VALOF 
$(1 LET A, B = O, FALSE 

SWITCHON CH INTO 
$(2 CASE •-•: B := TRUE 

CASE 1 +1 : RCH {) 
DEFAULT: WHILE 1 0 1 <==CH<== 1 9 1 DO 

$ ( A : = 10 * A + CH - '0 1 ; RCH () $) 
ENDCASE 

CASE '*' 1 : RCH (); A := CHAR() 
RCH () $) 2 

RESULTIS B -> -A, A $)1 

T~is function will be familiar since it is similar to functions 
studied earlier. The difference here is that RDCNST allows for 
a character constant in place of a decimal integer, so that the 
assembler may accept, e.g., L'A' as well as L65. The function 
RDCNST calls another function CHAR to interpret the reading of a 
character. We now present CHAR. 

LET CHAR() = VALOF 
$(1 LET A== CH 

IF A= '**' THEN 
$ ( 2 CH : = R DC H () 

A : = CH - I N' - > I·* N' , 
CB - 'P' -> '*P', 
CH = I T' - > I *T ' , 
CH = 1 S 1 -> '*S 1 , 

CH$) 2 
CH : = RDCH () ; RESULTIS A $} 1 

Tlie pur-pose of CHAR is to take care of those characters which 
may not be directly representable and for which the escape char­
actar is used. These are *N. *P, *T and •s. Thus, the 
assemblet will be able to read instructions like L'*N' correct-
1 y. 

3. 1. 2. The eight operations 

We shall now look at the routine OPERATION. 
assumes that we have already come to. an e~ecutable 
such as JIL2, and have read its first character. 
as a parameter to OPERATION, a value in which the 
tion bits or the instruction have already 
example, for JIL2, we pass the parameter 1020000 
bit cell size). The definition of OPERATION is: 

This routine 
instruction, 

We then pass. 
three opera­

been set. For 
(for a sixteen 

MANIFEST$( IBIT:14000; PBIT=#2000; GBIT~t1000 
ABITS=#0777; DBLBIT=#lOOOOOO $) 

LET OPEPATION(W) BE 
'.~(1 CH:= RDCH() 

IF CH = 1 I 1 

TiiEN $( W :=WI/ IBIT; RCH() $) 
IF' CH = ' ·L' 
THEN $ ( 2 RCH {) ; STW ( W I/ DBLBIT) 

LABREF (RDCNST (), P); RETURN $) 2 
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TEST CH== 'P' 
THEN$( W := W I/ PBIT: RCH() $) 
OR IF CH = 'G' 
THEN$( W := W l/ GBIT; RCH() $) 
Ii' W = #070000 

JS 

THEN$( W := W I/ ((•O•<=CH<='9') -> RDCNST(), lHNI.X() ) 
RETURN $) 

$ ( LET D = RDCNST () 
TEST (D /I ABITS) = D 
THEN STW (W I/ D) 
OR $ ( STW (W ,1 DBLBIT) ; STW (D) $) 1 

Note that OPERATION results in a two cell instruction in the 
cases that the operand is a label reference or when the operand 
is too large to fit into the space available in the cell. The 
latter occurs ~hen D /I ABITS =Dis false. The three new rou­
tines used by OPERATION are STW, MINI.X and LAHREF. The call 
STi(W) places the instruction Win the next available cell re­
served for the assembled program. The function MINI.X 
interprets the mnemonics for the execute instruction, e.g., X+, 
and the routine LABREF takes care of label references such as 20 
in LIL20. The definition of STW is: 

LET STW(W) BE 
$(1 !P ::= W; P, CP := P+1, 0; 

IF P > PROGMAX THEN 
$( WRITEF("*NSEGMENT TOO LARGE") 

FINISH $) 1 

Here it is assumed that the global variable P contains the ad­
dress of the next available cell in the assembled program area. 
The variable Pis then incremented immediately. The setting of 
CP, the character phase, to O is a precaution concerning the 
storage of characters. The routine STW has a built-in check, P 
> PROGMAX, that the program segment may be t90 large. 

3.1.3. The execute instructions 

The purpose of the function MINI.Xis to decode the special 
~INIC0DE execute instruction mnemonics, e.g., X+ is equivalent 
to X8. Observe that if we were always to write, for example, XB 
instead of X+, then the assembler does not need to do this extra 
work. However, the convenience and readability of MINICODE seem 
to suggest that it is worthwhile to add this little extra to the 
assembler. The operation of MINI.X can be learned easily from 
the following listing 

LET MINI.X() = VALOF 
SWITCHON CH INTO // CHAR BEYOND 'X' 

$(1 CASE'!': RCH(); RESULTIS 1 
CASE 'I.ii': RCH(); RESULTIS 2 
CASE ,.,, : RCH (); 

TEST CH=•:• THEN$( RCH(); RESULTIS 11 $) 
OP. TEST CH=' E' TUEN $ ( RCH (); RESULTIS 21 $) 
OH RESULTIS 3 

CASE 1 R': RCH (); RES0LTIS 4 
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CASE '** 1 : RCH ()--; RESULT.IS 5 
CASE 1 / 1 : RCH() 

TEST CH=' I' THEN$( HCH(); RESULTIS 18 $) 
OR TEST CH='**' THEN$( RCH(); RESULTIS 7 $} 
OR RESULTIS 6 

CASE 1 + 1 : RCH(); RESULTIS 8 
CASE 1 - 1 : RCH (); RESULTIS 9 
CASE'=': RCH(); RESULTIS 10 
CASE '<': RCH() 

TEST CH= 1 =1 THEN$( RCH(); RESULTIS 15 $) 
OR TEST CH='<' THEN$( RCH(); RESULTIS 16 $) 
OR RESULTIS 12 

CASE. ' >' : RCH () 
TEST CH='=' THEN$( RCH(); RESULTIS 13 $) 
OR TEST CH='>' THEN $( RCH(); RESULTIS 17 $) 
OR RESUL'IIS 14 

CASE I I ' : RCH () 
TEST CH='/' THEN$( RCH(); RESULTIS 19 $) 
OR RE.SOLTIS 19 

CAS E 'I::': RCH(); RESULTIS 20 
CAS E 'F': RCH(); P.ESULTIS 22 
CA S E'?': RCH(); RESULTIS 23 
DEFAULT: WHITEF("*NBAD CH IC", CH) 

RCB () ; RESULTIS O $) 1 

J.1.4. Labels 

• 

There is a basic problem with labels in any assembler lan­
quage. Since we l~ave it to the assembler where each 
instruction is to be stored, and since we may often use a label 
before we have reached its defining occurrence, we may not 
always know the precise address for a label. The resolution of 
this problem will now be discussed. 

The effect of the call LABREF(N, A) is to determine, if 
possible from the table of labels, the address of label number N 
and to store this in the cell whose address is in A. It must 
also allow for the fact that the label number referred to bas 
not yet been encountered. The defi~ition of LABREF is: 

LET LABREF(N, A) BE 
$(1 LET K = LABV!N 

TEST K < 0 THEN K :=-KOR LABV!N := A; 
! A := K 
IF A>= PROGRAMO THEN P := P + 1 $) \ 

From this one may see that the look-up of the address itself 
from the label number N ,is accomplished by 

LET K = LABV!N • 

If K is negative, this means that the address of the label is 
known. It is -K. If K is not negative, then this means that, 
either LABV!N is zero, i.e., this is the first reference to the 
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unknown label N, or it is the address of the place where the 
same unknown label was previously encountered. Note that if A 
does not point to the global area, A>= PROGRANO, then ve must 
increment the instruction pointer P. 

Since the resolution of labels is a vital part of the as­
sembly process, we shall illustrate it by an example. Suppose 
we are assembling the nonsense piece 

1:LIP2 TL3 LIP] LIP4 X< FL] JL1 3:XE 

in which there are two fo~ward jumps to the same label number 3. 
The code which has been generated by the time we have reached 
JL1 may be represented by the following diagra~ 

LAHV I -~ qi 

I I 
0 1 I 2 3 I 4 5 

< > 
< 

T < I 
r---,---Tf l I I 
I I I 01 I IP qi 
L-

1: LI P2 T-----13 LIP] LIP4 X< F-----13 J-----L1 . 
Here we see that the address of label 1 has already been re­
solved, but that of label 3 has not. The effect of the command 
LABV!N := A, followed by IA:= K, ~s to help create a chain of 
addresses, ending in O, connecting together all those places 
which reference the same unknown label. Thus, LABV!1 points to 
the position of label 1 in the generated code, but LABV!3 begins 
a chain of references to label 3, although that label has not 
yet been seen. After the assembler has encountered label 3, 
this becomes 

LABV I -qi I 
I 

0 1 I 2 
< 

~ 
T 

,-+ ,, 
I f 

1: LIP2 T-----13 LIP3 

-q, 
I 

3 I 

< 

LIP4 

4 5 
> 

> 
I 

I 
>--1--1 - -------+--.----.--~,-,-,,--.-

(p ~ I I 

X< F-----L3 J-----L1 3:XR 

This l~tter change is accomplished by th~ •routine SETLAB which 
is called wheri the defining occurrence of. a label is encoun­
tered. That routine is: 

LET SETLAB (N) EE 
$(1 LET K = LABV!N 

IF K < 0 THEN WRITEF("*NL%N ALREADY SET",N) 
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WHILE K > 0 DO 
$( LET W = !K; !K := P-PR0GRAMO; K := W $) 

LABV!N := PROGRAMO-P $)1 

The reader should work carefully through the loop beginning 

WHIL.E K > 0 DO 

to convince himself that it does follow the chain of references, 
as described above, and sets the label references correctly. 
The reason for P-PROGRAMO instead of P is that the assembler 
constantly maintains the fiction that it is assembling a segment 
which begins at cell number zero. This is a fiction because, on 
many actual machines, the first few cells of memory are usually 
reserved for thE exclusive use of the operating system. 

3.1.5. The main part 

The next part of the assembler to be described is the heart 
of it. The major portion is one large case command driven by 
the phrase 

UNTIL CH= ENDSTREAMCH DO 
SWITCHON CH INTO 

We shall look at a few of the cases involved. Those concerning 
labels are 

CASE 1 0 1 : CASE 1 1 1 : CASE '2': CASE 1 3': CASE 1 4 1 : 

CASE •s•: CASE 1 6 1 : CASE •7•: CASE •s•: CASE '9': 
SETLAB(RDCNST()); CP := O; ENDCASE • 

This takes care of the defining occurrence of a label by calling 
SETLAB, which vas described above, whenever one encounters a 
decimal digit. Note that CP, the character phase, is reset to 0 
to ensure that any character string constants which follow will 
be stored correctly. 

Executable instructions are handled, for a sixteen bit ma-
I • c.11ne, as follows 

CASE 'L' : OPERATION(tOOOOO); ENDCASE 
CASE 1 SI : OPERATION (#10000); ENDCASE 
CASE 1 A I : OPEBATION(#20000); ENDCASE 
CASE I JI : OPERATION(#30000); ENDCASE 
CASE 'TI : OPERATION (#40000); ENDCASE 
CASE IF I : OPERATION{i50000); ENDCASE 
CASE I KI : OPERATION (160000); ENDCASE 
CA.SB 'XI : OPERATION(#70000); ENDCASE 

Each of these cases calls the ro~tine, OPERATION, passing to it 
a parameter representing an ideal ma~hine instruction in which 
the operation bits have been set. The routine, OPERATION, then 
completes the assembly of the appropriate instruction, as de­
scribed earlier. 
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3.1.6. Storage reservation 

A storage 
letter D, e.g., 

reservation instruction, beginning with 
D-1, D'H' or DL47, is assembled as follows. 

CASE 'D': RCH () 
TEST CH= 'L' 
THEN$( HCH(); LABREF(RDCNST(), P) $) 
OR STW(RDCNSTO) 
ENDCASE 

39 

the 

If the datum is a label reference, e.g., L47 in D147, it calls 
LABREF, which has been dBscribed above; otherwise, it stores the 
Yalue following the letteI Dusing STW. 

The storage reservation instruction beginning with the 
letter G, must be of the form GnLm, where n and mare small non­
negative decimal integers, e.g., G101L1. This is handled by 

CASE 'G': RCH () 
$ ( LET A = RDCNST () + G 

TEST CH= 1 1 1 THEN RCH() 
OR WRITEF("*NBAD CODE AT iN", P) 
LABREF (BOCNST (), A) $) 

ENDCASE 

It checks that the letter Lis present and then calls LABREF, 
which has been described abov~, to allow for the storage of the 
appropriate address in the global vector. Note that the value 
o.f the var,iable G is the address of the first global cell. 

The assembly of the storage reservation instrqction begin­
niRg with the letter C allows either for the""primi.tive form 

CS C69 C76 C76 C79 
or its equiYalent 

It i~ assembled by 

CASE 'C': HCH () 
TEST CH='"' 

C"HELLO" 

THEN $(2 LET V = VEC 255 AND I= 0 
CH := RDCH () 
WHILE CH~='"' DO 

$ { I : = I + 1 ; V ! I = CH AR () $) 
STC (I) 
FOR J = 1 TO I DO STC (V?J); RCH () .$) 2 

OR STC(RDCNST{)) 
ENDCASE 

Note that the assembler allows for a maximum of 255 characters 
in the string with the form C" ••• "• •·. • 

The routine STC is machine dependent. For a sixteen bit 
cell size, storing two characters per cell, it is 
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LET STC{C) BE 
i (1 IF CP=O THEN $ ( STW (0); CP := 16 $) 

CP : = CP - 8; 
! (P-1) := ! (P-1) /I (C << CP) $) 1 

A more general routine is obtained by replacing 
11 CH.P.C*CHAR.SIZE" and 11 8 11 by "CHAR.SIZE". This is 
where it is essential that CP, the character phase, 
value zero at the beginning of a string constant. 

3.1.7. End of segment 

"16" by 
the place 

has the 

The pseudo-instruction z, which marks the end of a segment, 
is recognized by 

CASE 'Z': OFFSET:= WRITE.CODE() 
P, CP := PROGRAMO, O; RCH() 
EN DC ASE 

This cas~ calls the function WRITE.CODE, which writes out the 
generated code, in octal, for the segment just concluded. The 
function WRITE.CODE delivers the length of the code for all seg­
ments written out and the assembler uses this information, 
stored in OFFSET, to decide where to locate the next segment. 
It also resets P, the instruction pointer, and CP, the character 
phase. 

One might wonder vhy the code is not written out at the 
tim~ that each instruction is translated. One reason for not 
doing this, is that we must wait until all the labels have been 
resolved, unless we want to complicate thE;i loader. Another is 
that d more powerful assembler, such as that listed in the Users 
Guide [P2], ' compactifies ~he code by a rela~ive addres~ing tech­
nique [P1] and must have al.l the code of one section present to 
do this. · 

An 8SS€ntial paC"t of the assembler is 

CASE '$ 1 : CASE 1 : 1 : CASE 1 1 : CA.SE '*N 1 : RCH (); ENDCASE 

which skips over characters which are of no importance. 

This concludes our study of a simple version of the assem­
bler. 

3. 2. The loader 

The purpose of the loader is to read a load module, i.e., a 
set of octal numbers representing ideal machine instructions and 
data, into the computer. Perhaps the best way to understand the 
construction of a load module is to examine one which has been 
generated from a trivial example. 
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GLOBAL$( START:1; GREETING:101 $) 
LET ST ART() BE GREETING() 

GLOBAL$( WRITES:60; GREETING:101 $) 
LET GhEETING () BE WRITES ("BELLO") 

Here there ar8 two BCPL source program segments each ending with 
tt.tt. For purpos~ of illustration, the segments here are very 
sm~ll. In normal BCPL progra~ming a new segment is appropriate 
after eight or nine pages (about 500 lines) of code. These il­
lustrative segments generate the following MINICODE 

JL2 
$ 1:LIG101 K2 XR 2:XF 
G1L1 
z 
JL2 
$ 1:11499 SP4 LIG60 K2 XR 2:XF 
499:C"HELLO" 
G101L1 
z 

which, in turn, produce the follo~ing load module 

P000O00 
070000, 033405, 070000, 005145, 060002, 070004, 070026 
G000001 0+000002 

P000007 
033407, 070000, 003406, 012004, 005074, 060002, 070004, 070026 
002510, 042514, 046117 
G000145 0+000010 
• END 

This load module comes from a more sophisticated assembler than 
that described above. In particular, it inserts an XO (no 
operation) at the entry to each routine or function and reduces 
some of the two cell instructions to one cell by a relative ad­
dressing technique (see [ P1 ]) • Also, it is relocatable, i.e., 
the segments may be loaded into - any part of memory. Notice that 
the load module given above consists of two segments. Each seg­
ment begins with Pn, where n is the loading position, relative 
to zero, of the first instruction of the segment. The first 
segment is given the position zero and subsequent segments are 
given loading positions beyond those already loaded. After this 
follow a number of octal integers separated by spaces and/or 
commas. Then we have one or more occurrences of Gn m, where n 
is the octal number (0 for the first) of a global cell and mis 
the octal content to be loaded into it. Any cell, whether in 
the global or the program area, containing an address which may 
oe subject to relocation, is preceded by the characters "O+". 
The end of a load module is signalled by ".END". 
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3.2.1. Details of the loader 

The loader assumes that PROGRAMO contains the address of 
the first cell in the actual program area and it uses this as 
the initial relocation addend. The loader action is governed by 
a case command, driven by 

UNTIL CH= ENDSTREAMCH DO 
SWITCHON CH INTO 

The Pn is acc~pted by 

CASE 'P': RCH(); PGM := TROE 
A := PROGRAMO+OFFSET+RDO() 
ENDCASE , 

where RDO is a function which reads an octal integer, OFFSET is 
the length of previously loaded modules (initially zero) and PGM 
is a boolean (true or false) variable which is true when A is 
pointing to the actual program area. The variable A is thus 
given an appropriate address into which to load subsequent in­
structions. 

An octal instruction is loaded by 

CASE ' 0 ' : CASE I 1 I ! CASE •2•: CASE '3': 
CASE I 4 t ! CASE ' 5' : CASE I 6 I ! CASE I 7 t ': 

! A := RDO () 
IF PGM THEN $ ( A := A + 1 ; p := A $) 
ENDCASE . 

The purpose of the command beginning IF PGM THEN is to increment 
the actual loading position, unless A points to a global cell. 
The variable P keeps track of the next available position in the 
program area. A relocatable address is loaded by 

CASE 1 0': RCH(); RCH() 
!A := PROGRAMO+OFFSET+RDO() 
IF PG M THEN $ ( A : = A + 1 ; P : = A $) 
ENDCASE 

Note that the character'+' is ignored. A global cell number, 
i.e., then in Gn m, is handled by 

CASE 'G 1 : RCH(); PGM := FALSE 
A : = G + RDO () 
ENDCASE 

':'he end of the load module is detected by 

CASE '. ': 
UNTIL CH= '*S' I/ en= '*N' DO RCH() 
OFFSET:= P-PROGRAMO; ENDCASE 

which skips over the "END 11 and then calculates the length of 
code already loaded, which is needed for relocation of the next 
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module. Of course, we also need the following 

CASE '*S 1 : CASE 1 *N': CASE ', 1 : RCH (); ENDCASE 

to get rid of non-essential characters. Normally the loader and 
interpreter are combined together in one program. When the 
loader has finished its job, a state which is determined by rea­
ding the ENDSTREAMCH, it hands control to the interpreter. 

3.3. The interpreter 

Why do w~ need an interpreter? Well, as we have remarked 
before, the ideal computer does not necessarily exist, as a 
piece of hardware, although in these days of microprogramming, 
it miqht well be possible to make some computer with this facil­
ity look like the ideal computer which we have described. Those 
not fortunate to have such a facility, will have to make do with 
what is available. It is therefore necessary to make whatever 
computer we have at hand act as though it were our ideal comput­
er. This requires a program known as the interpreter. 

If our local computer already has a BCPL compiler, then the 
task is easy, for an interpreter written in BCPL is readily a­
vailable. But then 1 of course, we are not going to need an 
interpreter anyway, except tor pedagogic purposes, since we can 
translate our BCPL programs directly to the machine language of 
the local computer. If a BCPL compiler is not available, then 
the interpreter must be written in some other acceptable lan­
guage. For various versions of the interpreter see the MINICODE 
Users Guide [P2]. 

We shall now describe the actions of the interpreter. It 
is assumed, of course, that the program and the library routines 
have already been loaded. It is also assumed that the variables 
A, B, c, P and G represent the five registers, that G contains 
the address of the first global cell, G!O, that C contains the 
address of the next instruction in the program area of memory 
and that P points to a cell on the stack with P!O and P!1 al­
ready loaded with the appropriate contents. It is now necessary 
to describe the fetch - execute cycle. 

3.3.1. The fP.tch 

Assuming that Wis a cell used for holding the fetched in­
struction and that D will later be used to hold it~ operand, the 
cycle begins with 

W := ! C; C : = C + 1 

This fetches the instruction from memory and increments the in­
struction counter c. The next step is to find the operand, but 
first we must determine whether the instruction occupies one 
cell or two. Assuming a sixteen bit cell and the declarations 
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MANIFEST$( DBLEIT=#1000000; ABITS=#777 
IBIT=#4000; PBITt2000; GBIT=t1000; FSHIFT=9 $) 

this is done by 

TEST W /I DBLBIT = 0 
THEN D := W /I ABITS 
OR $ ( D := ! C; C := C + 1 $) 

, 

The raw operand is now in D and the instruction counter is in­
cremented again for a two word instruction. Note that on some 
computers W /I DBLBIT = 0 can be replaced by W >=O. 

3.3.2. Operation modification 

The next step is to examine the operand modifiers. This is 
accomplished by 

TEST w /I PBIT ,= 0 THEN D -- D + p 

OR IF w /I GBIT -,= 0 THEN D •·- D + G .-
IF w II IBIT ,= 0 THEN D . - !D .-

The variable D now contains the modified operand. Observe that 
P and G modification of the operand is mutually exclusive. 

3. 3. 3. Execute 

Now that the modified operand has been determined, the re­
mainder of the interpreter is relatively simple. It consists of 
two nested case commands as follows. 

SWITCHON (W >> FSHIFT) /I 7 INTO 
$(2 CASE O: B : ·= A; A ·-.- D· • ENDCASE 

CASE , : ! D ·- A· ENDCASE .- • 
CASE 2: A . - A + D; ENDCASE . ·-
CASE 3: C . -.- D· • ENDCASE 
CASE 4: A := .., A 
CASE 5: UNLESS A DO C . -.- D; ENDClSE 
CASE 6: D . - p + D; D!O, D! 1 := P, C .-

P,C:=D,A; ENDCASE 
CASF. 7: SWITCHON D INTO 
$(3 CASE 0: ENDCASE 

CASE 1 : A : ·= ! 1\; ENDCASE 
CASE 2: A := -A; ENDCASE 
CASE 3: A ·- .., A; ENDCASE .-
CASE 4: C : == p ! 1; p . -.- P!O; ENDCASE 
CASE 5: A : = B * A· ENDCASE • 
CASE 6: A --.- B I A; ENDCASE 
CASE 7: A . -.- B REM A; ENDCASE 
CASE 8: A ·-.- B + A; EN DCAS E 
CASE 9: A . - B - A; ENDCA.SE . -
CASE 10: A • -.- B = A; EN DC ASE 
CASE 11 : A ·- B -, = A· ENDCASE . • 
CASE 12: A ·-.- B < A; EN DC ASE 
CASE 12: A : = B >= A• • ENDCASE 
CASE 1 4: A : -= B > A; ENDCASE 
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CASE 15: A:= B <= A; ENDCASE 
CASE 16: A:= B << A; ENDCASE 
CASE 17: A := B >> A; ENDCASE 
CASE 18: A := B /I A; ENDCASE 
CASE 19: A := B I/ I\; ENDCASE 
CASE 20: a:= B NEQV A; ENDCASE 
CASE 21: A:= B EQV A; ENDCASE 
CASE 22: RETURN 
CllSE 23: B, D := C!O, C! 1 

UNTIL B=O DO 
$(4 B, C := B-1, C+2 
IF A= C!O DO 

$( D := C!1; BREAK$) $)4 
C := D; ENDCASE 

STEP CASE 24: A := A - C!O 
TEST O <=A<= C!1 
THEN C := C! (J+A) 
CR C := C!2; ENDCASE 

CASE 25: A:-=M.RDCH(); 
CASE 26: M. WRCH (A) ; 

II 
II 
II 
II 

WITHIN RANGE 
STEP IN 
DE.FAIJLT 

$)3 )$2 

ENDCASE 
ENDCASE 
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Arter this execution, the interpreter returns to the fetch part 
of its cycle. 

Observe how the construction of this part of the interpret­
er makes it easy for us to add new X-instructions, if we feel 
like it. Examination of the listing of the interpreter in the 
users Guide [P2] shows many useful additional X-instructions. 

some remarks are in order concerning the translation of Kn 
(the first CASE 6), which handles the call of a routine or func­
tion, whose address is in thB A-register. Since the value of D 
is n, the command 

D := D + P 

saves the new value of the P-register temporarily in D. The 
command 

D!O, D!1 := P, C 

inserts th6 backward stack link and the return address in the 
first two cells of the new stack frame and the command 

P, C : = D, A 

sets the P-register to its new value and puts the address of the 
first instruction of the called function or routine into the 
instruction counter. Note that the instruction X4 (or XR) 
easily returns to the status-quo by the commands 

C := P!1; P := P!O 

which must be consecutively executed, of course. 
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In the cases dealing with X25 and X26, it is assumed that 
~.RDCH and M.WRCH are similar to RDCH and WRCH respectively. 
They are not necessarily the same because, for example, one may 
Wdnt to load and execute a load module created under the ASCII 
system on a computer which uses the EBCDIC system. If this is 
the case, then both M.RDCH and M.WRCH will need translation 
tables. In addition, these are the two important primitives 
which communicate with the outside world (usually represented by 
the operating sy~tem). 

3.3.4. The case command 

Also observe that the execution of the instruction X23 or 
X? involves the loop 

UNTIL 8 = 0 DO 
$(4 B, C := B-1, C+2 
IF A= C!O THEN 

$( D := C!1; BREAK$) $)4 

~hich searches the cells containing the translation of 

Dn DLd DVl DLl ••• Dvn DLn 

assuming that C points originally to the first of them. 
BREAK is taken, then the . value in the A-register 
matched; otherwise, the original assignment of C!1 to 
that the default label, Ld, is used. 

If the 
has been 
D means 

The case dealing with the instruction X24 is included be­
cause a more sophisticated assembler can find better ways to 
amit code for the case command (see [P1,P2]). Thus it is possi­
ble for the assembler to digest a set of instructions like 

X? Dn DLd Dv1 DL1 Dv2 D12 ••• Dvn DLn 

and to generate instructions for the ideal computer as though 
the original ~INICODE were 

X24 Dmin Dmax DLd DL1 DL2 DL3 ••• DLm 

where "min" and "max" are the bounds on the values in the set 
v 1, v2, • • • , vn and the labels L 1, L2, ••• , Ln are rearranged 
and possibly expanded so that control is transferred to the cor­
rect place by a direct jump governed by the value in the A 
register, rather than by making a sequential search through the 
values v1, v2, ••• , vn. In some cases this can result in more 
compact and faster executing code. 

(This document is incomplete) 
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