
n

" i
.(

~

MMM
MMMM

MM
M

M
MM

MMM

M
MM
MM

MMM
M MM

M
MMMMMMMr1M

MMMM MMM
MM MMM
MM MMM MMM MMM

MMMMMMM.MMM
l1MMMMMM MMMM

MMM

MMMMMMM
MMM MM

MM
MMMMM

M
MMMM
MMM

MM MMM
M MMM

MM 1'111 M
MMMMMM

[1 MM
M M

MM
Ml! M
MMM
MMM

MMM M
Mi':IMMM

* *
* The Essence of Computec Science *
* * *************************************

by

J. E. L. Peck

Technical Manual 75-7

October 1975

Department of Computer Science
University of British Columbia

Vancouver, B. c.

./Ufr / c) t}I ✓-

/)_~ ,.- {; 'J"·' /,,,,, -r ;iu,.J

The Essence of Computer Science

J. E. L.

Pruface

The aim of this little booklet is to explore the possibili­
ty, for the teaching of computer science, of the language BCPL
and its associated ideal machine, which was originally developeJ
for portability.

All too oiten it happens that we introduce computer scien~e
by teaching a high level language, and an assembler languag~,
where the two are unrelated. How many instructors, for example,
n~ve ever seen (let alone understood) the compiler for their
favourite language. Sometimes we use a fictitious machine to
teach about mdchine structure because the actual ~achine is too
complicatdd. The ldnguag8 MIX is an example. But how many com­
pilers are written in MIX, and is there a translator from some
hign lev3l language into MIX? In short, our complaint is that
the vehicles for the teaching of computer science are dis­
jointed.

The DCPL - MINICODE system seems to offer a unique answer
to the usual dilemma of what t0 teach. Here ~e have one hiqh
l~vel language in which a whole system is written. There is a
translator, written in BCPL, from BCPL to an assembler language
for a simple machine. we have also an assembler and a loader
and interpreter for this machine written in BCPL. Thus, in
th~ory,. with a small loader and interpreter, we have a complete
portabl8 systPm which we can use for instructidn. Another point
is that BCPL, despite some criticisms we may have such as lack
of types, contains control structur~s well suited to the teach­
in1 of safe programming techniques. Those who have some belief
that a unified complete system is the way to go, may find these
few pages of interest.

Vanco~ver
1975 July.

(

THE LI !3 RARY
coMPU'TJNG CENTRE

;:i~RSITY OF Bl~ITISH COLUMBIA
VANCOUVER 8, B. C.

Chapter I

The Computer

1

Chapter on3 is a d~scription of an ideal computer, its con­
struction, and the operations that it may perform.

1.1. Introduction

In this exposition we shall describe the essence of comput­
~r science by using one high level language and a related ideal
machine on which it may ba implemented. As we progress we shall
liscover that this is all that we need in order to explain the
oasic concepts of machine architecture, instruction sets, assem­
bler language, assemblers, loaders, interpreters, compilers,
subroutines, functions, parameter passing, recursion and the
like.

1. 2. Number systems

In the sys~em which we shall describe, it will often be
necessary to write integers in more than one base. In fact, the
three ways of writing integers that will frequently be used are
the familiar decimal representation (base 10) 1 the octal repre­
sentation (base 8) and the binary representation (base 2).
Since integers in each of these three ways will be scattered
throughout the text, we need soma convenient way in which to
distinguish some of them. Accordingly, we shall adopt the con­
v,~ntion that an octal integer (.base 8) is preceded by an
octothorp, 11 if 11 • Thus we may write 33 = #41 and understand that
it means 33 in base 10 equals 41 in base 8. Naturally 7 - #7,
so that for some small integers it will not matt~r how we write
them. For binary integers (base 2) we shall not need a particu­
lar conv~ntion since it is usually clear from the context what
is meant. An integer in which the digits are only 0 and 1 is
~ften in binary (base 2).

1.J. An ideal computer

The computer<1> that we des6ribe here does not need to
exist as an actual piece of hardware, for it can always be simu­
lated or emulated. However, for the purpose of describing the
essence of computing, we may think of it as a piece of hardware.
Its two main components are:

a) a memory consisting of a sequence of storage cells, and
b) some registers (or special storage cellsl where most of the

wo r .k is Jone.
Rach of these storage cells, both in the memory and in the reg-

<1> This computer was first described by MaLtin Richards
[n 1 J.

The Essence of Computer Science

ist~rs, con8ists of a number of bits each of which is either
"on" (1) or 11 off 11 (0). Each .bit may be considered as a binary
digit, and in this way an integer can be represented in a cell
i11 binary. The actual number of bits in each storage cell, the
"cell size", is a matter of tast.e, and we sha 11 not specify it
here. You will find that cell sizes on some typical machines
ar~ 64, 32, 24, 16 and 12. In many of the illustrations in this
text wa shall use a cell size of 16 bits, since this is the size
appropriate to many of today's minicomputers, but we are seldom
concerned with cell size.

n fact of importance is that our ideal computer stores in­
t-2q-=?rs .in what is known as the "two's complement" form. In this
~orm, the first bit is taken to be the sign, 0 for + and 1
for-, in fact, the bits arise from representing an integer k
(positive or negative) by the rightmost n bits in ((2 to the
pow-2r (n+ 1)) + k) , wher:e n is the cell size. To unde1·stand this
it is easiest to suppose, for the moment, that the cell size is
thc2e, in which case the integers are as follows:

cell content signed integer

011 3
010 2
001 1
000 0
111 -1
110 -2
101 -3
100 -4 .

Notic~ a curiosity in this system, viz., that the largest nega­
tive number is alway~ one less than the negative of the largest
positive number.·

~nether: fact of importance is that our ideal computer can
communicate with the outside world, i.e., it may read one char­
acter at a time and it may write one character at a time. This
may appear too primitive a capability to be really useful, but
it has conceptual simplicity and the power that we need, espe­
cially since newline and newpage are considered as characters.
In fact, a rather versatile set of input and output routines
11.:.;es only these facilities. A character is represented within a
computer cell as an integer, e.g., in the ASCIIClJ system, the
character "B" is represented by #102, "7 11 by #67 and 11 +" by t53.

1.3.1. The memory

The memory consists of a sequence of consecutive storage
cells. The number of storage cells in the memory is of no con­
cern here. We may always assume, in what follows, that there
will be enough. Of course, on any practical computer the memory

--- Ct> ASCII stands for American Standard Code for Information
Int :3rchan-1e.

The Essence of Computer Science 3

is limited, but this limitation need not bother us now.
think of the cells as being numbered consecutively from
upwards. A mental picture of the first few cells of memory
bB something like the following.

We
zero

may

r------.-----....--------r
I

.a._ _______ __,

0 1 2 3 4 5 6

The consecutive numbers assigned to the cells are known as their
"addresses". Thus, the address of the first cell is O, that of
the second is 1 and so on.

1.3.2. The registers

Our ideal computer has five registers (or specialized stor­
age cells). Two of these cells are accumulators, i.e., they
participate in arithmetic and other operations. Another two are
index registers, i.e., their content is always interpreted as an
address. The fifth register is the instruction counter. This
register contains the address of the next instruction. The two
accumulators are known as the A- and the B-registers, the index
registers are the P (program) and the G (global) registers and
the fifth is the c (instruction counter) register. Our mental
picture of the ideal computer with memory and registers is now
something like the following.

r-----, T

A. I I I
~ ~

B I I 0 1 2 3 4
I ~ memory cells

C I I . ~
P I I

!-----~
G I I

L ____ J

registers

1.3.3. The operations

An operation which the computer performs may copy informa­
tion (bits) from a memory cell to a register, from a register to
a memory cell or may manipulate the content of registers partic­
ularly the A- and B-cegisters. Each operation is performed as a
result of the analysis of an "instruction". Each instruction is
a sequence of bits which have been fetched from a memory cell.
Our ideal computer has only eight basic operations. · These are:
load (0), stor-e (1), add (2), jump (3), jump if true (4), jump
iE false (S), call a routine (6) and execute an accumulator
operation (7). we shall examine each of these in detail when we
look at the instructions. For the moment, it is enough to know
that the store op~ration (1) copies the content of register A to

4 The Essence of Computer Science

sowe memory cell. It is the only way of moving information into
the memory. The load operation (0) first copies the content of
register A to register B, then moves a new value to register A.
This value may, or may not, come from memory. The execute in­
struction (7) may perform a specified operation (possibly
arithmetic) on th~ content of the two accumulators, for example,
if its operand is 8, it adds the content of the A- and the B­
registers, leaving the result in the A-register.

1.3.4. The instructions

As mentioned above, an instruction is a sequence
tbe content of some memory cell which has been fetched
ysis. These bits specify three things:

of bi ts,
for anal-

a) the operation,
b) the modifiers, and
c) the raw operand.

The operation is specified by three
other three and some of the remaining
we may then picture an instruction as

P IIIPIGI

bits, the modifiers by an­
bits specify the operand.
follows

D L_----•~ ... • -,1,__,,...._ __ -,--__ , ______ ..

where Fis the operation, I, P and Gare the modifiers and Dis
the raw operand.

Observe that the three F bits are sufficient to represent
the numbers from O to 7 and therefore can specify eight dif­
ferent operations. The modifiers consist of three bits known as
the I-flag, the P-flag and the G-flaq. Their effect is to cause
further calculation to be done on the operand.

If we use a sixteen bit cell and do not, for the moment,
use the first bit, then some examples of instructions, in octal
and in binary are:

instruction

load 1
store 3
add 2

octal

#000001
#010003
#020002

in which none of the modifiers is on.

1.3.5. Operand modification

binary

0 000 000 000 000 001
0 001 000 000 000 011
0 010 000 000 000 010

When an instruction is analyzed, its D part is extracted,
as a non-negative integer, and is considered as the raw operand.
This raw operand is subject to modification determined by the
modifiers. As mentioned above, the modifier field of the in­
struction consists of three bits, the I-, P- and G-flags.
Operand modification is done as follows:

a) if the P-flag is on, then the content of the P-register is
added to the raw operand to give a modified operand;

The Essence of Computer Science 5

b) if the G-flag is on, then the content of the G-register is
added to tha raw operand to give a modified operand.

It is convenient to know that in any one instruction the P- and
G-flags cannot both be on. ~fter steps a) and b) above, then

c) if the I-flag is on, then the operand (possibly modified as
ahove), is considered as the address of a cell in memory,
the content of which will bB used as the modified operand.

Some examples might be in order here. Assuming a cell size
of 16, the instruction #001002 (in binary O 000 001 000 000 010)
has its G-flag on; consequently its modified operand is 2 plus
the content of the G-register. The instruction 1002002 has its
P-flag on; consequently its modified operand is 2 plus the con­
tent of the P-register. The instruction #006002 (in binary 0
000 110 000 000 010) has both the I-flag and the P-flag on. Its
modified operand is therefore obtained by adding 2 to the con­
tent of the P-register ~nd using this as the address of a memocy
cell from which the final modified operand is fetched. In each
of these instructions the operation is load. The instruction

C

I
r--+
I .-- I
I I I
I global I program t
t I I
I --J L I
I I
I I
I stack I
I I
L J

- J:'\. I P j

Fi gure 9

#006002 therefore loads the content of some memory cell into the
A-register.

1.1.6. Memory layout and machine operation cycle

During the execution of a program the memory of the comput­
er may be considered as having three independent areas: the
program, containing the constants and the sequence of instruc­
tions to be executed; the global array, which allows for
communication between program segments; and the stack, ~hich has
the property that it may grow and shrink during program execu­
tion. The three registers P, G and Care associated with these
areas in the following way.

a) The P-register points to (i.e., contains the address of)
some cell in the stack.

h) The G-register points to the first cell of the global
area y.

c) The c-registec points to an instruction in the program.

J
•

6 The Essence of Computer Science

A mental ~icture of the memory layout might therefore be as re­
presented in figure 9.

ThB basic cycle of operation of the computer is as follows:
a) the instruction pointed to by the c-register is fetched and

analyzed and the content of the c-register is incremented by
one, and

L) the operation specified by the instruction is executGd.
The basic cycle consists then of two parts -- fetch and execute •
This cycle is repeated as often as is necessary, i.e., fetch,
execute, fetch, execute, fetch, execute, and so on.

ChapteC' II

The assembler language

This chapter des~ribes an assembler language which makes it
easier to study the operation of the ideal computer more closely
and allows us to construct some simple illustrative programs.

2.1. Mnemonics

~he discussion of computer instructions and their illustra­
tion using octal oc binary integers is tedious. It is not easy
to remember, e.g., that the jump operation is #03xxxx (here x
indicat~s an un specified oct&l digit), or that a combination of
the I- and P-flays is i0x6xxx. Instdad, we use letters of the
alphabet to represent these things.

The mnemonics for a computer instruction set can be a
matter of choice. Those which we use for our ideal machine are
as follows:

a) the representation of each instruction begins with one of
the letters L, S, A, J, T, F, Kand X,

b) then come the optional modifiers, first the letter I, then
P or G, and

c) then follows the operand, which is either a decimal inte­
ger, a character betweBn apostrophes or a label reference.
A label reference is the letter L followed by a small non­
n8qative decimal integer.

To make this more readable, we also allow some letters or spe­
cial characters after an X, e.g., XR is equivalent to X4 and X+
is eguivalent to X8.

A little piece of pcogram using these mnemonics might be

$ 1:LL499 SP4 LIG60 K2 XR
499:C"HELLO" ,

wh3re 1499 is a label reference and XR is the operation "Return
to caller" which is equivalent to X4.

Although we are not yet ready to follow what it does, it is

The Essence of Computer Science 7

instructive to compare this with the instructions for a sixteen
bit machine in octal which it represents

003405, 012004, 005074, 060002, 070004, 002510, 042514, 046117
1:LL499 SP4 LIG60 K2 XR 499:"H E L LO"

and observe that it is probably worthwhile learning these mne­
monics before going any further, especially since mnemonics are
more concise.

2.1.1. The assembler

A set of operation mnemonics, as described above, together
with a few other aids is usually called an ~assembler language".
Very little programming is now done by writing instructions in
binary, or even in octal, although this was the way it was done
in the early days of computing. A better way is to use an as­
sembler language, although, even this has now fallen into
disfavour. The modern way to program is to use a high level
language, i.e., a language more suitable for problem solving.
Our eventual aim is to become familiar with the hiqh level lan­
guage BCPLCl>, but first we need to understand a machine on
~hich it runs and an assembler language for that machine.

Of course, the machine itself does not operate directly
from the assembler language: for example, the machine does not
know how to interpret LIG60 directly. But machines are very
good at tedious clerical tasks, and the translation of a program
from assembler language to its eguivalent in binary is just such
a task. This process is known as "assembly" and the program
which does it is called the "assembler". Before long we shall
be studying the details of just such an assembler. To do this,
and to understand the details of machine instructions, we shall
soon concentrate our attention upon an assembler language.

2.1.2. A loader

While the assembler is translating the mnemonics to machine
instructions, it does not execute them. It may either store
them somewhere in the memoty for later execution, or, more fre­
quently, it may write them out for later use. If it does the
latter, then we need some way in which to load the machine in­
structions back into the memory. This job is done by a program
known as the ''loader". At some point we shall study how the
loader works, but for the moment we need only knov that it ex­
ists, that it knows how to load a set of instructions into the
memory and how to transfer control to the first instruction of
the progr~m.

C1> The language BCPL was developed and implemented by
Martin Richards (R2].

8 The Essence of Computer Science

2. 2 MI NI CODE< 1 >

The assembler language which we choose to use on our ideal
machine is called MINICODE. First let us get an overall view of
MINlCODE by glancing at the following lines.

,J L 3
$ 1:LIP2 LOX<= FL4 XR 4:LIP2 11 X- SP8 LIP3 SP9 LIPS SP10

LlP4 SP11 LIL2 K6 LL499 SP8 LIP2 SP9 LIP3 SP10 LIPS SP1i
LIG76 K6 LIP2 L1 X- SPB LIP~ SP9 LIP3 SP10 LIPS SP11 LIL2
K6 XR 3:JL6

$ 5:7:LIG70 K2 SP2 LIP2 LOX<= FLB XF 8:LIP2 SP5 L'S' SP6
L'I' SP7 L'D' SP8 LIL2 K3 JL7 XR 6:XF
2:D11 499:C"MOVE %N PROM %C TO %C*N"

G115
z

We see in this that a sequence of instructions is represented
rdther compactly and in a form in which we might read it more
~asily than in octal (once we get used to it!).

The language MINICODE is made up from:
a) executable instructions,
b) storage reservation instructions,
c) labels,
d) pseudo-instructions (messages to the assembler), and
e) comments.

In the example above LIP2 is an executable instruction, D11 is a
storage reservation instruction, 499: is a label and Z is a
pseudo-instruction. There are no comments in the example, since
this MINICODE was produced by machine fcom a program in BCPL.

2.2.1. Executable Instructions

The precise form (syntax) of an executable instruction is
as follows.

(L)
(s)
(A) (p)
(J) I (G) n
(T) +-+ (L)
(F) +-----+
(K)
(X)

Hert, () indicates a select ion of dlterna ti ves, +-+ indicates
that what stands above it is optional, i.e., may be left out,
and n stands for a decimal integer (usually non-negative) oc a
chardcter within apostrophes. After the letter X, the integer n
may be replaced by an equivalent sugyestive symbol (see below).
~xamples of executable instructions are LIG70 K2 SP2. We . should
take these and examine them together with the corresponding in-

<1> MINICODE is a derivation of the language INTCODE first
d~scribed by Martin Richards [R3].

The Essence of Computer Science 9

struction in octal and binary. Thus

LIG70 #005106 0 000 101 001 000 110

means that the operation is 'load 1 , the I- and G-flags are on
and the raw operand is 70 or #106. The instruction

K2 #060002 O 110 000 000 000 010

means that the operation is •call' and the raw operand is 2.
There are no flags on. The instruction

SP2 #012002 0 001 010 000 000 010

means that the operation is 'store• the P-flag is on and the raw
operand is 2.

A more systematic description of the operations of the
ideal computer is now in order. If some of the details are not
clear, then we should not worry for the moment but should remem­
ber this list for later reference.

Here it is assumed that dis the value of the operand after
index modification and indirect a4dress calculation, if any, has
be1;::n completed. When an instruction is fetched, then the C-reg­
ister is first incremented so that it points to the next
instr:uction.

0) Ld (boad d) copies the content of the A-register to the B­
register: and then loads the operand d into the A-register.

1) Sd (~tor:e d) copies the content of the A-register to the
cell at address d.

2) Ad (Add d) adds d to the content of the A-register: leaving
the sum in the A-register.

3) Jd (Jump to d) places din the control register c.
4) Td (jump to d if Irue) places din the control register C

if the content of the A-register is -1.
5) Fd (jump to d if false) places din the control register c

if the content of the A-register is 0.
6) Kd (call a routine, with stack length d) places the

content<i> of Pat address (P)+d (stack lin~, places (C) at
(P)+d+1 (return address), places (P)+d in P (new environ­
ment) and places the (A) in C (address of routine). A
detailed explanation of the meaning of this instruction will
be giver. later. The curious may be interested to know that
the address of the routine to be called is already in the A­
register.

7) Xd (eJecute the operation number d). The operation speci­
fied by dis executed using registers A and B. Usually the
result is placed in A. For example, X8 (or X+) adds the
content of B to the content of A, and XS (or X*) multiplies
the content of A by the content of B. It is important to
notice that none of the execute instructions involves a

--- c 1 > We shall often abbreviate "content "or P" to 11 (P) ''·

10 The Essence of computer Science

memory address directly.

Note that Ld and Sd differ in that
its~lf, ~hereas Sd stores a value
treats d as a number ands treats d as
useful, at this stage, to list all the
tions. They are:

instruction meaning

XO no operation
X1 X! dereference register
X2 XN arithmetic negation
X3 x-, logical negation
X4 XR return to caller
XS X* multiplication
X6 X/ division
X7 XI* remainder
XS X+ addition
X9 x- subtraction
X10 X= equality
xn X-.= inequality
X12 X< less than
X13 X>= not less than
X14 x> greater than
X15 X<= not greater than
X16 X<< shift left
X17 X>> shift right
X18 X/1 and
X19 XI/ or
X20 X-.E not eguivalent
X21 XE eguivalen·t
X22 XF finish

Ld loads the operand
at the address d. Thus L
an address. It may be
standard execute instruc-

in BCPL-like notation

A A . -.- !A
A .. -.- -A
A := -.A
C := P!1, p . -.- P!O
A := B * A
A . - B I A .-
A . -.- B REM A
A : ·= B + A
A . - B - A .-
A := B = A
A : ·= B ~-= A
A := B < A
A := B >= A
A . -.- B > A
A := B <= A
A --.- B << A
A . -.- B >> A
A ':= B /I A
A ·-.- B l/ A
A ·-.- B NEQV A
A . -.- B EQV A
FINISH

X2J X? case (seguen tial search)
X24 casa (indexed jump)
X25 read a character- A :-= RDCH ()
X26 write a character WRCH (A) .
The operation X! takes the content of the A-register as an

address of a cell and fetches the content of that cell into the
A-register. The operation x-. reverses every bit in the A-regis­
ter, i.e., every O bit becomes a 1 bit and vice versa. The
operations X/lr XI/, X-.E and XE are bitwise logical operatioris
on the contents of the A- and B-registecs whichr for each pair
of bits, delivers a corresponding bit in the A-register, accor­
ding to the following table

A B /I I/ -,E E

0 0 I 0 0 0 1
0 1 I 0 1 1 0 , 0 I 0 1 , 0
1 1 I 1 1 0 1

An explanation of other operations will be given in the subse-
quent text.

The Essence of Computer Science 11

2.2.2. The storage reservation instructions

It is important to remember that a storage reservation in­
struction is not executed. Its purpose is to help in storing
data items (constants) needed by the program. There are storage
reservation instructions for

a) cell storage,
b) character storage, and
c) global storage.

The first two reserve storage in the program section of memory
and the third involves storage in the global array. An example
of a cell storage instruction is D39, which sets aside the next
cell with the value 39 in it, or DL499, which sets aside the
next cell with the value (address) of label number 499 in it.
since characters may possibly be stored more than one per cell,
there is a special storage instruction for them. ~n example is
C65, where 65 is the ASCII value of the character A. It is also
possible to use the characters themselves, within guotes, e.g.,
C"HELLO" is equivalent, in ASCII, to the sequence of instruc­
tions CS C72 c6q C76 C76 C79, the first instruction, CS, gives
the length of the character string.

2.2.3. Labels

A label is of the form n: , where n is some small positive
decimal integer, e.g., 5: • It is important to note that the
number which appears in the label is not necessarily the actual
address of the cell containing the instruction which it pre­
cedes. For example, 5: does ~2£ mean that the next instruction
is stored in cell number 5. The relation between the label
number and the actual cell at which its instruction is stored is
usually a well-kept secret, known only to the assembler and the
loader.

2.2.4. Pseudo-instruction

There are two pseudo-instructions in the MINICODE assembler
language. One is the letter Z which indicates the end of a sec­
tion. A section is a piece of code across which labels may be
referenced. This means that if a label appears in one section
of code, then it may not be referenced from another section. In
the following example

4:LIP2 SPS LIG143 K3 JL4 Z
JL4 Z

the second occurrence of "JL4" will reference label 4 which does
not exist in its section. An error will therefore result. All
communication between sections of a program is done via the ad­
dresses in the global array.

The othgr pseudo-instruction is a dollar symbol. It marks
the entry to a routine or a function, and is mostly used to aid
readability.

12 The Essence of Computer Science

2.2.5. Comments

Comments are remarks which m~ght be useful to the human
reader in understanding the code. In MINICODE, a comment con­
sists of a solidus, "I", together with all characters to its
right and up to the end of the line. An example of a line of
MINICODE with a comment is:

LIP3 SP7 LIG14 KS/ This writes one character

Note that there are four occurrences of a solidus which do llQ!
begin a comment. They are in X/, X/*, X/1 and XI/, which are
equivalent to X~, X7, X18 and X19 respectively.

2.3. A small example

We are now perhaps ready to study a small program written
in MINICODE. Do not be.disturbed by the fact that what it does
is trivial. We need to start with the simplest of things so
that the basic principles can be well established. The program
will read two characters and then print one of them, the larger.
The program is as follows.

X25 SP2 X25 SP3
LIP2 X> TL4
LIP2 ,115

4: LIP3
5: X26 XF
z

/ read tvo characters
/ compare them
/ select the first
/ select the second
/ print a character

We read it in the following way. The instruction X25 reads one
character from the outside world and leaves it, as a binary num­
b er, in the A-register. For e xa mple, if the character read were
•R•, then the number in the A-register would be 66 or #102 (in
binary O 000 000 001 000 010). The instruction SP2 stores the
content of the A-registec in th stack at the cell pointed to by
the content of the P-register plus 2 c,,. The instruction X25
rea s one more character from the outside world into the A­
register and SP3 stores it in the next consecutive cell, P3. A
picture of the stack at this stage is

J
p

I char1 I char2 I

The next instruction, LIP2, loads the content of stack position
P2 into the A-register after pushing the previous content of the
A-register into the B-register. The two registers now have the
content as shown below.

--- <1> we shall often shorten "the cell pointed to by the con­
tent of the P register plus n" to "Pn".

n

The Essence of Computer Science

A

B

char 1 I

' char2 I

13

The instruction X> compares the content of the two registers (as
integers). i.8 •• it determines whether the relation "char2 >
char1 11 is true. If it is true it puts -1 (true) in the A-regis­
ter, otherwise it puts O (false) in the A-register.

The instruction TL4 performs a jump to the label 4 if the
content of the A-register is true (-1). The instruction LIP2
first loads the content of stack position P2 (the first charac­
ter) into the A-register and JL5 jumps to the label 5. At label
4 the content of stack position PJ (the second character) is
loaded into the A-register by the instruction LIP3. At labels.
the content of the A-register is written to the outside world,
by x26. as a character. The program finishes ~ith the instruc­
tion XF.

Having seen the details of this program, it might now be
instructive to examine the MINICODE for the same program genera­
ted automatically from the high level language BCPL. The
instructions in that language are

GLOBAL$(START:1; RDCH:13; "irlRCH:14 $)
LET START() BE

$ (LET A = RD CH ()
LET B = RDCH ()
WRCH(A > B -> A, B) $)

The strange numbers, 13 and 14, are there because the BCPL
system happens to store the entry address to the read-a-charac­
ter routine. RDCH, in global cell number 13. Similarly the
entry to WRCH is stored in global cell 14, and the entry to the
START routine is always in globdl cell 1. The expcession A> B
-> A, B, means "if A is greater than B, then the value is that
of A; otherwise, the value is that of B".

The MINICODE generated automatically by a compiler is as fol­
lows.

$ 1:LIG13 K2 SP2 LIG13 K3 SP3 LIP2 LIP3 X> FL4
LIP2 SP6 JL3 4:LIP3 SP6

3:LIG14 K4 XR
G1L1
z

The dollar symbol marks the entry to the START routine. The
instruction G1L1 ensures that the entry address to the START
routine is loaded into global cell 1. Upon comparing this code
with that developed above, it will be clear that code produced
by a compiler is usually not as concise as that which might be
produced by hdnd, since the compiler must try to treat many dif-

14 The Essence of computer Science

ferent things in a uniform manner. At the present time ve shall
not analyze further either the program in BCPL or the code pro­
iuced automatically, since our immediate aim is the
understanding of MINICODE.

2.3.1. Another example

The next example prograw prints the content, n, of some
memory cell as a non-negative octal number, in a given number,
d, of print positions. For example, the 16 bit binary integer

0 101 010 110 011 111

would be printed in 6 print positions as

052637

Observe how easy it is for a human to do this translation! It
is only necessary to split the binary integer into groups of
three bits each, starting from the right. Each group then is
r e presented by some octal digit. For example, the binary number
01011110 should he viewed as 01 011 110 and then printed as 136.

An interesting solution arises by arguing as follows. If
the value of d, the number of print positions, is one, then we
can print only one digit, which is the octal digit representing
the rightmost three bits. If the value of dis greater than
one~ then detach the rightmost three binary digits, print the
left hand part in d-1 print positions and then print the digit
representing the rightmost three bits. Since there is a subtle­
ty here, we shall say this again in terms of the example given
above. Thus, to print the binary integer

0 101 010 110 011 111

in 6 print positions, all we need do is to prigt the binary in­
teger

0 101 010 110 011

in 5 print positions, i.e., 05263, and then to print the octal
digit representing the binary integer 111, i.e., 7.

What we have shown is that the problem of printing a non­
negative integer in octal with d print positions can be reduced
to that of printing an integer, in octal, in d-1 print posi­
tions, and therefore, eventually to that of printing an integer,
in octal, in one print position.

The principle involved in this solution is known as recur­
sion, and the program is expressed in BCPL as follows:

GLOBAL$(WRCH:14 $)
LET wRITEOCT (N, D) BE

$(IF D > 1 THEN WRITEOCT(N>>3, D-1)
\\RCH(N /I 7 + '0') $)

n

The Essence of computer Science 15

We do not intend to make a systematic study of BCPL yet. That
will come later. For the moment the display, in BCPL, of some
programs under discussion, may be helpful, and occasional re­
marks will be made to aid the understanding of them. Since, in
this chapter, every BCPL program vill be accompanied by its
translation to MINICODE, the meaning of any construct can be
determined from the translation. In the above, the expression
N >> 3 yields the value of N shifted right by 3 bits, the va­
cated positions on the left being filled with zeros, and N /I 7
yields the rightmost three bits of N, all the other bits being
set to O. In MINICODE, for example, if the content of the B­
register is #0325 (in binary O 000 000 011 010 101), and that of
the A-register is 7, then after the instruction X>>, the content
of the A-register will be O 000 000 000 000 001 in binary. With
the same initial conditions, the content of the A-register, in
binary, after the instruction X/1, will be O 000 000 000 000
1 O 1.

But we should write this program in MINICODE.
that n is in P2 and dis in PJ, this might be:

3:LIP3 T..1 X> FLS
LIP2 13 X>> SP6
LIP3 L1 X- SP7
LL3 K4

5 : L 7 LI P 2 X/ I A ' 0 1

X26 XR

2.3.2. The stack

I is d > 1?
/ store n>>3 in P6
/ store d-1 in P7
/ call the routine starting at
/ n /I 7 + '0' in register A
/ write and return

Assuming

label 3

In order to follow what is happening here, we should exam­
ine the content of the stack at each stage. Initially,
supposing n=t54 and d=2, we have

I #541 2 I
-----~---
• p

After the instructions LIP3 11 X>, and because 2>1 is true, we
have -1 (true) in the A-register, and the stack is unchanged.
The instruction FL5 therefore does not result in a jump. After
the instructions LIP2 L3 X>> SP6, the stack is

.f.
p

#541 2 I 5 I

since X>> shifts the content of the B-register right by a, where
a is the content of the A-register and with the result deposited
in the A-register. After the instructions LIP3 L1 X- SP7, the

16 The Essence of computer Science

stack is

-.-
1 I #541 21 51 1 I

•

The instruction LL3 puts the address of label 3 in the A-regis­
ter ready for a call, and the instruction K4 executes that call.
This has the effect of changing the P-register so that it points
four cells beyond where it pointed before. The stack is now

I #541 21 SJ 1 I

The next instructions to be executed are at the label 3, viz.,
LIP3 L1 X>. This will result in a O (false) in the A-register,
since 1>1 is false, and PLS causes the instruction counter to be
changed so that control jumps to label S. The next instructions
are L7 LIP2 X/1 A'O', vhich calculate the ASCII n~mber repre­
senting the rightmost three binary digits of the value in P2.
~n more detail, after L7 and LIP2, the A- and B-registers con­
tain 5 and 7 respectively. In binary these are 101 and 111.
The operation X/1 now takes the logical-and of these t~o binary
oull'ber-s, which is 101 and deposits this in the A-register (r-~
dundant in this case). The instruction A'0' will convert this
to the internal coding of a digit as a chacacter, since we know
that the decimal digits are encoded consecutively. The instruc­
tion X26 prints the character 5. The instruction XR then
returns to the callee. It moves the stack pointer back and exe­
cution resumes at the point after the last call, i.e., at label
5. The stack now appears as

~----T-·

I I

• p

I #541 21

and the instructions 5:17 LIP2 X/1 A'O' calculate, in the A-reg­
ist~r, tne ASCII numb€r corresponding to the digit 4. The
instructions X26 XR now print the character 4 and return to the
callee. This shows, for example, how the content of some cell
will be printed in two ~riot positions.

2.3.3. The stack linkage

In the example just given we discover that a routine is
called. The effect of a call is to "move" the stack pointer P
forward by n cells, were the call is Kn. The return "moves" the
stack pointer back to where it was before the call. The mechan­
ism used involves the first two stack cells, PO and P1, to help

The Essence of comp~ter Science 17

in this process. Cell PO is used to store the previous content
of P, and P1 is used to store the return address, i.e., the ad­
dress of the next instruction after the call.

A more complete picture of the stack, after the call, K4,
in the above example, is

,
r I

-.---
I I #541 21 (I) 5: I 51 1 I

..
p ,

where "5:" indicates that the address of label 5 has been stored
in P 1.

We may see now how the intruction XR (return to caller) can
work. our machine accomplishes this by copying the content of
stack cell P1 to the c-register and by copying the content of
the stack cell PO to the P-register. Thus the return-to-callee
is accomplished easily.

The mechanism of a call is a little more complicated. It
must first set up two cells ready for the return. The steps,
with the call Kn, are as follows:

a) copy the content of . P to Pn, this sets up the backward
stack link,

b) copy the content of C to P(n+1), this stores the return
address,

c) add n to P, this moves the stack pointer forward n cells,
and

d) copy the content of A to c, this loads the address of the
entry to the called routine into the c-register.

Since at the time of a call, register A contains the address of
the routine to be called, this means that the next instruction
will be taken from the entry to that routine.

2.3.4. A variation

It is easy to divide a non-negative integer by eight using
a shift instruction. One must shift right by 3, since each
right shift by one bit divides the content by 2. On most compu­
ters a shift instruction is faster than the divide instruction.
This is why we used it in the example above. If we were to
print a non-negdtive number in decimal ih a given number of
print positions, then the routine needs to be altered a little.
In BCPL it would be

GLOBAL $ (~RCH: 14 $)
LET WRD (N, D) BE

$(IF D > 1 THEN WRD(N / 10, D - 1)
WR D (N R EM 1 0 +· ' 0 ') $)

In this, tha shifting is replaced by division, i.e., we have

18 The Essence of Computer Science

~ / 10 instead of N >> 3. Also N REM 10 delivers the remainder
after division of N by 10, and replaces N /I 1. which for octal
is usually faster. The code produced by the compiler is:

$ 1 : / LET WRD(N. D) BE
LIP3 11 X> FL4 /$(!FD> 1 THEN
LIP2 110 X/SP6 I N/10
LIP3 11 x- SP7 I D-1
LIL2 K4 I WRD(••• , •••)

4:LIP2 110 X/* A'0' SP6 LIG14 K4 I WRCH(N .REM 10 + • 0')
XR I $)

2:DL1 •

Compare this code with the hand coded version in section 16
above. Apart from replacing X>> by X/ and X/1 by X/*, the
compiler-produced code treats WRCH as a routine like any other
routine, and it is called in a standard way, viz., SP6 LIG14 K4.
The 14-th global cell contains the address of the routine WRCH.
Note that the 2:DL1 is the compiler's way of remembering the
entry to the routine WRD. It uses this on the line LIL2 K4 when
the routine is called.

2.3.5. Printing in decimal

In general, the routine defined in the above section is not
too useful because a) it does not work when the number is nega­
tive and b) it does not suppress leading zeros. as is the usual
custom. Instead, we shall now considec a coutine which will
print a number, in decimal, in the minimum number of print posi­
tions. For example, the number 237 should take three print
positions and the number -7 should take two. A solution, if the
number is non-negative, might be

GLOBAL$(iRCH: 14 $)
LET WRPD (N) BE

$(IF N > 10 THEN WRPD(N/10)
WRCH(N REM 10 + 1 0') $)

The difference between this and the preceding routine is that it
stops calling itself when N <= 10 ·rather than when D = 1. Its
translation to MINICODE is

$ 1:
LIP2 L10 X> FL4
LIP2 110 X/ SPS LIL2 K]

4:LIP2 L10 X/* A'0' SPS
LIG14 K3
XR

2:DL1

/ LET WRPD(N) BE
/$(IF N > 10 THEN
/ WR PD (N / 1 0)
/ N REM 10 + '0'
/ WRCH(•••)
/ $)

•

Again, this does not work if the number is negative, so we
might consider the following additional routine

GLOBAL$(WRCH:14 $)
LET W RD (N) BE

TEST N < 0 THEN

The Essence of Computer Science 19

$ (WRCH { 1 - 1); :WRPD (-N) $)
OR WRPD (N)

Here the command TEST b THEN c1 OB c2 tests the condition b; if
it is true then the command c1 is executed; otherwise, the com­
mand c2 is executed. The translation to MINICODE is

$ 4:
LIP2 LOX< FL7
L1 -' SP5 LIG14 K3
LIP2 XN SP5 LIL2 K3
JL8

7:LIP2 SP5 LIL2 K3
B:XR
2:DL1 5:DL4

/ LET WRD(N) BE
/ TEST N < 0 THEN
/ $(WRCH(1 -')

/ WRPD (-N) $)

/ OR WRPD (N)

•

The reader should now experiment with this to see whether
it really works. He will find, in fact, that it will work cor­
rectly on all numbers except one. The one on which it does not
work is the largest negative integer, i.e., the integer -(2 to
the power(n-1)), where n is the cell size. The problem here is
that the negative of such a number is too large for a memory
cell, in two's complement form, so the results will be unpre­
dictable. But there is a way ou~- We may program it instead as
follows

GLOBAL$(WRCH:14 $)

LET WRD (N) BE
TEST N < 0 THEN

$ (WRCH (1 -'); iRPD (N) $)
OR WRPD (-N)

AND WRPD .{N) BE
$(IF N < -10 THEN iRPD(N/10)

WRCH(-(N REM 10) + 1 0 1) $)

This solution depends upon feeding only negative numbers to the
routine WRPD, and in changing that routine to manipulate only
negative numbers. It also dep~nds upon the knowledge that the
expression

A REM B
is always equal to

A - ((A / B) * B)

for all values of A and B, whether positive or negative. For
example, -7 / 5 is -1 and ~7 REM 5 is -2. This fact may disturb
some mathematicians interested in number theory, but it turns
out to be convenient here.

2. 3. 6. More printing of decimals

Often our requirement is not to print an inteqer in the
minimum of print positions, but to print it in a given number of
print positions, but with leading zeros replaced by spaces and
with the negative sign, if appropriate, appearing in front of

20 The Essence of Computer Science

the first significant digit. This is the most helpful way if
integers are to be printed in columns. A solution to this along
the lines given above is not easy. Instead, ve display now the
routine from the BCPL library.

WR ITED (N, D) BE LET
$(1 LETT= VEC 20 // create an array of 21 contiguous cells

AND I, K = O, -N
IF N<O THEN D, K := D-1, N
T!I, K, I:= -(K REM 10), K/10, I+1 REPEATUNTIL K=O
FOR J = I+1 TOD DO WRCH(' ')
IF N<O DO WRCH('- 1)

FOB J = I-1 TO O BY -1 DO WRCH (T!J+'0 1) $) 1

Its translation to MINICODE is

$ 8:
LP7 SP4
LO SP5 LIP2 XN SP6
LIP2 LOX< FL60
LIPJ 11 X- SP3 LIP2 SP6

60:61:LIP6 110 X/* XN SP28
LIPS AIP~ SP29 LIP28 SIP29
LIP6 L10 X/ SP6
11 AIPS SP5
LO LIP6 X= FL61
11 AIP5 SP28
LIPJ SP29 JL62
63:L' 1 SP32 LIG14 K30
LIP28 A 1 SP28

62:LIP28 LIP29 X<= TL63
LIP2 LOX< fL64
L'-' SP30 LIG14 K28

64:LIPS 11 X- SP28 JL65
66:LIP28 AIP4 X! A1 0' SP31 LIG14

LIP28 AIL499 SP28
65:LIP28 LOX>= TL66

XR
499:D-1

2.3.7 Arrays

/ LET WRITED{N, D) BE
/ $(1 LETT= VEC 20
/ANDI, K = O, -N
I IY N < 0 THEN
/ D, K : = .D- 1 , N
/ -(K HE~ 10)
/ T!I := •••
/ K := K / 10
I I:= I+ 1
/ REPEATUNTIL K = 0
/ FOR J =I+ 1
/TOD
/ WRCH(' ')
I / I increment :r
I ••• DO
/ IF N < 0 THEN
/ WRCH('-')
/ FOR J = I-1

K29 / WRCH(T!J+'O')
/ BY -1
/TOO DO
I $) 1

It is worth taking a close look at this routine, for it
introduces us to the concept of an array, i.e., a set of contig­
uous storage cells reached by the same name. The declaration
LETT= VEC 20 reserves 22 cells on the stack. Note that its
translation is LP7 (DQi LIP?) SP4, which places the address of
P7 into the cell P4. The 21 cells from P7 to P27 may now be
usea as an array and accessed as T!O to T!20. After the decla­
ration AND I, K = O, -N, two more cells PS and P6 are reserved
with values placed in them. The stack now looks as follows

(

The Essence of computer Science 21

' 01 -NI t

D T I K T!0 T! 1
•

The cext point of importance is the manner in which the
e l eme nt s of the array are accessed. If the value of I satisfies
0 ~ I $ 20, then the value of the expression T+I is the address
of the I-th element of the arLay T. Notice that this is com­
pute d by the instructions

L.IPS AIP4 SP29 ,

where I is in PS and Tis in P4. The value of T+I is then
stored in P29, ready to be used as an address.

The routine WHITED works by dividing the given integer suc­
cessively by 10 until the quotient is zero, storing the
successive remainders in the array T and counting bow often this
is done. When this i~ complete, then the j-th element of the
array T holds the j-th decimal digit, from the right, of the
integer to be printed, and I contains the number of its s~gnifi­
cant digits.. If the int"eg,er is non-negative, then ve must first
print D-I spaces and then the significant decimal digits in the
reYerse order from that in which they were found • .If the inte­
ger is negative, then we must also allow space for the minus
sign ..

Observe that the basic calculation of the digits to be
printed is made in the command

T!I, K, I:= -(K REM 10) r K/10, I+1 REPEATUNTIL K=0

Here T!I should be read as "T subscript I", indicating that we
want the I-th element of the array T. Its address is the value
of I+ T. Note also that the significant digits of the given
integer are printed by the command

FOR J = I-1 TOO BY -1 DO WRCH(T!I+'0')

in which the value of Dis not used! The allowance for the neg­
ative sign is accomplished by the command

IF N < 0 THEN D, K := D-1, -N

A rather good feature of the routine WRITED is that, if the
value of Dis too small, then the complete integer is neverthe­
less printed, with no information lost. Thus the effect of the
call WRITE(N, 0) is equivalent to the call WRD(N) as discused in
the precading section.

22 The Essence of Computer Science

2.3.8. Printing in hexadecimal

It is somet~mes convenient to be able to print numbers in
hexadecimal (base 16). The usual convention is to allow the
first six letters of the alphabet, A to F, to represent the
digit values ten to fifteen. Thus a hexadecimal integer FF is
255 in decimal and hexadecimal 100 is 256 in decimal.

A routine for writing a non-negative integer in hexadeci­
mal, in a given number of print positions is

GLOBAL$(WRCH:14; WRITEHEX:75 $)
LET wRITEHEX(N, t) BE

$(IF D>1 DO WRITEHEX(N>>4, D-1)
wRCH ((N/115) !TABLE

1 0I, 1 1 1 , I 2 1 , t 3 I I~ 4 I I I 5 1 1 I 6 1 , t 7 I,

1 8 1 , 1 9 1 , 1 A 1 ,'B','C 1 , 1 D','E','F') $)

This routine displays an interesting new feature. The value of

TABLE 3, 1, 2 ,

for example, is the address of a set of contiguous cells con­
taining the constants which follow TABLE. It is thus an array
and can be treated as such. The expression N/115, which yields
the rightmost four bits of N, is then used to subscript the
table in WRITEHEX. The translation to MINICODE is

$ 14: I LET WRITEHEX(N, D) BE
LIP3 11 X> FL82 / $(IF D > 1 THEN
LIP2 14 X>> SP6 I N>>4
LIP3 11 x- SP7 I D-1
LIG75 KU I WRITEHEX(••• , •••)

82:115 LIP2 X/1 AL83 X! SP6 I (N/I15) ! TABLE . . .
LIG14 K4 XR I WRCH { •••) $)

83:D'O' D' 1 ' D'2 1 D1 3 1 D 1 4 1 o•s• D1 6 1 D1 7 1

o•s• DI 9 I D'A' 0 1 B 1 D'C' D'D' D1 E' D'F'
G75L14

The reader should consider now the possibility of generali­
zinq the routines given here to print numbers in any base.

2.4. Character strings

A character is represented within a computer cell by a non­
negative integer. In the ASCII system this integer lies in the
range O to 127 and in the EBCDic<1> system in the range Oto
255. Thus, the ASCII system needs only seven bits and the
EBCDIC system requires eight. If our ideal computer allows
eight bit characters, then it may accomm6date both systems, so
this is what ~e shall do. Moreover, since a common cell size is

<1> EBCDIC stands
Interchange Code.

foe Extended Binary-Coded-Decimal

The Essence of Computer Science 23

sixteen bits, the choice of eight bits per character means that
we may conveniently store two characters per cell. If we were
to store strings of characters, one per cell, then this would be
wasteful of space, although occasionally it is useful to do
this. The standard way for storing strings in the BCPL language
is to use an array of cells. There is thus one cell containing
an address of a set of contiguous cells. Into these cells is
placed, in successive eight bit "bytes", first the number of
characters in the striny, followed by the integers which repre­
sent the characters. For example, the string "HELLO" would be
stored as follows.

,

'
f#S HI E LI L Of

-------'--.&.------- - -----
observe that this limits the number of characters in a string to
255 (or 28-1) at most, but this is not a severe limitation. On
a computer with a cell size of 32 bits one may store four char­
acters per cell.

The routine for printing a string in the BCPL library is

GLOBAL$(WRCH:13; WRITES:60; GETBYTE:85 $)
LET WRITES (5) BE

FOR I = 1 TO GETBYTE (S, 0) DO WRCH (GET BYTE (S, I)) ,

which depends upon another more primitive routine GETBYTE. The
call GETBYTE(S, I) yields the I-th byte of the string S. For
example '!;he v,alue _ of GiTBY.TE (!''liELLO'-', 0) is 5 , (,the le-ngth of the
string),,_ ~nd t~e value of -GET.$YTE("HELLO", 2) is 1 E1 • ·· The trans­
lation ' ot WRITES into MINICODE is

$ 4:
11 SPJ LIP2 SP6 LO SP7 LIG85 K4
SP4 JL32

33:LIP2 SP9 LIP3 SP10 LIG85 K7
SP7 LIG14 KS
LIP] A1 SP3

32:LIPJ LI~4 X<= TL33 XR

/ LET WRITES(S) BE
I FOR I=1 ••• GETBYTE(S,0)
I II upper limit in P4
/ GETBYTE (S, I)
I WRCH(•••)
I II increment I
I TO ••• DO

It is also interesting to observe that the translation of

LET START() BE WRITES{"HELLO")

is as follows

$ 1:11499 SP4 LIG60 K2 XR
499:C"HELLO"

We have seen this before, but now we may understand that the
instruction 11499 loads the address of the string into the A­
register, SP4 stores that address at P4, LIG60 loads the address
of the WRITES routine into the A-register and K4 calls the rou-

24 The Essence of computer Science

tine WRITES.

If we assume that Cll.P.C is the number of characters per
cell, CELL.SIZE is the number of bits per cell, CHAR.SIZE is the
number of bits per character, and CHAR.MASK is (2 raised to the
power CHAR.SIZE)-1, then a completely general version of GETBYTE
for any machine might be

GLOBAL$(GETBYTE:85 $)
LET GETBYTE{S, I) =

(S!(I/CH.J".C) >>
((CH.P.C-1) - I REM CU.P.C) * CHAR.SIZE) /I CHAR.MASK.

If the cell size is 16 and the CHAR.SIZE is 8, then this may be
written, for faster execution, in the form

GLOBAL$(GETBYTE:85 $)
LET GETBYTE(S, I) =

(S! (I >> 1) >> ((-.I /I 1) << 2)) /I 255

It would be a useful exercise for the reader to determine that
this does indeed deliver what is expected. Its translation to
~INICODE is

$ 1:
LIP3 L1 X>> AIP2 X! SP4
LIP] X-. L1 X/1 L2 X<< SP5
LIP4 LIPS X>> 1255 X/1
XR
G85L1

/ LET GETBYTE(S, I) =
/ S ! (I >> 1)
/ ((-,I /I 1) << 2)
I C~-- >> •••) /I 255

Actually, some machines might be able to treat this function as
a basic machine instruction, in which case further efficiency in
execution is to be expected. There is an associated routine
PUTBYTE which has the opposite effect from GETBYTE. Thus the
call PUTBYTE (S, I, C) will store the character C in the I-th
byte of the strings. For the details of PUTBYTE the reader
should consult the source listing of the BCPL library.

2.4.1. The remaining library routines

This is almost the place for us to abandon our discussion
of MINICODE, in favour of BCPL instead and the reader might wish
to heave a sigh of relief! Up to the present our intention was
to understand the machine and its assembler language. our know­
ledge of BCPL has been derived by some kind of "osmosis". We
shall soon need to be more systematic. But before we make this
change, we shall look at two more of the BCPL library routines
as they appear in MINICODE, for these are an excellent source of
well coded examples to use for illustration. The two are: that
function which reads a decimal (base 10) integer, READN. and the
focmatted output routine iRITEF.

A simple minded-function for reading a decimal {base 10)
integer might be

The Essence of computer Science 25

GLOBAL$(RDCH:13; Cil:71 $)
LET RDN() = VALOF

$(1 LET N, B = O, FALSE
IF CH= 1 - 1 THEN

$ (B := TRUE; CH := RDCH () $)
WHILE 1 0 1 <=CH<= '9 1 DO

$ (N : -= N * 10 + CH - 1 0' ; CH : = R DC H () $)
RESOLTIS B -> -N, N $) 1

In BCPL, the construction VALOF c, where c is a command, becomes
an expression which yields a result. The command c must some­
where contain the command RESULTIS e, where e is an expression.
Note that the function RDN expects that CH already contains the
first character of the integer to be read. It depends upon the
primitive function RDCR whose call, ROCH(), yields the next
character from the input stream. The expression

b -> e1, e2

in BCPL, is interpreted as follows: if the value of bis tcue,
then the value of the expression is that of e1; otherwise, it is
that of e2. Observe carefully the code generated by B -> -N,
N, in toe translation of RDN to"MINICODE.

$ 1 : I LET RDN () = VALOF
LO SP2 LO SP3 I $ (LET N, B = o, FALSE
L'-' LIG71 X= FL5 I IF CH-= ,_' THEN
LIL499 SP3 LIG13 K4 SG71 I $ (B . - TRUE; CH ·- ROCH() $) .- .-

5:JL7 / WHILE ...
6:110 LIP2 X* AIG71 L'O' x- SP2 I $(N . - N * 10 ♦ CH - I O t .-

LIG 13 K4 SG71 I CH . - ROCH () $) .-
7:L 1 0 1 LIG71 X<= FLB I IO t <= CH

LIG71 1'9' X<= TL6 I . . . <= I 9 I DO
8: LI P3 FL10 LIP2 XN SP4 JL9 I B -> -N,
10:LIP2 SP4 I N
9: LI P4 JL4 4:XR I RESULTIS ...
2:D11 499:D-1 I TRUE

The
tI:'ivial
that the

reader is expected to · wock through this MINICODE with a
example to determine how it works. Suppose for example
variable CH contains the character 1 2• and that the

next two
space. The
integer 21.

characters on the input stream are '1 1 followed by a
result delivered must be the value of the decimal

Although the function given above may be easy to follow, it
suffers from the disadvantage already mentioned: one must assume
that the first character of tha integer to be read has already
been swallowed by RDCH. The function from the BCPL library,
READN, which is reproduced below, overcomes this and other dis­
advantages. It is:

GLOBAL$(RDCH:13; TERMINATOR:71 $)

LET READN() = VALOF

26 The Essence of computer Science

$(1 LET SUM, NEG= O, FALSE
$(1 TERMINATOR:= RDCH()

SWITCHON TERMINATOR INTO
$(CASE' ': CASE '*T': CASE '*N': LOOP

CASE '- 1 : NEG:= TRUE
CASE 1 +': TERMINATOR := RDCH() $)

BREAK $)L REPEAT
WHILE 'O'<=TEBMINATOR<= 1 9 1 DO

$(SUM:= 10*SUM + TERMINATOR - 1 0 1

TERMINATOR := RDCH () $)
RESULTIS NEG-> -SUM, SUM $)1 •

This furiction is rather similar to RDN as defined above, but it
dlso allows for the possibility of ceading over blanks, new
lin~s ('*N') and tabs ('*T') before reaching the integer. Also,
it allows that the integer may be preceded by a plus sign ('+').
Another feature to notice is that when this function has yielded
the integer, then t.he value of the variable TERMINATOR is the
n~xt character from the input stream beyond that integer. The
trdnslation to MINICODE is:

$ 42!
LO SP2 LO SP3

131:LIG13 K4 SG71
,JL 132

LET READN() = VALOF
$(1 LET SUM, NEG= O, FALSE
$(L TERMINATOR:= RDCH()
SWITCHON •••

134: 135: 1.36:

/
/
/
/
I
I
/
I
I

$ (CASE ' 1 : CASE 1 *T': CASE '*N':
,JL 131 LOOP

137:LIL443 SP3 CASE•-•: NEG:= TRUE
118:LIG13 K4 SG71 JL133
132:LIG71 X? 05 D1133

CASE 1 +': TERMINATOR:= RDCH{) $)
••• TERMINATOR INTO

D' ' DL 13 4 D' *T' DL 13 5
133:JL139 JL131
139:JL141

D'*N'

140:LIP2 L10 X* AIG71 L'0 1

SP2
LIG13 K4 SG71

141:L'O' LIG71 X<= FL142
LIG71 L'9' X<= TL140

142:LIP3 FL1U4
LIP2 XN SP4 JL143

144:LIP2 SP4
143:LIP4 JL130
1 30: XR

I
I

x-
i
/
I
I
I
I
I
I

DL136 D'-' D1137 D'+' DL138
BREAK $)L REPEAT
WHILE •••

/ 10 *SUM+ TERMINATOR - '0'
$ (SU.M := •••
TERMINATOR : = RDCH () $)

1 0 1 <= TERMINATOR
• • • <= '9' DO
RES □LTIS NEG->

-:SUM,
SUM

$) 1

443: D-1 / TRUE

This example displays many interesting features.
these is the switchon command, with the form

One of

SiITCHON v INTO
$(CASE v1: s1

CASE v2: s2

··-CASE vn: Sn
DEFAULT: Sd $) •

This command allows for the choice of several different actions

The Essence of Computer Science 27

depending upon the value of a variable. For example, if the
value of v is v2, then control is transferred to command s2.
Note how this is translated to MINICODE

X? DLd Dv1 DL1 Dv2 DL2 .. - Dvn DLn

~here the value in the A-register is to be compared successively
with then values v1, v2, ••• 1 vn. If it is egual to one of
them, say vi, then control is transferred to the instruction at
the label Li; otherwise, control is transferred to the instruc­
tion at the label Ld (the default label), if that label is
present, and otherwise to the command that follows the switchon
command.

Another interesting feature is the REPEAT, which modifies
the command preceding it by making it into a loop, i.e., a com­
mand which is executed repeatedly.

An associated command is LOOP, which transfers control to
the end of the loop ready for another repetition. Another asso­
ciated command is BREAK. This command transfers control to the
command that follows the loop.

A better perspective on REPEAT, LOOP and BREAK might be got
by knowing that the framework

$ (. LOOP

BREAK
. . . $) REPEAT

is equivalent, in this instance, to the following chaotic mess
of jumps

L 1: GOTO L2 ...
GOTO L3 ... 12: GOTO L1
L 3: .

2.4.2. Formatb~u write

we consider now the formatted output routine WRITEF.
Before giving the BCPL source, a few remarks about what it is
supposed to do, are in order. The call WRITEF("HELLO") will
produce exactly the same output as the similar call
WRI·r.Es {uHELL0 11), but it is usually not used for writing strings
only •. Another call, WRITEF("VALUE = %N", V), will write

VALUE= 234

supposing the value of Vis 234. Thus WRITEF acts like iRITES

28 The Essence of computer Science

on its first parameter except when that string contains a per­
cent symbol. If a percent symbol is present, then following
that symbol may be one of two layout symbols. The layout sym­
bols and their purpose are summarized below, where it is assumed
that the value of the next unused parameter is v.

symbol action

C
s
N
Iw
Ow
Xw

WRCH (v)
WRITES (V)
WRITED(v, 0)
WHITED (v, w)
WRITEOCT (v, v)
WRITEHEX(v, w)

Here it is understood that the character used for the layout
symbol, w, is one hexadecimal (base 16) digit, i.e., O, 1, 2,
••• , 9, A, B, ••• , F. If the character following the percent
symbol is not a layout character, then the perce nt symbol is
ignored and the character following it is written in the normal
way. This allows the percent symbol itself to be written usinq
11 %% 11 • The WRITEF routine in BCPL is:

GLOBAL$(WRCH:14; WRITES:60; WRITED:68; WRITEHEX:75
WRITEOCT:77; GETBYTE:85 $)

LET WRITEF(FORMAT, A~ B, C, D, E, F, G, H, I, J, K) BE
$ (1 L-ET T = @A

FOR P = 1 TO GETBYTE(FORMAT, 0) DO
$(2 LET CH= GETBITE(FOR~AT, P}

TEST CH='%' THEN
$(3 LET F, ARG, N = WRITED, !T, 0

p := p + 1
$ (LET TYPE = GE·rBYTE (FORMAT, P)

SWITCHON TYPE INTO
$(4 DEFAULT: WRCH(TYPE); LOOP

CASE 1 S': F := WRITES; GOTO DO.IT
CASE 'C': F := WRCH
CASE 1 N': GOTO DO.IT
CASE 1 0 1 : F := WRITEOCT; ENDCASE
CASE 'X': P := WRITEHEX
CASE 1 I 1 : ENDCASE $)4

P := P+1; N := GETBYTE(FORMAT, P)
N := (1 0 1 <=N<= 1 9 1) -> N- 1 0 1 , N+10- 1 A1

DO.IT: F(ARG, N); T := T+1 $)3
OR WRCH (CH) $) 2 $) 1

Note that the operator@, on the second line, yields the
address of its right operand. Also, it will be useful to know
that

TEST b THEN s1 OR s2

executes command s1 if bis true and otherwise executes the com­
mand s2. In the routine above, it is used to test whether we
have a percent symbol or not. The translation of WRITEF to

n

The Essence of Computer Science 29

MINICODE is:

$ 17:
LP3 SP14
L1 SP15 LIP2 SP18 LO SP19
LIG85 K16 SP16
JL42

43:LIP2 SP19 LIP15 SP20
LIG85 K17 SP17
L'%' LIP17 X= FL44
LIG68 SP18
1IP14 X! SP19 LO SP20
L 1 l\I P 15 SP 15
LIP2 SP23 LIP15 SP24
LIG85 K21 SP21
JL48

50:LIP21
52:LIGfiO
53:LIG14
54:JIL47

SP24 LIG14 K22 JL51
SP18 JIL47
SP18

55:LIG77 SP18 JL49
56:LIG75 SP18
57: JL49

JL49
48:LIP21 X? D6 DLSO

I
I
I
I
I
I
I
I
I
I
I

LET wRITEF(FORMAT, A, ••• ,
$ (LET T = @A
FOR P = 1 ••• FORMAT, 0

GETBYTE(••• , •••)
DO

K) BE

FORMAT, P
$(2 LET CH= GETBYTE(•• , •••)
TEST CH='%' THEN
$(3 LET F, •••=WHITED, •••

ARG, N = •••• !T, 0
p := p + 1

/ FORMAT, P
/$(LET TYPE= GETBYTE(••• , •••)
/ SWITCHON
/ $(4 DEFAULT: WRCH(TYPE); LOOP
/ CASE 'S':F:=WRITES;GOTO DO.IT
/ CASE 1 C 1 :F:=WRCH
/ CASE 'N': GOTO DO.IT
/ CASE 'O':F:=WRITEOCT; ENDCASE
/ CASE 1 X1 :F:=WRITEHEX
/ CASE j I I:
/ $)4
I ••• CH INTO

ENDCASE

D'S' D152 D'C' DL53 D'N' D154 D1 0' D155 D'X' DL56 D'I' D157
49:11 AIP15 SP15

LIP2 SP24 LIP15 SP25
LIG85 K22 SP20
1'0' LIP20 X<= FL59
LIP20 L'9' X<= FL59
LIP20 1'0 1 X- SP22 JL58

59:110 AIP20 L 1 A1 X- SP22
C,8:LIP22 SP20
46:LIP19 SP24 LIP20 SP25

LIP18 K22
11 AIP14 SP14
JL45

44:LIP17 SP20 LIG14 K18
45:51:LIP15 Al SP15
42:LIP15 LIP1o X<= TL43

XR
47:DL46

I P := P + 1
I
I
I
I
I
I

FORMAT, P
N := GETBYTE(••• , •••)
('O•<=N

•••(=I 9 I) ->
N - '0'
N + 10 - 'A'

/ N := • • •
I DO. IT: ••• ABG, N
I
I
I
I
I
I
I

F(••• , •••)
T : = T + 1 $) 3
OR
WRCH (CH) $) 2

// increment P
TO •••

$) 1

In this BCPL example there is a jump, GOTO DO.IT. In
general, the use of jumps is poor programming practice and
should be avoided. The reason is that source code containing
jumps tends to be difficult to follow and even more difficult to
establish correct. Moreover, since eKperience has shown that
the major cost of software is in its maintenance, programs
should be clear to those who did not create them. Programs with
jumps are usually less clear. But despite this, Knuth [K] has
shown that there are occasions when the use of a jump can be
justified by the efficiency it brings. The routine WRITEF seems
to be one of these. Moreover, this routine is probably one of
tbe roost frequently used output routines in the BCPL library,

30 The Essence of Computer Science

ana one should perhaps resist attempts to make it more
11 structured 11 and possibly less efficient. All of this is a war­
ning that beginning programmers should n.gy~f use jumps in a high
level language but should leave them only to the most ex­
p2~ienced. In the same way, amateur composers should never use
discords. Only the masters know just where they can be tolerat­
ed.

~ feature of the above routine, obs~rvable in its transla­
tion, is the knowl~dge that the address of a routine is a value
which may be assigned. Thus, in the execution of the call
WIU'i'EP ("V'I\LUE = %06", V), since the layout symbol following the
~ercent symbol is the letter o, the variable Fis assigned the
~adress oi the routine WRITEOCT. Consequently the call F(ARG,
N) is equivalent, in this instance, to the call W~ITEOCT(V, 6).

Obs~rve that WRITEP is defined as accepting twelve pacame­
t~rs, but that the routine works with any number up to twelve.
Th~ paramete rs, of course, ace loaded consecutively onto the

t ck before the call. The address of parameter A is captured
by th e variable Tin the declaration

LETT= @A

whose translation to MINICODE is

LP3 SP14 •

Subsequently, whgn we must look for the next parameter, Tis
incremented by the command

T := T + 1

on the line following the label DO.IT.

2.5. The towers of Hanoi

we take one more example to illustrate MINICODE. This is
the famous puzzle whose solution nicely illustrates the power of
recursion in a programming language.·

The puzzle assumes that there are three pegs labelled the
"source", the "intermediate" and the "destination". On the
source peg are a number of discs of increasing size piled in
pyramid fashion.

I
xx,xx

XXXIXXX
xxxx1xxxx

xxxxx1xxxxx

(source)

The puzzle is to move this pile to the destination using only
acc~ptable moves. An acceptable move moves only one disc from

'

l

The Essence of computer Science 31

the top of one pile to the top of another, but never moves a
disc on top of a smaller one.

Observing that there is nothing to do if the number, n, of
discs is zero, we solve the problem inductively. Assuming then
that we know how to move n-1 discs from any one peg to any
other, using the third as an intermediate, the solution is as
follows.

I
XXIXX

xxx,xxx
XXXXfXXXX

xxxxx,xxxxx

(source) (intermediate) (destination)

Move n-1 discs from the source to the intermediate.

I
I
l
I

xxxxxrxxxxx

I
I

XXfXX
XXXIXXX

XXXXt XX·XX

Then move the bottom disc from the source to the destination,

I
I

XXIXX
XXXIXXX

XXXXIXXXX

I
I
I
I

XXXXXflXXXX

Then move the n-1 discs from the intermediate to the destina­
tion.

I
I ·
I
I
I

I
XXIXX

xxx,xxx
XXXXIXXXX

x:xxxx I xxxxx

The routine, in BCPL, for performing the solution given
above is

LET
$ (

HANOI (N, S, I, D) BE
IF N = 0 RETURN
HANOI (N-1, S, D, I)
WRITEF("MOVE %N FROM
HANOI(N-1. I, S, D)

%C TO %C*N", N, S, D)
$)

and its call is included in the following routine

I

32 The Essence of computer Science

LET START() BE
$(LET N = BEADN()

IF N = 0 FINISH
HANOI(N, 'S', 'I', 'D 1) $) REPEAT

The solution for the case n = 3, printed by the program

MOVE 1 FROM s TO D
MOVE 2 FROM s TO I
110VE 1 FROM D TO I
MOVE 3 FR0l1 s TO D
MOVE 1 FROM I TO s
MOVE 2 FROM I TO D
MOVE 1 FROM s TO D

The translation of these two routines to MINICODE is

JL3
$ 1:

LO LIP2 X= FL4 XR
4:LIP2 L1 X- SP8

/ LET
I $ (

I
I

HANOI(N, s, I,
IF N = 0 RETURN

N-1
s,

is:

D) BE

D, I LIP3 SP9 LIPS SP10 LIP4 SP11
LIL2 K6 I . HANOI(••• , . . . , ... , ...)
11499 spa LIP2 SP9
LIPJ SP10 LIPS SP11 LIG76 K6
LIP2 L1 X- SP8
LIP4 SP9 LIP3 SP10
LIPS SP11 LIL2 K6
XR

3:JL6
$ 5:7:

LIG7 0 K2 SP2
LO LIP2 X= FL8 XF

8:LIP2 SP5 L'S' SP6
L'I' SP7 L'D' SP8 LIL2 K3
JL7 XR

6:XF
2:D11
499:C"MOVE IN FROM %C TO %C*N"

G115
z

I II " N ... ,
I iiRITEF(.... , • • • I s, D)

I N-1
I I, s,
I HANOI(••• , ... , . . . ,
I $)

/ LET START() BE
/ $ (LET N = R EADN ()
/ IP N ~ 0 FINISH
/ N, 1 S',

D)

/ HANOI(••• , ••• , 'I', 'D')
/ $) REPEAT

The loader arranges that the return address from the START
routine is always the first cell of the program area. The com­
piler is therefore. careful to place in to this cell an
instruction which jumps eventually to an XF (in the above exam­
ple by JL3, 3:JL6, 6:XF). In this particular program this turns
out to be unnecessary, since a FINISH command is included expli­
citly.

To use the assembler, no knowledge of its structure is
ndeded; however, if we wish to understand how it works, tben a
more detailed study of the software system is necessary. This
is accomplished in the next chapter.

The Essence of Computer Science 33

Chapter III

The software system

This chapter explains the basic software system associated
with the ideal machine. Its purpose is a) to provide further
examples of a variety of programming techniques, b) to round out
our description of a complete programming system, and c) to
clarify the distinction between an assembler, a loader and an
interpreter, by a close study of each one. The assembler trans­
lates MINICODE programs into instructions, coded in octal, ready
for loading. The loade~ loads the instructions into the comput­
er and the interpreter performs the fetch-execute cycle on the
loaded instructions. Each of these will be explained as a BCPL
program. It is assumed here that a knowledge of the BCPL lan­
guage has already been gained from elsewhere [R4].

3.1. The assembler

Up to this point we have regarded the assembler as some
kind of "black box" that does the right job. A complete under­
standing of the system, however, can only come with a detailed
study of the construction of the assembler. Its purpose is to
translate MINICODE instructions into octal integers representing
instructions for execution by the ideal machine. This may at
first appear to be a simple task. However, examination of the
following sample of MINICODE

1:LIP2 TL3 LIP3 LIP4 X< FL3 JL1 3:XR

reveals a problem. How can one translate the instruction TL3
without having yet encountered the defining occurrence of the
label at 3:XR? The solution to this problem is one of the im­
portant things to learn about assemblers, but first we shall
begin with the simple parts.

We shall examine the assembler in stages and then put the
pieces together later. The simplest routine, for a start, is

GLCBAL $(RDCH:13; CH:101 $)
LET RCH (} BE

$(1 CH := RDCH()
UNLESS CH= 1 / 1 RETURN
UNTIL CH = 1 *N' DO CH : = RDCH () $) 1 .REPEAT

Thus the purpose of RCH is to assign the next significant char­
acter from the input stream to the variable CH, ignoring
comments.

3.1.1. Reading constants

The next function is RDCNST. Its purpose is to read a dec­
imal integer, or a character constant from the input stream, on
the assumption that CH already 'contains its first character.
The function is:

34 The Essence of Computer Science

LET RDCNST() = VALOF
$(1 LET A, B = O, FALSE

SWITCHON CH INTO
$(2 CASE •-•: B := TRUE

CASE 1 +1 : RCH {)
DEFAULT: WHILE 1 0 1 <==CH<== 1 9 1 DO

$ (A : = 10 * A + CH - '0 1 ; RCH () $)
ENDCASE

CASE '*' 1 : RCH (); A := CHAR()
RCH () $) 2

RESULTIS B -> -A, A $)1

T~is function will be familiar since it is similar to functions
studied earlier. The difference here is that RDCNST allows for
a character constant in place of a decimal integer, so that the
assembler may accept, e.g., L'A' as well as L65. The function
RDCNST calls another function CHAR to interpret the reading of a
character. We now present CHAR.

LET CHAR() = VALOF
$(1 LET A== CH

IF A= '**' THEN
$ (2 CH : = R DC H ()

A : = CH - I N' - > I·* N' ,
CB - 'P' -> '*P',
CH = I T' - > I *T ' ,
CH = 1 S 1 -> '*S 1 ,

CH$) 2
CH : = RDCH () ; RESULTIS A $} 1

Tlie pur-pose of CHAR is to take care of those characters which
may not be directly representable and for which the escape char­
actar is used. These are *N. *P, *T and •s. Thus, the
assemblet will be able to read instructions like L'*N' correct-
1 y.

3. 1. 2. The eight operations

We shall now look at the routine OPERATION.
assumes that we have already come to. an e~ecutable
such as JIL2, and have read its first character.
as a parameter to OPERATION, a value in which the
tion bits or the instruction have already
example, for JIL2, we pass the parameter 1020000
bit cell size). The definition of OPERATION is:

This routine
instruction,

We then pass.
three opera­

been set. For
(for a sixteen

MANIFEST$(IBIT:14000; PBIT=#2000; GBIT~t1000
ABITS=#0777; DBLBIT=#lOOOOOO $)

LET OPEPATION(W) BE
'.~(1 CH:= RDCH()

IF CH = 1 I 1

TiiEN $(W :=WI/ IBIT; RCH() $)
IF' CH = ' ·L'
THEN $ (2 RCH {) ; STW (W I/ DBLBIT)

LABREF (RDCNST (), P); RETURN $) 2

(

The Essence of Computer Science

TEST CH== 'P'
THEN$(W := W I/ PBIT: RCH() $)
OR IF CH = 'G'
THEN$(W := W l/ GBIT; RCH() $)
Ii' W = #070000

JS

THEN$(W := W I/ ((•O•<=CH<='9') -> RDCNST(), lHNI.X())
RETURN $)

$ (LET D = RDCNST ()
TEST (D /I ABITS) = D
THEN STW (W I/ D)
OR $ (STW (W ,1 DBLBIT) ; STW (D) $) 1

Note that OPERATION results in a two cell instruction in the
cases that the operand is a label reference or when the operand
is too large to fit into the space available in the cell. The
latter occurs ~hen D /I ABITS =Dis false. The three new rou­
tines used by OPERATION are STW, MINI.X and LAHREF. The call
STi(W) places the instruction Win the next available cell re­
served for the assembled program. The function MINI.X
interprets the mnemonics for the execute instruction, e.g., X+,
and the routine LABREF takes care of label references such as 20
in LIL20. The definition of STW is:

LET STW(W) BE
$(1 !P ::= W; P, CP := P+1, 0;

IF P > PROGMAX THEN
$(WRITEF("*NSEGMENT TOO LARGE")

FINISH $) 1

Here it is assumed that the global variable P contains the ad­
dress of the next available cell in the assembled program area.
The variable Pis then incremented immediately. The setting of
CP, the character phase, to O is a precaution concerning the
storage of characters. The routine STW has a built-in check, P
> PROGMAX, that the program segment may be t90 large.

3.1.3. The execute instructions

The purpose of the function MINI.Xis to decode the special
~INIC0DE execute instruction mnemonics, e.g., X+ is equivalent
to X8. Observe that if we were always to write, for example, XB
instead of X+, then the assembler does not need to do this extra
work. However, the convenience and readability of MINICODE seem
to suggest that it is worthwhile to add this little extra to the
assembler. The operation of MINI.X can be learned easily from
the following listing

LET MINI.X() = VALOF
SWITCHON CH INTO // CHAR BEYOND 'X'

$(1 CASE'!': RCH(); RESULTIS 1
CASE 'I.ii': RCH(); RESULTIS 2
CASE ,.,, : RCH ();

TEST CH=•:• THEN$(RCH(); RESULTIS 11 $)
OP. TEST CH=' E' TUEN $ (RCH (); RESULTIS 21 $)
OH RESULTIS 3

CASE 1 R': RCH (); RES0LTIS 4

36 The Essence of Computer Science

CASE '** 1 : RCH ()--; RESULT.IS 5
CASE 1 / 1 : RCH()

TEST CH=' I' THEN$(HCH(); RESULTIS 18 $)
OR TEST CH='**' THEN$(RCH(); RESULTIS 7 $}
OR RESULTIS 6

CASE 1 + 1 : RCH(); RESULTIS 8
CASE 1 - 1 : RCH (); RESULTIS 9
CASE'=': RCH(); RESULTIS 10
CASE '<': RCH()

TEST CH= 1 =1 THEN$(RCH(); RESULTIS 15 $)
OR TEST CH='<' THEN$(RCH(); RESULTIS 16 $)
OR RESULTIS 12

CASE. ' >' : RCH ()
TEST CH='=' THEN$(RCH(); RESULTIS 13 $)
OR TEST CH='>' THEN $(RCH(); RESULTIS 17 $)
OR RESUL'IIS 14

CASE I I ' : RCH ()
TEST CH='/' THEN$(RCH(); RESULTIS 19 $)
OR RE.SOLTIS 19

CAS E 'I::': RCH(); RESULTIS 20
CAS E 'F': RCH(); P.ESULTIS 22
CA S E'?': RCH(); RESULTIS 23
DEFAULT: WHITEF("*NBAD CH IC", CH)

RCB () ; RESULTIS O $) 1

J.1.4. Labels

•

There is a basic problem with labels in any assembler lan­
quage. Since we l~ave it to the assembler where each
instruction is to be stored, and since we may often use a label
before we have reached its defining occurrence, we may not
always know the precise address for a label. The resolution of
this problem will now be discussed.

The effect of the call LABREF(N, A) is to determine, if
possible from the table of labels, the address of label number N
and to store this in the cell whose address is in A. It must
also allow for the fact that the label number referred to bas
not yet been encountered. The defi~ition of LABREF is:

LET LABREF(N, A) BE
$(1 LET K = LABV!N

TEST K < 0 THEN K :=-KOR LABV!N := A;
! A := K
IF A>= PROGRAMO THEN P := P + 1 $) \

From this one may see that the look-up of the address itself
from the label number N ,is accomplished by

LET K = LABV!N •

If K is negative, this means that the address of the label is
known. It is -K. If K is not negative, then this means that,
either LABV!N is zero, i.e., this is the first reference to the

The Essence of Computer Science 31

unknown label N, or it is the address of the place where the
same unknown label was previously encountered. Note that if A
does not point to the global area, A>= PROGRANO, then ve must
increment the instruction pointer P.

Since the resolution of labels is a vital part of the as­
sembly process, we shall illustrate it by an example. Suppose
we are assembling the nonsense piece

1:LIP2 TL3 LIP] LIP4 X< FL] JL1 3:XE

in which there are two fo~ward jumps to the same label number 3.
The code which has been generated by the time we have reached
JL1 may be represented by the following diagra~

LAHV I -~ qi

I I
0 1 I 2 3 I 4 5

< >
<

T < I
r---,---Tf l I I
I I I 01 I IP qi
L-

1: LI P2 T-----13 LIP] LIP4 X< F-----13 J-----L1 .
Here we see that the address of label 1 has already been re­
solved, but that of label 3 has not. The effect of the command
LABV!N := A, followed by IA:= K, ~s to help create a chain of
addresses, ending in O, connecting together all those places
which reference the same unknown label. Thus, LABV!1 points to
the position of label 1 in the generated code, but LABV!3 begins
a chain of references to label 3, although that label has not
yet been seen. After the assembler has encountered label 3,
this becomes

LABV I -qi I
I

0 1 I 2
<

~
T

,-+ ,,
I f

1: LIP2 T-----13 LIP3

-q,
I

3 I

<

LIP4

4 5
>

>
I

I
>--1--1 - -------+--.----.--~,-,-,,--.-

(p ~ I I

X< F-----L3 J-----L1 3:XR

This l~tter change is accomplished by th~ •routine SETLAB which
is called wheri the defining occurrence of. a label is encoun­
tered. That routine is:

LET SETLAB (N) EE
$(1 LET K = LABV!N

IF K < 0 THEN WRITEF("*NL%N ALREADY SET",N)

3 fl Tbe Essence of computer science

WHILE K > 0 DO
$(LET W = !K; !K := P-PR0GRAMO; K := W $)

LABV!N := PROGRAMO-P $)1

The reader should work carefully through the loop beginning

WHIL.E K > 0 DO

to convince himself that it does follow the chain of references,
as described above, and sets the label references correctly.
The reason for P-PROGRAMO instead of P is that the assembler
constantly maintains the fiction that it is assembling a segment
which begins at cell number zero. This is a fiction because, on
many actual machines, the first few cells of memory are usually
reserved for thE exclusive use of the operating system.

3.1.5. The main part

The next part of the assembler to be described is the heart
of it. The major portion is one large case command driven by
the phrase

UNTIL CH= ENDSTREAMCH DO
SWITCHON CH INTO

We shall look at a few of the cases involved. Those concerning
labels are

CASE 1 0 1 : CASE 1 1 1 : CASE '2': CASE 1 3': CASE 1 4 1 :

CASE •s•: CASE 1 6 1 : CASE •7•: CASE •s•: CASE '9':
SETLAB(RDCNST()); CP := O; ENDCASE •

This takes care of the defining occurrence of a label by calling
SETLAB, which vas described above, whenever one encounters a
decimal digit. Note that CP, the character phase, is reset to 0
to ensure that any character string constants which follow will
be stored correctly.

Executable instructions are handled, for a sixteen bit ma-
I • c.11ne, as follows

CASE 'L' : OPERATION(tOOOOO); ENDCASE
CASE 1 SI : OPERATION (#10000); ENDCASE
CASE 1 A I : OPEBATION(#20000); ENDCASE
CASE I JI : OPERATION(#30000); ENDCASE
CASE 'TI : OPERATION (#40000); ENDCASE
CASE IF I : OPERATION{i50000); ENDCASE
CASE I KI : OPERATION (160000); ENDCASE
CA.SB 'XI : OPERATION(#70000); ENDCASE

Each of these cases calls the ro~tine, OPERATION, passing to it
a parameter representing an ideal ma~hine instruction in which
the operation bits have been set. The routine, OPERATION, then
completes the assembly of the appropriate instruction, as de­
scribed earlier.

I

(

The Essence of Computer Science

3.1.6. Storage reservation

A storage
letter D, e.g.,

reservation instruction, beginning with
D-1, D'H' or DL47, is assembled as follows.

CASE 'D': RCH ()
TEST CH= 'L'
THEN$(HCH(); LABREF(RDCNST(), P) $)
OR STW(RDCNSTO)
ENDCASE

39

the

If the datum is a label reference, e.g., L47 in D147, it calls
LABREF, which has been dBscribed above; otherwise, it stores the
Yalue following the letteI Dusing STW.

The storage reservation instruction beginning with the
letter G, must be of the form GnLm, where n and mare small non­
negative decimal integers, e.g., G101L1. This is handled by

CASE 'G': RCH ()
$ (LET A = RDCNST () + G

TEST CH= 1 1 1 THEN RCH()
OR WRITEF("*NBAD CODE AT iN", P)
LABREF (BOCNST (), A) $)

ENDCASE

It checks that the letter Lis present and then calls LABREF,
which has been described abov~, to allow for the storage of the
appropriate address in the global vector. Note that the value
o.f the var,iable G is the address of the first global cell.

The assembly of the storage reservation instrqction begin­
niRg with the letter C allows either for the""primi.tive form

CS C69 C76 C76 C79
or its equiYalent

It i~ assembled by

CASE 'C': HCH ()
TEST CH='"'

C"HELLO"

THEN $(2 LET V = VEC 255 AND I= 0
CH := RDCH ()
WHILE CH~='"' DO

$ { I : = I + 1 ; V ! I = CH AR () $)
STC (I)
FOR J = 1 TO I DO STC (V?J); RCH () .$) 2

OR STC(RDCNST{))
ENDCASE

Note that the assembler allows for a maximum of 255 characters
in the string with the form C" ••• "• •·. •

The routine STC is machine dependent. For a sixteen bit
cell size, storing two characters per cell, it is

40 The Essence of Computer Science

LET STC{C) BE
i (1 IF CP=O THEN $ (STW (0); CP := 16 $)

CP : = CP - 8;
! (P-1) := ! (P-1) /I (C << CP) $) 1

A more general routine is obtained by replacing
11 CH.P.C*CHAR.SIZE" and 11 8 11 by "CHAR.SIZE". This is
where it is essential that CP, the character phase,
value zero at the beginning of a string constant.

3.1.7. End of segment

"16" by
the place

has the

The pseudo-instruction z, which marks the end of a segment,
is recognized by

CASE 'Z': OFFSET:= WRITE.CODE()
P, CP := PROGRAMO, O; RCH()
EN DC ASE

This cas~ calls the function WRITE.CODE, which writes out the
generated code, in octal, for the segment just concluded. The
function WRITE.CODE delivers the length of the code for all seg­
ments written out and the assembler uses this information,
stored in OFFSET, to decide where to locate the next segment.
It also resets P, the instruction pointer, and CP, the character
phase.

One might wonder vhy the code is not written out at the
tim~ that each instruction is translated. One reason for not
doing this, is that we must wait until all the labels have been
resolved, unless we want to complicate thE;i loader. Another is
that d more powerful assembler, such as that listed in the Users
Guide [P2], ' compactifies ~he code by a rela~ive addres~ing tech­
nique [P1] and must have al.l the code of one section present to
do this. ·

An 8SS€ntial paC"t of the assembler is

CASE '$ 1 : CASE 1 : 1 : CASE 1 1 : CA.SE '*N 1 : RCH (); ENDCASE

which skips over characters which are of no importance.

This concludes our study of a simple version of the assem­
bler.

3. 2. The loader

The purpose of the loader is to read a load module, i.e., a
set of octal numbers representing ideal machine instructions and
data, into the computer. Perhaps the best way to understand the
construction of a load module is to examine one which has been
generated from a trivial example.

,.

n

l

The Essence of computer Science

GLOBAL$(START:1; GREETING:101 $)
LET ST ART() BE GREETING()

GLOBAL$(WRITES:60; GREETING:101 $)
LET GhEETING () BE WRITES ("BELLO")

Here there ar8 two BCPL source program segments each ending with
tt.tt. For purpos~ of illustration, the segments here are very
sm~ll. In normal BCPL progra~ming a new segment is appropriate
after eight or nine pages (about 500 lines) of code. These il­
lustrative segments generate the following MINICODE

JL2
$ 1:LIG101 K2 XR 2:XF
G1L1
z
JL2
$ 1:11499 SP4 LIG60 K2 XR 2:XF
499:C"HELLO"
G101L1
z

which, in turn, produce the follo~ing load module

P000O00
070000, 033405, 070000, 005145, 060002, 070004, 070026
G000001 0+000002

P000007
033407, 070000, 003406, 012004, 005074, 060002, 070004, 070026
002510, 042514, 046117
G000145 0+000010
• END

This load module comes from a more sophisticated assembler than
that described above. In particular, it inserts an XO (no
operation) at the entry to each routine or function and reduces
some of the two cell instructions to one cell by a relative ad­
dressing technique (see [P1]) • Also, it is relocatable, i.e.,
the segments may be loaded into - any part of memory. Notice that
the load module given above consists of two segments. Each seg­
ment begins with Pn, where n is the loading position, relative
to zero, of the first instruction of the segment. The first
segment is given the position zero and subsequent segments are
given loading positions beyond those already loaded. After this
follow a number of octal integers separated by spaces and/or
commas. Then we have one or more occurrences of Gn m, where n
is the octal number (0 for the first) of a global cell and mis
the octal content to be loaded into it. Any cell, whether in
the global or the program area, containing an address which may
oe subject to relocation, is preceded by the characters "O+".
The end of a load module is signalled by ".END".

42 The Essence of Computer Science

3.2.1. Details of the loader

The loader assumes that PROGRAMO contains the address of
the first cell in the actual program area and it uses this as
the initial relocation addend. The loader action is governed by
a case command, driven by

UNTIL CH= ENDSTREAMCH DO
SWITCHON CH INTO

The Pn is acc~pted by

CASE 'P': RCH(); PGM := TROE
A := PROGRAMO+OFFSET+RDO()
ENDCASE ,

where RDO is a function which reads an octal integer, OFFSET is
the length of previously loaded modules (initially zero) and PGM
is a boolean (true or false) variable which is true when A is
pointing to the actual program area. The variable A is thus
given an appropriate address into which to load subsequent in­
structions.

An octal instruction is loaded by

CASE ' 0 ' : CASE I 1 I ! CASE •2•: CASE '3':
CASE I 4 t ! CASE ' 5' : CASE I 6 I ! CASE I 7 t ':

! A := RDO ()
IF PGM THEN $ (A := A + 1 ; p := A $)
ENDCASE .

The purpose of the command beginning IF PGM THEN is to increment
the actual loading position, unless A points to a global cell.
The variable P keeps track of the next available position in the
program area. A relocatable address is loaded by

CASE 1 0': RCH(); RCH()
!A := PROGRAMO+OFFSET+RDO()
IF PG M THEN $ (A : = A + 1 ; P : = A $)
ENDCASE

Note that the character'+' is ignored. A global cell number,
i.e., then in Gn m, is handled by

CASE 'G 1 : RCH(); PGM := FALSE
A : = G + RDO ()
ENDCASE

':'he end of the load module is detected by

CASE '. ':
UNTIL CH= '*S' I/ en= '*N' DO RCH()
OFFSET:= P-PROGRAMO; ENDCASE

which skips over the "END 11 and then calculates the length of
code already loaded, which is needed for relocation of the next

The Essence of computer Science . 43

module. Of course, we also need the following

CASE '*S 1 : CASE 1 *N': CASE ', 1 : RCH (); ENDCASE

to get rid of non-essential characters. Normally the loader and
interpreter are combined together in one program. When the
loader has finished its job, a state which is determined by rea­
ding the ENDSTREAMCH, it hands control to the interpreter.

3.3. The interpreter

Why do w~ need an interpreter? Well, as we have remarked
before, the ideal computer does not necessarily exist, as a
piece of hardware, although in these days of microprogramming,
it miqht well be possible to make some computer with this facil­
ity look like the ideal computer which we have described. Those
not fortunate to have such a facility, will have to make do with
what is available. It is therefore necessary to make whatever
computer we have at hand act as though it were our ideal comput­
er. This requires a program known as the interpreter.

If our local computer already has a BCPL compiler, then the
task is easy, for an interpreter written in BCPL is readily a­
vailable. But then 1 of course, we are not going to need an
interpreter anyway, except tor pedagogic purposes, since we can
translate our BCPL programs directly to the machine language of
the local computer. If a BCPL compiler is not available, then
the interpreter must be written in some other acceptable lan­
guage. For various versions of the interpreter see the MINICODE
Users Guide [P2].

We shall now describe the actions of the interpreter. It
is assumed, of course, that the program and the library routines
have already been loaded. It is also assumed that the variables
A, B, c, P and G represent the five registers, that G contains
the address of the first global cell, G!O, that C contains the
address of the next instruction in the program area of memory
and that P points to a cell on the stack with P!O and P!1 al­
ready loaded with the appropriate contents. It is now necessary
to describe the fetch - execute cycle.

3.3.1. The fP.tch

Assuming that Wis a cell used for holding the fetched in­
struction and that D will later be used to hold it~ operand, the
cycle begins with

W := ! C; C : = C + 1

This fetches the instruction from memory and increments the in­
struction counter c. The next step is to find the operand, but
first we must determine whether the instruction occupies one
cell or two. Assuming a sixteen bit cell and the declarations

44 The Essence of Computer Science

MANIFEST$(DBLEIT=#1000000; ABITS=#777
IBIT=#4000; PBITt2000; GBIT=t1000; FSHIFT=9 $)

this is done by

TEST W /I DBLBIT = 0
THEN D := W /I ABITS
OR $ (D := ! C; C := C + 1 $)

,

The raw operand is now in D and the instruction counter is in­
cremented again for a two word instruction. Note that on some
computers W /I DBLBIT = 0 can be replaced by W >=O.

3.3.2. Operation modification

The next step is to examine the operand modifiers. This is
accomplished by

TEST w /I PBIT ,= 0 THEN D -- D + p

OR IF w /I GBIT -,= 0 THEN D •·- D + G .-
IF w II IBIT ,= 0 THEN D . - !D .-

The variable D now contains the modified operand. Observe that
P and G modification of the operand is mutually exclusive.

3. 3. 3. Execute

Now that the modified operand has been determined, the re­
mainder of the interpreter is relatively simple. It consists of
two nested case commands as follows.

SWITCHON (W >> FSHIFT) /I 7 INTO
$(2 CASE O: B : ·= A; A ·-.- D· • ENDCASE

CASE , : ! D ·- A· ENDCASE .- •
CASE 2: A . - A + D; ENDCASE . ·-
CASE 3: C . -.- D· • ENDCASE
CASE 4: A := .., A
CASE 5: UNLESS A DO C . -.- D; ENDClSE
CASE 6: D . - p + D; D!O, D! 1 := P, C .-

P,C:=D,A; ENDCASE
CASF. 7: SWITCHON D INTO
$(3 CASE 0: ENDCASE

CASE 1 : A : ·= ! 1\; ENDCASE
CASE 2: A := -A; ENDCASE
CASE 3: A ·- .., A; ENDCASE .-
CASE 4: C : == p ! 1; p . -.- P!O; ENDCASE
CASE 5: A : = B * A· ENDCASE •
CASE 6: A --.- B I A; ENDCASE
CASE 7: A . -.- B REM A; ENDCASE
CASE 8: A ·-.- B + A; EN DCAS E
CASE 9: A . - B - A; ENDCA.SE . -
CASE 10: A • -.- B = A; EN DC ASE
CASE 11 : A ·- B -, = A· ENDCASE . •
CASE 12: A ·-.- B < A; EN DC ASE
CASE 12: A : = B >= A• • ENDCASE
CASE 1 4: A : -= B > A; ENDCASE

_j

_(

The Essence of Computer Science

CASE 15: A:= B <= A; ENDCASE
CASE 16: A:= B << A; ENDCASE
CASE 17: A := B >> A; ENDCASE
CASE 18: A := B /I A; ENDCASE
CASE 19: A := B I/ I\; ENDCASE
CASE 20: a:= B NEQV A; ENDCASE
CASE 21: A:= B EQV A; ENDCASE
CASE 22: RETURN
CllSE 23: B, D := C!O, C! 1

UNTIL B=O DO
$(4 B, C := B-1, C+2
IF A= C!O DO

$(D := C!1; BREAK$) $)4
C := D; ENDCASE

STEP CASE 24: A := A - C!O
TEST O <=A<= C!1
THEN C := C! (J+A)
CR C := C!2; ENDCASE

CASE 25: A:-=M.RDCH();
CASE 26: M. WRCH (A) ;

II
II
II
II

WITHIN RANGE
STEP IN
DE.FAIJLT

$)3)$2

ENDCASE
ENDCASE

45

Arter this execution, the interpreter returns to the fetch part
of its cycle.

Observe how the construction of this part of the interpret­
er makes it easy for us to add new X-instructions, if we feel
like it. Examination of the listing of the interpreter in the
users Guide [P2] shows many useful additional X-instructions.

some remarks are in order concerning the translation of Kn
(the first CASE 6), which handles the call of a routine or func­
tion, whose address is in thB A-register. Since the value of D
is n, the command

D := D + P

saves the new value of the P-register temporarily in D. The
command

D!O, D!1 := P, C

inserts th6 backward stack link and the return address in the
first two cells of the new stack frame and the command

P, C : = D, A

sets the P-register to its new value and puts the address of the
first instruction of the called function or routine into the
instruction counter. Note that the instruction X4 (or XR)
easily returns to the status-quo by the commands

C := P!1; P := P!O

which must be consecutively executed, of course.

46 The Essence of computer Science

In the cases dealing with X25 and X26, it is assumed that
~.RDCH and M.WRCH are similar to RDCH and WRCH respectively.
They are not necessarily the same because, for example, one may
Wdnt to load and execute a load module created under the ASCII
system on a computer which uses the EBCDIC system. If this is
the case, then both M.RDCH and M.WRCH will need translation
tables. In addition, these are the two important primitives
which communicate with the outside world (usually represented by
the operating sy~tem).

3.3.4. The case command

Also observe that the execution of the instruction X23 or
X? involves the loop

UNTIL 8 = 0 DO
$(4 B, C := B-1, C+2
IF A= C!O THEN

$(D := C!1; BREAK$) $)4

~hich searches the cells containing the translation of

Dn DLd DVl DLl ••• Dvn DLn

assuming that C points originally to the first of them.
BREAK is taken, then the . value in the A-register
matched; otherwise, the original assignment of C!1 to
that the default label, Ld, is used.

If the
has been
D means

The case dealing with the instruction X24 is included be­
cause a more sophisticated assembler can find better ways to
amit code for the case command (see [P1,P2]). Thus it is possi­
ble for the assembler to digest a set of instructions like

X? Dn DLd Dv1 DL1 Dv2 D12 ••• Dvn DLn

and to generate instructions for the ideal computer as though
the original ~INICODE were

X24 Dmin Dmax DLd DL1 DL2 DL3 ••• DLm

where "min" and "max" are the bounds on the values in the set
v 1, v2, • • • , vn and the labels L 1, L2, ••• , Ln are rearranged
and possibly expanded so that control is transferred to the cor­
rect place by a direct jump governed by the value in the A
register, rather than by making a sequential search through the
values v1, v2, ••• , vn. In some cases this can result in more
compact and faster executing code.

(This document is incomplete)

r

f

The Essence of Computer Science 47

References

[R1] M.Richards, INTCODE
BCPL, Proceedings of the
Machine oriented Higher
1973.

An interpretive machine code for
IFIP Trondheim Conference on

Level Languages, North Holland,

[R21 M.Richards, BCPL, A tool for compiler
p~ogramming, Spring Joint Computer
557-566.

writing and system
Conference, 1969, pp.

[R3] M.Richards, Bootstrapping the BCPL compiler using INTCODE,
Cambridge University, August 1973.

[R4] M.Richards, The BCPL Programming Manual, UBC, Computer
Science, June 1975.

[P1] J.E.L.Peck, V.S.Manis and W.E.Webb, Code compaction for
Minicomputers with INTCODE and MINICODE, Technical Report
75-02, computer Scienc€, DBC, Vancouver, 1975.

(P2] J.E.L.Peck, The MINICODE users
Computer Science; use, Vancouver,

guide,
1975.

Technical Manual,

[K] D.E.~nuth, Structured programming with goto statements,
Computing surveys, V.6, No.4, 1975, pp. 261-301.

.l

l

TH r:: Lr.~,::- '.:. :-::y
TH e Mn~.1t"..:Jl i•:;•1• · :--- (." ·,••,i~ll'II• . · ~ ~~., J'n ~ \;.., .. , \;, '·..1 . ___ J __ , .,.~ ~ ~ ~ r~...,.

UNIVERSITY OF 81-ff,ISH CDLUMSIA
VANCOUVER 8, B. C.

