
MMM
Mll!MM MiiM

Ml! ti !M
M M

!1 M !l'U'JMMMM!ll'1
!M liM MMMM MM!i

L~MM M!! MM 111111
MMM MMM ~M MMM
MMMt!M.MlH!HM

lH!MMMlH! M !!?HI
MMM

MMMMMMM.
M:11'!1 MM

MM
MMMMM

li.11 P.I MM ~ MM
H MMM M M

M MM MMM
lHHHJ ~MMM!iM

MM
MMM
Ml'JM
MM!

MMM

* •
* USER'S MANUAL FOR "?OPPS" *
* *

Edited by

Alan Balla.rd

Technical Manual 75-6

Revised October 1974

Department of Computer Scienca
University of British Columbia

Vancouver, B. c.

M

CHAPTE~
1. 1.
1.2.
1.3.
1.4.

CHAPTER
2.1.
2.2.

iii

7ABlE OF CONTENTS

INTRODUCTION lNt OVEFVIEW ,.
General ························, Introduction • 1
Prograll\.s,
Resourc~s

Processes And Virtual Processors •••••••••• ,
• •• 2

Flow Of Control • 3

2. SYNTACTIC
The CoDipl~te
Blocks And

DEII NITICN Cf TOPPS •••••••••••••••••••• 5

·································5 Syntax
Statements ·····························~·6 2.2.1. Statements And Declaration Statements •••••••••• 6

2.2.2. Blocks And Declaration Blocks••••••••••••••••••'
2.3. Types And Declarations • - • • 8

••••••••••••••••••••••••••••••••••••• 8 2.3.1. Data Types
2.3.2. Constants
2.J.3. Identifiers
2.3.4. Declarations

2.3.4.1.
2.3.4.2.
2.3.4.3.

•••••••••••••••••••••••••••••••••••••• 9
• 9

• , 0
• 1 0 Variables

Arrays • •••••••••••••••••••••••••••••••••• 10
Besources ••••••••••••·•••·•••••••••••••••11

······························,2 2.3.ij.4. Suhprogra~s
2.3.~.5. Programs ·································13

• - • • • • • - • • • • • • • • • • • • • , 4 2.4. Expressions
2.4.1. Operators
2.4.2. Conditionals

••••••••••••••••••••••••••••••••••••• 15

··································,6 2.4.3. Loops ···,6 Subprogram calls •••••••••••••••••••••••••••••• 16
Returns ····•••·•••••·•••·•·••····••·•••·····••18

CHAPTER 3. I~PLICITlY DEFINED SUBPROGRA~S • • • • • • • • • • • • • • • • • • , 9
3.1. Input/output •·•·•·••••••••···••••·•••·••••••••··•••19

3.1.1. INPUT(E1,E2, •••) ••••••••••••••••••••••••••••••19
•••••••••••••••••••••••••••••••••• 20).1.2. RIAD(i:1, •••)

3.1.3. OU!PUT(E1,I2, •••) . •••••• 20
3.2. Character String "anipulation ••••••••••••••••••••• • 2 O

3.2.1. LINGTE(E1) • 2 1
, •.• :?. BYTE(I1, E2) or l!YTE(El) •••••••••••••••••••••• 21
182.3. SUBSTP.ING(f1, I2, E3) or SUBSTFING(!1, E2) •••• 21
J.~.4. CATI~ATE(E1, ••• ,En) ••••••••••••••••••••••••••• 22

3.3. B~source HandliDg Functions •••••••••••••••••••••••• 22
3.3.1. BEQUEST(E1J •••••••••••••••••••••••••••••••••••22
3.3.2. RELEASE(E1, E2) or BELEASE(E1) •••••••••••••••• 23

3.4. Other Functions ••••••••••••••••••••••.••••••.•••••• 24
3.4.1. NO~ERIC(El) •••••••••••••••••••••••••••••••••••24
3.4.2. DELAY(E1) •••••••••••••••••••••••••••••••••••••24

TOGGLE (E1)
QUA~TUM (E1) ····································25 ···································25

TABLE OF CONTENTS

iv

lPPBNDil I. USiiG TOPPS DHDEB ftTS ••••••••••••••••••••••••••26

lPPEIDIX II. THE TOPPS GBl~~lR •••••••••••••••••••••••••••••27

lPPEIDII III. COP.PlLEB COMTROl STAT!!ENTS ••••••••••••••••••29

APPENDIX IV. INTERPRETER OPTIONS •••••••••••••••••••••••••••JO
IV.1. Process Scheduling Options ••••••••••••••••••••••••30
IV.2. Tracing Options •••••••••••••••••••••••••••••••••••31
IV.3. Other Toggles •••••••••••••••••••••••••••••••••••••32

APPENDIX V. INTERPRETATION OF THE STACK DOftP •••••••••••••••33

APPENDII VI. INPLE"ENTlTION RESTRICTIONS •••••••••••••••••••36

APPENDIX VII. PROGRAM Ell~PlES •••••••••••••••••••••••••••••37

V

lCiNOWLEDGEMENTS

The TOY Language, on which TOPPS is based, vas designed ny
J. J. Horning; tn~ TOY compiler/interpreter vas implemented by
B. Clark and F. Pag1n (University of Toronto, c.s.R.G., 1971).
The concurrency features of TOPPS were desigo~a by B. Holt aud
R. Kinread and were added to the TOY compiler/int~rpret~r by
~- Dryer.

The TCPPS compiler/interpreter has been modified, extendea
and stabiliz~a by Alan Ballard and Bryon Czarnik (University of
Toronto, Departm~nt of computer Science, June 1973). It has
baen adapted for MTS and further modified by Alan Ballard
(U.B.c., 197~).

The TOPPS us~r•s guide vas originally vritten by M. Dryer.
It has been revised by A. Ballard and~. Czarnik to reflect
changes incorporatei in the current version of TOPPS. This
version of the user's guide bas also borrowed from a user's
guide pro3uced by E. Dalgleish and R. B. Bunt (University of
Saskatchewan).

l . .

ACKNOWLEDGEMENTS

!.

I

CHAPTEB ONE

INTRODUCTION AND OVERVIEW

1.1. GENERAL INTR,DOCTION

1 .

In the study of operating systems, the concepts of
asynchronous processes and of process communication are
particularly i ■ portant. TOPPS is a si ■ ple language developed at
the University of Toronto as a ■ eans of giving students
practical exp~rience vith the problems involved. Facilities are
provided for the simulation of asynchronous processes and for
co■ aanication between them. The TOPPS processor consists of a
co■ piler producing code for a pseudo- ■achine and of an
interpreter vhich executes the generated code. Both are written
in the IPL language.

The TOPPS language .is a block-structured language vith so ■e
se ■blance to Algol. Operations for the handling of both nu ■eric
and string data are pro•ided, along with control structures for
repetition and logical selection. There is no GO TO construct.
Every executable statement in ~OPPS returns a Yalue;
conseguently, anywhere a •alue is required, a statement (or
block of stateaents) may be used. It is certainly unnecessary
to aake use of this feature; boveYer with a little practice it
can provide considerable prograa ■ ing convenieuce (but often with
a corresponding obscurity). Expressions are noraally evaluated
right to left, rather than by the ■ ore usual aritb ■etic
precedence rules.

Probably the aost iaportant features of the language are
those for iaple ■ enting and co■■ unicating between processes.
Processes are virtual processors executing procedures
asynchronously and in parallel. Co ■aunication between processes
is handled .through a special data type called resources that
essentiallJ co~bine Dijk,jtra•s Semaphores vith aes~age queues.
Resources are ■anipuJ~tea through special pri■ itives REQUEST and
RELEASE.

1.2. PBOGBlMS, PfOCESSES AND VIRTUAL PBOCESSOBS

■any activities
■ay depend on

Such things as
real-tiae clock

In computer systems, there are frequently
being perfor■ ed si ■ ultaneoasly. The activities
events ezternal to the activity itself.
co■ pletion of input-output operations,

1.2. PBOGRA!S, PROCESSES AND VIRTUAL PROCESSOBS

2 PEDGBAtS, PBOCESSES &ND VIRTUAL PROCESSORS

interrupts, and other exceptional conditions are not predictable
in a si~ple deter~inistic vay. Since no simple timing
relationship holds between such eyents, they are said to be
!§l~.b!2R.Ql!§•

ioPPS allovs a user to create !i!1YA1 R!2£.s§§2I§ vnich
execute asynchronously and in parallel. The user can define
PROGBA~s which are a special form of proc~dure. Ther~ is a
PROCESS statemeLt which, when executed, causes a nev processor
to be creat~a (or, "fired up"). It begins execution of the
PFOGBAM named in the proc~ss statement. The combination of a
processor ex~cuting a procedure is call~d a pro£™• The new
process continues executing independently of, and asynchronous
to, the execution of the process which issued the PP.O:Ess
statement (and all other processes). Not~ that ~ore than one
processor ~ay be executing the same procedure simultaneously.
The code is fully reentrant.

Processes are hierarcLicallJ related, with th~ new process
being referred to as a chilg and the old process as the £~!!mi•

A process runs until the procassor finishes the code for
the program, ez~cutes a R~TURN statement or becomes ~l2£.!.~Q or
Q§~S12£!fS by a raguest for an unavailaole resourc~. The
termination of a process has no effect on any other process.

The TOPPS interpreter actually achieves "logical
parallelis~" by interleaviD; execution of the processes. That
is, slices of CPtl tiu,e are randomly distributed across the
existing virtual processors. Because of the randomness, a
programmer cannot guarantee that tvo processes vill reach
particular points in their respective progra~s at th~ sa~~ tise
unless they are synchronized by the use of resources.

1.3. BESOUP.CES

Interprocess comu,unication and synchronization is achieved
through th~ use of ~.§.§2]!£~§ and the primitiv~s EEQUEST and
BELEASE vhich operate upon resources. A process may REQUEST
that a single gni! of a particular resource be allocated to it.
If a ,y units of that resour<. . are available, tha process is
oiven one. If no units of tie resource are available, the
process is blQ£fil (i.e., its eiecution is suspend~dt until its
request can be satisfied. Blocked frocesses are placed on a
FIFO queue associatea vith the reguested resource; this queue is
checked eact time a onit of the resource becomes available.

Units of a resource become available vhen some process
issues a ~ELE~SE statement tor that resource. If there are
blocked processes awaiting units of the resource, thet the newly
available unit is given to the first process on the qu~ue and
that process is alloved to continue execution. If there are no

1.3. BESOUP.CES

BESODBCES 3

outstanding requests for a unit of
placed on a FIFO queue. Each
numeric, or logical value (i.e., a
which is aade available to the
subseguently allocated.

the resource, the unit is
released unit has a string,
~~~f) associated with it 
process to which that unit is 

There are tvo types of resources in TOPPS: BEUSABLE and 
CONSO"lBlE. The type of each resourc~ is specified by the 
programmer in the declaration for that resource. 

Dnits of a reusable resource are "borrowed" by a requesting 
process and subsequently "returned" using the RELEASE statement. 
A process can obviously only release units of resources which it 
already possesses. The programmer specifies a numeric ~ni1 
£.QYS! for each reusable resource which indicates the number of 
units of that resource which are initially available. This is 
also the nu~ber of units which will be circulating in the system 
at any tise since units of reusable resources are neither 
created nor destroyed, but ■ erely borrowed and returned. 

In contrast, each consumable resource has an initial unit 
count of zero. Processes aay be given the capability to "mint" 
units of particular consumable resources. The RELEAS! statement 
applied to such a resource thus has the effect of cr-.ting a new 
unit of that resource. When a unit is allocated to a process in 
response to a flEQUEST, that unit is "consumed" and ceases to 
exist. 

Consumable 
the "sendi~g" 
is the ■essage. 
know that it 
that resource. 

resources ■ ay be used to pass messages by havinq 
process release a unit of a resource whose value 

The "receiving" process (which obviously aust 
is to receive a ■essage) ■ ust request a unit of 

Process synchronization and ■ utual exclusion are handled 
through the use of consumable or reusable resources. !atual 
eiclusion is best accomplished through the use of reusable 
resources with utit counts of one. 

1.4. FLOW or CONTBOL 

A program writte~ in TOPPS is considered to be a PROGRAM 
and is executed by the aain processor. Syntactically it ~s a 
<system> with the follovicg structure: 

1.4. FLOR OF CONTROL 



4 

I 
.BEG!~ 

FlOli Of CONTBOl 

<system> 
I 

I 
<declarations> 

(0 or more) 

I 
<statements> 

(0 or ■ ore) 

I 
END 

Variables, arrays, resources, programs, and sub~rograms are 
declared at the begiDning of the TOPPS program. TbEn follow 
statements to be e~ecuted. There are tvo kinds, expressions and 
PBOCESS statemer.ts to fire up processes. Expression5 may be of 
the followinq types: 

(i) subprogram calls 
(2) iterative expressions (i.e. PBFEAT 1 s) 
(3) selection expressions (i.e. IF 1 s) 
(4) assi3nments 
(5) return expressions 
(f) declaration blocks. 

Execution of processes is seguential except for branches 
caused by EEPEAT•s, IF's, RETURN's and subprogram calls. 
Teraination of execution occurs whenever all PROCESSes finish 
(i.e. 'fall off' th~ ends of their respective PROGRA~s) or when 
the P?.OCESSes not finished are all deadlocked or blocked by 
re~uests for unavailable resources. 



CHAPTER TiO 

SYNTACTIC DEFINITION OF TOPPS 

2.1. TBE CC~PLFTE SYNTAX 

s 

In this section, a simplified syntax for TOPPS is listed. 
The actual syntax used by the TOPPS compiler is listed in 
Appendix II. In the following, square brackets [ and ] denote 
optional item.s. 

<system>::= <decl.block> 

<decl.block> ::= BEGIN [<d~cl.state.list>] <block> END 

<decl.state.list> ::= <decl.state.list> <decl.state.> 
I <decl.state.> 

<decl.state.> . ·.. - YAP.IAEl! <id list>; 
ABBAY <id list> BOUND (parameter list>: 
SUBPaOGRA~ <identifier> [ OF <id list> ) 

IS <expression> ; 
I CCNSU~ABLE <id list>; 
I REUSABLE <id list> WITH <expression>; 
I PROGRA! <identifier> [ Of <idlist> ] 

[ PRODUCING <id list> ) IS <expression>; 

<block>::= <statement> 
<block>; <state ■ent> 

<statement>::= <expression> 
PP.OCESS <pri ■ary> [ OP <parameter list> ] 

[ PiODUCING <parameter list> ] 
<empty> 

<expression>::= <priRaty> 

<priaary> 

~ <primary> ~ 
<primary> <operator> <expression> 
IF <expression> THEN <expression> 

ILSE <ezpression> 
REPEAT <block> UNTIL <expression> 
RETUBN <expression> 

. ·.. - <identifier> 
I <constant> 
t ( <block> ) 
I <decl.block> 

2.1. THE COftPlETE SYNTAX 



6 THE COftPLETE SYNTAX 

I <pri~ary> ( [<parameter list>]) 

<parameter list>::= <expression> 
I <parameter list>, <expression> 

<id list>::= <idantifier> 
I <id list>, <identifier> 

2.2. BlOCKS AND STATEr.ENlS 

<block> . ·.. - <statoemcnt> 
<block> ; <state~ent> 

<statement> ::= <expression> 
PhCCESS <priEary> (OF <parameter list>) 

(PBCDUCINu <param~ter list>] 
<eD1pty> 

<decl.block> ::= BEGIN <decl.state.list> <block> !ND 

<aecl.state.list> ::= <decl.state.list> <decl.state.> 
<empty> 

There are tvo types of statements in TOPPS, distinguished 
in the gra~mar by <statement> and <decl.state.>. 

1 <state~ent> is either an <expression> (in vhicb case the 
Yalue of the <statement> is the Yalue of the <expression>), or a 
statemeLt firing up a process, beginning with the word PROCESS 
(in vhich case the value of the <statement> is zero), or a null 
statement (with a value of zero). iben a semicolon follows a 
<statement>, the value of the state■ent is discarded. 

The folloving are examples of <stateaent>•s. 

(1) A := B 
(2) OUTPUT (' X IS', l) 
(3) !El EA SI. (Message, 1 BEADY') 
(4) BESULT := CATENA'!'E(A, B) 
(5) PROCESS ~eader OF 2, I PRODUCING f!essage 
(6) PROCESS WF.!TE OF LINE 

2.2.1. STATEr.ENTS AND DECLAP.ATION STATE~ENTS 



BLOCKS lND STATE!ENTS 

(7) JtlX : = IF A < B 
THEN B 
ELSE 1 

(8) BETO RN 'ABNORlSA.L TEB.MINATION' 
(9) If Svi tch 

THEN BEGIN 

!'ND 
ELSE 0 

VA:RIABLE Temp; 
Temp := var2: 
Var2 := Yar1; 
Var1 := Te■ p 

7 

A <dscl.state.> is a statement vhich d~clares a variable, 
array or resourc~, or defines a program or subprogram. Unlike 
<statement>'s, <d~cl.state.>•s do not possess values. All 
declared names are local to the block in which they are 
aeclared. All names •ust be declared before they are used. For 
further details on declarations and exa~ples see Section 2.3.4. 

There are tvo types of blocks in TOPPS, distinguished in 
the gra•~ar as <block> and <d~cl.block>, vhich have two basic 
differences. A <block> consists simply of one or ■ ore 
<statement>•s separated by semi-colons. Note that declarations 
are not <statement>•s. A <decl.block> on the other hand must 
begin vith the vord BEGIN and end with the word END, and ■ ay 
include declarations. l <decl.block> does not A!!,g to contain 
declarations; bovaver, they ■ ust occur at the beginning of the 
<decl.block> if they are present. The rest of the <decl.block> 
is the same es a <block>. l <decl.block> is a <priaary> and 
hence ■ ay be used anywhere a value is required. 1 <block> ■ ay 
always be parenthesized to use it where a <primary> is wanted. 
•ote that a <decl.block> always causes storage allocation at 
e%ecution ti ■ e (even if there are no declarations inside); hence 
it should not be used without declarations since a parenthesized 
<block> vould be more efficient. 

Note that a <block> should not end with a semi-colon. A 
<block> JUSt ~nd vitb a <state■ ent>. The value of this 
<state ■9nt> becomes the value of the <block~. Since a 
<decl.block> contains a <block>, the sa ■ e applies to a 
<decl.block>. The value of a <decl.block> is the value of its 
<block>. ~bus all blocks, of both types, possess a value. If 
an e%tra se~i-colon is present at the end, a null state■ ent is 
assu ■ ed with a value of zero. 1 warning is printed at the end 
of co•pilation if this is detected. 

1 new scope (i.e., lexic level) is entered each ti ■e a 
<decl.hlock> is entered or a <subprogra■ name> or <program naae> 
is encountered. Variables declared inside a scope ■ ay have the 

2.2.2. BLOCKS AND DECLlBATION BlOClS 



8 BLOCKS lND STlTE!ENTS 

same ~ame as variables declared outside. However, the same name 
■ay not be declared twice within the same scope. The implicitly 
definad subprograms have lexic level zero, while names declared 
in the outermost declaration block have lexic level one. Order 
numbers within given scope are assigned in the order declared 
with the first name having order number zero. 

l!!!!£l12: 

The following are examples of <block>'s: 

(1) X 

(2) (X + 3) 

(3) X := Y + 3; 
2•Y 

(IJ) I NPU'I (N) ; 
N + ( Ill PUT (A) ; 

C'CTPUT (li)) 

The value of this block is N + A. 

The following is an exarple of a <decl.block>: 

(5) BEGIN 

END 

VAFIA.olE 1; 
I:-= 10; 
Ou'IPUT (1) 

2.3. TYPES AND DECLARATIONS 

The tallowing ~ata types exist in TOPPS: 

(1) ~2n§!!ni2 may be of string or of nu~eric attribute. 

(2) !!ti!~l~ may have either string or numeric valu~s. 

(3) Alli.I§ are sequences of values, either string or num:ric or 
a coabination of both. 

(4) fIQgr~m2 , as described, are special procedures used in 
si~ulating parallel p~ocesses. 

(5) ~~~2I2SU!a are procedures, which always return a value. 

2.3.1. DATA TYPES 



TYPES AND DECLARATIONS 9 

(6) !~§Q.Y!.£~§, as described, synchronize processes and gueue 
infor ■ation. 

Declarations are used to enter the name of the data item in 
the SJ■ bol table at coapile tiae and allocate space on the run 
stack at execution time. The values of variables and arrays are 
initially undefined at execution ti ■e. 

<constaot> ::= <integer> I - <integer> I <string> 

<integer>::= <decimal digit> I <integer> <decimal digit> 

<deciaal digit>::= Of11213f41516171Bl9 

<string> : := •<characters>• I • • 

<characters>::= <character> I <characters> <character> 

<character> : := • • I {any EBCDIC character other than •) 

Inte~ers in the range 
integers ■ ay also appear 
possible to read negative 
ti ■ e. 

' 

0 to 231-1 are valid. Negative 
in TOPPS programs. HoveYer, it is not 
values from data files at execution 

l string constant is a string of zero or ■ore characters 
not including the apostrophe (') enclosed ~y apostrophes. Tvo 
apostrophes ■ nst be used to represent the occurrence of one 
apostrophe within a string while tvo apostrophes alone represent 
the null string. The ■ aKi ■ ua length allowed for a string 
constant is 255. strings contained in input data ■ ay be of the 
same for■ and enclosed in apostrophes. Alternatively, if the 
BEAD function is used, then an entire input line is accepted as 
a character string. 

<~dentifier> ::= <letter> I <identifier> <letter> 
<identifier> <decimal digit> 

<letter>::= 11e1c1 ••• 1z1_1@111s1a1b1c1 ••• 1x1y1z 

<deci■al digit>::= 0111213141516171819 

An identifier is a string consisting of a letter follo~ed 
by zero or ■ ore letters or digits, where _, @, S, I are 
considered to be letters. ~he following are reserved words in 

2.3.3. IDENTIFIERS 



10 TYPES lND DECLlBlTIONS 

TOPPS and may not be used as identifiers: 

01, IS, IF, END, THEN, ELSE, iITll, lRRAY, BOUND, BEGIN, 
UNTIL, RETUP.N, FEPEAT, PP.OCESS, PROGRAM, VARIABLE, 
BEDSlBLE, PP.ODUCING, SOBPROGBA~, CONSOMABLE 

I ■ plicitly declared names, described in chapter three, are 
treated as id~ntifiers declared in a enclosing block and may be 
freely redeclared in TOPPS (if the corresponding functions ar~ 
not reguired). 

All declarations of data items must occur before the item 
is referenced and at the b~ginning of a aeclaration block. 
Standard Algol scope rules are used for declared items. 
Therefore, nata items declared in a block are not "visiole" 
outside the scope of that block although interior to the block 
they may bE referenced or redeclared (~hich causes a new data 
item to be entered into the symbol table). 

2.3.~.1. Variables 

<decl.state.> ::= VARIAELE <id list>; 

An identifi~r is a variable if it occurs in 
of a declaration state~ent of the for~ VARl,BLE 
variable ■ ay have numeric, string, or undefined 
ti■ e. Thus in the block 

BEGIN 

IND 

VAP.lABlE I; 
I := 1; 
I:= 'OUTPUT IS'; 
I := 3 

the <id list> 
<id list>. Any 
values at any 

the variable I is first undefined, then nu~ber-valued, then 
string-valued, and later ~u~ber-~alued again. 

2.J.ij.2. Arrays 

<decl.state.> ::= lRBAY <id list> BOUND <para~~ter list>; 

ln identifier which appears in an AREAY statement is array
valued and haz the dimEnsions specified by the e1pressions in 
the <parameter list> after BOUND. The expressions are evaluated 
at the tim~ e1ecution of the <decl.block> begins. If an array 



TYPES AND DECLARA?IONS 11 

has bounds B1, ••• ,Bn, then the i'th subscript can take on values 
between O and Bi inclusive, so that the total number of elements 
in the array is (B1+1)z(B2+1)x ••• x(Bn+1). 

Any use of an array identifier after its declaration is 
interpreted as a special kind of subprogram call which returns a 
reference to an element of the array. Array ele ■ents are used 
in the sa ■e vay as variables. 

(1) lBRAY Codf:- BOUND Code_Size; 

This declares an array Code of size Code_Size + 1. 

(2) lRBAl A,B,C BOUND I,J; 

This declares 
(I+1)x(J+1). 

2.3.4.3. Resources 

three 2-dimensiorial 

<decl.state.> ::= CONSD~ABLE <id list>; 

arrays 

I REUSABLE <id list> MITH <expression>. 

of size 

AD identifi~r declared in a CONSUMABLE or a REUSABLE 
stateaent is a resource, and is respectively £Q~~~m~~l~ or 
,fY§!ble. A resource identifier aay only be used as a parameter 
for a subprogram or program or a resource para ■ eter (i.e., after 
PFOODCIIG) for a program. !anipalation of resources is normally 
done by the us~ of the implicitly defined snbprograas BEQUEST 
and BELEASE. 

The expression after ~ITH in the declaration of a reusable 
resource specifies the number of units of each resource in that 
IEUSlBLE statement. Initially all the units of a reusable 
resource are available to be requested. Each ti ■ e a unit of a 
reusable resourc~ is reguested by a process, that process 
beco■es the owner of one ■ ore unit of the resource and there is 
one less unit availaDle. Each time a unit of a reusable 
resource is released, then that process ovns one less unit of 
the resource and one more unit is available to be used again. 
If all the units of a reusable resource have been assigned to 
processes and so~e process reguests a unit, tLen that process is 
placed in a gueue of processes avaiting units of that resource 
and re■ ains blocked until so■e other process releases a unit of 
the resource. 

Initially ttere are zero units available of a consumable 
resource. There is Do fized nuaber of units of a consu ■able 
resource, since units of a consuaable resource are created when 
a process releases them, and they are destroyed as soon as they 



12 TlFES AND DECLARATIONS 

are obtained by some pr?cess. When a consumable nnit is 
released it is placed in a queue of available units of that 
resource. Rhen a process requests a unit of this resource it 
removes the unit at the front of this queue. However, if the 
queue is empty the process is placed in a queue of processes 
awaiting units of this resource. 

Rith both types of resources, vhen a unit is released, the 
FIFO gueue of processes vaiting for that resource is checked; if 
the gu~ue is not empty then the unit is given to the process at 
the head of this queue. That process is removed from the gueue, 
and allowed to resume e~ecution. 

To release a unit of a reusable resource, the process aust 
own a unit. Tc rel~ase a unit of a consumable resource, the 
process must b€ a legitimate producer of that resource. A 
process can produce a consumable resource o~ly if it is declared 
within that proc~ss, or was included in th~ resource param~ter 
list (i.e., the list following PP.ODUCING) when the process was 
started up. 

CONSU!ABLI tessages; 
REUSABLE "utex iITH 1; 

2.3.4.4. Subprograms 

<~eel.state.>::= SUBFROGFA~ <identifier> [OF <id list>] 
IS <expression>; 

The 1efinition of a subprogram is headed by the reserved 
vord SOBPBOGRA~ followed bJ its name and its formal parameters 
(if any). The body of a subprogram is the expression following 
the reserved word IS. Every subprogram call returns the value 
of the <expre~sion> forming the subprogra~ body; however, this 
value need not be used ty the calling program. 

The parameters of the subprogra~ are local to the 
<expression> cotstituting the sunrrogram body. They are 
i ■ plicitly defined by their prescn~e in the p~ram~ter list, an~ 
must not be redeclared in the subprogram body. iben a 
subprogram is called, all para ■eters are passed by reference 
except for those which are cotstants or which are expressions 
resulting in valu~s which are not references. The number of 
argu ■ents in the call (actual parameters) ■ ust ■ atcb the number 
of for ■al paramEters. Subprograms ■ay be called recursively. 
ln exa ■ ple of a subprogram is given in Appendix VII. 

2.3.4.4. SDBPaOGRA~S 



TXPES IND DECLlRl?IOHS 13 

2.3.4.5. Programs 

<decl.state.> ::= PBOGRA! <identifier> [Of <id list>] 
[PBODOCING <id list>] IS <expression> 

Execution of a state ■ ent of the forE 

PF.OCESS <pri ■ ary> [OF <para ■eter list>] 
[PRODUCING <parameter list>] 

creates a new processor executing the PROGRA~ with the na ■ e 
specified by the <primary>. The new processor execotes quit~ 
independently of the originating process (and any other 
processes). A processor continues until it runs off the end of 
its program, or executes a RETDRN that is not inside a 
subprogram. Any number of processors can be executing the sama 
program at the same time. The aain program itself is treated as 
a PBOGBA~ being executed by a processor. 

Processes communicate and interrelate by means of 
resources. Consumable resources are us~d for passing aessages 
back and forth. Reusable resources vitb one unit can be used to 
give certain processes exclusive use of some critical section of 
a progra ■• For example, suppose BEADER is a progra ■ which five 
processors are executing. If it is desired that some part of 
the prograE READER be executed by only one of the five 
processors at a time. then a reusable resource, declared 

BEUSABlE !utex VITB 1; 

can be reguested on entry to the critical section of the 
progra ■• Since there is only one unit of the resource, only one 
process can be in the critical section at a particular tiae. 

The <id list> after the program name is the list of foraal 
para ■eters, which are analogous to the formal para■eters for a 
SOBPBOGBA~. so vhat vas said there applies here too. They 
correspond to the actual para ■eters specified in the para ■eter 
list of the PROCESS statement firing up the process. There is 
one very important difference, however. iitb subprograms, 
para ■ eters are passed by reference whenever possible and by 
value only if n~cessary. llthoogh progra~ parameters are still 
passed by reference if the paraaeter is an array, a resource, a 
program, or a subprogram, they are passed by value if the 
para ■eter is nuaber-valaed or string-valued. Explicitly, the 
difference is this: vith subprograms. if it is possible to pass 
a reference to a wariable or an array element. tbe reference is 
passed. In analogous situations with progra■ s, the nl~~ of the 
wariable or array element is passed instead. This difference 
was considered desirable because if Process 1 fires up Process 2 
vith a parameter list including a wariable, Process 1 ■ight 
change the value of the variable before Process 2 could use it. 

2.3.4.5. PBOGRA~S 



14 TYPES lND DECLlRlTIONS 

Programs also have a resource parameter list naming the 
consumable resources of which that program may release (i.e., 
produce) units. These for ■al parameters correspond to the 
actual parameters in the PRODUCING part of th~ PaOCESS statement 
firing up the process. The actual para~eters ■ ust be consumable 
resources (or expressions resulting in references to consu ■able 
resources). A process vhich is not declared a producer of a 
consu ■ able resource may not release units of that resource. 
Whenever one process fires up another process the former must be 
a producer of the consumable resources included in the resource 
parameter list. As vith the normal parameters, the formal 
resource parameters should !!.QS be redeclareJ within the body of 
the program expression, since their occurrence in the formal 
parameter list constitutes the declaration. 

The PFOCSSS statemeot firin; up a process ■ ust provide th e 
number of parameters specified in the declaration of the program 
for both parameter lists. Onlike subpro~rams, pro~rams do not 
return a valu~ to the firing-up point. The result of firing up 
a process is that the <expression> is evaluated by the new 
processor. The value of the PROCESS statement in th~ parent 
process is always zero. 

~!!.Eli: 

PBOGRAM Inputter OF X PRODUCING "essage IS 
REPEAT 

BELEASE(~essage, X) 
UNTIL-. INPUT(X); 

This program vill release the consumable 'Messa~e• with th~ 
value X. Then ne~ data vill be read into X and released. Ttis 
process will continue until there is no further data to read. 

Bote: Further examples of programs and processes are presented 
in Appendix VII of the manual. 

2.4. EXP3ESSIONS 

<expressioc> ::= <p~imary> 
... <primary> 
<primary> <operator> <expression> 
IF <expression> THEN <expressior.> 

ELSE <expression> 
REPEAT <block> UNTIL <expression> 
P.ETUBN <eipression> 

<pri ■ary> ::= <identifier> 
<constant> 
( <block> ) 
<decl.blocJt> 
<primary> ( [<parameter list>]) 

2.ij. EXPaESSION3 



EXPP.ESSIONS 15 

<para■ eter list>::= <expression> 
I <parameter list>• <expression> 

<operator>::= +1-111•1=1:=1<1>1<=1>=1-.=161 

lll operators in TOPPS have equal precedence and expression 
evaluation is from right to left, except where aodified by 
parentheses. There are three classes of operators. 

The first class contains the logical and arithmetic 
operators:+,-, •, /, &, I, and ~. The operands for these 
operators must have numeric values. ln attempt to use a string
valued variable as an operand causes an execution-time error 
message and terminates execution. lny overflow from these 
operations is iqnored; the value after overflow is the same as 
in XPL. The logical operators (&, I) and the unary not (~) 
treat their operands as bit strings and perform the operations 
on corresponding bits. For an expression occurring in the 
phrase IF (expression> TBEN ••• , as in REPEAT <block> ONTIL 
<expression>, only the least significant bit is used. Note 
there ..are no unary plus or minus operations. Therefore -
<expression> must be represented by O - <expression>. (Negative 
£.QQSt~Qi§ are possible, however.) 

The secona class of operators is the relational operators 
(=, ~=, <, <=, >, >=) for ~hich the operands ■ ust be both 
numeric Yalued or both string-Yalued. String comparison is done 
as in IPL. 

String1 < String2 means either 

or 
(i) 
(ii) 

lENGTH(String1) < l!NGTR(String2) 
LENGTH(String1) = lENGTH(String2) 
but there exists i such that 
£YTE(String1,i) < BYTE(String2,i) 
BYTE(String1,j) = BYTE(String2,j) 

where 
for j=O, ••• ,i-1. 

Bence String1 = String2 if and 
identical (sa~e length and 
same). 

only 
each 

if the tvo strings ar~ 
corresponding character the 

The third class of operators contains the single operator 
:=, the assignment operator. ~he Yalue on the right hand is 
stored in the location specified on the left band side, 
destroying the old value. ~he operands ■ay be either string
valued or nua~ric-valued and do not have to have the sa ■ e type 
of Yalue. The value of an expression of the form 1 :=Bis the 
value of B. Bence the expression (A:= (B := 3) + 2) bas value 
5, and A:= 6 - 1 + 3 assigns to 1 the Yalue 2. 

2.4.1. OPERATORS 



16 EXPRESSIONS 

<expression>::= IF <expression>• THEN <expression>2 
ELSE <expression>J 

First, <expression>• is evaluated. If the least 
significant bit is 1, tben <expression>Z is evaluat~a, and its 
value becom~s thE value of the expression. If the least 
significant bit is not 1, then <expression)3 is evaluated and 
its value becomes the value of the expression. In general, the 
evaluaticn will r~sult in a reference if possiole; hence IF 
expressions may occur in contexts requiring references to 
variables, subprograms, resources, etc. 

(1) IF l 
TEE~ 0UTPUT(10) 
ElSI. OUTPUT (20) 

In this case, if A is an odd numoer (i.e., least significant bit 
is one) then • 10 • is printed; other vise, • 20' is printed. 

(2) (IF A 
THF.N 3 
.£!.SE C) : = D 

In this case, if A is odd then the value of the IF expression is 
a reference to B, otherwise it is a reference to c. Then the 
value of Dis assigned to the variable returned. 

<expression>::= REPEAT <block> UNTIL <expression> 

toop expressions are realized by the REPEAT construct. The 
<block> is always executed at least once, ~nd is reexecut~d 
until the <expression> folloving UNTIL is true (i.e., has least 
significant bit vith value 1). The value of th~ lo~p expression 
is the value resulting from the last execution of the block. 

<expression>::= <primary> I~ <primary> 
<primary>::= <pri•ary> ( [<para ■ eter list>] 

A subprogram call causes execution to branch to the 

2.4.4. SUBPP.OGP.A~ ClllS 



EXPRESSIONS 

subprogram code while still remaining vithin the 
The 'expression attached to the subprogram 
evaluated; the result is returned, and execution 
the calling procedure. subprograas aay be called 

17 

same process. 
definition is 
coDtinoes in 

recursi•ely. 

Parameters are passed by reference if possible (i.e., if 
the actual parameter is not a constant or an expression 
containing operators). The call must provide the cumber of 
para ■ eters specified in the declaration for the subprogram. 
Each parameter is an expression which say also contain 
subprogram calls. Subprogram parameters may be references not 
only to variables, but also to arrays, subprograms, programs or 
resources. 

Note that in calling a subprogram vith O arguments, the 
brackets must still be retained (i.e., <primary>() ). 

Array references are treated as special cases of subprogram 
calls in which tLe para~eters are interpreted as subscripts. 

The resultant valoe of a subprogram is a reference where 
possible. (It is not possible if the final expression in the 
subprogram is a constant or an expression involving operators or 
a locally declared identifier.) It ■ay be a reference to any 
type of identifier. 

~!!lll!.§: 

Subprogram calls such as the following ■ ay be used: 

(1) F(I) := EXP If f(I) returns as its value a reference to 
• a Yariable or array element, then the value 

of the expression, EXP, will be assigned to 
that •ariable or array element. 

(2) F (I) (A, B, C) If !' (I) returns as its value a reference to 
a subprogra ■, then this expression will 
cause that subprogram to ba called with 
para ■ eters A. B, and c. 

(3) PROCESS F (I) OF X, Y PRODDCING C1 
If f(I) returns as its value a reference to 
a program, then this statement will fire up 
a process using that progra~. 

(4) BEQO£ST(F()) If f{) returns as its value a reference to a 
resource, then this expression causes the 
running process to request a unit of that 
resource. 

2.4.4. SOBPROGEl~ CALLS 



18 EXPRESSIONS 

<expression>::= ntTUBN <expression> 

By ■eans of aETUBN <expression> a return aay be made from 
arbitrary points in a subprogram or in a program. This provides 
aD easy vay of branching out of deeply nested constructs (e.g., 
nested blocks). The value returned is that of the <expression> 
after the FETUBN. 



CHlPTEB THREE 

IMPLICITLY DEFINED SUBPROGBAMS 

19 

Unless an explicit declaratioL is used to redefine them, 
several identifiers have special meaning in TOPPS: INPOT, BEAD, 
OUTPUT, lENGTB, BYTE, SUBSTRING, CATE~AT~, FEQUEST, iELEASE, 
NUMEBIC, DELAY, TOGGLE, QUANTUM. The effect is as thougb they 
vere declared i11 an outer■ ost scope containing the entire 
<system>. The paramet~rs may be any type of eipression as lotg 
as the value of the expression is a value or a reference vhich 
aoides by tLe rules specified below. 

3.1. INPOT/OUTPO! 

3.1.1. ilE.Y!<ll,Jl,••·> 

INPUT provid~s a for ■ of "stream-oriented" input. It may 
have any number of parameters. These must be variables, array 
referen~es or arrays, or exfressions resulting in refere~ces to 
such. Unless an array is used as an input parameter, successive 
values in the input stream are assigned to successive 
paraaeters. If an array is used as an input parameter then 
values are read in from the input stream until a value is 
assigned to eacL array element. lrray elements are assigned 
with the rightmost subscripts varying aost rapidly. 

The value returned by an expression of the form 
INPUT(E1,E2, ••• ,En) is 1 if there was input data for all the 
E1,E2, ••• ,En, and 2ero if there •as no input data for ~n (or 
insufficient data if En is an array). Only one atte~pt is made 
to read past the end of data. Any further attempts result in 

· termination of execution. 

When an attempt is •ade to input data into a variable or 
array element, INPUT starts scanning the input lines, skipping 
blanks, fro~ the particular coluan where it stopped scanning for 
the previous input value, and proceeds scanning until it finds a 
valid <integer> or <string> or until it encounters a character 
other than 0,1,2,3,4,5,6,7,8,9, blank or•. In this last case a 
warning is printed and execution . continues. Note again that 
negative integers cannot be input. 

3.1.1. INPDT(E1,!2, ••• ) 



20 INPDt/OOTPUT 

This function is similar to INPUT, except that it provides 
a "record oriented" input. For each ite~ in the parameter list 
(or each element of an array), an input line is read and the 
entire line is assigned as a character string to the variable. 

The value returned is as for INPUT, i.e., it is 1 if there 
vas sufficient data for all parameters and O if there is no data 
for the last element. 

OUTPUT is similar to INPUT in that it may bav~ any 
of param~ters which ■ ust be number or string v~lu~d. 
output is analogous to array input. 

number 
Array 

The value of OUTPUT(E1,E2, ••• ,En) as an expression is the 
value of En and may be either string or number valued. If !Dis 
an array then the value of OUTPUT(E1,E2, ••• ,En) is the last 
value output. An attempt to output an undefined value causes 
printing of a question mark. The maximum possible length of an 
output line is 131 characters. 

Each time a call to ODTPOT is ■ade printing starts at the 
beqinning of a nev line and the values that are printed by tha~ 
particular call to OU!POT appear on the same line as far as 
possible. If there is insufficient space at the end of a line 
to print an entire string or number, then none of the value is 
printed on that line, but rather the printer skips to the 
beginnin~ of tha next line and starts printing the value there. 
If the string has more than 131 characters, then the first 131 
characters will be printed on the first line, and the remainder 
will be printed on the next line. When values are output on the 
same line, a blank is automatically inserted between each valu~. 
Thus, OOTPUT(ONE,'.',TiO) vbere ONE bas value 1 and TWO has 
value 2 vill output the line 1. 2. If blanks are not desired, 
then it is necessary to first concat~nate the parameters so 
·~ere will only b~ one output value: 
OOTPO~'(ClTENATE(ONE, 1 .•,TW~)). It i~ possible to print negative 
values. For example, OUTPUT(-5) will cause -5 to be printed. 

3.2. CHlilCT£n STBlNG !ANIPUllTION 

There are four character functions in TOPPS: LENGTH, BYTE, 
SUBSTBING and CATENATE. The first three are similar to the 
analogous functions in XPL or PL/I, and CAT£N~TE(E1, ••• ,En) is 
like Pl/I E111•••11En. If a numeric walue is usea in a string 

3.2. CBlRACiER STBING !ANIPULlTIOH 



CHABACTEB STEING !ANIPULA?ION 

function, the expression is converted to 
following it is assu ■ ed that this conversion 
11ecessary. 

21 

a string. In the 
has occurred if 

This fonction ■ ust have only one para ■eter which ~ay be 
either string-valued or nu ■ ber-valuea. Its value is a numeric 
value equal to the number of characters in the (converted) 
string denoted by E1, 

l.INGTH('ABC') = 3 
LENGTH(-2) = 2 
l!NGTE (2) = 1 
LENGTH ("") = 1 

I1 ■ ay be nu ■ ber valued or string valued. 
number valued. If E2 is omitted, 0 is assumed. 

E2 ■ ust be 

The value of this function is the numeric EBCDIC 
representation of the E2 1 th character (zero origin indexing) of 
the string E1. An attempt to use BYTE with a negative value for 
!2 or vitb a value greater than the length of E1 generates an 
error ■essage and returns the zero•tb byte. BYTE aay not be 
used on the left of an assign ■erit. 

l.!!!.Pl~§: 

BYTE ( 1 123 1 ,2) 
BYTE( 1 123 1 ) 

BYTE('1',-1) 

has the EBCDIC value of 1 3' or F3 in hex. 
has the EBCDIC Yalue of '1' or F1 in hex. 
causes a warning to be print~d and has the 
value of o. 

E1 aay be number or string valued. E2 and E3 aust b~ 
number walued. This function has as its value the substring of 
the string E1, starting with the !2 1 th character (using zero 
origin inde%ing) and continuing for E3 characters, so that the 
length of the substring will he E3. S0BST~ING ■ay be used with 
oLly tvo para•eters in which case the substring consists of the 
characters from the E2•th to the end of E1. ln attempt to tak~ 
a substring beyond tte end of the string results in an error 
■ essage, and returns the remainder of the string. l negative 

3.2.3. SDBSTBING(E1, E2, !3) OR SUBSTRING(E1, E2) 



.... , 

22 CHARACTER STRING !ANIPDLATION 

value. for E2 or E3 causes zero to be used and an error 11essag€ 
to be printea. A length of zero results in a null string value 
without complaint. 

~A.I.El!.!= 

SDBSTRING( 1 lBCD 1 ,1,3) 
SUBSTBING( 1 ABCD 1 ,2) 
SUBSTRING('ABCD',-1,-1) 

yields 'BCD' 
yields 'CD' 
causes a warning to be prin~ed and 
yields the null string. 

This function aay have any nufflber o! ar~uments greater than 
tvo, each of which may te either string valued or number valued. 
The value of the function is the strin~ r~sulting fro~ the 
concatenation of strings E1, ••• ,En. li the result of the 
concatenation is a string vitb length greater than 255, then a 
warning is printed printed and the ri~htmost characters are 
deleted. 

CATENATE( 1 AE','','''','C') yields •1~•c• 

3.3. RESOOFCE HANtlING FUNCTIONS 

This function ■ ust have exactly one para ■ eter which aust be 
a reference to a resource. 

A call to this function causes the following to occur: if 
a unit of the resource is available then th~ process performing 
the requ~~t obtains a unit of that resource. If there is no 
unit of r~source E1 a~ailable, then the process is placed in a 
queue av~iting ~~its of that resource and re~ains blocked until 
it obtains a unit. 

The value of EEQUEST(E1) as an expression is the value of 
the unit of E1 obtained. The value is ouaeric zero unless that 
unit bas been releas:d with some other value being placed in it. 
The units of a reusable resource are all initially available. 
Units of a consumable resource are not available until they have 
been released by soae process. If a process obtains a unit of a 
reusable resource, then that process owns that unit until it 
releases it. If a process still ovns some units of a reusable 

3.3.1. iIQUIST(E1) 

I 

I .. 
I 

I 
I, 
i· 

i-
i 



RESOUBCE HANDLING FUNCTIONS 23 

resource when it finishes (in other words, if it has failed to 
release a unit of some reusable resource it reguested), then 
e%ecution will terminate vith an error aessage. If a process 
obtains a uLit of a consumable resource then the unit is 
•consuaed•. In other words, the unit disappears, except that 
its value is transferred as the value of the expression 
BEQDEST(E1). 

E1 must be a reference to a resource. 
valued or number valued. If E2 is omitted, a 
assumed. 

E2 may be string 
value of O is 

l call to this function causes a unit of resource E1 to be 
released with value E2. ~be result of the eipression is the 
value of I2. The value of RElElSE(E1) is zero. 

If E1 is a reusable resource, then the releasing process 
■ ust own a unit of that resource (i.e., the process ■ ust have 
requested and received a unit of the reusable resource in the 
past). Beleasing a unit of a reusable resource returns that 
unit to the appropriate queue of availaole units of that 
resource with a value equal to that of E2. The process 
releasing the unit of the resource no longer owns that unit. 
Execution is t~rminated if a process attempts to release a unit 
of a reusable resource without owning one. 

If E1 is a consu ■ able Tesource, then the releasing process 
■ ust be a producer of that resource (i.e., th~ resource aust be 
contained within the resource paraaeter list for that process or 
be declared within the PBOGBlft which was invoked as a process). 
ieleasing a unit of E1 in effect creates a unit carrying the 
Yalue of E2 and places that unit in a gueue of available units 
of E1 unless a process is awaiting a unit of E1. This unit will 
be destroyed when some process obtains it. 

For eithar type of resource, there is nothing to prevent a 
process from obtaining a unit of a resource which it previously 
rEleasedff 

3.3.2. BELEASE(E1, E2) OB BtLElSI(E1) 



24 OTHtR FUNCTIONS 

3.q. OTHER FUNCTIONS 

E1 ■ ay be number-valued or string-valued. This function 
■ ay only have ote argument. If the expression, E1, is numher 
valued, then th= function returns 1. If it is string valued, 
then it returns a value of O. 

NUME?.IC('Nuf.BER') 
NU~ERIC(999) 

returns O 
returns 1 

E1 must be ~umber valued. This function is provided as a 
simulation tool, for use in simulating proc~sses that run at 
"different speeds"~ It should be used only for that purpose. 
No attempt should be made to "synchronize processes" by means of 
DELAY. That's what BEQUEST and RELEASE are for. 

To explain the DELAY function, it is first necessary to 
explain that tr.ere are two clocks internal to TOPPS vbicl have 
no relationship either to each other or to r£al time. these 
clocks are called the "machine cycle clock" and the "simulation 
clock". The ti•e statistics printed for each process after 
execution are based on the machine cycle clock which is based on 
one ti ■ e uoit per ideal machine instruction. The second clock 
is the simulation clock which is entirely controlled by calls to 
the subprogram DEL~Y. (Note that DELAY does not affect tha 
■ achine cycle clock). EacL process can be considered to have 
its own sisulation clock. 

These clocks initially have a ti ■ e setting of zero. A 
siau)at:on clock is changed by a call DELAY(E1) which causes the 
si ■ u lation ~l ock L ~ the process ■aking th~ call to be set ahead 
El si ■ ul ti0 clock ti ■ e units. As long as there is a process 
whose simulation ~loc~ has an earlier setting than the delayed 
process, then the delayed process vill not proceed. lli gen~ral, 
only the procasses with the currently smallest simulatiou clock 
ti■ e setting are ezecuted. If all the processes vith the 
currently s■ allest ti ■ e setting finish or become blocked, then 
their siaulation clocks are ■ owed ahead to the time of the nezt 
smallest time setting, and then all unblocked processes with 
that ti ■ e setting are executed. For exa&ple, suppose there are 
three processes P1, P2, and P3. Initially th~ir simulation 
clocks all read zero. P1 calls DELAY(2). Its clock is reset to 

3.4.2. DELAY(E1) 



OTHER FUNCTIONS 25 

2. P2 and P3 then proceed until both are blocked. Their clocks 
are reset to 2. P1 proceeds and suppose it releases units that 
cause P2 and PJ to beco■ e unblocked. All three processes 
continue execution. suppose P1 calls DELlY(1) and P2 calls 
DEL1Y(2). Then their simulation clocks are set to 3 and to 4 
respectively. If P3 should become blocked, then P1, the process 
vith a clock ti ■e of 3, vbich is currently the lowest, proceeds. 
lnd so on •••• 

DELAY provides a vay of controlling the relative speeds of 
execution of processes. However, to be effective, delays should 
be used in all processes. The effect vould roughly be to slow 
down process~s in proportion to their relative increments. An 
example of the use of DELAY is given in App~ndix VII. 

The simulation clock ■ echanism must be activated vith the 
'A' toggle (see Appendix IV). 

The argument E1 ■ ay be either string-valued or number
valued. !be TOPPS interpreter has a number of control "toggles" 
which can be turned on or off by the TOGGLE function. These 
toggles affect the printing of debugging output, time slicing 
algorithm, and tbe del~y function. A description of the toggles 
currently i~plemented is contained in Appendix IV. If the value 
of E1 is numeric, the specified toggle is inverted. If it is 
character, the first byte of the string is used (i.e. BYXE(E1)) 
instead. Note each call to TOGGLE 1n.I~tl.§ the setting. 

The •alue returned by the expression TOGGlE(E1) is the new 
setting of the specified control (either O or 1). 

E1 ■ ust have a D umeric value. This :function provides 
another vay of simulating processes that run at different 
speeds. In this case, the specified argument is used to 
directly specify the ti~e-slice quan.:um, i.e., the number of 
iDstructions that the process calling the function is allowed to 
execute before the CPU is relinquished to another process. 

Appendix IV describes the alternative time-slicing 
technigues available. lote again, that this is a siaulation 
tool, aot a ■ethod of process synchronization. 

3.4.4. QDlNTON(E1) 



26 

APPENDIX I 

USING TOPPS ONDEB ~rs 

The TCPPS compiler and interpreter are currently in the 
files Y4iO:~OP?SCOri and Y410:TOPPSlNT respectively. 

To compile a TOPPS program: 

SRUN YijiO:TOPPSCOM [i/o units) [PlP.=SIZE=zxx] 

where i/o units may be 

SCARDS 
SPEI~T 
2 
7 

= 
= 
= 
= 

sourc~ 
listing 
"auxiliary source" (see lpp~ndix lll) 
~achine cod~ for the interpreter: 
defaults to -LOAD 

and SIZE=xxx, if specified, controls the free-string area 
allowed the compiler. The default is SP. 

To interpret the object program: 

$RUN Y410:TOPPSINT [i/o units] (PAP=SIZE=x~x] 

where: 

SCARDS = data read by the INPUT and READ functions 
SPBINT = output from OD!PUT function 
7 = "object program" produced by compiler; 

defaults to -LOAD 



APPENDIX II 

THE TOPPS GB1!~1B 

27 . 

This app~ndix contains the actual LALE(1) BNF gram ■ar used 
by the TOPPS compiler. Parse stack dumps appearing with 
co~piler syntax error messages use this grammar. 
1 <system>::= <decl block> 

2 <block>::= <statement> 
3 I <block> <semicolo~> <statement> 

4 <semicolon>::= ; 

5 <statement>::= <expression> 
6 PROCESS <primary> <pars> <prod part> 
7 <empty> 

8 <proa part>::= <empty> 
9 OF <para ■eter list> 

<expression> . ·.. - <pri11ary> 
I .. <primary> 

10 
11 
12 
13 
14 
15 

I <priaary> <operator> <expression> 
I <if clause> <true part> <false part> 
I <repeat> <block> UNTIL <expression> 
f FITUBN <expression> 

16 <repeat>::= BEPEAT 

17 <if clause>::= IF <expression> 

18 <true part>::= THEN <expression> 

19 <false part>::= ELSE <expression> 

20 <primary>::= <identifier> 
21 I <constant> 
22 I ( <block> ) 
23 I <decl block> 
24 I <priaary> ( <parlist> 

25 <parlist> ::= <empty> 
26 <para ■ eter list> 

27 <constant>::= <integer> 
28 I - <integer> 
29 I <string> 

30 <parameter list>::= <expression> 

II. THE TOPPS GRA~~AR 



28 

31 I <para ■eter list>, <expression> 

32 <decl blocl> ::= <begin> <decl st list> <block> END 

33 <begin>::= BEGIN 

34 <decl st list>::= <e•pty> 
35 I <decl st list> <decl st> 

<decl st> . ·.. - VARIABLE <id list>; 36 
37 
38 

lRBAY <id list> BOUND <parameter list>; 
<subfrogram name> <arg list> 

IS <expression> : 
CONSO~ABLE <id list>; 39 

40 
4 , 

F.EUSABLE <id list> WlTH <expression>; 
<program naae> <arg list> <resource list> 

42 <id list>::= <identifier> 
43 <id list>, <identifier> 

ij4 <subprogram name>::= SUBPBOGBAM <id~ntifier> 

45 <arg list>::= OF <id list> 
Q6 I <e~pty> 

47 <program na~e> ::= PROGRAN <identifier> 

QB <resource list>::= IS 
49 PRODUCING <id list> IS 

50 <operator>::=+ 
51 I -
52 I • 
53 J / 
54 I < 
55 I = 
56 I := 
57 I > 
58 I <= 
59 I >= 
60 I~= 
151 I & 
62 I I 

<e.z pression> ; 



lPPENDIX III 

COMFILEB CONTBOL STlTEHENTS 

29 

The compiler recognizes a number of control statements 
■ hich affect listing and other output infor■ation. 

Control statements ■ ust occupy a separate input line, and 
■ ust begin vith a S-sign in column 1. 

SlIST 

Control statements currently recognized are: 

controls listing of source file. 
the com~and inverts the status. 
on. 

Each occurrence of 
Initially, listing is 

SFILE Input is nor ■ ally read fro~ the file attached to ihe 
unit SCABDS. However, the file attached to unit 2 ■ ay 
be used as an auxiliary input source. The SFilE 
control statement is used to flip between the tvo 
files. (This is conyenient to include predefined 
program seg ■ ents in vith the source). 1 SFILE control 
state ■ ent in the auxiliary input file vill cause input 
to be resumed fro■ SCABDS; alternatively, this happens 
automatically if an END-Of-FILE occurs on unit 2. 

SAUXLIST Controls listing of auxiliary input file. 

SS?!BOl Sets a toggle causing the SJ■bol-table to be du ■ ped at 
the end of co ■ pilation. 

SCODE Sets a toggle causing the "objsct code" to be listed 
after compilation. Note there is no facility for 
selectively listing object-code; either all or none is 
listed. 

STITLE Sets the title to be printed at the top of each 
listing page. the re■ainder of th£ input line is used 
as the ne~ title. 

SPAGE causes an i ■ mediate page skip. 

SSPACE Causes three tlank lines to be printed. 

III. COMPILER CONTROL STlTE~ENTS 



30 

APPENDIX IV 

INT£BPBETEB OPTIONS 

The interpreter provides a number of options, aost of vhich 
are either for controlling processor scheduling, or producing 
debugging output. 

The builtin T~GGLE function (see section J.4.3) is used to 
turn on or off a number of switches controlling the options. 
For historical reasons, the switches used are referred to by 
one-character "names". 

IV.1. PROCESS SCHEDULING OPTIONS 

l nu~ber of switches, and the builtin DELAY and QUANTU~ 
functions are used to affect the process scbedulin~ performed by 
the interpreter. 

The initial, default ■ethod used is to schedule processes 
in round-robin fashion, giving each a pseudo-random time-slice. 
(The time-slice is actually the number of pseudo- ■achine 
operations executed before scheduling the next process.) 

The following toggles change the choice of time-slice: 

'l' (201) ~his toggle sets the time-slicing aethod to 
instruction by instruction slicing for si ■ulation of 
"completely interleaved" processes. This results in a 
large a ■ ount of process scheduling for tbe interpreter 
and should in general be avoided. 

'J' (209) ~his toggle sets tbe ti ■e-slice to ■ aii ■ um, so that 
each process runs until it either blocks on a resource 
queue, or finishes execution. This results in the 
least amount of scheduling for the irterpreter and is 
hence the cheapest vay. on the other hand, it resolts 
in the •least parallel" effect. Dse of this toggle is 
recommended during early stages of program 
develop ■ent. 

If both the 'l' toggle and 'J' toggle are specified, then 
the effect of 'J' is used. 

In alternative way of controlling the ti ■e slice 
the QUlNTU~ builtin function. This allows the user to 
directly vithin a process what ti ■e-slice it is to 
(starting with the next tiae th~ process is scheduled). 

IV.1. PEOCESS SCBIDOLING OPTIONS 

is vith 
specify 
receive 

Using 

I' 



PROCESS SCBEDULIBG OP7IONS 31 

the QOANTUft function it is possible to simulate processes which 
have different speeds. 

If the guantum has been set for a process by aeans of the 
QUANTUft function then the specified ti ■e-slice is used for that 
process, regardless of the settings of the 'I' and 'J' toggles. 
Processes for which a quantua has not been set will continue to 
be scheduled according to the settings of the 1 1 1 and 'J' 
toggles. By calling QUANTD! vith an arguaent of O it is 
possible for a process to revert to the default scheduling. 

iote that use of the 'I' toggle is equivalent to each 
process calling QUANTDft with an argument of 1, and use of the 
'J' toggle is equivalent ot each process setting its quantum to 
32767. 

The scheduling discipline can be modified from the usual 
ronnd-robin technique by the use of the DELAY function. This is 
explained in some detail in section 3.4.1. Before using this 
function, it is necessary to activate the facility in the 
interpreter by means of the 'A' toggle: 

'1' (193) Activates the delay options. That is, TOGGLE('l') is 
used to turn on the si ■ ulation clocking. If this is 
turned on and off in different places, the results are 
unpredictable. 

IV.2. TFACING OPTIONS 

'S' (226) Turning this switch either on 
ia ■ediate du ■ p of the seg ■ents 
accessed by the ezecuting process. 
dump is described in Appendix V. 

or off causes an 
of the sun Stack 
The for ■at of the 

The toggles described below provide a tracing facility. 
'T' and •o• turn tracing on and off; the reaaining ones select 
what trac£ information is to be printed. Bote that 'T' ■ ust be 
turned on for fDY of the others to have effect. All toggles are 
initially false. 

'7' (227) Activates tracing. 

•o• (228) Turns off tracing (i.e., this cancels out effect of 
• T') • 

1 D' (196) Duaps all seg ■ents of the stack that are accessible to 
the executing process, after execution of ~~ch 
instruction. The format of the resulting duap is 
described in Appendix,. 

IV.2. tBlCING OPTIONS 



32 TBACING OPTIONS 

•x• (231) Prior to each instruction, prints one line specifying 
the instruction, address, and process. 

'!' (232) Prints out process statistics after each instruction. 

'B' (217) Traces returns froa subroutines by printing a du■ p at 
each return. 

'1' (292) Prints a line specifying information about resources 
released and reguested. This is ■ainly intended for 
use in debugging the TOPPS interpreter. 

'2' (243) Prints a trace of string usage. This is ■ ainly 
intended for use in debugging the TOPPS interpreter. 

•3• (244) Prints trace of process scheduling. This is ■ ainly 
intended for use in debugging the TOPPS interpreter. 

IV.3. OTHER TOGGLES 

•v• (230) If turned on, the interpreter vill continue eiecution 
after a warning (non-fatal error). lt ■ost ten vill 
be permitted. This is initiallly on. 

'P' (2i5) If on at the end of execution, the interpreter vill 
print process statistics after execution. It is 
initially on. 



APPENDIX V 

IiTERPBEXlTION 01 THE STACK DUMP 

33 

The TOPPS dump of the run stack is printed either vben a 
job abends during execution vith error code greater than O or 
vhen the •a• or 'D' toggles are on (remember 'T' must be on 
also) or vbEn the •s• switch is set. The dump presents those 
segments of the cactus stack accessible to the currently active 
process. 

Stack segments are for ■ed whenever a declaration block, a 
program, or a subprogram is entered. The first segment is for 
the currently active program block. The bottom three locations 
of the segment form a base containiog relevant information for 
that segmeDt (see BASE below). Above the base are the 
descriptors for each element declarP-d within that block, program 
or subprogram. By ezamining the lexic level and order number of 
a variable from the symbol table dump, one can then find the 
location of that variable i~ the stack dump and its 
corresponding value. Locations above the descriptors are for 
expression evaluation. 

The run stack (BS) is four bytes wide. Beside each element 
is printed the attribute from the attribute stack (ATS). The 
■eaning of the RS entries vary according to the lTS entries as 
follows: 

0 REFEB 

1 UNDEF 

2 ARRAY 

The RS entry contains a reference (address) pointing 
to another location in the RS. 

The variable declared is undefined. 7he RS entry is 
■ eaningless. 

The BS entry contains an array descriptor: 

where: 

N 

BODNDS 

ADDR 

N I BCUNDS I ADDR 

Number of dimensions of the array (4 bits). 

the address in the FS of the bounds segment 
(14 bits); 

the address in the RS of the array storage 
segaent (14 bits). 

V. INT!BPBETATION OF THE STACK DDMP 



34 

3 SPBOG 

5 ST.BNG 

6 lRBEf 

7 PB.ASE 

B BASE 

Tie BS entry contains a subprogram descriptor: 

r---------r----------. 
1ss1 BASE I ENTRY 

where: 

ss The BS segment siz~ 
subprogra ■, cod~d as 
bits); 

reguirad for the 
log base 2 less 2 (2 

BASE base of BS segment for ·block in which 
subprogram is declarea (14 bits); 

ENTRY address in code of entry point (16 bits). 

The nS entry contains a number. 

The RS entry contains the address into the string area 
of the string. The string is printed to the right of 
the RS. 

The BS entry contains the address in array storage of 
an array element. 

When a subprogram is called, this reference to tbe 
descriptor of the subprograa that was called is plac£d 
on the BS segaent of the calling program. 

This attribute applies to the bottom three locations 
of a BS seg111ent: 

, 
I RET -lDCR s -RS_PT'R I 
f--
I DYN -PTR STAT -PTR 
I 
I S:EG_l'YPEI S_lL CNT SIZE 

vhere: 

SEG_TYPZ Attribute code of seg~ent (8 bits); 

S_Lt lexic level of this segment (8 bits); 

CNT number of processes using the declarations 
of this segment (8 bits); 

SIZE log base 2 of size of segment (8 bits); 

'• IITEBPFETlTION OF THE STACK DUMP 



9 PBOG 

DYN_PTR 

35 

address of base of dynamically enclosing 
seg ■ ent (16 bits); 

STAT_PTR address of first segment belov this segment 
in the stack vhose lexic level is one less 
than that of this segment (16 bits): 

EET_ADDR return address in CODE to which subprogram 
returns if SEG_TYPE is SPROG or the process 
index if SEG_TIPE is PFOG (16 bits): 

s_BS_PTn temporary storage for run stack pointer for 
this segaent (16 bits). 

The RS entry is a program descriptor with the same 
format as for the SPROG. 

10 BLOCK Used io SEG TYPE (i.e., for declaration blocks). Tnis 
attribute never occurs in the lTS. 

11 CONSD The RS entry contains an index into the consumable 
resource area. The next available unit, or 'NO 
AVAILABLE UNITS' if there are none, is printed. 

12 BEUSA Tte RS entry contains a pointer into the reusable 
resource area. A message stating whether or not 
resource units are available is printed. 

13 BLTIN The RS entry contains the number of the builtin 
function. 

V. INTERPRETATION OF TBE STACK DDNP 



36 

APPENDIX VI 

I!PLE!ENTlTION RESTRICTIONS 

The following are restrictions as of October 1975. 

( 1) Code area 

(2) Run stack 

(3) Number of string area dascriptors 

(4) Numbsr of consumable resources 

(5) Number of reusable resources 

(6) Numb~r of consu ■ able resource units 
(for all consumable resources) 

(7) Number of reusable resource units 

(B) Number of symbol table entries 

(9) Plazimum number of declarations per block 
of variablas, arrays, subprograas, and 
programs · 

(10) Na ■ber of processes 

20K bytes 

8192 words 

500 

32 

32 

512 

32 

400 

32 

32 



APPENDIX VII 

PROGRAN EilftPLES 

The following pages contain two sample TOPPS programs. 

37 

The first example consists of three si~ple processes which 
illustrate the essence of a spooling system. The first process 
read input data and adds it to an input queue. The second 
process rec~ives input fro• this queue, performs a simple 
computation with it, and sends it to an output queue. The third 
process receives data from ~he output queue and prints it. The 
example also . shovs a compiler symbol table dump, and an 
interpreter stack dump. 

The second exaaple illustrates the use of the DELAY 
function. 

VII. PROGRAM EXAMPLES 



,o,,s,"TS VlMSION UF SE,rt"•t• ,, ••• , •• 

"n!:'"'" ''"" 110'., 
1. • 11,!!W~ r.;) ;: I ~: ll!)•N [&&"PLE OF & fMIVIAL ., .. OULIHC ''~'["•· ~ 
•• ., ,. ALSO CCNT&I-~ AN t•••,Ll Ot A lf&tK ou•, A-.0' ,,.,aL fAftLt LISflNG ., 
•• ,. 
•• ... 

ao. 
11, 
l.Z, 
l J, 
14, 
u. ·~-17. 
l •• ••• 20, 
21. 
22, 
l J, 
24, 
n,. 
2t., 
2 7, 
21, ,,. 
)C,, , .. ,z. , ), 

J4, 
J4,H 

' ., ,, ., 
91 

101 
ll I 
121 
UI 
141 
HI 
l~I 
111 
Ill 

V&lll&DL[ IIIIO_DF_.llll I• 
CONSU•&ILt t&MO~, LINtSI 
-- J 

VALUl •&SSCC) IIIIUI IND OF 111,Uf «NtOUIIIT [ll(D •I 

.lC>l;MA" ... ~~OOLl• , .. cou,1N~ ,110_,"a~ts IS 
ll C. 111 --------

\ 

~ • IULE t611tl, I I• IHL WALVf TO I[ IN'Uf •I 
- t e, I ~ 4-11(, ur "L£ ~-lltN ., 
H,£.lf 

, EOF I• .. 111PUTlt&1tUI l 
If "' tOF 

IH[N ICLLA~tct,au_,.,cts, t&RUI 

l•I i UUTIL 
US£ lltL[&H 1tuu_111.u;u, .Etir_u,_FILfl 
EOF 

20 I .. fNU; 
211 
121 
HI 
141 
>~• 
lid 
211 : ,., 
l'II 
JOI 
JI I 
)21 ,,, , .. , .. ~, 
hi 
)71 
HI 
)'I I 
.Cd 
411 
,21 
,ur ... , 
Alli 
UI 
471 
UI 
•'II 
SOI 

'" UI 

Ll~t-llUGU IS 

SV81'110..,UM lt[VCR:.f Of ,,._,:;[ IS 
,. lHu•~IVE ,~.iCEIJV-IE r;i llt:'IEUE TH[ STllNC '"&GE ., 

If Ll~C.THll•&C[I • 0 

u,cu 

THEN " 
LLSE t&TtN&T£1VfV!~SllSU~STltllil~ll•&C.C, 111, 

Su11ShlllC.l l•AGf, D, 111; 

C&RU I• IE~U[STIC&RO~I; 
lttLl&HIU,.,.,.~:..s. , ... o,; 
If~ ~uwe~1c1c,~u, 

THL"I Mlll&SflLl~t_,~.w.cs, ar.vrRsc1,a11011 
tl SE 0 

u .. TIL ,, ~U~LMltlt••ul '"f~ c,~u • E~o_o,_,aLf 
ILSt I); 

li>~CLE I'S' I I• SttUol lik&T U&tll DU11P L'OUIIS llKL •I 
"( 110; 

,•i:x.••~ ov,s,ootE• 1s 
I ~otl&I\Ll Ll.,f; 
I ll(P(&l 
I OUT~VIILl~t r ■ k£WE~TILIN£SII 

UfjfJL If NVM.IIICILl•1.1 
fHE~ Ll"l • (Nw.Of_fllf 
llh 0 

!I> I .. ['10; 
141 
HI 

.. , ' '· -571 ,_tX.ESS t,;~PO:JLEk l'ltullUCl'-IC. CMOS; 
SIi l'iutt~~ u,l~ Pw~uutlf;v Ll,.L)l 
S•I -~UtESS DuTSPDDLEII 
,01£"11) 

Ji,.cb. P"t:i.-• .. _. ... ," 
It lu• ..... 
17 

" 17 
17 

" .. 
ti 
•a 

104 IIISl'ODLU 
lOt. INS•OOLEII 
IOt. IN SPOOL ER 
109 INSPOOLEM 
101 INs,oOLfll 
IZZ l11S1'O0LfM 
US INSPOULEll 
140 INs,ootu 
U4 INSPOOLU 
an INSPOOLU 
au 
lt.2 
I U USER 
an usu 
I U USER 
17' usu 
1'0 lf\/ERU 
1,0 auc•u 
104 IIE\/E•H 
114 lf\/fllH 
U9 lll\/£115£ 
1'1 USE• 
IU USEII 
HZ USU 
2n USER 
117 USEII 
10 UUI 
JU USER 
124 usu 
UZ USE• 
, .. usu 
IU USU 
I•• UHl , .. , .. 
HI CIUTSl'OOLElt 
• ., OUT s,ooLU 
JU CIUfS'OOL Ell 
JU ouu,0otE1t 
401 OUT VO:JL f II 
•IO 0VJS•D;>Ltll •1• ciurs,oou• 
an OUT Sl'OOLEll ., .. ... 

HGE I 



/ " 

.c~ 

( 

C 

IYfllDL f&ILE DUMI' 

•ANE 

tDF 
tUD 
tAIID_l•&'E S 
IM&r,E 
UVER5t 
taRD 
LINt_lMAGU 
LINE 
ourSPDDUII 
UHi 
INSPDDLU 
LIN[S 
tAIIDS 
IND_OF_FILE 
auo 
tlUll[Rll. 
DELAY 
llfLCAH 
UOUC ST 
OU&NTU"I 
fDCCLE 
tATE'IATE 
SUIIS1RING 
IYTC 
L tNCT H 
DU1'UT 
INPUT 

11 S9111:ILS. 

•o IIIIIAS WEil DETEtT[D, 

INPUI lJ~fS IIE&D • •D 
fD1.EO UHi, • IOI 
•1100JtTl.llll. USHI • Jll 
11,sns. t•ITHL> • ,,, 
FIE( s1,1"; ••~4 • 10114 
C.0'"'" JF I ~II I ir◄ S • l 
S11° UF 3tJftT t~U[• 41J 
u~usr0 t,tc a11f1 • ••~2, 
•uPlfM OF SY~~Ul~ • zr 

LL,OIII 

l,L 
~,_,O_: 
),O 
•• o 
,.a ~-,.o .. , 
1~4 .,, 
I ,2' 
1,1 
a,o 
c,,12 
O,ll 
D,10 o,• 
0,8 
0,1 o,, 
o.~ 
0,4 
D,l 
0,2 
0,l 
0,0 

O1010.u. 

· -.:· •· .... ·- .. . 

39 

,, .. c IJftL •uru .. u Ll 1HS 

V.Ul&lllf IJ at,1,,u 
...... , ... u IZ U, 11 
91fSIIUl<~F .,. • ., 10 U,ll 
,uu1c rc11 H :u,1n,11 
SUilPlr>l,IIAIIC l6 10, U 
V&NIAbll ,. , •• ,,., •• ,,.,.,40 
Ill suu11:, ·""" u H,J? 
VIIIUI\Lf ., ••• ,o,u 
,aoG■ t."I ., .. 
.. ROGl<AH . 12 •• 
•auGAA• 10 "' tOIISU"UL[ e •••H 
tONS.U,.AIILE I 1• ,!>Y 
V&l lAt.Li: 

.,. 11,40,fl,St 
SUt!PflU.,ol.Alll D 
S.Ulll'II ;;11&14 D ... ,11,\0 
SUI PII.Jl,UI! 0 
su,P11L:r,o1.,,. 0 11,U,J!'>,lY 
SUti ""'. ,.I( All D ..... ., 
SUDPlwl.•A• 0 
S.UIIPol.1 : (,waN 0 0 
S,U~PII ;,.A"I 0 JO 
SU8Pi<,1!; ◄ A• (/ )0,)l 
SU.,PollJ;;w,i." 0 
SUt<Plll,;;,ca"' 0 11! 
SU8PIIJCU," 0 4'1 
SUOP,UJ',otA"' 0 u 



w-~, n1111rn111 u --> , 
se,~•SE I ,, S'II 
UIHSE I 121 lil , 1 

hlllUE 1•110::; I ll 11 :ti 'Pf"O~"'"" U\U 

• 11 l'fUllfllll I 01 """-' eC' \..,\ t~ .. \11-.i ~ .. "'"-.._ t••---
O ... •, .. •\tr 4D I I' ► U( .. I l I l21 J?PI 
ll- ,11tP~fl~ I II Jlf llll 
l•\\~o,\o H 1~ .. 01, I 11 Jll ICl)I 
L', .. o ,,,co·,sJI l -->' liltlT A\IAILA~l, lNll H l•UIIB ◄ I u., .. , •• ,, 

, ... .)., u1:o•,su1 I ·•> I ,.,., UNITS •v•ILlllL( 
JNA_4f,f, la H t1u•~l(_I .. --.!1 ~ '"~h~ ti _ 

HID.SE I 01 •II ...... .,. 
J)ltUE I DI DI .-, f••-..•-
JllUSE leLDtir.l II .ZI •I 

Ull!lTl'41 121 
1"l11Lrt'fl Ill 
UIIILT1'41 1'11 
12 I IIL tr 'I I 'II 
11 lnL Tl'41 •I 
ICl~lfllil 11 
'll~LTl~I •I 
el~lfl'II ~I 
1 lttL T 1·;1 4 I 
t,fnlTl'III JI 
Sll'Uhl .ti 
4 lbl Tl'I I I I 
) I Ill Tl'II 01 
ll~Ht I II hi 
IIIIHE I •HHI IUhl 0,..\,,-,\ \.\,.,Ii. 
Ol~l~l.lt3Uw_LJl!...1Wl 

&IS IIS 
au111 su:1. 

liOOJMT 

PlO:ESS I ClDtlll fl•E 
PIIIOCESS SfA~TfO AT 
l'ROt[H STUl 
l'IIOC[HD~ tl.,f 
ILOt111t l · 11 .,t 
fOUL fl'lt 

l'ROC£S~ 1 tlOC,. Tl•E 
,aottss s1,,rtD ,, 
l'IIIOCESS SUH 
l'IIOtH ~D- f 111£ 
ll0t1.t.itf11£ 
IDIAL fli'll 

l'IIIDtlSS ) CLDC,. TIii£ 
l'IDtlS~ StanJ£0 AT 
PIIIDUH Shll 
1'11Dt£ hO~ t ll'l 
ILOCl.(u T 1.-C 
tOUL llllf 

l'IIIDCESS 4 tln;1. Tllll 
l'ROtES~ SIAklfO AT 
l'IIOtfH STLTF 
•• Ut C S ~m 11 "f 
ILO~<[ u T IMF 
TOI AL I lfll 

l1ccut111"(S t .. ,n U~fC .. M• IQ, 
(ll(Jlt a~ 11"1 li:t • l L' .UC> • 

.. ,x1,u~ J~I IF ~Uli $1~t~: 
A110u1,t 0' lut( IA: ■ Ul'4v)£0t 
tlu '"'~ JIii. (1 ► ~I• ."C.,\ U~f"I 
•~tt ~·11t11irr AAf' ' 
;c-• .. ,n I r1c.At,,Ns, 

)I 
0 

DUI,£ 
)6 

0 
n 

SH 
J3 

1111" E 
,01 

0 

•c..z 
U2 

.&6 
&IU"1f . ., 
.. n 
41111 

,oe li0ilD ~ 
n,., IIIOIIIO~ 
u ao,z., 
0 



, 
(_ 

IIHGl'I 
II I• PRllGUII TD lotU._ T"t UH :.1, IHIE DlL.U ,.,,.,: TIO•,. ., ,. ,. ... ,. 

•• ,. 
J I ., 
II ., /e '"E TWU PkD;fSSES Will &l'Pl&a ,0 llltUtf Tt4£ LCDP IT OIFFtM[~T \l'LCDS 

att&USE tHf &ltLl'f f.U14ttllllf IS t&LLtO WITII r.rHt•ENt UC.U .. t!\Js. 

•• •• 10. ... 
az. , ... , .. 
as. , .. 
I'• ••• , .. ,u. 
J lo 

" II 
,1 

IOI 
Ill 
UI 
UI ,., 

•◄ DGOM L(;0" OF HIICMEll!flllr. NAlilf IS 
af(,IIC 

Va• Ulllf tDU,-J I 
tOU'IT •• I & 
atl'Uf 

Dl-lA'fllNC•£11E~TII 
OUT~UTICOJNT, 111411£1 

UICTIL lO < tOUiH I• tOUNT • INUE.,UH 
IIIIUI U I 

U I 
l?I fDi.GLEl'.1 1 I I I• &CJIW&HS UHO "ftH&NUII •I 
UI •~OCHS LU:JP OF •• •usr --->•; 
191 "UtESS LOOP OF it, •SLO. <-•• 
lD l fND 

110 lHDlS .,.bf DETtl:U.U, 

IICPUT Lllll[S READ • 20 
TOJf~S USE~ • •c 
PkDDUtll~N~ UStD • 104 
l~STRS, (l'ITTED • 4~ 
fllE s,a,111~ ·•~A • ,u,,~ 
tO~PAtTIF IL,IILJ~S • 0 
Sil[ OF 08JEtT CUDE• 109 
UNUSE~ t0~L Alli • 191~1 
•ul'IE I Of 5 JJ•II\ OL S • 17 

IOflL ,11111 IN tPIIPILfk O1O1O,O~. 

., 

,o,,, ... ,, .. ,u,u --- u:,IWllSlf'f or flNITUM tOLU"IIIA -- fCP1•S/1Cf$ ,,. ·••o·, D• ~l-l'fl1''4[N 21, avu •. 

flftUTIO'I 8fGIIIIS SEPtt11•f11 2~, l~14o ll•E1 111:~,.14. 

I UST-•> 
I UST •••> 
I UDw <••• 
I ,,s, ---> • ,as, -•·> 
J ILDII <••• ' ,,s, ---> 
6 flH -•> 
I SL0w <••• 
T fAST -•> 
1 ,an -•> 
I SLOW<••• • ,as, --> 
10 fl.Sf ---> 
t ,&.ow~---

llltut ICIIIII 11405 ·"" •0 NUCUUS DU&ILDt•Eo. 

PtDl:fH I tl DC.It TIii£ 
PIDtE SS STUltl/ " 
PIOC.lS!> SUH 
,aor:uso- TIIOE 
ILUC.kEU T l"E 
IDUL ""' 
PRDttU J tLOC• TIIOE 
PIOC.US SU•TCD AT 
••otus suu 
UOC.ES!I,~ IU•t 
ILDC.I.EO Tlllf. 
101 IL IIIIIE 

HOC.US ) tlOC.C TIIIIC 
PloDCES:. STllttED aT 
PROCESS SUH 
PllOtlSS~• lll't 
ILOts. E fl f l•F 
11.lUL tllllt 

OCtJT IOlcS ff,D~ Sfl'll ~rfll 211, 
lUtUT lllfl 1 l"'f o:o: I) • .;). 

111e11•u• usf u, lu~ Slh : L: 
INOU'II 01 •.i :. !.Uet u .. usu1: 
•nlffUfl hC. Of ~T•l"I,', I/St::: 
fill s,1-1,.ic, •~r,: 
tr.•PICTIFlt&TIO~~: 

Jl 
0 

;,O~E 
u 
0 

u 

, ... 
l,. 

(lu~E 
110 

0 
&10 

llll ,. 
&IU'-E 

•o 
D 

'fD 

IA wo,oS 
,1c-• ciins 

' eCU4 
0 

&;Hn Tlflt Sl"l';L,11CII\ SUTl~IICS 
P•UtES:. l SU~HO U (/ 

Fl ◄ IS-ti' el D 
TIITaL llH fl"'; u 
IOTAL IJrLl.'f fl"< 0 

''" •t 
lolUC•tO T l••r 0 

&¥~NIGL UllLll~Tl~N Ill 

llfili'f fl"'l 5111.JLill UN tUTISTU:S 
•1111trs~ , su~rro a, I) 

r INI \'1!. t. II 1D 
fllUL lll: fl"'• IO 
fllUL IIHA, Tl"ll 10 
,UUl MLCC.t,fll 11"1 D 
AVfRiC.l ~tlLltitl~~ 100~ 

D~L & 'f 11 Pl£ SI " '-IL 11 I C"I UUISI It~ 
•otOUSS ) UhHD AT ... 
FIICI '"f.D AT 1n 
T\IUL llH Jlic: ID 
'TIIUL OfL.A" Tiff~ IU 
,~1•L ILoc.•ro 11"r 'l 
av9N&Cf" L'TlL IUT'luli 1'10~ 

II 

" ■ T 

" " ., 
" 100 &.DOP 

102 1.00, 
104 &.DOP 
llt LOOP 
IU &.DDP 
U4 LOOP 
IH &.DDP 
UO &.ODP 
IH 
IH 
uo . .. 
104 

41 




