MUM

MMMY Mo
ME i1y
M M
N M BAMMMMMNY
My MM MMMM MMM
MMM M4 MM Nan
MMM MM UM aMH
MUMMMMMMNY MMMMMNA
MMMMMMY MMNM MMH MM
MMM M MMM
M MMM
M MM MMM

MMMY MMMMaM
MM

M
MMH
|
M
MY
qMHM
MMM
MMM
MAM
MMMENM

dkaie e ok o dk K e o ko ok ok ok ok kol ko kR K R Kk ok

*

* USER'S MANDAL FOR "TOPPS™ =«

*

*

Wk 3k 2 ok ok 3 3ok ok ko ok ok ok ok g%k ok ok ok koK ok R ak ok ke

Edited by

Alan Ballard

Technical Manual 75-6

Revised October 1974

Departm=nt of Computer Sciencs
University of British Columbia

Vancouver, B. C.

M
My
MM
M

M

e — | |]

S E——_———_—— .

iii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ANLC OVERVIEW cceccsccccsccscssscscacel
1.1. General Introduction ..0..........0.-........0.0....-1
1.2. Programs, Processes And Virtual ProcesSOrIS sesssessss]
1.3. Resourcas‘...............I-..Il........cz

1.“. Flo“ Of ContrOI ...'.....'........‘...'..‘.....C.....3

CHAPTER 2. SYNTACTIC DEFINITICN CF TOPPS sececscccccscccsacssos?d
2.1. The Complete SYNtAX csccscsvccssesevcscssncssncscsscsnsd
2+2+ Blocks And Statenents ecsssovesacsicacasssssssveisovesh

2.2.1. Statements And Declaration StateRentsS ececcssccscesh
2.2.2. Blocks And Declaration BlOCKS ceccecesccccccsacascel
ypes And DeclaratiolS ceeccccsccecccccnccscccnccsccel

Data Types ...‘...-....-.....‘..'....‘-.I.‘.....e

Constants ececscvcesscacacescnnvscsecccscssssssasasssed

Identifiers9

DeclaTatlonNs sevsiscosessssnniaessssnonssnessssell

“010 variables'...‘....-................C1O

u.2. Arrays‘.......O.......'.'....10

a 3. RESoutces ..'.........I...................11

“ ul Sprroqrams‘.OI.........'...‘.....12

“ 5. Programsl..t.'.'.‘.....'.......‘...13

esslons l.-..'.....l........‘.'.........‘I...I..14

operators l....--.l......ll.l.'............'...’S
conditionals'....O......0........-.16
LOOPS I....l...'...............l...............16
Sprrogram calls‘..'.......-C.....16

Returns ..-I.....'........'...I.....-..........18

2.3. T
2.3.
2. 3.
2.3
2.3

"'th.a

L Huwwwu-

N
8
 ~4

s M
""'*NNNNN"
UM WN g o

® 9 o

[SE SE NN SN SR

CHAPTER 3. IMPLICITLY DEIFINED SUBPROGRAES cceccccconccncsssneld
3.1‘ Input/output .I........‘.‘.I....l..l..l.........l..-19
3'1.1. INPUT‘B1'52'.IO)l‘..............-...19
3'1.2. RIAD(£1,.I.)l.'......'........ZO
3.1.3. 0UTPUT(E1'£2'...) ..O-....O.I.l.............'..ZO
3.2. Character String Manipulatiol ccecsccccsscssssccanscssll
3.2.1. LENGTH(E1) .I...IO..‘.......-".'.l.....l.....-21
te. « 2¢ BYTE(E1, E2) O BYTE(E1) evccccccenscssnassccscell
3.2.3. SUBSTEING(F1, E2, E3) or SUBSTRING(E1, E2) eeee21
3.2-“- CATINATE(E1'....ED) .oo.‘oo.olao...o.o........ozz
3.3. Resource Handling FUDCtiODS eeecccccccccccecccsanncnall
3.3.1. REQUEST(E1,-..’...I‘...I.......I.I...I....zz
3.3.2. RELEASE(E1, E2) Or BRELEASE(E1) cccccccccssccscesl3
3'“. other Functions l....0....'.0......l.'....‘..'.oottbz“
3.“.1' NUHERIC(E1)‘-I..‘III..I....Q.'.....I.-.-.2“
3.“.2. DELAY(E1) O.C.........Q-......-..I“.-l.I-I-.-.2u
3.“.3. TOGGLE(E1)I.........l'..............l..zs
3.“.“‘ QUABTUH(E1)I......-...‘................'25

TABLE OF CONTENTS

iv

APPENDIX
APPENDIX
APPENDIX
APPENDIX
Iv. 1.
Iv. 2.
Iv.3.
APPENDIX
APPENDIX

APPENDIX

III. COEPILER CONTROL STATEMENTS eccccccccccccccsseld
TraCinq Options seessessesssssesacanssssssssonree e]
Other ’I'Oggles P e O gy F PP .
Vo INTERPRETATION OF THE STACK DUMP cccceccsccccccee3l
VI. IMPLEMENTATION RESTRICTIONS cccvceaccccscncacce3b

VII. PROGRA" EXAHPLES‘.......’...........‘.37

ACKNOWLEDGEMENTS

The TOY Languvage, on which TOPPS is based, was designed by
J. J. Horaing; ton= TOY compiler/interpreter wvas implemented by
B. Clark and F. Pagan (University of Toronto, C.S.R.G., 1971).
The concurrency features of TOPPS wers designed by R. Holt and
R. Kinread and were added to the TOY compiler/interpreter by
M. Dryer.

The TCPPS compiler/interpreter has been modified, extended
and stabiliz=d by Alap Ballard amnd Bryon Czarnik (University of
Toronto, Department of Computer Science, June 1973). It has
been adapted for MTS and furtber modified by Alan Ballard
(V.B.C., 1974).

The TOPPS us=2r's guide was originally written by M. Dryer.
It has been revised by A. Ballard and B. Czarnik to reflect
changes incorporatei in the current version of TOPPS. This
version of the wuser's gquide bhas also borrowved from a user's
guide proiuced by K. Dalgleish and R. B. Bunt (University of
Saskatchewan).

ACKNOWLEDGEMENTS

R s e W W

-

CHAPTER OXE

INTRODUCTION ARD OVERVIEW

1«1 GENERAL INTRODUCTION

In the study of operating systems, the concepts of
asynchronous processes and of process compunication are
particularly important. TOPPS is a simple language developed at
the OUniversity of Toronto as a means of giving students
practical exparience with the problems involved. Facilities are
provided for the simulation of asynchronous processes and for
communication between them. The TOPPS processor consists of a
coerpiler producing code for a pseudo-machine and of an
interpreter which executes the generated code. Both are wvritten
in the XPL language. ‘

The TOPPS language is a block-structured language with some
semblance to Algol. Operations for the handling of both numeric
and string data are provided, along with control structures for
repetition and logical selection. There is no GO TO construct.
Every executable statement in TOPPS returns a value;
conseguently, anyvhere a value is required, a statement (or
block of statements) may be used. It is certainly unnecessary
to make use of this feature; hovever with a little practice it
can provide considerable programming convenience (but often with
a corresponding obscurity). Expressions are normally evaluated
right to 1left, rather than by the more usual arithmetic
precedence rules.

Probably the most important features of the language are
those for implementing and comeunicating between processes.
Processes are virtual processors executing procedures
asynchronously and in parallel. Comsunication betwveen processes
is handled through a special data type called resources that
essentiallv combine Dijk.tra's Semaphores with mes.age queues.
Resources are panipulated through special primitives REQUEST and
RELEASE.

1.2. PROGRAMS, PEDCESSES AND VIRTUAL PEOCESSORS

In corputer systems, there are freguently many activities
being performed simultaneously. The activities may depend on
events external to the activity itself. Such thkings as
completion of input-output operations, real-tieme clock

1.2. PROGRAMS, PROCESSES AND VIRTUAL PROCESSORS

2 PROGEAYKS, PROCESSES AND VIRTUAL PROCESSORS

interrupts, and other exceptional conditions are not predictable
in a simple detersinistic way. Since no simple timing
relationship holds between such events, they are said to be
asyochropous.

TOPPS allows a user to create virtual processors wnich
execute asynchronously and in parallel. The wuser can define
PROGRAMs whichk are a special fore of procedure. There is a
PROCESS statement which, when executed, causes a nevw processor
to be created (or, "“fired up"). It begins exacution of the
PROGRAM narmed in the process statement. The combination of a
processor ex=cuting a procedure is called a process. The new
process continues executing independently of, and asynchromous
to, the exa2cution of the process vwhich issued the PROCESS
statement (and all other processes). Note that more than one
processor may be executing the same procedure simultansously.
The code is fully reentrant.

Processes are hierarchically related, with th= new process
being referred to as a child and the old process as the parent.

A process runs until the processor finishes the code for
the program, executes a RETURN statement or becomes blocked or
deadlocked by a ra2quest for an unavailable resource. The

terminatiorn of a process has no effect on any other process.

The TOPPS interpreter actually achieves ®"logical
parallelism"™ by interleavicg execution of the processes. That
is, slices of CPU time are randomly distributed across the
existing virtual processors. Because of the randomness, a
programmer cannot guarantee that ¢tvo processes will reach
particular points in their respective programs at the same time
unless they are synchronized by the use of resources.

1«3. RESOURCES

Interprocess comdhupication and sybchronization is achieved
through the wuse of resources and the primitives REQUEST and
RELEASE which operate upon resources. A process may REQUEST
that a single unit of a particular resource be allocated to it.
If a.y units of that resourc. are available, tk2 process is
civen obne. If no units of tke resource are available, the
process is blockei (i.e., its execution is suspend2d) until its
request can be satisfied. Blocked processes are placed on a
FIFO queue associated with the requested resource; this queue is

checked eack time a unit of the resource becomes available.

Units of a resource become available wvhen some process
issues a ZLERSE statement for that resource. If there are
blocked processes awaiting units of the resource, ther the newly
available unit is given to the first process on the queue and
that process is allowed to continue execution. If there are no

1.3. RESOURCES

RESOURCES 3

outstanding requests for a unit of the resource, the unit is
placed on a FIFO gueue. Each released wunit has a string,
numeric, or logical value (i.e., a message) associated with it
wvhich is made available to the process to which that unit is
subsegquently allocated.

There are two types of resources in TOPPS: REUSABLE and
CONSUMABLE. The type of each resource is specified by the
programmer in the declaration for that resource.

Units of a reusable resource are "borrowvwed" by a requesting
process and subseguently "returned" using the RELEASE statement.
A process can obviously only release units of resources which it
already possesses. The programmer specifies a numeric upit
count for each reusable resource which indicates the number of
units of that resource which are initially available. This is
also the nurber of units which will be circulating in the systenm
at any time since units of reusable resources are neither
created nor destroyed, but merely borrowed and returned.

In contrast, each consumable resource has an initial unit
count of zero. Processes may be given the capability to "mint"
units of particular consumable resources. The RELEASE statement
applied to suck a resource thus has the effect of creating a new
unit of that resource. When a unit is allocated to a process in
response to a REQUEST, that unit is "consumed® and ceases to

exist.

Consumable resources may be used to pass messages by hbaving
the %"sendiug" process release a unit of a resource whose value
is the message. The "receiving" process (vbich obviously »must
know that it is ¢to receive a message) must request a unit of
that resource.

Process synchronization and mutual exclusion are handled
through the use of consumable or reusable resources. Nutual
exclusion is best accomplished through the wuse of reusable
resources with unit counts of one.

1.4, FLOW OF CONTEOL

A program written 4in TOPPS is considered to be a PROGRAM
and is executed by the main processor. Syntactically it is a
<system> witha the followving structure:

1.4. FLOW OF CONTROL

4 FlOW OF CONTROL

<{systenm>
|
w B L L
| | | |
BEGIN <declarations> <statements> END
(0 or more) (0 or more)

Variables, arrays, resources, programs, and subprograms are
declared at tke begipnning of the TOPPS program. Then follow
statements to be executed. There are twvwo kinds, expressions and
PEOCESS statemernts to fire up processes. Expressions may be of

the following types:

(1) subprogram calls

(2) iterative expressions (i.e. PZPEAT!'s)
(3) selection expressions (i.e. IF's)

(4) assignments

(5) return expressions

(€) declaration blocks.

Execution of processes is sequential except for branches
caused by PREPEAT's, 1IF's, RETURN's and subprogram calls.
Termination of execution occurs whenever all PROCESSes finish
(i.e. 'fall off' th2 ends of their respective PROGRANS) or when
the PROCESSes not finished are all deadlocked or blocked by
requests for unavailable resources.

2.1. THE CCMPLETE

In this se
The actual syntax
Appendix 1II. I
optional items.
<system> ::= <dec
<decl.block> ::=

<decl.state.list>

<decl.state.> ::

<block> ::= <stat

<statement> :: <

CHAPTER TWO

SYNTACTIC DEFINRITION OF TOPPS

SYNTAX

ction, a simplified syntax for TOPPS is listed.
used by the TOPPS conmpiler is 1listed in
n the following, square brackets [and] denote

l.block>
BEGIN [<decl.state.list>] <block> END

s:= <decl.state.list> <decl.state.>
| <decl.state.>

VARIAELE <id list> ;
AKRAY <id list> BOUND <parameter list> ;
SUBPROGRAM <identifier> [OF <id list>]

IS <expression>

CONSUMABLE <id 1list> ;
REUSABLE <id list> WITH <expression> ;
PROGRAM <identifier> [OF <idlist>]

[PRODUCING <id list>] IS <expression>

ement>

<block> ; <statementd>

expression>

| PEOCESS <primary> [OF <parameter list>]

[PEODUCING <parameter listd>)

| <epmpty>

<expression> ::=
|
|
|

<primary> ::= <id

<primaiy>
-~ <prismary> .
<priepary> <operator> <expression>
IF <expression> THEN <expression>
ELSE <expression>
REPEAT <block> UNTIL <expression>
RETURN <expression>

entifier>

{ <constant>
{ (<block>)
| <decl.block>

2.1. THE COMPLETE SYNTAX

6 THE COMPLETE SYNTAX

| <primary> ([<parameter list>])

<parameter list> ::= <expression>
{ <parameter list> , <expression>

<id list> ::= <identifier>
{ <id list> , <identifier>

<operator> ::= +|/|*|I<{={:=>|>=|<=|~={E]| |

2.2. BLOCKS AND STATEMENIS

<block> 2:= <statement>

{ <block> ; <statewment>

<statement> ::= <expression>
| PRCCESS <primary> [OF <parapmeter list>]
[PRCDUCING <parameter listd>])

| <empty>
<dacl.block> ::= BEGIN <decl.state.list> <block> END

<decl.state.list> <decl.state.>

<decl.state.list> ::=
| <empty>

There are two types of statements in TOPPS, distinguished
in the grammar by <statement> and <decl.state.>.

A <staterent> is either an <expression> (in which case the
value of the <statement> is the value of the <expression>), or a
statement firing up a process, beginning with the word PROCESS
(in which case the value of the <statement> is zero), or a null
statement (with a value of zero). When a semicolon follows a
<statement>, the value of the statement is discarded.

Exapples:

The following are examples of <statementd's.

{1) A := B

(2) OUTPUT('X IS', X)

(3) RELEASE (Message, 'KEADY')

(4) RESULT := CATENATE(A, B)

(5) PROCESS Reader OF 2, I PRODUCING HMessage
(6) PROCESS WEITE OF LINE

2.2.1. STATENMENTS AXND DECLARATION STATEMEINTS

BLOCKS AND STATEMENTS 7

(7) MAX 3= IF A < B
: THEN B
ELSE &
(8) RETOUORN '"ABNORMAL TERMINATION?®
(9) 1IF Swvitch
THEN BEGIN
VARIABLE Tenmp;
Temp := Var2;
var2 := Vari;
vart := Tenmp
END
ELSE O

A <decl.state.> is a statement which declares a variable,
array or resource, or defines a program or subprogram. Unlike
<statement>'s, <decl.state.>'s do not possess values. all
declared names are local to the block in whkich they are
declared. 211 names pust be declared before they are used. For
further details on declarations and exarples see Section 2.3.4.

2.2.2. Blocks Apd Declaration Blocks

There are two types of blocks in TOPPS, distinguished in
the gramsmar as <block> and <decl.block>, wvhich bhave two basic
differences. A <tlock> consists simply of one or more
<statement>'s separated by semi-colons. Note that declarations
are not <stat=mentd's. A <decl.block> on the other hand must
begin with thke word BEGIN and end with the word END, and eay
include declarations. A <decl.block> does not have to contain
declarations; hovever, they must occur at the beginning of the
<decl.block> if they are present. The rest of the <decl.block>
is the same as a <block>. A <decl.block> is a <primary> and
hence may be used anywhere a value is required. A <block> may
alvays be parenthesized to use it where a <primary> is wanted.
Note that a <decl.block> alvays causes storage allocation at
execution time (even if there are no declarations inside); hence
it should not be used without declarations since a parenthesized
<block> would be more efficient.

Note that a <block> should not end with a semi-colon. A
<block> o2ust <¢nd with a <statementd. The valve of this
<statem2nt> becomes the value of the <block" . Since a
<decl.block> contains a <block>, the same applies to a
<decl.block>. The value of a <decl.block> is the value of its
<block>. Thus all blocks, of both types, possess a value. If
an extra semi-colon is present at the end, a null statement is
assumed with a value of zero. A warning is printed at the end
of compilation if this is detected.

A nev scope (i.e., lexic level) 1is entered each time a

<decl.block> is entered or a <subprograe name> or <prograr name>
is encountered. Variables declared inside a scope may have the

2.2.2. BLOCKS AND DECLAEATION BLOCKS

8 BLOCKS AND STATEMENTS

same pame as variables declared outside. Hovever, the same nanme
may not be declared twice within the same scope. The implicitly
defined subprograms have lexic level zero, while names declared
in the outermost declaration block have lexic level one. Order
numbers within given scope are assigned in the order declared
with the first name having order number zero.

Examples:

The following are examples of <block>'s:
(M X

(2) (X + 3)

(3) X 2= Y + 3;
2%Y

(4) INPUT (N) 3
N ¢+ (IRPUT(R);
CCTIPUT (4))
The value of this block is N + A.
The following is an exarple of a <decl.block>:
{S) BEGIN
VARIABLIE I;
I == 10;

OUTPUT (I)
END

2.3. TYPES AND DECLARATIONS

2.3.1. Data Iypes

The tollowing data types exist in TOPPS:
(1) Constants may be of string or of numeric attribute.
(2) VYariables may have either string or numeric values.

(3) Arrays are segquences of values, either string or num2ric or
a combination of both.

(4) Programs, as described, are special procedures used in
simulating parallel processes.

(5) Subprogrags are procedures, which always return a value.

2.3.1. DATA TYPES

TYPES AND DECLARATIONS 9

(6) Resources, as dascribed, synchronize processes and gueue

information.

Declarations are used to enter the name of the data item in
the symbol table at compile time and allocate space on the run
stack at execution time. The values of variables and arrays are
initially undefined at execution time.

<constapt> ::= <integer> | - <integer> | <string>
<integer> ::= <decimal digit> | <integer> <decimal digit>
<decimal digit> ::= 0112134151617 1819

<string> ::= '<characters>' | *?

<characters> ::= <character> | <characters> <character>
<character> s:= *!' | (any EBCDIC character other than '}

Integers in the range 0 to 231-1 are valid. Negative
integers may also appear in TOPPS programs. However, it is not
possible to read negative values frop data files at execution
tine.

4 string constant is a string of zero or more characters
not including the apostrophe (') enclosed by apostrophes. Two
apostrophes must be used to represent the occurrence of one
apostrophe within a string while tvo apostrophes alone represent
the null string. The mwmaximum 1length allowed for a string
constant dis 255. Strings contained in input data may be of the
sane form and enclosa2d in apostrophes. Alternatively, if the
BREAD fuanction is used, then an eantire input line is accepted as

a character string.

2.3.3. Identifi=rs
<identifier> ::= <letter> | <identifier> <letter>
| <identifier> <decimal digit>
<letter> ::= A|B|CleeelZ|_lDd|#I81a|blClecclxiYl2
<decimal digit> ::= 0|11213]41516171819
An identifier is a string consisting of a letter followed

by zero or more letters or digits, wkere _, @, $, & are
considered to be letters. The following are reserved words in

2.3.3. IDENTIFIERS

10 TYPES AND DECLARATIONS

TOPPS and may not be used as identifiers:

OF, 11s, 1IF, END, THEN, ELSE, WITH, ARRAY, BOUND, BEGIN,
URTIL, RETURN, REPEAT, PROCESS, PROGRAMN, VARIABLE,
REUSABLEZ, PRODUCING, SUBPROGRAM, CONSUMABLE

Implicitly declared names, described in chapter three, are
treated as idantifiers declared in a enclosing block and may be
freely redeclared in TOPPS (if the corresponding functions are
not reguired).

2.3.4. D2claratiors

All declarations of data items must occur before the iten
is referenced and at the beginning of a aeclaration block.
Standard Algol scope rules are used for declared itenms.
Therefore, data items declared in a Lblock are not "visiple"®
outside the scope of that block although interior to tike block
they may be referenced or redeclar=d (vhick causes a new data
item to be entered into the symbol table).

2.3.4.1. Variables

<decl.state.> ::= VARIAELE <id list>;

An identifier is a variable if it occurs in the <id 1list>
of a declaration statement of the forr VARIZBLE <id list>. Any
variable may have numeric, string, or undefined wvaluss at any
time. Thus in the block

BEGIN
VARIABLE I;
I = 1;
I := YOUTPUT IS*;
I := 3
END

the variable I is first wundefined, then number-valued, then
string-valued, and later rumber-valued again.

2.3.4.2. Arrays

<decl.state.> ::= ARBAY <id list> BOUND <parameter list>;

An identifier which appears in an ARFAY statement is array-
valued and has the dimensions specified by the expressions in
the <parameter list> after BOUND. The expressions are evaluatedqd
at the time executior of the <decl.block> begins. 1f an array

2.3.4.2. ARERAYS

TYPES AND DECLARATIONS 1

has bounds B1,...,Bn, then the i'th subscript can take on values
betveen 0 and Bi inclusive, so that the total number of elements
in tbhe array is (B1+1)x (B2+1)X...Xx(Bn+1),

Any use of an array identifier after its declaration is
interpreted as a special kind of subprogram call vwhich returns a
reference to an element of the array. Array elements are used
in the same way as variables.

(1) ABRRAY Code BCUNL Code_Size;
This declares an array Code of size Code_Size + 1.
(2) ARRAY &,B,C BOUND I,J;

This declares three 2-dimpensional arrays of size
(I+1) x(J+1)e.

2.3.4.3. Resources

<decl.state.> ::= CONSUMABLE <id list>:
| REUSABLE <id list> WITH <expression>;

An identifier declared in a CONSUMABLE or a REUSABLE
statement is a resource, and is respectively consumable or
reusable. A resource identifier may only be used as a parameter
for a subprogram or program or a resource parameter (i.e., after
PRODUCING) for a program. HManipulation of resources is noremally
done by the use of the iwmplicitly defined subprograms REQUEST
and RELEASE.

The expression after WITH in the declaration of a reusable
resource specifies the pnumber of units of each resource in that
REUSABLE statement. JInitially all the wunits of a reusable
resource are available to be requested. Each time a unit of a
reusable resource 1is regquested by a process, that process
becomes the owner of one more unit of the resource and there is
one less unit availabple. Each time a unit of a reusable
resource is released, then that process owns one less unit of
the resource and one more unit is available to be used again.
If all the wunits of a reusable resource have been assigned to
processes and sore process requests a unit, thken that process is
placed in a gqueue of processes awvaiting units of that resource
and remains blocked until some other process releases a unit of
the resource.

Initially tkere are zero units available of a consumable
resource, There is @no fixed nuaber of units of a consumable
resource, since units of a consumable resource are created when
a process releases them, and they are destroyed as soon as they

2.3.4.3. RESOURCES

12 TYPES AND DECLARATIONS

are obtained by some process. When a consumable apit is
released it is placed in a queue of available units of that
resource. When a process requests a unit of this resource it
removes the wunit at the front of this queue. Howvever, if the
gueue is empty the process is placed in a queue of processes
avaiting units of this resource.

Rith Dboth types of resources, when a unit is released, the
FIFO queue of processes waiting for that resource is checked; if
the gqueue is not empty then the unit is given to the process at
the head of this queue. That process is removed from the gueue,
and allowed to resume execution.

To release a uvnit of a reusable resource, the process aust
own a unit. To release a unit of a consumacle resource, the
process must be a legitimate producer of that resource. A
process can produce a consumable resource orly if it is declared
within that process, or was included in th2 Tresource parameter
list (i.e., the list following PPODUCING) when the procass was
started up.

Exapples:

CONSUMABLE FKessages;
REUSLABLE Mutex WITB 1;

2.3.U4.4, Subprogrars

<jecl.state.> s:= SUBPROGRAM <identifier> [OF <id 1list>]
IS <expression>;

The definition of a subprogram is headed by the reserved
vord SUBPROGRAM followed by its name and its formal parameters
(if any). The body of a subprogram is the expression following
the reserved word IS. Every subprograr call returns the value
of the <expression> forming the subprogram body; however, this
value need not be used ty the calling program.

The parameters of the subprogram are 1local to the
<expression> cornstituting the subrrogramr body. They are
implicitly de=fined by their prescnce in the param2ter list, ani
pust pot be redeclared in thz2 subprogram body. Whken a
subprogram is called, all parameters are passed by reference
except for those which are corstants or which are expressions
resulting 4in valu2s which are not references. The bnumber of
arguments in the call (actual parameters) must match the pumber
of formal parameters. Subprograms may be called recursively.
An example of a subprogram is given in Appendix VII.

2.3.4.4. SDBPROGRANS

TYPES AND DECLARATIONS 13

2.3.“.5. Programs

PROGRAM <identifier> [OF <id list>]
[PRODUCING <id list>] IS <expression>

<decl.state.> ::

Execution of a statement of the fore

PROCESS <primary> [OF <parameter list>]
[PRODUCING <parameter list>]

creates a new processor executing the PROGRAY with the nanme
specified by the <primary>. The nev processor executes quite
independently of the origimating process (and any other
processes). A processor continues until it runs off the end of
its program, or executes a BRETUORN that is not dinside a
subprogram, Any number of processors can be executing the sam=2
prograe at the same time. The main program itself is treated as
a PROGRAM being executed by a processor.

Processes copmrunicate and interrelate by means of
resources. Consumable resources are used for passing messages
back and forth. Reusable resources with one unit can be used to
give certain processes exclusive use of some critical section of
a program. For exaprple, suppose READER is a program which five
processors are executing. If it is desired that some part of
the prograem READER be executed by only one of the five
processors at a time, then a reusable resource, declared

REUSABLE BMutex WITH 1;

can be reguested on entry to the <critical section of the
program. Since there is only one unit of the resource, only one
process can be in the critical section at a particular tiame.

The <id list> after the program name is the list of forsal
parameters, which are analogous to the formal parameters for a
SUBPROGRAYM, so what was said there applies bhere too. They
correspond to ¢the actual parameters specified in the parameter
list of the PRCCESS statement firing up the process. There is
one very important difference, hovever. ¥ith subprogranms,
parameters are passed by reference whenever possible and by
value only if necessary. Although program parameters are still
passed by reference if the parapeter is an array, a resource, a
program, or a subprogram, they are passed by value if the
paraseter is number-valumed or string-valuad. Explicitly, the
difference is this: with subprograms, if it is possible to pass
a reference to a variable or an array element, the reference is
passed. In analogous situations with programs, the yvglue of the
variable or array element is passed ipstead. This differenc2
vas considered desirable because if Process 1 fires up Process 2
with a parameter 1list 4including a variable, Process 1 might
change the value of the variable before Process 2 could use it.

2¢.3.4.5. PROGRAHNS

14 TYPES AND DECLARATIONS

Programs also have a resource parameter list naming the
consumable resources of which that program may release (i.e.,
produce) units., These formal parametsrs correspond to the
actual parapeters in the PRODUCING part of thz PROCESS statement
firing up the process. The actual paramsters must be consumable
resources (or expressions resulting in references to consumable
resources). A process which is not declared a producer of a
consumable resource may pot release units of that resource.
Whenever one process fires up another process the former must be
a producer of the consumable resources included in the —resource
parameter list. As with the npormal parameters, the formal
resource parameters should not be redeclared within the body of
the program expression, since their occurrence in the formal
parameter list constitutes the declaration.

The PFOCESS statement firing up a process must provide the
nueber of parameters specified in the declaration of the program
for both parameter lists. Unlike subprograms, programs do not
return a value to the firing-up point. The result of firing up
a process is that the <expression> is evaluated by the new
processor. The value of the PROCESS statement in the parent
process is always zero.

Example:

PKOG3AM Inputter OF X PRODUCING Message IS
REPEAT
RELEASE (Message, X)
UNTIL = INPUT(X);

This program will release the consumable '"Message' with th=
value X. Then new data will be read into X and released. Tris
process will continue until there is no furthasr data to read.

Note: Further examples of progrars and processes ars presented
in Appendix VII of the manual.

2.4. EXPIESSIONS

= <primary>

| -~ <primary>

| <primary> <operator> <expression>

| IF <expression> THEN <expression>
ELSE <expression>

| REPEAT <block> UNTIL <expression>

{ RETURN <expression>

<expressior> ::

<primary> ::= <identifier>
{ <constant>
| (<block>)
| <decl.block>
l

<primary> ([<parameter list>])

2 U PYDRTCOCCSCTANS

EXPRESSIONS 15

<parameter list> ::= <expression>
| <parameter list> , <expression>

<operator> ::= +|=|/{¥|={:=<|>|<=|>=|~={&| |

2.4.1., Qperators

211 operators in TOPPS have equal precedence and expression
evaluation is from right to 1left, except where mwmodified by
parentheses. There are three classes of operators.

The first class contains the 1logical and arithmetic
operators: +, -, *, /, &, |, and -. The operands for these
op2rators must have numeric values. An attempt to use a string-
valued variable as an operand causes an execution-time error
pessage and terminates execution. Any overflow from these
operations is ignored; the value after overflow is the sape as
in XPL. The logical operators (€, |) and the wunary not (-)
treat tbheir operands as bit strings and perform the operations
on corresponding bits, For an expression occurring in the
phrase IF <expression> THEN ..., as in REPEAT <block> ONTIL
<expression>, only the least significant bit is used. Note
there .are ©po wubnary plus or ainus operations. Therefore -
<expression> must be represented by 0 - <expressiond. {(Negative

The second class of operators is the relational operators
(=, ==, (K, <=, >, >=) for which the operands must be both
nuseric valued or both string-valued. String comparison is done

as in XPL.
String1 < String2 means either

(i) LENGTH(String1) < LENGTH(String2)
or (ii) LENGTH(String1) = LENGTH(String2)
but there exists i such that
BYTE(String1,i) < BYTE(String2,i) where
BYTE(String1,3j) = BYTE(String2,3j) for j=0,e..,i-1.

Hence Stringl = String2 if and only if the two strings arec
identical (same 1length and each corresponding character the

sape) .

The third class of operators contains the sinJgle operator
s=, the assignment operator. The value on the right hand is
stored in the location specified on the 1left bhand side,
destroying the o0ld value. The operands may be either string-
valued or numeric-valued and do not have to have the same type
of wvalue. The value of an expression of the form A := B is the
value of B. Hence the expression (A := (B := 3) ¢ 2) has value

5, and 3 := 6 - 1 ¢+ 3 assigns to A the value 2.

2.4.1. OPERATORS

16 EXPRESSIONS

2.4.2. Conditionals

<expression> ::= IF <expression>! THEN <expression>2
ELSE <expression>3

First, {expression>! is evaluated. If the 1least
significant bit is 1, then <expression>2 is evaluat=d, and its
value becomes the value of the expression. If the least
significant bit is not 1, then <expression>3 is evaluated and
its value becomes the value of the expression. In general, the
evaluaticn will result in a reference if possiple; hence IF
expressions may occur in contexts reguiring references to
variables, subprograms, resources, etc.

Examples:

(1) 1IF 2
THEEN OUTPUT (10)
ELSE OUTPUT (20)

In this case, if A is an odd number (i.e., least significant bit
is one) then '10' is printed; otherwise, '20' is printed.

(2) (IF &
THEN B
ELSE C) =D
In this case, if A is odd then the value of the IF expression is

a reference to B, otherwise it is a reference to C. Then the
value of D is assigned to the variable returned.

2.4.3. loors

<expression> ::= REPEAT <block> UNTIL <expression>

Loop expressions are realized by the REPEAT construct. The
<block> is alvays executed at 1least once, 2nd is reexecut=2d
until the <expression> following UNTIL is true (i.e., has least

significant bit with value 1). The wvalue of th~2 loop expression
is the value resulting from the last execution of the block.

2.4.4. Subprograe Calls
<expression®> ::= <primary> | =~ <primary>

<primary> ::= <primary> ({<parameter list>])

A subprogram call causes execution to branch to the

2.4.4., SUBPROGRAM CALLS

EXPRESSIONS 7

subprogram code wvhile still remaining within the same process.
The ° expression attached to the subprograrm definition is
evaluated; the result is returped, and execution continues in
the calling procedure. Subprograms may be called recursively.

Parapeters are passed by reference if possible (i.e., if
the actual parameter is not a constant or an expression
containing operators)e. The call wmust provide the number of
parameters specified in the declaration for tbhe subprogram.
Each parameter is an expression which ®may also contain
subprogram calls. Subprogram parameters may be referemces not
only to variables, but also to arrays, subprograms, programs Or
resources.

Note that in calling a subprogram with 0 arguments, the
brackets must still be retained (i.e., <primary>()).

Array references are treated as special cases of subprogram
calls in which the parameters are interpreted as subscripts.

The resultant value of a subprogram is a reference where
possible. (It is not possible if the final expression im the
subprogram is a constant or an expression involving operators or
a locally declared identifier.) It may be a reference to any
type of identifier.

Exanpples:
Subprogram calls such as the following may be used:

(1) F(I):= EXP If F(I) returns as its value a reference to

. a variable or array element, then the value
of the expression, EXP, will be assigned to
that variable or array element.

(2) F(I) (A,B,C) If F(I) returns as its value a reference to
a subprogras, then ¢this expression will
cause that subprogram to be called with
parameters A, B, and C.

(3) PROCESS F(I) OF X,Y PRODUCING C1
If F(I) returns as its value a reference to
a prograk, then this statement will fire up
a process using that prograws.

(4) REQUEST(F()) If F() returns as its value a reference to a
resource, then this expression causes the
running process to reguest a unit of that

resource.

2.4.4. SUBPROGEAM CALLS

18 EXPRESSIONS

2.4.5. Returps

<expression> ::= RETURN <expression>

By means of RETURN <expression> a return may be made £rom
arbitrary points in a subprogram or in a program. This provides
an easy wvay of branching out of deeply nested constructs (e.g.,
nested blocks). The value returned is that of the <expression>
after the RETUEN.

19

CHAPTER THREE

IMNPLICITLY DEFINED SUBPROGEKAMS

Unless an explicit declaration is used to redefine then,
several identifiers have special meaning in TOPPS: INPUT, READ,
ouTPUT, LENGTH, BYTE, SUBSTRING, CATENATL, REQUEST, KELERSE,
NUMERIC, DELAY, TOGGLE, QUANTUNM. The effect is as though thLey
were declared in an outermost scope containing the entire
<{system>. The paranmeters may be any type of expression as 1lorLg
as the value of the expression is a value or a reference wkich
apides by tkLe rules specified below.

3.1. INPOT/OUTPUT

3.1. 1. H_PQI (g.;g,...’

INPUT provides a form of "stream-oriented" input. It may
have any number of parameters. These must be variables, array
references or arrays, or expressions resulting in refereuces to
such, Unless an array is used as an input parameter, successive
values in the input stream are assigned to successive
parameters. If an array is used as an input parameter then
values are read in from the input strear until a value is
assigned to eack array elemert. Array elepents are assigned
wvith the rightmost subscripts varying most rapidly.

The value returned by an expression of the fornm
INPUT(E1,E2,...,En) is 1 if there was input data for all the
E1,E2,...,En, and zero if there was no input data for En (or
insufficient data if En is an array). Only one attempt is made
to read past the end of data. Any further attempts result in
“termination of ex=cution.

When an attempt is made to input data into a variable or
array element, INPUT starts scanning the input lines, skipping
blapks, frorm tke particular colusn where it stopped scanning for
the previous input value, and proceeds scanning until it finds a
valid <integer> or <string> or until it encounters a character
other than 0,1,2,3,4,5,6,7,8,9, blank or *. 1In this last case a
warning is printed and execution continues. Note again that
negative integers cannot be input.

3.7.1. INPOT(E1,E2,...)

20 INPOT/OUTPUT

3.1.2. READ(Els...)

This function is similar to INPUT, except that it provides
a "record oriented" input. For each iten in the parameter list
(or each element of an array), an input line is read and the
entire line is assigned as a character string to the variable.

The value returmed is as for INPUT, i.e., it is 1 if there
vas sufficient data for all paramaters and 0 if there is no data
for the last element.

. 1a3e PUIPUTIEL Edunes)

OQUTPUT is similar to INPUT in that it may bave any nunber
of paramecters which w@ust be number or string valued. Array
output is analogous to array input.

The valus of OUTPUT(E1,E2,...,ER) as an expression is the
value of En and may be either string or number valued. If (i is
an array then the value of OUTPUT(E1,E2,...,En) is the last
value output. An attempt to output an undefined value causes
printing of a question wark. The maximum possible length of an
output line is 131 characters.

Bach time a call to OUTPUT is made printing starts at the
beginning of a pnev line and the values that are printed by that
particular call to OUTIPUT appear on the same 1l1line as far as
possible. If there is insufficient space at the end of a line
to print an entire string or number, then none of the value is
printed or that 1line, but rather the printer skips to the
beginning of the next line and starts printing the value there.
If the string has more than 131 characters, then the first 131
characters will be printed on the first line, and the remainder
will be printed on the next line. When values are output on the
sape line, a blank is automatically inserted between each value.
Thus, OUTPUT(ONL,'.',TW0) where ONE has value 1 and TWO has
value 2 wvill output the line 1 . 2. If blanks are not desired,
then it is necessary to first concat2nate the parameters so
"here will only be one output value:
OUTPUT (CATENATE(ONE,'.*,TH")). It is possible to print negative
values. For example, OUTPUT(-5) will cause -5 to be printed.

3.2. CHARACTER STRING BANIPULATION

There are four character functions in TOPPS: LENGTH, BYTE,
SUBSTRING and CATENATE. The first three are siwmilar to the
analogous functions in XPL or PL/I, and CATENATE(El1,...,ED) is
like PL/I E1|]e..l|En. If a pomeric value is used in a string

3.2. CHARACTER STRING MANIPULATION

CHARACTER STRING MANIPULATION 21

function, the expression is converted to a string. In the
folloving it is assumed that this conversion has occurred if

necessary.
3.2.17. LENGTH(ED)

This function must bave only one paraseter which may be
either string-valued or nusmber-valued. JIts value is a opumeric
value egual to the number of characters in the (converted)
string denoted by E1,

Exapples:

LENGTH('ABC') = 3
LENGTH(-2) = 2
LENGTE(2) = 1
LENGTH ('**'*) = 1

3.2.2. BIIE(E1, E2) or EYIE(E])

E1 may be number valued or string valued. E2 Bwmust be
number valued. If E2 is omitted, 0 is assumed.

The value of this function is the numeric ERBRCDIC
representation of the E2'th character (zero origin indexing) of
the string E1. AD attempt to use BYTE with a negative value for
E2 or with a value greater than the length of E1 generates an
error message and returns the zero'th byte. BYTE m®may not be
used on the left of an assigneent.

Exapples:
BYTE(*123',2) has the EBCDIC value of *3*' or F3 in hex.
BYTE("1231) has tbhe EBCDIC value of "' or F1 in hex,
BYTE('1',-1) causes a warning to be printed and has the

value of 0.

3.2.3. SJBSIRING(E1, E2, E3! cr SUBSIRING(E1l., E2)

E1 may be number or string valued. E2 and E3 must be
pumber wvalued. This function has as its value the substring of
the string E1, starting with the E2'th character (using zero
origin indexing) and continuing for E3 characters, so that the
length of the substring will be E3. SUBSTRING may be used with
orly two paraseters in which case the substring consists of the
characters from the E2*'th to the end of E1. An attempt to takz
a substring beyond thke end of the string results in an error
message, and returns the remainder of the string. A pegative

3.2.3. SUBSTRING(E1, E2, E3) OR SUBSTRING(E1, E2)

-’

22 CHARACTER STRING MANIPULATION

value for E2 or E3 causes zero to be used and an error message
to be printed. A length of zero results in a null string value
vwithout complaint.

Exapples:
SUBSTRING ("&ABCD',1,3) yields *BCD!
SUBSTRING (*ABCD',2) yields *'CD*

SUBSTRING (*ABCD',-1,-1) causes a warning to be printed and
yields the null string.

This function may have any number of arjuments greater than
two, each of which may ke either string valued or number valued.
The value of the function 1is the strinj resulting from the
concatenation of strings El,...,.En. 1f the result of the
concatenation is a string with length greater than 255, then a
varning is printed printed and the rigttmost characters are
deleted.

Example:

CATENATZ("2B', %", ,9C?) yields *AR'(C

3.3. RESOUFCZ HANCLING FUNCTIONS

3.3.1. BEDUEST(E])

This function must have exactly one parameter which must be
a reference to a resource.

A call to this function causes the following to occur: if
a unit of the resource is available then the process performing
the request obtains a wunit of that resource. 1If there is no
unit of rusource E1 available, then the process is placed in a
gueue awv=1ting uuits of that resource and remains blocked until
it obtains a unit.

The value of KEQUEST(E1) as an expression is the value of
the wunit of E1 optained. The value is numeric zero unless that
unit has been releas=d wvith some other value being placed in it.
The units of a reusable resource are all initially available.
Units of a consumable resource are not availabnle until thkey bave
been released by some process. If a process obtains a unit of a
reusable resource, then that process owns thkat unit until it
releases it. If a process still ovwns some units of a reusable

3.3.1. BEQUEST(E1)

RESOURCE HANDLING FUNCTIONS 23

resource when it finishes (in other words, if it has failed to
release a unit of some reusable resource it regquested), then
execution will terminate with an error message. If a process
obtains a unit of a consumable resource then the unit is
*consumed’. In other words, the unit disappears, except that
its value is transferred as the value of the expression

REQUEST(E1) .
3.3.2. RELEASE(E1, E2) of RELEASE(E1)

E1 must be a reference to a resource. E2 may be string
valued or number valued. If E2 is omitted, a value of 0 1is
assumed.

A call to this function causes a unit of resource E1 to be
released with value E2. The result of the expression is tke
value of E2. The value of RELEASE(E1) is zero.

If E1 is a reusable resource, then the releasing process
must own a unit of that resource (i.e., the process must have
requested and received a unit of the reusable resource in the
past). BReleasing a unit of a reusable resource returns that
unit to the appropriate queue of availapble units of that
resource with a value egqgual to that of E2. The process
releasing the wunit of the resource no longer owns that unit.
Execution is terminated if a process attempts to release a unit
of a reusable resource without owning one.

If E1 is a consumable resource, then the releasing process
must be a producer of that resource (i.e., th2 resource must be
contained within the resource parameter list for that process or
be declared within the PROGRAM which vas invoked as a process).
Releasing a unit of E1 in effect creates a wunit carrying the
value of E2 and places that unit in a queue of available units
of E1 unless a process is awvaiting a unit of E1. This unit will
be destroyed when some process obtains it.

For either type of resource, there is pothing to prevent a
process from obtaining a unit of a resourc2 which it previously
released.

3.3.2. RELEASE(E1, E2) OB RELEASE(T)

24 OTHER FUNCTIONS

3.4, OTHER FUNCTIONS

3.4.%. NUMERIC(E])

E1 may be number-valued or string-valued. This function
may only have ore argument. If the expression, E1, is number
valued, then the function returns 1. If it 4is string valued,
then it returns a value of 0.

Exam

e,
i
o

NUMERIC (' NJEBER"') retures 0
NUMERIC (899) returns 1

3.4.2. DELRY (E1)

E1 pust be rupber valued. This function is provided as a
simulation tool, for use in simulating processes that run at
v"different speeds". It should be used only for that purpose.
No attempt slLould be wmade to "synchronize processes" by means of
DELAY. That's what REQUEST and RELEASE are for.

To explain the DELAY function, it is first necessary to
explain that there are tvo clocks internal to TOPPS whiclk have
no relatiorship either to each other or to real time. These
clocks are called the "pachine cycle clock™ and the "simulation
clock™. The time statistics printed for each process after
execution are based on the machine cycle clock which is based on
one time upit per ideal machine instruction. The second clock
is the simulation clock which is entirely controlled by calls to
the subprogram DELAY. (Note that DELAY does not affect the
machine cycle <clock). Fack process can be considered to have
its own sisulation clock.

These clocks initially have a time setting of =zero. A
simulation clock is changed by a call DELAY(E1) which causes the
sierulation <lock c.: the process making the call to be set ahead
E1 simul ticn clock time units. As long as there is a process
vhose sinmulation <clock has an earlier setting thapn the delay=ed
process, then the delayed process will mot proceed. 1n general,
only the processes with the currently smallest simulation clock
time setting are executed. If all the processes with the
currently smallest time setting finish or become blocked, then
their simulation clocks are moved ahead to the time of the next
spallest time setting, and then all unblocked processes with
that time setting are executed. FPor exaxple, suppose there are
three processes P1, P2, and P3. Initially their sisulation
clocks all read zero. P1 calls DELAY(2). Its clock is reset to

3.4.2. DELAY(E1)

OTHER PUNCTIONS 25

2., P2 and P3 then proceed until both are blocked. Their clocks
are Teset to 2. P1 proceeds and suppose it releases units that
cause P2 and P3 to become unblocked. All three processes
continue execution. Suppose P1 calls DELAY(1) and P2 calls
DELAY(2). Then their simulation clocks are set to 3 and to &
respectively. If P3 should become blocked, then P1, the process
vith a clock time of 3, which is currently the lowest, proceeds.
And SO ON eeee

DELAY provides a way of controlling the relative speeds of
execution of processes. However, to be effective, delays should
be used in all processes. The effect would roughly be to slow
down processa2s in proportion to their relative increments. An
example of the use of DELAY is given in Appendix VII.

The simulation clock mechanism must be activated with the
*A' toggle (see Appendix IV).

The argument E1 may be either string-valued or number-
valued. The TOPPS interpreter has a number of control "toggles"
vhich can be turned on or off by the TOGGLE function. These
toggles affect the printing of debugging output, time slicing
algorithm, and the delay function. A description of the toggles
currently implemented is contained in Appendix IV. If the value
of E1 is numeric, the specified toggle is imnverted. If it is
character, the first byte of the string is us2d (i.e. BYTE(E1))
instead. ©Note each call to TOGGLE jpverts the setting.

The value returned by the expression TOGGLE(E1) is the new
setting of the specified control (either 0 or 1).

3.4.4. QUANTUM(E1)

E1 must have a npumeric value, This function provides
another way of simulating processes that 1run at different
speeds. In this case, the specified argument is wused to
directly =pecify the tiwme-slice gquan.um, i.e., the nuaber of
instructions that the process calling the function is allowed to
execute before the CPU is relingquished to another process.

Appendix IV describes the alternative tieme-slicing
techniques available. Note again, that tbis is a simulation
tool, pot a method of process synchronization.

3.4.4. QUANTUM(E1)

26 |

APPENDIX I
USING TOPPS UNDER MTS
The TCPPS compiler and interpreter are currently in the
files YU10:TOPPSCOY and YU10:TOPPSINT respectively.
To compile a TOPPS program:
$RUN Y410:TOPPSCOM [i/0 units] [PAF=51ZE=xxX])

vhere i/o units may be

SCARDS = source

SPEINT = listing

2 = Wauxiliary source" {(see Appandix II1I)
7 = pachine code for the interpreter;

defaults to =-LOAD

and SIZE=xxx, if specified, controls the free-string area
allowed the compiler. The default is 5P.

To interpret the object program:

$ROUN YLT10:TOPPSIRT [i/0 units] [PAP=SIZE=xxx]

where:
SCARDS = data read by the INPUT and READ functions
SPRINT = output from ODTPUT function
7 = “object program"™ produced by compiler;

defaults to =-LOAD

27

APPENDIX II
THE TOPPS GRAMMAR
This appendix contains the actual LALR(1) BNF grammar used

by the TOPPS conmpiler. Parse stack dumps appearing with
coempiler syntax error messages use this grammar.

1 <system> ::= <decl block>

2 <block> ::= <statement>

3 | <block> <semicolon> <statzment>

4 <semicolon> ::= ;

5 <statement> ::= <expression>

6 { PRCCESS <primary> <pars> <prod part>
7 | <empty>

8 <prod partd> ::= <empty>

9 | OF <parameter list>

10 <expression> ::= <primary>

| =~ <primary>
{ <primary> <operator> <expression>

13 | <if clause> <true part> <false part>
{ <repeat> <block> UNTIL <expression>
{ RETURN <expression>

16 <repeat> ::= REPEAT

17 <if clause> ::= IF <expression>

18 <true part> ::= THEN <{expression>

19 <false part> ::= ELSE <expression>

20 <primary> ::= <identifier>

21 { <constant>

22 | (<block>)

23 { <decl block>

24 | <primary> (<parlistd>)

25 <parlist> ::= <empty>
|

26 <parameter list>
27 <constant> ::= <{integer>

28 | - <integer>

29 | <string>

30 <parametsr list> ::= <expression>

II. THE TOPPS GRAEMAR

| <parameter list> , <expression>
<decl block> ::= <begin> <decl st list> <block> END
<begin> ::= BEGIN

<decl st list> ::= <eapty>
| <decl st list> <decl st>
<decl st> ::= VARIABLE <id list> ;
| ARBRAY <id list> BOUND <parameter list> ;
| <subfrogram name> <arq list>
IS <expression>
CONSUMABLE <id 1list> ;
REUSABLE <id 1list> W1TH <expressiond> ;
<program name> <arg list> <resource list>
<expression>

<id list> ::= <identifier>

| €id list> , <identifier>
<subprogram name> ::= SUBPBOGRAM <idertifier>

<arg list> ::= OF <id list>
| <empty>

47

us
49

50
51
52
53
54
55

57
58
59
60
51
62

<program name

<{resource list>

<operator> ::

>

P e e

—MJ VAV | AN &1 +

PROGRAMN <identifier>

| PRODUCING <id list> IS

29

APPENDIX III

COMFILER CONTROL STATEMENTS

The compiler recognizes a bnumber of control statements
which affect listing and other output information.

Control statements must occupy a separate input line, and
must begin with a $-sign in column 1.

Control statements currently recognized are:

$LIST

$FILE

$AUXLIST

$SYMBOL

$CODE

STITLE

$SPAGE
$SPACE

Controls listing of source file. Each occurrence of
the command inverts the status. 1Initially, listing is
on.

Irput is normally read froe the file attached to the
unit SCARDS. However, the file attached to unit 2 may
be used as an auxiliary input source. The SFILE
control statement is wused to flip between the two
files. (This is convenient to include predefined
program segments in wvith the source). A SFILE control
statement in the auxiliary input file will cause input
to be resumed from SCARDS; alternatively, thkis happens
automatically if an END-OF-FILE occurs on unit 2.

Controls listing of auxiliary input file.

Sets a toggle causing the symbol-table to be dumped at
the end of compilation.

Sets a toggle causing the "object code"™ to be listed
after compilation. Note there is no facility for
selectively listing object-code; either all or none is
listed.

Sets the title to be printed at the top of each
listing page- The remainder of the input line is used
as the nev title.

Causes an immediate page skip.

Causes three Lklank lines to be printed.

IIXI. COMPILER CONTROL STATEMENTS

30

APPENDIX IV

INTERPRETER OPTIONS

The interpreter provides a number of optiomns, most of which
are either for controlling processor scheduling, or producing
debugging output.

The builtin TOGGLE function (see section 3.4.3) is used to
turn on or off a number of switches controlling the options.
For bhistorical reasons, the switches used are referred to by
one-character "names".

IV.1. PROCESS SCHEDULING OPTIONS

A number of switches, and the builtin DELAY and QUANTUH
functions are used to affect the process scheduling performed by
the interpreter.

The initial, default method used is to schedule processes
in round-robin fashion, giving each a pseudo-random time-slice.
(The time-slice 1is actually tbe number of pseudo-machine
operations executed before scheduling the next process.)

The following toggles change the choice of time=-slice:

*I' (201) This toggle sets the time-slicing method to
instruction by instruction slicing for simulation of
“"completely interleaved" processes. This results in a
large amount of process scheduling for the interpreter
and should in general be avoided.

*J' (209) This toggle sets the time-slice to epaximum, so that
each process runs until it either blocks on a resource
quene, or finishes execution. This results in the
least amount of scheduling for the irterpreter amd is
bence the cheapest way. On the other hand, it results
in the ®least parallel" effect. Use of this toggle is
recomnended during early stages of progranm
development.

If both the 'I' toggle and 'J*' toggle are specified, then
the effect of *J"' is used.

An alternative way of controlling the time slice is with
the QUANTUN builtin function. This allows the user to specify
directly within a process vwhat time-slice it is to receive
(starting with the next time the process is scheduled). Using

IV.1. PBOCESS SCHEDULING OPTIONS

PROCESS SCHEDULING OPTIONS 31

the QUANTUM function it is possible to simulate processes which
have different speeds.

If the quantur has been set for a process by means of the
QUANTUE function then the specified time-slice is used for that
process, regardless of the settings of the *I' and *J' toggles.
Processes for wvhich a quantus has not been set will continue to
be scheduled according to the settings of the *I* and 'J°
toggles. By calling QUANTOM with an argument of 0 it is
possible for a process to revert to the default scheduling.

Note that use of the 'I' toggle is eguivalent to each
process calling QUANTOM with an argument of 1, and use of the
'J' toggle is equivalent ot each process setting its quantum to
32767.

The scheduling discipline can be modified from the usual
round-robin technique by the use of the DELAY function. This is
explained in sonme detail in section 3.4.1. Before using tbhis
function, it is npecessary to activate the facility in the
interpreter by means of the "A' toggle:

*A' (193) Activates the delay options. That is, TOGGLE ('A') is
used to turn on the simulation clocking. If this is
turned on and off in different places, the results are
unpredictable.

IV.2. TRACING OPTIONS

'S' (226) Turning this svitch either on or off causes an
iemmediate dunp of the segments of the BRun Stack
accessed by the executing process. The format of the
duap is described in Appendix V.

The toggles described below provide a tracing facility.
*T' and 'D' turn tracing on and off; the remaining ones select
what trace information is to be printed. Note tbat *'T' must be
turned on for any of the others to have effect. All toggles are

ipnitially false.
*T' (227) Activates tracing.

‘D' (228) Turns off tracing (i.e., this cancels out effect of
°TY).

'D*' (196) Dumps all segments of the stack that are accessible to
the executing process, after execution of each
instruction. The format of the resulting duerp is
described in Appendix V.

IV.2. TRACING OPTIONS

32

'y (231)
I (232)
'RY (217)
i (292)
120 (243)
*30 (244)
Iv.3.

"W (230)
P (215)

TRACING OPTIONS

Prior to each instruction, prints one line specifying
the instruction, address, and process.

Prints out process statistics after each instruction.

Traces returns froas subroutines by printing a dump at
each return.

Prints a 1line specifying information about resources
released and requested. This is mainly intended for
use in debugging the TOPPS interpreter.

Prints a trace of string usage. This is mainly
intended for use in debugging the TOPPS interpreter.

Prints trace of process scheduling. This is w®mainly
intended for use in debugging the TOPPS interpreter.

OTHER TOGGLES

I1f ¢turned on, the interpreter wvill continue execution
after a varning (non-fatal error). At most ten will
be permitted. This is initiallly on.

If on at the end of execution, the interpreter will
print process statistics after execution. It is
initially on.

33

APPENDIX V¥
INTERPRETATION OF THE STACK DUNP

The TOPPS dump of the run stack is printed either when a
job abends during execution wvith error code greater than O or
vhen the 'R' or 'D' toggles are on (remember 'T' must be on
also) or when the *S* switch is set. The dump presents those
segments of the cactus stack accessible to the currently active
process.

Stack segments are formed whenever a declaration block, a
program, or a subprogram is entered. The first segment is for
the currently active program block. The bottom three 1locatioans
of the segment form a base containing relevant information for
that segment (see BASE below). Above the base are the
descriptors for each element declared within that block, progran
or subprogram. By examining the lexic level and order number of
a variable from the symbol table dump, one can then find the
location of that variable im the stack dunp and its
corresponding value, lLocations above the descriptors are for
expression evaluation.

The run stack (RS) is four bytes wide. Beside each element
is printed the attribute from the attribute stack (ATS). The
meaning of the RS entries vary according to the ATS entries as

follows:

0 REFER The RS entry contains a reference (address) pointing
to another location in the RS.

1 UNDEF The variable declared is undefined. The RS entry is
peaningless.

2 ARRAY The RS entry contains an array descriptor:

Ll Ll RE Ll

{f N | BCUNDS { ADDR |

L A A F]
vhere:
N Number of dimensions of the array (4 bits);
BOUNDS the address in the RS of the bounds segment

(14 bits);

ADDR the address in the RS of the array storage
segment (14 bits).

Ve INTERPRETATION OF THE STACK DOUMP

34

3

v.

SPROG

NUMBR

STRNG

ARRBEF

PBASE

BASE

TLe RS entry contains a subprogram descriptor:

L fil. & L)
ISS| BASE { ENTRY |
| T | " | ']
where:
5SS The RS segment size required for the
subprogras, coded as 1log base 2 less 2 (2
bits);
BASE base of RS segment for 'block in which
subprogram is declared (14 bits);
ENTRY address in code of entry point (16 bits).

The RS entry contains a number.

The RS entry contains the address into the string area
of the string. The string is printed to the right of
the RS.

The RS entry contains the address in array storage of
an array element.

When a subprogram is called, this reference to the
descriptor of the subprogras that was called is placed
on the BES segment of the calling progranm.

This attribute applies to the bottom three 1locations
of a RS segment:

B L B

| RET_ADLCR | S_RS_PTR |

t 4 |

| DYN_PTR | STAT_PTR |

L 1 i i]

\] b 2 1 = R J

| SEG_TYPE| S_LL | CNT | SIz: |

i i | A - N |
vhere:
SEG_TYPZ Attribute code of segment (8 bits);
s 1L lexic level of this segment (8 bits);
CNT nusber of processes using the declarations

of this segment (8 bits);

SIZE log base 2 of size of segment (8 bits);

INTERPRETATION OF THE STACK DUMP

9 PROG

10 BLOCK

11 CONSD

12 REUS2

13 BLTIN

35

DYN_PTR address of base of dynanically enclosing
segment (16 bits);

STAT_PTR address of first segment belov this segaent
in the stack whose lexic level is one less
than that of this segment (16 bits);

RET_ADDR return address in CODE to which subprogram
returns if SEG_TYPE is SPROG or the process
index if SEG_TYPE is PROG (16 bits);

S_RS_PTkR temporary storage for run stack pointer for
this segment (16 bits).

The RS entry is a program descriptor with the sagme
format as for the SPROG.

Used in SEG_TYPE (i.e., for declaration blocks). This
attribute never occurs in the AaTS.

The RS entry contains anp index into the consumable
resource areae. The next available wunit, or *NO
AVAILABLE UNITS® if there are none, is printed.

TLe RS entry contains a pointer into the reusable
resource area. A Bmessage stating whether or not
resource units are available is printed.

The RS entry contains the number of the builtin
function.

V. INTERPRETATION OF TBE STACK DUNMP

36

(N
(2)
(3)
(4)
(5)
(6)

(7)
(%)
(9)

(10)

APPENDIX VI

IMPLEMENTATION RESTRICTIONS

The following are restrictions as of October 1975.

Code area

Run stack

Number of string area descriptors
Numpber of consumable resources
Number of reusable resources

Nuabar of consumable resource units
(for all consumable resources)

Number of reusable resource units

Number of symbol table entries

Mmaximum number of declarations per block
of variablss, arrays, subprograes, and

progranms

Nomber of processes

20K bytes
8192 words
500
32
32
512

32

400

32
32

37

APPENDIX VII

PROGRAM EXAMPLES

The following pages contain two sample TOPPS prograns.

The first example consists of three simple processes which
illustrate the essence of a spooling system. The first process
read input data and adds it to an input gqueue. The second
process receives dinput frorm this gqueue, performs a simple
copputation with it, and sends it to an output queue. The third
process receives data from the output queue and prints it. The
example also shows a compiler symbol table dump, and an
interpreter stack dumf.

The second example 3illustrates the use of the DELAY
function.

VII. PROGRAM EXAMPLES

TOPPS CONPILATION === YNIVERSTITY DF BRITISH COLUN §A === DATCs StPTE®RER 29, 1976, Tive: D38:59.61,

TDPPS/HTS VINHSION D' SEPTEMBER 27, 1974,
AT ‘-'““ ol 0. s

TOPPS COWPILATION ooc UNIVERSITY OFf BUITISH COLUMAIA === DAT(: SEPTENBER 29, 1974,

Ss.
$9,
60,
el
bde

951

L 13

- llHEGl
AN CRAMPLE DF A TkIVIAL ®SPOULENC SYSTLA®, @

:l

&) #° ALSD CONTAINS AN LRAMPLE OF A STALK DUMP AND & SYNPOL TAALE LISTING o/

ol

7] VARJADLE END_OF #ILE: /° VALUE PASSCD WnEN END OF INPUT ENCOUNTERED ®/

c: CONSU™ABLE CAMDSe LINESS

9 -

101 PROGUAM INSYOOLER PKCOUCINSG CARD_ImASES 1S

1l BLCIN

121 '?DIETTEI?'E::;T)I- THL VALUF T0 BC INPUT -I .
11 UF FILE SWilCH of . °1f“"
141 IU‘EII Wast

151 EOF 18 «INPUTICARDI: # e

16l IF =~ tOF Eaki TRAE rofF T

17 THEN RCLLASE(CARD_TNACES, CARD) s
u: | » ELSE RELLASE(CARU_IRAGES, CNC ur FILE) z Thse UZ
19(| UNTIL EOF

201 “ENUL: s 3 ,,,e.‘”p
211 . o«

221 PIDGKAM USEX PRODUCING LINE_IMAGES 1S

231 LN =

261 ¥ =TVacaBLE CaRL:

251 ! —_—_——

26| | SUBPKDURAM REVERSF OF Irasl 1S

271 /o RECURSIVE PROCEUURE TJ REVERSE THE STRING IMAGE ®/
o LY IF LENGTHIIMACE) & ©

291 THEN 00

30| GLSE CATENATE(PEVIASEISURSTRINGIIMAGE, 100,

3 SUBSTRING(ISAGEy Do 3035 v g e

b H| : ’ ‘ &

31 REPEAT ©ong ’

3| CARD 1o REWGUESTICARDS)S

381 RELLASE(LING _IMASIS, CauD);

3 BF =~ HUPERICICERU)

37| THEN SLLEASEILINC_I®AGLS, RTVFRSCIZARD))

sei tLSE ©

391 UNTIL §F SUS RICICARDY

0! THE'Y CAnU ® END_OF _FILE

&t ELSL 0:

62| TOSLLEL*S) /0 SHUWL o#NAT STACR DUMP LOLKS LIKL ®/

431 AEND;

Y]]

451 PROLRAM DUTSPDOLER 1S

&b siuly

(%4 I VARIABLE LUNES

e8| | REPEAT

691 | OUTPUTILINE 2o WEWUESTILENES))

$01 . UNTIL I¢ NUM efCILDN)

11 THEY LInt o ENC_OF_FILE

21 ! EL3. O

831 oEvD:

S| .

CND_UF_FILE to 216748)047;:7¢ LARGIST NUMAER 3 USED AS END-Or=FILE FLAG o/

-
871 PAUCESS INSPODLEW PHUNUCING CAxDS:
S8l PRUCESS USLA PHUUULING LINLSS

$9] PAUCESS DUTSPDOLER

SO1END

-

TInL: B:8:5%.61,

Srd prege

443
(13]
459
463
LT

PAGE)

oot ety

INSPOOLER
INSPOOLER
INSPDOLER
INSPDOLER
INSPDOLER
INSPOOLEN
INSPOULER
INSPDOLER
INSPDOLER
INSPODLER

USER
USER
USER
USER
REVERSE
REVERSE
REVERSE
REVERSE
REVERSE
USER
USER
USER
USER
USER
usgn
USER
USEH
USER
USER
ustr
USER

OUTSPOOLER
OUTSPDDLER
QUTSPOOL ER
OUTSPDOLER
OUTSPOILER
OUTSPOOLER
OUTSPOOLER
OUTSPODLER

PAGE 2

— e — —

SYMBOL TABLE ODuwy

WANE

[1.13

CaRD
CARD_TMAGES
EMAGE
REVERSE

CARD
LINE_TMAGES

LINE
OUTSPOOLER

USER
INSPOOLER
LINLCS
CARDS
END_OF _FILE
READ
NUNLRI(
DELAY
RELEASE
REOULST
QUANTUM
TDGOLE
CATENATE
SUKSTRING
[3418
LENGT M
ouTPUT
INPUT

27 $SYMBOLS.

LL.ON

0.2
0.l
0.0

Tver ofcL
VARIABLE 13
vakjaill 12
RESOUKLF ®are |0
PAKAMT TEN 26
SURPRMGR AN 26
VANTABLE 26
RESOUPCF PANN 22
VARIANLE &7
PROGRAN 45
PROGKANM .22
PRUGR AN 10
CONSUMAHLE e
CONSURABLE]
VAR BARLE Y
SUBPRULRAM []
SUBFRI SHAM [}
SULPRIL LAY 0
SUSPKLILRAY (]
SUB PRI SR AN o
SUDBP UG A (]
SUNRPRIILK AM []
SUAPRI TmAN (]
SUBPRULLAM 4]
SUBP R SK AN]
SURPRISHAM [
SUBPKUGRAY (]
SUDBPRUIGRAM (]

END OF CINPILATION SEPTEMBER 29, 197s, TimE: 8:9310.01.

WD ERALRS wWERL DETECTED.

InPUL LINES READ o
TORENS USIL L]
PRODJLTIINS VSEDL @
ENSTRS, LmITTLD s
FPREE STAING BRER ™
COMPACTIF [ATIDYS ®
$12- UF JBJFCT CUVEe
UNUSED COLL aufa -
NUPBER DF SYPFBULS o

TOTAL VIWE En COMPILER

60
201
323
168
20224
[}

(2]
1927
2!

0:0:0.13.

REFERFNCE LIMES

15+16,.19

1517

17,180

28,30,31

30,37
34435,36,37439,40
35,37

49,50,51

9

18,60,%1,55
36¢39,%0

17,10,35,37
Ja a9

42
30
30,31

2n
49
15

PAGE)

PAGE o

39

O
. U APRETLR oo YNIVESSITY OF BulTISH COLUNKIR o=e FCPPS/NTS VIRZION OF SEPIFPaTR 2t, 19Te.

10N GINS S PTcuPER 29, IvTa, TIME: 819:12,%,

RSE THIG pLUASE

% DI NDSTIL LUMP R:QUESTED AT LOCAT 10 (304) 1N waucess »
L INSTRUCTION €XECUTED wAS CALL
line 42
86 1STRNG] 2 == S Vorueglyr pojud
05 IMEFLN| 9 =)

|
=) | wfusq & & [YR
Qestwsy 84 1SPROGI 21 8p1 Q0] o ok i

B3 NUM U Z16748)06s

bond 92 IRASE : ‘BT—l :7:
8110aSE se ® .
_B0lease IsLockl 31 11 o Begin blok

Lot . Tonupiy SOIREFLR) 37 -=> |
Seinase | 3 Sv)
STIRaSE | 321 ¢l 1 '
561bASE 1PRDS | 21 11 31 Program User

61 INUMRR] 0f velun of W sbuberd | .
Outigashr 00 (PrOC- | 1| 324 3774 ™ e precam
U S91PeNG | 1) 321 171
bsnoiles 36ipany | 1l 321 acol
Lings 3T1C0SJI 2 ==> | NeXT AVAILAPL: UNIT §S (wusB4| 21476036417
Cords 36 120%Sul I ==> 1 NO UNITS avalLauLE

Enddf-FU2SIUUNAR] 2147483047)
Dalpase | 0| 37| o
331EaSE | o of Mdm proenam

|
3218ASE IBLOCKI 1) 2| &l v
R

|
Rewd 1S10LYIv| 121 J.\
Bumivy delsLTiv] 1y T o
Bl 1316LT 1] 10) Xi-]
Rekobe 12lIBLTINI 9l \"
QeauntY Jiinitinl ol -
wonbume 4CIPLYEN] T 3“\ '
*ny\e viaLriyg ol Y2
g-h»gh ILISITY 5| o
AL T T A D] ol
Oyte aInLTIN] 3|
Length SIPLY NG ¢l
Output IS R T 1l
Input b ITS FLT ol
zieese | 7 18]

1IbASE | 655351 633351 Owdivemest bBiglk
OLLaLE LB30G 1 0L 21 5]
als xS
AUN STaZk
ESAELP SIMT ESREVER

QiaT403047

EXLCUTIOV GWCS WITH WD PADCESSES DEAULOCKED.

PROZESS 1 CLOCLK TimE 30
PROCESS STARTED At 0

PROCESS STATE DUNE

PROCESSDA TIME 3¢ 4 ‘hu‘,; NTA‘»
BLOCRIL TimL [}

TOTAL ViwL 38

PROCESS 2 CLOCK TImE (3]

PROCLSS STARTED AT 2° =
PRDCESS ST1aT(JUNE A
PROCESLOR TIME 56 W\Ti a
BLOCKEY T ImME [

TOTAL TImE 56

PROLLSS 3 LLDCKk VimE 835

PROCESY $STANTED AT 33

PRDLESS STaTL DUNE

PKDCESSDA TiImE 902

SLOCREU T IrL

0
TOTAL Timg sc2 Ucb,/

PROCESS & CLNZK VimE 922
PROCESS STAKIFD AT A6
PROCESS STLTE DUNE

PROCESSNY TImE L) 5
BLO(KE L VIMF 22 f‘J
T01aL 1ing LY

EXCCUTINNG ENDS SEPTIMAC® 20, J8T4, TlMe: R:912.54,
L & TN I HIT I N Y (RN S e T

MAXIMUM J8t (F wuy STACK: 908 wORDS

ANDUKT OF QUM \TAZK UNUSED: TT§e woRDS

Warifex NOL OF SielNoS USEL: 2D

FaEe STRING AREA: 2032«

SO¥PALT | PICATICNS 0

TOPPS LOWNPILATION ==c UNIVEASIIY OF SKITISH LOLUYAIA === DATES SLPTEoogR 29, J9l4, TIP3 £29253.04.

SOPPS/®TS VERSIUN OF SEPTEMRER 27, 197e.

le | SIBECIN
de] ’= /e PRUGHAM TO SHUM THE USE JF TME DELAY FUNCTION. o/
Be
% el
6 L)
T (1]
8. 71 PA0CHAN LLOP OF INCREPENT, NAME IS
9. (] BELIN
i10. el VAP JARLE COUNT S
3. 50} COUNT 88 J;
12e 111! REPEAT
1. 321 DELAY({ INCREMENTIS
T [$]1) OUTHPUTICOUNT, NAMED
15, 16 UNTIL 40 € COUNT 8= COUNT o INCREMENT
6. 151 [LTV
% 16l
18. 171 TOGGLE(A®); fe ACTIVATES ULLAY PECHANISR e/
19. | 18! PADCESS LUIP DF 1, ®FAST ===>°3
20,] 191 PRUCESS LODP DF 2o °*SLOw C===*
21, I 201END

END OF COMPILATION SEPTEMBER 29, 1974, VI®ED B2b253.20.

N0 ERRORS &ERE DEVLCTED.

20
6C

INPUT LINES READ =
TOKENS USED s
PUDDULTIDRS USED = 104
INSTRS . EMITTED = 45
FREE STRING ARFA =& 2UZZ6&
COMPACTIFICLIILYS © O
$I2E OF DBJECT CUDEs 209
UNUSEL CDLL AREA o 1979
WUPBER DF SYMROLS & |7

TOTAL VIWME IN COMPILEN 0:0:0.0%.

TOPPS INTERPRETER e== UNIVERSITY OF 6nlTISH COLUYHIA === TCPIPS/MTS VIRSIDY O StPTLPALN 28, QW0T6. -

EXECUT IOV BECINS SEPTEMBEN 29, 1974,

FASY ===)
FAST =ee)
SLO¥ (o=
FASTY ea=)
FAST =ee)
SLDb (o=
FASY ===)
FAST ===)>
S$L0w (===
FAST =)
FAST ==a)d>
SLON Cwoo
9 FAST e==)>
0 FAST o==)
9 SLOW Ke=-

L B L E X X1 ¥

ERECUTION ENDS WI1TM ND PRUCESSES DEALLOCRED.

PROCESS 1 CLOCKR TVImWE 1 3
PROCESS $T2enTED AV (]
PRDCESS STATE JONE
PROCESSOR T IME 3l
BLUCKED VImE ()
fotaL TiIwg 3
PROCESS 2 CunCr TVIME 194
PROCESS STARTLD AT 24
PROCESS STATE DUNE
PRDLESSNR TIMmE 170
BLOCKED TINE 0
YOTAL TINE 170
PADCESS 3 CLOCK TVIML 119
PROCESY SYARTED AT 29
PROCESS STalL BUNE
PROCESSIR MlIwm 0
BLOCKED Tl™F]
TOTAL Vimg L]¢]

EXLCJT IDNS EADS SEPTLANER 2% 1976,
ERECUTIUN TI%E 0:0:Nsude

RAX(I®yu= YSE UF Ruy STalw: 8R wORDS
AMDUNT OF ®u' STAZY UMUSED: 610¢ WwORDS
SAYINUM RO, OF STRINLY WSES: 9

PREE STRING AxEA: ®0224
croPACTIFICaTIONC: (]

TInE: B830:5%. 14,

UFLAY TImL SIM LATION STATILTICS
PRULESL, } STATED A7

FIISACDH aTl

TOTAL LIFL VIm

TOTAL LILEY Tiswc

TTAL HWLUCRED Tiwf

AVEXAGL UTELI2ATIAN

LELAY TIof SImyLaTIUN ST8T(STICS
eRICESS 2 STALTED AT

FINISHTL Al

TOVAL LIFZ TiM-

FOTAL DELAY T]al

TOTAL WLCCRED TI1v

AVERAGE UYILIZATION

DELAY FIME SI®JLATICN STATISVICS
PROCESS) STaw1iD AV

FINISHED AT ’

TFoval LIFy TQmg

TUTAL DELAY Tiwew

fuTaL BLOLAED TINC

aVOMACE LML IZATION

Tint: B:hidvnall.

70 THE TWD PHDCESSES wiLL avPEam VO ERLCUTE THE LCOP AT OIFFEMENT SPLIDS
BECAUSE THE ULELAY BUNCTIUN €5 CALLED ®ITH DIGFERENT ARGU%ENTS.

1no-

LooP
L00°P
Loor
Loor
LooP
Loor
LoorP
Loor

PacE |

PaceE 2

41

e

