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One of the most effective ways of numerically solving a system of 

two-point boundary value problems is to use a relatively simple, low-order 

finite difference scheme on a given mesh and then improve the accuracy by 

extrapolation or deferred correction. If this scheme is also compact 

(that is if it connects as few points as possible consistent with the order 

of the differential equation) there are certain advantages regarding stability 

and convergence: see Kreiss [3]. Examples of such schemes for systems of 

first-order equations are the popular midpoint rule of Keller [1], and certain 

collocation schemes using simple piecewise polynomials. 

Because such schemes involve solving linear systems of the same 

form time and time again, it is important to have a fast stable method for 

solving such systems. Of course one can use the usual Gaussian elimination 

with partial pivoting, but it is of interest to do better. In [6] we compared 

band and block forms of elimination for such schemes,and other block forms 

have been discussed by Keller [2], Schechter [5], and White [7]. However 
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the faster methods do limited or no pivotinS, so one cannot guarantee stability 
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of the elimination. Here we present a method for such systems which is 

stable, and faster than the usual Gaussian elimination with pivoting 

(although not as fast as the possibly unstable block elimination methods). 

2. The Method 

The matri~ involved has the form 

A= 

1:0o 
□□ 
□□ l r p-q 

' p 

\ 
(2.1) 

Here all blocks are p x p (p = order of differential equation system) except 

the first (q x p) and last ((p - q) x p); q denotes the number of boundary 

conditions at the left hand end (we assume separated boundary conditions). 

In solving a linear system with a matrix of the form (2.1), we 

want to ensure stability of the matrix decomposition. With the usual 

Gaussian elimination, this is accomplished by row pivoting and row 

elimination, which introduces extraneous nonzero elements in (2.1). In his 

thesis ((4]) Lam noted that if one pivoted on the columns for the first 

q steps of the decomposition, then on rows for the next p - q steps, and 

alternately thereafter, no extraneous zeros are introduced. But he then 

proceeded to perform the usual row elimination, and so the multipliers 

used during the elimination are not bounded a priori, so that the 

decomposition may still be unstable (although this is less likely than with 

no pivoting). 

However one can in fact guarantee boundedness of the multipliers 

by eliminating alternately by rows and columns as well. That is, we pivot 



by columns for the first q steps of the decomposition and use these large 

pivots to eliminate by columns for these first q steps, so all multipliers 

used are bounded by 1.0. For the next p - q steps, we pivot by rows and 

eliminate by rows, again ensuring that all multipliers are bounded by 1.0. 

This produces a matrix of the form (for p = 6, q = 3) 
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XX 

XX 

X XX 

X X X 

X X X 

X XX 

0 0 0 

0 0 0 

XX 

0 e X 

0 0 

0 0 0 

0 0 0, 

0 0 0 

X X X X XX 

X XX X XX 

XX XX XX 

. 

st Now at the (p + 1) step, we revert to the column pivoting and column 

elimination for q rows, then row pivoting and row elimination for p - q rows, 

and so on through the matrix. 

In matrix form this decomposition can be written 

A• PLBUQ (2.2) 

where P gives the row permutations, Lis lower triangular and contains the 

column elimiµation multipliers, U is upper triangular and contains the column 

elimination muitipliers, and 

of the decomposition, B, has 

L 0 

X R X X 

B • X 0 L 0 

X R 

X 0 

Q gives the column permutations. The end result 

the following form: 

\ 
X X 

L 0 
(2. 3) 

~ 
X 0 L 0 

X R 
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where L denotes a lower triangular q x q square block, Ran upper triangular 

square block of order p - q , X an arbitrary (nonzero) block, and O a 

zero block. 

Of course for this scheme to be useful, we must be able to solve 

By= z easily. This can be done by a forward and backward block recurrence 

a: fo~lows: partition y_T s (y_(l), y_( 2
), ••• ) the same as B. Then solve 

successively for t.(l), y( 3), t.(s), •.• by using the odd numbered blocks of 

B; this submatrix of Bis lower triangular, so the process proceeds as 

forward recurrence. Now solve for the even numbered blocks of y_ starting at 

the bottom using the even numbered blocks of B; this submatrix is upper 

triangular, so this process is a backwards recurrence. 

Thus using the notation (2. 2), the solution of ~-~ proceeds as 

follows: 
Px(l)=b 

L: (2) -=x ( 1) 

Bx(3) .. ~(2 ) 

Ux(4)=:(3) 

~(5)=~(4) 

(2.4) 

Of course the first two steps can be done during the decomposition 

(2.2); then we perform the other steps. No additional storage is required as 

the elements of Ucan be stored in the corresponding (zeroed) positions in 

A. Also, since the multipliers are bounded (jlij I~ l,juijl ~ 1) the 

decomposition is just as stable as the usual Gaussian elimination with row 

pivoting. Noreover, since the only additional complication is the solving 

of triangular systems (which is very accurate) the whole process (2.4) is just 

as .accurate as the usual Gaussian elimination. 

3. Computation Time 

For each p x p block, we have the following operation counts: 

a) decomposition: [ 2p(p-1) + (2p-l)(p-2) + 

[ 2p(p-1) + (2p-l)(p-2) + 

+ (p+q+l)q] for r.ows 

+ (2p-q+l)(p-q)] for columns 

b) L, U: [(p-1) + (p-2) + •• + q] + [(p-1) + (p-2) + .• + (p-q) ] 
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c) B.!_ • z.: [(q+l) + (q+2) + ••• + 2q] + [2p + (2p-1) + ••• + (p+q+l)]. 

So the total count, per block,is 

¾ (p3-p) + 2pq(p-q) + ! (3p+l). (3.1) 

This count should be compared with those given in [6] for block 

elimination and scaler elimination (with and without pivoting). In 

particular, for pm2, q•l (the case of a single second-order equation) the 

counts are: 16 for the above method, 23 for scalar elimination with pivoting, 

15 for scalar elimination without pivoting, and 16 for block elimination. 

The other useful comparison is for p large; we divide by p3 and 

keep only the high-order terms. Then as a function of r=q/p (o<r~) the 

various counts are 

row and column elimination 5/6 + 2r-2r2 

scalar elimination (pivoting) 5/6 + 3r/2 

scalar elimination (no pivoting) 5/6 + r/2 - r 2/2 

block elimination 1/3 + 2r - r2 

Of course the last two methods (which do not guarantee stability) 

are faster for any r, but it is interesting to compare the stable methods. 

Our alternate row and column elimination is better for r > 1/4, and is 

16% faster for r•l/2; for r<l/4 it is slower, but the worst case occurs 

when r=l/8 and here it is only 3% slower. And for smaller p, the comparison 

is more biased towards the new method: above, for pm2, q•l, the new 

method is 30% faster. Thus it seems reasonable to use the alternate row 

and column elimination in all cases. 
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