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I. Introduction 

Consider the (2m)-th order linear two-point boundary value problem 

Lu(x) = ! (-1) 1 n1(ai(x)D1u) • f(x), a<x<b (1.1) 
1•0 

(1.2) 

Three well-known methods which give global continuous approximate solutions 

to this problem are the methods of collocation, Galerkin, and least 

squares. In this paper we shall relate and compare these methods from 

the point of view of practical machine computation. 

First, in Section II, we show how these methods are related in general, 

using arbitrary basis functions to determine the finite-dimensional 

subspace in which the approximate solutions are constructed. Then in 

Section III, we relate the available error estimates for the common 

choice of piecewise polynomial bases, Finally in Section IV, we compare 

the amount of work required to compute these solutions by foming and 

solving the relevant matrix equations. 

II. Description of1he Methods 

All the methods we consider find approximate solutions of the form 
N 
t c 1~i(x), 
1 

i.e. the solutions are elements of a finite-dimensional subspace 

w,hose basis elements all satisfy the boundary conditions (1.2). The 

methods only differ in the way the coefficients· {c1} are chosen. 

1. collocation 

Here the approximate solution w (N) (x) • i "j~ j (x) is 

determined by satisfying (1.1) 

L w<N) (x ) 
1 

exactly at N points, i.e. 

(2 .1) 
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The resulting linear system to solve for the coefficients {wj} is 

(2.2) 

2. Galerkin 
N 

The Galerkin solution u(N)(x) • t uj~j(x) is determined by 
1 

forcing the residual (Lu(N)_f) to be orthogonal to each basis function: 

b b 
I Lu(N)(x)~i(x)dx • I f(x)~1(x)dx 
a a 

, 1•1, ••• ,N. (2 .3) 

This gives the linear system 

Au•_g , a1j-f \L~j) ~i dx, s1 • Ib f~ i dx 
a a 

(2 .4) 

Since integration by parts gives 

(2.5) 

where 

m i i 
M(u,v) • t •1<x) Du D v, 

i•O 
the Galerkin solution is equivalent to the so-called Ritz solution 

derived from the variational principle for (1,1),(1,2), Thia also shows 

;hat the matrix A is symmetric, and in fact it i• positive definite when 

the operator in (1,1) is elliptic, 

Computationally of course, these integrals must be replaced by 

quadrature sums in all but the moat trivial problems. Thia can be done 

in a variety of ways: we aa1ume in what followa only that the integrals 

on both aidaa of (2.3) are evaluated by the eama quadrature rule, namely 

The resulting diacratiaed problam dep nda on whethar w• choose the 

Galerkin or Ritz form of the int aral in (2.S), so the t,'0 formulations 

are no longer equivalent. We pref r to di tinguieh them by the terms 

discrete Galerkin and discrete~• 
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(a) discrete Ritz 

Using the Ritz form of the integrals leads to Au• g, where 

Q 

aij ~ E wk M($j(~), $i(~)) 
k=l 
Q (2.6) 

gi -k~l wk f(~) $i(~) 

This is the fonn normally used since it retains the matrix symmetry, 

and we refer to Strang and Fix [7] for estimates of the number of 

quadrature points Q necessary to ensure no loss of accuracy from the 

discretization (for piecewise polynomial bases). 

(b) discrete Galerkin 

This gives A~ • g where 
,. Q 
aij a E Wk l~j(~)$i(,C) 

k=l 

Q 
gi "' E wk ~i (~) f (~) • 

k=l 

If we define the matrix B by 

bik = ~i(~), i=l, ••• ,N,k=l, ••• ,Q, 

then (2.7) can be expressed as 

BDC u = BD!,, 

(2. 7) 

(2. 8) 

where C and fare defined in (2.2) and D = diag (wi). This gives easily 

Theorem 2.1: If N•Q, the discrete Galerkin method (2.7) is equivalent 

to .the collocation method (2.2) using the same points, provided 

(i) none of the quadrature weights wk are zero 

(ii) the matrix Bis nonsingular . 

Note: (ii) is guaranteed if the functions {~i(x)} are unisolvent. 

Thus collocation can be viewed as a discrete Galerkin method using 

the same set of points, and of course is much less work since C is 



easier to evaluate than A•BDC. Normally however, to obtain the same 

order of accuracy as the undiscretized Galerkin method (2.3), we need 

Q>N. But for some special choices of piecewise polynomial bases and 

quadrature points, Q• N is sufficient; we shall discuss this in Section 

III. 

3. least squares 

This solution v(N) (x) .. ~ vj ~j (x) is found by minimizing 
1 

fb(Lv(N)_£)
2
dx with respect to the coefficients {vj}~. Again the 

a 

solution is characterized by an orthogonality condition: 

Jbf (t~1) dx, i al, •.. ,N. 
a 

(2. 9) 

Discretizing with the same quadrature rule on both sides, we obtain 

T " T c ·nc v - c Df. (2.10) 

From this we easily obtain 

5 

Theorem 2.2: If N•Q, the discrete least squares method (2.10) is equivalent 

to the collocation method (2.2) using the same points, provided 

(i) the quadrature weights {wK} are nonzero 

(ii) the collocation matrix C is nonsingular • 

Again we normally use Q>N here, but even in this case we can consider 

discrete least squares as an extension of collocation: if the weights 

{wk} are all positive, (2.10) is precisely the set of normal equations 

for the discrete linear least squares problem 

min 
V 

2 
11 D½(cv-f) 11 

- - 2 
(2 .11) 

Thus we merely "collocate" at more points (Q) than functions (N) giving 
. . ½ . 

an overdetermined set of linear equations; scale these by D and solve 

by the familiar linear least squares method. We will return: to this 

idea later. 
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III Convergence ~esults for Piecewise Polynomial Bases 

Now we specialize the choice of basic functions {~i(x)} to piecewise 

polynomials: given a mesh a=x
0

<x
1
< ••• <x?fb and h = maxlxi+l-xil , 

we demand that each basis function be a polynomial of degree 2n-l in 

each subinterval, with k derivatives matching at the knots {xi} so the 

functions are globally C(k)_ This is (N-l)(k+l) continuity conditions, 

and counting the 2m boundary conditions (1.2), there are 

[(2n-l-k)N+k+l-2m] free parameters left, and thus the same number of 

basis functions. Computationally, it is important that the basis functions 

used have support over as small an interval as possible; we refer to de 

Boor{ll] for a discussion of the B-spline basis for this space of functions, 

which has minimal support. Particular choices of interest are 

(1) splines (Sp~n)): degree 2n-1, globally c<2n-2); support 2n 

subintervals 

(ii) Hermites (H(n)): degree 2n-l, globally C(n); support 2 
0 

subintervals with either B-spline or natural Hermite bases. 

Our purpose here is to give a uniform presentation of the known 

convergence results; for more details the reader is referred to other 

papers. Before giving the convergence results, we mention some standard 

preliminary results. For u(x),v(x) satisfying (1.2), define 

fb m i i 
a(u,v) = E ai(x)D u(x) D v(x) dx 

a i•O ' 

Integrating by parts and using (1.2), we have 

a(u,v) ~ I bu(x) Lv(x) dx = fb (Lu(x))v(x) dx 
a a 

We also define the norm 
2 

II VII = 
D Ib ! 

u (Di v(x)) 2 dx. 
a i•O 

It is well-known that if (1.1) is sufficiently smooth and elliptic 

(e.~. ai(x) > 0 (O~i <m- 1) and am(x)~o>O) we have 

(3.1) 



and 

C llvll
2 

< 
D 

a(v,v) ~ c--1 lvl 12 

D 

la(u,v)I < c--llull llvll . 
- D D 

We also need the bilinear fom 

b(u,v) • fbtu(:x) Lv(:x) dx 
a 

and the nom b 

2 l 2m i I !vi I = I: (D v(x)) 2 dx • 
E 111110 

Again if (1.1) is sufficiently smooth and elliptic, 

and 

lb(u,v)I < K .. !lull !!vii 
E E 

1. collocation 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3. 6) 

Convergence for the collocation method is given by the following 
theorem of de Boor and Swartz ~]. 

Theorem 3.1: 

Suppose (1.1),(1.2) has a unique solution u(x) and the coefficients 

of (1.1) are sufficiently smooth. Then using a B-epline basis of degree 

2n-1 and continuity c<2m-l), and collocating at the 2n-2m Gaussian points 

in each subinterval, produces a unique solution w(N)(x) for sufficiently 

small h, which satisfies 

(3.7) 

and 

7 
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.J The rather unusual continuity class required here (e.g. only C(l) for a 

second-order problem) is necessary because this gives exactly 2n-2m 

collocation points in each subinterval (see the formula in the first 

paragraph of this section). From our point of view, (3.7) is natural 

from Theorem 2.1: collocation at the 2n-2m Gaussian points is equivalent 

to a discrete Galerkin method using Gaussian quadrature (error bound 

O(h4n-4m))) and the corresponding Galerkin method, at least for a smooth 
2n basis, has error bound O(h ), as we shall see later. With this in 

mind, we give our own proof of part of Theorem 3.1. 

Proof of (3.7): 

Let~ be the solution 
u-w(N) 

of U=v= ----.----,---
llu-w(N) 11 

2 

as in Nitsche [4]. 

The Green's function for Lis sufficiently smooth that I l~(j)I I ~K,0_::J~_2m. 
co 

Then (N) Jb (N) (N) Jb ,._ 
llu-w 11

2 
= v (u-w )dx • a(~,u-w ) ""' a ~(f-f) dx 

" (N) a ,. 
where f =Lw satisfies f(tj) "" f(tj) at the 2n-2m Gaussian points in 

2n-2m 
each subinterval [xi,xi+l]. If p1 (x) = n (x-tj) , then 

j--1 

J
xi+l 

p 1 (x) r(x) dx • 0 (3.9) 
xi 

for all polynomials r(~) of degree less than 2n-2m. On [xi,xi+l], 

f-f=p i (x) qi (x) and I IP i (x) 11 = 0 (h2n-:) • Thus 
co N-l i+l 

llu-w(N)II = J ~-: (f-f)dx = E J p 1 (x) [<f, (x)q
1
(x)]dx. 

2 i =O 

Now expanding [tq l in a Taylor series 
1 

terms and using (3.9), 
N-1 

llu-w(N) 11 = E 
2 

i=O xi 

about xi with kamin{2m,2n-2m} 

k1 QED. 
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Thia collocation at Gaussian points has proven very successful in 

practice especially for na2m, in which case we are working with the 

Hemite space u!n) which has a very convenient natural basis (see [9] for 

some numerical compa%iaons with finite difference methods). However for 

n; 2m the computations require a B-spline basis; it might be more 

attractive computationally to use the Hermite space H(r) with continuity 
(r-1) (2m-1) 0 

C rather than C , with r chosen so the order of accuracy is the 

same. For this space, the number of collocation points required is 

IrN+r-2m], so we can user in each subinterval except for r-2m intervals 

where we use one less point if r<2m or one more if r>2m. 

If we use Gaussian points in each subinterval, and assume that the 

collocation solution exists, the above proof of (3.7) shows 
I lu-w(N)I I •O(hmin(r+2m,2r)) 

2 

for the Hermite space H(r). (One fewer point in some intervals only 
0 

affects the local error by h, leaving the same globalerror.) Notice 

that we get the _ same convergence as with the B-spline basis of degree 

2n-l, continuity 2m-l, if we take r•2n-2m. That is, we. can collocate at 

the same 2n-2m Gaussian points, but with a natural Hermite basis rather 

than B-splines, and obtain just as much accuracy. In Section IV, we 

show that the amount of computation involved is the same. 

2. Galerkin 

The convergence rates for the (continuous) Galerkin method are 

well-known (see for example Varga {10]): 

Theorem 3.2 : Suppose (1.1), (1.2) has a unique solution u(x), the 

coefficients of (1.1) are sufficiently smooth, and (3.2), (3.3) hold. 

Then using piecewise polynomials of degree 2n-l and continuity at least 

c<n-l)[a,b], there exists a unique Galerkin solution u(N)(x) for h 

sufficiently small, and it satisfies I lu-u(N)I I aQ(h2n). 
2 

For the discrete Ritz method, the number of quadrature points 

required to maintain this accu~acy is still not completely understood. 

Diacretizations of only the right-hand side of (2.3) have been considered 

by Herbold, et al [3] and Schultz [5]. More recently, Strang and Fix 

[7] have considered the 1110re realistic problem of discretizing both sides 
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as in (2.6). They show that using (2n-1) Gaussian points in each 

subinterval maintains the O(h2n) accuracy. 

3. Least Squares 

Convergence of the (continuous) least squares method for very 

general problems has been analyzed by Bramble and Schatz [l]. For the 

sake of completeness, we give a convergence proof for our particular 

problem (i.e. (2.9) applied to (1.1)). 

Theorem 3.3: Suppose (1.1),(1.2) has· a unique solution u(x), the 

coefficients of (1.1) are sufficiently smooth, and (3.5), (3.6) hold. 

Then using piecewise polynomials of degree 2n-1 and continuity at least 

c(n-l)[a,b], the least squares solution v(N)(x) exists for h sufficiently 

small, and satisfies I lu-v(N)I I aQ(h2n), 
2 

Proof: (The proof models Schultz [6] for the Galerkin solution.) 

From (2.9) and (3.4), the exact solution u(x) satisfies 

b(u,v) • Jb (Lu)(Lv) dx • Jbf(Lv) dx 
a a 

for all v, and the least squares solution v(N)(x) satisfies 

b(v(N) ,v) • Jb f(Lv) dx 
a 

for all v € SN. So for any v, w € SN, 

b(w-v(N) ,v) = b(w-u,v). 

Take v-w-v(N) and use (3,5): 

llw-v(N) I I 2 
2- !. lb(w-/N), w-v(N)) I 2. K,.11 u-wl I ] lv(N) -wll , 

E K K E E 

Now let w be the interpolate of u in SN; it is well-known that 

I lu(j)_w(j) 11 =O(h2n-j ) I lu(2n) 11 , l_sj2_2m • 
2 2 

Thus 
"' 

I lu-v(N) 11 2-l lu-wl I +I lw-v(N) 11 ~(Hf) I lu-wl I aQ(h
2n-2m) • 

E E E E 



To get the higher order convergence in the l'...:2, norm, we again use the 

device of Nitsche: let <1>, ~ be defined by (1.2) and 

Lji "W , l\/J "" 
u-v(N) 

l lu-v(N) 11 
2 

From continuity of the Green's function for L, we know 114> (j) 112~ K , 

0~~2m. Now 

I lu-v(N) 11
2

• t (L(L4>)) (u-v(N)) dx • b(u-v(N) ,4>) 

a 

for all wtSN • Let w be the interpolate of cf, in SN; since we know 

I l4>(j)I l
2

<K for 0~~2m, we have 

I lu-v(N) 11
2 
~ Kl lu-v(N) 11 I lct,-wl I ~ K h2n-2m h2ml 1<1> <2m) 11

2 
E E QED. 

If we discretize the least squares problem as in (2.10), we need 

to ensure that this convergence rate is maintained. As we mentioned 

at the end of Section II, this amounts to collocating at more points 

than there are functions and solving the resulting discrete linear least 

squares problem (2.11) by familiar methods. For example, we could 

use piecewise polynomials of degree 2n-l and continuity C(k), k>2m-1, 

and "collocate" at the 2n-2m Gaussian points in each subinterval. We con-
j hi k O(hmin(2n,4n-4m)) ecture t a eeps _ _ accuracy. The advantages are that 

we obtain higher global continuity of the approximate solution, and we 

can use other basis functions than B-splines (e.g. the natural Hermite 

basis for H(n))without going to higher degree as was necessary with 
0 (2n-2) collocation. One can even use splines Cie. cont11.\uityC ) ; as we 

shall see in Section IV, this is more economical and can even be less 

work than collocation. Experiments of P. Sammon have shown O(h4 ) 

convergence with cubic splines, using the two Gaussian points in each 

subinterval as data points, and solving the resulting overdetermined 

linear system by familiar linear least squares methods. 

11 
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IV Comparison of Methods 

Here we compare the 

same global accuracy on 

bases. All the methods 

computational work involved for methods of the 

problem (1.1), (1.2), using piecewise polynomial 
2n compared have global error O(h ); normally the 

polynomials have degree 2n-1, and we assume a fixed maah a•x0<x1< ••• <xN•b. 

1. collocation 

2n 
As we saw in Section III, we can get O(h ) global error by 

collocating with the B-splines of de Boor-Swartz of degree 2n-1, or by 

using the Hermite space H!r), r-2n-2m. In what follows, we assume 

n>2m so r>n. 

(a) B-splines of deBoor-Swartz 

These functionshlve degree 2n-l, continuity c<2m-l), and we collocate 

at the r•2n-2m Gaussian points in each subinterval. With the boundary 

conditions, this gives a total of rN+2m equations. There are r basis 

functions associated with each interior knot and n at each endpoint, 

giving the same number of unknown coefficients to solve for. 

Two components to the work are involved in any of these methods: 

torming the matrix elements and solving the resulting linear system. 

For collocation, each matrix element involves an evaluation of (1.1); 

we denote this by~. Although the evaluation time depends to some 
, 

extent on the basic function used (since we need ~j(xi), ~j(xi), etc.), 

this work does not depend on N (i.e. on h) since the evaluations are 

always at the Gaussian points, and these coefficients can be stored 

beforehand, no matter what his. Thus we can assume Ey_, is only a 

function of m, the order of the differential equation. Also, we do not 

consider the work involved in evaluating the approximate solution for 

given values of x after it has been computed; this also depends on the 

basis used. 

These B-eplines have suppo~t over something less than two subintervals 

(their continuity is less than the Hermite basis H(n)for n>2m) but to 
0 

simplify the matrix analysis, we assume it is in fact two subintervals. 

Then the matrix has the form 



(4 .1) 

We solve (4.1) by block-tridiagonal factorization; i.e. we write it in 

the form 

BO co 

Ai Bl cl 

\"" (4. 2) 

CN-1 

~ ~ 

with B
0 

men, A1 rxn, C
0 

rucr, BN men, ¾ nxr, ~-l rxn, and the other 

blocks rxr. Since r/2 • n-m, this cuts each Fi, Gi 

block in half horizontally, so the top half of Ci and bottom half of 

Ai are zero. Thus we can use the anaysis of [8, pg 867] to show the 

solution time is <i~r3+ 2r2 )NM, where M denotes the average time for a 
multiplication/division. This together with the setup time for the 

matrix elements gives a total time ~stimate of 

(13 3 2 ) __ ') 
12 r N+2r NM+ 2:r- NEL. (4 .3) 

b) collocation with H(r) 
0 

These are piecewise polynomials of degree 2r-1, continuity c<r-l), 
2n · and we need rm2n-2m to give O(h ) convergence. We use the natural 

Hermite basis, having r basis functions associated with each interior 

13 



14 

knot and r at each endpoint, _giving r(N+l) functions in all and the 

same number of coefficients to determine. We again collocate at the r 

Gaussian points in each interval; this and the boundary conditions 

make (rN+2m) equations. Thus we need r-2ma2(n-2m) extra equations 

when n>2m; we get these by collocating at (n-2m) extra points in the 
2n first and last interval. This maintains O(h ) accuracy and makes 

the matrix analysis easier than using one more point in each of several 

intervals, as we did fo~ the convergence results in Section III. 

(However if m<n<2m, this messier approach would be necessary as there 

would be fewer points in some intervals.) 

Since these basis functions have support over exactly two subintervals, 

the matrix has the fom 

Again we put this in the form (4.2), this time with n0 rxr. Again 

exactly half of the Ai, Ci matrices are zero, so the solution time is 

the same as for the B-splines of deBoor-Swartz. The setup time is also 

the same, so we again get (4.3) as our work estimate. The only difference 

in computation time will be in evaluation of the approximate solution 

as we alluded to earlier. This will probably be less for the Hermite 

basis, as the B-splines are somewhat cumberso1ne to evaluate. 



2. discrete Ritz 

For the discrete Ritz method (see (2.6)) the two Qbvious choices 
2n for bases giving O(h ) accuracy are the piecewise Hermite polynomials 

of degree 2n-l (H6n)) and splines of degree 2n-l <sJ~>). 

(a) H(n): 
0 

Since these are c<n-l) at the knots, there are n basis functions 

associated with each of ~he (N-1) interior knots and n at each endpoint. 
~) ~ -Thus we find u (x)•I ui ~i(x) by solving Au• b, 

i • l 
~ 

aij • E wkM(~j(tk)•~i(~k)) 
k•l 
qN 

bi• =k:l wk~i(~k)f(~k) 

(4.4) 

15 

The homogeneous boundary conditions (1.2) imply ui•O for l~i_sn and 

nN+l~i~nN+m and we include these as the first and last m equations of the 

linear system to simplify the matrix analysis. 

We asswne the quadrature rule uses q points in each subinterval; 

as we mentioned earlier, the value of q necessary to maintain O(h2n) 

accuracy is not completely understood, but for example one could use 

q•2n-l Gaussian points in each subinterval (see Strang and Fix [7]). 

We believe q•2n-m is in fact sufficient for the general problem (1.1). 

Using fewer points seems not to work: in fact solving the problem 

y"•f(x) using a 2-point Gauss rule for cubic Hennite polynomials 

(n•2,m•l) withequally spaced knots leads to a singular matrix A in (2.6). 

These natural Hermite basis functions have support over two 

subintervals and the quadrature awns are only oyer the intersection of the 

supports of the functions used. Thus ~in+j(x) has support (xi-l'xi+l) 

for l<j<n and A has the block tridiagonal form 
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B C 
0 0 

(4.5) 

with each block men. 

Now consider the setup time for (4.5). It is symmetric, so we 

need only consider the upper triangle. For an element of Bi, both 

functions in (4.4) have support (xi-l' xi+l) so the quadrature sum 

is over 2q points; for Ci the sum is only over the q points in (xi,xi+l). 

This makes a total of (2n2+n)Nq evaluations of M( ~j, ~i) (denoted ~) 

and subsequent multiplications to form A from (4.4). For the right 

hand side b we have an additional 4qnN multiplications (and qnN evaluations 

of ~i ,f which we ignore). 

Solution time for a matrix like (4.5) using a block-Cholesky 

factorization is essentially ~ 3N multiplications, giving a total for 

discrete Ritz using Hermite funct:!.,:ms of 

[(2n2+5n)qN4 n 3N] M + (2n2+n) qN~ 

(ii) Sp~n): 

(4.6) 

For regular splines of degree 2n-1, continuity c<2n-2), there is 

just one B-spline basis function associated with each interior knot and n 

at each endpoint. Each has support over 2n intervals so for then 

additional functions at x-a we use B-splines c~ntred at x =a,x 1, ••• ,x +l 
o - -n 

(defined by reflection through a), and similarly for x=b. Them 

boundary conditions at each endpoint involve linear combinations of all 

2n B-splines which are nonzero there. We take care of these implicitly 

by using as our basis the 2n-m appropriate linear combinations of these 
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2n B-1plines which automatically satisfy the boundary conditions. 

Thus in general ~i has support (xi-+m-2n, :xi+m) and the computation of 

aij from (4.4) involves the intersection of the supports of ~i and ~j which 

is (xj-+m-2n, xi-+m) for j~i • So aij+o for jj-il<2n, or A has half-bandwidth 

2n- 1.Assuming q quadratur e points per subinterval, this means the 1th row of 
2n 

A takes q(f k) • qn(2n+l) evaluations of M(~j'~i) and subsequent 

multiplications. Each b
1 

requires 4nq multiplications, and solving 

Au•b by band Cholesky takes 2n2N multiplications, giving a total for discrete 

Ritz using splines of 

(4. 7) 

Notice that (4.7) and (4.6) are almost identical, except that the 

solution time with the spline matrix is leas. 

3. least squares 

In Section II, we saw that the discrete least squares method generalizes 

the collocation procedure when more collocation points than functions are 

desired. In particular, this provides a viable alternative to the Galerkin 

method when a smooth spline basis is used. We consider only this smooth 

spline basis (i.e. degree 2n-l, continuity c<2n-2)) because, as we saw with 

the Galerkin method~ it is the most economical. 
II II 

Assuming q quadratu~e points (or collocation points) in each subinterval, 

the matrix C of (2.10) looks like 

q 12~~~ . 

2n 

q I I 

C = \ (4. 8) 

2n 
lq . 

• 

\q 
2n-m 
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where there are N horizontal blocks of q rows each. Thus formation of 
1 

D~ takes (2nqN)E1 + (2nqN)M. Now to solve the discrete linear least 
~ r L 

squares problem, we fonn the nonnal matrix (D2c) (D~C). This has precisely 

the same fonn as the spline Galerkin matrix A; namely, banded with half­

bandwidth 2n. Formation of a general row of the normal matrix takes 

q(2n)+q(2n-1)+ ••• +q(l) multiplications. For the upper half of the whole 
2n 

matrix, this amounts to Nq(r. k)~Nqn(2n+l), plus 2nQN for the right hand side. 
l 

Finally, solving by band Cholesky takes 2n2N multiplications, giving a total 

for least squares of 

[(2n2+Sn)qN+2n2N]M+(2nqN)EL , (4.9) 

We can draw the following conclusions about the relative efficiencies 

of these methods: comparing (4.7) and (4.9) we see that discrete least 

squares is more efficient than discrete Ritz, assuming (as we shall) 

The number of quadrature points for discrete Ritz is at most q=2n-1 

and is probably q=2n-m. On the other hand, for discrete least squares we 

believe q•2n-2m is sufficient, as conjectured in Section III. However even 

if w~ take the same q for both methods, least squares with splines is 

always more efficient than discrete Ritz with splines, because of fewer 

function evaluations. 

The comparison with collocation is a bit more difficult; from (4.3) we 

■ee that collocation (with either Hcir) or the B-splines of de Boor-Swartz) 

is cheaper than discrete Ritz because of fewer function evaluations. However 

the relative merits of collocation and least squares depend on the value of 

n and m (see the table below where we assume q=2n-m for discrete Ritz, 

q=2n-2m for discrete least squares). 

m=l,n=2 m=l,n=3 n large, m small 

collocation (164f M+SEL)N (10l~32~)N (~3M+ 8n2E )N . 3 L 

discrete Ritz (62M + 30~)N (183M + lOSEM)N 

l 
(4n 3M + 4n3~)N 

discrete (44M + 8~)N (150M + 24E1)N (4n 3M + 4n2EL)N 
least 
squares 

-·---



Thus for small values of n, collocation is cheaper; however for large 

n least squares takes about half the time of collocation, and both are 

an order of magnitude better than discrete Ritz (because of fewer function 

evaluations). 

19 
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