ON THE EFFICIENCY OF
CLIQUE CETECTION IN GRAPHS
by
ANTHONY RUNTER DIXON

B.Sc., University of British Columbia, 1968
M.SCe, University cf British Cclumbia, 1970

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE RECUTIREMENTS FOR THE LDEGREE OF
DOCTOR OF PHILOSOPHY

in the Department
of
COMPUTER SCIENCE

We accept this thesis as conforming to the
required standard

S 5 9 9 9 59 99 S 969 a8 " Ee S S W eSS e S e s e wsaen
9 % % 8 4 99 9 8 S S NS 48 S0 8T S S SSe E eSS e e " Eee e

IR E N REEEEEEEEBE S EREEREEEE SRR EEEREENESERERER]

THE UNIVERSITY OF BRITISH COLUMBIA

May, 1973

",

—— s i i .

ABSTRACT

This thesis examines the devices employed by various
algorithms to search for maximal complete subgraphs in graphs.
Also known as cliques,in Chapter 1 these subgraphs are seen to
play an important role in graph theory, information retrieval,

Socicmetry, logic design, and computational complexity.

The enumeration of cliques using the Harary-Ross, Bonner,
Peay, and Bron-Kerkosch algcrithms is discussed in Chapter 2.
The Reduced Redundancy algorithm is introduced, and the
performance of the five procedures 1is assessed using an
alternative approach toc empirical testing. Each of the
algorithms is shown to generate a "derivation tree" for a
given graph whose size can be used as a measure of its

efficiency.

In Chapter 3, the possibility of exploiting vertex
similarity is examined with a view to reducing the size of the
derivation tree. As a consequence, algcrithms are proposed for
finding non-similar cliques. The concept of "complete subgragh
equivalence" of vertices is introduced to develop a means for
expressing the cliques of a graph as the Cartesian product of

vertex subsets.

An algorithm for detecting the existence of a clique of
order k in a certain class cf k-partite graphs in polynomial
time is proposed in Chapter 4. This <class consists of all
graphs reducible by the algorithm to k-partite graphs having

at most two vertices per block cf degree greater than 0. This

algorithm is shown to provide an efficient heuristic which can
be wused 1in a procedure fcr determining whether a well-formed

formula is a tautclogy.

The thesis is concluded with an empirical analysis cf the
techniques employed by the enumeration algcrithms of Chapter
2. In addition, the efficiency of the Clique Detecticn
algorithm is compared with that c¢f the Reduced Fedundancy

algcrithm,

v i . e ————— S ——

CHAPTER 1 : INTROLUCTION

1.1 DEFINITICNS AND NCTATION

1.2 INTRODUCTORY REMARKS

1«3 BISTORICAL SURVEY

CHAPTER 2 : ENUMERATION CF CLIQUES

2.1 INTROLCUCTION

2.2 MATHEMATICAL ANALYSIS OF ENUMERATICN ALGCRITHMS

2.3 ANALYSIS CF THE HARARY-ROSS ALGORITHM
2.3.1 NOTATION
2.3.2 THE ALGORITHM
2.3.3 NUMBER OF VERTEX SETS EXAMINFD
2.3.4 STORAGE REQUIREMENTS

2.4 BONNER'S ALGORITHM
2.4.1 NOTATION
2.4.2 THEE ALGORITHM
2.4.3 NUMBER OF VERTEX SETS GENERATEL
2.4.4 STORAGE REQUIREMENTES

2.5 ANALYSIS CF PEAY'S ALGORITHM
251 NOTATION
2.5.2 THE ALGORITHM
2.5.3 NUMBER OF VERTEX SETS GENERATEL
2.5.4 STORAGE REQUIREMENTS

2.6 A NEW ENUMERATION ALGORITHM
2.6.1 CESCRIPTION OF THE ALGORITHM
2.6.2 NCTATICN

2.6.3 TEE REDUCED REDUNDANCY ALGCRITHM

16

22
23
24
35
38
41
42
42
U6
50
51

53
57
64
€6
70
7C
71

2.7

CHAPTER 3

3.1

3.2

CHAPTER U4

4.6

CHAPTIER 5

5.1
5e 2

5.3

2.6.4 NUMBER OF VERTEX SETS GENERATED
2.6.5 ANALYSIS OF AN ITERATION

2.6.6 STCRAGE RECUIREMENTS
THE BRON-KERBOSCH ALGORITHM

2.7.1 NCTATICN

2.7.2 TEE ALGORITHM

2.7.3 NUMBER OF VERTEX SETS GENFRATED
2.7.4 ANALYSIS OF ONE ITERATION

2.7.5 STORAGE REQUIREMENTS

: CLICUE DETECTICN USING VERTEX SIMILARITY
INTRODUCTION

PCINT AND LINE SYMMETRIC GRAPHS
DETERMINATION CF NON-SIMILAR CLIQUES
ALGORITHM FOR FINDING NON-SIMIIAR CLICUES
DISCUSSICN OF THE ALGORITHM

ANCTHER APPLICATICN OF ORBITAL PARTITIONING
ANOTBER APPROACH TO DESCRIBING THE CLICUES
: EFFICIENT DETECTION OF CLIQUES
INTRODUCTICN

CLIQUE CETECTION AND SATISIFIABILITY
CLIQUE DETECTION ALGORITHHM

TIMING CCNSIDERATICNS
STORAGE CONSIDERATIONS
INPLICATIONS OF THE PROCEDURE

: EMPIRICAL OBSERVATICNS ANL SUMMARY
INTROCUCTION
THE TEST DATA

DISCUSSICN OF THE RESULTS

T2
75
16
78
79
79
84
€5
88

g9
91
98
102
105
108

s B 0

141
142

145

S.4 SUMMARY
BIBL IOGRAPHY
APPENLCIX A
APPENDIX B

APPENCIX C

149
151
156
157

1€9

TABLE 4.1
TABLE 5.1
TABLE 5.2

TABLE 5.5

LIST OF IABLES
RESULTS OF THE ALGORITHM FCR FIG. 4.1
CHARACTERISTICS OF THE TEST GRAPHS
CCMPARISCN OF ALGORITHMS

COMPARISON OF CETECTION AND ENUMERATICN

137
143
144

148

FIG. 2.1 £Ki(3,3,:3) 33
FIG. 2.2 HARARY-ROSS ALGORITHM: DERIVATION TREE 34
FIG. 2.3 SUBTREE OF DERIVATION TREE 37
FIG. 2.4 A PATH CF THE DERIVATION TREE 40
FIG. 2.5 BONNER'S ALGORITHM: DERIVATION TREE 49
FIG. 2.6 SUBTREE OF THE DERIVATION TREE 59
FIG. 2.7 PEAY'S ALGORITHM: LCERIVATION TREF 62
FIG. 2.8 CLERIVATICN TREE FOR K (3,3) 63
FIG. 2.9 MINIMAL COVER COUNTEREXAMPLE 69
FIG. 2.10 MAXIMAL CCVER COUNT FREXAMPLE 69

FIG, 2.11 RECUCEL REDUNDANCY ALGORITHM: CERIVATION TREE 74

FIG. 3.1 POINT SYMMETRIC GRAPH 93
FIG. 3.2 TINDUCED SUBGRAPH OF FIG. 3.1 93
FIG. 3.3 POINT-SYMMETRIC GRAPH NOT LINE-SYMMETRIC 94
FIG. 3.4 GRAPH WITE ALL CLIQUES NON-SIMLLAR 107
FIG. 3.5 A PATH OF DERIVATION OF NON-SIMILAR CLIQUES 120
FIG. 3.6 LERIVATICN TREE FOR K(3,3,3,3) 124
FIG. 3.7 TCFRIVATION TREE FOR FIG. 3.6 125

FIG. 4.1 GRAPH CONTAINING SUBGRAPH Kt15) 136

ACKNOWLEDGEMENT

I wish to thank my supervisor, Professor A. Mowshowitz, for his
assistance both academically and financially in the development and
presentation of this thesis, and also Professor E. Lawler for bringing
to my attention the importance of the problem. Finally, I wish to
thank my wife, Patty, for her assistance in the preparation of this
manuscript.

e e o e e o e s s e s e

1.1 DEEINITICNS ANLC NOTATICK

The purpose of this thesis will ke to examine rprocedures
which search fer nmaximal ccmplete sukgrarhs of a graph. In
particular the manner in which algorithms enumerate these
subgraphs will be explored in order to discover why such
algorithms have an exponential ccmputaticn time. The protlem
of detecting the existence of a corplete subgraph of a
particular crder will also be explored and an alqcrithe will
be proposed whick uses a different wmrethod from that of
enumeraticn., This technique is instrumental in imprcving the
efficiency of the prccedure of clique detection, and fer a
Farticuvlar class of qraphs the algcrithm can be shown to have

a pclynomial computation time.

First we shall rfprcvide a fairly ccwmplete 1list cf
definitions pertinent tc the prcblem at hand. Unfortunately,
there is no universally accepted terminology in graph thecry
and for this reason the authcr has chosen his definitions to
be compatible where possible with the widely known text cf
Barary [43)]. The definiticrs will alsc serve to introduce the
notaticn to be used in the body of this text for the concepts

defirned.

DEFINITION 1,1: A graph G consists of a finite set V(G) cf

vertices together with a prescrited sutset E(G) cf unordered

pairs of elements from V (G) called the edges of G. If (u,v) is

an edge of G then the wvertices v and v are <caid to &bte
ad jacent,

is the numker cf vertices in G adjacent tc v.

__________ 3: A labelling of a graph G with |V(G)] = n

vertices is an assiqgnment of n distinquishing lakels, one tc

each of the vertices in V(G).

DEFINITTCN 1.4: A k-partite graph gjgl‘§2J==343k1 is a grarh
whcse vertices can te partiticned intc k klccks vl, Vz,...,vk
such that fcr any two vertices u and v in the same tlcck (u,v)
is not an edge cf G (m

s ,...,mk). Given such a partition mi

172
denctes the numter of vertices in tlock vi.

DEEINIT

1

CN 1,5: A complete k-partite graph K{ml,mz,...,mk) is

a k-partite graph such that for any two distinct tlocks %_' Vj
and any vertex u in vi, and any vertex v in vj' (v,v) is an
edge of K(ml,mz,...,mk).

DEFINITION 1.6: The chromatic number, X(G), of a gragrh G is

h i i l - a e
the minimum number of blocks Vl, Vz, '“X(G

partition of V(G) such that fcr any twc vertices wu,v in the

) pcssikle in any

same block (u,v) is not an edge of G.

DEFINITION 1.,7: The point independence nunkter ,/%JG), is the

largest number cf mutually non-adjacent vertices in a gragb.
CEFINITION 1.8: The complement , G, of a gragh G is a graph
such that Vv(G =V(G) and (u,v) is an edge of G if and cnly
if (vu,v) is not an edge of G and u#v.

CEFINITION 1.9: Let the vertices cf G ke lakelled 1 thrcugh n

where |V (G)|=n. The adjacency matrix , A(G), of the grarh G is

a (0,1) matrixz such that a_ =1 if and only if (i,J) is an edge
1J

3

3

DEFINITION 1.10: A unicliqual vertex v of a gragh G is one

which belongs to exactly one <clique of the graph (see
definition 1.14).

DEFINITION 1.11: A subgraph H of a graph G is a graph with

V(H) = V(G) and E(H) = E(G) such that if (u,v) is an edge of H,
then (u,v) is an edge of G.

CEFINITICN 1.12 Fcr any set cf vertices Wsv(G), the induced
subgraph G is the maximal subgraph of G with vertex set
V(G.,)=W. That is, for any u,v in V(Gw) (u,v) is an edge cf GH
if and only if (u,v) is an edge of G.

DEFINITION 1.13: A complete sukgraph of order k of a gragh G

" s s e e =T

is a sutgraph defined cr k vertices of V(G) for which any two
vertices in the subgraph are adjacent. A triangle cf G is a
complete sutgraph cf order 3.

CEFINITION 1.14: A clique C cf crder k cf a graph G 1is a

ccomplete subgraph of G fcr which there exists no vertex in
V(G)-V(C) adjacent to all vertices in V{C). Cliques are
therefore maximal ccmplete subgrarphs.

CEFINITION 1,15: An autcmcrrhism cf a grarh G is a permutation

e e e S e e e e e e

of the vertex set V(G) which preserves adjacencies.
DEFINITION 1.16: The <collection of all autcomcrphisms cf a
G

forms a group called the automorphism group ,I'(G), cf

there exists an o in [(G) such xu=v.

DEFINITION 1.18: A graph G is point-symmetric if fcr any tuc

vertices u,v in V(G) there exists an e ir [(G) such thatecu=v.

DEFINITION 1,13: A graph G is line-sypmetric if for any two
edges (ul,jl},(uz.vz) in E(G) there eyists anm o« in ['(G) such
that either ®u_=u_ and vy, =v. or olu_=v_ and v, =u_.

1 @ r 2 L 2 1
CEFINITION 1.20: An algcrithm which cperates cn a gragh is
considered efficient if the computation time and storage
requirements can be expressed as functions of n ktcunded atcve
by a polynomial in n, where n is the numrker cf vertices in the
rath

E
1

[=1

E

frrt

ITION 1.21: The Hadamard prcduct , AXB, cf two matrices A

=

and B is the matrix C where c_, . ™ B o
ij ij ij

I
I*})

1.2 INTROLUCTORY REMARKS

The focal point c¢f this thesis 1is the detection of
cliques in grarhs. The importance of this topic frcm koth a
graph theoretic and an agplicaticns standpcint will manifest

itself in the historical survey of the next section.

There are several variants or special cases of this
subject which can te ccnsidered. We will ccnfine ourselves to
a study of the following four problems:

1) The enumeraticn cf cliques cf a graph;

2.) Cetection cf the largest clique of a grarh;

3.) Determination of the non-similar <cliques cf a
graph;

4,) Determination of cliques of a specific order.

The object in each case will te to study the srecial
characteristics c¢f the fprcblem, and then tc exploit these
features to develop useful procedures for achieving the gcal.
In addition, an effort will te made to determine kounds on the
efficiency of several such procedures and to seek insight into
intrinsic fproperties of the methods used which might aid in
estimating the best that c¢ne <can expect from [frocedures

designed to solve these problems.

1.3 BISTORICAL SURVEY

The study c¢f methods for detecting maximal complete
subgraphs originated principally with the search fcr an
efficient and olbjective rerresentaticr cf the structure of
social groufps. Such groups can be modeled with a sccicgram, a
graph which <characterizes the responses of individuvals in a
sociometric test which requires that each participant specify
scme subset of the group to which he wishes to telong (lMcreno
[62]). Pioneers in a mathematical treatment of this ©prctlen
were Forsyth and Katz [33) whc prcpcsed representation of
sccicqgrams as matrices to which the elementary orerations of
rcw and column permutations could be applied tc achieve schne
more desiratle fcrr in which the qrcupings of individuals
cculd be more easily observed. Such a representaticn was
subsequently refined by Luce and Perry [54], Festinger [31],
and Luce ([55]. A (C,1) matrix, effectively the adjacency
matrix cf the sociogram, was utilized, and the distance
rrcgerties c¢f a graph derived from the square, cuke, and
higher powers of the adjacency matrix were used as 1indicators
in characterizing the structure of the grcup. Festirger
observed that a unicliqual rember i belcnged tc a clique cf k
persons if and only if the ith diagonal element in the cube of
the adjacency matrix was equal to (k-1) (k-2). It was therefcre
a simple matter to find the crder cf the clique tc which an
individual telonged, prcvided he was a member of only one
clique. Weiss and Jacobsen [78] applied the techriques cf
Luce, Perry, and Festirger tc analyze the relationships cf

individuals and thkeir tasks in btusiness crganizaticns.

As a result of its sociological teginnings the word
"clique" tecame syncnymous with the graph theoretic nction of
"paximal cocmplete subkgraph™. The apparent usefulness cf the
graphical msethod of representation of sccicmetric data was
suggested Lty the early results, Hcwever, investigators tecame
aware cf the general need for more powerful methcds cf
manipulationg the socicgram and its asscciated matrix; in
Farticular, of determining in an efficient tut general wmarner
the cliques sucgested Lty the &=model. The importance of
techniques for studying social grCuEs thus raotivated
explcitation of a graph theoretic approach to the detecticn cf

cliques.

Because of the finiteness of the problem, there exists a
naive, "brute fcrce"™ method for finding the cliques cf a grafgh
with n vertices--merely examine each cf the (;) sets of k
vertices fcr k=1,2,...,0. This <clearly involves lcoking at
é%_ §)=2n-1 sets, an obviously intractatle numter for even
mlderately large graphs. Because =sccicgrams could ke very

large, analysis by clique membership would te practicabtle cnly

with the advent of much Letter detecticn fprccedures.

Early techniques depended primarily on a "bag of tricks"
which incecrporated knowledge of the structure cf the grarh
induced Lty the particular agpplicaticn, and resorted to
exhaustive search or estirmaticn when simplificaticn was no
longer possible. In 1956 Harary and Ross [U41] Fprcgcsed a
method whereby a graph was systemically reduced to ccoponents

each of which contained at least cne unicliqual vertex and for

which the <cbservation of Festinger, previously vwpenticred,
could te used to find it. The reduction prccedure employed the

fcllcwing algorithm:

1.) Initially, 1let the graph G itself ke the corporent

under consideration.

2.) 1f v is a unicliqual vertex in a component wunder
consideration, then the subgragh irduced o¢n v and those
vertices adjacent to v is a clique. Cefine a new comgpcnent fcr
consideration by deleting frcm the current compcnent v and all

unicliqual vertices adjacent to v.

3.) If the component under consideraticn contains no
unicliqual vertices, let v be a vertex Lelonging tc a mrinimal
nunter of triangles c¢f that ccoponent. ©Define two new
comgponents fcor ccnsideration:

a,) the subgraph induced on v together with thcse
vertices adijacent tc v, and

b.) the union of subgraphs induced o¢n the set cf
vertices not adjacent tc v together with their respective sets
of adjacent vertices.
Since the wunion of these two components cah te shown tc be
equal to the current ccrpcnent under ccpnsideration, delete it

from the list of components to be ccnsidered.

4.) Chcose a component from the list and gc tc 2 until

the list is exhausted.

A procedure fcr impreoving the efficiency of the algorithm

was also suggested bty Harary and Rcss by which a component

containing not more than three cliques could ke ccopletely
processed at step 2. The Harary and Ress algorithm thus
prcvided a more practical methcd than the paive algorithm for
identifying cliques in sociometric data representakle as a

(0,1) matrixe.

Sutsequent researchers bave pursuved the development of
techniques for the analysis of variations and generalizaticns
of the model in an effort to 1include and obtain more
information about the structure 1in a representaticn of a
social group. By asscciating weights with each pair of
vertices in a sociogram, the deqree or strength c¢f the
relationship could bte <characterized (see for example Hutell
[45]). By utilizing an adjustable threshold value, a hierarchy
of graphs cculd be established, each graph teing defined c¢n
the same set of vertices but consistirg cf cnly those edges
whose weights exceeded the threshold value. Dcrien [20],
Johnson [477], and Ecyle [7] have investigated the
hierarchichal structure «c¢f grcugs by this method. In
particular Peay [€E8] recently developed an algcrithr fcr
determining the hierarchichal clique structure of such a
representation. A farily c¢f sets of vertices which we shall
call "potential cliques" is generated from a graph G cf «crder

n and associated with a threshcld value t.

1.) Initially V(G) 1is the cnly pctential clique in the

family. Denote by u(vi,vj} the weight of edge (vi,vj) in E(G).

2.) If there exists an edge (vi,vj) in E(G) such that

wi{v_,v) < t, and if there exists a potential cliqué C induced
i J

10

cn a subset of k vertices containing v, and v, then twc new
. J

potential cliques 91' C2 are induced cn C-{vi} and C-{v }.
J

3.) C is deleted frco the family and Cl

to it prcvided neither is contained in some current memter cf

and C2 are added

the family.

4.) When it is the case that u(vi,vj)at for any rair
(vivj) in any rpotential clique, then the family ccnstitutes
the set of cligques associated with the threshold value t.

It is clear that the effect c¢cf the algcrithm is to
successively refine sets of vertices which contain ncn-
adjacent pairs until such refinement is no 1lcnger rfrossitle;
hence such sets o0f vertices can Lte «ccnsidered to induce
"rctential cliques", To use the algorithm tc find wmaximal

complete subgraphs, a threshcld valve cf 1 is assumed.

Yet another impcrtant =scciclogical rfrcperty of groups
that stimulated the study of <cliques in graphs was the
tendency for individuals tc "cluster"™ intc grougs in such a
way that members of a cluster retained a high degree cf
similarity, while differert clusters characterized dissimilar
prcperties (Davis [15]). Cluster theory also had afpplicaticns
outside of Sccicmetry. Aktraham [1]1 has wused clustering
techniques to sclve the prcblem c¢f winimizing the number of
interccnnections of electrical assemklies, a rfprckler alsc
explored by Lawler [51], while Bonner [6] applied such rethcds
to medical taxonomy prchtlers. Beonner's efforts resulted in the

design of an apparently efficient algorithm, sc¢ ccnsidered

11

tecause his methcd elirinated the need fcr ccmparing newly
generated vertex subsets with previously generated =sets fcr
containment, a necessary rpart cf the prccedures emplcyed by

Harary and Ross or Peay.

As a consequence, Eonner's algcrithm enjoyed some
popularity and was used ir ccmparative studies with more
recently proposed algorithms. However, Auqustscn and Minker
[5]) showed this efficiency was often illusory since a large
numker of extraneous vertex subsets cculd be generated in

certain cases.

Besides the agpplicaticn c¢f clique detection +tc the
interpretation of socicretric data, the wmcst recent widely
exrlcred application is to the protlem cf informaticn
retrieval. EFarly develorments in the area of document
retrieval were made by Meetham [57] while Aktraham [2,3]
applied such teckniques tc the prctlem of thesaurus
construction. In additicn, the previously cited work of Eonner
was also an arrlication of clique detecticn methcds tc

information retrieval prcklenms.

More recently, Gectlietk aprnd Kumar [36] wused clustering
techniques to represent the degree of semantic associaticn
between index terms used ir the classificaticn of documents.
The thesaurus problem was further explored by Augustscn and
Minker whc employed a new algorithm developed Lty RBierstone
which was shown ty empirical methcds tc te better than that of
Bopner in many cases. Fierstone's algorithe was corpared

empirically by Mulligan [64) with two recently develcfped

12

algorithms for «c¢lique epumeraticn, cre by Bron and Kerhbosch
[8] and the second by Corneil (see Mulligan [64]). From this
study Mulligan ccncluded the Pron-Kertosch algecrithr tc be
superior. The protlems and techniques <cf ccmparing some of
these algcrithms will be discussed further in the rext

chapter.

Several important graph theoretical problems are related
tc the detection of maximal complete subgrarks. It is well
known (see for example Nordhaus [677) that the peint
inderendence number of a graph G is equal tc the crder of the
maxiral cligue in G, 1its complement., In addition, tte
chromatic numker c¢f G 1is equal tc the minimum number of
indegendent cligues in G. At present there 1is no krcwn
efficient means c¢f ccmputing either c¢f these graphical
invariants. A procedure for determining either numker wculd
provide an important tccl in pursuing the hcst of prcblems
(see fcr example [14,19,26]) that exist 1in <chromatic gragh
theory, and hence serves to emphasize the inmportance cf

studying complete subgrarhs.

As a result the literature abtounds with a variety of
results relating to the existence of complete sukgraphs in
graphs. As an example, cne may ccnsider the celebrated protlenm
cf Ramsey [70] ccncerning the smallest numker of vertices that
a graph may have and ccntain either a ccmplete sukqraph cf
order m, or an independent =set <¢f k vertices. The
determination of such a number, r(m,k), is an unsclved prcklen

for general m and k, although the fpublished 1results include

13

the calcuvlation of specific values, existence thecress, and
bounds [21,29,35,37,38,48]. It is evident that an efficient
cligue detecticn rrocedure wculd prcvide a useful tcol by
providing a faster way of exawmining graphs for their «ccrplete

sukgraphs.

Perhaps the results of extremal graph theory, pioneered
by Turan[76,75], contributed most directly tc the cligue

detection proktlenm.

In 1965, Mccn and Mcser [60] verified by direct methods
the maximum number of cliques possitle in a grarh, a result
earlier estaklished Lty Erdcs [27 thrcugh an inductive
argument:

The maximum number of cliques in a graph with n vertices is:

a.) 3W/3 if n = 0 mcd 3
r.y 4:3(=4)/3 3¢ n = 1 pod 3
c.) 2+3(0=2)/3 j¢ n = 2 woa 3.

It was also shown that the graphs which <contain the
maximum numker of cligues were:

a.) the complete n-partite graph K(3,3,c¢.,3) if n = 0

mod 3 P

k.) the complete ggé_l—partite grath ¥il13:vawwsl)y AL

1 mod 3

e}
il

cC.) the complete (n+1)-partite graph K(3,3,...,2) if

3
2 mod 3.

=}
h

These graprhs shall henceforth te referred tc as Mcen-

Mcser grarghs,

14

It follows from this result that, as a functicn of the
number of its vertices, a graph may contain an exponential
numker of cliques. Hence any algcrithm which examines each
clique at least once (ie. Sequential) may ke expected tc
require an exponential amount of time to enumerate the cligues

of a graph.

Although frem a graph theoretic point of view this is a
disheartening result, an examination of graphs which ccntain
such nunmkters of cliques reveals that all cliques are of the
same or nearly the same order. Further the <cliques in such
graphs appear to be homogeneously distrituted cver the
vertices, each vertex kelonging tc the same ¢r nearly the same
(again exponential) number of cliques. From a practical ©gcint
of view, the number of edges in the graphical mcdels generated
ty the empirical data cf the applicaticns suggests that such
conditions are wunlikely to occur. The srparseness cf the
adjacency watrix cf such graphs could therefcre ke used as a
rough a pricri test of the number of cliques a detection

algeorithm might be expected tc find.

Cliques in graphs having a maximal numker of cliques are
all cf the same size., Moon and Moser also showed that the
numker of different sizes of cliques in a graph with n
vertices is bounded above by n-log(n). Erdos [30)] 1irprcved
their lower ©Found or this numbker Lty showing that it was
bounded telow ky n-log{(n)-H(n)-0 (1), where H(n) denctes for
some k the k-fcld iterated logarithm, log lcg...lcg(n), and

0(1) is an unsgecified constant.

15

The results c¢f Erdcs, Mccn and PFcser suggest that an
algcrithm for the enumeration of cliques is an exarple cf an
exponential comkinatorial prccess. There has recently teen an
effcrt in the theory of corputaticn tc establish a hierarchy
cf ccmplexity classes of combinatorial algorithms, wotivated
bty the 1lack of success in finding and proving efficient
algcrithms for a large number of important ccpmtinatcrial
processes., This wcrk was rfpioneered by Ccck [11] who showed
that ccmbinatorial problems can Fe expressed as language
recognition problems, Using such a representation certain
proklems for whick nc efficient algcrithms have yet teen
devised were shown to be equivalent in the sense that each was
reducible to the protlem cf whether a well-formed formula was
satisfiable., The class of problems so reducikle has Leen
expanded ty Lawler [52,53] and Karp [49] and includes the
clique detection proklem. The principal result is that either
there exists a fpolynomial bounded algorithm fer each prctlenm
in the class, or for ncne cf them. However, the nature of the
frcblems strongly suggests that the latter case is in fact

true.

The study of the detecticn cf cliques may bhelr tc resclve
this question since Mowshcwitz [63] bhas shcwn that a well-
formed formula with k clauses can Le represented kty a grarh in
such a way that the well-fcrmed fcrmula is a tavtology if and
cnly if there exists no complete sukgraph of crder k. This

result is stated by Karp [49, and is imglicit in cecck [11].

16

o —— o — o —

In order tc gain insight into the <complexity of the
problem of clique enumeraticn, we shall eyarine the algorithms
described in Chapter 1 in some detail. The technique evaclved
exploits the way in which the vertex =csvltsets are determined
during an iteration of each algcrithm. A cligue enumeration
algorithm will then be proposed and shown to be more efficient

than those previously exarined.

The algorithms of Harary and Rcss and Bcnner were chosen
because cf their availability in the 1literature, their
apparent differences o¢f afpgrcach, and their frequency cf
citation as references in suktsequent literature on the subject
cf cliques in graphs. In addition, the Harary and Rcss
algorithm is considered by this author to ke the histcrical
precedent for the develcrment cf clique enumeration
algcrithms. Peay's algorithm was chosen bPecause it is
comparatively recent, coffers a ccnceptvally simple apgroach to
the rrobler and there appears to Fte no analysis cf its
efficiency. Although nct yet readily available at the time of
this doccumwentation, the Eron-Kertosch algorithm has Leen
included tecause cf its supericrity cver scme cf the previous

nethcds as determined by Mulligan [64].

Although the algorithms cited employ apparently different
techniques to achieve their gcals, this difference 1is

primarily one cf detail, for an examination reveals the

17

following common features:

1.) Each algorithm refines or decomposes a previously
determined vertex subset to obtain new vertex subksets each
containing at least cne clique c¢f the criginal yragph. A choice
is mpade of a vertex from the initial ;er;ex subset, and its
adjacency properties are used to define the new subsets. The

old vertex sulbset 1is subsequently removed from further

ccnsideraticn.

2.) Fach algorithr has the prcperty that every clique of
the original graph is contained in exactly cne of the possibly
several vertex =sets availatle for consideration at any stage

of the algorithm,

3.) Each algerithm employs some device to avéid the
pitfalls of mwultiply defining a «c¢lique or including as a
clique some complete sukgraph which is nct maximal. Such a
situation can occur whenever vertex subsets are generated
which are properly contained in other vertex sulsets, or which
contain complete subgraphs maxiral cn that vertex subset but

not cn the coriginal vertex set.

In the remainder of this chapter it will ke seen that it
is precisely these ©frcperties cf the clique enumeration
algorithms which profoundly affect the efficiency of such

procedures.

18

Tc obtain some wmeans of estimating analytically the
computational time required by each alygcrithm, the computation
may be divided into two parts. The first «ccnsists of
determining the effcrt required for one iteration of the
algorithm; that is, the tire required tc determine new vertex
subsets from an old one. The second involves the determinaticn
of the number of iterations required to find all the <cligues
of the graph. We shall see that the number of iterations
required is related to the number of vertex subsets generated
during the execution of an enumeration algcrithm A.
vertex set V using algcrither A if during scme iteraticn in the
execution of A, W is determined from V,

CEFINITION 2,2: A vertex suhset W is derivable from a vertex

_— e e L —

subset V using algorithm A if there exist sulksets U

.-..'U_

« U
12

such that Ul is directly derivakle frcm v, tﬁ+l is directly

from U, for i<j, and W is directly derivatle from Uj'
i

Since the set W is contained in the set V from which it
was derived, using these defipiticns it is easy to <c=ee that
derivability induces a partial ordering on the set of all
vertex sulksets generated Ly algcrithm A during the ccurse of
enumerating the cliques, provided we add the stipulation that

every sukset is directly derivable fror itself.

This partial crdering may be rerresented by a directed
tree whose root represents the vertex set of the graph, and

whose vertices represent the vertex =subksets generated by

19

algorithm A. Vertex u, representing sutset U, is ccnnected by
a directed edge tc vertex w, representing subset W, if W is
directly derivatle from V. It is clear that this tree is
dependent upon the enumeration algorithm used and the
labelling of the gragh, hence we =shall always associate with
any derivation tree a labelled graph G and an enumeratich

algorithm A.

+

DEFINITION 2.,3: A vertex subset W will be said to be redundapn

if it is properly contained in some vertex subset V from which

it was not derived.

It 1is interesting to cbserve that the behavior of clique
enumeration algecrithms to be descrited suksequently can be
compared to a tree searching prccedure, the tree in this case
being the derivation tree cf a gragh G as determined by an
algerithm A. The determination of methods for wminimizing the
development of redundant ncdes in the determination of the
derivation tree may then be likened to the protlem of finding
suitalbtle tree pruning techniques. This =<sipilarity has also
been noted Lty Mulligan [64], while Bron and Kerkbosch have
explcited it in their algorithm which wused a "ktranch and

bound" technique cn the derivatiocn tree.

To determine the ccrputaticnal effcrt required during a
single iteration of each enumeration algorithm, a technigue
developed ty Corneil [12, APPENDIX A] will be used. The tasks
perfcrmed within each algorithe will be grcuged intc tlocks.
Each block will be defined from a set of tasic operation tyges

determined ty implementaticn ccnsideraticns. These operation

20.

tyres and their associated time constants are given in TABLE 1

of APPENLCIX A.

Most of the instructicn types are self-explanatory. We
shall elaborate briefly, however, on the ‘"push" and "gcg"
operations., The need for such cperaticns arises from the
indeterminate amount of storage required for saving rartially
determined vertex sulsets. It will be seen tc be most useful
to save such sulksets, if they are needed fcr some =subsequent
Frecessing, on a push-down store. Such a data structure is
easily implemented as a linked list with additional storage
added on as required. The essence of the "push" operaticr is
to obtain storage for the current vertex sutset to ke saved
together with a link address pcinting tc the next data item in
the store. The top item is always directly accessitle thrcugh
a pointer to the tcp c¢f the stcre . The "“pop" operation
deletes the top data item of the stcre ard resets the pointer
tc the store top so that it points to the next data item which

thus tecomes the new tcp of the stcre.

In most cases it 1is difficult tc obtain an exact
expressicn for the computation time of the algorithm under
consideration., This is due f[rimarily tc difficulties in
determining the number of vertex suksets having a particular
number of vertices. A second factor cemplicating the
determination c¢f such an expression is the difficulty cf
determining the extent of search tc <catisfy =some <condition
(such as the "first edge™ in Peay's algerithm) during a

particular iteration. Fcr these reascns cur principal gcal

21

will ke to determine the order (as a functicn of the number of
vertices in the graph) of an iteration, and the numker of

vertices in the derivaticn tree.

In determining estimates of the required computation time
for the enumeration of cliques by various methods, the primary
graph to te considered will be the complete k-partite grarh
with m vertices per blcck, dencted K(p,P,ee.,m) OL E(mk). The
reascn for such a choice is that every k-partite gragh is a
sukgraph of K{mk) ard the derivaticr tree cf any other k-
partite graph is smaller thar the derivaticn tree of K(mk).

As a ccnsequence of this choice of graph for ccnsideraticn it
is possitkle to deterrmine the nurker cf vertices in its

derivation tree using each alqorithm.

22

2.3 ANALYSIS OF THE HARAKRY-RCSS ALGORITHM

S —

As mentioned in the introduction of this chapter, the
Harary-Ross algorithm was selected fcr ccnsideration in a
comparative study of some clique detection algeorithms Lecause
of its historical precedent, It is interesting to note that
despite its frequent reference in subsequent papers on clique
detection examined by this author, no mention had keen made cf
an error in the algerithm urtil Harary hieself referred to its
existence in a recent paper on the applicaticn of gragh thecry
to the Social Sciences [447. Harary otserved that although the
methced fcund all the cliques, it alsc included =ome "other"
subgrarhs in the set of maximal complete suktgraphs as well.
These ‘"other" sutgraphs are in fact ccrplete subkgraphs which
are not maximal and hence each is ccntained in scme clique.
Although there afppears to be no sutsequent attempt made tc
correct the proklem, pcssitly due tc the existence of nmore
efficient algorithms by the +time of the disccvery cf the
error, a modification tc ccrrect the defect is fairly simple.
When a conmplete subgraph has been discovered, determine if
there exists a vertex adjacent to all vertices in that
subgraph. 1If not, a clique has been fcund. Ctherwise it is
cbvicus that such a sutgraph is not a clique and is therefore
deleted from further consideration., This modificaticn |is

included in the sulsequent analysis.

In the interests of irfroving the efficiency c¢f their
algorithm, Harary and Ross modified the general freocedure

cited in the historical survey by defining a fprocedure for

23

determining whether or not the subgraph induced on the vertex
set under consideration had at mcst three cliques. If so, then
such a subgraph could te completely prccessed by a direct
methcd (rather than the recursive method of the general
procedure) and the cliques cf the subgraph determined. However
in most cases only one additional iteration of the general
prqcedu:e is required to determine all the <cliques cf a
subgraph containing at most three cligues. In addition such a
schere requires additional computaticn, npamely determining
whether a subgrarh has at most three <cliques, during each
iteration of the general prccedure thus increasing the overall
computaticn time. For these reasons, the «ccntrikuticn tc
overall efficiency is small and for simplicity has not FLeen
included in the analysis cr implenentaticn cf the Harary-Foss

algcrithm,

2.3.1 NOTATION FCR THE ALGCRITHM

G: The sutgraph currently under ccnsideraticn.
V(G) The vertex sutset cf tke subgrarh G.

A: The adjacency matrix cf the subgragh G.

Lol

: An array such that 1r(i) <ccntains the sum of all
elements in row i cf B= A2¥A , the Hadamard product of
the adjacency matrix and its square.

d: An array containing the degrees of the vertices in the
sukgrarh G.

b: A pointer to the vertex i in G with minimum 1row sum

(i)

24

n: The number of vertices in the vertex sulset V (G).

-
-
—

243.2 THEF ALGORITEM

—— —— ———

STFPO: Initially place V(G) cn the stack.

STEP1: Choose a vertex set V(G) frcnm the stack of vertex

subsets tc te ccnsidered. If stack empty then gc toc stepi13.
STEP2: Ccmpute the matrix product A2XA where "X" is the

Hadamard product.

STEP3: Let B= A2XA . Corpute the rcw sucs r(1) ,r(2) jeee,r(n)
cf B as well as the degrees d(1),d(2),.ee,d(n) of the
vertices in the subgraph G.

STEPU: Set i to 1 and m tc 1.

STEP5: If r (i)=d (i)-(A(i)-1) then go to STEP10.

STEP6: if r(i) < r(m) then set m to i.

STEP7: set i to i+l. If isn then go to STEPS.

STEP8: No unicliqual vertices exist., Therefore define twc new
vertex subsets V{Gl) and V{GZ) as follows, V(Gll is the set cf
all vertices adjacent tc m, the vertex c¢f minimum row sum
r(m). V(Gz) is the set of all vertices not adjacent tc nm,
together with all vertices adjacent tc at least cne cf these
vertices not adjacent tc n.

considered and go to STEEF1.

STEP10: A wunicliqual vertex i has been found. Compute the

intersection of all rcws <¢f the adjacency matrix of the

original graph corresponding to vertices adjacent to i.

25

STEP11: 1If the result cf STEP1C yields an empty set then the
complete sukgraph determined by i is wmaximal. Hence print i
and the set of vertices adjacent to i.

i which are also wunicliqual. Place V(G) cn the stack of

vertex sets to be considered and go to STEP1.

STEP13: All vertex sets have been frccessed. Therefore stcg.

The tasks tc be performed by the Harary-Ross algorithm
may Lte 1logically divided intc fcur blccks. The function of
block 1 is to compute the degrees of the vertices of the graph
and to compute [A(G)]2 X A(G) and determine the row sums cf
this matrix. Block 2 wuses this infcrmaticn tc search for a
unicliqual vertex ky finding a vertex which =<catisfies the
relatienship r =d +(d -1) where r is the cocrresponding row
sum, and d tbhe degree cf the vertex. If such a vertex is nct
found, two new sulgraphs are deterrined in blcck 3, one of
which 1is returned to block 1, the other saved for further
processing., Otherwise we prcceed tc tlcck 4 tc search feor a

complete sukgraph of the graph G, induced on the unicligual

i
vertex v and those vertices to which it is adjacent. If tte
complete sukgraph is a clique it is printed. All unicliqual
vertices in the discovered ccomplete subgraph are deleted from
V(Gl] and the subgraph Gl is returned to tlock 1 fcr further

processing.

26

ELOCK1
1 EoF V(G)
2 i <=- 1
3 — ., <== 0
A
L i == i+1
5 r———ﬁrr. == 0
J
6 substr(ai,j,U) : 0=
7 d <-- d.+1
i i
8 d. <-- 4 .+1
J J
9 k <-- 1
10 € <-— 0
11 s £=-- substr(air\aj,k,1) + s
12 k <=— k+1
£
kK :
13 HG
[/} == +s
1 ri ri
15 I, <=-=- T, +sS
J J
16 j K== j+1 <€
i ‘ 5 -
17 - nG
18 i <== i+
< .
19 L —— N B nG

The parameter ny is equal tc the number c¢f vertices of
the vertex set V(G), and a(i) denotes the adjacency set cf

vertex i in G.

BLOCK1 dominates the <ccmgputaticn in the Harary—-Ross
algorithm; the other blocks of the procedure will ke seen to
depend linearly c¢n n,. Fcr this reason we defer their

G
description until we have further examined BLCCK1.

27

In general it is difficult to ofktain an explicit
expression for the <ccmputaticnal effcrt required Ly the
Harary-Ross algorithm. This is due to difficulty in
determining the numher of times Etranch ccnditicns are
satisfied . It is also difficult, even fcr an arbitrary
complete k-partite graph, to determine the numter of vertex
suksets that are generated with a particular distritution of
vertices ocver the blocks. 1Instead, we shall ccnsider the
tehavior of the Harary-Ross algorithm when finding the cligues
of K(BK). A similar prccedure cculd alsc be adcpted for each
of the other twc types of Moon-Moser graphs. An example of the
derivaticn tree for K(Bk) is given in Fig. 2.2. Each ncde cf
the tree has Leen lakelled acccrding tc the distribution of
vertices among the blocks of the induced ccmplete 3-fpartite

subgraph which it represents.

Let G ke an induced subgraph defined cn a vertex sutset
cbtained during the execution of the Harary-Rcss algcrithnm,
and suppose G has il blccks with 1 vertex per tlcck, 12
tlocks with 2 vertices gper blcck, ard i3 blocks each
containing 3 vertices., WNecessarily it is the case that
il*iz+is=k and il+2i2+313=n . The npurber «cf times that
execution passes from line 6 tc line 7 during the execution of
block 1 is equal to the numker of one's in the adjacency
matrix of G atove the diagcnal. Since the criginal graph 1is
complete k-partite every induced subgraph containing at least
one vertex per tlock is alsc ccmplete k- partite. The number

of c¢ne's in G is therefore iven by £ RS, L where
g Yy G ll' " 3)

7 . Sy 3 3 ; s 6 add ; 5
fCr (11,12,13) [{11+212+313j (11+ 12+913)]

28

Hence steps 7 thrcugh 15 cf blcck 1 will be performed
fG (il.i'z,is) times and the computation time of block 1 during

one iteration is given by Tl(nG) where

= C1t . - 14f 3.« § a8
Tltn G:) Cl+nG(:12+nG [nG 1)C3+tG (11,12.13)((:”0 C;)

L 8
with Ci = 1:1+tz

Cé = 3tl+2t3

g; = 2t1+t3+2th*t8

Ch = 6t l+llt3

C; = 21-1 +2t3 +th+t6 +t8

The ccnstants ti' i=1,2,+++,10, Tepresent the cycle times

for the various operaticns as specified in AEPENCIX A,

29

ELOCK2Z
20 i <=~ 1
21 m <{-- 1
22 p—r_ 3 ai;ai-nf———-) Blcckd
23 ri: rm-i-—~
24 m<-- 1
25 i <=- i+1e—
26 -—f-i :on
l
Block3

The computational time for BLOCK 2 is given by:

T = C2+g C2
g) 1942
where
c2 = 2t
1 1L
C2 = 3t_+2t_+3t +t
2 T 3TN

It was assumed that line 24 which points to the minimal
r(i) was executed cne-half the time. The tern gi is equal to
cne less than the label of the first unicliqual vertex i

encountered.

30

BLOCK3
217 V(G) <= a _NV(G)
28 suhstt{v(Gl),m,1) <-- 1
29 i <=+ 1
30 V{GZ) {==- —v(Gl}
31 i<—— i1
3 —» substr (V (Gl),i,1) - OL'
G == (&
32 V(z} V(GZ) ai
i3 i <—— i+1¥
g
‘ -
34 i nG
35 gpush V(Gl},V(Gz)

The computation for cre iteraticn of blcck 3 is

- 3 = i 3 3
T_(n,) C +(nG dG(l))c2+n C32, where

3'°G 1
Ci = utl+2t2+t6+t7+t8
C; = tl+t6
C; = t1+t3+2ta+t8

and dg(i) is the degree of vertex i in the sukgragh

on V (G).

induced

BLOCKY
36 C <-- a,
-
37 substr(C,i,1) <-- 1
38 T <-=- TUQU-T
39 k €== 1
40 —> substr (C,k,1) : O——
41 T K== TOVE
42 k <=- k+1 <
S N

43 k 32 nG
by T : 0-E
45 Erdint: €
ue substr(V(G) ,i,1) <== 0
47 j <== j+1
48 ~——rsuhstr{ai,j,1) . 0:--'-'__._T
49 £, ¥, 3

i J 2
50 substr (VG),j,1) <-- 0
51 j == J+1€

| " 1 -

52 3 3 nG
53 push V (G)

The computation tire fcr BLOCKYU is

= C4%+d_ (1) C4+
Th(%}) l+ G(l) > n

the ccnstants being given by

CS+hCe-iCe
G'3 4 57

Co = BE +t +L ot 42t et
C% = 2t1+t3-t4+t6

CB = 3th+t8

CL= tl+t8

CA = t_+t_ +2t +t
5 13 4L 8

and h is the number of unicliqual vertices in the clique.

31

32

For K(3k) the next secticn will shcw that there are lJBk-

. 2
3) ccomponents which do not have unicliqual vertices; hence the
value of gi in block 2 for esach of these vertex sets is nG,

nd therefore th i 1 f T is C2+C2 .
a r e maximue value fcr 2(nG} F4C3 n,

For trlocks 3 and i dG(i) and h are also bcunded Ly nG and
hence IB(nG} and %+(nG) are also 1linear polyncmials with
respect to nG. TltnG)

computation time fcr cne iteraticn of the Harary-Ross

is thus clearly the dcminant term in the

algorithm and is a polynomial of order n?,

34

Fig. 2.2

HARARY-ROSS ALGORITHM:
DERIVATION TREE

333

233

133

223

213

123

113

222

221

212

211

122

121

11

111

122

122

121

121

112

112

112

111

L1

111

111

111

131

1l2

112

112 Y

111

B

11l

111

111
. 8

111
111

11l
111

111

111

111

LiX

13X

1%

53 i &
11

L1
1L

35

2.3.3 NUMBER OF VERTEX SUBSFTS EXAMINED EY THE ALGORITHM

Frcm an examination of the derivation tree of an
arbitrary graph wusing the Harary-Ross algcrithm (see for
examgple Fig. 2.2) it 1is easy to deterwmine the numker cf
components or vertex sets that will ke generated. This is
tecause, given that the nurkter cf cliques in the graph is N,
since the derivation tree from this algorithm is tipnary, the
numter of nodes is 28—-1. The ncdes cf the derivation tree cf
K(3k) can te separated intc twc parts acccerding to the type of
Frocessing carried out on the component represented by that
node of the tree. In particular, whenever a unicliqual vertex
is fcund via block 2, the «clique to which it Lkelcngs is
determined in tlock 4 and the ccmpcnent corresponding tc this
clique is output rather than returned to the prccessing stack,
which consists of vertex subsets yet to ke examined further

for cliques.

For example, if we exawmine Fig. 2.2, and consider the
subgrarh induced on a vertex set having one vertex in every
vertex tlock tut cnme (eg. (1,1,3), (1, 1,2), (1,2,1), (2,1,1))
we see that all vertices ir the blcck ccntaining more than one
vertex are vnicliqual. A vertex would te <chosen from this
vertex tlock, and thrcugh the ccmputaticn in block 4 of the
algcrithm a clique would be determined and a vertex set
returned for further processing. In the case of the exanmgle

such a vertex set would have the fcrm (1,1,2) cr (1,1, 1.

For the general ccmplete k-partite grarh K(3k), among all

vertex sets generated having unicliqual vertices, there is

36

only one vertex set c¢f the fcrm (1,1,140e«s1,3). This is
because such a set is derivable only from previous sets having
either one or three vertices per vertex block. Such a vertex
set yields three cliques according tc the sequence of

derivations given in Fig. 2.3.

Of these three cliques cne is reprccessed in tlecck 1 as a
consequence of the previcus discussicn. Cf the remaining K -3
cliques, all are derived from vertex sets having twuc
unicliqual vertices in sore tlock, cne vertex in each of the
remaining blocks, and hence again according to the previcus
argqument one-half c¢f thkese will be reprccessed one further

time.

The purpose cf this discussicn has Lkeen tc ascertain hcw
many vertex sets c¢f the 2-¥-1 geperated are sukject to
processing in block 1 where the major portion of ccrputaticn
occurs. This number is thus 3k-1+1+%13k-3) = %13k—1). In
addition, the nurker c¢f vertex =<sets ccntaining unicliqual
vertices, and therefore examined in btlock 4, is 2+%J3k-3).
Finally the number of vertex sets not containing a unicliqual
vertex and therefcre prccessed in tlock 3 is given by

(2:3%-1) - 3%- (24 %_(3*“ -3)) = %(3“ - 3)

If we denote Ly ﬁi,?z,f estimates cf the ccmputation time

T
3"y
for blocks 1,2,3,and U respectively then an estimate of the

computation time is given by:

=]

T =

Ty 3ake) + T 3R lany) « T (13ken))
appx 1 2 33 L5

3
2

1'1’0.. ’l’l

l,l’l..'lcl!B

l,l,.o . |l,l

Fig. 2.3
SUBTREE OF DERIVATION TREE

15 50000l42

1,100,141

37

38

2.3.4 STORAGE RECUIREMENTS

—— e —— e e T e o e S

The Harary-Ross algorithm as defined in tlocks 1 thrcugh
4 requires only one adjacency matrix ke stcred, that of the
criginal graph. The appropriate subk-matrix is then determined
during each iteration ty keeping track of the afpfprogriate
vertices defining each induced subgraph. Alsc, since the r and
d arrays are pertinent only tc the induced subgraph currently
under consideration, only one array of size n c¢f each |is
required. As all other terns are ccunters cr Fcinters the cnly
cther storage requirement is made ty maintenance cf a push-
down store for keeping track of the vertex sets remaining te

be processed.

At any iteration we usually define two vertex sets named

V{Gl) and V(G in the description of the algcrithm. If we

2)
order their ©position on the push-decwn store sc that V(Gl} is
always chcsen first from the push-down store, then =since no
Fath in the derivation tree is of length greater than k, there
cannot te more than k vertex sets waitirg in the store. Each
corresgonds to the "other" vertex set paired with that vertex
subset represented by a node 1lying on the ©path in the
derivation tree. As an example ccnsider the derivation of

clique (258) in K(Ek) as labelled in Fiqg. 2.1. The sequence cf

events is illustrated in Fig. 2.4,

For each pair cof direct derivations, V{Gl) corresponds to
the "left" derivation, V(Gz) tc the "right" derivation. Eefore
we can reach the vertex in the derivaticn tree laktelled

(23,456,789) we must have prccessed (1,456,789) since we have

39

arranged to do this first, Conseguently all cliques ccntairing
vertex 1 have keen determined and vertex set (1,45€,789) or
its derivatives no longer appear cn the fpush-down <store. A
similar argument applies to (2,4,789) and (Z,%,7). The cnly
nodes remaining to te prccessed are (3,45€¢,789), (2,€,789) and

(2¢5,9) &

From a programming point of view it is most ccnvenient as
well as efficient to wmaintair 1lists «cf vertices as bit
strings, Since Dboth the vertex sets of the algorithr as well
as the rows of the adjacency ratrix are vertex lists it |is
clear that the storage requirements are given Lty 2n+C "integer
units"™ of wemory plus n(n+k) bits, Ar "integer unit" will
depend on the storage ccnventicns fcr integer representation
cn a particular system, For our purposes during implementaticn

this is equal to a "half-wcrd" cr 16 bits.

The storage requirements fcr the Harary and Ross
algcrithm is thus n(n+k)+16(2n+C) tits where C is the nurkter

of pointers and ccunters required.

40

v(G)
~
Ve
re
”
//
e
~
P i
.,/
1,456,789 23,456,729
2,456,789, 3,456,789
////
//
~
//
-~
29k T89 2450,'789
255,769
//
//
,/
”~
e
7
i
295,7

Fig. 2.4
A PATH OF THE DERIVATION TREE

41
2.4 ANALYSIS OF BONNER'S ALGORITHM

Bonner's algcrithm has generated some interest among
researchers wishing to employ the analysis of <cliques in
graphs to their particular applicaticn btecause cf its apparent
efficiency since no cligue or vertex sukset generated need be
examined for containment in scre ¢fprevicus ccomponent. This
difficulty arocse in the modified Harary~Rcss algorithm
Freviously described and is also inherent in Peay's algcrithn,
to te discussed next. In additicn, Bcnoner's algorithm is
interesting to examine in a comparative study «c¢f clique
enumeration algorithus tecause it has been compared

empirically with the efficiency of more recent algcrithrs.

The approcach taken Lty EBonner is rather different frcm
that of Harary and Ross cr Peay in that it is a constructive
rrccedure rather than one of reduction. The method emplcyed is
to tuild up the vertex sets of the cliques fror a set cf
potential <candidates, wmerkership being determined by the
adjacency properties associated with each vertex. We descrite
the steps of the algorithm as given Lty Bononer [6], includirg a
minor correction ncted ky Augustscn and Firnker [5] in their

discussion cf the efficiency of the procedure.

The paper of Augustson and Minker shcwed that the
efficiency of Bonner's algcriths may cften be illusory because
pany ccnplete subgraphs or components may ke generated during
the course of executicn c¢nly tc te discarded at some later
stage. It was discovered that graphs containing several very

large <cliques and a few very =small cnes Ttesulted in an

42

excessive amount of computation being performed cn extranecus
components which the algcrithm wculd eventually delete. This
generation of extra vertex subsets using Bonner's algorithm is
alsc present in the enumeration of cliques c¢f corplete k-
partite graphs, upon which we are fccusing cur discussion. We
shall establish a generalization of observations made by
Augustson and Minker which will then ke used tc determire the
number of vertices in the derivaticn tree «cf K{mk) using
Bonner's algorithm. We first, hcwever, describe the procedure

itself.

2.4.1 NOTATION
A : an array representing the =set «c¢f <cbjects in the
ccmplete sukgraph tc the present stage cf calculation.
C : an array of potential candidates for increasing the
size of the corplete subgraph induced on vertices in A .
Lii the last vertex c¢f C tc bte ccnsidered for addition

tc the complete subtgraph inrduced cn A .

S : the adjacency matrix of the original graph.

2.4.2 BONNER'S ALGORITHM (Augustscn, ¥inker[5])

STEP1: set i to 1, C to V(G), A, tc ¢ , L tc 1.

Sy 1 1 1

STEP2: 1f L is not ir set C, then set Iito Ff1 and go to

______ i i

to A, VU (L.]

—— i i

43

STEPU: set %jlto Li*1, i tec i#1.

STEP5: If there is an element in Ci larger than 1

e e i e i

5 then go to

SIER6: Set T to A,.

subgraph. Else either Ai has been found Lefore or it is nct

If Ci=§ then Ai is a maximal conmplete

maximal.

STEP7: Set i to i-1. If i=0 then stop.

—_——————

.

STEP8: Set U tc bte the set cf all cbjects in Ci greater than

L.. If UST then go to STEP7.

-

1
STEPY9: Set Li to Li+1 and go to STEEF2.

The tasks performed by Eonner's alqgorithm have Leen
divided into twc btlocks. The function cf the steps performed
in block 1 is to determine whether a discovered conmplete
subgraph is maximal and to find the next component tc be
processed. I1f one is fcund, ccntrcl is transferred to block 2
which constructs another complete sukgraph returning the

disccvered complete sutgraph to klock 1 for testing.

L

ELOCK1
1 W {-- A,
i
2 c, 20 2y
i
3 Frint W
4 —>i <-- i-1 ¢&—-
5 i: 0=———>stcy
6 U <-- C,
i
7 substr (U,i,1) <=-- 0
8 L= (DU W) : W
9 L, <== L,+1 ——> 10
o i

The computation time, T for klock 1 is given by
=C1 1
Ty =Cytht el
with constants teing given by

Cl = 2t_+t_+t

1 L 3 &
1 = +t_+ +t 4+
C2 3tl t3 2t£+t6t8
and 8§ = 1 if W is a clique, O ctherwise, and h<i is the first
value o¢f i for which Ll,Lz,...,Ii are the vertices cf a

complete subgraprh contained in a clique nct yet fcund.

45

ELOCK2

10 —> substr(C;,L,,1) : 05'-——-?I,i<—— L+

11 Cial .<-- Cins(r_.i)

12 suhstr(ci+l,Li,1) <-- 0

13 Ai+l <-- Ai

14 substr(ﬁ l'L 1) <-= 0

15 e Li+1

16 == 141
F

17 q.....suhctr(c ,L +1n1’..) : () &—
—

Every vertex subseguert toc the original Li is examined
exactly once until there are nc further vertices tc be
included. Therefore loop:17 to 10 is executed at nmcst n-Li
times for an arbitrary graph. For K(mk) there are at most rm (k-
j) vertices in Ci, where j denctes the tlock to which vertex
Li belongs. For each value of i there are m-1 vertices not in
Ci' namely the other vertices in the block. Since i is nct
incremented on such cccasions 1lccp:17 to 10 is executed m-1
times for each of the next k- j -1 blocks of vertices in ij

If the graph is labtelled such that vertices in klock i have

labels (i-1)m+1, (i-1)r+2,... ,(i-1)m+w, then Jj = lli - 1J -
k

An upper bound on the time consumed in tlock 2 is given by T
“

defined as a function of Li and n:

T, (L .0) = (k-LEi-El),(cia»(m-ncgmc;)

where

2 = Hh

1 6tl+7t3+t6+2t8
2 = +

C2 tl t3

2 = t_+2t +2t
3

& 3 124 2,

46

Since the value of b in blcck 1 is less than or equal to

n while k—LLi-1J is maximized when L, is in the first tlcck,
k

it is clear that the ccmputaticn fcr cne iteraticn of Bonner's

algorithm is tounded ty n = rk, the nunber cf vertices in the

grath K(mk).

2.4.3 NUMBER OF VERTEX SETS GENERATED

To determine the nusher cf ncdes in the derivation tree
cf Bonner's algorithm it is necessary first to estaktlish the
following result, a qgeneralizaticn c¢f cbservations made Ly
Augustson and Minker [5].

THEQREM 2.4: For m22 everv complete sutgraph of K(mk) is
generated during the execution of Eonner's algorithm.

Proof: Using Bonner's nctaticn the set Ai consists c¢f a
complete sutgraph cf «crder i defined «c¢n vertices 1lakelled
Ll,L2
to every vertex in hi.

,...,Li : the set Ci consists of all vertices adjacent

Suppose the vertices of tlock Vj in V[K(mk)) are labelled
(j=1)m+1, (j=-1)m+2,...,(j=-1)m+m, for m22. If we perform the
algorithm to oktain the "first" clique cf K(mk) we orktain the

following assignment tc Ai and Li fer 3212 somnak?

Ll = 1 Al = {1]

L2 = m+1 32 = [(1,m+1)]

L. = 2m+1 A ={1,0+1,2n+1

3 3 {)

L, = (k=1)m+1 Ak= {1,m+1,2m+1, ..., (k=) m#+ 1]

47

Let U te a vertex suhbset cf Ci ccensisting cf all vertices
with labels greater than Li. Such a sutset is nct the vertex
set of a complete subgraph unless there is at most one vertex
in U because of the labelling of vertices in Klmk). Therefcre,
by execution of the algorithm, Li is set to Li+1 in step 8 and
we return to step 2.

Since i is determined ty the numker of vertices in Ai
when we entered step 6, and since every possitle value of Li
from its initial cne of (i-1)m+1 wup tc wmk is adjacent to
Ll'LZ""'Li—l and also contained in Ci, it is the case that a

comgplete subgraph with vertex set given Lty A 1<i<k+1, is

il‘
generated where:

1) Ay = {Ll,Lz,...,Li 1.

2.) (j-!)m+1SLismk, 1€£j<i

3.) L,<L<...<L. . QED

We have thus established that for m22 every ccoplete
subgraph of Ktmk} is generated during the executicn cf
Bonner's algorithm. The special case B=1 ccrresponding to
applying the fprocedure to a complete graph generates k
complete sukgraphs as described abcve in determining the first
clique of the graph. Since every possitle sutkset U of Ci is
contained in ﬁk « Clearly nc return is ever made tc step 2,

so that the algorithr terrinates after printing

Ak ={1'2‘¢.n'k}¢

The derivation tree for K(33) is given Fig. 2.5 as an
illustration of the vertex =sets generated by Bonner's

algcrithm. From this <c¢ne can clearly see the property of

48

Bonner's algorithm defined in theorem 2.4, BAs a result the
numkter of components generated by Becnner's algerithm on K(mH

is given by the following:

THEOREM 2.5: The number of nodes in the derivation tree of

K(mk) using Bonner's algcrithe is [1+m}k
Prccf: Frem Theorem 2.4 it 1is clear that every complete
subgraph occurs as a node during some stage of execution. The

numkber of complete subgraphs cf crder i<k in K(mk) is equal to

the number of ways of choosing i from k tlocks %_.Vz,...,vk.

and then choosing 1 vertex frcm each of the i chosen tlccks.
Thls is mi(k). Hence the tctal pumker cf complete subgraphs is

(k) (1+m) 1. Since the root node of the derivaticn
1=l

tree is not yet included this results in a tctal of (1+mf{

nodes. QFEL.

369
366
367
359
358
BT a9
348
347 265
e 268
26
26 267 259
: 26 -
249
25 ...—-—-"’“"2“5

Fig. 2.5
BONNER'S ALGORITHM:

DERIVATION TREE

49

50

— e S e e o e . e T . ————

The storage requirements for PBonner®s algorithm are
similar to those for the Harary and Recss algcrithm. Two arrays
A and C of length n are required, each element corresponding
to a vertex subset which can be represented as a kit string as
can the rows of the adjacency matrix S. In addition an integer
array of pointers L is required. Twc tengpcrary bit strings 7T
and U are also needed in addition to a counter i. Using the
half-word of 16 Lits as the integer wunit, the storage

requirements are: 3n2 + 16(n+1) + 2np = 3n2 + 18n + 16 bits.

51

The computation involved in the Harary-Ross algcrithm was
dominated ty the computaticn cf a matrix prcduct and by the
generation of a large number of components and their
associated complete sukbtgraphs, which were later deleted.
Bonner's algorithm was also dominated by the generaticn cf a
number cf superfluous components. PBecause Peay's algcrithnm
generates only corponents which are essential to the final
determination of all cliques, it is of interest as it may bhave
a reasonatly small derivaticn tree. Hcowever, the means by
which Peay deletes non-essential ccrponerts results in a large
number of additional operations. Specifically, Peay ccmpares
each of two newly generated ccmpcnents tc an ever growing list
cf vertex sets of cliques and sukgraphs which are fotential
cliques. Thus, fcr a gragh with an expcnential number of
cliques, as a function of the numter of vertices, an
exponential numter cf ccrpariscns is required in additicr tc
the time for generation. As will be seen, this cff-sets tc a
considerable extent the time saved by avoiding the analysis cf
redundant vertex sets. Fcr this reascn we discuss here a
modificaticn to the algorithm which reduces the awount cf
storage required. The extent cf this reducticn is determined
in cur storage analysis. The procedure to te implemented for
obtaining this improvement depends on ordering the selecticn
of vertex subsets sc as tc cbtain a develcgment of *“depth
befcre breadth” of the derivation tree. The stack ccntairing
these vertex subsets is thenr altered to contain o¢nly thcse

vertex sets which dc nct induce <ccrnplete subgraphs. This

52

drastically reduces the size of the push-down stcre by
eliminating the growirg list cf cliques grevioucsly being kept
there, Instead, a test for clique memkership 1is wmade, 1like
that enployed in cur wmcdification of the Harary-Rcss
algorithm. These modificaticrs are included in cur subsequent

analysis.

Before proceeding, we shculd ncte however that the
inefficiencies inherent in the algcrithm as cited by Feay are
a ccnsequence of the application to which such a procedure was
being put, namely the deterwminaticn cf a hierarchy of cliques
in scciograms., As a rule the goal of a graphical treatment cf
such data 1is to assign the "ipndividvals" tc cne or more cf a
few sets which it is hoped characterize the structure cf the
group. Hence the nurter cf cliques in a sccial grcur as
determined by such an analysis is small and therefore the
difficulties of a possibtly expcnential nurber of cliques is
not pertinent. As our treatment of clique detection algcrithrms
is graph theoretic, we have nct ascsumed any a priori
informaticn about the structure of the graph induced Lty its
physical interpretation and must therefcre be ccncerned with

such prcblens,

2.5.1 NOTATION

V(G): the vertex set currently under ccnsideraticn.

G: the sutgraph induced cn V(G)

=]

: the numkter of vertices irn G.

I=

: the numter of vertex sets in the stack.

53
A(i): adjacency set of vertex i.
3J9111!J§213 newly generated vertex sets.

gI;§23 the subgrarhs induced on the new vertex sets,

STEPO: Initially place V (G) on the stack.

STEP1: Chocse a vertex subset V (G) from the stack cf vertex
sets to be considered. If the stack is enmpty then stor.

STEP2: Find a pair of vertices vi,vj bcth in V(G) =<such that
(vi,vj} is not an edge cf the criginal gragh. If no such gair
exists then go to STEPS.

STEP3s define new vertex sets V(Gl)=V{G)-{vi],

V(G)=V (G)={v_].

2 J
STEP4: For k=1,2, if V{Gk) is nct ccrtained in vertex set
currently cn the stack then rut U[Gk) cn the =stack. Go to
STEP1.
STEPS5: V(G) induces a ccrplete subgraph. If there exists no

vertex in the criginal gragph adjacent tc all vertices in V |G)

then print V(G) as a clique. In either case go tc STEPI1.

The tasks of Peay's algorithm can be logically grcured
into two tlocks. Tke function cf blcck 1 is tc exarine the
subgrarh induced cn a subset of the vertices cf a graph G, in
creder to find a pair of non-adjacent vertices. If a pair is
not found then a clique has teen disccvered and it ic printed.
If twec vertices, say v and w, are not adjacent then ccntrol is

rassed to block 2 which defines two new vertex sets. Each is

54

saved for further processirg prcvided it is not contained 1in
some previously generated vertex set. Control returns tc blecck

1 which chooses ancther vertex scet for examinaticn.

55

BLOCK1
1 ——> Fop V(G)
2 M <=- M-1
3 i ¢=-- 1
4 C <-- CU-C
5 5 j <== it
6 C <-- Cna,
s
7 substr (a,,J,1) = O =——>Block2
8 j <== G+1
9 £ j & n
10 i <== i+
£ .
T1 1 : 0D
12 el ¢ 'y @
13 print V (G)

1f G is in fact a cligue, then all n.(n -1 ones in its
adjacency matrix atove the diagcnal will be examined. The
computation time of block 1 for one iteraticn is therefcre
tounded akove Ly
T_(n = Cl+n Cl4n-(n -1)C2
1() il ’, *'Ja—“—J 3

with constants

C1 = 3¢t #t %t +t +t
1 1 2 3 4 10
Cl = 3t +2t _+t 4+t

2 1 3 4 6
ClL = t +t_+2t =+t

3 1 3 L 8

BLOCK2

14 V(G,) <-= V(6)
15 suhstr(vtsl),j,1) <== 0
16 V(G,) <= V(G)
17 subst:(V(Gz),j,l) <=— 0
18 k <=- 1
19 PR v(Gl) : 0 —
20 V() : V(G(k))H
21 V(G,) <== 0
22 — V(G,) : 0=
23 = V(6,) v (6t
24 V(G,) <= 0
25 —> V(6)UV(G,) : 0 ———p exit
26 i <—- i+1
27 FEES. S
28 V(G) = 0 S
29 Fush V(G,)
30 M <—— M#1
31 -‘-vtcz} : 0 i
32 push V(sz
33 N <—— M+1
—exit

The computation time is maximized when neither new vertex
set is contained in some previous vertex set., When this cccurs
the time for BLOCK2 is Iz = Ci+ﬂcz where

cz2 7t +#2t _#2t *2t 421
1 L 2% 3 L 8

cz2 t +t +6t +t
2 1. 3 L 6

and M is defined in section 2.5. 1.

it

57

2.5.3 NUMBER OF VERTEX

The complete derivation tree for K (3,3,3) wusing Peay's
algorithm 1is gquite extensive. As will be seen this is due to
the nature of the develcrrent <¢f new vertex =sets for
consideration, In crder to obtain an expression for the nurkter
of nodes in the derivaticn tree it %ill be convenient to
consider the development which occurs during the prccessing cf
one tlock of ver£ices. That 1is, =<=ince Peay's algorithm
deterpines two new components whenever a vertex GF[pair is
discovered which is nct an edge o¢f the gragh, we shall
consider all such pairs defined upcn a single vertex block of
G. Fig. 2.6 gives such a development for tlock vl = {1,2,3] cf

K(3,3,3) as lakelled inr Fig. 2.1.

Fxamination cf this sub-tree of the derivation tree
reveals that three components are eventually generated with
the property that each has exactly cne vertex in blecck 1 and 3
vertices in each of the remaining two tlocks. Since, for each
cf these <ets, the one remaining vertex is adjacent tc all
other vertices in the vertex subset cf that ccmpcnent it is
evident that no further computation will involve that vertex.
Thus the induced suktgraph cf each vertex sukset is equivalent
to K(3,3) with wvertices labelled 4,5,6,7,8,9. The number of
nodes generated is given by the sum of those deterwmined during
the generation <¢f three ccrpcnents, K(1,3,3), from one
compcnent, K(3,3,3), and the nurber cf ncdes generated in the
reduction of each K(1,3,3) (which is equivalent tc tbhe

reduction of K(3,3)). Therefcre if for K(mk) we can determine

58

the number
K (1,mk-1)
of nodes

algcrithm,

Wwe

in

of

nodes <created 1in generating m ccmpeonents
can oktain a recurrence relaticn for the number

the derivation tree of K{mk) using Feay's

59

123456789

13456789 23456789

1456789 3456789 2456789 3456789

Fig. 2.6
SUBTREE OF THE DERIVATION TREE

60

THEOREM 2.,6: The nurter cf vertex sets generated Ly Feay's
algcrithm tc find the cliques cf Kl]k) is 3t3k)-2.

Prccf: let vl,vz,...,vk be the blocks of Klmk) and 1lakbel the

vertices in block V., : (j=1)m+1, (j=-1)m+2,...,(j-71)m+w. Ccnsider

J

the sequence of derivaticns defined by prccessing the vertex
rairs (non-edges) (1,2) (1,3), eecse (1,m)s The vertex sets

derived starting from {{1,2,3,...,m],V2,...,V) are

k

respectively ({ 1l3lu!."'m]"12l’"'l‘u1c} e ([1,445,000 tm]ovz r---rvk

}'va-;({].m}'v2'...'vk)' and finall}' 1{1},V2,...,Vk). If

Y Zai*] soeen)s¥ ,...,Vk) is a typical vertex set fronr this

2
sequence of derivaticns, twc ncw sets,
{[1,i+1,...,m},V2,...,Uk) and {{i,i*l,...,m},vz,...,vk), are

derived by separating vertices 1 and i.

The latter vertex set is deleted since it is ccntaired in
the previously deterrired cset ({2,3,...,w],V2,...,Vk). We
therefcre have a tctal of 2(m-1) vertex sets determined during
this sequence of derivaticns, half cf which are deleted, the
remaining ones teing thcse giver akcve. This process is

illustrated in Fig. 2. 7.

The number of vertex sets considered in reducing cne
m-1

vertex tlock of K (£X) is given by 1+ £ 2i = 1+m(n=1) .
i=1
Let aE he the numter cf vertices in the derivation tree
cf K[mk) using Feay's algorithm. Since the reducticn cf cne
Flock of V(G) vyields &t vertex sets whose prccessing is

equivalent to that fcr K(mk'l), the number cf vertices is

given by the recurrence relation aE'= 1+m|m-2)+maE 1 whcse

sclution is: aE = Cka+1+m{m-2). The complete derivation tree

61

for K(3,3) is given in Fig. 2.8 frce which we chtain aI}‘: with

m=3. Solving for C 3

1 we qet Ci= 3 and a2 = 3131‘)—2. QED.

k

62

k MV eV

2,3,“0 .om,vzoopv'

3,J’2. ..Vk
l,?,B,u,...m,Vz...Vk 2,1&,5.-.:",‘.’2...\’;(
:\ = — m-l,m,v2-..\fk
\
pruned

MyV,-_eooV.
BB

pruned

2,v2. L lvk
m"l ’n,?zn L] Vk

e oruned

-
’f

o n,V v
l:u);-.-m"rzboovk 2 [

2t L] K
pruned

Fig. 2.7

-

PEAY'S ALGORITHM: S

DERIVATION TREE

no

63

26
356
35
3456
36
prunsd
23456 -
34
123156 2456 / 26
256 25
26
oruned
3456 2u6
pruned
\ 24
156
' 16
Fig. 2.8 156
DERIVATION TREE
146 12
FOR K(3,3)
= 15

Druned

11

s

64

— s —— . T ——————

As has been observed, Peay's algorithm as originally
defined required storage =space for all new vertex sets
generated during its execution., For a gragh with an
exponential number of cligues =such a demand is nct
practicatle. 1In our discussicn we have described and analyzed
a mcdification to the procedure which eliminates the need fcr
maintaining in tle stack the cliques as they are discovered.
By developing each path in the derivation tree as far as
possible, the number of nodes placed in the stack is never
greater than the length cf the rfpath generated, each entry
corresronding to the "other"™ vertex =subset of the pair of

vertex subsets developed at that stage.

Let V(G) ke a vertex sukset =such that V(G) induces a
complete k-partite graph having 1 vertex in i blocks and m
vertices in (k-i) blocks. If we <carry out a sequence cf
derivations ty fixing one vertex 1in Lklcck i+1, say v and
sequentially derive new vertex subcsets frcm the =set of non-

edges (v,ul),(v,%z),...,(v,u) then according tc the

k=1
arqument presented in a discussion of the derivation tree fcr
K(mk) developed Ly Peay's algcrithm, tuwc vertex sets will be
added to the stack after such a sequence of derivaticns. The
first consists of all vertices of the original vertex sukset
other than v. The length cf the prath in the derivation tree
correspcending to this sequence is m-1, the numker of vertices

not adjacent ot v. Since there are k tlccks in K(mk) the

maximum length of any path is (m-1) k. Hcwever by choosing non-

65

edges as described, after the (m-1)i th node cnly cne cf the
i+1 vertex suksets have teen saved fecr further pgrocessing,

hence the numker cf vertex sets cn the stack is at most k+1.

The only other storage required is that fecr the adjacency
matrix and a number of integer counters. Therefcre, since each
entry in the stack can bLe rerresented by a bit-string of
length n, the total storage requirements are n(k+1) + n2 + 16C

bits.

66

The analysis c¢f ©previcus algerithes, while providing
exrressions for a comparative analysis of sequential clique
enumeration algorithms has alsc revealed some of the
rroperties desired by a "good"™ procedure and scme cf the
hazards one must attempt to avoid. 1In addition, <certain
properties are characteristic c¢f algcrithms for explicitly

enumerating the cliques of a graph.

These algorithms appear to require a means cf determiring
the sets of vertices adjacent tc a given vertex as all
rreccedures discussed use this information to generate the
components to ke used in further analysis. This 1is not too
surprising since any graph is characterized by this sort of
information, However, the adjacency matrix representaticr cf a
graph provides this mcst cimply and directly. The
representation cf the rows of the adjacency rmatrix as a string
of bits qgreatly simplifies the «computation required in
determining new ccrponents. The importance o¢f an adjacency
matrix rerpresentation over some other representaticn is thus

emphasized ty these olkservaticns.

The desiratle properties cf a sequential clique
enumeration algorithm are two-fold. First, generate new
components which dc nct destrcy the existence cf wraximal
complete sutkgraphs with as 1little effcrt as possiltle.
Seccndly, generate as few such components as fpossikle. The
best possitle situaticn is tc avcid the need for deterrnriring

whether a complete subtgraph cr ccmpcnent Jjust generated is

67

frcperly contained in some other «clique of the graph and
requires some means of chocsing just the right set of vertices
so that nc redundant component is ever generated. Because cf
the complexity c¢f the [cssible intersections of the vertex
sets of cliques in a gragh, it is difficult tc determine Just
hew such a set could be chosen. It is not sufficient tc find
either a maximal cr a rinimal independent set c¢f vertices
which covers the vertex set c¢f a graph as the following
example illustrates., Consider the graph of Figq. 2.9. The
vertices 1labelled 1 and 4 in the graph constitute a minimal
independent set of vertices ccvering the vertex =et of the
graghs It is clear however that the clique K (1,1,1,1) induced
on vertices 2,3,5 and 6 ccrtains no vertex in this ©particular

minimal covering.

Similarly ccnsider the graph in Fig. 2.10. It has a
maximal independent set of vertices latelled 1,3 and 5, rcne
of which 1is a mermker cf the clique induced cn vertices 2,4,

and 6.

Clearly one requires the prescient atility to «chocse an
appropriate indeprendent ccvering set of independent vertices
among an exponential nnmher of possitle choices. There is
presently no known way fcr accomgplicshing such a task in an
efficient wmanner. The algcrithm tc be described generates a
reduced number of redundant vertex sets, and uses an efficient

procedure for detecting such redundancy.

It will ke seen that with =scme mcdificaticns the

prccedure to be descrited combines some of the ketter features

68

of the previous algcrithms. As a ccnsequence we shall show
that the performance of this algorithm is comparatle to and in
many cases (eg. Grarhs with many cliques) better than that to

be expected from the others.

69

Fig. 2.9
MINIMAL COVER COUNTEREXAMPLE

Fig. 2.10
MAXIMAL COVER COUNTEREXAMPLE

70

Each vertex subset +tc be prccessed is divided into two
parts; V(G1), the set of all vertices in that sulkset yet tc be
examined and V(G2), the set c¢f all vertices rpreviously
examined and which induce a ccoplete subgrath in the original
grarh. The vertices in V (G1) have the additional property that
they represent all rfpossible extensicns of the complete
sukgraph induced on V(G2) which yield a larger complete

subgrafgh.

If v(G1) is empty, then provided there does nct exist a
vertex adjacent tc all vertices in V{(G2), we have found a
clique. Such a condition is maintained by deleting fronm
further consideration any vertex suktset all of whcse memkers

are adjacent to some vertex cutside the subset.

If V(G1) is nct empty then we generate n - d(v) new sets
by first choosing a vertex v, and then considering it together
with the n - d(v) - 1 vertices nct adjacent to v. Each vertex
frcm this set is used to define a new vertex subset by adding
it to V(G2) and thus extending the set of vertices already
considered, and then defining a new set o¢f vertices to tLe
considered from V(G1) by including only those vertices

adjacent to that vertex just added to V(G2).

2.6.2 NCTATION

V{G1): set of vertices in the current vertex set yet to

be considered.

71

V(G2): set c¢f wvertices in the current vertex set which
induces a complete sukgragh.

V(H1): new set of vertices to le considered.

V(H2): new expanded set of vertices inducing a <conmplete

subqgraph.

F: set of vertices nct adjacent tc a chcsen vertex fronm

A: the adjacency matrix of the suktgraph induced cn

VIGT)uL V (G2).

2.6.3 RECUCEL RDUNDANCY ALGORITHM

TFPO: initially place V(G)u @ cn the stack.

I

TEP1: Chocse a vertex subset V(G1)uwu V(G2) frcm the stack of

ity

n

ubsets to ke ccnsidered. If stack empty, stcp.

STEP2: TIf there exists a vertex adjacent to all vertices in

V(G1)U V(G2) then go to STEPI1

STEP3: If V(G1) is empty then print V(G2) as a clique and go

STEP4: Chcose a vertex v in V(G1) and define F to Le a set

consisting of v together with all vertices not adjacent tc v.
STEPS: Choose a wvertex w in F and define a new sutset
V(E1)U V(B2) where V(H1) is the =et cf all vertices in V (G1)
adjacent tc w, and V(H2) = V(G2)U {w}.

STEP6: Celete vertex w frcr sets V(G1) and F.

I

TEP7: If F empty then go to STEP1; else qo to STEPE

In order to compute the time for one iteraticn cf the

72

algorithm the instructicns perfcrmed are as fcllows:

1 ——» [FOE V(G1),V(G2) €

2 C K= C U :=C

3 i <=-=-1

4 ~» substr (V(G1) U V{G2),i,1) : 0=
5 C <=-- CNnA{i)

6 i €== i+1 =

7 i 2 p

8 c %0

9 V(G1) : 0 ——=prrint V(G2)
10 v <== index(V(G1),1)

11 F <-— —=A(v)

12 W <=— irdex(F,1) &

13 V(H1) <=- V(G1) N A{w)

14 V (H2) <-- V (G2)

15 substr{(V(H2),w, 1) <-- 1

16 push V(H1) ,V (H2)

17 substc(V(G1),w,1) <-- 0

18 substr (F,w,1) <—— 0

19 Z g 0L

—— i —

As an example we again ccnsider the derivation tree of
K(3,3,3) 1labelled as previously in Fig. 2.1, the tree this
time being determined by our algorithm. It is given in Fig,

2.11. Each vertex not representing a clique is labelled Ly the

73

pair (V(G1),V(C2)) representing the vertex subset generated Ly
tlie algorithm. The nurter c¢f ncdes in the derivation tree for

K(mk) is given in the following theorenm:

THEQREM 2.7: The number of nodes in the derivation tree cf

K{mk) ™ k+lf]'

Proof: Let T;e nodes of K[uk} be labelled such that if v is a
vertex of tlock Vi' vj a vertex cf klcck vj and i < j, then
the label of v is smaller than the latel of vj. The algcrithm
processes the vertices c¢f a gragh in ascending crder cf
lakelling. A tyrpical ccrpcnent during execution of the
algcrithm has i vertices in Vv (G2), one from each cf the
tlocks Vl,vz,...,vi. V(G1) 1induces a ccmplete (k-i) partite
graph with m vertices ©per bklecck. This corpcnent therefore
determines m new components, one for a selected vertex in
the cnly

kElock V, and m-1 for the m=1 cther vertices in V,
1t i+

1 1
vertices nct adjacent to the selected cne. Fach component

therefore determines m new ones, until there are k vertices in

V(G2) in which <case therec are ncne in V(G1). The numkter of
k

vertices in the derivation tree is therefcre = nm
i=0 n-1

1 - mMI-L

74

0,7(3)

Fig.. 2.11

REDUCED REDUNDANCY ALGORITHM: DERIVATION TREE

75

2.6.5 ANALYSIS CF AN ITERATICN

The ccmputational effort for one iteration of the
algorithm to find the cliques cof B(nk) is easy tc determine
frcm the Iverson description. The loop:7 to 4 is executed n-1
times where n is the number of vertices in the original gragh,
while the lcop: 19 tc 12 is deternmined as fcllcws. lLet the
vertex set currently under consideration have 1 vertices in
V(G2), and (k-i)m vertices in V (G1). Then F defined in line 11
consists of all vertices in cne blcck ard ccnsequently lcog:

19 tc 12 is executed p-1 times.

The expression for the computaticn time during cne
iteration is therefcre giver by

To(n) = Co0+nco+mCeC

& 2 3
where
0 = Ut_+t_ 2t +t, +t
©5 N e N
0 = +t, + +
C‘2 2t1‘t‘.3 2t t8
0 = +t_+t +t 4 +
C3 btl t:2 th té:lt t9
prcvided the vertex set under consideraticn does not have

V(G1) empty. If V(G1) is in fact empty, as it will ke for all
nodes of the derivaticn tree rerresenting cliques, then cnly
lines 1 through $ are performed and the ccmputation time in
this instance 1is Tl(n) = Cﬁfnc% where Cg is given aktcve and
C‘l= 2t1+t2 +2ti+'

We can now ccmkine the results cf the ccmputation tinme
for cne iteration with the number of nodes in the derivaticn
tree to ottain an expressicn fcr the total ccmputation tinme

required to find the cliques of Ktmk). There are m nodes fcr

76

which the computation time fcr cne iteraticn is T (mk) . and
ﬁf&l - K = EE:%. nodes where To(mk) is the ccmputation tinme.
ngie T (mk) =m;l[mk)m1§To(mk)E:§;, m>1. The case fcr mn = 1
clearly defines a deriVationliree ccnsisting of a single path
of_length k. Hence the computation time to determine that

K(1X) is a clique is T (k) = T, (k) + (k=1) T (K)

- i o el ———

Like the previous algorithms of Harary-Rocss, Bcnner, and
Peay, the Reduced Redundarcy algcrithm waintains c¢nly one
ad jacency matrix, that of the original graph G. Vertex suktcsets
are maintained c¢n a stack and used to select the aprrogpriate
rows of the adjacency wmatrix cf G, to cbtain adjacency
frcrerties of the subgraph of G induced on the vertices in the
vertex sukset. Our alqgcrithm, hcwever, generates n -d(v) new
vertex sets during an iteration where n is the npumker cf
vertices in the set and d(v) is the number cof vertices in that
set adjacent to v. For this reason it is more difficult tc
determine the storage requirements of the push-down store for
an arktitrary gragh. Instead we <chall again examine the

ccnplete k-partite graph K(mk).

If we again adopt the strategy of developing the
derivation tree in a "depth befcre breadth" manner, it is
clear that no path is of length greater than k. Further, from
the Frevious discussion we know that every vertex set

V(G1)UY V (G2) is caomplete k-partite with 1 vertex in each of i

77

blocks. V(G1) consists of the m(k-i) vertices in the remairing
k = i kElocks. If we select a vertex v frcm V(G1) to determine
new ccmponents, the numter cf vertices nct adjacent tc v is m-
1« Therefore, to each node in a path of length k in tbhe
derivation tree thkere are s-1 cther ncdes ccrresponding to
vertex =sets yet to e processed. Hence the push-down store

nust be capable of handling k (m-1) vertex sets.

The storage requirements for the new algorithm applied tc
K(mk} are k(m=1)+(mk)2+2nk+16C bits, C ©being the number of
counters and fpointers wused. <Since we can partiticn a graph
intc k blocks no block of which has more than m vertices fcr
k = XI(G6), the chrcmatic rnumbter cf the graph, this expression
alsc serves as an upper tound on the stcrage requirements for

an arbitrary gragh.

78

2.7 THE BRON-KFRBOSCH ALGORITHM

o e e i e i e e T . s —

The Eron-Kertosch algerithm is the most recent clique
enumeration algorithm known to this author. Mulligan [64] has
descrited the rprocedure and fcund it tc te sugperior to
Bierstone's algorithm, a nethcd alsc discussed by BAugustson

and Minker [5].

The algorithm employs a recursive procedure whichk is used
to modify a glotal vertex set ccnsisting cf all vertices which
form a complete subgraph of the original graph. The functicn
of the recursive prccedure is tc extend, if possiltle, the
numker of vertices in the ccmplete subgraph. This is
acconplished by maintaining several lists and ©pcinters in a
stack generated through recursive calls tc the procedure.
These include two vertex subsets, one a set of candidates
which can be wused to extend the complete suktgrarh, and the
second a set of vertices which have already heen used to carry
cut such an extension., Since the contents of the vertex sulkset
is under continual wmcdificaticn it 1is alsc necessary to
maintain a pointer indicating the last entry into the set.
Some other counters are alsc wmaintained thrcuqh recursive
stacking of definiticens which will be apparent from the
description of the algorithm. In what follows we shall use the
notation developed by Mulligan and his formulaticn of the

algorithm,

2:03)

A. In

STER]

SIEE2

stop.

79

NCTATICN

Ne: number c¢f vertices already examined in V.

Ce: total number cf vertices in V.

S: pointer to selected vertex from V used to extend
compsub.

Pos: positicn cf a potential candidate.

Nod: number cf vertices not adjacent tc a fixed vertex
amcng the set of vertices in V already examined.

Minned: minimum numker of vertices not adjacent tc a

fixed vertex.

Fixp: vertex with raxirur degree in the subgraph induced

NEW: new vertex set.
Newne: nurber cf vertices in NEW that have Leen exarined

before.

Newce: total numter cf vertices in NEW.

T —— o ———

: Set V te V(G), ¢ to 0 ne to 0, ce to n.

: Call recursive procedure FXTENL (V,ne,ce). On return

80

= —— o

STIEP1: set minnod to ce, nod to 0 ,

set i to i+1. If

set count to 0. For

[+

djacent to V(i) set count to count+l

STFP4: if count < rirncd then set

i>ce or minnod =

each

fixgp tc

e

i to 0.

0 then go to STEPG6.
V(j), J=ne+1 to ce nct
and pos to j.

V(i) , minnecd to

count and go to STEPS; else gc tc STEP2.

STEPS: if 1 £

ne then set s to pos;
In either case go to STEP2.

STEP6 Set ncd to minnod+ncd.

If ncd £ 0 then return.

Interchange V(s) with V{(ne+1).

— e

Set newne equal tc the

(V1) sV (2) yesaeV(NE) } adjacent

NEW(1) ,NEW(2) ¢yo=. ,NEW (newne)

Set

vertices in ({V (ne+2),...,V(ce)] ad

equals the total number cf vertices i

——— ——

clique; e€lse if npewne less

EXTEND (NEW,Dewne,newce)

STEP13: Set ¢ to c=1, ne tc ne+li,

set nod to nod-1, If nod >

vertex from ({V(ne+1l),...,V(ce)] not

yet chosen. Go tc STEP7.

The Eron—-Kerbosch algorithm has been divided

blocks. The task performed by block 1

nurber cf

NEW (newne+1) ,..., NEW (newce)

else set s tec 2 and nod

vertices in

to Vi{ne+1). Set

equal to those vertices.

equal tc thcse
jacent to V(ne+1). Newce
n NEW.
(ne+1).

cppsub{i), i = 1,2,e¢0,C

than newce then call

0 then choouse ancther

adjacent to fixp and nct

into three

is to extend if possitble

81
a complete sukgraph ccntained in G by exarining vgrtices not
rreviovsly encountered to see whether they are adjacent tc all
of the vertices of the ccrplete subgragh under consideration.
Contrcl is passed to bFklock 3 where if such an extensicn is
Fossible it is made, a record being kept of those vertices
previously encountered ard yet tc be exarined., If the complete
subgraph cannot be extended it is printed out. Elock 3
recursively calls block 1 returning only after all pgcssible
extensions have reen examired, Ccntrcl is then passed to Eblock
2 which makes the next pcssible extencicn tc the vertex set

under ccnsideration at the present level c¢f recursicn.

82

10
1
12
13
14
15
16
17

18

19

20

pinncd <~- ce
nod <-=- 0
i ¢== 0

— 1 <-— i+
>

is2 ce

minncd : ¢ =

|

count <-- 0

i £=- ne+1

-t

pos <-=- j

J K== j¥1 =

—> substr(A(V(i)),v(i).1)

count <-- count+1 .

-
-

28

0

L€ 5 : ce

F__icount : mirncd

fixp <-- V(i)

>

[&——=c {-- pos

pinncd <-- ccunt

s (R S - C—

nod <=- 1

s - i€e—

21 c <-=- c-1
22 ne <-- re+1
23 nod <-- nod-1
24 g K== pe+l
25 substr (V(s) ,fixp,1) : 0 E— 29
26 5 == s+1
27 £s : ce
return
BLOCK3
28 nod <-- mrinncd+ncd
29 nod : 0=——p return
30 sel <=- 1V (sg)
31 V(s) <=- V(ne+1)
32 V(ne+1) <-- sel
33 newne <-- 0
34 i €= 1
35 —>substr (A(V(i)),V(ne+1),1) : 0-—
36 newne <-- newne+i
37 NRW (pewne) <=-- V(i)
38 i <K== 141
39 £ 3 : ne
40 newce <-- newhe
41 i <== ne+2
u2 substr (A (V(i)),V(ne+1),1) : 0 =» 45

43 newce <-- newce+]l

84

by NEW (newce) <-- V(i)

us5 i <== i+1

46 L2 ¢-% i : ce

47 | C <~= cCc+1

us compsub (c) <-- V (ne+1)
49 newce : 0 =

50 i <= 1

51 ~——»print compsub (i)

52 i €<== i+1

53 ——ﬁ-i s €

54 21 = Newne : NeWCe G
55 21 €—— call EXTEND (NEW,newne, neuwce)

el

2.7.3 IHE NUMBER CF VERTEX SETS

Let vl'vz""'vk be the blocks of vertices cf K[mk), each
containing m mutually ncn-adjacent vertices. The Bron-Kerbosch
algcrithm proceeds ty fixing a vertex and defining a new
vertex subset to be the set of all vertices adjacent toc the
fixed vertex. This vertex subset is partiticned into two parts
tc precvide imformation for determining whether a corplete
sukgraph is maxiral or has been ccnsidered before. At a given
level i cf the recursion other vertex sets are generated
whenever control again returns to that level by chocosing among
the set of vertices not adjacent tc the criginal fixed vertex.
This selection fprocedure is analogous to the @mechanism
enplcyed by the Reduced Hedundancy algorithm for generating

new vertex subksets and as a ccnsequence the pumber of vertices

85

in the derivation tree is the same, namely gk*l—], Tc see that
this is the case it 1is c¢nly necessary m:i establish an
equivalence between the nodes of the derivation tree generated
by our algorithm and the ncdes in the derivation tree
generated by the Bron-gerbosch algorithm. If we assign level 0
to the node of the derivaticn tree corresponding tc the
original vertex set of the gragh, then a ncde at level i in
the algorithm corresponds to the vertex subset of a complete
(k-i) partite graph while the selecticn cf fixed vertices nmade
in the generation of a path from the root tc 1level i is
contained in the array compsub . From previous discussion cur
algorithm has a ncde a distance i frcm the 7rcot +with two
vertex sets V(G1) ,V(G2). G2 corresponds to a complete sukgrarh
of order i, while V (G1) induces a complete (k-i) partite
graph. By choosing that path cf length i which results in
V(G2) containing the same vertices as ccmpgsut, V(G1) is then
the same set as the vertex subset generated Ly the Brcn-

Kertosch algorithm.

2.7.4 ANALYSIS OF ONE ITERATION

Since the algorithm employs the same technique fcr vertex
set generation as cur algcrithm, the relative efficiencies of
the two procedures are dependent upon how the ¢prcperties cf
the vertex set so generated are explcited during an iteration.
This depends on three factors; the way the data 1is
represented, the order of development of the derivation tree

and the means ty which redundant ccmponents are avoided.

86

To determine the computation time required ty the Brcn-
Kertosch algorithm as imgplemented Lty Mulligan 1let V be a
vertex set under consideraticn at level i. The maximum depth
of recursion by the algorithm is k. At level i we have i+1
calls outstanding of which i bave teen <called Lty the
procedure EXTENLD itself. All rfparameters defined within the
Frocedure are saved, a feature important in the determinaticn

of storage requirerents.

A vertex set generated by the algorithm in finding the

cliques of K(mk) has the property that at level i all

vertices that have teen ccornsidered lie in blccks vl,ﬂa,...,v_
while those yet to e considered lie inp V eV, seee sV .
i+l is2 k

There are m(k-i) vertices in the latter collection since every
vertex is adjacent to any vertex in Vi frcm which the selected
candidate was chosen. Hence every vertex in the 1last (k-1)
blocks of Ktmk) has the minimum numker of disconnecticns since
the vertex set under ccnsideratiocn can have at most m-1
vertices from any previous Ftlock already ccnsidered, the
remaining vertex currently in compsul. Since minnod > 0 fcr
all vertices in the vertex subset, lcop:14 tc U4 1is repeated
ce-ne-1 times plus once more when choosing a vertex for fixp,
while loop:18-to 4 is repeated at most ne times. Finally, the
inner loop:13 to 9 is repeated m(k-i) times for each vertex
already considered and m(k-i-1) times for each vertex yet to

be ccneidered.

The time for cne iteraticn cf tlock 1 is thus tounded by

T, = Cl+(ce=1NCl+pe (C3'+m(k-i)CIt)+{ce—-ne)m(k-i-—1)CL

87

where
Ci = ?tl+t£+
Cb = 3t1+2t3+”th
Cb = 3tl+th
Ci = 3tl+2t3+tl++t8

Loop:54 to 21 1is rereated after every retvrn from the
recursive call in line 55. This equals n-d (fixp), the nurket
of vertices not adjacent tc fixp. Lccops 27 to 25 and 46 tc 42
are repeated ce-ne times, while lccp:39 tc 35 is 1repeated ne
times, If i<k=1 a clique has not yet Fteen found sc statements
50 throughbh 53 are skipred. If we define cre iteration as being
the total ccmputation perfcrmed until a return is made at line

29, then the computation time for tlocks 2 and 3 tcgether is

tounded ty
— — F 3 2 -_— 2 2
T2 (n d(tlxp))(cl+(ce ne)C2+neC3)+tl+t3
with
2 =
C1 13t1+6t3
2 = 7
c2, {2tl+t3+t£++t8) (Y +t3+¢th+t8)
2. = 3t . €2¢ ¥24.¢L.,
3 1 3 4 8

The order of the computation time fcr cne iteration is
therefcre between n and n2, For vertex sulsets such that ne=0,
the computation fcr one iteraticn is cf crder m2(k-i)2, the
square ct the numter of vertices ir the =subset under

consideration,

88

2.7.5 SIORAGE REQUIREMENIS

As previously cbserved, the maxiwmur depth of recursicn is
k. Hence all variables defined within the recursive functicn
must te stored k times. This consists cf pcinters and counters
and the array NEW an integer array of size n. The adjacency
matrix of the original gragh and the array compsub cf order n
are maintained cutside the recursive prccedure. Since the
adjacency matrix is stored as an array of kit strings the
storage requirerents for the Bron-Kerbecsch algorithm as
implemented by Mulligan are n2+n (k+1)+16Ck+16 kits where C is
the numter of integer scalars defined within the rcutine
EXTENC, and the additicnal 16 bits are an allowance for a

glcbally defined variable.

89

—— v ————

3.1 INTRODUCTION

It is evident from the otservations and rtesults cf
Chapter 2 that the efficient detection of cliques is severely
hampered by the possibly exponential numter cf such subgraghs.
Even the act c¢f printing them out can occupy an inordinate
amount of time unless there exists some means of
simultaneously identifying several cliques and alsc scme wmore
compact form of nctation than explicitly defining the vertex
sets of each clique. Two approaches tc this prctlem will Le
examined separately in this chapter, each of them exploiting
properties which measure the degree to which any twc vertices

are different,

One such device is similarity of vertices, The
automorphism grcugp of a graph partitions the set of vertices
V(G) into equivalence classes called the orbits of [Y(G). Two
vertices are similar if and only if they are members of the
same orbit. Hence there exists a permutation in ['(G) which

maps u onto w where u and w are vertices in the sawre crbit.

An examinaticn cf complete k-partite graphs with m
vertices in block v , reveals that every vertex in any block
can be interchanged with any other, ie vertices in any block
are similar. Let u, w be two such vertices., Then if we know
the cliques to which u telongs and a permutaticn which mags
u onto w, we alsc have all the cliques to which w belongs.

Such a representation is more compact as it reqguires

90

explicitly defining only the cliques associated with u.

In the development which follows we shall tacitly assume
that a procedure for determining the orbhits is available. For
implementation we shall employ Corneil's algorithm[12]. It is
important to note here that while Corneil's procedures have
not failed on any gragphs encountered to date, that their
correctness depends on an unproved conjecture., Corneil
therefore describes his algorithm as a heuristic one, a policy

which we formally must also follow when using his routines.

A difficulty with such an overall approach as offered
here for inmproving the efficiency of clique detection occurs
when u and w, vertices in the same ortit, are tkcth pembers of
some common clique, in other words u is adjacent to w. This is
often the case as is illustrated by the existence cf connected
point symmetric graphs, which by definition have all vertices
belonging to the same crbit. Since vertex similarity can be
used at several 1levels of <clique detecticn other than
enumeration we shall defer further discussion on this protlem

ontil later.

91

The remarks c¢f the introduction to this chapter suggest
that similarity of vertices may contrikbute to a
characterization c¢f the cliques in a graph. To what extent
this is true will be examined in this and the next secticn. Of
particular interest will te the behavior of sukgraphs induced
by a single vertex since this is the major mechanism by which
a graph can be decomposed into smaller sukgraphs fcr further
processing. This feature has already been observed previously

in the sequential algorithms of chapter 2.

The major portion of this section is devcted to an
examination of cliques in point-symmetric and line-symmetric
graphs. Of particular interest is the deqree c¢f =sysretry cf

the induced subgraghs.

THEOREM 3.1: The subgraph induced on the adjacency set of a

e e e —

fixed vertex in a line-symmetric graph is point-symmetric.

Proof: Let G be a line-symmetric graph, v a vertex in V(G),

e e e e e

and denote by {wl,uz,...,uk} the set of vertices adjacent tc

V. Since G 1is 1line-symmetric there exist permutations

]

ctzfvcﬂll (vew,)

“‘3("'"1) = tV.NB)

il

a
k(V.ul) (Vew,)
These permutations, together with their inverses, hcld v fixed

and hence belong tc I‘v, the stabilizer of v. Since everyel in

92

I" (G) preserves adjacencies, every o mafs W, cntc some

wj where Wi'wj' are in {ul,...,ﬁ{}. If ﬁ_'"j are any two
. : : -1 -

vertices 1n {“lf"""k} thenujdj“(v,ui) = {v,uj) and hence

the set of vertices {ul,...,uk] is similar. Further, since

every permutaticncxf-!"v maps w. onto some HJ the integrity of

the subgraph induced on (¥)eeee,w,] is preserved.

The subgraph induced on the adjacency set of a fixed
vertex in a pcint-symmetric graph is not necessarily point-
symmetric., This is illustrated in the counter-example given in
Fig. 3.1. The subgraph induced on vertices adjacent to vertex

1 is given in Fig. 3.2 and is clearly not pcint-symmetric.

Dauber and Harary [43] and Folkman [32] have investigated
the extent to which line-symmetric graphs are point-symmetric.
The principal result of Caukter and Harary is the estatlishment
of conditions which characterize such graphs, namely that
every line-symmetric graph with no isolated points 1is F[pcint-
symmetric or bipartite. This result together with the previous
theorem establishes a sufficient conditicn feor fpcint-symmetric
graphs to have fpcint-symmetric subgraphs induced on the
adjacency set of a fixed vertex, that condition being that the
graph be line-symmetric or reqular bipartite. That this
condition is not necessary is illustrated by the graph given
in Fig. 3.3, a graph not line-symmetric or regular Lifpartite
but point-symmetric and every subgraph induced on a set of
vertices adjacent to a single vertex is also fpcint-sympetric.
For this graph the edge (1,2) 4is not similar to the edge

(1,6) .

Fig.. 3.1
POINT SYMMETRIC GRAPH

N e

Fig. 3.2
INDUCED SUBGRAPH OF FIG. 3.1

93

94

Fig. 3.3

POINT-SYMMETRIC GRAPH NOT LINE-SYMMETRIC

95
We shall denote by A(v) the set of vertices in a graph G

adjacent to the vertex v.

LEMMA 3.1: let vl,v\ be any two similar vertices of a graph G,

e s o v
F-

and denote by Gl and G2 the subgraphs induced on A(vl) and

A(v_) respectively. Then there exists a in ['(G) =such that
A

]
(7]

i
(7]

Proof: Since v.e v, are similar the numter of vertices in Gl
is equal to the number in 62. Let o e an autcmcrphism of G
mapping vl centc v2. Then for each u in V(Gl) there exists a
unique image oLu. Further every such vertex o u in cLV(Gl) is
adjacent to v2 since every vertex u in V(Gl) is addjacent to
vl. Now by definiticn ‘J(Gz) is the set of vertices adjacent to

d h V(G = N(G.).
v an ence(2) (l)

2'

Since & 1is an automcrphism, (u,w) is in E(G) if and
only if (etu, eew) 1is in E(G). Hence for any u,w in V(Gl),
(u,w) is in E(Gl) if and only if (ou, &&w) is in E(62) since
au, W are vertices from \J'(G2)« Therefore E(Gz) = o Elel)

and hence & G = G .
1 2

As a consequence of this Lemma we have the fcllcwing:

LEMMA 3.2: let G be a pecint symmetric graph, and dencte by

“2' a(3,...,ock automorphisms of G such that

“avl = Vg
v = V,,
3 1 3

96

Then it is the case that:

del = G

2
dBGl = G3l
d.kel = Gy,

where ql,Gz,...,Gk denote the subgraphs induced on

A(vl),h(vz),...,A(vk) respectively.

Let {vi,vé,...,vi] ke the vertex set cf G for
i=1,2,.e.,k and suppose without 1loss of generality, that
div;'= v?. Then clearly if we know the cliques of G,, we can
find all the remaining cliques of G knowing the perrmutaticns
sz,da,...gxk. Tc avoid duplication of cliques the following
test can be employed. If we are examining the <cliques
associated with component Gi' then delete all cliques

containing vertex vj for j = 1,2,¢..,1i-1 as such cliques have

already been fcund during the examination of component G

3°

Such a strategy encounters difficulties on two fronts.
First, as we have seen previously, the pcint-symmetry cf a
graph is no guarantee for the point- symmetry of subgraphs
induced on vertices adjacent to a point, hence the probler of
determining the cliques of G 1is as yet unresolved. Secondly,
the determination of automorphisnms "‘4""3’“"“1{ is in general

a difficult problem.

We can overccme the first difficulty by generalizing the
procedure to include graphs which are nct necessarily point-

symmetric. Then, the existence of an algorithm for determining

97

the orbits can be exploited in the following way.

Every member cf each orbit can be represented by a single
vertex which determines the induced sutgragh for further

processing. If 4 = (V. ,V. ,e..,V. } is an orbit of [(G) for

some graph G and if ¢, ,&¢. ,...,X. are persutaticns in [' (G)
A1 A2 Tk

such that:

X .V, = Vv

ii; ié
"‘13"11 = "13
XK. v = v,

Ly dy

then by an arqument simliar to that previously given the
cliques associated with viy....,vik can ke determined if we
know the cliques associated with vil. The development of an
algorithm wutilizing such techniques will te the focus of the
next section. The cbject will not be to find all the «cliques
because of the difficulties associated with determining the
permutations which map similar vertices onto each other.
Rather, the alyorithm shall attempt to find a set of ncon-
similar cliques cf a gragh G which together with a kncwledge
of the autcmorphism grcup I (G) will be sufficient to
determine all the cliques of the graph. The algcrithm can thus
be ccnsidered as a sub-program which when incorporated with a

sub-program for determining the automorghise grcup will

provide a mechanism for finding the cliques.

98

The purpose of the procedure to be descrited here is to
somehow characterize the non-similar cliques of a graph. Two
cligues Cl and 62 of a graph G are said to ke similar if there

exists an automorphism o of G such that aLCl = (22 .

A naive apprcach to the problem of determining the non-
similar cliques of a graph which serves to illustrate what we
are attempting to find involves generating the "equivalence
classes" induced on the set of all unordered k-tuples of
vertices of G by the automorphism groug Iy, for
k=1,2,ee..0=-1., Fcr any given k, we examine the cliques that
are members of each equivalence class, chcosing cne as a
representative member. Since the automorphism group preserves
adjacencies, two k-tuples are members of the same class cnly
if the subgrarhs cf G defined on the vertices represented by
the k-tuples are isomorphic. Such a procedure, therefcre,
clearly provides more information than we desire as we are
intersted only in those classes whose k-tuples are the

vertices of maximal complete subgraphs.

The mechanism to be employed will depend primarily on the
observations of the previous section; namely, that it is
possible to generate all the non-similar cliques of a graph by
reducing a graph tc components equal in number to the ortits
of the automorphism group of the graph, each ccmponent being
the subgraph induced by a vertex from an orbit. Each component
will then serve as input and subsets of vertices will thus be

generated in a recursive manner analogous tc the sequential

99

procedure described in chapter 2.

There is not, unfortunately, sufficient infcrmaticn tc
determine all the ncn-similar <cliques of a graph frcm the
orbital partiticn of V(G) alone. This is illustrated by the
following example. Suppose we apply the procedure of chcosing
vertices as just described to the graph of Fig. 3.3. Since
this graph is point-symmetric, one vertex shculd be sufficient
to characterize the "first" vertex of all the cliques. Let
that be vertex 1. The subgraph induced on vertices adjacent to
1 consists of three independent vertices 2,5 and 6 each of
which belongs tc the same block of the orbital partition of
V(G). The "second" vertex of all cliques should therefore be
characterized by one vertex, say 2. As (1,2) is a clique cf
the graph and since we have argqued that a single vertex and
the subgraph induced on adjacent vertices should be sufficient
to characterize all cliques of the graph, we wculd have tc
claim that all cliques were similar to (1,2) which we know to
be false since the graph being examined is nct line-symmetric.
In fact we have previously okserved that edge (1,6) was nct
similar to edge (1,2) and therefore =should also have Leen
generated in the determination of the non-similar cliques cf

the grarch.

We can resclve the twc non-similar cliques of the graph
of Fig. 3.3 by using not only the orbital partiticn of V (G)
but also by determining the orbits induced c¢n 2,5,6 by the
stabilizer of 1. This <results in a partitioning of {2,5,6}

into two sets {2,5} and [{6}. By selecting a refpresentative

100

vertex from each cf these sets we can obtain two non-similar
cliques say (12) and (16). This example illustrates the fact
that although the group ['(G) of a graph may be transitive on
the vertex set V(G) it is not necessarily transitive cn A(v).
We have previously shown that if G is line-symmetric then this
will be the <case. Before we present a description of an
algorithm for finding the non-similar cliques cf a graph fron
its orbital structure we examine further the orbits of the
stabilizer of a particular vertex v in the follcwing two
theorenms.

THEOREM 3.2; Every automorphism o« in the stabilizer, Fv, of v
is an automorphism of Gv, the subgraph of G induced on the set
of vertices adjacent to v.

Proof: Let P be a rpermutation wmatrix corresponding to the
automorphism o« in r;. Without loss of generality assume the
vertices of of G are labelled 1,2,...,m, and the remairing
vertices in G are 1labelled m+1,m+2,...,Nn. Let A (G) be the

adjacency matrix of G, L(Gv) that of Gv’ Clearly A(G) is of

the form:
A(GV) A,
T
32 AB

Since P ccrresponds to an automorphism in the stabilizer
of v, by Lemma 3.1 P maps V(Gv) onto V[Gv) and is therefore cf
the form:

P 0
1

0 P2 where Pl acts on vertices

labelled 1,2,...,m, the vertices in V(Gv).

101

Since is an avtomorphism of G, it is the case that

PTI(G)P = A(G). Hence
:)

By 0 N LY R P 1 Py 0 . A(G,) A,
T T 4
0 Py A Az) 0 P, A, Ag

T B A
or PlA(Gv)Pl- A{Gv). Consequently ol macrs Gv cntc itself. QED.

As a corollary to this theorem we have following result:

COROLLARY: Every crbit of ", 1is contained in sore corkit of

r‘“v'

Proof: By the previous theorem every automorphism of G is one
of G . Let u,w be vertices in V{Gv) and suppose there existsar
in Fv_such that &u = w. Hence & is an automorphism cf Gv and u

and w must be members of the same orbit induced on v(Gv) by

f'(Gv). CED.

THEOREM 3.3: Let G be a connected point-symmetric graph. Then
G 1is line-symmetric if and only if for an arbitrary vertex v,
the stabilizer PVEIXG) of v is transitive on A(v) the set of
vertices adjacent to v.

Proof: Let A(v) = [ul,uz,...,uhj. If G is line-symmetric then

for any "i'wj'i:* T4 {v,ui) is similar to (v,uj). Hence ol is

transitive on A (V).

Conversely suffpose |1vis transitive on A(v). Then for any
"i'"j there exists o in T'v such that ot('u.ui) = (v,uj).
Further since G is point-symmetric, for any cther vertex u # v
in V(G), there exists @ in T(G) such that @v = u. If

A(u) = {xl.xz,...,xk} then since PLE€SErVes adjacencies

102

A(u) = Vawl,sz....,ka} and henCe(Gtv,ui) = (u,xj) for some
xj in A(u). Finally every edge (quvi) is mapped contc (u,pwj)
by the automorphism fht(il, hence every edge incident to a
vertex u or v is similar to any other edge also incident to a
vertex u or v. Since u was chosen artitrarily we can conclude

that G is line-syrmetric.

The observations made in the previous theorems ¢prcvide
the machinery by which we can define an algcrithm feor
determining the ncn-similar cliques of a graph provided we are

equipped with a procedure for determining ortital partitions.

o — o o ——— o T o i o i o

Since two vertices which are members of the same orbit
will be members of similar cliques, we initially determire k
representative vertices one for each of the k orbits of the
graph. Further, we shall require a knowledge of the orkits cf

the respective stabilizers of the representative vertices.

The algorithm recursively decomposes subgraphs defined on
the set of vertices adjacent to a representative vertex inte
as many new subgraphs as the number of blocks of the orbital
partition of the stability subgroup fixing that vparticular
representative vertex. Each new subgraph is determined as the
subgraph induced on the set of vertices of the «¢1d subgragh
adjacent to a single vertex chosen from one of the blocks of
the orbital partition and is subsequently reduced in a sipilar

manner,

103

A record is maintained of the representative vertices as
they are chosen, and when there exists an isolated vertex in a
block of the partition, a complete sultgraph has teen fcund.
This subgraph is then examined to see if it is maximal Ly a
procedure similar to that of the Reduced Redundancy algorithm

in the previous chapter.

As stated frreviously, to determine the ortits we shall
enploy Corneil's algorithm for constructing the Terminal
Quotient Graph, a graph each of whose wvertices, it is
conjectured, corresponds to a block of the orbital partition
of V(G) [13]. Corneil's algorithm is ideally suited tc cour
purposes since in determining the Terminal Quotient Graph, he
determines not c¢nly the vertices of the original graph
belonging to each block of the partition btut alsc the crktits
of “v for a vertex v from each orbit of [“(G). Since the
adjacency set of v is obviously a subset of V(G) it is easy tc
determine the «crhits of Fv to which they kelong. Corneil's
algorithm provides this information in the determination of
the vertex quotient graphs of G which are ccnstructed by
fixing a vertex and then determining the partition induced on
the remaining vertices of V(G). Ccrneil wuses the vertex
quotient graphs tc determine the orbits of ["(G) by grouping
two vertices 1in the same <class if and only if they have

identical vertex quotient graphs.

104

g .: the ith orbit of ['(G).

H

A(v): row v of the adjacency matrix of G.

G1: vertices yet to be considered for a particular subgraph.

[}

2: vertices which induce a complete subgraph.
H1: new vertex set to be examined, derived from Gl.

H2: expanded vertex set inducing a complete subgraph.

STEP1: Use Corneil's algorithm tc find the orbits 9;,03....,0E
of I(G). In additicn, let a‘l’.az....,a;’_vre the crkits of 7
induced on A (V).

STEP2: Choose a vertex set (G1,62,w) froe the stack of
candidates. If stack empty, then stop.

STEP3: Compute T = vizﬁ;az A(v). If T not empty then go to

STEP4: If G1 empty then print G2 as a clique and go tc STEP2.

STEP5: Set 1 tc 1 and F to G1.

STEP6: If thGl enpty then go to STEP10.

i e

STEP7: Choose v in 9?r1G1 nct previously chosen. 1f none left
to'examine, let v be any vertex in Q?hGl and gc tc STEPY.
STEPS8: If G2MA(v) not empty then go to STEP9; else go to
STEP7.

STEP9: Define a new vertex set (H1,E2,v) with H1 = FNA(v) and

H2 = G2U{(v}. Put (B1,H2,v) on the stack.

STEP10: set i tc i+1 and F to Fn(~9‘__j). If i<k then go to

105

STEP6; else go to STEP2.

3.5 DISCUSSION O

Ir
=3
lex
Im
|
I
{7}
o
=0
=
=]
I
=

The algorithm for enumerating non-similar cliques of a
graph is similar tc the sequential algorithm for the
enumeration of all cliques proposed in Chapter 2. However,
whereas the sequential algorithm's efficiency was dependent
upon the number cf cliques in the graph and the number of
elements 1in a vertex subset, the determination of ncn-sirilar
cliques by the methcd just described 1is dependent upon the
similarity of vertices 1in the graph. 1t is clear that this
determines the number cf orbits of the group as well as the
number of _non-similar cliques. Since it is crly necessary to
consider one vertex from each of the blocks of the partition
of A(v) induced by the statkilizer of an apprcpriate vertex v,
the number of vertices that need be examined and hence the
number of new vertex subsets generated is reduced if the
number of blocks in the ortital partitions determined in stefi

is small.

It is possible for a graph to have an exponential nurnber
of cliques, ncne of which is similar to any cther. This is
illustrated by the gragh of Fig. 3.4. The subgraph induced on
vertices {1,2,...,8} 1is K(3,3,2) the graph on eight vertices
with maximum number of cliques. Additional vertices are then
added to insure that the graph has identity grcug. Hence every

clique of G is ncn-similar to every other. In general it is

106

possible to construct a graph on 6k vertices having crder 3k
cliques in a similar manner. The purpose of this demonstration
is to emphasize the fact that the detection of ncn-similar

cliques may itself be an exponential process.

10

1x »

12 7 §

13

Fig. 3.4
GRAPH WITH ALL CLIQUES NON-SIMILAR

107

108

3.6 ANOTHER APPLICATION OF ORBITAL PARTITIONING

In the algorithm for determining the non-similar cliques
of a gragh, it was not possible for us to apply orbital
partitioning to the vertex sets of each component cbtained in
the reduction of the graphs. This was kecause the ncn-sipilar
cliques were determined by the orbits of [‘v of v, and not
P(Gv). We have previously shown that for every autcmorphism
of Pv' there is an automcrphism of P(GJ. However the converse
is not necessarily true since two similar vertices in G might
be non-similar in Gv' If grouped in the same class, a non-

similar clique wculd be lost,

We can however employ this strategy if we wish to
determine only the existence of cliques of different orders.
Such a technique is seen to examine fewer vertex subsets than
a procedure fcor finding the non-similar cliques cf a graph,
since we can take advantage of any symmetry that exists in the
subgraph induced on a particular vertex sukset. The vertex
sets which are nearly resolved into cliques exhitkit a high
degree of vertex similarity and by only distinguishing between
vertices in different orbits, the numter of vertices examined
is greatly reduced. The fact that cliques of all orders
originally present in the graph will ke okttained is

established by the following argument.

If we determine the orbits of ["(G) on V(G), twc vertices
u,v in V(G) are members of the same orktit if and cnly if the
subgraphs induced on those vertices of V(G) adjacent to u and

those adjacent to v are 1isomorphic. Hence each induced

109

subgrarh has the same number of cliques of each order and
consequently either induced subygraph may te chosen fcr further
processing and the octher ignored without fear of losing all

cligues of a particular order.

THE ALGORITHHM

s e e e

STEP1: Choose a vertex set(G1,G2) from the stack. If the stack
is empty ,then stcg.

- — r_.‘ 3
STEP2: Compute T ve(ﬂnglv). If T is not empty then go to
STEP3: If G1 is empty then print G2 and gc tc STEP1.
SIEP4: Determine the ortits #,,0 ,...,0, of the autcmorphisn
group of the subgraph induced on vertex set G1t.
STEPS: Set 41 to 1 .and F to Gl.

STEP6: Choose v in ai“G” n (A(v)) and define a new vertex set

(H1,H2) where H1 = FAA(v) and H2 = G2U(v]}. Place (H1,H2) on

the stack.
STEP7: Set i tc i+1 and P to Fﬂ(”éi). If i<k then go to
STEP6; else go to STEPI1.

This algorithm is very similar to the Reduced Redundancy
algorithm for the enumeration cf cliques. It is obvious that
the latter algorithm could te employed to deterrine the crders
of the non-isomorrhic cliques of a graph. However in view of
their possibly exponential numker, it is desiraltle tc find
some means of reducing the number cf vertex subsets generated

by reducing the number of vertices that need tc te exarmired.

110

This is achieved in our algorithm by again exploiting the fact
that two similar vertices belong to the same number of cliques
of different orders and therefore in the situation where we
wish to find the orders of the different sized cliques of the
graph, it is only necessary to treat one of the ¢two similar

vertices.,

It should be noted that in step 6 of the algorithm it is
not sufficient to choose one vertex from each of the k ortits
of the automorphism group of the subgraph induced on G1. This
is because it may turn out that the numker of orbits exceeds
the numker of vertices not adjacent tc v, in which case our
algorithm would perform more poorly during that iteration than
the Reduced Redundancy algerithm of the previous chapter since
it would generate more new vertex sets than the sequential

procedure. For this reason v is chcsen frcnm BfﬂG1r1(~A(v)).

I

—————— — T —— — — ——— ——— e e e —

In the previous sections we have attempted tc explcit the
simpilarity of vertices in a graph as an aid to the detection
of its cliques. This was only partially successful, cne of the
major difficulties being the difficulty of determining the
group of the gqraph, which was necessary fecr a complete
enumeration of the cliques. Even the task of determining the
non-similar cliques has proved to te limited ty the existence
of few gcod procedures for finding the orbital partition of
the vertex set. Finally, we saw where it was even pcssitle for
a graph with identity group to have an exponential number of

non-similar cliques.

In this secticn we shall explore an alternative approach
in which two vertices will be related by a condition stronger

than that of similarity.

DEFINITION 3.1: Twc vertices u and w of a graph G are said to

be complete subgqraph egquivalent (CS equivalent) if for any

—_—— e o ——

subgraph of G defined o©n vertices u,vl,vz,...,vj ct VvV (G),

l'va""'vj are mutually adjacent if and only 1if

H,Vl,\fzgo-- ,Vj

are CS equivalent.

u,v

are mutually adjacent. Two vertices cf degree 0

It is clear from the definition that if two vertices are
CS equivalent then they are similar. This fcllcws from the
fact that two CS equivalent vertices are adjacent to the sanme
set of vertices and can te interchanged. By finding all the

cliques to which vertex u belongs, we have also found all the

112

cliques to which vertex w belongs and it is a simple matter to
determine the latter explicitly: for each occurrence of u in a

clique, replace it by w.

A supplewmentary but equally important advantage of a
method which reduces the number of vertex subsets to be
considered by finding complete subgrapb equivalent vertices is
that it provides a means of representing all the cliques of
the graph in a more concise manner than explicit enurmeration.
Given the vertex set V(G) of a graph G, let VieVoreaasVy ke a
set of CS equivalent vertices, all of which are by definition

adjacent only to vertices in A (v the set of vertices

Ve
adjacent to v . If we denote by Cl the set of maximal complete
subgraphs induced on the subsets of a(ﬁ_) the Cartesian
product {vl,vz,...,vk} X Cy is precisely the set of all
cliques of G containing one of the vertices VieVoreansVyoe It
is evident that this procedure cculd ke extended sc¢ that the
cliques of Cl were also expressed as a set of Cartesian
products each one being determined by a set cf CS equivalent
vertices and their common set of adjacent vertices defined on
the subgraph induced on A(vl). As an example we may consider
again the graph K(3,3,3) given in Fig. 2.1. The vertices 1,2,
and 3 are CS equivalent and are each adjacent to vertices
4,5,6,7,8,9. In the subgraph induced on this latter set of
vertices, the vertices 4,5,6 are CS equivalent and each is
adjacent to vertices 7,8,9. Since the vertices 7,8,9 are
isolates they are also CS equivalent. Thus all the cliques of

the graph are given by the exrression:

(1,2,3}X{(4,5,6}X(7,8,9}}.

113

This is obviously a wuch more compact way cf defining the

twenty-seven cliques of K(3,3,3).

The primary drawback of implementing the technique just
described 1is the paucity of vertices which are CS equivalent
in an arbitrary graph. Instead, we shall implerent a procedure
which uses a weakened form of the definition c¢f conmplete
subgraph equivalence to group the vertices in a similar

manner.

—— . —— o —

if there exists a complete subygraph defined on some suktset of
vertices of G say u,vl,ui,...,vj such that the subgraph
induced on w,vl,vz....,vj is also complete.

It is clear frcm the definition that weakly CS equivalent

vertices are not necessarily similar, and that conmplete

subgraph equivalent vertices are weakly CS equivalent.

We now consider the properties of a set of weakly CS
equivalent vertices defined in the following way. Let vl be an
arbitrary vertex frcm V(G) and let [vz,...,vj} be a set of
vertices also from V(G) such that each vertex v, is adjacent
to all wvertices 1in A(vl). All the copplete subgrarhs
containing vl including the cliques are induced on {&;L’a("l)'
If [ul.ug,...,wk}sh(vl) induces a complete sulkgragh then

V o ,W_,H ,...,wk alsc induces a conplete sutgraph. Further,

12
since v _is adjacent to every vertex in ﬁ(vl), it is adjacent
1
cvs nd hence {v ; = induces a corplete
to w A ¥, 2 { LYY o o“# ndu P

subgraph. Therefcre vl,v_ are weakly CS equivalent. Mcost
i

114

importantly it is the <case that every clique of G with
vertices from the set {vgaan(yl) is induced cn
[vl,vz....,vj]L:A(vl). In other words, given any vertex set
[vi,ul,...,uk} inducing a complete sukgraph, all possible
vertices which could be used to extend that vertex set so as
to induce a larger complete sukgraph must te ccontaiped in

[H_,v ,.-.,Vj]LlA(vl).

2

If we denote by Vl the vertex sets of all complete

subgraphs which are maximal on the subtqgraph induced cn

2
complete subgraphs which are maximal on the subgraph induced

[gl,vd,...,vj }, and denote by V the vertex sets of all

on h(vl), then the vertex sets determined by the Cartesian
product Vl X v2 induce complete subgraphs which are maximal on

G.

This result has an alterpnative intergretaticn as a
product of graphs. The jcin (see for example Harary [43]) of
two dgraphs Gl and Gz' denoted G].* G,r is the gragh G defined
on V{Gl)lJ v{G2) such that every edge of G, or G, is an edge

48 2
of G and for every vertex v in V(Gl) and vertex w in V(Gz),
(v,w) is also an edge of G. Let Cl be a complete subgraph
which 1is maximal on the subgraph induced on [vl,vz,...,vj],
and let C2 be a subgraph which 1is maximal on the subgrach
induced on A(vl). Then Cl+ C2 is a clique of G.

We 1illustrate the determination of the cliques of the
graph by finding weakly (S equivalent vertices in the
following example. Consider the graph of Fig. 2.9 . It is

evident by inspection that no pair of vertices exists which is

115

complete subgraph equivalent. Instead we define two sets of
vertices by first choosing arktitrarily vertex 1 and defining
one set to be A(1) = {2,6}. Now vertices 3 and 5 are also
adjacent to (2,6} so the second set is {1,3,5]. By repeating
this procedure on the subgraphs induced cn the first cf these
vertex sets we discover that {2,6} can be separated into two
sets expressible as a Cartesian product {2}X[6] ccrresgonding
to a complete subgraph of order 2. The vertex set {1,3,5}
however consists cf two components, an isolate 1, and a
complete subgraph of order 2 defined c¢n (3,5} and exrressible
asf3x5}. The ccmplete subgraphs of the sutgraph induced cn
{1,3,5} are 1induced on vertex sets {1} and {3 }X{5) and hence
some of the cliques of G are given by ([{2}X{6])X{1,{3 }X{5]]
which corresponds tc the cliques (261) and (2635). It is clear
that not all the cliques have been found for we have not yet
examined vertex 4. We therefore determine twc new sets (3,5}
and ({2,4,6} in the =same way, and the processing of their
induced subgraphs yields ({3}X{5])}X [4,{2}X{6}]) giving us the

third subgraph (354).

This example illustrates the principal drawback of this
procedure for enumeration, namely the generation of redundant
cliques. We have encountered this type cf prcbler in nearly
all of the algorithms previously discussed. The most wusual
means of overcoming this proklem has been tc simply examine
each vertex of the induced subgraph to see 1if there exists
some vertex not in the set, yet adjacent to all vertices in
the set. Such a mechanism is clearly not applicable in this

case. Alternatively, Peay 1in his algorithem as criginally

116

described, maintained all cliques in a stack which he could
compare with newly determined maximal complete subgraphs to
see whether it had been found before. Although more directly
applicable to our situation, this method is nct useful since
we have no explicit representation for each clique with which
to compare. In addition we must make use of a possibly
exponential amount of storage., This difficulty is partly
overcome in the fcllowing algorithm by making use of
information pertaining to the current derivaticn path in the

tree of derivaticns in a manner described in the next section.

Two stacks are used in the algerithm. Stack 1 consists of
all vertex sets derived 1in the developrent of the current
derivation path except those from which the current set is
derivable. Stack 2 consists of all vertex sets directly

derivable from the last vertex set in the derivation path.

BLOCK A: Initialization procedure.
STEP1: Let V(G) be the set of all vertices in the graph and

STEP2: Call recursive procedure ENUM(V(G)) defined in BLOCK B.

The order and adjacency matrix of G are defined glcbally to

ENUM On return, stcrg.

BLOCK B: Recursive procedure ENUM (V(G)).

STEP1: Choose a vertex v in V(G)and define a vertex set P

o o i —

117

equal to the wunion of v tcgether with all vertices not
adjacent to v.

STEP2: Choose a vertex w from F and define vertex sets
H1 = V(G) m A(w) and H2 equal to the set of all vertices in F
adjacent to every vertex in H1.

STEP3: If the vertex set H1WU H2 is contained in a vertex set
previously defined during this iteration then go to STEP7.
STEP4: If the vertex set H1 U H2 contains a previcusly defined
vertex set durieg this iteration then replace that vertex set
by H1uU H2 on stack 2.

STEPS: Compare H1 U H2 with all vertex sets generated during
previous iteraticns in the developrment c¢f the current
derivation path other than those vertex sets from which
H1 U H2 was derived. If H1 UV H2 is contained in scme previcus
such set then delete it from stack 2. Otherwise place the new
set on stack 1.

STEP6: A new pair of vertex sets has bteen found. Stack 2

contains their upicn as well as the vertex w used tc define

STEP7: Delete w from F. If F is not empty then gc tc STEP2.

STEPB: If no new vertex cets have been added to stack 2 this

——— ———

iteration then return.

STEP9 Choose a pair of sets H1 U H2 from stack 2 together with

e

their defining vertex w. Remove this set from stack 1.

STEP10: If H1 is empty then print vertex w and gc to STEP14,

STEP11: Call recursive procedure ENUM(F2).

e o et e o

STEP12: Print nXmn , (The maximal complete subgraphs of

H1 o H2 will be given by the Cartesian Prcduct cf the resuvlts

118

upon return from calls in STEP11 and STEP13.

STEP14: Return H1VH2 and w to stack 1 Ptut delete it fronm

stack 2. If stack 2 not empty then go to STEP9.

As previously described, the algorithm finds the cliques
of the graph by determining sets of weakly CS equivalent
vertices in a particular way. A new vertex set whose vertices
have been partitioned into two sets of weakly CS equivalent
vertices is determined by choosing a vertex v from a set F and
defining the twc blocks H1 and H2 of the partition according
to STEP2. The set F consists of a vertex v and all vertices of
the induced subgrarh on the current set of vertices, V|(G),
under consideration not adjacent to v. This set insures that
all cliques will be found and was emplcocyed in the Harary-Ross
algorithm and the Brecn-Kerbosch algorithm as well as our own

sequential algorithm previously discussed in Chapter 2.

We are thus quaranteed of finding all the cliques and it
is therefore only necessary to minimize the possibility of
finding redundant cliques. As we have mentioned, this is pct a
simple problem because of the nature of the regresentation
teing exploited in our algorithm. The technigue employed is to
keep track of all vertex sutsets from which a newly determined
vertex subset ccould pcssibly be derived. To do this it is
sufficient to keep track of only the 1initial ncdes cf all
possible branches in the derivation tree which deviate fronm

the path of derivations we have taken to reach the current

119

vertex subset wunder consideration. By definition all other
vertex subsets derived during the executicn will ke contained
in one of the vertex subsets represented by these nodes. In a
derivation path of length k, let vy te the defining vertex of
the vertex set H1 v H2 represented bty a node on the derivaticn
path at distance i from the rcot. It is evident that the
maximum number of vertex subtsets generated during the
generation of set H1 UV H2 is B, .

-d (v, wvhere n, . is the
1 o

1 -1) 1
number of vertices in the i-1st vertex subset in the ©path of

derivations and v, 1 is its defining vertex. The maximunm
J--
number of vertex subsets placed on stack 1 is thus
k
1+ (n -d (v .
j:a_((i=1 (i-l)))

In Fig. 3.5 we illustrate the vertex sutsets invclved in such
a sequence of derivations., Since our algorithm employs a depth
before breadth technique of development, it 1is clear that
stack 1 is not exponentially growing. Hence any gains in
efficiency from such a representation will noct &Lte cffset by

inordinate storage requirements.

120

()

Fig. 3.5
A PATH IN THE DERIVATION OF NON-SIMILAR CLIQUES

121

It is difficult to assess the overall efficiency of this
algorithm because the choice of a "test" defining vertex at
each iteration is a non-deterministic procedure. Clearly, the
worst case occurs when the choice that is made results in an
explicit enumeration of every «clique in the graph. In this
situation, since the mechanism by which new vertex subsets are
generated is similar to that of the Bron-Kerbesch or our
sequential algcrithm fcr the enumeration of cliques, a one-one
correspondence can be made between the nodes of the derivaticn
tree of this new algorithm with either of the previously

discussed sequential algorithams.

k
Because a search of as many as-z(ni -d (elements

j=1' i1
in a stack mnust be made (see Fig. 3.5) for each new vertex

Ya.1 1

subset in addition to its generation, it is evident that the
time required for one iteration will be longer than that
required by the sequential method. Since we have emplcyed the
same techniques of cur previous algorithm to the generation of
new vertex subsets, the time required for cne iteratior is
proportional to -EE_ (n-d(gi))- T(n) where T (n) is the time
required for onel iteration of the sequential algorithm of

Chapter 2.

When, however, we can take advantage of the weak CS=-
equivalence of vertices to minimize the number of vertex
subsets generated, the maximum efficiency is realized Ly the
greatly reduced derivation tree. This is clearly evident for
any complete k-rpartite gragh K(ml,mz,...,mk). Here, each block

of m, vertices corresponds to a set c¢f comgplete =sukqgrarch
i

122

equivalent vertices, and hence also a set of weakly CS
equivalent vertices. The derivation tree for K(BysBp00cesBy)
using our new algcrithm is linear, as only one vertex at each
iteration defines a new subset. We illustrate such a
derivation for K(Sh) in Fig. 3.6, where the vertices of block
Vi are labelled (i-1)m+1, (i-1)p+2,¢e., (i=1)D+m, i=1,2,3,4,

with m = 3.

For the ccrplete k-partite graph K{mk), the number of
nodes in the derivation tree determined by our algorithm is

mk+2 (k=1) +1 for k > 1 and 2(k-1) +1 for k = 1.

Obviously then the derivation trees are smallest for
complete k-partite graphs. As mentioned previously the wcrst
case to be enccuntered occurs when there are no weakly CS
equivalent vertices in the graph and ccnsequently cliques are
enumerated explicitly. The derivation tree pmay ke used to
determine the number of cliques in the graph. If we again
examine Fig. 3.6, edges of the tree incident tc a comnrmcn
vertex have been related by by the symbols "X" or =0
according to whether the sets deterrined in that derivation
can be combined in a Cartesian Product tc obtain a subkgraph of
the original gragh G. If not then their union (denoted by ",")
is a subgraph of G. We illustrate this notation with the
example of Fig. 3.7, a derivation of the cliques of Fig. 2.9 .
Using such a notation, the <cliques are given by the

expression: {1 X {2 X 6}},{3 X {({2 X {5 X 6}},{4 X S5}])]).

From this exawmple one can see that the clique (126) has

been explicitly defined while those containing the vertex 3

123

(ie. (2356) and (345)) are grougped together. It 1is evident
from Fig. 3.7 that there cannot ke any edges nct incident to
the root of the derivation tree which are related by a "," for
a graph whose cliques are all determined explicitly. Since the
number of vertex subsets generated from the root is at most n-
d(v) where v is a vertex of minimum degree, such a graph has
fewer than n cliques. Hence all graphs having mcre than n
cliques have some vertices which are weakly CS equivalent in
the induced subgraph defined on some vertex subset; therefore
some improvement over a sequential algorithm can cften be
obtained by reducing the number of vertex subsets that must be

considered.

124

7 8 9 10 AL 12

Fig. 3.6
DERIVATION TREE FOR K(3,3,3,3)

26

o { \ 2U6,35
» 4
,/ \\ pruned
/7
7 \
3 2u56
]
2’6 2,56 \h,;
/ L3N
/) VN
FE VXN
/ \ \
\ / \ \
\ / \
6 2 56 L
/15,6
/A
'S
/ \
/ \
/ \
!/ \
5 6
Fig. 3.7

DERIVATION TREE FOR FIG. 3.1

5,23U6

oruaned

125

126

4.1 INTIRODUCTICN

In the previous two chapters we have explcred some cf the
ways in which cliques can ke detected in grarhs. We have also
examined how various properties asscciated with graphs might
be used tc imprcve the efficiency of such algcrithms. The
major okservaticn to Le made is that it is nct at all clear
hcw cne might devise an efficient clique detection algcrithm
even to detect cliques cf a particular crder. In this chapter,
however, a ©prccedure for the detecticn cf such cliques is
propcsed which can be proved to be an efficient algcrithm fcr
a particular class of graghs and fcr which nc counterexample

has yet been found for general k-partite graphs.

An important application of clique detection in graghs is
motivated ty the fact that it is pcssible tc represent a well
formed formula of the propositional calculus in disjunctive
normal form as a k-partite gragh where k is the numbter of
conjuncts in the sentence. In the survey of Charter 1 we
mentioned briefly the efforts of Cook, Karp and Lawler, among
others 1in develcping a taxcncmy cf corbinatcrial grotblems. In
Farticular we noted an important result of Cook's which
relates the tautology problem to a numbter of cther impcrtant
comkinatorial protlems. An extensive list <¢f these problens
has been rprepared by Karp [49]. We shall use his notaticr tc
define the concepts required in descriking the equivalence cf

a k-partite graph tc a well-fcrmed fcrmula in disjunctive

127

normal form.

4.2 CLIQUE DETECTICN ANL SATISFIARILITY

We turn now tc a ccnsideraticn cf the MSatisfiakbility
Prcblem"” as defined by Karp [49)] and its solution through the
detection of cliques in a grarh as =suggested Ly Mcwshcowitz

(631

DEFINITION (KARE): The satisfiability protlem is defined as
follows: Given as input the clauses Cl’cz""'cp’ of a well-
formed formula in conjunctive ncrwmal fcrr, does there exist a

set S { X sX peensX il,iz,...,in} such that

a.) S does nct ccrtain a complementary pair cof literals

and
b.) sr\ck4=§ FOr K=1,25swe4 D
We are thus given the well - fcrmed fcrrula

1 2
satisfiable. Tc do this we convert its neqgation to disjunctive

A C.nC n...r\Cp and asked tc decide whether c¢r not it is

normal form. Suppose ~A is a tautclcgy. Then fcr all possitle
assignments of truth wvalues to the variables c¢f ~3, =~ is
true and consequently A is false for all possitle assignments,
Therefore A is satisfiakle if and o¢pnly if ~A 1is not a
tautclogy. It is the disjunctive normal form cf ~A that we

shall represent bty a qragh.

Let S = leJDzu R ¢ | Dk be a sentence of the
propcsitional calculus in disjunctive normal form with each
conjunct [= a ~~na, M ... Na, where a, is a 1literal.

1 ll 12 l.m lj

128

Define a k-partite graph G as follows. Each vertex ir V (G)
corresponds to a literal of S, there being as many vertices as
there are literals of S. The wunordered vertex rair (va.vb)
corresponding to literals a and b is an edge c¢f G if and cnly
if a is not the complemert cf b, and a and b are not toth
pmenbers of the same conjunct. Thus to each conjunct of S there
corresponds a vertex Ltlcck cf G ccnsisting c¢f mutually ncn-

adjacent vertices.

This representation can be used to determine whether or

nct S is a tautoclogy. The decision rule is:

THEOREM U4,1: S 1is a tautology if and only if there does nct
exist a clique of order k in the <corresponding gqragh G , k
being the numker cf conjuncts ir the disjunctive ncrmal form.

Prccf: A clique of order k in G exists if and cnly if there
exists a selecticn cf literals, cne from each conjunct of S
such that no literal and its complement are koth ccntained in
the selection., 1f such a selecticn exists then we can assign
the value 0 (false) to each of the literals in the =electicn
and hence negate the well fcrred fcrimula. On the other hand if
such a selection is not pcssible this corresgonds to the fact

that no such assignment to the literals of the well-formed

formula can be made and hence it must ke a tautclecgy. QED.

The okject of this chapter is to describe an algorithnm
which rprovides an efficient heuristic for determining whether
a clique of order k exists in an arbitrary k-partite graph.

Such an algorithm can then be employed through theorem 4.1 as

129

an efficient solution to the tautology prchblen.

Before presenting such an algcrithm it is necessary to
define and discuss a ccllecticn cf vertex sets determined by
the algorithm fcr a k~-partite graph G which rprovides the
mechanism for detecting the existence cf cliques of order k.
The importance of these vertex sets will be established in a
subsequent thecrem., First, however, we shall assume that we
are given a k-partite graph G with 1its vertex =set V(G)
partitioned into k Dblocks vl,vz,....vk of mutually non-

adjacent vertices.

We define Hitu,u), i¢s<k-2 tc te Fte a sukset of klcck vi
associated with an edge (u,w) such that w;(u,u) +P ,
=12 aee0t8 =125 ee:35 s

If i=s then W:{u,u) = Vsrln{u)r|A(u) where A(u),A{(w) dencte
the adjacency sets of u and w respectively.

Else fcr i < = wz(u,u) is the set of all vertices vy ir Vi
such that

s=1 S .r=1 r-1
(a) v, € W™.7(u,w)) Wo.T (u,v)OO R T, (W,
) A i ! . [Ici)l[vr.c‘ﬂl?.(u,w) + 1)]]
(t) Wi lw,vynwi-l(w,v) #8& for j=1,2,...,i-1.
J 1 J 1

It is evident from the definition that fcr any particular
value ¢f s a family of sets associated with an edge fu,w) 1is
determined in tlke order W :(U,H),ﬂ sfu,u)....,wi(u,u}. This

s—
order is a consequcnce cf the fact that W3 (u,w) is dependent
L
ugon W,5 (u,w) W.S(u,W) ,eee, WS(u,¥). A number of ¢[froperties
i+l itz s
associated with this family of sets may ke readily deterrined
from the definiticn:

PROPERTY 1: wi(u,u) < Hs'j'.l(u,u).

o ——

130

PROPERTY 2: Hi(u,u) not empty implies that W iijlu,u),

j=1,i,42.,5~-i, Dot empty.

- —— —— — ——

PROPERTY 3: Every vertex ir Hi(u,u) is adjacent to u and w.

4.4 CLIQUE DETECTIICN ALGORITHM

F}
— ——

The algorithm proceeds ty constructing the vertex =sets

HE (U,W), S=1,Z2,.e0,k=2 fcr each edge in the graph G. An edge

(u,w) is deleted from the graph whepever Hi_(u,u) teccmes

empty for some =Y ;25054 S After the sets
Hk£2 (u,w),i=1,2,...,k-2, have been ccnstructed for edges
remaining in G connecting vertices in klccks vk-l and Vk , and

if at least one =such edge remains, then the sets Hi {u,w) are
redefined ty iterating the abcve prccedure. These 1iterations

continve until cne of two conditions cccurs:
(a) All edges have been eliminated from G.

(b) The latest iteration resulted in nc further

deletions.

The following theorem establishes that condition

(@) implies G contains no complete suktgraph cf crder k.

THEOREM 4.2: If G has a complete sukgraph cf order k then

=

W I’ (u,w) is nct empty fcr scme edge (u,w) cf G.

Procf: Frcm the definition, the theoren is true for k = 3,4,

Assume that for k = s it is the case that K(1°) is a sukgrartgh

131

of G implies Hs"ztu,u) is nct empty for some edge (u,w) 1in

1

E{(G), where u,w are in V(K(1°)). Suppose furtter that K|1S+l)

is a sutgraph of G where V (K (15*)) = (v JU, W), v

v
S g=1 i
teing a vertex from block V,. Ccmplete subgraphs of order

1

,-..,V

are defined on vertex sets:

V (K(19)) = {vl,vd,...,va_z,u,u]
vV O(K(1%)) = (V) sV peeesv oV o U}
vV (K(15)) = {vl,vz,...,vs_z,vs_l,u}.

Therefore frcm the induction hypothesis vl is contained
in each of sta(u,u),wsiztu,vs_l), and Hsiz(w,vs_l}. Since
vl,vz,...,us_z,u,u are mutually adjacent, vy contained in
Hsié{u,a) implies) is contained in

‘“‘F’%[wril(u,vr} N wril (w,v)] fer = 2,3,...,5-1. Hence by
r=2

definition v_ is contained i» wsil (u,w). CEL.

The fcllowing lemmas and theorem show that if there are
at most two vertices per vertex Ftlock of G with degrees
greater than 0 after all pcssible edge deleticns have FLFeen

made then G contains a complete sukgraph cf order k.

LEMMA L4.1: Let vl,vz,...,%(dencte the vertex blocks of a k-

partite graph G and suggpcse |V | =1 fecr 1i=1,2,...,ke Then
1

11{

Hk12 (u,%) not empty implies K(1") is contained in G.

2. Since V. .} = 1 kaz (Uu,W) = V_ . Let v ke the vertex in
¥ i i i
tlock V_ . From the definiticn:
1,

i . k=2 =) Rl
uki2 (U W) = {vi}n[ni* (W I‘i (v) W (u,vr)]]

132

implies Vs is adjacent tc V. for r=i+1,i+2,...,k-2, and
i=1,2,ee.,k-2. Hence VieVoreoasVy o (u,w} is a set cf

mutually adjacent vertices.

LEMMA 4,2: If G 1is a k-paftite graph such that each vertex

block has exactly two vertices, then for any edge (u,Ww)

szz (u,w) not empty implies K(1k) is ccntained in G.
Prccf: Let k=5 and suppose vy is a vertex in W itu,a). Then
there exists v3 in W %(u,u) such that ul is contained in

2 2 2 _
W l(u,u)n wj_(u,g)rﬁw 1_(u,v3). It also follows from the
. — 2 2 2
definitions of W 1 (u,w), W 1 tu,v.j], and W 1 (u,\B) that one can
choose vertices x,v,z in v, such that ccrplete =<subgraphs are

induced on vertex sets {ﬁ.,x,u,u], [gL,y,vB,u}, and

{vl,z,v3,w}.

Now since 1Vi| 2, either x =y, x»= 12, or y= 2, If
x =y or x = 2 then x is adjacent to \L) and hence a complete
subgrarh is induced cn {vl,x,v3,u,u]. If y= 12 ¢then y is

adjacent to w and a ccmplete subgraph is induced on

[vlci':‘baur‘}'

Assume the lemma is true for k=s-1 and sufgpose vy is a

vertex 1in Hi fu,w). Ther bty definiticn there exists Vg in

W 2(u,u) such that vy is contained in
W 1 (u,w) W 1 {u,vs}r\w 1
each of the sets Hsil(u,u),ﬂ

{w,vs). Since vy is a rcesker cf
-1 s=1
sl (u,vs],and W 1 (u,vs), ky the
inducticn hypothesis one can find vertex sets X, Y, and Z such

that ccmplete subgraphs of order s+1 are defined cn

133

[vl.u,u]tix, fv JU3UY, and (v (%} Z. Each of the sets

1'Vs 1'Vs

contains cne vertex from each of the vertex Elccks

vz'VB'o.o;Vs-l -

Let S, = XNY, S_=XNZ, and S, = YN Z. Then S.US _US
1 4 ° . 3 1 2 2

contains a vertex from each <c¢f blccks since

v2'v3'-..'vs-l
|vi| = 2. Since each vertex in Sl is adjacent to every vertex

in X and Y, it is adjacent to every vertex in 52 and 33 and

hence SlL152 and slus3 are a =set of mutually adjacent

vertices., Similarly each vertex in 52 is adjacent to every

vertex in Z and hence S OUS is also a set cf mutually

2 3

o« «Q -4 .
glu SszJB induces a ccrplete

sukgraph of order s-2. Further, by ccnstructicn v

adjacent vertices. Hence

1,% yU, and w

are adjacent to every vertex in S LISELJS and therefcre G

1 3
contains a complete subgraph of order s+2. QED.

THECREY 4.3: If G 1

m

a k-partite gqgraph with at rwrost twc

vertices in each Lklock, and if wk12(u,u) is not empty fcor scome

edge (u,w), then C ccntaincs a ccrplete suvbtgraph of order k.
Procf: The result follows almost immediately from lemmas 4.1

L

and 4,2, If for scrme i, (u,w) ccntains cnly one vertex ‘&

then as a ccnsequence of the definition A is adjacent tc
every vertex in every cther set wkfz (u,w), i+ j. Suppose
there are r € k-2 sets baving 2 vertices. By the method in
lemma 4.2 we can find a complete sukgraph of order r+2 defined
on vertices chosen fronr these sets. Ey the remark atove, each

vertex in a set which it is the scle member is adjacent to all

other vertices and therefore G contains a conplete sukgraph cf

134

order k. QEL.

Finally, we note that the following clique detection
algcrithm cculd be modified to work for all k-partite graghs.
If condition (b) occurs and if the conditicn of theorem 4.3 is
not =satisfied, then a clique -enumeraticn prccedure can be
applied tc the subgraph of G which remains after no further
edge deletions c¢ccur. This wmethcd has been implemented for
verification vpurposes and the results are supmarized in

Chapter 5.

CLIQUE DETECTION ALGORITHM

Let G be a k-partite graph with tlocks Vl,VE,...,Vk.

Lenote ty A(u) the adjacency set cf vertex u.

STEP1: Set = to 1. Define graph H

0 equal tc G.

STEPZ: 1f E(fg_l)empty then stcp--K[Tk) is nct in G.

STEP3: Chccse an edge (u,w) in E (B

l) where uvu and w are
s-

tod V -

tices in :
vertices in V(k__,) 3

STEP4: Set H:(u.u) to V.n a(u)nA(w).

STEPS: I1f s

1 then go to STEPR16.

STEP6: set i to s-1.

STEP7: Set r to i+1., Set P to be empty.

STEP8: Choose a vertex v in w;":(u,u).

STEP9: 4 5 ; (u,v) and (w,v) are edges of HS 1 and

— . o —

STEP11: If WS (u,w) empty then set Hi{u,u) tc be empty and go
r

135

to STEP16.

—_——— -

Otherwise set wi(u,u) tc bte ewpty and gc tc STEE16.

STEP15: Set i to i-1. TIf i21 then qo to STEP7,

—_—— e

STEP16: If wi{u,u] has not been computed for all edges (u,w)

), where u,w are in V (H)-VS, then qc tc STEP3.

s=1

STEP17: Cefine gragh Hsglk-l as fcllowus:

a.) V(B) is set tc V(H -V,

s-l) s
b.) (u,w) is an edge of E{Hs) if and only if (u,w) is

an edge of E[Hs l) and Ni(u,u) is nct epgpty.

fta

TEP18: Set s to s+1. If s<k-2 then gc tc STEP2.
STFP19: Let G’ te the sutgraph cf G such that v is in V{Gﬁ i

—— o — v —

and only if there exists (u,w) inp E{Hs 1) such that v is in

Wk-2 (y,u) for some i = 1,2,...,k-2. If G’ # G then let
i

G = ¢ and go to STEE1.

STEP20: If G has at wmcst 2 vertices 1in each block of

degree > 0 then K{1k) is ccntained in G; else a clique must te

verified by enumeration.

As an example, ccnsider the grarh of Figq 4.1. #We
summarize the results of the algecrithm in TABIE 4.1. The
subgraprh defined by STEP19 after 1 iteration is the conmplete
sukgraph of order 5. The second iteration defines sets fcr
this graph as indicated 1in the table. Vertices which are
deleted according to STEP10 are indicated in parentheses. By

STEP19, the algcrithum terminates after the second iteraticr.

ITERATION | EDGE| WT | W2 nf ug wg W3

(36) | @
(37)
(38) | 2
46) | &
w7 | 2
49y | 2

1 (56) | 1
8) | 1,2
(59) | 1,2
®8) | 1 (3),5 | 1
(69) | 1 (4) ,5 | 1
78) | 1,2 |3 2
(79) | 1,2 | 2
89) [1,2 |5 1,2 6,0 5 1
(56) | 1
(58) | 1

2 (59) | 1
(68) | 1 5 1
69) | 1 5 1
(89) | 1 5 1 6 5 1

TABLE 4.1

RESULTS OF THE ALGORITHM FCR FIG.4.1

137

138

4.4 TIMING CONSIDERATIONS

Let G ke a cormplete k-partite grarh with m vertices in
each block Vi i=1,2,...,k. For such a gragph any chcice cf

vertices Vi eVoeese sV with v, a member of V, is the vertex set

i
of some K(lk) contained in G. Further every edge in G 1is a
member of sone E(K(1k)). G therefore constitutes the "wcrstn

k-partite graph the algorithm can encounter.

During iteration s all edges defined cver
i 2 - -
V5+1L1%+2t1 ...LJ%{ must be examined. There are % (k=5) (k=s5-1)
such edges. Fcr each edge {(u, w) wWe must ccopute
s 8 s . 8 g ;
Hs(u,u],ﬂ s_lnz,u),...,ﬂl{u,w). ki(u,u) can be detetrmined in
cne intersection (that of rows u and w of the adjacency matrix

treated as n digit bhipnary numbers), while Hgtu,u} is computed

from the definiticn as follows.
krg{ HrTl(u,v)f\ﬂrﬁl{w,v) is computed in m
VWS u,w) i r i T

intersections, m-1 unions and m tests for emptyness for each
r = i+1,i+42,...,5. The tctal computaticn time for Hi(u,u) is

therefcre 1+ (s-1i) (3m-1), sc tc compute all s =sets requires

s=1
1 %% ((s-i) (3m-1) + 1) steps. The total nurkter cf sters at

k=1

iteration s for all edges is thus given Ly:
(02 (k=) (k=5-1)) (1 + £ ((s=i) (3m=1) + 1)
2 i=1

Since there are k-3 iteraticnos requiring these

ccmputaticns (iteration 1 only computes w%{u,u) for m2 (k-1) (k-
2
2) edges), the total nurkter cf sters in the computation is:
B2 (k-1) (k=-2)+ ¥ p2(k-5) (k-5-1) &(s=1) (3m=1) + =
2 sl 2 2
= Eztk2-3k+2{}[?m—1k3 + m+1k2 - 3p-38k + 3(3w—1)]
h 30 2 5 5

139

Hence an iteraticn c¢f the algcrithm is C(k5) with leading

coefficient m2(3m-1).
120

Since at least one edge must te deleted during each
iteration of the procedure, a crude ugper bcund on the numter
cf iterations is given hy the numter of edges of the crarh. In
general it is difficult tc cktain a <sharper LFound althcugh
empirical tests o¢n a large =sanrple <c¢f graghs yielded none
requiring more than two iterations to reach a decisicn. In any
case, the time required tc execute the frccedure remains

tounded ty a polyncmial ir k.

4.5 STORAGE CONSILCERATIONS

Let G be the graph descrited in our discussion cf timing
considerations. Bcth the adjacency ratrix cf G and the storage
required for saving the W-sets place the greatest demard cn
space. Each Hitu.u) and rcw cf the adjacency matrix can te
represented by bit strings of length m and mk respectively.
Since edges with incident vertices 1in %, will nct tLte
considered after iteraticn r-1, such edges require storage for
r-1 terms w1 ,Hr:l,...,fhl

r-1 r-2 :
k-partite graph G with block size m reveals that m2 edges will

An examination of the complete

have k-2 such terrs ccmputed fcr them (thcse with one vertex

in vk 1 and one in Vk), 2m2 edges will have k=3 =such

terms,eaee., (k=2)m2 edges will have only one such term. Sibnce

only the most recent values cf any such term are ever required

k=2 | :
the maximum number of terms is m2 ¥ i (k-i-1) ,2(k). The
i=1 2 \3

Y

140

total storage requiresment 1in bits fcr these items is thus

w07+ ()

4.6 IMPLICATIONS QF THE PRCCEDURE

We have estatlished that the prccedure is an efficient
algorithm for detecting k-cliques in graphs bhaving at most two
vertices per Flcck. When wused as a tautclogy testing
preccedure, this agrees with Cook's result{11] that well-formed
formulae having at most two 1literals per clause can be
determined to ke tautclcgies in pclyncrmial time. Moreover, if
grarhs having more than two vertices per Llcck, each cf
degree > 0, can be reduced tc graphs having at most twc rer
block, then the procedure is still guaranteed tc detect the
existence of k-cliques in polynomial time. Thus, the algcrithnm
accepts a larger class cf well-formed formulae (represented as

graphs) than the Lavis-Putnar prccedure [66].

In 1light of the wcrk c¢f Ccck and Karg, the procedure
prcvides a mechanism for greatly reducing the number cf well-
formed formulae that might require an expcnential solution to
the tautology prohlem. The construction of a sgpecific
counterexample wmight help tc resclve the guestions raised by
Cock and Karp concerning the exponential nature cf the
tautology ©proktlem. Hcwever, finding =such a counterexample

remains an cpen problem.

141

. ——

5.1 INTROLUCTION

As has fteen cltserved in Chapter 2, the clique enumeration
algcrithms discussed there all operate in essentially the csare
way, namely the development cf a derivaticn tree from a ncde
representing the initial vertex set of the graph tc ncdes
representing the cliques cf the graph. The thesis of Chapter 2
is that the size of the derivaticn tree develored by each
algcrithm applied to a Moon-Moser graph together with the
order of computaticn fcr «c¢ne iteraticn can be wused as a
reasure o¢cf its efficiency. This efficiency therefore depends
on the technique emgployed to develcp new ncdes of the
derivation tree in as ruch as this prccedure determines their
tctal numher. The algorithms examined in Chapter 2 all use
different methods to generate new vertex sulsets with the
exception of the Bron-Kertcsch algcrithr which was seen to
develcr the same derivation tree as the Reduced Fedundancy
algorithm. The purpose of comparison in this Chapter is tc
compare the actual rfperfcrrance cf different methods for

developing the derivation tree with the results cf Chapter 2.

The same set of data used to test the clique enunmeraticn
algorithms was also used tc test the efficiency cf the clique
detecticn procedure of Chapter 4 in order to determine hcw
much Ltetter 1its pertcrmance was than employing an crdirary

enumeration algorithnm.

142

5.2 IHE TEST LATA

In order to deterrine the perforrance cf the algorithms,
randem graphs of various edge densities were generated fcr
graphs having 9, 12, 18, and 21 vertices. Each algorithm was
then run o¢n the test data. For each graph and each algorithm
the fcllowing statistics were recorded:

a.) The time required to find all the cliques,

b.) The number of vertex sets examired,

c.) The number of cliques found.

Sixteen test graphs were generated anrd their orders, edge
densities, and numter cf cliques are giver in TABILF 5.1. The
results of applying each algorithm to this set cf grarhs is
given in TABLE 5.2 (time in <secords) while the actual
imgplementations wused way be found ir AEPENDIX E. Lue to
excessive computation time, the algorithms cof Harary-Ross and
Peay were not applied tc scme cf the grarhs. Because of the
features c¢f dynamic storage allocation and bit string
ranipulation, FL/1 was used as the programming lanquaqge fcr
the implementations of these algorithms. The programs were run
on an IEM 360/67 Cuplex system operating under FTS. The actual

graphs may be fcund in AEPENLCIX C,

edge
graph vertices |density |cliques
1 9 O.u4 8
2 9 0.6 10
3 9 0.8 17
4 9 1.0 27
5 12 0.4 12
6 12 0.6 19
7 12 0.8 31
8 12 1.0 81
9 18 0.4 3y
10 1€ 0.6 39
11 18 0.8 69
12 18 1.0 729
13 21 0.4 43
14 21 0.6 58
15 21 0.8 144
16 21 0.9 392
TABLE 5.1

CHARACTERISTICS OF THE TEST GRAEHS

143

144

HARARY—-RCSS| PEAY 'S BEONNER'S R. R
ALGORITHM ALGORITHM ALGCRITHY¥ ALGCRITHEF
GRAPH TIME NODES | TIME NODES| T1ME NCDES| TIME NCLES
1 0.51 15 0.20 36 0. 15 27 0.2C 20
2 0.71 19 C.us L6 C.17 3u 0.23 24
3 1.28 33 0.u47 49 0.22 usg 0.28 31
L 1,97 53 0.71 79 0.27 64 0.2 40
5 1.85 23 0.64 62 0«25 55 0. 35 37
6 2.62 34 1.11 103 0.36 77 0.50 51
7 b.75 61 0.97 99 0.70 142 0.€8 65
8 11.80 161 2.45 241 0.97 256 1.18 121
9 8.06 67 2.48 182 0.55 117 0.8% 7€
10 9.u8 79 291 221 0.71, 143 1.36 91
11 18.67 137 [11.13 655 2.77 465 2,01 15¢C
12 e oyt ot -== 115.31 4096 |14.03 1093
13 13.91 85 3..32 23 0.73 149 1.54 10¢€
14 16.32 115 6.12 4uy 1.62 354 2+35 1867
15 S -== 121,75 1490 4.80 1177 5.36 374
16 =g Vo s s -== 115.03 4023 |11.017 688
TABLE 5.2

COMPARISCN CF ALGORTITHMS

145
5.3 LISCUSSION OF THEE RESULTS

———— — ——— ———— o ———— S ——— — ——

The results cf running each algorithos c¢cn the test data of
TABLE 5.1 were used to verify the predictions made for the
size of the derivaticn tree. For this purgcse, the graphs
numbered 4, 8, and 12 were exacined as they correspond to
Mocn-Moser graphs (see page 13) on 9, 12, and 1E vertices
respectively. Because c¢f the =slcuness of the Harary-Rcss
algorithm and Peay's algcrithe fcr the swmaller graphs no
attempt was made to obtain such results for the Fccn-PFMcser

graph on 18 vertices.

For the test cases, the Harary-Rcss algorithm generated
the fewest nodes cf the derivaticn tree ir finding the cliques
cf a yraph yet performed more poorly than EBonner's algcrithm
which generated the largest derivaticn trees. This 1is a
consequence of the fact that the method used by Harary and
Ross tc generate new vertex subsets while keing very selective
is also very time «ccnsuming as was seen in cvur analysis of
this algqorithm in Chapter 2. ¢€n the other hand, Borner
sacrifices efficient ncde generatiou in the derivaticn tree
for a simple means of defining new vertex subsets. In spite of
its defects as cbserved by Auqustson and Minker [5], this
method appears tc be very successful particularly with srall
graphs as one would expect, since fcr such a graph the size of
the derivation tree does not yet dominate thke <computaticn.
This hypothesis 1is further suppcrted ky the cktservation that
the Reduced Redundancy algcrithm afppears to ke most

competitive with Eonner's algorithm for graphs c¢f high edge

146

density. Such graphs have large numhers cf cliques and hence

their derivation trees will be large.

Peay's algorithm performed significantly Lketter than the
Harary-Ross algorithm and wculd prcbably have Leen more
competitive with the other algorithms if the size cf
derivation tree generated were reduced. Such a mwnodificaticn
seems feasible if one were to emplcy a techrigque of exarining
all the non-adjacent vertices associated with a gparticular
vertex at one time rather thanm steg-by-step. This is an
apprcach similar to that taken in the Reduced FEedundancy

algcrithm.

If the order of ccrputaticn fcr cpne iteration multiplied
by the numker of nodes ir the derivaticn tree of E(?k) derived
in Chapter 2 1is wused as a rough measure of relative
efficiency, then gccd agreement is otktained with the empirical
results. Although such an estimate dces nct 1indicate
accurately how much better one algorithm is than ancther, the
difference in ragnitudes c¢f these values, particularly with
largye graphs, provides scme gquide 1in chccsing the most

efficient algorithn.

The inefficiency c¢f <clique enureraticn algorithmes fcr
finding the existence cf a maximal cecrplete =subgraph cf order
k in a k-partite graph is revealed ky the results given in
TAELE 5.3 where we ccrpare the ccrputation time of the
decisicn procedure of Chapter 4 applied to the graphs cof TABLE
5.1 with the best tine availatle for the Reduced Redundancy

algorithm. While it is true that such epumeraticn procedures

147

cculd be modified to terminate when a k-clique had Lkeen
discovered, this wculd nct preclude the [pcssibility of such

cliques being discovered rather late in the enumeraticn.

148

ENUMERAT ION CECISION
ALGORITHM ALGCRITHM
GRAFH TIME TIME
1 0.15 0.06
2 0.17 0.C7
3 0.22 0.09
b 0.27 0. 11
S 0.25 0.15
6 0.36 0. 1€
7 C.68 0.20
8 0.97 0.28
9 0.55 O.6u4
10 0.71 0.77
11 2.01 1.05
12 14,03 4.28
13 0.73 0.82
14 1.62 0.89
15 4.80 1.54
16 11.01 3.98
TAELE 5.3

CCMEARISCN CF CETECTION ANC ENUMERATION

149
5.4 SUMMARY

—— ——————

The principal gcal cf this thesis has been tc examine
ways of detecting cliques in graphs. In rparticular, we have
sought to derive an efficient algorithr fcr determining the
existence cf a cliqgue of order k in a k-partite graph. This
goal was achieved in Chaper 4 fcr a svtset c¢f all graphs by
adopting a different apprcach tc the prcklem than that offered
in Chapters 2 and 2, In these chapters we saw that it was
unlikely that we could solve our protlem ty emplcying any
clique enumeration algcrithm. This was hkecause such algorithms
could be compared to tree searching processes which are kncun

to e inefficient prccedures,

In Chapter 3 we attempted tc explcit some rroperties of
grarhs which would allow us to group "sirilar" vertices
together so that we wculd nct have tc examine each vertex in
such a grcug individvally. 1Two kinds of "“similarity" were
discussed: gragh theoretic similarity, and ccmplete sukgrarh
equivalence. The latter cffered scre pcssibility of
imprcvement because of the concise notational representaticn.
However no solution was fcund for avciding the prctler cf
multiply defining cliques althcugh an attempt was made to
rinirize such behavior. Further, it should ke <c¢kserved that
the new type o¢f notation while concise, does nct readily

display either the cliques cr their orders.

As the number of clique enumeration algcrithms in the
literature increases, it is useful to carry out scme empirical

comparison of the perfcrrance cf these prccedures. It has keen

150

cur cbservation that the implementations of several of these
algcrithms have been extremely sensitive tc wmcdifications
which improve their efficiency. Some cf these modifications
have been discussed previously and were included in the
implementations. The efficiency of these implerentaticns was
examined in the previous section. while we have been able to
suggest improvements to the algcrithes discussed in this
thesis, =<such changes have not really changed the blasic
approach and as a consequence their ccorputation times remain
exponential, Therefore empirical tests of such procedures are
possitle only fer nmcderately large grarphs. For very large
graphs, determination of the size of the derivation tree
frcvides a more useful and less expensive method fcr assessing

the performance of enumeration algcrithes.

In Chapter 4, ap efficient algcrithm was defined which
detects the existence of k-cligues in <certain k-partite
graphs. Such grapks have the prcrerty that they can ke reduced
by the algorithm to graphs having at most twc vertices cf
degree > 0 in each vertex tlcck. The wcrk «c¢f Ccok and Karp
suggests (tut does not imply) that the algcrithm will not work
for all k=partite graphs. Proving this way help in
characterizing why the tautclcgy prcblem dces not appear to be

solvable in pclynomial time.

10

11

12

13

14

151

EIELICGRAPHY

Arrahan, C.T. "AD argplicaticen cf clustering
techniques to wrinimizing the nurber of intercornections
in electrical assemblies "™ Some Protlems In Informaticn
Science (M. Kcchen ed.), 1965 pp. 252-265

Abraham, C.T. "Techniques for thesaurus organizaticn
and evaluaticn " Some Prcblems In Ipformation Science (M.

— e

Kochen ed.), 1965, pp. 131-150

Abraham, C.T. "Graph theoretic technigques for the
organization of linked data " Some Ercklems In

——— e e .

Information Science (M. Kochen ed.), 1965, frp. 229-251

——

Andrasfai, B. "New proof cf a graph thecretic thecrenm
of Turan " Magyar Tud, Akad. Mat. Kutatc. Int. Kczl
7(1962) ppe. 193-196

Augustson, J. Gary, Minker, Jack "“An analysis of some
graph theoretical cluster techniques " J., Asscc Ccrputing
Machipery 17(1970) pg. 571-588

Bonner, R.E. "Cr scme clvsterinqg techniques " IBM J.
Besearch And LCevelorment 8(1964) fpp. 22-32.

Bcyle, PR.E. f'Algebraic =systems for ncrral and

——

Bron, Coen, Kerbosch, J.A.C.M. "Finding all cliques
of an undirected graph " Communications Assoc. Computing

———— =

Cartwright, ©C., Harary, F. "Structural talance: a
generalizaticn of Heider's theory " Psych. Rev. 63(1956)
PP« 14€-153

Ccleman, 3iSe4 MacRae, | (jr.) “"Flectrcnic
processing of socicaetric data for grcugs ugp tp 1CCC in
size " Amer., Sociological BRev. 251(1960) pp. 722-727

Ccok, SeAa “The cceplexity c¢f theorem-proving
proccedures " Third ACM Symposium On The Theory of

Computing 1970, pp. 151-158

Corneil, ©[.G. "Craph isomorphism " Derartrment Of

e e e s e S e e e —— s o, 1 o —— o ——— ————

Corneil, D.G., Gectlieb, C.C. "An efficient algcrithm
fcx graph isomorphism "™ J. Asscc. Ccmputing Plachinery
17(1970) fr. S51-6U

Culik, K. "Cn the chromatic decompcsiticns and
chromatic nusters cf graphs " gpisy Erirod. Fak. Univ.
Brno. 1959 fp. 177-185

152

15

16

L7]

18

19

20

21

22

23

24

25

26

27

28

29

30

3N

Davis, J.A. "Clustering and structural Ltalance in
graphs " Humap Relaticns 20(71967) pp. 181-187.

Cirac, G. "Extensions cf Turan's thecrem on graphs "
Acta. Math., Acad. Sci. Hungar. 14(1963) pp. 417-422

Dirac, G. "On complete sukgraphs and complete stars
contained as subgraphs in graphs " Fath. Scand, 12(1963)
FE. 39-u46

Lirac, G. "Extensicns of the thecrems of Turan and
Zarankiewicz " Proc. Symp. Smolenice 1963 [p.127-132

Lirac, G. "Chromatic number and tcpolcgical complete
subgraphs " Canad. Math, Bull. 8(1965) pp.711-715

Doreian, F. "A note cn the detection o¢f cliques in
valued graphs " Sccicretry 32(1969) fpp. 237-242.
Erdos, P. "Remarks on a thecrem of Ramsey " Bull.

Erdos, E. "Grarh theory and protakility II " Carad.
J. Math. 13(1961) fpp. 346-352

Erdos, P. "On a thecrem cf Rademacher-Turan " Ill. J.
Math. 6(1962) pp 122-127

Erdos, E. "Cn the numter of ccmplete sukgraghs
contained in certain graphs " PMagyar Tud. Akad. PFMat.

Kutato. Int. Kozl. 7(1962) pp. 459-LelH

Erdos, P. "On «circuits and suhqraghs of chromatic
graphs " Mathematika 9 (1962) pp. 170-175

Erdos, E. "Cr ccrplete topological subgraphs cf
certain graphs " Arn. Univ, Sci. Budarest Eotvos Sect.
Math. 7(1964) fpp.1u43-149

Erdos, P. "On the number cf triangles contained in
certain graphs " Canad, Math. EBull, 7(1964) rp. E3-56

Frdos, F. "Scre remarks cn Ramsey's thecrem " Caragd.
Math. Bull. 7(1964) pp. 619-622

Erdos, P. "On cliques in graphs " Israel J, Math.
4L(1966) Fr. 233-234.

Festinger, L. "Time analysis c¢f =scciograms using
matrix algekra " Humap Relaticns 2(1949) fgp. 153-158.

32

33

34

35

36

3

38

39

40

41

42

43

4y

u4s

46

47

153

Fclkman, J. "“Regular 1line symmetric graphs " J
Comkinatorial Tkecry 3(1967) pp.215-232

-
—

Forsyth, E., Katz, L. "A nmatrix afpproach to the
analysis of sociometric data: preliminary regort "
Sociometry 9(1946) fpp. 340-347.

Gill, A. "Analysis cf nets by rumerical methods " J.
Assoc. Comruting Fachinery. 7(1960) pp. 251-254

—— T ——— — — — et i e

Giraud, G. "An upper bound for Ramsey number (5,5) "
C.R. Acad, Sci. Paris 265(1968) pp. 809-811

Gotlieb, C.C., Kumar, S. "“Semantic clustering ct
index terms " J. Asscc. Ccmputing Machipery 15(1968) pp.
493-513

Graver, J., Yackel, J. “"An upper tound fcr Ramsey
numters " Bull., Arer, Math. Scc. 72 (1966) fp. 1076-1079

Graver, J., Yackel, J. "Scre graph thecretic results
associated with Ramsey's theorem " J. Ccrk. Thecry
4(1968) pp. 125-175

Bajnal, A., Suranyi, J. "On the deccmposition of
graphs intc complete suktgraphs " Ann. Univ, Sci.
Budapest. Fotvos fect. Math. 1(1958) pp. 113-121

Harary, F., Ncrman, ReZa Graph Thecryv As A

Mathematical Mcdel In Sccial Science Ann-Arbor: Institute

R S . S SR MR S SES S A S AN S e —————

for Social Research, 1953

Harary, By Rcss, 1. "A rrccedure for clique
detection using the group matrix " Scciometry. 20(1¢57)
Pps 205-215.

Harary, F. "Graph theoretic methods in the management
sciences " Managemert Science 5(1959) fpr. 387-403

Harary, F. Graph 1TIheory Addiscn-Wesley, Reading,
Mass., 1969

Harary, F. "Graph theory as a structural model in the
social sciences "™ Grarh Thecry Apd Its Applications

Bernard Harris (ed.), 1970, pp. 1-16

Hubbell, C.H. "An input-output apprcach to clique
identificaticn " Sgcicmetry. 28(1965) pg. 377-399.

Ilzinia, I. "Finding the <cliques <c¢f a graph "
Avtomat. I. Vychisl. Tekn. #2(1967) pp. 7-11.

Johnson, S.C. "Hierarchichal «clustering scheres "
Psychometrika 32(1967) fp. 241-254

154

48

49

50

51

52

53

54

55

56

51

59

60

61

62

63

Kalbfleisch, J. "Cn an unknown Ramsey numkter " Mich,
Math, J. 13(19€6) pp385-392

Karp, R.M. "Reducikility amcng ccmbinatcrial prctlems
" Proceeding Of The IEM Conference On The Complexity Of
Computations Plenur Press, New Ycrk, 1972

Kochen m. S
Scarecrow Press,

cme Problems In Informaticn Science.
ne

w ycrk, 19€5.

Lawler, E.L. "Flectrical asserblies with minimum
nurber of intersections " IKE Trans., FC-11(19€2Z) pp. &6~
88

Lawler, E.L. "Polynomial btounded and (apparently) ncn
polynomial Ltcunded matrcid ccrputaticns " Eroceedings Cf
The NYC-CNR Symposium Cn Combinatorial Algcrithms (tc
appear) Prentice-Hall, New Ycrk, 1972

Lawler, E.L. "Matrcids with parity ccnditions: a new
class of combinatorial optimizaticn prcklems "
Mathematical Programming submitted 1972

Luce, R.LC., Perry, A.D. "A methcd cf matrix analysis
of group structure " Esychometrika., 14(1949) rp. 95-116.

Luce, R.D. "Cornectivity and gereralized «cliques in

e —— T ————

169-190.

Meetham, A.R. "Algcrithe tc assist in finding the

10¢

Meetham, A.R. "Graph separability and word groupirg "
Proc. Assoc. Comp, Mach. 21st Naticnal Conference 1966
EE. 513-514

Mendelson, E. Introguction To Mathematical Logic Van
Nostrand, Princetcn, N.J.,1964,

Mccn, J.W. "Opn the number cf ccrplete subyraphs of a
graph " Canad. Math. Eull. 8 (1965) pr. 831-834

Moon, J.W., Mcser L. "On cliques in graphs " Israel

Mocn, J. "On 1indegpendent corplete subgraphs in a
graph " Canad. J. Fath. 20(1968) pp. 95-102

——

Proklem Of Human Inpter-Relaticns Eeaccn Hcuse, New York,

Mowshowit2z, A., (private comrrunicaticn)

bl

65

66

67

68

69

70

71

72

73

74

75

76

s

78

79

155

Mulligan, G.D. "Algorithms for finding cliques cf a
graph " [Cepartment Of Ccmputer Science, University Cf

Jcronto Technical report No. 41, Pay 1972

vlligan, G.C., Corneil, L.G. "Corrections to
Bierstcne's algorithm for generating cliques " J, Asscc.
Computing Machinery 16 (1972) fpp. 24u4-247

Putnam, H., Davis, W. “"A ccmputing prccedure fecr
quantificaticn thecry" J. Asscc. Copputing Yachipery
7(1960) pp. 201-215

Nordhaus, E.A. "Cn the density and chromatic nunkers

of graphs " Lecture Nctes In Mathepmatics. 110(1969) gp.
245-249,
Peay, E.R. {jr.) "An iterative <clique detecticn

procedure " Mich. Math, Psychb., Prcg. 4 (1970).

Peay, E.R. (jr.) "Nonmetric grcuring: clusters and
cligues " Mich, Math, Esych. Prog. 5(1970)

Ramsey, F. "0On a prcklem of formal 1cgic " Prcc.
Lond. Math. Scc. 30(1930) pp. 264-286

kcse, M.J. "Classificaticn <c¢f a set of elements "
Copmputer J. 7(1964) pp. 208-211,

Sauer N. "A generalization of a theorem of Tuvran " J,

—_————— e ————

Sims, Charles C. "Graprhs and fipnite permutation
grcugps " Math. Zeitschr. 95(1967) pp 76-8€

—— e — ——— — ——— e

Spencer, J.H. "Cn cliques in graphs “ Israel J. Math,
9(1971) rp. U419-421.

Turan, P. "E{
graphenthecrie " Pat

extreralaufgabe aus der
Lapok 48(1%41) rp. U36-452

Turan, F. "Cn the thecry cf graghs " (Ccllcq. Math.
3(1954) pp. 19-30

Turner, James "YPoint-symmetric graphs with a prime
number of points " J, Combinatorial Theory 3(1967) TrFe.
136-145

Weiss, R.S., Jacchsen E. "A gethcd for the analysis
cf the structure of complex organizaticns " Aer.
Sociological Review. 20(1955) fr. 661-668.

Zelinka, B. "On the nurker cf inderendent complete
subgraphs " Fubl, Math. LCekrecen. 13(1966) fpp. S5-97

156

APPENDIX A
time
operation symbol constant
STORE == tl
PUSH,POP push, pop t2
ADD, SUBTRACT +,- tg
COMPARE : t
AR 4
MULTIPLY . t5
UNION, INTERSECTION v, N t6
COMPLEMENT - t7
SUBSTRING substr t8
INDEX index t9
PRINT print th
LIST OF OPERATIONS

157

APPENCIX B

158

FARRAREFR RN E R R SRR AR RN R RN A BN R R AN IR AN AN AN AR IR AR DS

* ¥
* THE MODIFIED HARARY-ROSS ALGORITHM *
* kS
* *

RER AR R RERE R R R EEE R RS E R AR R RN R A R b hR kR ko kg Rk kkkkk kX &

HAROSS:PROC (A, N) ;

DCL
(A (N), /* ADJACENCY MATRIX */
G, /*CURRENT VERTEX SET#/
CLIQ, /*COMPLETE SUBGRAPH VERTICES #*/
GTEMP)
BIT(N),

(N, /* NUMBER OF VERTICES IN GRAPH¥/
WT, /*NUMBER OF VERTICES IN G #*/
VTX (N), /* LABELS OF VERTICES OF G#*/
R(N), /*ROW SUMS OF (A**2XA) FOR G#/
D(N)) /* DEGRES OF VERTICES OF G */
FIXED BIN,
VSET BIT (*) CTL; /* STACK OF SETS */
DCL CTR FIXED BIN;

CTR=0;

G=G|{ G);

PUT SKIP;

PUT SKIP LIST ('THE CLIQUES ARE:") ;
START:
/*

DETERMINE THE VERTICES IN SUBGRAPH G
L

IF G=*0'B THEN GO TO NEXT;
GTEMP=GTEMP| (GTEMP) ;
WT=0:
DO I=1 TO N;
IF SUBSTR(G,1,1)=°'0"B THEN GO TO LP1;
GTEMP=GTEMPEA (I) ;
WT=WT+1;
VTX (WT)=I;
LP1: END:

IF GTEMP = '0'B THEN GO TO NEXT;
/%
CALCULATE ROW SUMS OF (A**2XA)
AND DEGREES COF VERTICES OF G
s/

R,D =0;
DO I=1 TO WT-1;
DO J=I+41 TO WT;

SUM=03
IF SUBSTR (A (VTX(I)),VTX(J),1)="1'B THEN
BEGIN;

D(I)=C(I)+1; D(J)=C(J) +1;

DO K=1 TO WT;

IF SUBSTR(A(VTX(I))EA(VTX(J)),VIX (K),1)
='1'B THEN SUM=SUM+1;

END;

END;

/#
*/

/%
*/

/*
*/

/¥

*/

LP2:

ILP:
VA

b7

R(I)=R(I)+SUM; R(J)=R (J)+SUM;
ENC;
END;

SEARCH FOR UNICLIQUAL VERTICES

MIN=1;

DO I=1 TO WT;

IF R(I)=D(I)*(D(I)-1) THEN
DO;

UNICLIQUAL VERTEX LCISCOVEREL

CLIQ=A (VTX(I))&G;
SUBSTR (CLIQ,VTX(I),1)="1'B;

IS THIS A MAXIMAL COMPLETE SUBGRAPH?

GTEMP=GTEMP| (GTEMP) ;
LO I2=1 TO WT;

IF SUBSTR (CLIQ,VTX(I2),1)='1'B THEN
GTEMP=GTEMPEA (VTX (12)) ;
END;

IF GTEMP='0'E THEN
PUT LIST(CLIQ) ;

DELETE ALL UNICLIQUAL VERTICES IN THIS
CCMPLETE SUBGRAPH FROM G.

SUBSTR (G,VTX (I),1)='0"'B;
DO J=I+1 TO WT;
IF SUBSTR(A(VTX(I)),VTX(J),1)='0'B THEN
GO TO LP2;
IF R(J)=R(I) THEN SUBSTR(G,VTX (J),1)='0"'B;
END;
GO TO START;
END;
ELSE
IF R (MIN)>R(I) THEN MIN=I;
END; ,* END I LOOP #/

NO UNICLIQUAL VERTEX IN G
DEFINE TWO VERTEX SETS. SAVE ONE
AND PROCESS THE OTHER.

ALLOCATE VSET BIT (N) ;

GTEMP=GEA (VTX (MIN)) ;

SUBSTR (GTEME,VTX (MIN),1)="1"E;

VSET= GTEMP;

DC J=1 TO WT;

IF SUBSTR (GTEMP,VTX (J) ,1)=*0'B THEN
VSET=VSET|A(VTX (J)) ;

END;

VSET=VSETEG;

CTR=CTR+1;

G=GTEMP;

159

160

GO TO START;

/*
GET A NEW SET FROM THE STACK.
s/
NEXT:
IF CTR > O THEN
LO;
G=VSET;
CTR=CTR-1;

FREE VSET;
GO TO START;
END ;
FREE VSET;
RETURN ;
END; /% FENC HAROSS PROCELCURE

g

161

tE RS e s R R e R R e e e R S R R R R S R R R R R R AR R R R 2 R 2

* *
* BONNER'S ALGORITHM *
* *
* *

Rk KRR AR Rk ko kR ARk RS FAh kR k ko k ko ok ko ko ko

BON:PROC (G, N) ;
DCL (G(N) ,A(N),C(N),U,T) BIT(N),L(N);
STEP1: I=1; C(1)='0'B; C(1)= C(1); A(1)='0'B; L(1)=1;
STEP2: IF SUBSTR(C(I),L(I),1)="1'B THEN
BEGIN;
STEP3: C(I+1)=C(I)EG(L(I)):
SUBSTR (C (I+1) ,L(I),1)='0"'B;
A(I+1)=A(I);
SUBSTR (A (I+1) ,L(I),1)="1"'B;
STEPY : L(I+1)=L(I)+1;
I=1+1;
END:
ELSE L(I)=L(I)+1;
STEPS: IF SUBSTR(C(I),L(I),N+1-L(I)) ='0'B THEN GO TO STEP2;
T=A(I) ;
STEP6: IF C(I)='0'B THEN
STEP7: I=I-1; IF I=0 THEN RETURN;
STEP8: U='0'B; SUBSTR(U,L(I)+1,N-L (1))
=SUBSTR (C(I),L(I)+1,N~-L (I))
IF (T | U) = T THEN GC TO STEP7;
L(I)=L(I)+1;
GO TO STEP2;
END; /¥END BON PROC */

162

AR RRRER RS E R R R AR E R R A SRR DR AR RSk ARk kAR R R R R R R R Rk

* *
* THE BODIFIEL PEAY ALGORITHHM *
* *
* *

L ER RIS R 2 R R R s R R 2 R R R R R R e R R R SRR R R R AR E R L

PEAY: PROC(A,N);

DCL
(A (N), /* ADJACENCY MATRIX 3/
G, /% CUORRENT VERTEX SET */
GTEMP)
BIT(N) .,
(N, /*NUMBER OF VERTICES IN GRAPH#*/
WT, /¥ NUMBER OF VERTICES IN G *#*/
VTX (N)) /*¥LABELS OF G'S VERTICES%*/
FIXED BIN,
1 VSTORE BASELC (VPTR), /* STACK OF SETS*/
2 VNXT PTR,
2 VCTR FIXED BIN,
2 VN FIXED BIN,
2 VSET BIT(N REFER(VN)),
VHD PTR; /¥POINTS TO STACK TOP*/
DCL P PTR;
DCL CTR FIXED BIN;:
G=G| (G);
VHD=NULL;
CTR=0;
PUT SKIP;

PUT SKIP LIST ('*THE CLIQUES ARE:?');
START:WT=0;
/#

L' d

DETERMINE THE LABELS OF THE VERTICES IN G

DO I=1 TO N;
IF SUBSTR(G,1,1)='0'E THEN GO TO LP1;
WT=WT+1;
VIX (WT)=1;
LP1: END;

/¥
FIND TWO NON-ACLJACENT VERTICES IN G
"/
DO I=1 TO WT;
GTEMP=A (VTX (I))EG;
SUBSTR (GTEMP,VTX(I) ,1)="1'B;
IF GTEMP = G THEN GO TO FOONCL;
END;
/*
G IS A COMPLETE SUBGRAPH. DETERMINE
WHETHER IT IS MAXIMAL.
*/

GTEMP=GTEMP| (GTEMP) ;
DO I=1 TO WT;
GTEMP=GTEMP&A (VTX (I)) ;3
END;

IF GTEMP='0'R THEN

/*

"

IF STACK NOT EMPTY THEN CHOOSE ANOTHER
VERTEX SET FOR FURTHER PROCESSING

IF VHD = NULL THEN
Lo
G=VHL-> VSET;
P=VHD;
VHD=VHL->VNXT;
CTR=CTR-1;
FREE P->VSTORE;
GO TO START;
END;

RETURN ;

FOUND:

Ve

*/

/$

¥

DETERMINE TWO NEW VERTEX SUBSETS,SAVE ONE
AND PROCESS THE OTHER.

GTEMP= A (VTX(I));

CO K=1 TO N;

IF K = VTI(I) THEN

IF SUBSTR (A (VTX(I)),K,1)="0'B THEN
GTEMP=GTEMP|A (VTX(I)) ;

END;

SUBSTR (GTEMP,VTX(I) ,1)='0"B;

CHECK THE STACK TO SEE IF NEW SET "“GTEME"
IS CONTAINEL IN A PREVIOUS ONE AWAITING
PROCESSING.

P=VHD;
DO WHILE (P =NULL) ;
IF (GTEMP|P->VSET) = P->VSET THEN
GO TO START:
P=P->VNXT;
END;
CTR=CTR+1;
ALLOCATE VSTOCRE;
VSET=GTEMPEG;
VNXT=VHD;
VCTR=CTR;
VHC=VPTR;
G=A (VIX{(I))&G;
SUBSTR (G,VTX (I1),1)="1"B;
GO TO START;
ENC; /% ENLC PEAY PROCELURE #/

163

164

Ak Rk Rk kR Rk Rk Rk Rk AR Rk kR ko ko ko kR Ak ke Rk R R k%

E
*
&

*

RECUCED RECUNCANCY ALCORITHM

%

*
*

2

e LR ERER SRR R R R R R R E R R R EEE R R

ENUN:

/%

»y

PROC (A, N) ;
DCL
(A (N), /* ACJACENCY MATRIX #*/
By /* CURRENT VERTEX SET %/
H, /% NEWLY CEFINEL SET */
CSuB, /*COMPLETE SUBGRAPH TO BE
EXTENLEC BY VERTICES IN G %,
<10, /% NEWLY EXTENDED CSUB */
F, /*SET OF CEBFINING VERTICES */
GMX,
CHX)
BIT(N),
(V, /* VERTEX CHOSEN FROM F #/
N) /* NUMBER OF VERTICES OF GRAPH®#*/

FIXELC BIN;
DCL CTR FIXED BIN;
DCL VTEMP PTR;
DCL VSET BIT(*) CTL; /* STACK OF SETS */
CTR=0;
HN=N%*2;
G=G| (G)3;
CsuB='0'B;
DETERMINE WHETHER THERE IS A VERTEX
ADJACENT TO ALL VERTICES IN G|C5UB. IF
YES THEN NO CLIQUE IS DEFINED ON G|CSUB
SO0 CHOOSE A NEW VERTEX SET.

START:

/*
P

*/

LOOP:

GMX=G|CSUB;
NV=0;
DO I=1 TO N;
IF (A(I)|GHMX) = A(I) THEN GO TO NEWSET;
END;
V=INCEX (G,"1'B) ;

IS THE SET OF VERTICES IN G NOT ALCJACENT
TO V.

F=G&(A(V));

H=GEA (V) ;
CLC=CSUB;

SUBSTR (CLQ,V,1)="1"B;

/*

IF H='0'B THEN

NO FURTHER VERTICES CAN BE ALCDEL TO
CLQ, HENCE CLQ IS A COMPLETE SULCGRAPH.
DETERMNINE IF IT IS MAXINAL.

*/
LO;
NV=0;
DO I=1 TO N;
IF (A(I)|CLQ) = A(I) THEN GO TO OUT;
END;
QUT:
GO TO NXTV;:
END;
/*
PLACE H AND CLC ON THE STACK FOR FURTHER
PROCESSING
*/
CTR=CTR+1;
ALLOCATE VSET BIT (NN) ;
VSET=H| |CLQ;
NXTV:
SUBSTR (F,V,1)='0"B;
SUBSTR (G,V,1)="'0"'E;
V=INDEX (F, *'1'B) ;
IF Vv =0 THEN GO TC LOCP;

/¥
ALL VERTEX SETS HAVE NOW BEEN CETERMINEL
FOR THIS ITERATION. CHOOSE A NEW SET
FROM THE STACK FOR FURTHFR PROCESSING

*/

NEWSET:

IF CTR <= 0 THEN RETURN;
G=SUBSTR (VSET, 1,N) ;
CSUB=SUBSTR (VSET,N+1,N) ;
FREE VSET;

CTR=CTR-1;

GC TC START;

END; /% END ENUM PROC */

165

166

AR R RER RS R RN R kR R R IR AR S ARk kR kR Rk kR AR kR ok Rk

-
o
@
*

ALGORITHM TO DETECT THE EXISTENCE OF A CLIQUE OF
ORDER K IN A K~PARTITE GRAPH

B
*
:
L

ERERFREERRERRRR RSB SRR R AR AR R AR IR R AR R B R R AR IR NI I AR SR AR R DA A

KGRPH:PROC (A, N, M, K, NX) ;

DCL
A (N) /% ACJACENCY MATRIX #*/
BIT(N),
(M (K), /* NO. VERTICES PER BLOCK */
MX, /* MAX. NO. VERTICES/BLOCK #*/
N, /% NO. VERTICES IN GRAPH */
K, /* NO. OF BLOCKS #/

R,S,T,VX,VTX,P0OS,P0S2,M1M2) FIXED BIN;
DCL VB (K) FIXED BIN;
DCL A0 (N) BIT(N);
DCL U FIXED BIN;

STEPO:AO=A;

ITER=ITER+1;
N1=N-M (1) =N (K) ;
POS=M (1) +1 ;
POS2=POS+H (2) ;
M1M2=P0S2;

NSP= (N-M1M2) «N1+N=-M (K) ;

BEGIN;

/¥

*/

V.

4

/*

*/

DCL MSUM (K) ;

pCL (P,Q,TEMP,W (NSP,K-2)) BIT (MX);
W='0"'B;

MSUM (1)=H(1);

DO I=2 TO K;

MSUM (I)=MSUM (I-1) +M (1) ;

END;

DO S=1 TO K-2;

DO I=POS TO N-M (K);

CHOOSE AN EDGE (I,J) NOT YET CELETELC FROM
FURTHER CONSIDERATION.

DO J=I+1 TO N;

IF SUBSTR(A(I),J,1)='1'E THEN
BEGIN;
=l0|B:

MAP THE VERTEX PAIR (I,J) ONTO AN
INTEGER IJ. INITIALLY DEFINE THE SET W (IJ,S).

IJ= (J-M1M2) *N1+1;
W(IJ,S)=SUBSTR (A (I)EA(J),POS-M(S),M(S));

DEFINE THE SET W(IJ,T) FOR T=S5-1,5-2,ce0,1
AS A FUNCTION OF THE PREVIOQUSLY DETERMINED
SETS W (IJ,T+1) ,W(IJ,T+2),ee.,W(IJ,S).

DO NT=1 TO S;

167

T=5S+1-NT;
IF T=S THEN GO TO SKP:
DO R=T+1 TO S;
VIX=INDEX (W(IJ,R),*1'B);
DO WHILE (VTX = 0):
VX=VTX+MSUM (R-1);
IF SUBSTR(A(J) ,VX, 1) ESUBSTR(A(I),VX,1)=*0'B THEN
BEGIN;
SUBSTR (W (IJ,R) ,VTX,1)='0"'B;
GO TO SKP3;
END;
Q=W ((J-M1M2) *N1+VX ,T)EW((I-MIM2)*N1+4VX ,T) ;
/%
IF THERE EXISTS A VERTEX VTX NOT ADJACENT
TO ANY VERTEX IN W(IJ,T) THEN LCELETE IT FROM
FURTHER CONSIDERATION
7
IF Q = '0'B THER P=P|Q;
ELSE SUESTR(W(IJd,R),VTX,1)='0'B;
IF VIX >= MX THEN GO TO CHEKWU;
TEMP='0'E;
SUBSTR (TEMP, VTX+1,MX+1-VTX)=
SUBSTR(W(IJ,R) ,VIX+1,MX+1-VTX) ;
VTX=INDEX (TEMP,'1'B);
SKP3:
END;
CHKU4
W(IJ,T)=W(IJ,T)EP;
END; /% END R LOQOP */
Vi,
IF W(IJ,T) IS EMPTY FOR ANY T=1,2,...,5
THEN DELETE EDGE (I,J) FROM FURTHER
CONSICERATICN
%/
SKP: IF W(IJ,T)='0'E THEN
BEGIN;
SUBSTR (A(I),J,1)="0"'E;
SUBSTR (A (J) ,I,1)='0'B;
GC TO NEXT;
END;
END; /* END T LOOP *»/
END; /* END BEGIN BLOCK */
NEXT:END; /* ENC J LOGP */
END; /% END I LOOP */
POS=P0S2;
POS2=M (S+2) +P0S2;
END; /% ENL S LOOP */

/*
TEST WHETHER ALL ELGES HAVE BEEN CELETECD
FROM THE SET OF CANDIDATES., TIF S=K-2
AND NOT ALL ELGES HAVE BEFN ELIMINATED, THEN
TEST FOR FURTHER ITERATION.
" 3

DO I=N-M (K)-M (K-1)+1 TO N-M (K);
DO J=N-M(K)+1 TO N;
IF W((J-M1M2)*N1+I,1) = '0'B THEN

168

GO TO STEP19;
END;
END;
CONDA:PUT SKIP LIST(°NO K-CLIQUE")g; . .
RETURN;
STEP19:D0 I=1 TO K;
VB (I)=0;
DO J=1 TO M(I);
U=I*MX+J-MX;
IF AO(U) = A(U) THEN GO TO STEPO;
IF A(U) = '"0'B THEN VB(I)=VB(I)+1;
END;
END;
CONDB:PUT SKIP LIST('NC CHANGE');
DO I=1 TO K; -
IF VB(I) > 2 THEN GO TO STEP20;
END;
PUT SKIP LIST('K-CLIQUE EXISTS BY THEOREM 4.3°¢) ;
RETURN ;
STEP20:CALL ENUM(A,N) ;
RETURN ;
END; /% ENLC KGRPH */

169

AEPENCIX C

170

graph 1

000101001
000001100
000100101
101000101
000000110
110000110
011111000
1011C0000

graph 3

000111001
000111110
000111111
111000111
111000110
111000111
011111000
011111000
101101000

grarh 5

000101001000
0000011C0C0OO0
000100101110
101000101101
00000110110
110000110011
011111000100
000011000101
101100000111
001110111CC0O
€01011001000
0001010110C0

gragh 7

000111001171C
000111110101
CO00111111111
111000111110
111000110111
111000111111
011111000011
011111000011
101101000111
111111001000
101111111000
011011111000

graph 2

C00101C01
000111100
cco1CC111
111000111
c1CC00110
110000110
011111000
101100000

gragh 4

CCc111111
000111111
c00111111
111000111
111C00111
111000111
111111C00
111111000
1171111C00

graph 6

000101001100
C00111100111
000100111011
11160C111C00
010000110110
110€C00110101
011111000110
001111€00111
101100000011
110011110C00
011010111000
011001011C0C

graph 8

000111111111
CCo111111111
000111111111
111000111111
111000111111
111CC0111111
111111000111
111111€00111
111111000111
111111111C00
111111111000
111111111C00

graph 9

0C00C0000111100 111
€C00001011010111101
0000C00011110CCCC
0000C0010000010101
0000€0001110111001
0100€0000110100011
0000C0O0001010CCCCT
010100000011100111
011010000000001CCC
101011100000111111
1110110100000101CC
101€C00110000001000
11001101010C0CCO1C
010110000110000010
010010001101000CC1
110100010110000000
10000101010011CCCC
111111110100001000

graph 11

0001011011110C111C
0000111111111111 11
0000017110111111111
160000111110100111
010060011111101111
1110C0001111111011
1111000001110111CC
011110000001101110
110111000C01001C 11
111111100000111 111
1111111€0000000110
11101111100C001111
0111110101CCCCO111
011001100100000011
1110111111010CCCCC
111110110111100000
11111101111111CCCO
011111001101110000

gragh 10

€C00C01111100110110
000001000111001101
C00C01€C01101100100
000000111000100111
cecoccco1001C101110
111000000011100011
10010CCC0001111011
100110000011011110
1011CCCOCCOC170C00
111000000000111011
01001101CCCCO010110
011001110000000001
1011111011CC000110
100000111110000001
0100101101CCCOGCCO
111110010010100C0¢C
100111110110100000
010101100101010C00

graph 12

CCo111111111111
0001111111111
CCoO111111111111
1110001111111 11
111€CC111111111
111000111111111
111111C00111111
111111000111111
111111€00111111
11111110001111
1111111C0C111111
1111111000111111
1111111111000111
1171111111111000111
111111111111000111
T11111111111111C00
111111111111111000
111111111111111000

111
1M1
1119
11
111
111
111
11
11
1" LR
11
1
1
1

171

172

gragh 13

000000000111100111010
00001101011110111CCO01
€cCC001000001010100000
0000001011001711011100
010000000110100011001
011000000C000100111C0
00010C000100000100000
01000000001111001C100
C00100000001000000101
110110100000001101010
110010010000001110000
1110000110000011C1CC1
110110010000000011100
0011010100CCCOCCCCO11
010100000111000001001
11100010011100CCCCCCO
1101110100101C0000001
1001110001011010C0CC0O0
€00101011000100000000
100000000100010CCCCCO
010010001001011010000

graph 15

000111711111111CC11C 11
000011111111011010101
000001111111110111101
100000111101001111011
1100€001011110111C111
1110€0001171111171111110
1111C000001011711C111
1111100000711111111110
111101000000110111111
1111110000001111101 11
111011110000011110111
111111010000000101111
10101111110C0C0111111
1110071111110000011111
010111110110€C0001111
001111111111100000111
111111111110110C€CC011
101101011001111000001
01101171111111111CC000
100111111111111110000
71111010111111111100C0

graph 14

000111111001010111C00
C00011100011110011110
000001011011110110110
1CCCC0011111011011011
110000010001001101001
111CCC000011C01011001
110000000000110011110
10111€C00011110111000
101100000000111111110
€001C0C00C00101100100
011101010000011001011
111111010C0C001010100
011000111100000111101
11110011101¢000011110
00011100111100000C001
101010011100100000110
111101111001110000010
110111111010110000001
01100010110111010CC00
011100101010010110000
000111000010101001C00

graph 16

0COT1T117111 11111111111
0000117171111111111171 11
€cCCCOTM111111111111111
100000111111111111111
11CCC00171111111111111
111000001111111111111
1111C6CC00111111111111
1111100000111711111111
111111€C0C001111111111
11111110000017111111 11
111111110C00011111111
1111111110000011711111
111111111100C00111111
111111111110000011111
111111111111€00001111
111111111111100000111
T11111111111110C00011
117117111111111100C€001
1117111111111111100000
111111111111111110CCO
1TT11111171111111111000

