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This thesis examines tbe devices employed by various 

algorithms to search for maximal complete subgraphs in graphs. 

Also known as cliques,in CbapteI 1 these subgrafhs are seen to 

play an important role in graph theory, information retrieval, 

sociometry, logic design, and computational complexity. 

The enumeration of cliques using the Harary-Ross, Bonner, 

Peay, and Bron-Kerbosch algorithms is discussed in Chapter 2. 

The Reduced Redundancy algorithm is introduced, ~nd the 

performance of the five procedures is assessed using an 

alternative approach tc empirical testing. Each of the 

algorithms is shown to generate a "derivation tree" for a 

given graph whose size can be used as a measure of its 

efficiency. 

In Chapter 3, the possibility of exploiting vertex 

similarity is examined with a view to reducing the si2e of the 

derivation tree. As a consequence, algorithms are proposed for 

finding non-similar cliques. The concept of "complete subgraph 

equivalence" of vertices is introduced to develop a means for 

expressing the cliques of a grafh as the Cartesian product of 

vertex subsets. 

An algorithm for detecting the existence of a clique of 

order k in a certain class cf k-partite graphs in polynomial 

time is proposed in Chapter 4. This class consists of all 

graphs reducible by the algorithm to k-partite graphs having 

at most two vertices per block cf degree greater than o. This 



algorithm is shown to provide an efficient heuristic which can 

be use~ in a proceaure fer determining ~hether a well-formed 

formula is a tautology. 

The thesis is conclu~ea with an emfirical analysis cf the 

techniques employed by the enumeration algcrithmE of Chapter 

2. In addition, the efficiency of the Clique Detecticn 

algorithm is compared with that cf the ueaucea Redundancy 

algcrithrn. 
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The purpose of this thesis will te to examine procedures 

which search fer maximal ccmplete subgrafbs of a graph. In 

farticular the manner in which algorithms enumerate these 

subgraphs will b~ exploLed in order to discover why such 

algorithms have an exponential ccmfutaticn time. The protlem 

of detecting the existence of a complete subgraph of a 

particular order will also be explored and an algcrithm will 

be proposed which uses a different ,ethod from that of 

enumeraticn. This technique is instrumental in improving the 

efficiency of the prccedure of clique detection, and fer a 

particular class of graphs the algcrithm can be shown to have 

a polynomial computation time. 

First we sball prcvide a fairlJ ccmplete list cf 

definitions pertinent to the prcblem at hand. Unfortunately, 

there is no universall} accepted terminology in graph theory 

and for this reason the author has chosen his definitions to 

be comr-atible where possible with the widely known text cf 

Earary (43]. The definitions will alsc serve to introduce the 

notation to be usea in the body of this text for the concepts 

defined. 

Q~fI~!l!Q~ 1L11 A gf~Eh § consists of a finite set V(G) cf 

Y~I!1£g§ together with a prescritea sutset E(G) cf unordered 

pairs of elements from V (G) called the~~~§§ of G. If (u,v) is 
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an eage of G then the vertices u ana v are said to be 

adjacent. 

is the numter of vertices in G aajacent tc v. 

DEFINITION l~Ji A lg]~l1iBg of a graph G with IV{G)I = n 

vertices is an assignment of n distinguishing latels, one tc 

each of the vertices in V (G). 

DEFINITTON J~~l A t=E~f!i!~ ~f~£h gJ!1 ~! 2~~~~~!kl is a giafh 

whose vertices can be rartiticned intc k tlccks v
1

, v
2 

, ••• ,vk 

such that for any two vertices u ana v in the same tlcck (u,v) 

is not an edge cf G(ro
1

,rn
2

, ••• ,rok). Given such a partition mi 

denotes the numter of vertices in t:lock V •• 
1 

D§FINI1ICN 1L5: A f2ill£1~!g k-E~!!i!~ 2!~£~ K 1m1,m2,·••1rok) is 

a k-partite grafh such that for r3ny two aistinct tlocks v., V. 
1 J 

and any vertex u in V., and any vertei v in V., (t,v) is an 
1 J 

edge cf K (m
1

,m
2 

, ••• ,mk). 

DEFINI!ION 1.6: The chromatic BY~]~!L 'X,J~lL of a yrafh G is 

the minimum number of blocks v
1

, v
2

, ••• , v'X(G) fCssi tle in any 

pa~tition of V (G} such that fer any twc vertices u,v in the 

sa me b 1 o c k ( u , v) i s no t a n e d g e o f G • 

DEFINI1ION 1~11 The £Oint indeEenaence BY~!~! ·f3otG), is the 

largest number of mutually non-adjacent vertices in a graph. 

CEFI,!!ITION 1.8: The CC[.flerrent , G, of a graph G is a g"Caph 

such that V( G) = V(G) and (u,v) is an edge of G if and cnl:y 

if (u,v) is not an edge of G and ul-v. 

£EFIN11ION 1.9: Let the vertices cf G te latelled 1 through n 

where IV (G) l=n. The adjacenc1 matrix , A (G), of the graph G is 

a (0,1) matri:.: such that a -=i if and onl1 if (.i,j) is an edge 
ij 
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of the latelled graph. the adjacencJ set ,A (v), of a vertex v 

is the set of vertices adjacent to v. 

Qi!l]!l!Qi 1L1~l A unicliillJa! vertex v of a graph G is one 

which belongs to exactly one clique of the graph (see 

definition 1.14). 

DEFINITION 1.11: A subgrg£h Hof a graph G is a graph with 

V (H) !5 V (G) and E (H) =- E (G) such that if tu ,v) is an edge of Fl, 

then (u, v) is an edge of G • 

.£l!.I!L!l1Q] lill Fer any set cf vertices W !: V (G), the _ind]f~g 

G w is the maximal subgraph of G with vertex set 

v (GW) =W. That is, for any u, v in V (Gw-) (u, v) is an edge cf G-w 

if and only if (u,v) is an edge of G. 

Q~!I]I!!~] j~Jl~ A comElete sutgraEh of order k of a grafh G 

is a sutgrafh defined en k vertices of V(G) for which any two 

vertices in the subgraph are adjacent. A !!1~1!91~ cf G is a 

complete sutgraph cf order 3. 

CEFINijlON 1.14: A E]lg]~ C cf crder k cf a graph G is a 

complete subgraph of G fer which there exists no vertex in 

V(G)-V(C) adjacent to all vertices in V fC). Cliques are 

therefore maximal complete subgraphs. 

DEFINITION 1.£.15: An autcmcr~hism cf a grafh G is a permutation 

of the vertex set V(G) which preserves adjacencies. 

~~!!l!l!~I 1.£.121 The collection of all automcrfhisms cf a 

graph G forms a group called the automorEhism srou] ,r(G), cf 

the graph G. 

CBFINITION J~11l two vertices u,v cf a graph Gare §l!!l!f if 

there exists an~ in r(G) such ~~=v. 

Q~II!I1IQ! 111~1 A graph G is ~2int=fil!~!!if if fer any twc 
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vertices u,v in V(G) there exists an ot. in r(G) such that«u-=v. 

OEFINI!ION j£J~l A graph G is line-s1mmetric if for any two 

edge!: ( u , V ) , ( u , V ) in E ( G) the I e exists an °' in p (G) s UC h 
1 1 2 2 

that either <Xu
1

==u
2 

and ex.\ ==v
2 

or otu
1

=v
2 

and oc.v
1 

.::::u
2

• 

CEFINI!ION 1sJ2i An algcrithm which crerates en a grafh is 

considered efficient if the computation tim~ and storage 

requirements can be expressed as functions of n tounded atcve 

by a polynomial inn, where n is the nureter cf vertices in the 

g ra F h. 

CEFINITION lsl1l !he B!~!!Jfj I£f~~fJ , AXB, cf two matrices A 

and Bis the matrix c where c .. =a .. 
J.J J.J 

t . . • 
J.J 
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The focal point cf tbis thesis is the detection of 

cliques in grafhs. The importance of this topic frcm both a 

graph theoretic and an afplicaticns standfcint will manifest 

itself in the historical survey of the next section. 

There are several variants or special cases of this 

subject which cant~ considered. We will ccnfine ourselves to 

a study of the following four problems: 

1.) The enumeraticn cf cliques cf a graph; 

2.) tetection of the largest clique of a graph; 

3.) Determination of the non-similar cliques cf a 

graph; 

4.) Determination of cliques of a specific order. 

The object in each case will be to study the Sfecial 

characteristics cf the rrcblem, and then to exploit these 

features to develop useful procedures for achieving the gcal. 

In addition, an effort will be made to deterGine tounds on the 

efficiency of several such procedures and to seek insight into 

intrinsic froperties of the methods used which might aid in 

estimating the best that cne can exfect from frocedures 

designed to solve these problems. 
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1.3 HISTORICAL ~~B1]1 

The study of methods for 

subgrafhs originated principally 

detecting 

with the 

maximal complete 

search fer an 

efficient and otjective rerresentaticr cf the structure of 

social groups. Such groups can be modeled with a sccicgra~, a 

graph which characterizes the resfonses of individuals in a 

sociometric test which reguires that each rarticipant specify 

some subset of the group to which he wishes to telong t~oreno 

[62]). Pioneers in a mathematical treatment of this prctlem 

were Forsyth and Katz (33] whc rrcpc~ea rerresentation of 

sccicgrams as matrices to ~hich the elementary operations of 

row and column rermutations could be applied tc achieve some 

more desiratle fcrrr in which the qtcurings cf individuals 

could be more easily observed. Such a representaticn was 

subsequently refined b_y Luce and Perry [54 J, Festinger [ 31 ], 

and Luce [55]. A (C,1) matrix, effectively the adjacency 

matrix cf the sociogram, was utilized, and the distance 

ftCferties cf a graph derived from the square, cute, and 

higher powers of the adjacency matri.x were used as indicators 

in characteri2ing the structure of the grcup. Festir.ger 

observed that a unicligual IDEmher i belcnged tc a clique cf k 

persons it and only if the ith diagonal element in the cube of 

the adjacency matri.x was equal to (k-1) (k-2). It was therefcre 

a simple matter to fina the crder cf the clique to which an 

individual telonged, provided he was a member of only one 

clique. Weiss and Jacobsen [78] appliea the techniques cf 

Luce, Ferry, and Festinger tc analy2e the relationshifS cf 

individuals and their tasks in tusiness crgani2aticns. 
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As a result of its sociological beginnings the word 

"clique" tecame synonymous with the graph theoretic notion of 

"maximal complete subgraph". The apparent usefulness cf the 

graphical method of refresentation of sociometric data was 

suggested ty tbe early results. However, investigators became 

aware cf the general need for more powerful methods cf 

manipulationg the socicgram and its asscciated matrix; in 

Farticular, of determining in an efficient tut general 1anner 

the cliques suggested by the model. The importance of 

tecbnigues for studying social grCUfS thus motivated 

exflcitation of a graph theoretic approach to the detecticn cf 

cliques. 

Because of the finiteness of the problem, there exists a 

naive, "brute force" method for finding the cliques cf a gtafh 

with n vertices--merely examine each of the {~) sets of k 

vertices fer k=1,2, ••• ,n. This clearly involves leaking at 

i (n)=2n-1 sets, an obviously intractatle numter for even 
k=l k 
moderately large grafhs. Because sccicgrams could te very 

large, analysis by clique membership would te practicatle cnly 

with the advent of much tetter aetecticn frccedures. 

Early techniques defended frimarily on a "bag of tricks" 

which incorporated knowledge of the structure cf the grafh 

induced ty the particular afflicaticn, and reEorted to 

exhaustive search or estimation when simflification was no 

longer fOssible. In 1956 Harary and Ross [41 J prcpcsed a 

method whereby a graph was Eystemically reduced to components 

each of which contained at least one unicligual vertex and for 
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which the observation of Festinger, previously nenticred, 

could te used to find it. The reduction rrccedure emFloyed the 

fcllcwing algorithm: 

1.) Initially, let the graph G itself te the comfonent 

under consideration. 

2.) It vis a unicliqual vertex in a component under 

consideration, then the subgraph induced en v and those 

verticeE adjacerit to vis a clique. Define a new comfonent fer 

consideration by deleting frcm the current comfcnent v and all 

unicliqual vertices adjacent to v. 

3.) If the component under consideraticn contains no 

unicliqual vertices, let v be a vertex telonging to a minimal 

numter of triangles cf that ccmfonent. Define two new 

comfcnents fer consideration: 

a.) the subgraph induced on v together with these 

vertices adjacent tc v, and 

b.) the union of subgraphs induced on the set cf 

vertices not adjacent tc v together with their reEpective sets 

of adjacent vertices. 

Since the union of these two components can te shewn tc be 

equal to the current ccrofcnent under ccnsideration, delete it 

from the list of components to be ccnsidered. 

4.) Cheese a component from the list and gc tc 2 until 

the li~t is exhausted. 

A procedure fer iwfrcving the efficiency of the algorithm 

was also suggested ty Harary and RcEs bJ which a component 

I . 
I 

I 
i 
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containing not more than three cliques could te ccwpletely 

processed at step 2. lbe Harary and Hess algorithm thus 

Frcvided a more fractical methcd than the naive algorithm for 

identifying cliques in sociometric data representatle as a 

(0, 1) matrix. 

sutsequent researchers have fUrsued the development of 

techniques for the analysis of variations and generali2ations 

of the model in an effort to include and obtain more 

information about the structure in a representaticn of a 

social group. By asscciating weights with each pair of 

vertices in a sociogram, the degree or strength ct the 

relationship could be characteri2ed (see for example Hutell 

(45]). By utili2ing an adjustable threshold value, a hierarchy 

of graphs could be established, each graph teing defined en 

the same set of vertices but consisting cf cnly those edges 

whose weights exceeded the threshold value. Darien [20], 

Johnson [ 47], and Ecyle [ 7 J have investigated the 

hierarchichal structure cf grcuf~ by this method. In 

particular Peay [68] recently developed an algctithro fer 

determining the hierarchichal clique structure of such a 

representation. A family cf Eets of vertices which we shall 

call "potential cliques" is generated from a graph G cf order 

n and associated with a threshcld value t. 

Initially V (G) is the cnly pctential clique in the 

family. Denote by w(v.,v.) the weight of edge (v.,v.) in EfG). 
1 J 1 J 

2.) If there exists an edge (v.,v.) 
1 J 

in E(G) such that 

w (v. ,v.) < t, and if thei:e exists a potential clique C induced 
1 J 
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of k vertices containing vi and vj then twc new 

pot en t i a 1 cl i q u es c
1 

, c 
2 

a r e in d u c e d c n c - { v i) a n a c - ( v j l • 

en a subset 

3. ) C is a e let e d fr c n, the f ,1 mi 1 'J a n d c
1 

a n d c 
2 

are ad de d 

to it prcvided neither is contained in some cur.rent neroter cf 

the family. 

4.) When it is the case that w(v.,v.)~t for any 1::ai~ 
l. J 

(v. v.) in any potential clique, then the family ccnstitutes 
]. J 

the set of cliques associated with the threshold value t. 

It is clear that the effect cf the algcrithm is to 

successively refine sets of vertices which contain r.cn­

adjacent pairs until such refinement is no lcnger fOSsitle; 

hence such sets of vertices can te ccnsidered to induce 

"rctential cliques". To use the algorithm tc find maximal 

complete subgraphs, a th.reshcld value cf 1 is assumed. 

Yet another impcrtant scciclogical rrcferty of groups 

that stimulated the study of cliques in graphs was the 

tendency for individuals tc "cluster" intc groups in such a 

way that members of a cluster retained a high degree cf 

similarity, while different clusters characteri2ed dissimilar 

prcperties (Davis [ 15]). Cluster theory also had afflicaticns 

outside of Sccicmetry. Atraham (1] has used clustering 

techniques to solve the ft:Cblem cf minimi2ing the number of 

interccnnections of electrical assP~tlies, a fCCtlcrn alsc 

explored by Lawler [51 ], while Bonner (6 J api:;lied such methcds 

to medical taxonomy i:;rchlerrs. Bonner's efforts resulted in the 

design of an afparently efficient algorithm, so ccnsidered 
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tecause his methcd eliminated the need fer comparing newly 

generated vertex subsets with previously generated sets fer 

containment, a necessary fart cf the frccedures employed by 

Harary and Ross or Peay. 

As a consequence, Eonner•s algcrithm enjoyed some 

popularity and was used ir. ccmfarative studies with more 

recently proposed algorithms. However, Augustson and ~inker 

[5] showed this efficiency was often illusory since a large 

number of extraneous vertex subsets cculd be generated in 

certain cases. 

Besides the applicaticn cf 

interpretation of socicfetric data, 

exflcred application is to the 

retrieval. Early develorJents in 

retrieval were made by 

applied such techniques 

Meetham 

tc the 

cligue detection 

the most recent 

tc the 

~idely 

protlem cf infornaticn 

the area of document 

[57] while 

frctlem 

Abraham [2,3] 

of thesaurus 

construction. In addition, the fteviously cited work of Eonner 

was also an afplication of clique detection methcds to 

information retrieval prctleros. 

More recently, Gotliet and Kumar [36] used clustering 

techniques to represent the degree of semantic associaticn 

between index terrrs used ir. the cla~sificaticn of documents. 

The thesaurus problem ~as further explored by Augustscn and 

Minker who employed a ne~ algorithm developed by Eierstone 

which was shown ty empirical roethcds tc te better than that of 

Bonner in many cases. Eierstone•s algorithm was compared 

empirically by Mulligan [64J with two recently develcfed 
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algorithms for clique enumeraticn, cne by Bron and Kerhosch 

[BJ and the second by Corneil (see Mulligan [64]). Frow this 

study Mulligan ccncluden the Eron-Kertosch algcrithrr tc be 

superior. The protlems and technigues cf ccmraring some of 

these algcrithms will be discussed further in the r.ext 

chapter. 

Several important graph theoretical problems are related 

to the detection of maximal complete sutgrafhs. rt is well 

known (see for examrle NordhauE [67:) that the Feint 

inderendence number of a graph G is equal tc the order of the 

maximal cligue in G, its complement. In addition, tte 

chromatic numter cf G is egual tc the minimum numter of 

inderendent cligues in G. At present there is no krcwn 

efficient means cf ccmruting either cf the~e graphical 

invariants. A procedure for determining either numter wculd 

provide an imfortant tccl in fUISuing the hcEt of problems 

(see fer examrle [ 14,19,26]) that exist in chromatic grarh 

theory, and hence serves to emphasize the irrFortance cf 

studying complete subgrarhs. 

As a result the literature abounds with a variety of 

results relating to the existence of comflete sutgrafhE in 

graphs. As an examFle, cne may ccns_ider the celebrated protlem 

cf RamEey [70 J concerning the smallest numter of vertices that 

a graph may have and ccntain either a complete sutgrafh cf 

order m, or an independent set cf k vertices. The 

determination of such a number, r(m,k), is an unsclved ftctlem 

for general m and k, although the fUhliEhed results include 
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the calculation of specific values, existence theorems, and 

bounds (21,29,35,37,38,48]. It is evident that an efficient 

clique detecticn frocedure wculd prcvide a useful teal by 

Froviding a faster way of examining graphs tor their ccmplete 

subgraphs. 

PerhaFS the results of extremal graph theory, pioneered 

by Turan(76,75], contributed most directly to the clique 

detection problem. 

In 1965, Mccn and Mcser ( 60] verified by direct methods 

the maximum number of cliques possible in a graph, a result 

earlier established ty Erdos ( 27} thrcugh an inductive 

argument: 

The maximum number of cliques in a graph with n vertices l.• C • -· 
a.) 3 n/3 if n = 0 ll!Cd 3 

l:.) 4, 3 (n-4)/3 if n = 1 mod 3 

C •) 2 • 3 (n-2)/3 if n = 2 mod 3. 

It was also shown that the graphs which contain the 

maximum number of cliques were: 

a.) the complete .!L-partite graph 1<(3,3, ••• ,3) if n = 0 
3 

mod 3 

t.) the complete il2=..ll - part i te gi:afh 1<(3,3, ••• ,4) if 
3 

n = 1 mod 3 

c.) the complete (n+1)-partite graph K (3, 3, ••• ,2) if 
3 

n = 2 mod 3. 

These graphs shall henceforth te referred tc as Mccn­

Moset gi:aphs. 
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It follows from this result that, as a functicn of the 

numher ot its vertices, a gr.aph may contain an exronential 

numter of cligues. Hence any algcritbru which examines each 

cligue at least once (ie. Sequential) may te expectea tc 

require an exponential amount of time to enumerate the cligues 

of a graph. 

Although from a graph theoretic point of view this is a 

disheartening result, an examination of graphs which ccntain 

such numters of cliques reveals that all cligues are of the 

same or nearly the same order. Further the cliques in such 

graphs appear to be homogeneously distritutea ever the 

vertices, each vertex telonging tc the sarre er nearly the same 

(again exponential) number ot cliques. From a practical feint 

of view, the number of edges in the graphical mcdels generated 

ty the empirical data cf the a11licaticns suggests that such 

conditions are unlikely to occur. The sparseness cf the 

adjacency matrix cf such graphs could therefcre te used as a 

rough 2 EfiEfi test of the number of cligue~ a aetection 

algorithm might be expected tc find. 

Cliques in graphs having a maximal numter of cliques are 

all cf the same size. ~oon and Moser also shewed that the 

numter of different sizes cf cliques in a graph with n 

vertices is bounded above by n-log (n). Erdos [30] irr,prcved 

their lower bound on this numter tJ showing that it was 

bounded be 1 ow t y n-1 o g ( 11) - H ( r.) - o ( 1 ) , where H ( n) aenctes for 

some k the k-fold iterated logarithm, log 1cg ••• lcg(n), and 

O (1) is an unsfecified constant. 

1 • .. 
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The results cf Erdcs, Mccn and ~cser suggest that an 

algcrithm for the enumeration of cliques is an example of an 

exponential comtinatorial Ftccess. There has recently been an 

effcrt in the theory of comfutaticn tc establish a hierarchy 

cf ccmflexity classes of combinatorial algorithms, rotivated 

ty the lack of success in finding and ftovi11g efficient 

algcrithms for a 

processes. This 

that ccmbinatorial 

large number of important ccubinatcrial 

wcrk was fioneered bJ Ccck [ 11] ijho showed 

problems can be expressed as language 

recognition problems. 

protlems for whict nc 

Using such a representation certain 

efficient algcrithms have yet teen 

devised were shown to be equivalent in the sense that each was 

reducible to the protlem cf whether a well-formed formula was 

satisfiable. The class of problems so reducitle has teen 

expanded ty Lawler (52,53] and Rarf [49] and includes the 

clique detection protlem. The princiFal result is that either 

there exists a folynomial bounded algorithm fer each frctlem 

in the class, or for ncne cf them. However, the nature of the 

frcblems strongly suggests that the latter case is in fact 

true. 

The study of the detecticn cf cliques may belf tc resclve 

this question since ~owsbcwitz (61] has shewn that a well­

formed formula ijith k clauses can te represented ty a graph in 

such a way that the well-fcrmed fcrmula is a tautologJ if and 

cnly if there exists no complete sutgraph of crder k. This 

result is stated ty Karr [49~, and is itflicit in Ccck [11]. 
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2.1 INTRODUCTION 

In order to gain insight into the complexity of the 

problem of clique enumeraticn, we shall e)aroine the algorithms 

described in Chapter 1 in some detail. The technique evolved 

exploits the way in which the vertex sutsets are determined 

during an iteration cf each algcrithro. A cligue enumeration 

algorithm will then be proposed and shown to be more efficient 

than those previously exarrined. 

The algorithms of Harary and Ress aud Benner were chosen 

because cf their availability in the literature, their 

apparent differences cf arfrcach, and their frequency cf 

citation as references in sutseguent literature on the subject 

of cligues in graphs. In addition, the Harary and Bess 

algo~ithw is considered by this author to te the historical 

precedent for the develcrment cf clique enumeration 

algorithms. Peay's ~lgorithm was chosen because it is 

comparatively recent, offers a ccnceptually simrle Rfftoach to 

the problero and there appears to te no analysis cf its 

efficiency. Although net yet reaaily available at the time of 

this documentation, the Bron-Kertosch algorithm has teen 

included tecause cf its surericrity ever scme cf the previous 

methcds as determined by Mulligan [64]. 

Although the algorithms cited employ apparently different 

techniques to achieve their gc~lE, this difference is 

frimaril1 one cf detail, for an examination reveals the 
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following common features: 

1.) Each algorithm refines or decomposes a previously 

determined vette} subset to obtain new vertex sutsets each 

containing at least one cligue cf the criginal graph. A choice 

is made of a vertex from the initial vertex subset, and its 

adjacency properties are used to define the new subsets. The 

old vertex subset is suhseguently removed from further 

consideration. 

2.) Each algorithm has the prcEerty that every clique of 

the original graph is contained in exactly one of the possibly 

several vertex sets available for consideration at any stage 

of the algorithm. 

some device to avoid the 3.) 

pitfalls 

Each algorithm 

of multiply 

employs 

defining a clique or including as a 

maximal. Such a clique some complete subgra~h which is r.ct 

situation can occur whenever vertex subsets are generated 

which are properly contained in other vertex subsets, or which 

contain complete subgraphs roaximal en that vertex subset but 

not en the original vertex set. 

In the remainder of this chapter it will te seen that it 

is precisely these frcperties cf the cligue enumeration 

algorithms which profoundly affect the efficiency of such 

procedures. 
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2.2 MA'IHEMATICAL A],!LY.§!~ .QI ENUMERATION ALGOiUTHMS 

Tc obtain some means of estimating analytically the 

computational time required by each alqcrithro, the computation 

may be divided into t~o parts. The first consists cf 

determining the effcrt required for one iteration of the 

algorithm; that is, the time required tc determine new vertex 

suhsetE from an old one. The second involves the determinaticn 

of the number of iterations required to find all the cliques 

of the graph. we shall see that the nurnber of iterations 

required is related to the number of vertex sursets generated 

during the execution of an enumeration algcrithm A. 

vertex set V using algcrithrn A if during scroe iteration in the 

execution of A, w is determined from v. 

CEFINITlON i~fl A vertex suhset W is derivable from a vertex 

subtiet V using algorithm A if there exist subsets u
1
,u

2
, ••• ,uj 

such that U is directly derivable frcro V, U, is directly 
1 i+l 

from u. for i<j, and Wis directly derivatle from u .• 
1 J 

Since the set Wis contained in the set V from which it 

was derived, using these definiticns it is easy to Eee that 

derivability induces a partial ordering on the set of all 

vertex sutsets generated by algcrithm A during the course of 

enumerating the cliques, provided we add the stipulation that 

every sutset is directly derivable fro[ itself. 

This partial ordering roay be rerresented bj a directed 

tree whose root represents the vertex set of the graph, and 

whose vertices represent the vertex subsets generated by 
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algorithm A. Vertex u, representing subset u, is connected by 

a directed edge tc vertex w, refresenting subset w, if w is 

directly derivable from v. It is clear that this tree is 

dependent upon the enumeration algorithm used and the 

labelling of the graFh, hence we shall always associate with 

any derivation tree a labelled graph G and an enumeraticn 

algorithm A. 

DEFINITION 2~3: A vertex subset W will be said to be redundant 

if it is properly contained in some vertex subset V from which 

it was BQ! derived. 

It is interesting to observe that the behavior of clique 

enumeration algorithms to be described subsequently can be 

compared to a tree searching ftccedure, the tree in this case 

being the derivation tree cf a grafh G as determined by an 

algorithm A. The determination of methods for ~inimizing the 

development of redundant ncdes in the determination of the 

derivation tree may then be likened to the protlem of finding 

suitable tree pruning techniques. 

been noted ty Mulligan (64], 

Thi~ similarity has also 

while Bron and Rerbosch have 

exflcited it in their algorithm which used a "tranch and 

bound" technique on the derivation tree. 

To determine the ccrr-utaticnal effcrt required during a 

single iteration of each enumeration algorithm, a technigue 

developed ty Corneil [12, APPENDIX A ] will be used. The tasks 

perfcrmed within each algorithm will be grcured into blocks. 

Each block will he defined from a set of tasic operation tyfeS 

determined ty implementation ccnsideraticns. These operation 
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tyfeS and their associated time constants are given in TABLE 1 

of APPENCIX A. 

Most of the instruction tyfes are self-explanatory. We 

shall elaborate briefly. however. on the "push" and "Fer" 

operations. The need for such Cferaticns arises from the 

indeterminate amount of storage required for saving partially 

determined vertex sutsets. It will be seen to be most useful 

to save such sutsets, if they are neeoed fer some subsequent 

precessing. en a push-down store. Such a data structure i~ 

easily implemented as a linked list with additional storage 

added on as required. The essence of the "push" operaticn is 

to obtain storage for the current vertex sutset to te saved 

together with a link address feinting tc the next data item in 

the store. The top item is always directly accessible through 

a pointer to the top cf the stcre The "pop" operation 

deletes the top data item of the stcre and resets the pointer 

to the store top so that it points to the next data item which 

thus tecomes the new tcp of the stcre. 

In most cases it is difficult tc obtain an exact 

expression for the computation time of the algorithm under 

consideration. This is due ftimarily tc difficulties in 

determining the number of vertex subsets having a particular 

number of vertices. A second factor ccmflicating the 

determination cf such an expression is the difficulty cf 

determining the extent of search tc ~atisfj some condition 

(such as the "first edge" in Peay' s algorithm) during a 

particular iteration. Fer these reasons cur princifal gcal 
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will te to determine the order (as a function of the number of 

vertices in the graph) of an iteration, and the numter of 

vertices in the derivaticn tree. 

In determining esti;ates of the required ccmFutation time 

for the enumeration of cliques by various methods, the Ftiiary 

graph tote considered will be the complete k-partite grafh 

with k m vertices per blcck, dencted K(m,m, ••• ,m) or R(m ). The 

reason for such a choice is that every k-partite grafh is a 

subgraph of K (mk) and the derivation tree cf any other k­

partite graph is smaller than the derivaticn tree of R(mk). 

As a ccnsequence of this choice of graph for ccnsideraticn it 

is possitle to deterroine the nuroter cf vertices in its 

derivation tree using each algorithm. 
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2.3 ANALYSIS OF THE HABABY-ROSS ALGORITHM 

As mentioned in the introduction of this chapter, the 

Harary-Ross algorithm was selected fer ccnsideration in a 

comparative study of some clique detection algorithms tecause 

of its historical preceaent. It is interesting to note that 

despite its frequent reference in subsequent fafers on clique 

detection examined by this author, no mention had teen made cf 

an error in the algorithm until Harary hiiself referred to its 

existence in a recent paper on the application of graph thecry 

to the Social sciences [44~. Harary observed that although the 

methcd found all the cliques, it alsc included some "other" 

subgrafhS in the set of maximal complete sutgraphs as well. 

These "other" sutgrafhs are in fact ccmrlete sutgraphs which 

are not maximal and hence each is ccntained in some clique. 

Although there afpears to be no sutsequent attempt made tc 

correct the protlero, pcssitly due tc the existence of more 

efficient algorithms by the time of the discovery cf the 

error, a modification to ccrrect the defect is fairlJ simple. 

When a complete subgrdph has been discovered, determine if 

there exists a vertex adjacent to all vertices in that 

subgraph. If not, a clique has been fcund. Ctherwise it is 

cbvicus that such a sutgraph is not a clique and is therefore 

deleted from further consiueration. This modificaticn is 

included in the sutsequent analyEis. 

In the interests of iwrroving the efficiency cf their 

algorithm, Harary and Ross modified the general frocedure 

cited in the historical survey by defining a fIOcedure for 
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determining whether or not the subgraph induced on the vertex 

set under consideration had at mcst three cliques. If so, then 

such a subgraph could te completely precessed by a direct 

method (Ia ther than the recursive method of the general 

procedure) and the cligues cf the subgrafh determined. However 

in most cases only one additional iteration of the general 

frccedure is required to determine all the cliques cf a 

subgraph containing at most three cligues. In addition such a 

scheme requires additional computaticn, namely determining 

whether a subgrafh has at most three cliques, during each 

iteration of the general prccedure thus increasing the overall 

comfutaticn time. For thesP. reasons, the ccntrituticn tc 

overall efficiency is small and for simplicity has not teen 

included in the analysis er imrlenentaticn cf the Harary-Foss 

a lgcri th m. 

2.3.1 NOTATION FCR THE AlGCRITHM 

.9.l The sutgrarh currently under ccnside:raticn. 

YJ.91 The vertex sutset cf the subgrafh G. 

!1 The adjacency matrix cf the subgraph G. 

£1 An array ~uch that r(i) contains the sum of all 

elements in :row i cf B~ A21A , the Hadamard froduct of 

the adjacency matri~ and its square. 

~.l An array containing the degrees of the vertices in the 

sutgrai;h G. 

~~ A pointer to the vertex i in G with minimum row sum 

r (i). 
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!!l The number of vertices in the vertex sutset V fG). 

2.3.2 TF.F ALGORITPM 

~!!EQ1 Initially flace V(G) en t~e stack. 

~IJRJ1 Choose a vertex set V (G) frcrr the stack of vertex 

subsets tote considered. If stack emftJ then gc to step13. 

ST~f.f.l Ccmpute the matrix product A2 XA where "X" is the 

Hadamard product. 

~!.!.RJ1 Let E-= A2 XA • COIEFUte the ICW EUltE r (1) ,.r(2) , ••• ,r (n ) 

cf E as well as the degrees a (1) ,a 12) , ••• ,d (n ) of the 

vertices in the subgraph G. 

2I!E~l Seti to 1 and rr tc 1. 

~.!~£21. If r (i)=d (i)·(d (i)-1) then go to STEP10. 

ST~f§l if r (i) < r (m) then set m to i. 

2l!R]i set i to i+1. If i~n then go to STEPS. 

~l!.!:~l No unicliqual vertices exist. Therefore defin€ twc new 

vertex subsets V (G ) and V (G ) as follows. V (G ) i!:i the set cf 
1 2 1 

all vertices adjacent tc ro, the vertex cf minimum row sum 

r ( m) • V (G ) 
2 

is the set of all vertices not adjacent tc ~, 

together with all vertices adjacent ta at least cne cf these 

vertices not adjacent tc ro. 

~l!E~l Store V(G
1

) and V(G
2

) on the stack of vertex sets tc be 

considered and go to STEP1. 

2!!1JQ_; A unicligual vertex i has been found. Compute the 

intersection of all rcws ct the adjacenc1 matrix of the 

original graph corresponding to vertices adjacent to i. 
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.§!!fJj_;, I f t he result cf STEP 1 C yield s a n em pt 1 s e t then the 

comflete sutgraph deter~ined by i is maximal. Hence print i 

and the set of vertices adjacent to i. 

~!]fJll relete from V(G) vertex i and all vertices adjacent to 

i which are also unicligual. Place V(G) en the stack of 

vertex sets to be considered and go to STEP1. 

~1!f1ll All vertex sets have been 1rccessed. Therefore stcf. 

The tasks tc be performed by the Harary-Ross algorithm 

may te logically ~ivided intc fcur blccks. The function of 

block 1 is to compute the degrees of the vertices of the graph 

and to compute [ A (G) ]2 X A (G) and determine the rcw sums cf 

this matrix. Block 2 uses this infcrmaticn tc search for a 

unicliqual vertex ty finding a vertex ~hich satisfies the 

re la tionshi p r = d • (d -1) where r is the corresponding ro.,, 

sum, and a the degree cf the vertex. If such a vertex is net 

found, two new sutgraphs are determined in block 3, one of 

which is returned to block 1, the other saved for further 

processi~g. Otherwise we prcceed tc tlcck 4 tc search for a 

complete sutgraph of the grarh G1 induced on the anicligual 

vertex v and those vertices to which it is adjacent. If the 

complete subgraph is a clique it is Fiinted. All unicligual 

vertices in the discovered ccmflete subgrafh are deleted from 

V(G
1

) and the subgraph G1 is returned to tlock 1 fer further 

processing. 
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]1Q~.!S1 

1 pop V (G) 

2 i <-- 1 

3 r. <-- 0 
]. 

4 j <-- i+l 

5 :r . <-- 0 
J 

6 subst:r (a., j,O) 
1 

: 0 
:; 

7 a. <-- a . +, 
l 1 

8 d. <-- d .+ 1 
J J 

9 k <-- 1 

10 s <-- 0 

11 

c: 
<-- subs tr ( ai n a j , k, 1) + s 

12 <-- k+1 

13 . nG . 
14 r. <-- r +s 

l i 

15 rj <-- r.+s 
J 

16 j <-- j+1 

17 " j : nG 

18 i <-- i+1 

19 
( 

i : nG 

The parameter nG is egual tc the number cf vertices o.f 

the verteJC set V (G), and a (i) denotes the adjacency set cf 

vertex i in G. 

BLOCK1 dominates the ccmputaticn in the Harary-Boss 

algorithm; the other blocks of the procedure will te seen to 

depend linearly en nG. Fer this reason we defer their 

description until we have further exaroinea BLCC~1. 

1 
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In general it is difficult to attain an exflicit 

expression for the ccmputaticnal effcrt required ~J the 

Hara i:y-Ross algori_thm. This is due to difficulty in 

d~termining the numher of times branch ccnditicns are 

satisfied It is also difficult, even fer an arbitrary 

comflete k-partite graph, to determine the numter of vertex 

subsets that are generated with a farticular distritution of 

vertices over the blocks. Instead, we shall ccnsider the 

behavior of the Harary-Ross algorithm when finding the cligues 

of K(3k). A similar prccedure cculd alEc be adopted for each 

of the other two types of Moon-Moser graphs. An example of the 

derivation tree for K(3k) is given in Pig. 2.2. Each node cf 

the tree has teen latelled acccrding tc the distribution of 

vertices among the blocks of the induced complete 3-partite 

subgraph which it represents. 

Let G te an induced subgrafh defined en a vertex subset 

obtained during the execution of the Harary-Ross algorithm, 

and suppose G 

tlocks with 2 

has i 
1 

blccks with 1 vertex per tlcck, i 
2 

vertices r,er blcck, ar.d i
3 

blocks each 

containing 3 verticP-s. Necessarily it is the case that 

i +i +i =k and i +2i +3i =n. The nuffber cf times 
1 2 3 1 2 3 

that 

execution passes from line 6 tc line 7 during the execution of 

block 1 is equal to the numter of one's in the adjacency 

matrix of G atove the diagonal. Since the criginal graph is 

complete k-partite every induced subgraph containing at least 

one vertex per tlock is alsc ccmrlete k- Fartite. The number 

of cne•s in G is therefore given by fG 

f (i ,i ,i )= [ (i +2i +3i ) 2-(i +4i +9i )]. 
G 12 3 1 2 3 1 2 3 

(i ,i ,i ) where 
1 2 3 
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Eence steps 7 through 15 cf blcck 1 will be performed 

f G (i
1
,i2,i 3

) times and the computation time of block 1 during 

one iteration is given by T
1

(nG) where 

with 

T 1 (n G) -= ct+n c1+n · (n -1)C1+f (i1 , i 2 , i.3) (CJ! +nG Ct) 
1 G 2 G G 3 G 5 

Cl = t 1 +t:.!. 1 

Cl = 3t
1 

+2t
3 2 

Cl 
3 -= 2t

1 
+t

3
+2t

4 
+t

8 

Cl = 6t 1+4t3 4 
Cl = 2\ +2t3 +t 4 ·~ +t8 5 

The constants t., i=1,2, ••• ~'10, represent the cycle times 
1 

for the various operations as SfeCified in APPENDIX A. 
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22 

23 

24 

25 

26 

where 

r (i) 

i <-- 1 

m <-- 1 

r
1
.: a. (d.-1)----.... , Blcck4 

]. l. 

:\~_";I 
i <-- i+1~ 

Bloc.k3 

The computational time for ELOCK 2 is given by: 

T (n) = cz+g c2 
2 1 i 2 

C 2 -= 2t 
1 1 

cz = 3t +2t +3t +t 
2 21 3 4 5 

29 

It was assumed that line 24 ~hich EOints to the minimal 

was executed cne-half the tiroe. ~he term 9. is 
J. 

equal to 

cne less than the label of the first unicliqual vertex i 

encountered. 
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I!l.Q~lil 

27 V (Gl) <-- a n V (G) 
m 

28 surstr (V (G
1

) ,m,1) <-- 1 

29 i <-- 1 

30 V (G
2

) <-- -V ( G 
1

} 

]1 i <-- i+1 

31 subs tr: (V (G
1
), i, 1) . 0 . 

32 V (G ) <-- V (G
2

) u a. 
2 l. 

33 i <-- i+1 

34 ~ i : nG 

35 i;:ush V (Gl), V (G
2

) 

The computation for: cne iteraticn of blcck 3 is 

and d {i) 
G 

on V ( G). 

'I 
3 

( nG ) = C i+ ( nG -dG ( i) ) cl+ n c 3, where 

C3 = 4t +2t +t
6

+t +t
8 1 1 2 7 

C3 
2 - tl +t6 

\ +t3+2t4 +t8 C3 = 
3 

is the degree of verte~ i in the subgraph induced 
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I!1Q~!!! 

36 C <-- a. 
l. 

37 substr(C,i,1) <-- 1 

38 T <-- TU -T 

39 k <-- 1 .. 
40 sutstr(C,,k,1) . 0 

I 
. 

41 T <-- TO\: 

42 k <-- k+1 ( 

43 ~ k . 
nG . 

44 T . 0 + . 

OJ 
45 print C 

46 substr (V (G) ,i, 1) <--

47 j <-- j+1 

48 sub.str: (a., j, 1) . 0 
.. . 

l. 

49 r . . 
rj . 

]. 

50 substr (VG} ,j, 1) <-- 0 

51 j <-- j+1 

52 " j . 
nG . 

53 push V (G) 

The computation time fer BLOCK4 is 

T (n ) = C"+d (i) c•+n C"+hC"-iC•, 
4G lG 2 GJ 4 5 

the constants being given by 

C" = 6t +t +t +t +2t +t 
1 1 2 3 4 8 10 

C" = 2t +t -t +t
6 2 1 3 4 

C" = 3t +t 
3 4 8 

c• = t +t 
4 1 8 

c• = t +t +2t +t 
5 1 3 4 8 

and his the number of unicliqudl vertices in the cligue. 
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For K (3k) the next secticn will Ehc~ that there are 1(3k-
2 

3) ccmronents which do not have unicliqual vertices; hence the 

value of gi in block 2 for each of these vertex sets is nG, 

and therefore the roaxiroum value fer T
2 

(nG) is Ci+c 21\z· 

For l:locks 3 and 4 dG(i) 

r
4 

(nG) are 

and hare also bcunded by n and . G 

also linear polyncmials with 

respect to nG. T
1

(n
0

) is thus clearly the dcminant term in the 

computation time fer cne iteraticn of the Harary-Boss 

algorithm and is a polynomial of order n 3 • 

I, 
,-
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5 

Fig. 2.1: K.( 3, 3, 3 ) 
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Fig. 2.2 

HARARY-ROSS ALGORITHM: 
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2.3.3 NUMBER OF VERTEX SUBSETS EXAMINED EY THE ALGORITHM 

Ftcm an eJamination of the derivation tree of an 

arbitrary graph using 

example Fig. 2.2) it is 

the Harary-Ross algorithm 

easy to determine the 

(see for 

number cf 

components or vertex sets that will te generated. This is 

because, given that the nu~ter cf cliques in the graph is N, 

since the derivation tree from this algorithm is tinary, the 

numter of nodes is 2N-1. The ncdes cf the derivation tree cf 

K(3k) can te separated intc twc farts acccrding to the type of 

precessing carried out on the component reprEsented by that 

node of the tree. In particular, whenever a unicligual vertex 

is found via block 2, the clique to which it telcngs is 

determined in tlock 4 and the ccmfcnent corresponding to this 

clique is output rather than returned to the precessing stack, 

which consists cf vertex subsets yet to he examined further 

for cliques. 

Fer example, if we examine Fig. 2.2, and consider the 

subgrafh induced on a vertex set having one vertex in every 

vertex tlock tut cne ( eg. (1,1,3), (1,1,2), (1,2,1), (2,1,1)) 

we see that all vertices ir. the blcck ccntaining more than one 

vertex are unicliqual. ~ vertex would te chosen trot this 

vertex tlock, and thrcugh the ccmfutaticn in block 4 of the 

algcrithm a clique would be determined and a vertex set 

returned for further processing. In the case of the exarfle 

such a vertex set would have the fcrm (1, 1, 2) er ( 1, 1, 1). 

For the general ccm[lete k-fartite graFh K(3k), among all 

vertex sets generated having unicliqual vertices, there is 
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only one vertex set cf the fcrm (1,1,1, ••• ,1,3). This is 

because such a set is derivable only from previous sets having 

either one or three vertices r-er vertex block. Such a vertex 

set yields three cliques accordiny tc the sequence of 

derivations given in Fig. 2.3. 

of these three cligues cne is refrccessed in tlcck 1 as a 

consequence of the rrevicus discussicn. Cf the remaining 1k-3 

c lig ue s, all are derived from vertex sets having twc 

unicliqual vertices in sorre tlock, cne vertex in each of the 

remaining blocks, and hence again according to the previous 

argument one-half ct tbese will be reftccessed one further 

time. 

The purposE cf this discussicn has teen tc ascertain hew 

many vertex sets cf the 2-1<:-1 generated are sutject to 

frccessing in block 1 ~here the major portion of ccwputaticn 

occurs. This nurrber i.s thus 3k-1+1+..l(3k-3) = 1,(3k-1). In 
2 2 

addition, the nuroter cf vertex sets containing unicliqual 

vertices, and therefore examinea in tlock 4, is 2+1.tJk..J). 
2 

Finally the number of vertex sets not containing a unicligual 

vertex ana therefcre processed in block 3 is given by 

(2·3k - 1) - 3k - (2 + 1,Uk - 3)) = 1(3k - 3) 
2 ~ 

If we denote ty T ,T ,T ,T, estimate~ cf the computation time 
1 2 3 4 

for blocks 1,2,3,and 4 respectively then an estimate of the 

computation time is given by: 

T = (T +T) {3(31~1)) + if (3(3k-l_1)) + if. (1(3k+1)) 
a.ppx 1 2 2 3 2 4 2 
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1,1,1, ...• 1,3 

1,1, .•• ,1,1 

1,1, ••. ,1,1 

Fig. 2.3 

SUBTREE OF DERIVATION TREE 
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The Harary-Ross algorithm as defined in tlocks 1 thrcugh 

4 requires only one aojacency roatrix be stcred, that of the 

criginal graph. !he appropriate sub-roatrix is then determined 

during each iteration by keeping track of the affrOfriate 

vertices defining each induced subgrafh. Alsc, since the rand 

d arra1s are fErtinent only tc the induced subgraph currently 

under consideration, only one array of size n cf each is 

required. As all other terrrs are ccunters er fCinters the cnly 

ether storage requirement is made ty maintenance cf a push­

down store for keefing track of the vertex sets remaining to 

be processed. 

At anJ iteration we usually define two vertex sets named 

V(G
1

) and V(G
2

) in the description of the algcrithm. If we 

order their position on the fUSh-dcwn store sc that V(G
1

) is 

always chosen fir~t from the push-down store, then since no 

fath in the derivation tree is of length greater thank, there 

cannot te more thank vertex sets waiting in the store. Each 

corresponds to the "other" vertex set paired with that vertex 

subset refresented by a node lying on the fath in the 

derivation tree. As an examFle ccnsider the derivation of 

clique (258) in K(3k) as labelled in Fig. 2.1. The sequence cf 

events is illustrated in Fig. 2.4. 

For each pair cf direct derivations, V(G
1

) corresponds to 

the "left" derivation, V (Ci ) tc the "rig~t" derivation. Eefore 
2 

we can reach the vertex in the derivaticn tree latelled 

(23,456,789) we must have frccessed (1,456,789) since we have 
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arranged to do this first. consequently all cliques ccntair.ing 

vertex l have teen determined and vertex set ( 1, 4~E:, 789) or 

its derivatives no longer appear en the fUSh-down store. A 

similar argument applies to (2,4,789) and (2,5,7). The cnly 

nodes remaining to te frccessed dte (3, 45E:, 789), (2, E, 789) and 

(2,5,9). 

From a programming point of view it is most convenient as 

well as efficient to naintair lists cf vertices as bit 

strings. Since both the vertex sets of the algorithm as well 

as the rows of the adjacency rratrix are vertex lists it is 

clear that the storage requirements are given ty 2n+C "integer 

units" of memory plus r, (n+k) bits. An ".integer unit" will 

depend on the storage ccnventicns fer integer refresentation 

en a fatticular s1stem. For our purposes during impleuentaticn 

this is equal to a "hdlf-wcrd" er 16 bits. 

The storage requirements fer the Haratj and Boss 

algorithm is thus n(n+k)+16(2n+C) tits where c is the nurrber 

of pointers and ccunters required. 
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V(G) 

1,456,789 

3,456,789 

2,4,789 

2,5,7 

2,5,9 

Fig. 2.4 

A PATH OF THE DERIVATION TREE 
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2.4 ANALYSIS OF BONNER'S ALGORITHM 

Bonner's algcrithre has generated some interest among 

researchers wishing to employ the analysis of cliques in 

graphs to their particular afflicaticn because cf its apparent 

efficiency since no clique or vertex sutset generatea need be 

examined for containment in scree Frevicus component . This 

difficulty arose in the modified flarary-Bcss algorithm 

previously described and is also inherent in Peay•s algcrithm, 

to be discussed next. In additicn, Bcnner•s algorithm is 

interesting to examine in a comparative study cf clique 

enumeration algoritLms tecause it has been compared 

empirically with the efficiency of more recent algcrithIDs. 

The approach taken by Bonner is rather different frcm 

that of Harary and Ross er Peay in that it is a constructive 

procedure rather than one of reduction. The method emplcyed is 

to tuild up the vertex sets of the cliques froro a set cf 

potential candidates, merrbershiF being determined by the 

adjacency properties associated with each vertex. we describe 

the steps of the algorithm as given ty Bonner (6], including a 

minor correction ncted ty Augustscn and ~inker [5] in their 

discussion cf the efficiency of the procedure. 

The paper of Augustson and Minker shewed that the 

efficiency of Bonner's algcrithm may often be illusori because 

many ccmplete subgraphs or components may te generated during 

the course of executicn cnly tc be diecarded at some later 

stage. tt was discovered that graphs containing several very 

large cliques and a few very small cnes resulted in an 
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excessive amount of computation being performed en extraneous 

components which the algorithm wculd eventually delete. this 

generation of extra vertex subsets using Bonner's algorithm is 

alsc fresent in the enumeration of cliques cf cororlete k­

partite graphs, upon which we are focusing cur discussion. we 

shall establish a generalization of observations made by 

Augustson and Minker which will then te used tc determine the 

number of vertices in the derivation tree cf K(mk) using 

Bonner's algorithm. We first, hcwever, describe the procedure 

itself. 

2.4.1 ].Qlh11.Q] 

Ai an array representing the set cf cbjects in the 

complete sutgraph to the rresent stage cf calculation. 

~ l an array ot potential candidates for increasing the 

size of the comp]ete subgraph induced on vertices in A • 

L : th~ last vertex cf C tc be considered for addition 
-i-

tc the comflete sutgraph induced en A. 

~ l the adjacency matrix of the original graph. 

2.4.2 BONNER'S ALGORITHM (Augustson, Minker[5]) 

~I!.fJ1 set i to 1 , c
1 

to V ( G) , Al tc ~ , 11 tc 1 • 

~.!1R1..:. lf L is not in set C then set I . to l.+ 1 and go to 
i i 1 1 

STEP 5 • 

.§1:lrnl.:. Set C to {C.nS(L,) }-{L.} and 111·-1 to A u {L.J. 
i-1 1 1 l. i l. 
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~I]EE1 set L. 1t o L . + 1 , i t c i + 1 • 
1.+ 1. 

~I1E2l If there is an elemeut in Ci larger than li then go to 

STEP 2. 

to A .• If C.=f then A. is a maximal complete 
1. 1 1 

subgraph. Else either A. has been founa tefore or it is net 
1 

maximal. 

21~E11 Seti to i-1. If i=O then stop. 

~I1E1ll set u tc te the set cf all cbjects in c. greater than 
1 

L. • If U~ T then go to S'I .EP7. 
1. 

.§1~.R2l Set L. to L.+1 and go to STEP2. 
1 1. 

The tasks performed by Eonner•s algorithm have teen 

divided into twc blocks. The function cf the steps fetformed 

in block 1 is to determine whether a discovered complete 

subgraph is maxirral and to find the next component tc be 

processed. If one is fcund, ccntrcl is transferred to block 2 

which constructs another comflete sutgraph returning the 

disccvered complete sutgraph to clock 1 for testing. 
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]1Qf.!S1 

1 w <-- A. 
1 

2 C. : 0 
1 

3 print w 

4 i <-- i-1 

5 i 0 = )::tCf : 

6 u <-- c. 
1 

7 substr (U ,i, 1) <-- 0 

8 = (U U W) : w 

9 L. <-- L. -+ 1 ,. 10 
1 1 

The computation time, 1i foe tlock 1 is given t. y 

1.. =Cl+!,t +hCl 
1 10 2 

with constants l:eing gjven . :Cy 

C 1 = 2t
1

+t
3

+t
4 1 

c~ = 3t l +t3 +2t 4 +t. 6+t8 

and f> = 1 if w is a clique, 0 cther'-ise, and h<" -1 is the first 

are the vertices cf a 

complete subgrafh contained in a clique net yet fcund. 
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=---• s ubst r (C. ,L .,1) : 0---►•L.<-- 1. +1 
]. l. l. ]. 

11 

12 

13 

14 

15 

16 

17 

C. l <-- C .nS(Li) 
l.+ l. 

substr (Ci+l, Li, 1) <-- O 

A i+l <-- Ai 

substr(A. 1 ,L.,1) <-- 0 
l.+ J. 

L . l <-- L. + 1 
l.-t l. 

i <-- i-t1 

suhstr(C.,L.•1,n-L.) : 0 4------' 
l. l. l 

Every vertex subseguert to the original L. 
l. 

is examined 

exactly once until there are nc further vertices to be 

included. Therefore loop:17 to 10 is executed at rocst r:-L. 
l 

times for an arbitrary graph. For K(mk) there are at most ~(k-

j) vertices in c., where j denctes the t::lock to which vertex 
l. 

L. belongs. For each value of i there ace m-1 vertices not in 
l. 

c., namely the otter vertices in the block. Since i is net 
l. 

incremented on such occasions lccf:17 to 10 is executed m-1 

times for each of the next k- j -1 blocks of vertices in C .• 
l. 

If the graph is labelled such that vertices in block i have 

1 ab els ( i- 1) m + 1 , ( i- 1) 111 + 2 , • • • , ( i-1 ) m + 111 , then 

An Uffer bound on the time consumed in block 2 is given by T
2 

defined as a function of 1
1 

and n: 

whex:e 

T2(Li,n) = e-L!:i~1J}(Ci+(m-1)C2+mCj) 

Cf = 6t 
1
+7t 

3
+t6 +2t

8 

c2 = t +t 
2 1 3 

CJ= t
3 
+2\ +2t8 
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Since the value of h in blcck 1 is less than or equal to 

n while k-L!,i k1 J is maximi-zed when Li is in the first tlcck, 

it is clear that the ccrofutaticn fer cne iteraticn of Bonner's 

algorithm is tounded by n = rr-k, the nuaber cf vertices in the 

grafh K (m1,. 

To determine the nurnher cf ncdeE in the derivation tree 

cf Bonner's algorithm it is necessary first to estatlish the 

following result, a generalizaticn cf observations made by 

AuguEtson and Minker [5). 

every complete sutgraph of k .K ( m ) is 

generated during the execution of Eonner•s algorithm. 

f£22!1 Using Bonner's nctaticn the set A. consists (.)f a 
]. 

complete sutgraph cf crder i defined en vertices labelled 

the set C. consists of all vertices adjacent 
]. 

to every vertex in A • • 
]. 

Sufpose the vertices of tlock V. in V (K (mk)} are labelled 
J 

( j- 1 ) m + 1 , ( j- 1 ) m + 2 , ••• , ( j - 1 } m + m , for m ~ 2. If w e Fer for Iii t be 

algorithm to attain the "first" cligue cf K(mk) we attain the 

following assignment tc A. 
]. 

and L. 
l. 

fer i=l,2, ••• ,k: 

Ll = 1 Al - { 1 ) 

12 = m+1 A2 = (1,m+l] 

. . . . . . . . . . .... ......... . 
Lk = (k-1)m+1 \= {1,m+1,2m+1, ••• ,(k-1)m+1J 
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Let u tea vertex subset cf c. ccnsiEting of all vertices 
1 

with labels greater than L. such a sutset is net the vertex 
i 

set of a complete subgraph unless there is at most one vertex 

in O because of the labelling of vertices in K(mk). Therefcre, 

by execution of the algorithm, Li is set to Li+1 in step 8 and 

we return to step 2. 

Since i is determined ty the number of vertices in Ai 

when we entered step 6, and since every possible value of L. 
1 

from its initial one of (i-1)Di+1 ur tc mk i.s adjacent to 

L
1

,L 
2

, ••• ,Li-l and also contained in Ci' it is the case that a 

comFlete subgrafh with vertex set given ty A
1

, 1'5i~k+1, is 

generated where: 

1.) Ai = { 11 , 1 
2

, ••• , Li } , 

2.) 

We have thus established that for m~2 every complete 

subgraph of Ktmk) is generated during the executicn cf 

Eonner•s algorithm. The Sfecial case m=1 corresponding to 

aFflying the fIOcedure to a complete graph generates k 

complete subgraphs as described abcve in determining the first 

clique of the graph. Since every possitle sutset U of c . is 
l. 

contained in , clearly nc return is ever made tc steF 2, 

so that the algo.rithn: teririnates after printing 

Ak ={1,2, ••• ,kJ. 

The derivation tree for Kt33) is given Fig. 2.5 as an 

illustration of the vertex sets generated by Bonner's 

algcrithm. From this cne can clearly see the property of 
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Bonner's algorithm defined in theorem 2.4. As a result the 

numter of components generated by Bcnner•s algorithm on K(m~ 

is given by the following: 

TH~OREM 2.5: The number of nodes in the derivation tree of 

K(mk) using Bonner's algorith~ is (1+m)k. 

f!££!l From Theorem 2.4 it is clear that every complete 

subgraph occurs as a node during some stage of execution. The 

number of complete subgraphs cf crder i~k in K(mk) is equal to 

the number of waJS of choosing i from k tlocks \ ,v
2

, ••• ,vk, 

and then choosing 1 vertex frcm each of the i chosen tlccks. 

T:is :s mi(f)• Hence the total numter cf comflete subgraphs is 

. £ rn1 
( ~} = ( l+m) k_ 1. Since the root node of the derivaticn 

11: 1 l 

tree is not yet included this results in a total of (1+m)k 

nodes. QEt. 
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The storage reguire~ents for Eonner•s algorithm are 

similar to those for the Harary and Ress algcrithm. Two arrays 

A and C of length n are required, each element corresponding 

to a vertex subset which can be represented as a tit string as 

can the rows of the adjacency matxix s. In addition an integer 

array of pointers Lis required. ~we teffforary bit strings T 

and U are also needed in addition to a counter i. Using the 

half-word of 16 tits as the integer unit, the storage 

requirements are: 3n 2 + 16 (n + 1) + 2 n = J n 2 + 1 8 n + 16 bi ts. 
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2.5 ANALYSIS OF FEAY'S ALGCHITHM 

The computation involvP-d in the Harary-Ross algciithm was 

dominated ty the computaticn cf a matiix ftcduct and by the 

generation of a large number of components and their 

associated complete sutgrarhs, which ~ere later deleted. 

Bonner's algorithm was also dominated by the generation of a 

number cf superfluous components. Eecause Peay•s algcrithm 

generates only cowponents which are e~sential to the final 

determination of all cliques, it is of interest as it may have 

a reasonatly small derivaticn tree. Hc~ever, the means by 

which Peay deletes non-essential ccreponerts results in a large 

number of additional operations. Specifically, Peay ccmpares 

each of two newly generated ccmfcnents tc an ever growing list 

cf vertex sets of cliques and subgraphs which are fOtential 

cliques. Thus, fer a grafh with an exrcnential number of 

cligueE, as a funr.tion of the numter of vertices, an 

exponential numter cf cc«pariscns is required in additicn tc 

the time for generation. As will be seen, this cff-sets tc a 

considerable extent the time saved by avoiding the analysis cf 

reaundant vertex sets. Fer this reascn we discuss here a 

modificaticn to the algorithm which reduces the auount cf 

storage required. The extent cf this reducticn is determined 

in cur storage analysis. ~he procedure tote implemented for 

obtaining this imfrovement depends on ordering the selecticn 

of vertex subsets sc as to cbtain a develcrment of 11 depth 

befcre breadth" of the derivation tree. The stack ccntairing 

these vertex subsets is then altered to contain only these 

vertex sets which de net induce ccffirlete subgraphs. This 
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drastically reduces the si2e of the push-down stare by 

eliminating the growing list cf cligues rreviously being kept 

there. Instead, a test for clique memtershiF is made, like 

that employed in cur rrcditication of the Harary-Ress 

alyoritl1m. Tl1ese modificatic11s ate included in cur subsequent 

analysis. 

Before proceeding, we shculd ncte however that the 

inefficiencies inherent in the algcrithm as cited by feay are 

a ccnsequence of the application to which such a fCOcedure was 

being put, namely the deter!inaticn cf a hierarchy of cliques 

in scciograms. As a rule the goal of a graphical treatment cf 

such data is to assign the "individuals" tc cne or more cf a 

few sets which it is hoped characterize the structure cf the 

group. Hence the nurrter cf cliques in a social grcuf as 

determined by such an analysis is small and therefore the 

difficulties of a possitly exrcnential number of cliques is 

not rertinent. As our treatment of clique detection algorithms 

is graph theoretic, we have net aEsumen an1 a priori 

information about the structure of the graph induced ty its 

physical interpretation and ~ust therefore be ccncerned ~ith 

such frcblems. 

2. 5. 1 ].Q1~1.!.Q] 

YJ~ll th€ vertEx set currently under ccnsideraticn • 

..§1 the sutgrai-: h induced en V (G) 

El the numter of vertices in G. 

~l the numter of vertex sets in the stack. 



AJill adjacency set of vertex i. 

VJG l-VJG l: newly generated vertex sets. 
- -1 ·- - 2 -

G .G : the subgrar,hs induced on the new vertex sets. - r- 2-

2.5.2 TBE ALGORITHM 

~!~RQl Initially flace V(G) on the stack. 
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ST~fll Choose a vertex subset V (G) from the stack cf vertex 

sets to be considered. If the stack is empty then star,. 

~IlR11 Find a fair of vertices V. , V • beth in V ( G) i: uch that 
J. J 

(v.,v.) is not an edge cf the crigina1 qrar,h. If no such i:air 
J. J 

exists then go to STEP5. 

define 

V(G )=V(G )-{v ]. 
2 j 

~!lf~l For k=1,2, 

new vertex sets 

if V (G ) 
k 

is net ccrtained in vertex set 

currently on the stack then FUt V(G) en the stack. Go to 
k 

STEPl. 

induces a ccmrlete subgrarh. If there exists no 

vertex in the original grarh adjacent tc all vertice:: in v tG) 

then print V (G) as a clique. In either case go tc STEP1. 

The tasks of Peay•s algorithm can be logically grcurea 

into two tlocks. 1~e function ct blcck 1 is tc exa"ine the 

subgtaFh induced en a subset of the vertices cf a graph G, in 

creder to find a rair of non-adjacent vertices. If a pair is 

not found then a clique has been disccvered and it i~ printed. 

If two vertices, say v and w, are not adjacent then central is 

i:assed to block 2 which defines two new vertex s~ts. Each is 
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saved for further frocessir.g frovided it is not contained in 

some previously generated vertex set. Control returns tc block 

1 which chooses another vertex set for e~aminaticn. 
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]1Q.f.!SJ 

1 - fOP V (G) , 

2 M <-- M-1 

3 i <-- 1 

4 C <-- cu -c 

5 - j <-- i + 1 

6 C <-- en a. 
l. 

7 [ subs tr (ai ,j, 1 I 0 
:. Block2 : 

8 j <-- j+1 

9 
~ j . n . 

10 i <-- i +, 

11 
$, 

i . . n 

12 ~ 
:f: 

C : C . 

13 print V (G) 

If G is in fact a clique, then all n•(n -1) ones in its 
2 

adjacency matrix atove the aiagcnal will be examined. The 

comfutation time of block 1 for one iteraticn is therefcre 

tounded at:ove ty 

T (n) = Cl+n Cl+n-(n -1)C1 
1 1 2 2 3 

with constants 

Cl = 3t +t +t +t +t 
1 1 2 3 4 10 

C i = 3t +2t +t +t 
2 1 3 4 6 

Cl -= t +t +2t +t 
3 1 3 4 8 
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1212.f!il 

14 V (Gl) <-- V (G) 

15 subs tr (V (G
1

) , j, 1) <-- 0 

16 V (G
2

) <-- V (G ) 

17 substr(V(G
2

) ,j,1) <-- 0 

18 k <-- 1 

19 V (C\) . 0 
r. . 

20 V (Gl) . V (G(k) ) ~ . 
21 V(G

1
) <-- 0 

22 = V (G
2

) . 0 . 
23 V ( G

2
) . V (G(k) ) . 

24 V(G
2

) <-- 0 

25 V(G
1

)UV(G
2

) . 0 = , exit . 
26 i <-- i+1 

27 ~ i :M 

28 V (Gl) . 0 == . 
29 fUSb V (Gl) 

30 f'l <-- M+1 

31 = V (G
2

) . 0 . 
32 FUSh V(G

2
) 

33 M <-- M+1 

exit 

The computation time is maximized when neither new vertex 

set is contained in some previous vertex set. When this occurs 

the time for BLOCK2 is T = C2+MCZ where 
2 1 2 

c2 = 7t +2t +2t +2t +2t 
1 l 2 3 4 8 

C 2 = t + t +6 t + t 
2 1 3 4 6 

and M is defined in section 2. 5. 1. 
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The complete aeri vation tree for K 13, 3, 3) using Pea-y 's 

algorithm is quite extensive. As will be seen this is due to 

the nature of the develcrment cf new vertex sets for 

consideration. In order to obtain an expression for the nu~ber 

of nodes in the derivaticn tree it ~ill be convenient to 

consider the development which occurs during, the frccessing cf 

one tlock of vertices. That is, since Feay•s algorithm 

determines two new components whenever a vertex pair is 

discovered which is uct an edge cf the graph, we shall 

consider all such pairs defined UfCn a single vertex block of 

G. Fig. 2.6 gives such a development for tlock V = {1,2,3] cf 
1 

K (3,J,3) as latel]Ed in Fig. 2.1. 

Examination cf this sub-tree of the derivation tree 

reveals that three components are eventually generated with 

the property that each has exactly cne vertex in block 1 and 3 

vertices in each of the remaining two tlocks. Since, for each 

cf these sets, the one remaining vertex is adjacent tc all 

other vertices in the vertex subset cf that ccroponent it is 

evident that no further computation will involve that vertex. 

Thus the inauced sutgrafh cf each vertex sutset is equivalent 

to K(3,3) with vertices labelled 4,5,6,7,8,9. The number of 

nodes generated is given by the sum of those determined during 

the generation cf th:ree cc1q:cnents, I< (1, 3, 3), from one 

comi:cnent, K(3,3,3), and the nun:ber cf ncdes generated in the 

reduction of each K(1,3,3) (which is equivalent tc the 

reduction of K (3,3) ). Therefcre if for K (mk) we can determine 
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the number of 

K ( 1, mk-1 ) we 

of nodes in 

algcrithm. 

nodes created in generating m ccmponents 

can obtain a recurrence relation for the number 

the derivation tree of i(rnk) using Feay•s 
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123456789 

1456789 3456789 2456789 3456789 

Fig. 2.6 

SUBTREE OF THE DERIVATION TREE 
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!]!Qi!~ i~&l The nurr,ber cf vertex sets generated ty Peay•s 

algcrithm tc find the cliques cf I< 13k) is 3 t3k)-2. 

Prccf: let V ,V , ••• ,v be the blocks of K (mk) and label the 
------ 1 2 k 

vertices in block v/ (j-1)m+1, (j-1)m+2, ••• ,(j-1)m+m. Ccnsider 

the sequence of derivaticns aetined bl rrccessing the vertex 

fairs (non-edges) ( 1, 2) , ( 1, ) ) , ••• , (1,m). The vertex sets 

derived stdrting from ({1,2,3, ••• ,m],V , ••• ,V 
2 k 

) are 

respective 1 y ( { 1 , 3, 4 , ••• , ro ] , V , ••• , V } , ( { 1 , 4 , 5 , ••• , m ) , V. , ••• , V 
2 k 2 k 

), ••• ,({1,m),V , ••• ,V ), and finally 1{1],V , ••• ,V ). If 
2 k 2 k 

({ 1,i,i+1, ••• ,m ),V 
2

, ••• ,Vk) is a typical vertex set froro this 

sequence of derivaticns, t~c new sets, 

((1,i+1, ••• ,m},V , ••• ,V) 
2 k 

an a 

derived by separating vertices 1 and i. 

The latter vertex set is deleted since it is ccntair.ed in 

the previously deterreir:ea set ({ 2, J, ••• , ll'}, V 
2

, ••• , Vk). We 

therefcre have a total of 2(m-1) vertex sets dEtermined during 

this sequence of derivaticns, half cf ~hich are deleted, the 

remaining ones teing thcsP. given abcve. ThiE precess is 

illustrated in Fig. 2.7. 

The number of 

vertex tlock of K (rok) 

vertex sets considered in reducing cne 
m-1 

is given by 1+ r. 2i = 1+m(m-1) • 
i::a:l 

Let am he the numter cf vertices in the derivation tree 
k 

cf K ( 01 k) using Peay•s algorithm. Since the reducticn cf C Il€ 

block of V (G) yields rr vertell sets whose precessing is 

equivalent to that fer K ( mk-1 ) , the number cf vertices is 

given by the recurrence relation a m -= 1+mtm-2)+mam whcse 
k k-1 

solution is: a~= crmk+l+m(m-2). The complete derivation tree 
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for K(3,3) is given in Fig. 2.8 frcm which we chtain am ~ith 
k 

m=3. Solving for c i we ')et cl= 3 ana at = '3 13 k)-2. QED. 
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PEAY 1S ALGORITHM: 

DERIVATION TREE 

rn,V'2 • .• vK 

pruned 
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DERIVATION TREE 

FOR K(3,3) 

3456 

pruned 

36 
prun9d 

34 

26 

256 25 

26 
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As has been observed, Peay•s algorithm as originally 

defined required storage srace fer all new vertex sets 

generated during its execution. For a graph with an 

exponential number of cligues such a demand is net 

practicatle. In our discussion we have described and anal}2ed 

a modification to the procedure which eliminates the need fer 

maintaining in tte stack the cligues as they are discovered. 

By developing each path in the derivation tree as far as 

possible, the number of nodes placed in the stack is never 

greater than the length cf the fath generated, each entry 

corresronding to the 11 other 11 vertex subset of the pair of 

vertex subsets developed at that stage. 

Let V(G) tea vertex sutset such that V(G) induces a 

complete k-partite grafh having 1 vertex in i blocks and m 

vertices in (k-i) blocks. If we carry out a sequence cf 

derivations ty fixing one vertex in tlcck i+1, say v and 

sequentially derive new vertex sub~ets frcm the set of non-

edges (v,w), (v,w) , ••• , (v,wk 
1

) 
1 2 -

then according tc the 

argument presented in a discussion of the derivation tree fer 

developed ty Peay•s algcrithm, twc verte~ sets ~ill be 

added to the stack after such a sequence of derivations. The 

first consists of all vertices of the original vertex sutset 

other than v. The length cf the fath in the derivation tree 

corresponding to this sequence is m-1, the numter of vertices 

not adjacent ot v. Since there are k tlccks in k K ( m ) , the 

maximum length of any fath is (m-1)k. Hcwever by choosing non-
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edges as described, after the (m-1)i th node cnly one cf the 

i+l vertex sutsets have teen saved fer further processing, 

hence the numter cf verte~ sets en the stack is at most k+1. 

The only other storage required is that for the adjacency 

matrix and a number of integer counters. Therefore, since each 

entry in the stack can be tefresented by a bit-string of 

length n, the total storage requirements are n(k+1) + n 2 + 16C 

bits. 
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The analysis cf previcus algcrithms, ~hile providing 

exfressions for a comparative analysis of sequential clique 

enumeration algorithms has alsc revealed some of the 

properties desired by a 11 good" procedure and some cf the 

hdzards one must attemft to avoid. In addition, certain 

properties are characteristic cf algcrithms for explicitly 

enumerating the cliques of a graph. 

These algorithms appear to require a means cf aeterairing 

the sets of vertices adjacent tc a given vertex as all 

frccedures discussed use this information to generate the 

components tote used in further analysis. This is not too 

surrrising since any graph is characterized by this sort of 

information. Ho~ever, the adjacency matrix representaticr. cf a 

graph provides this RICSt and directly. The 

refresentation of the rows of the adjacency matrix as a string 

of bits greatl1 simplifies the computation required in 

determining new ccmponents. The imfortance cf an adjacency 

matrix representation over some other representation is thus 

emphasized ty these otservaticns. 

The desiratle proferties cf a seguential clique 

enumeration algorithm are two-fold. First, generate new 

co~ponents which de net destrcy the existence cf maximal 

complete subgraphs with ~s little effcrt as fOssitle. 

Secondly, g0ner~te as few such components as fossitle. The 

best possitle situaticn is tc avcid the need for deterniring 

whether a complete subgraph er ccmfcnent just generated is 

r 
I, 
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frcrerlJ contained in some other clique of the grafh and 

requires some means of cheesing ju~t the right Eet of vertices 

so that nc redundant component is ever generated. Because cf 

the complexity cf tbe fCSsitle intersections of the vertex 

sets of cliques in a ~rafh, it is difficult tc determine just 

how such a set could be chosen. It is net sufficient tc find 

either a maximal er a roinimal independent set cf vertices 

which covers tbe vertex set cf a grafh as the follolliing 

examrle illustrates. Consider the graph of Fig. 2.9. The 

vertices labelled 1 and q in tlte graph constitute a irinimal 

independent set cf vertices covering the verte~ set of the 

grafh. It is clear however that the clique K (1,1,1,1) induced 

on vertices 2,3,5 and 6 contains no verte~ in this particular 

minimal covering. 

Similarly consider the graph in Fig. 2.10. It has a 

maximal independent set of vertices latel1ed 1,3 and ncne 

of which is a memter cf the cligue induced en vertices 2,4, 

and 6. 

Clearly one reqnires the prescient atility to cheese an 

appropriate indefendent ccvering set of indefendent vertices 

a mo n g a n e x f one n ti a 1 n 11 m h ~ r of poss i t 1 e ch o ices. The c e is 

presently no known way fer accomfliEhing ~uch a task in an 

efficient manner. The algcrithm tc be described generates a 

reduced number of redundant vertex sets, and uses an efficient 

procedure for detecting such redundancJ. 

It will be seen that with scffe rncdificaticns the 

prcced11re to be described combines some of the tetter features 
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of the previous algorithms. As a ccnseguence we shall show 

that the performance of this algorithm is comparable ta and in 

many cases (eg. Grafhs with 1any cliques) better than that to 

be exfected from the others. 
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1 4 

6 5 

Fig. 2.9 

MINIMAL COVER COUNTEREXAMPLE 

_______ 2 ______ 3 

5 

Fig. 2.10 

MAXIMAL COVER COUNTEREXAMPLE 
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2.6.1 CESCRIPTION OF THE ALGORITHM 

Each vertex subset tc be frccessed is aivided into two 

parts; V(G1), the set of all vertices in that sutset yet tc be 

examined and V (G2), the set cf all vertices previously 

examined and which induce a ccmflete subgrafh in the original 

graph. The vertices in V(G1) have the additional property that 

they represent all fOSsihle extensions of the complete 

subgraph induced on V (G2) which yield a larger complete 

subgraph. 

If V(G1) is empty, then provided there does net exist a 

vertex adjacent to all vertices in V{G2), we have found a 

clique. Such a condition is maintained by deleting from 

further consideration any vertex subset all of whose members 

are adjacent to sor.e vertex cutside the subset. 

If V(G1) is net empty then we generate n - d(v) new sets 

by first choosing a vertex v, and then considering it together 

with then - d(v) - 1 vertices net adjacent to v. Each vertex 

frcm this set is used to define a new vertex subset by adding 

it to V(G2) and thus extending the set of vertices already 

considered, and then defining a new set of vertices to be 

considered from V(G1) by including only those vertices 

adjacent to that vertex just added to V(G2). 

2.6.2 1g1b1IQ! 

]J§ll~ set of vertices in the current vertex set yet to 

be considered. 



71 

1J~1ll set cf vertices in the current vertex set which 

induces a complete sutgrafh. 

!Jfilli new set of vertices tote considered. 

1Jtl~ll new expanded set of vertices inducing a complete 

subgraph. 

I~ set of vertices net adjacent tc a chcsen vertex from 

V(G1). 

Al the adjacency matrix of the sutgraph induced en 

V(G1)U V(G2). 

2.6.3 RECUCEC RDUNDANCY ALGOR_I1HM 

2I!fQ1 initially flace V(G)Uf er. the stack. 

2I!RJ1 Choose a vertex subset V(G1) u V{G2) frcm the stack of 

subsets to te considered. If stack eroftJ, stcF ■ 

2I~Ei1 Tf there exists a vertex adjacent to all vertices in 

V(G1)U V (G2) then go to STEP1 

~!!..!:].; If V (G1) is e1q:ty tben r:rint V (G2) as a cligue and 90 

tc STEP1 • 

.§1§E1l Cheese a vertex v in V (G1) and define F to t:e a set 

consisting of v together with all vertices not adjacent to v. 

§I]..!:~l Choose a vertex w in F ana define a new sutset 

V(H1)UV(H2 1diere V(H1) is the set cf all vertices in VfG1) 

adjacent tc w, and V(H2) = V(G2)U {w}. 

2l!f§l Celete vertex w frc~ sets V(G1) and F. 

§1~f1i If F empty then go to STEP1; else go to STEP5 

In order to compute the time for one iteraticn cf tne 
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algorithm the instructicns Ferfcrmed are as fellows: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

POF V(G1),V(G2)E---------­

C <-- C U -C 

i <-- 1 

:•:~~r:~:~~-:-~_V_(_G_2_)_,_i_,_1_)_:_0_]_=_ 

< . 
1 : n 

C : 0 

V ( G 1) = : 0 ---~rrint V(G2)--

v < -- ind e x ( V ( G 1 ) , 1 ) 

F <-- -A (V) 

w <-- irdEx(F,1) ~----­

v (Hl) <-- V (Gl) n A (w) 

V (H2) <-- V (G2) 

su:t:str:(V(H2),w,1) <-- 1 

fUSh V (H 1), V (H2) 

substr(V(G1),w,1) <-- 0 

subs tr: (F, w, 1) <-- O 

...,__=_ F : 0 --'------------

2.6.4 NUMBER OF VERTEX ~JJ] GENERATED 

As an example we agair. ccnsider the derivation tree of 

K(3,3,3) labelled as previously in Fig. 2.1, the tree this 

time being determined by our algorithm. It is given in Fig. 

2.11. Each vertex not rerresenting a cligue is labelled by the 
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fair (V (G1) ,V (C2)) representing the vertex sur.set generated by 

the algorithm. The nunter ct ncdes in the derivation tree for 

K(mk) is given in the following theorem: 

THEOR~M 2.7: The number of nodes in the derivation tree cf 

K (m k) is rnk+l - 1 ~ 
rn-1 

RI2n!1 Let the nodes of K(rr~ be labelled such that if v. is a 
J. 

vertex of tlock V., v. a vertex cf tlcck V. and i < j, then 
l J J 

the label of ~ is smaller than the latel of v .• The algcrithm 
l J 

processes the vertices cf a grafh in ascending crder cf 

lat.elling. A tyfical ccrofcnent during e~ecution of the 

algcrithm has i vertices in V (G2), one from each cf the 

V (G 1) induces a ccmrlete (k-i) partite 

yraph with m vertices rer tlcck. ihis compcnent therefore 

determines m ne~ components, one tor a selected vertex in 

t lo c k v . 
1 

an a m- 1 tor t he m- 1 c t he r v er tic cs i n V . 
1 

the c n 1 y 
lt J.+ .. 

vertices net adjacent to the selected cne. Each component 

therefore determines m new ones, until there are k vertices in 

V (G2) in which case there are ncne in V (G 1). The numter of 
k 

vectice~ in the derivation tree is theretcce ~ roi = mk+1 -1. 
i=O ~-1 
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368 

367 

359 
358 

357 

349 

348 

347 

269 

268 

267 

259 

258 

257 

249 

24,789 248 

247 

169 

168 

167 

159 

158 

157 

lu, 789 

Fig. 2.11 

REDUCED REDUNDANCY ALGORITHM: DERIVATION TREE 
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The ccmfutational effort for one iteration of the 

algorithm to fina the cligueE of g (ak) is eafy to determine 

frcm the Iverson description. The loop:7 to 4 is executed n-1 

times where n is the number of vertices in the original grarh, 

while the loof: 19 tc 12 is determinea as fcllcws. let the 

vertex set currently undeL consideration have i vertices in 

V (G2), and (k-i)m vertices in V (G1). Then F defined in line 11 

consists of all vertices in cne blcck and ccnseguently leap: 

19 tc 12 is executed m-1 times. 

The expression for the computation time during cne 

iteration is therefore given by 

where 

c~L = 4t 1+t2 2t 4+t
7
+t

9 
C 'k = 2 t l + t

3 
+ 2 t 6 + t 8 

co 
3 

= 6t +t +t +t 6+3t +t 
1 2 4 8 9 

frcvided the vertex set under consideraticn does not h~ve 

V (Gl) empt_y. If V (G1) is in fact empty, as it will te for all 

nodes of the derivaticn tree rerresenting cliques, then cnly 

lines 1 through 9 are performed and the comrutation time in 

this instance is T 1 (n) = C1tnc~ where c~ is given abcve and 

(1 = 2t +t +2t • 
1 1 2 4 

We can now ccmtine the results cf the computation time 

fer cne iteration with the numbec of noaes in the dEcivaticn 

tree to ottain an expressicn fer the total ccmfutation time 

required to find the cliques of K (mk). '!here are III noaes fer 
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which the computation time fer cne iteraticn T ( m k) , and 
k+l k 

!L.:..l - m = 
rn-1 

mk- 1 nodes 
m-1 

where T0 (mk) is the ccmputation time. 

Hence T(mk) :::: T
1 

( m k ) m k+T O ( m k ) m k - 1 , 
m-1 

m> 1. The case fer m = 1 

clearly defines a derivation tree consisting of a single fath 

of length k. Hence the computation time to determine that 

K(1k) is a cligue is T(k) = 'I
1

(k)+(k-1)T
0

(k). 

2.6.6 STORAGE RE~UIRF.MENTS 

Like the previous algorithms of Harary-Ross, Benner, and 

Peay, ·the Reduced Redundarcy algcrithm roaintains only one 

adjacency matrix, that of the original graph G. Vertex sutsets 

are maintained on a stack and used to select the ar-rror-riate 

rows of the adjacency matrix cf G, to obtain adjacency 

rrcr-erties of the subgraph of G induced on the vertices in the 

vertex sutset. Our algorithm, hcwever, generates n -d(v} new 

vertex sets during an iteration where n is the numter cf 

vertices in the set and d(v} is the number cf vertices in that 

set adjacent to v. For this reason it is more difficult tc 

determine the storage reguirements of the push-down store for 

an artitrary graph. Instead we shall again examine the 

comflete k-partite graph K (mk). 

If we again adopt the strategy of developing the 

derivation tree in a "defth before breadth" manner, it is 

clear that no path is of length greater thank. Further, from 

the frevious discussion we know that every vertex set 

V ( G 1 ) U V ( G 2} is co ro p let e k- part i t e w i th 1 v er t e x in each of i 
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blocks. V(G1) consists of the m(k-i) vertices in the remaining 

k - i tlocks. If we select a vertex v f rem V (G 1) to determine 

new ccm~onents, the nuater cf vertices net adjacent tc vis m-

1. !herefore, to each node in a path of length kin the 

derivation tree there are r-1 ether ncdes ccrresponding to 

vertex sets yet to te processed. Hence the fUSh-down store 

must be cafable of handling k (m-1) vertex sets. 

!he storage requireroents for the new algorithro afplied tc 

K ( m k) are k ( m- 1 ) + ( ro k) 2 + 2 o k + 1 6 C b i t s , C being the numb er of 

counters and pointers used. Since we can partition a graph 

into k blocks no block of which has more than m vertices fer 

k = ')(,(G), tbe chromatic r.umbc.r cf the grarh, this expression 

alsc serves as an Ufper touna on the storage requirements for 

an atbitrary gtafh. 
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The Eron-Kerbosch algcrithm is the most recent clique 

enumeration algorithm known to this author. Mulligan [64] has 

descrited the frocedure and fcund it to te sufericr to 

Bierstone•s algorithm, a rnethcd alEc discussed hJ Augustson 

and ~inker [5]. 

The algorithm employs a recursive procedure which is used 

to modify a glotal vertex set ccnsisting cf all vertices which 

form a complete subgra~h of the original graFh• The functicn 

of the recursive procedure is tc extend, if possit.le, the 

number of vertices in the ccmplete subgraph. This is 

accomFlished bJ maintaining several lists and pointers in a 

stack generated through recursive calls tc the frocedure. 

These include two vertex subsets, one a set of candidates 

which can be used to extend the complete subgraph, and the 

second a set of vertices which have already been used to carry 

cut such an extension. Since the contents of the vertex subset 

is under continual mcdificaticn it is also necessary to 

maintain a pointer indicating the last entry into the set. 

Some other counters are alsc maintained thrcugh recursive 

stacking of definiticns which will be affarent from the 

descriftion of the algorithm. In what follows we shall use the 

notation develored by Mulligan and bis formulation of the 

algorithm. 



2. 7. 1 !'!~l'!.II.Q! 

Dl number cf vertices in the original graph. 

£2~E§Y£1 coroflete subgraph currently teing extended. 

fl order of ccrrpsub. 

Yl vertex set currently under consideration. 

~~l number cf vertices already examined in v. 

f~l total number cf vertices in V. 
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~1 pointer to selected vertex from V used to extend 

compsub. 

fQ§l position cf a rotential candidate. 

M~jl number cf vertices not adjacent tc a fixed vertex 

amcnq the set of vertices in V already examined. 

]j~E2~i minimum number of vertices not adjacent tc a 

fixed ver:tex. 

Ii!~1 vertex with rraxi[uro de~ree in the subgraph induced 

en v. 

irn].i. new vertex set. 

]i!Dgi nurober cf vertices in NEW that have teen exa~ined 

before. 

!!~£!l total nu~ter cf vertices in NEW. 

2. 7. 2 THE ERON-KERBOSCH ALGORITHM (Mulligan [64 ]) 

A. ln11i21 £~11 tc recursive Erocedure EXTENC 

~!~El.i. Set V to V (G), c to One to O, ce ton. 

§l~Ri.i. Call recursive procedure EXTENt 

stop. 

(V,ne,ce). On return 
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§l~Ell set minnod to ce, nod to O , i too. 

~l~Ei1 set i to i+1. If i>ce or minnoa = O then go to STEP6 • 

.§.I~iJ.i set count to O. For each V ( j), j=ne+1 to ce net 

adjacent to V(i) set count to count+l and pas to j. 

~Ilf~l if count < rir.ncd then set fixF tc V(i), minnod to 

count and go to STEPS; else gc tc S!EP2. 

§l~f2l if i ~ ne then sets to pas; else sets to 2 and nod 

to 1. In either case go to STEP2. 

§!]f§ Set nod to minnod+ncd. 

§11E1l If ncd ~ 0 then return. 

§!!f~1 Interchange V(s) with V(ne+1). 

~!]E21 Set newne equal tc the number cf vertices in 

{V(1),V(2), ••• ,,V(ne)} adjacent tc Vfne+1). Set 

NEW(1) ,NEW(2) , ••• ,NEW (newne) equal to those vertices. 

ST]flQ.l Set NEW (newne+1) , ••• , NEW (newce) equal tc these 

vertices in {V(ne+2), ••• ,V(ce)] adjacent to V(ne+1). Newce 

equals the total number cf vertices in NEw. 

§l~Ell.i set c tc c+l, compsub(c) to V(ne+l). 

§!!EJl If newce eguals O then rrint ccmfsub ~i), i = 1,2, ••• ,c 

as a clique; else if newne less than newce then call 

EXTEND(NEW,newne,newce) 

§1!£111 Set c to c-1, ne tc ne+1. 

§l~i1~1 set nod to nod-1. If nod> O then choose uncther 

vertex from { V (ne+ 1) , ••• , V (ce) ] not adjacent tc f ixi:; and net 

yet chosen. Go to STEP7. 

The Eron-Kerbosch algorithm has been divided into three 

blocks. The task performed by block 1 is to extend if possible 
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a complete sutgrafh ccntair.ed in G by cxaw.ining vertices not 

freviovsly encountered to see whether they are adjacent tc all 

of the vertices of the ccrrflete subgrafh under consideration. 

Control is passed to block 3 where if such an extensicn is 

fOssible it is made, a record being kept of those vertices 

previous!} encountered and yet tc be elanined. If the complete 

subgrafh cannot he extenaea it is printed out. Elock 3 

recursively calls block 1 returning only after all fCssible 

extensions have teen exauired. Centre] is then fassed to block 

2 which makes tbe next pcssible extenEicn tc the vertex set 

under consideration at the present level of recurtiicn. 
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1!1.Q~~.1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Dinned <-- ce 

nod <-- 0 

i <-- 0 

i <-- i+1 

i . ce > . 
minncd . 0 :: . 
count <-- 0 

; <-- ne+1 .; 

subs t I ( A ( V (.i) ) • V ~ j) , 1 ) 

count <~- count+l 

pas <-- j 

j <-- j+1 

' j . ce . 
count . minncd . 
fixp <-- V (i) 

minncd <-- count 

i . ne ... . 
s <-- pas 

s <-- i'---.. 

--- nod <-- 1 

28 

28 

. 0 # . 



~12~.!Si 

21 

22 

23 

24 

25 

26 

27 

]1Q.f!S] 

28 

29 

30 

11 

32 

33 

34 

35 

36 

37 

38 

19 

40 

41 

42 

43 

C <-- C-1 

ne <-- r.e+ 1 

nod<-- nod-1 

s <-- ne+l 

[ 

substr(V(s) ,fixf,1) 

.s <-- s+1 

S : CE 

return 

nod <-- minncd+ncd 

nod . o= • return . 
sel <-- V (s) 

V (s) <-- V(ne+l) 

V (ne+1) <-- sel 

newne <-- 0 

i <-- 1 

0 + 

substr (A (V (i)), V (ne+ 1), 1) 

newne <-- newne+1 

NEW (newne) <-- V (i) 

i <-- i+1 

~ i . ne . 
newce <-- newne 

i <-- ne-+-2 

subs tr ( A ( V ( i) ) , V ( ne + 1 ) , 1 ) 

newce <-- newce+1 

83 

. 0 C . 

. o J:..+ 45 . 
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44 NEW(newce) <-- V ( i) 

45 i <-- i+1 

46 42 ~ i . ce . 
47 C <-- c+l 

48 compsub(c) <-- V (ne+1) 

49 newce . 0 = . 
50 i <-- 1 

51 [print compsub (i) 

52 i <-- i + 1 

53 
. . C l . 

54 21 
.. 

+-- newne . newce . 
55 21 ~ call EXTEND(NEW,newne,newce) 

Let v ,v , ••• ,v be the blocks of vertices cf K 'mk), each 
1 2 k ' 

containing m mutually non-adjacent 1ertices. The Eron-Kerbosch 

algorithm proceeds ty fixing a vertex and defining a new 

vertex subset to be the set of all vertices adjacent to the 

fixed vertex. This vertex subset is partitioned into two parts 

tc frovide imformation for determining whether a co~plete 

subgraph is maxi•al or has been ccnsidered before. At a given 

level i cf the recursion other vertex sets are generated 

whenever control again returns to that level by choosing aaong 

the set of vertices not adjacent to the original fixed vertex. 

This selection frocedure is analogous to the sechanism 

employed by the 8educed Hedundancy algorithm fer generating 

new vertex sutsets and as a ccnseguence the number of vertices 
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in the derivation tree is the same , namely mk♦l-1, To see that 
m-1 

this is the case it is cnly necessary tc establish an 

equivalence between the nodes of the derivation tree generated 

by our algorithm and the ncdes in the derivation tree 

generated bJ the Eron-Rerbosch algorithm. If we assign level O 

to the node of the derivaticn tree corresponding to the 

original vertex set of the grafh, then a node at level i in 

the algorithm corresponds to the vertex subset of a complete 

(k-i) partite grafh while the selecticn cf fixed vertices made 

in the generation of a path from the root tc level i is 

contained in the array compsub. From previous discussion cur 

algorithm has a node a distance i from the root with two 

vertex sets V(G1) ,V(G2). G2 corresponds to a complete sutgiafh 

of order i, while v (G1) induces a complete (k-i) partite 

graph. Ey choosing that Fath cf length i which results in 

V(G2) containing the same vertices as compsut, V(G1) is then 

the same set as the vertex subset generated ty the Brcn­

Kertosch algorithm. 

Since the algorithm employs the same technique fer vertex 

set generation as cur algcrithm, the relative efficiencies of 

the t~o procedures are dependent upon. how tbe Frcperties cf 

the vertex set so generated are exfloited during an iteration. 

This depends on three factors; the way the data is 

represented, the order of development of the derivation tree 

and the means ty which redundant components are avoided. 
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To determine the computation time required ty the Brcn­

Kertosch algorithm as imflemented ty Mulligan let V be a 

vertex set under consideration at level i. The maximum depth 

of recursion by the algorithm is k. At level i we have i+1 

calls outstanding of which i have teen called ty the 

procedure EXTEND itself. All rarameters aefined ~ithin the 

FIOcedure are saved, a feature important in the determinaticn 

of storage requirements. 

A vertex set generated by the algorithm in finding the 

cliques of K(mk) has the property that at level i all 

vertices that have teen cotsidered lie in blccks V l' V2, •••,Vi 

while these jet to l:e considered lie in V ,v , ••• ,v • 
i+l i+2 k 

There are m(k-i) vertices in the latter collection since every 

vertex is adjacent to any vertex in V frcm which the selected 
i 

candidate was chosen. Hence every vertex in the last (k-i) 

blocks of K(mk) has the minimum numcer of disconnecticns since 

the vertex set unaer ccn~ideraticn can have at most m-1 

vertices from any previous tlock already ccnsidered, the 

remaining vertex currently in compsut. Since minnod > 0 fer 

all vertices in the vertex subset, lcof:14 tc 4 is repeated 

ce-ne-1 times plus once more when choosing a vertex for fixp, 

while loop:18-to 4 is repeated at most ne times. Finally, the 

inner loop: 13 to 9 is repeated ro (lc-i) times for each vertex 

already considered and m(k-i-1) times fer each vertex yE:!t to 

be ccnsidex:ed. 

The time for one iteration cf tlock 1 is thus tounded by 
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C_i = 7 t 1 + t
4 

C~: 3t 1+2t3+4t 4 
c 3 = 3t

1
+t

4 
Cl = 
4 
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Loop:54 to 21 is rereated after every return from the 

recursive call in line 55. This equals n-d (fiXF), the numter 

of vertices not adjacent tc fix1. lcCfS 27 to 25 and 46 tc 42 

are refeated ce-ne times, while lccf:39 tc 35 is repeated ne 

times. If i<k-1 a clique has not yet teen found sc stateroents 

50 through 53 are skipfed. If we define cr.e iteration as being 

the total ccmputation fErfcrroed until a return is made at line 

29, then the comrutation time for tlocks 2 ana 3 together is 

1:ounaed Ly 

with 

C 2 = 
1 

c2 = 
), 

13t
1

+6t
3 

(2t
1 

+t /t
4 

+t
8

) + (\ +t
3 

+2t
4 

+t
8

) 

The order of the computation time fer cne iteration is 

therefcre between n and n 2 • For vertex sutsets such that ne:0, 

the computation fer ant: it1::raticn i~ cf cr:der m2 (k-i) 2, the 

square cf the numter of vertices ir the subset under 

consideration. 
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2.7.5 STORAGE RE2UIREMEN1S 

As previously cbserved, the maximure defth of recursicn is 

k. Hence all variables defined within the recursive functicn 

must te stored k times. !his consists cf rcinters and counters 

and the arraJ NEW an integer array of si2e u. The adjacency 

matrix of the original grarh and the arraJ compsub cf order n 

are maintained outside the recursive prccedure. Since the 

adjacency matri} is stored as an array of bit strings the 

storage requirerrents fer the Bron-Rerbcsch algorithm as 

implemented by ~ulligan are n 2 +n (k+1)+16Ck+16 bits where c is 

the numrer of integer scalars defined ~ithin the rcutine 

FXTENC, and the additional 16 bits are an allowance for a 

globally defined variable. 
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CHAPTER 3: CLI~UF. DIT~CTION USING VERTEX SIMILARITY 

It is evident from the otservations and results cf 

Chapter 2 that the efficient detection of cliques is severely 

hampered by the possibly exponential numter cf such subgrafhs. 

Even the act cf printing them out can occupy an inordinate 

amount of time unless there exists some means of 

simultaneously identifying several cliques and alsc scme ,ore 

compact form of notation than explicitly defining the vertex 

sets of each clique. Two approaches to this prctlem will be 

examined separately in this chafter, each of them exploiting 

properties which measure the degree to which any twc vertices 

are different. 

one such device is similarity of vertices. The 

automorfhism grcuf of a graph partitions the set of vertices 

V(G) into equivalence classes called the orbits of rtG). Two 

vertices are similar if and only if they are members of the 

same orbit. Hence there exists a permutation in r(G) which 

maps u onto w where u and ware vertices in the saae crbit. 

An examinaticn cf complete k-partite grarhs with m 

vertices in block v, reveals that every vertex in any block 

can be interchanged with any other, ie vertices in any block 

are similar. Let u, w be two such vertices. Then if we know 

the cliques to which u belongs and a permutaticn which raps 

u onto w, we also have all the cliques to which w belongs. 

such a tepresentation is more compact as it requires 
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explicitly defining only the cliques associated with u. 

In the development which follows we shall tacitly assume 

that a procedure for determining the orbits is available. For 

implementation we shall employ Corneil•s algorith ■(12]. It is 

important to note here that while Corneil•s procedures have 

not failed on any graFhs encountered to date, that their 

correctness depends on an unproved conjecture. Corneil 

therefore describes his algorithm as a heuristic one, a policy 

which we formally must also follow when using his routines. 

A difficulty with such an overall afproach as offered 

here for improving the efficiencj of clique detection occurs 

when u and w, vertices in the same ortit, are tcth members of 

some common clique, in other words u is adjacent tow. This is 

often the case as is illustrated by the existence cf connected 

point symmetric graphs, which by definition have all vertices 

belonging to the same crbit. Since vertex similarity can he 

used at several levels of clique detection other than 

enumeration we shall defer further discussion on this problem 

until later. 
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The remarks cf the introduction to this chapter suggest 

that similarity of vertices may contribute to a 

characterization cf the cliques in a graph. To what extent 

this is true will be examined in this and the next ~ecticn. Of 

particular interest will be the behavior of subgrafhS induced 

by a single vertex since this is the major mechanism by which 

a graph can be decomposed into smaller sutgraphs fer further 

processing. This feature has already been observed previously 

in the sequential algorithms of charter 2. 

The major rcrtion of this section is devcted to an 

examination of cliques in point-symmetric and line-symmetric 

graphs. Of particular interest is the degree cf syrietry cf 

the induced subgrafhs. 

!~]Qi]~ l~l~ The subgraph induced on the adjacency set of a 

fixed vertex in a line-symmetric graph is point-symmetric. 

f£22fl Let G be a line-symmetric 9raph1 v a vertex in V(G), 

and denote by {w
1

,w
2

, ••• ,wk] the set of vertices adjacent to 

v. Since G is line-symmetric there 

cc.
2

,CL
3
, .•• ,oc.k in r(G) such that: 

ot.iv,w
1

) = (v,w
2

) 

oc.
3

(v,w
1

) = (v,w
3

) 

. . . . . . . . . . . . . . . 
« (v,w ) = (v,w

1
) 

k 1 -;: 

exist permutations 

These permutations, together with their inverses, held v fixed 

and hence belong tc r , the stabilizer of v. Since every c<. in 
V 
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r (G) preserves adjacencies, every ac.. maps w. cntc some 
]. 

w j w h ere w i, w j. a re in { w l' ••• • ~ ] . If wi • w j are an y t w o 
-1 vertices in {w 1 , ••• ,wk] thenC(.CIC. (v,w.) = (v,wJ.) and hence J ]. . ]. 

the set of vertices {w1 , ••• ,wk} is similar. Further, since 

every permutaticn at~ r maps w. onto some wj the integrity of 
V J. 

the subgraph induced on (w1 , ••• ,wk} is preserved. 

The subgraph induced on the adjacency set of a fixed 

vertex in a pcint-symmetric graph is not necessarily point­

symmetric. This is illustrated in the counter-examfle given in 

Fig. 3.1. The subgraph induced on vertices adjacent to vertex 

1 is given in Fig. 3.2 and is clearly not point-syrmetric. 

Dauber and Harary (43] and Folkman [32] have investigated 

the extent to which line-symmetric graphs are point-symmetric. 

The principal result of tauter and Harary is the estatlishment 

of conditions which cbaracteri2e such graphs, namely that 

every line-symmetric graph with no isolated roints is Feint­

symmetric or bipartite. This result together with the previous 

theorem establishes a sufficient condition for feint-symmetric 

graphs to have point-symmetric subgraphs induced on the 

adjacency set of a fixed vertex, that condition being that the 

graph be line-symmetric or regular bipartite. That this 

condition is not necessary is illustrated by the graph given 

in Fig. 3.3, a graph not line-symmetric or regular tiFartite 

but point-symmetric and ever1 subgraph induced on a set of 

vertices adjacent to a single vertex is also feint-symmetric. 

For this graph the edge (1, 2) is not similar to the edge 

( 1, 6) • 
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1 2 

8 3 

7 4 

Fig. 3.1 

POINT SYMMETRIC GRAPH 

2 

7 

Fig. 3.2 

INDUCED SUBGRAPH OF FIG. 3.1 
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1 

5 2 

4 3 

Fig. 3.3 

POINT-SYMMETRIC GRAPH NOT LINE-SYMMETRIC 
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We shall denote by A(v) the set of vertices in a graph G 

adjacent to the vertex v. 

11;1111.! 1.:.11 let v
1 

,v, be any two similar vertices of a graph G, 
,:., 

and denote and G
2 

the subgraphs induced on A(v1 ) and 

A (v,,) respectively. Then there exists ~ in r (G) such that 
,::, 

«. G 
1 

££22£1 Since v
1

, v
2 

are similar the numter of vertices in G
1 

is equal to the number in G
2

• Let a. te an autcn:crphism of G 

mapping V ante v2. Then for 
1 

each u in V (Gl) there exists a 

unique image «.a. Further every such vertex ct u in «. V (Gl ) . is 

adjacent to V 
2 

since every vertex u in V(G
1

) is adjacent to 

vl. Now by definition V (G 
2

) is the set of vertices adjacent to 

Since «. is an automcrphism, ( u, ',1) is 

only if (c3'U 1 0LW) is in E (G). Hence for 

( u, w) is in E (G 
1

) if and only if («u, o£.w) is 

"'- u, OLW are vertices from V (G 
2 

) • Therefore 

and hence c( G 
l 

-= G • 
2 

in E ( G) if and 

any u,w in V (Gl), 

in E (G
2

) since 

E ( G
2

) -= o(,. E (G 
1

) 

As a consequence of this Lemma we have thE fcllcwing: 

LEMMA 3.2: Let G be a feint symmetric graph, and denote by 

°' , « , ... ,al. automorphisms of G such that 
2 3 k 

c(. V -= V, 
:.::: 1 ,2 

()l. V -= V 
3 l 3' 

. . . . . . . . . . . . 
G(v -= v. 

k l k 
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Then it is the case that: 

= 

= 

. . . . . . . . . . . . . . 
= 

where denote the subgraphs induced on 

Let te the vertex set of G for 

i = 1,2, ••• ,k and suppose without loss of generality, that 

OC.v~-= v~. Then clearly if we know the cliques of G1, we can 
1 J J 

find all the remaining cliques of G knowiny the ferwutaticns 

Ql
2
,«.

3
, ••• ,(3(k. To avoid duplication of cliques the following 

test can be employed. If we are examining the cliques 

associated 

containing 

with component G., 
l. 

then delete all cliques 

vertex v. for j = 1,2, ••• ,i-1 as such cliques have 
J 

already been found during the examination of component Gj. 

Such a strategy encounters difficulties on two fronts. 

First, as we have seen previously, the pcint-symmetry cf a 

graph is no guarantee for the point- symmetry of subgraphs 

induced on vertices adjacent to a point, hence the froblea of 

determining the cliques of G is as yet unresolved. Secondly, 

the determination of automorphisms"'-2 ,oL~ ••• ,«k is in general 

a difficult problem. 

we can overcome the first difficulty by generalizing the 

procedure to include graphs which are not necessarily point­

symmetric. Then, the existence of an algorithm for determining 
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the orbits can be exploited in the following way. 

Every membec cf each orbit can be represented by a single 

vertex which determines the induced sutgrafh for further 

processing. If /) = {v. ,v. , ••• ,v. } is an orbit of r(G) for 
11 12 lk 

some graph G an d i f « . , oL . , • • • ,Cl( . are p e c mu ta t i C n s i n r ( G) 
11 12 lk 

such that: 

Cf.. • V. = V • 
1~11 l~ 

DL. V. = V. 
1311 13 

. . . . . . . . . . . . 
o(.V. = V, 

1 k1 1 J.k 
then by an argument simliar to that previously given the 

cliques associated with v. , ••• ,v. can te determined if we 
l~'. lk 

know the cliques associated with v .• The development of an 
11 

algorithm utilizing such techniques will te the focus of the 

next section. The cbject will not be to find all the cliques 

because of the difficulties associated with deteruining the 

permutations which map similar vertices onto each other. 

Rathec, the al~orithm shall attempt to find a set at ncn­

similar cliques cf a graFh G which together with a kncwledge 

of the automotfhism grcup r (G) will be sufficient to 

determine all the cliques of the graph. The algcrithm can thus 

be ccnsidered as a sub-program which when incorporated with a 

sub-program for determining the automorfhism grcuf ~ill 

provide a mechanism for finding the cliques. 
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The purpose of the procedure to be descrited here is to 

somehow characterize the non-similar cliques of a graph. Two 

cliques C and C of a graph Gare said tote similar if there 
1 2 

exists an automorphism ol of G such that ac.c
1 

-= C • 
2 

A naive apFrcach to the problem of determining the non­

similar cliques of a graph which serves to illustrate what we 

are attempting to find involves generating the "eguivalence 

classes" induced on the set of all unordered k-tuples of 

vertices of G by the automorphism r (G) , for 

k=1,2, •••• n-1. Fer any given k, we examine the cliques that 

are members of each equivalence class, chcrising cne as a 

r~presentative member. Since the automorphism group preserves 

adjacencies, two k-tuples are members of the same class cnly 

if the subgrafhs cf G defined on the vertices represented by 

the k-tuples are isomorphic. such a procedure, therefcre, 

clearly provides more information than we desire as we are 

intersted only in those classes whose k-tuples are the 

vertices of maximal complete subgraphs. 

The mechanism to be emfloyed will depend primarily on the 

observations of the previous section; namely, that it is 

possible to generate all the non-similar cliques of a graph by 

reducing a graph tc comfonents equal in number to the ortits 

of the automorphism group of the graph, each ccmfonent being 

the subgrafh induced by a vertei from an orbit. Each component 

will then serve as input and subsets of vertices will thus be 

generated in a recursive manner analogous tc the sequential 
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procedure described in chapter 2. 

There is not, unfortunately, sufficient infcrmaticn tc 

determine all the non-similar cliques of a grafh frcm the 

orbital partition of V(G) alone. This is illustrated by the 

following example. Suppose we afply the frocedure of cheesing 

vertices as just described to the graph of Fig. 3.3. Since 

this graph is point-symmetric, one vertex shculd be sufficient 

to characterize the "first" vertex of all the cliques. Let 

that be vertex 1. The subgraph induced on vertices adjacent to 

1 consists of three independent vertices 2,5 and 6 each of 

which belongs to the same block of the orbital partition of 

V(G). The "second"· vertex of all cliques should therefore be 

characterized by one vertex, say 2. As (1,2) is a clique cf 

the graph and since we have argued that a single vertex and 

the subgraph induced on adjacent vertices should be sufficient 

to characterize all cliques of the graph, we wculd have tc 

claim that all cliques were similar to (1,2) which we know to 

be false since the graph being examined is net line-symmetric. 

In fact we have previously otserved that edge (1,6) was net 

similar to edge (1,2) and therefore should also have been 

generated in the determination of the non-similar cliques cf 

the graph. 

We can resolve the twc non-similar cliques of the graph 

of Fig. 3.3 by using not only the orbital partition of V(G) 

but also by determining the orbits inducea en 2,5,6 by the 

stabilizer of 1. This results in a partitioning of {2.5,6} 

into two sets {2,5} and {6}. Ey selecting a refresentative 
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vertex from each cf these sets we can obtain two non-similar 

cligues say (12) and (16). This example illustrates the fact 

that although the group P(G) of a graph may be transitive on 

the vertex set V(G) it is not necessarily transitive on A(v). 

We have previously shown that if G is line-symmetric then this 

will be the case. Before we present a description of an 

algorithm for finding the non-similar cliques cf a graph frcm 

its orbital structure ve examine further the orbits of the 

stabili2er of a particular vertex v in the follcwing two 

theorems. 

1~11 Every automorphism 01.. in the stabili2er, r , of v 
V 

is an automorphism of G, the subgraph of G induced on the set 
V 

of vertices adjacent to v. 

f!QQf: Let P be a fermutation matrix corresponding to the 

automorphism ~ 

vertices of of G 

in r. Without loss of generality assume the V . 

are labelled 1,2, ••• ,m, and the remaining 

vertices in G are labelled m+1,m+2, ••• ,n. Let A (G) be the 

adjacency matrix of G, A(G) that of G. ClearlJ A(G) is of 
V V 

the form: 

Since P corresponds to an automorphism in the stabilizer 

of v, by Lemma 3.1 F maps V(G) onto V(G) and is therefore cf 
V V 

the form: 

: ] where 
2 

labelled 1,2, ••• ,m, the vertices in 

Pl 

V (G ) • 
V 

acts on vertices 
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Since is an automorphism of G, it is the case that 

As a corollary to this theorem we have following result: 

COROLLARY: Every crbit of is contained in some orbit of 

£I£2!l By the previous theorem every automorphism of G is one 

of G. Let u,w be vertices in V(G ) and suppose there existslllt'... 
V 

in r such that «u = w. Eence o(. is an automorphism of G and u 
V V 

and w must be members of the same orbit induced on V(G) by 
V 

rcG ) • QED. 
V 

.!~!Q]!~ 1~1~ Let G be a connected point-symmetric grarh. Then 

G is line- symmetric if and only if for an arbitrary vertex v, 

the stabilizer r cr,G; of vis transitive on A(v) the set of v-

vertices adjacent to v. 

E~£E1l Let A (v) = (w
1

,w
2

, ••• ,w k j. If G is line-symmetric then 

for any w. ,w. ,i =#it j, (v,w.) is similar to (v,w. ). Hence cL is 
l. J l. J 

transitive on A(v). 

conversely sui:i:ose r is transitive on A (v). Then for any 
V 

w.,w. there exists OL in r such that ol(v,w . ) = (v,w.). 
J. J V l. J 

Further since G is point-symmetric, for any ether vertex u * v 

in v (G), there exists /3 in r(G) such that 13v = u. If 

preserves adjacencies 
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A(u) = V3vl'fJw 2, ••• ,/Jwk} and hencet3(v,wi) = (u,xj) for some 

x j in A (u). Finally every edge (u,pw i) is mapped cntc (u,15w j) 

-1 by the auto1Dorphism /3ol.. p , hence every edge incident to a 

vertex u or vis similar to any other edge also incident to a 

vertex u or v. Since u was chosen arbitrarily we can conclude 

that G is line-symmetric. 

The observations made in the previous theorems frcvide 

the machinery by which we can define an algcrithv fer 

determining the ncn-similar cliques of a graph provided we are 

equipped with a procedure for determining ortital fartitions. 

Since two vertices which are members of the same orbit 

will be members of similar cliques, we initially determine k 

representative vertices one for each of the k orbits of the 

graph. Further, ve shall require a knowledge of the ortits cf 

the respective stabilizers of the representative vertices. 

The algorithm recursively decomposes subgraphs defined on 

the set of vertices adjacent to a representative vertex into 

as many new subgraphs as the number of blocks of the orbital 

partition of the stability subgroup fixing that particular 

representative vertex. Each new subgraph is determined as the 

subgraph induced on the set of vertices of the cld subgraph 

adjacent to a single vertex chosen from one of the blocks of 

the orbital partition and is subsequently reduced in a si1ilar 

manner. 
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A record is maintained of the representative vertices as 

they are chosen, and when there exists an isolated vertex in a 

block of the partition, a complete sutgrafh has been found. 

This subgraph is then examined to see if it is maximal by a 

procedure similar to that of the Reduced Redundancy algorithm 

in the previous chapter. 

As stated freviously, to determine the ortits we shall 

employ corneil's algorithm for constructing the Terminal 

Quotient Graph, a graph each of whose vertices, it is 

conjectured, corresponds to a block of the orbital partition 

of V(G) [13]. Corneil's algorithm is ideally suited tc our 

purposes since in determining the Terminal Quotient Graph, he 

determines not cnly the vertices of the original graph 

belonging to each block of the partition tut alsc the crtits 

of r for a vertex V from 
" 

each orbit of Since the 

adjacency set of vis obviously a subset of V(G) it is easy tc 

determine the orbits of r to ~hich they belong. Corneil's 
V 

algorithm provides this information in the determination of 

the vertex quotient graphs of G which are constructed ty 

fixing a vertex and then determining the partition induced on 

the remaining ver~ices of V (G). Corneil uses the vertex 

quotient graphs tc determine the orbits of r (G) by grouping 

two vertices in the saroe class if and only if they have 

identical vertex quotient graphs. 
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NOI!IJ.Ql! 

8.:theithorbitof r(G). 
J. 

Ailll row v of the adjacency matrix of G. 

Q1l vertices yet to be considered for a particular subgraph. 

§21 vertices which induce a comflete subgraph. 

~1.i new vertex set to be examined, derived from G1. 

~ll expanded vertex set inducing a complete subgraph. 

NON-SIMILAR CLI~UES ALGORITHM 

2!.Ef1l Use Corneil's algorithm to find the orbits0~,8~, ••• ,I~ 

of r(G). In addition, let 6}0;, ... ,8;vte the crtits of rv 
induced on A(v) • 

.§.!]R1l Choose a vertex set (G1,G2,w) fro11 the stack of 

candidates. If stack emfty, then stop. 

21'.,gf].i Compute T = v~ Glu~
2 

A (V). If T not eu,pty then go to 

STEP2. 

§!]R!l If G1 empty then print G2 as a clique and go tc STEP2. 

i to 1 and F to G1. 

8"!nG1 emfty then go to STEP10. 
J. 

Choose v in Q"!f'l G1 not previously chosen. If none left 
J. 

to ex a m in e , 1 e t v be a n .Y v er t e x i n 8 "_f n G 1 a n d g c t c s 'IE P 9 • 
1 

§ll.f!!.i. If G2f\ A (v) not empty then go to STEP9; else go to 

STEP7. 

§!].R.2.i Define a new vertex set (H1, E2,v) with ll1 = FrlA (v) and 

H2 = G2U{vJ. Put (H1,H2,v) on the stack. 

i tc i+1 and F to Ff\ (~(J"!). If i~k 
1 

then go to 
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STEP6; else go to STEP2. 

3.5 ]ISCUSSION OF TBE ALGORITHM 

The algorithm for enumerating non-similar cliques of a 

g~aph is similar tc the sequential algorithm for the 

enumeration of all cliques proposed in Chafter 2. However, 

whereas the seguential algorithm's efficiency was dependent 

upon the number cf cliques in the graph and the number of 

elements in a vertex subset, the determination of ncn-similar 

cliques by the methcd just described is dependent upon the 

similarity of vertices in the graph. It is clear that this 

determines the number cf orbits of the group as well as the 

number of non-similar cliques. Since it is cr.ly necessary to 

consider one vertex from each of the blocks of the partition 

of A(v) induced by the statilizer of an aFfrCFriate vertex v, 

the number of vertices that need be examined and hence the 

number of new vertex subsets generated is reduced if the 

number of blocks in the ortital fartiticns determined in stefl 

is small. 

It is possible for a graph to have an exponential nunher 

of cliques, none of which is similar to any ether. This is 

illustrated by the grafh of Fig. 3.4. The subgraph induced on 

vertices { 1,2, ••• ,8} is K(3,3,2) the graph on eight vertices 

with maximum number of cligues. Additional vertices are then 

added to insure that the graph has identity grcuf. Hence every 

clique of G is ncn-similar to every other. In general it is 
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possible to construct a graph on 6k vertices having crder 3k 

cliques in a similar ■anner. The purpose of this demonstration 

is to emphasize the fact that the detection of ncn-similar 

cliques may itself be an exponential process. 
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Fig. 3.4 

GRAPH WITH ALL CLIQUES NON-SIMILAR 
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In the algorithm for determining the non-similar cligues 

of a graph. it was not possible for us to apply orbital 

partitioning to the vertex sets of each component obtained in 

the reduction of the graphs. This was tecause the ncn-siailar 

cliques were deter ■ined by the orbits of r v of v, and not 

r (GJ. We have previously shown that for every automorphism 

of rv' there is an automctphism of r (GJ. However the converse 

is not necessarily true since two similar vertices in G might 

be non-similar in G. If grouped in the same class, a non-
v 

similar clique wculd be lost. 

We can however employ this strategy if we wish to 

determine only the existence of cliques of different orders. 

Such a technique is seen to examine fewer vertex subsets than 

a procedure fer finding the non-similar cliques cf a graph, 

since we can take advantage of any symmetry that exists in the 

subgraph induced on a particular vertex sutset. The vertex 

sets which are nearly resolved into cliques exhibit a high 

degree of vertex similaritJ and by only distinguishing between 

vertices in different orbits, the numter of vertices examined 

is greatly reduced. The fact that cliques of all orders 

originally present in the graph will 

established by the following argument. 

te obtained is 

If we determine the orbits of r(G) on V(G), two vertices 

u,v in V(G) are members of the same ortit if and cnly if the 

subgraphs induced on those vertices of V(G) adjacent to u and 

those adjacent to v are isomorphic. Hence each induced 
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subgraFh has the same number of cliques of each order and 

consequently either induced subgraph may te chosen fer further 

processing and the other ignored without fear of losing all 

cliques of a particular order. 

THE ALGORITHM 

.§!~£Q1 Initially flace (G1, /) on the stack. 

~!~£11 Choose a vertex set(G1,G2) from the stack. If the stack 

is empty ,then stcf. 

~!]Rll Compute T = v8YG~(v). If Tis not emptJ then go to 

STEP1. 

§!]£11 If G1 is empty then print G2 and go tc STEP1. 

§!]~~l Determine the orbits 9 1 ,8?-, .. • ,8k of the autcmcrphism 

grouF of the subgrafh induced on vertex set G1. 

§!]£~1 Set i to 1 and F to G1. 

§.!~£&1 Choose v in (J .n G 1 n ( A (v)) and define a new vertex set 
]. 

(H1,H2) where H1 = FnA(v) and H2 = G2U{v}. Place (H1,H2) on 

the stack. 

.§TE£1l Set i tc i+l and F to Fn (-0.). If i~k then go to 
l 

STEP6; else go to STEPl. 

This algorithm is very similar to the Reduced Redundancy 

algorithm for the enumeration cf cliques. It is obvious that 

the latter algorithm could te employed to deterwine the crders 

of the non-isoroorfhic cliques of a graph. However in view of 

their possibly exponential number, it is desiratle tc find 

some means of reducing the number cf vertex subsets generated 

by reducing the number of vertices that need tc te exauired. 
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This is achieved in our algorithm by again exploiting the fact 

that two similar vertices belong to the same number of cliques 

of different orders and therefore in the situation where we 

wish to find the orders of the different sized cliques of the 

graph, it is only necessary to treat one of the two similar 

vertices. 

It should be noted that in step 6 of the algorithm it is 

not sufficient to choose one vertex from each of the k orbits 

of the automorphism group of the subgrafh induced on G1. This 

is because it may turn out that the number of orbits exceeds 

the number of vertices not adjacent tc v, in which case our 

algorithm would perform more poorly during that iteration than 

the Reduced Redundancy algorithm of the frevious chapter since 

it would generate more new vertex sets than the sequential 

procedure. For this reason v is chosen from B{'G1f'"l (~A (v)). 
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In the previous sections we have attempted tc exflcit the 

similarity of vertices in a graph as an aid to the detection 

of its cliques. This was only partially successful, cne of the 

major difficulties being the difficulty of determining the 

group of the graph, which was necessary fer a complete 

enumeration of the cliques. Even the task of determining the 

non-similar cliques has proved to be limited ty the existence 

of few good procedures for finding the orbital partition of 

the vertex set. Finally, we saw where it was even rcssitle fer 

a graph with identity group to have an exponential number of 

non-similar cliques. 

In this secticn we shall explore an alternative approach 

in which two vertices will be related by a condition stronger 

than that of similarity. 

DEFINITION 1.1: Twc vertices u and w of a graph Gare said to 

be £~~El~!~ ~]~~£~Ih eguivalent JCS eguivalentl if for any 

subgraph of G defined on vertices cf V jG) , 

u , V l' V , ••• , V . 
~ J 

are mutually adjacent if and only if 

WV V V ar e mutually adjacent. Two vertices cf degree 0 ' l' 2•••·, j 

are cs equivalent. 

It is clear from the definition that if two vertices are 

cs equivalent then they are similar. This fcllcws from the 

fact that two CS equivalent vertices are adjacent to the same 

set of vertices and can be interchanged. By finding all the 

cliques to which vertex u belongs, we have also found all the 
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cliques to which verte~ w belongs and it is a simple matter to 

determine the latter explicitly: for each occurrence of u in a 

clique, replace it by w. 

A SUFplementary but equallJ important advantage of a 

method which reduces the number of vertex subsets to be 

considered by finding complete subgraph equivalent vertices is 

that it provides a means of representing all the cliques of 

the graph in a more concise manner than explicit enumeration. 

Given the vertex set V(G) of a graph G, let v 1 ,v 2 , ••• ,vk tea 

set of CS equivalent vertices, all of which are by definition 

adjacent only to vertices in A(v1 ), the set of vertices 

adjacent to v. If we denote by c1 the set of maximal complete 

subgraphs induced on the subsets of A (v1 ) the Cartesian 

product {v
1
,v

2
, ••• ,vk} X c

1 
is precisely the set of all 

cliques of G containing one of the vertices v1 ,v 2, ••• ,vk. It 

is evident that this procedure could be extended sc that the 

cliques of c
1 

were also expressed as a set of Cartesian 

products each one being determined by a set cf cs equivalent 

vertices and their common set of adjacent vertices defined on 

the subgraph induced on A(v
1

). As an example we may consider 

again the graph K(3,3,3) given in Fig. 2.1. The vertices 1,2, 

and 3 are cs equivalent and are each adjacent to vertices 

4,5,6,7,8,9. In the subgraph induced on this latter set of 

vertices, the vertices 4,5,6 are CS equivalent and each is 

adjacent to vertices 7,8,9. Since the vertices 7,8,9 are 

isolates they are also cs equivalent. Thus all the cliques of 

the graph are given by the exfression: 

( 1, 2, 3} I( ( 4, 5, 6 } X( 7, 8, 9 J 1, 
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This is obviously a much more compact way cf defining the 

twenty-seven cliques of K(3,3,3). 

The primary drawback of implementing the technique just 

described is the faucity of vertices which are CS equivalent 

in an arbitrary graph. Instead, we shall implerrent a frocedure 

which uses a weakened form of the definition cf complete 

subgraph equivalence to group the vertices in a similar 

manner. 

DEFINITION 3.2: Twc vertices u and ware ~~~!1~ f2 ~E]l1~1~]! 

if there exists a comflete subgrafh defined on some Eut~et of 

vertices of G say u, V l' V , , ••• , V ,• ,_, J 
such that the subgraph 

induced on w,v
1

,v
2
, ••• ,vj is also complete. 

It is clear from the definition that weakly CS equivalent 

vertices are not necessarily similar, and that complete 

subgraph equivalent vertices are weakly CS equivalent. 

We now consider the properties of a set of weakly CS 

equivalent vertices defined in the following way. Let l. be an 

arbitrary vertex from V(G) and 

vertices also from V(G) such 

to all vertices in A(v
1

). 

let 

that 

All 

(v
2

, ••• ,vj} be 

each vertex V. 
J. 

the complete 

a set of 

is adjacent 

subgrafhs 

containing v
1 

including the cliques are induced on ( 11 u A (v
1
). 

If induces a complete sutgrafh then 

v ,w ,w , •.• ,w alsc induces a complete sucgrafb. Further, 
1 l 2 k 

since v
1 

is adjacent to every vertex in A(v
1
), it is adjacent 

tow ,w , ••• ,w and hence{v.,w
1

,w
2

, ••• ,w,J induces a ccroplete 
1 2 k J. - .. 

subgtafh. Therefcre V V 
1

, . 
l 

are weakly cs equivalent. ~est 
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importantly it is the case that every clique of G with 

vertices from the set is induced en 

{v
1
,v

2
,. •• ,vj}uA(v1). In other words, given any vertex set 

(vi,w1 , ••• ,wk] inducing a complete subgraph, all possible 

vertices which could be used to extend that vertex set so as 

to induce a larger complete sutgraph must te contained in 

( v
1 

, V 
2

, ••• , V j } U A ( V l) • 

If we denote by Vl the vertex sets of all complete 

subgraphs which are maximal on the sut:grafh induced en 

( v
1 

, v . , ••• , v . } , and denote by v2 the vertex sets of all 
.::, J 

complete subgraphs which are maximal on the subgrafh induced 

on A(v
1

), then the vertex sets determined by the Cartesian 

product v
1 

X v
2 

induce complete subgraphs which are maximal on 

G. 

This result has an alternative interFretaticn as a 

product of graphs. The j~iE (see for example Harary (43]) of 

two graphs G 
1 

and G 
2' 

denoted G 1 + G2, is the grafh G defined 

on V (Gl) U V (G 
2

) such that every edge of Gl or G2 is an edge 

of G and for every vertex v in V (Gl) aud vertex w in V (G
2

) , 

(v,w) is also an edge of G. Let c
1 

be a complete subgraph 

which is maximal on the subgraph induced on {v1 ,v2 , ••• ,vj], 

and let C be a subgraph which is maximal on the subgraph 
2 

induced on A(v
1
). Then c

1
+ c

2 
is a clique of G. 

We illustrate the determination of the cliques of the 

graph by finding weakly cs equivalent vertices in the 

following example. Consider the graph of Fig. 2.9. It is 

evident by inspection that no pair of vertices exists which is 
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complete subgrafh equivalent. Instead we define two sets of 

vertices by first choosing artitrarily vertex 1 and defining 

one set to be A(1) = {2,6}. Now vertices 3 and 5 are also 

adjacent to (2,6} so the second set is { 1,3,5]. By repeating 

this procedure on the subgraphs induced on the first cf these 

vertex sets we discover that (2,6} can be separated into two 

sets expressible as a Cartesian product {2}X(6] ccrresfonding 

to a complete subgraph of order 2. The vertex set { 1,3,5} 

however consists cf two components, an isolate 1, and a 

complete subgraph of order 2 defined en {3,5} and exrressible 

as(JX5}- The ccmflete subgraphs of the sutgrafh induced en 

{ 1,3,5} are induced on vertex sets (1} and {3}X{5] and hence 

some of the cliques of Gare given ty ([2}X(6]]X[1,[3 }X{5]) 

which corresponds to the cliques (261) and (2635). It is clear 

that not all the cliques have been found for we have not yet 

examined vertex 4. We therefore determine two new sets {3,5} 

and (2,4,6} in the same way, and the processing of their 

induced subgraphs yields f{3}X{5J}X [4,(2}X{6}) giving us the 

third subgraph (354). 

This examfle illustrates the principal drawback of this 

procedure for enumeration, namely the generation of redundant 

cliques. We have encountered this type cf frcblero in nearly 

all of the algorithms freviously discussed. The most usual 

means of overcoming this problem has been tc siw.rly examine 

each vertex of the induced subgrdph to see if there exists 

some vertex not in the set, yet adjacent to all vertices in 

the set. Such a mechanism is clearly not applicable in this 

case. Alternatively, Peay in his algorithm as criginally 
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described, maintained all cliques in a stack which he could 

compare with newly determined maximal complete subgraphs to 

see whether it had been found before. Although more directly 

applicable to our situation, this method is net useful since 

we have no explicit representation for each clique with which 

to compare. In addition we must make use of a possibly 

exponential amount of storage. This difficulty is partly 

overcome in the following algorithm by making use of 

information pertaining to the current derivation path in the 

tree of derivations in a manner described in the next section. 

§Q~§i!fB EQUIVALENCE ALGORITHM 

Two stacks are used in the algorithm. Stack 1 consists of 

all vertex sets derived in the development of the current 

derivation path except those from which the current set is 

derivable. Stack 2 consists of all vertex sets directly 

derivable from the last vertex set in the derivation path. 

BLOCK A: Initiali2ation procedure. 

2!~Ell Let V(G) be the set of all vertices in the graph and 

initially set both stacks to be empty. 

2!~Rll Call recursive procedure ~NUM(V(G)) defined in BLOCK a. 

The order and adjacency matrix of Gare defined glcbally to 

ENUM on return, step. 

BLOCK B: Recursive procedure ENON (V(G)). 

2!!!11 Choose a vertex v in V(G)and define a vertex ~et F 
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equal to the union ot v together with all vertices not 

adjacent to v. 

§!]£li Choose a vertex w from F and define vertex sets 

H 1 == V (G) f"\ A (w) and H2 equal to the set of all vertices in F 

adjacent to every vertex in H1. 

§!~ill If the vertex set H1 u H2 is contained in a vertex set 

previously defined during this iteration then go to STEP?. 

§!ll~l If the vertex set H1 u H2 contains a previously defined 

vertex set duri~g this iteration then replace that vertex set 

by H1 u H2 on stack 2. 

§I!R~l Compare Ht u H2 with all vertex sets generated during 

previous iteraticns in the developroent cf the current 

derivation path ether than those vertex sets from which 

H1 u H2 was derived. If Ht u H2 is contained in scrne previous 

such set then delete it from stack 2. Otherwise place the new 

set on stack 1. 

ST]E&l A new pair of vertex sets has teen found. Stack 2 

contains their unicn as well as the vertex w used tc define 

them. 

§!~Ell Delete w from F. If Fis not empty then gc to STEP2. 

!IJRil If no new vertex sets have been added to stack 2 this 

iteration then return. 

§I!£~ Choose a pair of sets H1 u H2 from stack 2 together with 

their defining vertex w. Remove this set from stack 1. 

§I]E1Qi If Ht is empty then print vertex wand gc to STEP14. 

§I~111l Call recursive procedure ENUM(B2). 

§I!.f1~.l Print 11 X 11 • (The maximal complete subgrai;hs of 

Ht u H2 will be given by the Cartesian Product cf the results 
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upon return from calls in STEP11 and STEP13. 

~TBR11l Call recursive procedure ENUM(E1). 

ST]f1~l Return H1UH2 and w to stack 1 tut delete it from 

stack 2. If stack 2 not empty then go to STEP9. 

a!]fJji Return. 

As previously described, the algorithm finds the cliques 

of the graph by determining sets of weakly cs eguivalent 

vertices in a particular way. A new vertex set whose vertices 

have been partitioned into two sets of weakly CS equivalent 

vertices is determined by choosing a vertex v from a set F and 

defining the twc blocks H1 and H2 of the partition according 

to STEP2. The set F consists of a vertex v and all vertices of 

the induced subgrafh on the current set of vertices, V(G), 

under consideration not adjacent to v. This set insures that 

all cliques will be found and was employed in the Ha~ary-Ross 

algorithm and the Brcn-Kerbosch algorithm as well as our own 

sequential algorithm previously discussed in ChaftEr 2. 

We are thus guaranteed of finding all the cliques and it 

is therefore only necessary to minimi2e the possibility of 

finding redundant cliques. As we have mentioned, this is net a 

simple problem because of the nature of the refresentation 

being exploited in our algorithm. The technique employed is to 

keep track of all vertex subsets from which a newly determined 

vertex subset could pcssibly be derived. To do this it is 

sufficient to keep track of only the initial ncdes cf all 

possible branches in the derivation tree which deviate from 

the path of derivations we have taken to reach the current 
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vertex subset under consideration. BJ definition all other 

vertex subsets derived during the execution will be contained 

in one of the vertex subsets represented by these nodes. In a 

derivation path of length k, let v. be the defining vertex of 
l. 

the vertex set Hl v H2 represented ty a node on the derivaticn 

path at distance i from the root. It is evident that the 

ma xi mum number of vertex subsets generated during the 

generation of set H1 u H2 is n. 
1 

-d(v. 
1

) where n. 
1 l.- 1- 1-

is the 

number of vertices in the i-lst vertex subset in the path of 

derivations and v., 
).-J_ 

is its defining vertex. The maximum 

number of vertex subsets placed on stack 

k 
i~l ( 1+ (n:L-1-d (V i-1))) • 

1 is thus 

In Fig. 3.5 we illustrate the vertex sutsets invclved in such 

a sequence of derivations. Since our algorithm employs a depth 

before breadth technique of develoFment, it is clear that 

stack 1 is not exponentially growing. Hence any gains in 

efficiency from such a representation will not te ctfset by 

inordinate storage requirements. 
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Fig. 3.5 

A PATH IN THE DERIVATION OF NON-SIMILAR CLIQUES 
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It is difficult to assess the overall efficiency of this 

algorithm because the choice of a "test" defining vertex at 

each iteration is a non-deterministic procedure. Clearly. the 

worst case occurs when the choice that is made results in an 

explicit enumeration of every clique in the grafh. In this 

situation. since the mechanism by which new vertex subsets are 

generated is similar to that of the Bron-Kerbcsch or our 

sequential algcrithm fer the enumeration of cliques. a one-one 

correspondence can be made between the nodes of the derivaticn 

tree of this new algorithm with either of the previously 

discussed sequential algorithms. 

k 
Because a search of as many as ~ (n .. 1-d (v .• 1 ) ) elements 

i=l .L- l.-

i n a stack must be made (see Fig. 3 • .5) for each new vertex 

subset in addition to its generation. it is evident that the 

time required for one iteration will be longer than that 

required by the sequential method. Since we have e~Flcyed the 

same techniques of cur previous algorithm to the generation of 

new vertex subsets• the time required for cne iteration is 

proportional to 

required 

Chapter 2. 

for 

k 
2:: 
ial 

(n-d(v.))• T(n) 
l 

where T(n) is the time 

one iteration of the sequential algorithm of 

When. however. we can take advantage of the weak CS­

equivalence of vertices to minimize the number of vertex 

subsets generated. the maximum efficiency is realized by the 

greatly reduced derivation tree. This is clearly evident for 

any complete k-rartite grafh K (m
1

.m
2 
••••• mk). Here, each block 

of m. vertices corresponds to a set cf comflete Eutgrafh 
l. 
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equivalent vertices, and hence also a set of weakly cs 

equivalent vertices. The derivation tree for K(m 1 ,m 2, ••• ,mk) 

using our new algcrithm is linear, as only one vertex at each 

iteration defines a new subset. We illustrate such a 

derivation for K(34 ) in Fig. 3.6, where the vertices of block 

V. are labelled (i-1) m + 1, 
1 

with m = 3. 

(i-1) m+2, ••• , (i-1) m+111, 

For the ccmplete k-parti te k graph K(m), the number of 

nodes in the derivation tree determined by our algorithm is 

mk+2 (k-1) +1 for k > 1 and 2 (k-1) +1 for k ::. 1. 

Obviously then the derivation trees are smallest for 

complete k-partite graphs. As mentioned previously the wcrst 

case to be enccuntered occurs when there are no weakly cs 

equivalent vertices in the graph and consequently cligues are 

enumerated explicitly. The derivation tree may be used to 

determine the number of cliques in the graph. If we again 

examine Fig. 3.6, edges of the tree incident tc a comacn 

vertex have been related by by the symbols "X" or n n , 

according to whether the sets deter111ined in that derivation 

can be combined in a Cartesian Product to obtain a subgraph of 

the original grafh G. If not then their union (denoted by",") 

is a subgraph of G. we illustrate this notation ~ith the 

example of Fig. 3.7, a derivation of the cliques of Fig. 2.9. 

Using such a notation, the cliques are given bJ the 

expression: {1 X {2 X 6)),(3 X {(2 X (5 X 6}),(4 X 5})}. 

From this examfle one can see that the clique (126) bas 

been explicitly defined while those containing the vertex 3 
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(ie. (2356) and (345)) are grouped together:. It is evident 

from Fig. 3.7 that there cannot be any edges net incident to 

the root of the derivation tree which ar:e related by a"," for 

a graph whose cliques are all determined explicitly. since the 

number of vertex subsets generated from the root is at most n­

d(v) where vis a ver:tex of minimum degree, such a graph has 

fewer than n cliques. Hence all grarhs having mere than n 

cliques have some vertices which are weakly cs equivalent in 

the induced subgraph defined on some vertex subset; therefore 

some improvement over a sequential algorithm can cften be 

obtained by reducing the number of verte~ subsets that must be 

considered. 
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4.1 IN1RODUCTICN 

In the previous two chapters we have explored some cf the 

ways in which cliques can te detected in graFhs. we have also 

examined how various properties associated with graphs might 

be used tc improve the efficiency of such algorithms. The 

major otservation to te made is that it is net at all clear 

hew one might devise an efficient clique detection algcrithm 

even to detect cligues cf a rarticular order. In this chapter, 

however, a procedure for the detecticn cf such cliques is 

propcsed ~hich can be proved to be an efficient algcrithw fer 

a particular class of grarhs and fer which nc counterexample 

has yet been found for general k-partite graphs. 

An important application of clique detection in grafhS is 

motivated ty the fact that it is rcssible tc rerresent a well 

formed formula of the propositional calculus in disjunctive 

normal form as a k-partite grarh where k is the number of 

conjuncts in the sentence. In the survey of Charter 1 we 

mentioned briefly the efforts of Cook, Karp and Lawler, arong 

others in developing a taxcnomy cf corbinatcrial protlems. In 

rarticular we noted an important result of Cook's which 

relates the tautology problem to a numter of ether im~crtant 

comtinatorial ~rotlems. An extensive list cf theEe problems 

has been prepared by Karp [49]. We shall use his notaticr, tc 

define the concepts required in de~criting the equivalence ct 

a k-partite graph tc a well-fcrmed formula in diEjunctive 
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normal form. 

4.2 ~11~.1'~ DETECTION!!] SATISFIAEILI'IY 

We turn now tc a ccnsideraticn cf the "Satisfiatility 

Prcblem" as defined by Karp [49) and its solution through the 

detection of cliques in a grafh as suggested by Mcwshcwitz 

[ 6 3]. 

DEFINITION J]A]ill The satisfiatilit1 £rotlem is defined as 

follows: Given as input the clauses c
1
,c

2
, ••• ,cp, of a well­

formed formula in conjunctjve ncrmal fcrrr, does there exist a 

sets {x
1

,x
2

, ••• ,:>1n; i
1
,x

2
, ••• ,xn} such that 

A 

a.) s does net ccntain a complementary fair of literals 

and 

for k= 1, 2, ••• , p. 

We are thus given the well - formed fcrirula 

C n C n .•. /"l C and asked to decide whether 
1 2 p 

CI not it is 

satisfiable. Tc do this we convert its negation to disjunctive 

normal form. SupfOSE -A is a tautclcg~. Then fer all possible 

assignments of truth values to the variables cf ~A, ~~ is 

true and consaguently A is false for all possitle assignwents. 

Therefore A is satisfiable if and only if - A is not a 

tautclogy. It is the disjunctive normal form cf ,.,A that we 

shall represent ty a qr:afh. 

Let DuDu ••• uok 
1 2 

be a sentence of the 

f£Ufcsitional calculus in disjunctive normal form with each 

conjunct [. -
l. 

. . . where a . is a literal. 
l. . 

J 



128 

Define a k-partite graph G as follows. Each ve-rtex in V fG) 

corresponds to a literal of s, there being as many vertices as 

there are literals of s. The unordered vertex pai-r 

corresponding to literals a and bis an edge cf G if and cnly 

if a is not the complement cf b, and a and b are not toth 

members of the same conjunct. Thus to each conjunct of S there 

corresponds a vertex tlcck cf G ccnEisting cf mutually ncn­

adjacent vertices. 

This representation can be used to determine whether or 

net Sis a tautology. The decision rule is: 

1!!~Q!HHl !!.1.ll s is a tautology if and only if there does net 

exist a clique of order k in the corresponding grri.r;:h G , k 

being the numl:er cf conjuncts in the a is ju nc ti ve normal form. 

.ff.££11. A clique of order k in G exists if and cnl_y if there 

exists a selection cf literals, cne from each conjunct of S 

such that no literal and its complement are both ccntained in 

the selection. If such a selection exists then we can assign 

the value O (false) to each of the literals in the selecticn 

and hence negate the well fcrreed fcrmu1a. On the other hand if 

such a selection is not rcssible this corresfonds to the fact 

that no such assignment to the literals of the well-formed 

formula can be made and hence it must ~ea tautology. QED. 

The ol:ject of this charter is to describe an algorithm 

which f'COVides an efficient heuristic for deterwining whether 

a clique of order k exists in an arbitrary k-rartite graph. 

Such an algorithm can then be employed th~ough theorem 4.1 as 



129 

an efficient solution to the tautology problem. 

Before presenting such an algcrithm it is necessarJ to 

define and discuss a ccllecticn cf vertex sets determined by 

the algorithm fer a k-partite graph G which provides the 

mechanism for detecting the existence cf cliques of order k. 

The importance of these vertex sets will be established in a 

subsequent theorem. Fii:st, however, we shall assume that we 

are given a k-partite grafh G with its vertex s~t V(G) 

Fartitioned into k blocks v1 ,v 2 , ••• ,vk of mutually non­

adjacent vertices. 

we define W~(u,w), ics,k-2 tc te tea subset of tlcck V. 
l. 

associated with an edge ( u , w) such that t 
W ( u, w) t= ~ , m 

m-= 1 , 2 , ••• , t ; t = 1 , 2 , ••• , s- 1 • 

If i=s then W 
5 (u,w) = V .., A (u) n A (Iii) s s where A(u),A{w) dencte 

the adjacency sets of u and w resr,ectiveli. 

Else for i < ~ W ~ (u, w) is the set of all VE:rtices v. ir; V. 
l. l. l. 

It is evident frore the definition that fer any particular 

value cf s a family of sets associated with an edge {U, W) i S 

determined in tl:e order W 5 (u,w),w~ s (U,li) , ••• ,tJ 5 (u,w). This 
s s-1 1 

order is a consequence cf the fact that W~(u,w) is dependent 
l. 

ui;on w. 5 (U,'-1) .-,i, 5 ,iu,w) , ••• , ~'1' 5 (u,w). 
i+l l.fG s 

A number of ftorerties 

associated with this family of sets may te readily determined 

from the definiticn: 

C W s-:- l ( U , W ) • 
1 
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s 
W.(u,w) 

J. 
not 

j=1,i, ••• ,s-i, not empty. 

empty implies that s 
W itjfu,w), 

s 
PROPERTY 3: Every vertex it ll. (u,w) i.s adjacent to u and w. 

l. 

4.4 CLI~UF, DETECTION ALGORITHM 

The algorithm proceeds ty constructing the vertex sets 

w1 (u,w), s-=1,~, ••• ,k-2 fer each edge in the gtaFh G. An edge 

(u,w) is deleted tram 

for some 

the yraph whenever W ~ (u,w) 
1 

i= 1, 2, ••• , s. After the 

teccmes 

sets 

k-2 . k W • (u,w),1=1,2, ••• , -2, 
l. 

have been ccnstructed for edges 

remaining in G connecting vertices in tlccks vk-l and Vk , and 

if s at least one such edge remains, then the sets 'W. fu,w) are 
l. 

redefined ty iterating the abcve ftccedure. The.se iterations 

continue until cne of two conditions cccurs: 

(a) All edges have been eliminated from G. 

(b) The la test iteration resulted in nc further 

deletions. 

The following theorem establishes that condition 

(a) im Flies G contains no complete su tgr a p h cf crder k. 

lJ:rn.Q.!HH~ 1~11. If G has r1 complete sutgraph cf order k then 

W ki2 ( u , w) i s n c t e mp_ t y f c I s c III e e d g e I u , lj ) cf G • 

R!££!i From the definition, the theorem is true tor k = 3,4. 

Assume that fork= sit is the case that K(1 6
) is a subgrafh 
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of G implies W 5 ~
2 (u,w) is net emrty fer some edge (u,w) in 

E(G), where u,w are in V(K(1 5)). Suppose furtter that Kt, 541 ) 

is a sutgraph of G where V(K(1 5 +1 )) = (v
1
,v

2
,. • .,vs_

1
,u,w}, vi 

being a vertex from block v .• Ccm[lete subgrarhs of order s 
]. 

are defined on vertex sets: 

V (K ( 1 5 ) ) = fv ,v , ••• ,v , I], w J . 1 ;;_ s-2 
V (K(1 8 )) = { v

1 
, v 

2
, ••• , v ,, , V , u} 

s-.e::: s-1 

V (K(1 5 )) = {v ,v , ••• ,v . , V , w } • 
1 2 s-2 s-1 

Therefore from the induction hypothesis v
1 

is contained 

in each of ws-2 ( u w ) w s-2 ( ) 
1 ' ' 1 U ' V s-1 1 and W s-2 ( ) Since 

1
- w,v 

7 
• 

s- ... 

v ,v , ••• ,v ,u,w are mutually ~djacent, contained in 
1 2 s-2 

\ii Si~ ( U, W) is contained in 

s.:;:Z[ W r-1 (U, v ) I"'\ wr-l ( w, v ) 1 f c r r = 2, 3, ••• , s- 1. n 1 1 r·" r•2 r 
definition v

1 
is contained in W5i1 (u,w). QEC. 

Hence by 

The following lemmas and theorem show that if there are 

at most two vertices per vertex tlock of G with degrees 

greater than O after all rcssible edge deleticns have teen 

made then G contains a complete sutgcaph cf order k. 

11~~] ~~11 Let v
1

,v
2

, ••• ,Vk dencte the vertex blocks of 

fartite graph G and surrcse IV. I = 1 fer i=1,2, ••• ,k. 
]. 

wk-2 (u, w) not emi:;ty implies K (1k) is contained in G. 
l 

a k-

Then 

f£22.!.:. Ey Pcoperty 2 W k-:-2 (u,w) iE not e1q:ty fer i=l,2, ••• ,k-
i 

2. Since IV. I = 1 W k:-2 (u, w) = V .• Let vi te the vertex in 
1 l. l. 

block V. From the detiniticn: 
i 

r k .,, 
wk-2 (u,w) = { v. }f"\ ~ -,., [W r-1 (u,v ) W ri-:-l (w,vr)]] 

i i r•i+l i r 
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implies v. 
J. 

is adjc1cent to for r= i + 1 , i + 2 , • • • , k - 2 , and 

i = 1 , 2, • • • , k-2 • Hence ( v l , v 2 , ••• , v k-2 , u , w } is a set cf 

mutually adjacent vertices • 

.!&~~A !±..s.ll If G is a k-partite g.caph such that each vertex 

block has exactly two vertices, then for any edge ( u, w) 

k-2 . l. 1 k ) W 
1 

(u,w) not eropty 11q: 1es K( is ccntained in G. 

3 £f.Q.Q.t;. Let k=S and suppose v1 is a vertex in W 1 tu,w). Then 

the:ce eJ<ists v
3 

in W ~ (u,w) such that v_i_ is contained in 

2 ? 2 w
1

(u,w)nioi 1 (u,v
3

)nW 1 (w,v 3). It also follows frcre the 

d f . . . f 2 2 d 2 ) h e 1n1t1ons o W 
1 

(u,w), W 1 (u,~ ), an W 1 (w,~ tat one can 

choose vertices x,y,z in v
2 

such that ccrrflete subgraphs are 

induced on vertex sets {~,x,u,w}, 

Now since IV. I = 2, either )( = y, )i = 2, or 'i = 2. If 
l. 

X = y or X = 2 then X is adjacent to VJ and hence a complete 

subgrafh is induced er. { Vl , X, v3 , u, W ). If y = 'l then y is 

adjacent to w and a ~Cmfie~e subgrafh is induced on 

Assume the lemma is true for k=s-1 and SUffOSe v1 is a 

vertex in s w
1 

tu,w). Ther by definiticn there exists vs in 

w s ( u, w) s UC h 
s 

that is contained in 

ws-1 ( u w) f'\ w s-1 
1 ' 1 

s-1 (u,v
5
)n w 

1 
(w,vs). Since v1 is a tr.eo.t:er cf 

each of the sets s-1 s-1 s-1 W l ( u, w) , W l ( u , v 
5 

) , and W l ( w, vs ) , t l the 

induction hypothesis one can find vertex sets X, 1, and Z such 

that ccmplete subgraphs of order s+1 are defined en 
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containr cne vertex from each of the vertex tlccks 

V 2 • V 3• • • • , V s-1 • 

Let 

contains a vertEx from each cf blccks v2 , V 3 , ••• • V s-l s i nee 

IVi I -= 2. Since each vertex in S 
1 

is adjacent to every vertex 

in X and Y, it is adjacent to every vertex in s
2 

and s
3 

and 

hence and are a of mutually adjacent 

vertices. Similarly each vertex in ~
2 

is adjacent to every 

vertex in z and s 2u !:i3 is also a set cf mutually 

adjacent vertices. 

hence 

Hence s
1
u s

2
us

3 
induces a ccrrplete 

subgraph of order s-2. Further, by construction v
1
,\ ,u, and w 

are adjacent to every vertex in s
1
us

2
us

3 
and therefore G 

contains a comflete subgrafh of order s+2. QED. 

THEOREM 41 3: If G is a k-partite graph with at rrost twc 

. . h '· l k a . f k-2 ( ) . t t f vertices 1.n eac iJ oc , an 1. W 
1

- u, w 1.s no emp y CL :::orne 

edge (u,w), then G ccntair.r- a ccrnflete subgraph of order k. 

1£.Q.S:!l The result follows almost immediately from lemmas 4. 1 

and 4. 2. If for sc111e · wk-2 ( u, w) contains cnl y one vertex v. 1, . 
l l 

then as a conseguencl~ of the definition V. is adjacent tc 
l 

every veLtex in eveLy ether set Wk-2 ( ) u, w , 
j i ' j. Suppose 

there are r S k-2 sets having 2 vertices. Ey the method in 

18mma 4.2 we can find a complete sutgraph of order r+2 defined 

on vertices chosen fLorr thEse sets. Ey the remark atove, 

vertex in a set which it is the scle rnemter is adjacent to all 

other vertices and therefore G contains a complete sutgrafh cf 
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order k. QEt. 

Finally, we note that the following clique detection 

algorithm could be modified to work for all ~partite grafhs. 

If condition (b) occurs and if the conditicn of theorem 4.3 is 

not satisfied, then a clique enumeration procedure can be 

applied tc the subgraph of G which remains after no further 

edge deletions occur. This methcd has been implemented for 

verification purposes and the results are summarized in 

Chapter S. 

CLI~UE DE!ECTION ALGORITHM 

Let G be a k-par.tite graph with tlocks v
1

,v
2

, ••• ,vk. 

Cenote ty A (u) tbe adjacency set cf verte:x u. 

~1tEJ1 Set s to 1. Define graph H
O 

equal tc G. 

21.!f1..: If E (H 
1

)empty then stq:--K 11k) is net in G. 
s-

~11El..:. Cheese an eclge (u, w) in E (H l) s-

v er tic es in V ( ii 
1 

) - V • 
s- s 

E.'.!'~.!:!±.:. Set W6 (u, w) to V n A (u) n A (w). 
s s 

§.'.!'~.!:~..:Ifs= 1 then go to STEP16. 

§1'~.!:1.:. Set r to i+1. Set P to be empty. 

§1~E§l Choose a vertex v in W 8 (u,w). 
r 

If (U, V) and (1'1, V) are 

where \] 

edges of 

W r~ 11 u , v ) fl \oJ r~ 1 ( w , v ) no t em p t y t h en go to ST E P 1 2. 
l J. 

ST].!:JQ_;_ Set w 6 (u,w) 
r 

to W8 (u,w) - {v]. 
r 

and are 

H and 
s-1 

2IlEJJ1 If W8 
( u, w) 

r 
empty then set i~(u,w) tc be empty and go 
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to STEP16. 

.§1~~11.:. 

STEPS. 

If some v in W 5 (u,w) has not teen examined then gc tc 
r 

~I]fJ~l If P not errpty then set W ~(u,w) 
J. 

tc s-1 W. (u,w)f'\ P. 
J. 

Otherwise set W~(u,~) tc te empty and gc tc STEF16. 

~I~f12l Set i to i-1. It i~1 then go to STEP7. 

~1~f1£l If W~(u,w) has not been computed for all edges (u,w) 

in E (H
3

_
1

), where u ,w are in V (fl 
5

_
1

) -v 
5

, then go to STEP3. 

2!.!f j]_: Define gr a F h H ~ H 
1 

a E f c 11 o,. s : 
s s-

an edge of 

~I1£J.§1 Set 

~I.!f.1.2.:. Let 

and only 

w k-2 ( u, w) 
i 

I 
and G = G 

§I!f1Ql If 

(u, w) is an edge of E (H ) if and only if tu, w) is 
s 

E ( fl s-1) and a w
1

(u,w) i E net e1q: tJ. 

s to s+1. If s$ k-2 then gc tc STEP2. 

G' te the sutgrafh cf G such that V is in 
I 

V f G) if 

if there exists ( u, w) in E (H 
s-1 

) such that V is in 

for some i = 1,2, ••• ,k-2. If G' ;: G then let 

go to STEP1. 

G' has at mcst 2 vertices in each block of 

degree> 0 then K(1k) is ccntained in G; else a clique must te 

verified by enumeration. 

As an example, ccnsider the grarh of Fig 4.1. We 

summarize the results of the algorithm in TAEIE 4.1. The 

subgtafh defined by STEP1g ~ftet 1 iteration is the co~plete 

subgraph of order 5. The second iteration defines sets fer 

this graph as indicated in the table. Vertices ~hich are 

deleted according to STEP10 are indicatea in parentheses. By 

STEP1g, the algcrithm terminates ~fter the second iteraticn. 
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9 8 

1 

2 

4 

Fig. 4.1 

GRAPH CONTAINING SUBGRAPH K(l 5) 
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ITERATION EDGE wl 2 2 w3 w3 w.3 w,, Wl 1 ,:. 3 ~ 1 

(36) I 

(37) 2 

{ 3 8) 2 

(46) p 

( 4 7) 2 

(4 9) 2 

1 ( 56) 1 

(5 8) 1, 2 

( 5 9) 1, 2 

(6 t3) 1 ( 3) , ~ 1 

( 6 9) 1 ( 4) , 5 1 

(7 8) 1 , 2 3 2 

( 7 9) 1, 2 4 2 

!89) 1 , 2 5 1, 2 6, ( 7) 5 1 

(56) 1 

( 5 8) 1 

2 (59) 1 

( 6 8) 1 5 1 

(69) 1 5 1 

( 8 9) 1 5 1 6 5 1 

'IABL~ 4.1 

RESULTS OF THF ALGORITHM FCR FIG.4.1 
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4.4 11~1!~ CONSIDERATIONS 

Let G tea complete k-partite graph \ith m vertices in 

each block v. 
1. 

i = 1,2, ••• ,k. For such a graph any choice cf 

vertices v1 ,v 2 , ••• ,vk with v. a member of V. is the vertex set 
1. 1. 

Further every edge in G is a of some K(1k} contained in r.. 

member of some E(K(1k}}. G therefore constitutes the "wcrst" 

k-partite graph the algorithm can encounter. 

During iteration s all edges defined ever 

m us t be e x am in e d • 'I h er e a r e .m. 2 ( k- s } I k- s - 1 ) 
2 

such edges. Fer each edge (u, w) we must cc111t=ute 

s s s s 
W (u,w),W 1 (u,w), ••• ,W 1 (u,w). W.(u,w) can be determined in s s- 1. 

cne intersection (that of rows u and w of the adjacency matrix 

treated digit hinary numbers), while s is computed as n W. (u,w) 
1. 

from the definition as follows. 

Vr~~~tu,w) 
r-1 r-1 is computed in w • (u,v )I"\ W • (\-1,V ) m 

i r 1. r 

intersections, m-1 unions and m tests for emptyness for each 

r = i+1,i+2, ••• ,s. The tctal compitaticn time for w~ (u,w) is 
1. 

therefore 1+(s-i) (3m-1), sc tc comfute all s sets requires 
s-1 

1 + z:. ( (s-i} (3m-1) + 1} steps. The total nur:rter cf steps at 
k=l 

iterations for all edges is thus given tJ: 

( !!L 2 ( k-s} ( k- s- 1) ) ( 1 + 
2 

Since there are k-3 

s-1 
E ( ( s- i) ( 3 m- 1) 
i=l 

♦ 1) 

iterations reguiz:ing these 

ccmFutaticns (iteration 1 only computes Wi(u,w) for g_ 2 (k-1) lk-
.t.. 

2) edges), the total nurote1 cf step: in the cc11i;utc:1tion is: 

~( s-1) I 3 m-1) ♦ s 
~ 

m; 1 k 2 - 3 w
5
-3 8 k + 3 p

5
m- 1 ) ] 
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Hence an iteraticn cf the algcrithm is C(k 5) ~ith leading 

coefficient m2 ( 3m-1). 
120 

Since at least one edge must te deleted during each 

iteration of the procedure, a crude Ufper bcund on the number 

cf iterations is given by the numter of edges of the grafh. In 

general it is difficult tc cttain a sharper tound althcugh 

empirical tests en a large samfle cf grafhs yielded none 

requiring more than two iterations to reach a decision. In any 

case, the time required tc execute the frccedure remains 

bounded by a polyncmial ir. k. 

4.5 2!QE]§1 CONSICERATIONS 

Let G be the graph described in our discussion cf tining 

considerations. Beth the adjacency matrix cf G and the storage 

required for saving thew-sets place the gr.eatest demand en 

space. Each W ~(u,w) 
]_ 

and rcw cf the adj~cency matrix can be 

represented by bit strings of length m and mk respectively. 

Since edges with incident vertices in V r will net be 

considered after iteraticn r-1, such edge5 require storage for 

r- 1 terms . .r-1 r-1 -r-1 · · f w- ,w , ••• ,w 
1 

• An exam1nat1.on o 
r-1 r-2 _ 

the 

graph G ~ith block size m reveals that m2 

complete 

edges will 

have k-2 such terms ccmruted fer thew (these with one vertex 

in V and one in Vk), 
k-1 

2m2 edges will have k-3 such 

terms, ••• , (k-2)ro 2 edges will have only one such term. Since 

only the most recent values 

the ma~imum number of terms 

cf any .such 

k-2 
is m2 Y:: 

i=l 

term are ever requirea 

i lk-i-1) = !!L2(k)• 
2 3 

The 
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total storage requirement in bits fer these items is thus 

(mk) 2 + .!f (;). 

4.6 IMPLICATIONS Q! 1]] PROCEDURE 

We have estatlisbed that the frccedure is an efficient 

algorithm for detecting k-cliques in graphs having at most two 

vertices per tlcck. When used as a tautclogj testing 

ftccedure, this agrees with Cook's result(11] that well-formed 

formulae having at most two literals per clause can be 

determined tote tautclcgies in rclync~ial time. ~oreover, if 

graphs having more than two vertices per tlcck, each cf 

degree> O, can be reduced tc graphs having at most two fer 

block, then the procedure is still guaranteed tc detect the 

existence of k-cliques in polynomial time. Thus, the algcrithm 

accepts a larger cldss cf w~ll-formed formulae (reFresented as 

graphs) than the Cavis-Putnaro frccedure [66]. 

In light of the wcrk cf Ccok and Karf, the procedure 

ftcvides a mechanism for greatly reducing the number cf well­

formed formulae that might require an exfcnential solution to 

the tautology problem. The construction of a specific 

counterexample might helf tc re~clve the questions raised by 

Cock and ~arp concerning the exponential nature of the 

tautology problem. Hcwever, finding £uch a counterexample 

remain£ an cpen problem. 
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5.1 INTROCUCTION 
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As has tEEn ctserved in Charter 2, the clique enumeration 

algcrithms discussed there all operate in essentially the sarne 

way, namely the develoEnent cf a derivaticn tree from a ncde 

representing the initial vertex set of the graFh tc ncdes 

represEnting the cliques cf the grarh. Tl1e the~is of Chapter 2 

is that the si2e of the derivaticn tree developed by each 

algcrithm applied to a Moon-Moser graph together with the 

order of computaticn fer cne iteraticn can be used as a 

rneasure cf its efficiency. This efficiency thErefcre depends 

on the technigue emfloyed to develop new ncdes cf the 

derivation tree in as rruch as this rrcceaure determines their 

tctal nurnher. The algorithms examined in Chapter 2 all use 

different methods to generate ne~ vertex sutsets with the 

exception of the Brcn-Kertcsch algcrithrr ~hich was seen to 

develcf the same derivation tree as the Reducea Redundancy 

algorithm. The fUifOSe of comparison in this Charter is tc 

compare the actual rerfcrmance cf different methods for 

develofing the derivation tree with the results cf Chapter 2. 

The same set of data used to test the clique enuroeraticn 

algorithms was also used tc te~t the efficiency cf the clique 

detecticn ftocedure of Chapter 4 in order to deterrrine hew 

much letter its fertcrmance was than employing an crdirary 

enumeration algorithm. 
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5.2 THF TEST DATA 

In order to deteruine the perforwance of the algorithms, 

random graphs of various edge densities were generated fer 

graphs having 9, 12, 18, and 21 vertices. Each algorithm was 

then run en the test data. Fer each graFh and each algorithm 

the fellowing statistics were recorded: 

a.) The time required to find all the cliques, 

b.) The number of vertex sets exa1tined, 

c.) The number of cliques found. 

Sixteen test graphs were generated and their orders, edge 

densities, and number cf cliques are giver in TAEIE 5.1. The 

results of applying 

given in TABLE 5.2 

implementations used 

each algorithm to this cf graphs is 

the actual (ti me 

1tay be 

in !:€CO r.d s) 

found in 

while 

AfPENDIX E. Cue to 

exce~sive computation time, the algorithms of Harary-Ross and 

Peay were not applied tc some cf the graphs. Eecause of the 

features cf dynamic storage allocation and bit string 

manipulation, FL/1 was used as the programming language fer 

the implementations of these algorithms. The Erograms were run 

on an IEM 360/67 Cuplex system operating under ~TS. The ~ctual 

grafhS may be fcund in AFPFNtIX C. 



edge 

graph vertices density cliques 

1 g 0.4 8 

2 9 0.6 10 

3 9 0.8 17 

4 9 1.0 27 

5 12 0.4 1 ~ 

6 12 0.6 19 

7 12 0.8 3 1 

8 12 1.0 81 
I 

9 18 0.4 34 

10 1 € 0.6 39 

11 18 0.8 69 

12 1 e 1 • 0 729 

13 2 1 0.4 43 

14 21 0.6 58 

15 2 1 0.8 1Ll4 

16 21 0.9 392 

TABLE 5. 1 

CHARACTERISTICS OF THE TEST GRAFHS 
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GRAPH 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

HARARY-BOSS PEAY'S EONNER'S 

ALGORlTHl.'l 

TIME NODES 

0.51 15 

0.11 19 

1. 2 8 33 

1. 9 7 53 

1. 85 21 

2.62 37 

4.75 61 

11. e o 16 1 

8.06 67 

9.48 19 

18.67 137 

--- ---
13.91 85 

16. 3 2 115 

--- ---
--- ---

ALGORI'IHM AlGCRl'IH~ 

Til'!E NODES 'II P!E NCDES 

o. 20 36 o. 15 27 

C.48 46 C.17 .34 

0.47 49 o. 22 48 

0. 71 79 0.27 64 

0.64 62 0.25 55 

1. 1 1 103 0.36 77 

0.97 99 o. 70 14 2 

2. llS 241 0.97 256 

2.48 182 0.55 117 

2.91 221 0.71 143 -, 

1 1. 13 655 2.77 465 

--- --- 15.31 4096 

3. 32 231 0.73 149 

6.12 444 1.62 354 

21.75 1490 4.80 1177 

--- --- 15.03 4023 

'IABLE 5.2 

COMPABISCN CF ALGORITHMS 

R. R. 

ALGCBI'Itll" 

'II!!E NCI:ES 

o. 20 20 

0.23 24 

0.28 3 1 

0.42 40 

o. 3 5 37 

o.so 51 

O. E 8 65 

1. 18 121 

0.85 7E 

1. 36 91 

2. 0 1 150 

14.03 1093 

1. 5 Ll 10€ 

2 .. .l 5 167 

s. 36 374 

11.01 688 
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5.3 CISCUSSION OF THE RESULTS 

The results cf running each algorithm en the test data of 

TABLE 5.1 i.ere used to verify the predictions made fer the 

size of the derivaticn tree. Fer this FUrt=ese, the graphs 

numbered 4, 8, and 12 were examined as they correspond to 

Moen-Moser graphs (see page 13) on 9, 12, and 1 e vertices 

respectively. Because cf the slc~ness of the Harary-Ress 

algorithm and Peay•s algcrithro fer the smaller graphs no 

attempt was made to obtain such results for the ~ccn-~cser 

graph on 18 vertices. 

For the test cases, the Harary-Ress algorithm generated 

the fewest nodes cf the derivation tree in finding the cliques 

cf a yraph yet performed more poorly than Eonner•s algorithm 

which generated the largest derivaticn trees. This is a 

consequence of the fact that the method used by Harary and 

Ress to generate new vertex subsets while teing very selective 

is also very time ccn5uming as was seen in cur analysis of 

this algorithm in Chapter 2. on the other hand, Bonner 

sacrifices efficient ncde generatiou in the dErivaticn tree 

for a simple means of defining new verte~ subsets. In spite of 

its defects as observed by Augustson and Minker [5], this 

method appears tc be very successful particularly with srrall 

yraphs as one would exfect, since fer such a graFh the si2e of 

the derivation tree does not yet dominate the corofutation. 

This hypothesis is further SUfferted tJ the ctservation that 

the Reduced Redundancy algorithm affears to be most 

comfetitive with Eonner•s algorithm for graphs cf high edge 
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density. such graphs have large nurnhers cf cliques and hence 

their derivation trees will be large. 

Peay•s algorithm performed significantly tetter than the 

Harary-Ross algorithm ana wculd prchably have been more 

competitive with the other algorithms if the size cf 

derivation tree generated were reduced. such a modification 

seems feasible if one were to emplcy a technique of examining 

all the non-adjacent vertices associated with a particular 

vertex at one time rather than step-by-step. This is an 

apprcach similar to that taken in the Beduced Bedundancy 

algcrithm. 

If the order. cf cc1-putaticn fer cne iteration reultiplied 

by the numter of nodes ii the derivaticn tree of ~(Jk) derived 

in Chapter 2 is used as a rough measure of relative 

efficiency, then geed agreement is attained with the empirical 

res~lts. Although such an estimate dces net indicate 

acrurately how much better one algorithm is than ancther, the 

difference in roa~nitudes cf these values, particularly with 

large graphs, provides scme guide in cheesing the most 

efficient algorith~. 

1he inefficiency cf clique enurner~ticn algorithms fer 

finding the existence cf a maximal coreFlete ~ubgrafh cf order 

k in a k-partite graph is revealed ty the results given in 

TAELE 5.3 where we ccropare the ccrrfutation time of the 

deciEicn procedure of Chapter 4 applied to the graphs of TABLE 

5.1 with the bEst tirre available for the Reduced Redundancy 

algorithm. While it is true that such enuroeraticn procedures 
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cculd be modified to terminate when a k-cligue had teen 

discovered, this wculd net rreclude the fCssibility of such 

cliques being discovered Lather late in the enumeraticn. 
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FNU!UBATION DECISION 

ALGORI'IHfll ALGCRITHl'1 

GBAPH TIME THIE 

1 0.15 0.06 

2 o. 17 0.C7 

3 0.22 0.09 

4 0.27 o. 11 

5 0.25 0.15 

6 o. 36 0. H 

7 C.68 0.20 

8 0.97 0.28 

9 0.55 0.64 

10 0.71 0.77 

11 2.01 1. 05 

12 14.01 4. 2 8 

13 0.73 0.82 

14 1. 6 2 o. e9 

15 4.80 1.54 

16 11. 0 1 3. 98 

'IAELE 5.3 

CCMFARISCN CF CETECTION ANC ENUMERATION 
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The principal geal cf this thesis has been tc examine 

ways of detecting cliques in 9ra1:Jhs. In particular, we have 

sought to aerive an efficient algorithrr fer determining the 

existence cf a clique of order kin a k-partite grarh. This 

goal was achievea in Chafer 4 fer a sutset cf all graphs by 

adopting a different apfrcach tc the rrcblem than that offered 

in chapters 2 and 3. In these chapters we saw that it was 

unlikely that we could solve our protlem ty emflcying any 

clique enumeration algerithm. This was because such algorithms 

could be compared to tree searching processes whic~ are kncwn 

to te inefficient procedures. 

ln Chapter 3 we attemrted tc exrlcit some ftoperties of 

grafhE which would allow us to group 11 sirrilat" vertices 

together so that we wculd net bave tc examine each vertex in 

such a grcuf individuall}. !wo kinds of "similarity" were 

discussed: graph theoretic similarity, and ccmplete sutgrarh 

equivalence. The latter cffered sc[e fCSsibility of 

imprcvernent because of the concise notational rerresentaticn. 

However no solution was fcund for avciding the prcblerr cf 

multiply defining cliques althcugh an attemft was made to 

miniroi2e euch behavior. Further, it should te ctserved that 

the new type of notation while concise, does net readily 

display either the cliques er their orders. 

As the number of clique enumeration algcrithms in the 

literature increases, it is useful lo carLy out some emrirical 

comparison of the rerfcrrrance cf these rrccedures. It has teen 
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CU[ observation 

algorithms have 

which improve 

that the implementations of several of these 

been extremely sensitive tc modifications 

their 

have been discussed 

efficiency. Some cf these modifications 

previously and were included in the 

imflementations. The efficiency of these implementations was 

examined in the previous section. ijhile ~e have been able to 

suggest improvements to the algorithms di~cosEed in this 

thesis. such changes have not really changed the basic 

approach and as a conseguen~e their ccrrrutation times remain 

exponential. Therefore empirical tests of such procedures are 

possitle only fer rocderately large grarhs. For very large 

graphs. determination of the size of the derivation tree 

ftcvides a more useful and less expensive method fer assessing 

the performance of enurreration algcrithws. 

In Chapter 4, an efficient algcrithm was defined which 

detects the existence of k-cliques in certain k-partite 

graphs. such grafhs have the ftcrerty that they can te reduced 

by the algorithm to graphs having at most two vertices cf 

degree> 0 in each vertex tlcck. The wcrk cf Cook and Karp 

suggests (tut does not imply) that the algorithm will not work 

for all k-fartite graphs. Proving this may helF in 

characterizing why the tautclcgy problem does not affEar to be 

solvable in polynomial time. 
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APPENDIX A 

time 
operation symbol constant 

STORE <-- tl 

PUSH,POP push, pop t2 

ADD,SUBTRACT + -, t3 

COMPABE . 
t4 . 

MULTIPLY • t5 

UNION,INTEBSECTION U,t"\ t6 

COMPLEMENT - t7 

SUBSTRING substr t8 

INDEX index t9 

PRINT print tlO 
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••*••······················································· • * 
• 
* • 

THE MODIFIED HARARY-ROSS ALGORITHM 

HAROSS:PROC (A,N); 
DCL 

(A(N), 
G, 
CLIQ, 
GTEMP) 
BIT(N), 

/* ADJACENCY MATRIX*/ 
/*CURRENT VERTEX SET•/ 
/•COMPLETE SUBGRAPH VERTICES */ 

(N, ;• NUMBER OF VERTICES IN GRAPH*/ 
WT, ;•NUMBER OF VERTICES ING •/ 
VTX(N), /* LABELS OF VERTICES OF G*/ 
R (N), /*ROW SUMS OF (l**2XA) FOR G•/ 
D(N)) /* DEGRES OF VERTICES OP G */ 
FIXED BIN, 
VSET BIT(•) CTL; /* STACK OP SFTS */ 

DCL CTR FIXED BIN; 
CTR=O; 
G=G I ( G) ; 
PUT SKIP; 
PUT SKIP LIST ( 'THE CLIQUES ARE:') ; 

START: 
1• 

*I 
DETERMINE THE VERTICES IN SUBGRAPH G 

IF G= 1 0 1 B THEN GO TO NEXT; 
GTEMP=GTEMP I ( GTEMP); 
WT=O; 
DO I= 1 TO N; 
IF SUBSTR(G,I,1)= 1 0 1 B THEN GO TO LP1; 
GTEMP=GTEMP&A(I); 
WT=WT+1; 
VTX(WT)=I; 

LP1: END; 

I* 

*I 

IF GTEMP = 1 0 1 B THEN GO TO NEXT; 

CALCULATE ROW SUMS OF (A*•2XA) 
AND DEGREES OF VERTICES OF G 

R, D =O; 
DO I= 1 TO WT- 1 ; 
DO J=I+1 TO WT; 
SUM=O; 
IF SUBSTR (A (VTI (I)), VTX (J), 1) = '1 'B TB!N 

BEGIN; 
D(I)-=D(I)+1; D(J)=D(J)+1; 
DO K=1 TO WT; 
IF SUBSTR (A (VTX (I)) &A (VTX (J)), VTX (K), 1) 

= 1 1 1 B THEN SUM=SUM+1; 
END; 
END; 

• 
* • 



I* 

*I 

I* 

*I 

I* 

*I 

I* 

*I 

R (I) ':R (I) +SUM; R (J) =R (J) +SUM; 
END; 
END; 

SEARCH FOR UNICLIQUAL VERTICES 

M. IN= 1 ; 
DO I=l TO WT; 
IF R(I)=D(I)*(D(I)-1) THEN 

DO; 

UNICLIQUAL VERTEX DISCOVEREI:: 

CLIQ=A(VTX(I))&G; 
SUBSTR (CLIQ, VTX (I), 1 )=' 1' B; 

IS THIS A MAXIMAL COMPLETE SUBGRAPH? 

GTEMP-=GTEMP I ( GTEMP) ; 
DO 12= 1 TO WT; 

IF SUBSTR(CLIQ,VTX(I2),1)= 1 1'B THEN 
GTEMP=GT!MP&A (VTX (12)); 
END; 

IF GTEMP= 1 0 1 E THEN 
PUT LIST (CLIQ) ; 

DELETE ALL UNICLIQUAL VF.RTICES IN THIS 
COMPLETE SUBGRAPH FROM G. 

SUBSTR (G,VTX (I), 1)-= 1 0 'B; 
DO J=I+1 TO WT; 
IF SUESTR(A(VTX(l)) ,VTX(J) ,1)= 1 0 1 0 THEN 

GO TO LP2; 
IF R(J)=R(l) THEN SUBSTR(G,VTX(J),1)='0 1 B; 

LP2: END; 
GO TO START; 

ENO; 
ELSE 

IF R(MIN)>R(I) THEN MIN=I; 
ILP: END; /* ENC l LOOP */ 
I* 

*I 

NO UNICLIQUAL VERTEX ING 
DEFINE TWO VERTEX SETS. SAVE ONE 
AND PROCESS THE OTHER. 

ALLOCATE VSET EIT (N); 
GTEMP=G&A (VTX (MIN)) ; 
SUBSTR (GTEMP, VTX (MIN), 1) =' 1 1 E; 
VSET= GTEMP; 
DO J=1 TO WT; 
IF SUBSTR(GTEMP,VTX(J),1)= 1 0 1 B THEN 

VSET=VSETIA(VTX(J)) 
END; 
VS ET= VS ET & G ; 
CTR-=CTR+1; 
G=GTEMP; 
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I* 

*I 
NEXT: 

GO TO START; 

GET A NEW SET FRO~ TH! STACK. 

IF CTR> 0 THEN 
DO; 
G=VSET; 
CTR=CTR-1; 
PREE VSET; 
GO TO START; 
END; 

FREE VSET; 
RETURN; 
END; /* ENC HAROSS PROCEtURE */ 



•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• * 
* BONNER 1 S ALGORITHM * 
* 
* 

BON: PROC (G, N) ; 
DCL (G(N),A(N),C(N),U,T) Bl'r(N),L(N); 

STEP1: I=1; C(1)-= 1 0 1 B; C(1)= C(1); A(1)= 1 0 1 B; 1(1)=1; 
STEP2: IF SUBSTR(C(l),L(I),1)='1'B THFN 

BEGIN; 
STEP3: C (I+1)-=C (I) &G (L (I)); 

SUBSTR (C (I+ 1) , L (I) , 1) = '0 'B; 
A (I+1)=.A (I); 
SUBSTR (A (I+1) ,L (I), 1)= '1 'B; 

STEP4: L(I+1)=L(I)+1; 
I= I+ 1 ; 

END; 
ELSE L(I)=L(I)+1; 

• • 
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STEPS: IF SUBSTR(C(I),L(l),N+1-L(I)) =•O•B THEN GO 'IO S'IEP2; 
T=A (I); 

STEP6: IF C(I)='O'E THEN 
STEP7: I=I-1; IF I-=0 THEN RETURN; 
STEPS: U= 1 0 1 B; SUBSTR(U,L(l)+1,N-L(I)) 

-=SUBSTH (C (I), L (I)+ 1,N-L (I)) 
IF (T I U) -= T THfN GO TO STEP?; 
L(I)=L(I)+l; 
GO TO STEP2; 

END; /*END BON PROC */ 
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··••*••····················································· • • • • 
* 

THE ftOCIFIEt PEAY ALGORITHft 

PEAY: PROC(A,N); 
DCL 

(A (N), 
G, 
GTEMP) 
BIT (N), 

/• ADJACENCY MATRIX•/ 
/* CURRENT VERTEI SET*/ 

(N, /•NUMBER OF VERTICES IN GRAPH*/ 
WT, /* NUMBER OF VERTICES II G */ 
VTX(N)) /*LABELS OF G'S VERTICES*/ 
FIXED BIN, 
1 VSTORE BASEC(VPTR), /* STACK OF SETS•/ 

2 VNXT PTR, 
2 VCTR FIXED BIN, 

2 VN FIXED BIN, 
2 VSET BIT (N REFER (VN)), 

VHD PTR; /*POINTS TO STACK TOP*/ 
DCL P PTR; 
DCL CTR FIXED BIN; 
G=G I ( G) ; 
VBD-=NULL; 
CTR=O; 
PUT SKIP; 
PUT SKIP LIST ('THE CLIQUES ARE:'); 

START:WT=O; 
I* 

•1 
DETERMINE THE LABELS OF THE VERTICES ING 

DO I= 1 TO N; 
IF SUBSTR(G,l,1)= 1 0 1 B THEN GO TO LP1; 
WT=WT+1; 
VTX(WT)=I; 

LP1: END; 
1• 

•1 

I* 

*I 

FIND TWO NON-ADJACENT VERTICES ING 

DO I=1 TO WT; 
GTEMP=A(VTX(I))&G; 
SUBS TR (GTE MP , VT X (I) , 1 ) = 1 1 1 B ; 
IF GTEMP = G THEN GO TO FOONC; 
END; 

G IS A COMPLETE SUBGRAPH. DETERMINE 
WHETHER IT IS MAXIMAL. 

GTEMP=GTEMPI ( GTEMP); 
DO I=1 TO WT; 
GTEMP=GTEMP&A (VTX (I)) ; 
END; 
IF GTEMP= 1 0 1 E THEN 

• 
* 
• 



I* 

*I 

IF STACK NOT fMPTY THEN CHOOSE ANOTHER 
VERTEX SET FOR FURT"ER PROCISSING 

IF VHD ~ NUll THEN 
DO; 
G=VHD-> VSET; 
P=VHD; 
VHD=VHC->VNXT; 
CTR==CTR- 1; 
FREE P->VSTORF; 
GO TO START; 
EMD; 

RETURN; 
FOUND: 
I* 

*I 

I* 

*I 

DETER~INE TWO NEW VERTEX SUDSETS,SAVE ONE 
AND PROCESS THE OTHER. 

GTEMP= A ( VTX ( I) ) ; 
DO K= 1 TO N; 
IF K = VTX(I) THEN 
IF SUBSTR(A(VTX(I)),K,1)='0'8 THEN 

GTEMP-=GTEHPIA(VTX(I)); 
ENO; 
SUBSTR (GTEMP,VTX(I) ,1)='0'.B; 

CHECK THE STACK TO SEE IF NEW SET "GTEMP" 
IS CONTAINED IN A PREVIOUS ONE AWAITING 
PROCESSING. 

P=VHD; 
DO WHILE ( P =NU LL) ; 
IF (GTEMPIP->VSET) = P->VSET THEN 

GO TO START; 
P=P->VNXT; 

END; 
CTR-=CTR+l; 
AlLOCATE VSTORE; 
VSET=GTEMP&G; 
VNXT=VHD; 
VCTR=CTR; 
V HD=VPTR; 
G=A(VTX{I))6G; 
SUBSTR(G,VTX(l) ,1)='1'B; 
GO TO START; 
ENC; /* ENC PEAY PROCEDURE •; 
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·••*••······················································ • * 
• RECUCED REDUNCANCY ALGORITHM * 

• * 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ENU~:PROC(A,N); 

DCL 

1• 

(A(N), 
G, 
H, 
CSUB, 

CLQ, 
F, 
Gt1X, 
CMX) 
BIT (N), 

/* ACJACENCY MATRIX*/ 
/* CURRENT VERTEX SET*/ 
/ * N E W LY r:: E.f I N'E C S ET * / 
/•COMPLETE SUBGRAPH TO BE 

EXTENCEC BY VERTICES IM G *I 
/* NEWLY EXTENDED CSUB */ 
/•SET OF DEFINING VERTICES •1 

(V, /• VERTEX CHOSEN FROM F */ 
N) /* NOMBEB OF VERTICES OF GRAPH•/ 
FIXEC BIN; 

DCL CTR FIXED BIN; 
DCL VTEMP PTR; 
DCL VSET BIT(•) CTL; I• STACK OF SETS*/ 
CTR=O; 
NN==N*2; 
G=G I ( G) ; 
CSUB='O'B; 

DETERMINE WHETHER THERE IS A VERTEX 
ADJACENT TO ALL VERTICES IN GJCSUB. IF 
YES THEN NO CLIQUE IS DEFINED ON GICSUB 
SO CHOOSE A NEW VERTEX SET. 

*I 
START: 

I* 

*I 

GMX=G!CSOB; 
NV=O; 

DO I=1 TO N; 
IF (A(I)JGMX) = A(l) THEN GO TO NEWSET; 
END; 
V2 INDEX (G,' 1 'B): 

FIS THE SET OF VERTICES ING NOT ADJACENT 
TO V. 

F=G& ( A ( V) ) ; 
LOOP: 

I* 

H=Gia.(V); 
CLC=CSUB; 

SUBS TR ( C LQ, V , 1 ) = ' 1 ' B ; 
I F H= ' 0 ' B T H E N 

NO FURTHER VERTICES CAN BE ACDEC TO 
CLQ, HENCE CLQ IS A COMPLETE SUBGRAPH. 
DETERMINE IF IT IS MAXIMAL. 



*I 

OUT: 

I* 

*I 

NXTV: 

I* 

r:o; 
NV=O; 

DO 1=1 TON; 
IF (A(I) ICLQ)-= A(I) TIJEN GO TO OU'I; 
END; 

GO TO NXTV; 
END; 

PLACE HAND CLQ ON TH! STACK FOR FURTHER 
PROCESSING 

CTR=CTR+1; 
ALLOCATE VSET EIT (NN); 
VSET=H I I CLQ; 

SUBSTR (F, V, 1) = '0 'B; 
SUBSTR(G,V,1)= 1 0 1 E; 
V=INDEX(F, 1 1 1 B); 
IF V =O THEN GO TC LOCP; 

ALL VERTEX SETS HAVE NOW BEEN tETERMINEt 
FOR THIS ITERATION. CHOOSE A NEW SET 
FROM THE STACK FOR FURTHFR PROCESSING 

*I 
NEWSET: 

IF CTR<= 0 THEN RETURN; 
G=SUESTR (VS ET, 1, N); 
CSUB=SUOSTR(VSET,N+l,N); 
FREE VSET; 
CTR=CTR-1; 
GO TC START; 
END; /* END ENUM PROC */ 
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•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • • • • 
ALGORITHM TO DETECT THE EXIST!NCB OF A CLIQUE OP 

ORDER KIN A K-PARTITE GRAPH 

KGRPH:PROC(A,N,M,K,MX); 
DCL 

A(N) /* ADJACENCY MATRIX*/ 
BIT (N) , 
(M(K), /* NO. VERTICES P!R BLOCK *I 
MX, /* ftAX. NO. VERTICES/BLOCK */ 
N, /* NO. VERTIC!S IR GRAPH *I 
K, /* NO. OP BLOCKS*/ 
R,S,T,VX,VTX,POS,POS2,M1ft2) FIXPD BIN; 

DCL VB(K) FIXED BIN; 
DCL AO (N) BIT (N) ; 

DCL U FIXED BIN; 
STEPO:AO=A; 

ITER-=ITER+1; 
Nl=N-M (1) -I!! (K); 
POS=M (1) +1 ; 
POS2=POSHJ (2); 
ft Ht2=POS2; 
NS P= ( N- M 1 ft 2) • N 1 + N - ft ( K) ; 

BEGIN; 
DCL !'lSUft (K) ; 
DCL (P,Q,TEMP,W (NSP,K-2)) BIT (MX); 
W= 1 0 1 B; 
MSUM(1)=M(1); 
DO I=2 TO Ki 
MSUM (I)=MSUI!I (I-1) +M (I); 
ENO; 
DO S=1 TO K-2; 
DO I=POS TO N-M(K); 

1• 

*I 

1• 

•1 

I* 

*I 

CHOOSE AN EDGE (I,J) NOT YET tELETEC FRO~ 
FURTHER CONSIDERATION. 

DO J=I+1 TON; 
IF SUBSTR(A(I),J,1)= 1 1 1 B THEN 

BEGIN; 
P= 1 0 1 B; 

MAP THE VERTEX PAIR (I,J) ONTO AN 
INTEGER IJ. INITIALLY DEFINE THE SET W(IJ,S). 

IJ=(J-M1M2)*N1+I; 
W ( I J , S) =SU BS TR ( A (I) & A ( J) , PO S-M ( S) , ft ( S) ) ; 

DEFINE THE SET W(IJ,T) FOR T=S-1,S-2, ••• ,1 
AS A FUNCTION OF THE PREVIOUSLl DETERMINED 
SETS W (IJ,T+1) ,W (IJ,T+2) , ••• ,W (IJ,S). 

DO NT= 1 TO S; 

• • • • 



T-=S+ 1-NT; 
IF T=S THEN GO TO SKP; 

DO R=T+1 TO S; 
VTX-=INDEX (W (IJ .R) • 1 1 1 B); 
CO WHILE (VTX = 0) ; 

VX=VTX+MSUM (R-1); 
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IF SUBSTR{A(J) ,VX,1)&SUESTR(A(I) .VX,1)= 1 0 1 B THEN 
BEGIN; 

I* 

*I 

SUBSTR (W (IJ.R) .VTX.1)= 1 0 1 B; 
GO TO SKP3; 
ENO; 

Q=W ( (J-M1M2) *Nl+VX .T) 6W ( (I-M1M2)*N l+VX .T); 

IF THERE EXISTS A VERTEX VTX NOT ADJACENT 
TO ANY VERTEX IN W(IJ.T) THEN tELETE IT FROM 
FURTHER CONSIDERATION 

IF Q = '0'B THEN P=PIQ; 
ELSE SUESTR(W(IJ.R) .VTX,1)= 1 0 1 B; 
IF VTX >= MX THEN GO TO CHK4; 
TEMP= 1 0 1 E; 

SUBSTR (TEMP, VTX+1. MX+ 1-VTX) = 
SUBSTR(W(IJ.R) ,VTX+1,MX+1-VTX); 
VTX=INDEX(TEMP.'1'B); 

SKPJ: 
END; 

CHK4: 

I* 

*I 

W(IJ.T)=W(IJ,T)&P; 
END; /* END R LOOP*/ 

IF W(IJ.T) IS EMPTY FOR ANY T=l,2, ••• ,S 
THEN DELETE EDGE (I, J) FROM FURTHER 
CONSICERATICN 

SKP: IF W(IJ,T)='O'B THEN 
BEGIN; 

SUBSTR (A (I) ,J, 1)= 1 0 'E; 
SOBST8 (A (J) ,I, 1)= 1 0 1 B; 

GC TO NEXT; 
END; 

END; /* END T LOOP*/ 
END; /* END BEGIN BLOCK*/ 

NEXT:END; /* ENC J LOOP*/ 

I* 

*I 

END; /* ENO I LOOP*/ 
POS=POS2; 
POS2=M(S+2)+POS2; 

END; /* ENC SLOOP*/ 

TEST WHETHER ALL ECGES HAVE 
FROM THE SET OF CANDIDATES. 

AND NOT ALL EDGES HAVE E!FN 
TEST FOR FURTHER ITERATION. 

BEEN DELETE!J 
IF S=K-2 
ELIMINATED, THEN 

DO I=N-M (K)-1'1 (K-1) +1 TO N-l'l (K); 
DO J= N - M ( K ) + 1 TO N ; 
IF W((J-M1M2)*Nl+I.1) = 1 0 1 8 THEN 
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GO TO STEP19; 
END; 
END; 

CONDA:PDT SKIP LIST ('NO K.-,CL.1QDE 1.) ;. 

RETURN; 
STEP19:DO I=1 TOK; 

VB(I)=O; 
DO J=1 TO M (I); 
U=I*MJ+J-MX; 
IF AO (U) = A (U) THEN GO TO STEPO; 
IF A(U) = 1 0 1 8 THEN VB(I)=VB(I)+1; 
END; 
END; 

CONDB:PUT SKIP LIST('NO CHANGE'); 
DO I=1 TO K; · 
IF VB(I) > 2 THEN GO TO STEP20; 
END; 

PUT SKIP LIST( 1 K-CL1QUE EXISTS BY TflEOREM 4.3 1 ); 

RETURN; 
STEP20: CALL ENU M (A, N) ; 

RETURN; 
END; /* ENC KGRPH */ 
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graph 1 g ra rh 2 

000101001 C00101001 
000001100 000111100 
000100101 coo1cc111 
101000101 111000111 
000000110 01ccoo110 
110000110 110000 110 
011111000 011111000 
101100000 101100000 

graph J grai;h 4 

000111001 CCC111111 
000111110 000111111 
000111111 000111111 
111000111 111000111 
111000110 111C00111 
111000111 111000111 
011111000 111111COO 
011111000 111111000 
101101000 111111000 

g ra Fh 5 graph 6 

000101001000 000101001100 
0000011cocoo C00111100111 
000100101110 000100111011 
101000101101 1"11COC111COC 
000000110110 010000110110 
110000110011 11ocoo110101 
011111000100 011111000110 
000011000101 001111000111 
101100000111 101100000011 
001110111coo 110011110COO 
001011001000 011010111000 
000101011000 011001011000 

grafh 7 graph 8 

000111001110 000111111111 
000111110101 C C O 1 1 1 1 1 1 1 1 1 
000111111111 000 111111111 
111000111110 111000111111 
111000110111 111000111111 
111000111111 1 1 1 C O O 1 1 1 1 1 1 
011111000011 111111000111 
011111000011 111111000111 
101101000111 111111000111 
111111001000 111111111 co 0 
101111111000 111111111000 
011011111000 111111111000 



graph 9 

COOOC0000111100 111 
000001011010111101 
oooocooo1111occcc1 
oooocoo10000010101 
000000001110111001 
01oocoooo110100011 
000000000101occcc1 
010100000011100111 
011010000000001cco 
101011100000111111 
1110110100000101cc 
101000110000001000 
1100110101ococco10 
010110000110000010 
010010001101oooco1 
110100010110000000 
10000101010011cccc 
111111110100001000 

graph 11 

00010110111100111c 
000011111111111111 
000001110111111111 
100000111110100111 
010000011111101111 
1110cooo11111110 11 
1111000001110111cc 
011110000001101110 
110111000001001011 
111111100000111111 
111111100000000110 
111011111000001111 
0111110101ccoco111 
011001100100000011 
111011111101occccc 
111110110111100000 
1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 C C 0 
011111001101110000 

cooco1111100110110 
000001000 111001101 
cooco1co1101100100 
000000111000100111 
ccoccco1001c101110 
111000000011100011 
1001occcooo1111011 
100110000011011110 
1011cccoccoo110000 
111000000000111011 
01001101cccco10110 
011001110000000001 
1011111011ccooo110 
100000111110000001 
0100101101cccoocoo 
1111100100101oococ 
100111110110100000 
010101100101010000 

co O 111111111111111 
00 0 11 1 11111111111 1 
C C O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
111000111111111111 
1 1 1 C C C 1 1 1 1 1 1 1 1 1 1 1 1 
111000111111111111 
111111coO111111111 
111111000 111111111 
111111000111111111 
111111111000111111 
111111111coo111111 
111111111000111111 
111111111111coo111 
111111111111000111 
111111111111000111 
111111111111111000 
11111111111111100 0 
1111 1 11111111 1 100 0 
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grafh 13 

000000000111100111010 
00001101011110111cco1 
cccoo1000001010100000 
000000101100111011100 
010000000110100011001 
0110000000000100111co 
000100000100000100000 
010000000011110010100 
C00100000001000000101 
110110100000001101010 
110010010000001110000 
1110000110000011c1cc1 
110110010000000011100 
00110101ooccooococo11 
010100000111000001001 
111000100111oooccccoo 
110111010010100000001 
100111000101101ococoo 
000101011000100000000 
10000000010001ococcco 
010010001001011010000 

graph 15 

00011111111111co11c11 
000011111111011010101 
000001111111110111101 
100000111101001111011 
110000010111101110111 
111000001111111111110 
111100000010111110111 
111110000011111111110 
111101000000110111111 
111111000000111110111 
111011110000011110111 
111111010000000101111 
101011111100000111111 
111001111110000011111 
01011111011cccooo1111 
001111111111100000111 
111111111110110 oc co 11 
101101011001111000001 
0110111111111111ccooo 
100111111111111110000 
111110101111111111000 

graph 14 

000111111001010111000 
000011100011110011110 
000001011011110110110 
1ccccoo11111011011011 
110000010001001101001 
111cocoooo11co1011001 
110000000000110011110 
10111ccooo11110111000 
101100000000111111110 
coo1cocoocoo101100100 
011101010000011001011 
111111010000001010100 
011000111100000111101 
111100111010000011110 
000111001111ooooocoo1 
101010011100100000110 
111101111001110000010 
110111111010110000001 
0110001011011101occoo 
011100101010010110000 
000111000010101001coo 

grafh 16 

000111111111111111111 
000011111111111111111 
CCC001111111111111111 
100000111111111111111 
11 cc coo 11111111111111 
111000001111111111111 
1111cccoo111111111111 
111110000011111111111 
111111000001111111111 
111111100000111111111 
111111110C00011111111 
111111111000001111111 
111111111100000111111 
111111111110000011111 
111111111111000001111 
111111111111100000111 
111111111111110000011 
111111111111111cocoo1 
111111111111111100000 
111111111111111110000 
111111111111111111000 




