
4

ON THE EFFICIENCY OF

CLIQUE DETECTION IN GRAPBS

by

ANTHONY HUNTER DIXON

B.Sc., University of British Columbia, 1968
M.Sc., University of Biitish Columbia, 1970

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS Fon THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the Department
of

COMPUTER SCIENCE

We accept this thesis as conforming to the
required standard

.••........•.....................••.

.

.
TBE UNIVERSITY or BRITISH COLUMBIA

May,1973

This thesis examines tbe devices employed by various

algorithms to search for maximal complete subgraphs in graphs.

Also known as cliques,in CbapteI 1 these subgrafhs are seen to

play an important role in graph theory, information retrieval,

sociometry, logic design, and computational complexity.

The enumeration of cliques using the Harary-Ross, Bonner,

Peay, and Bron-Kerbosch algorithms is discussed in Chapter 2.

The Reduced Redundancy algorithm is introduced, ~nd the

performance of the five procedures is assessed using an

alternative approach tc empirical testing. Each of the

algorithms is shown to generate a "derivation tree" for a

given graph whose size can be used as a measure of its

efficiency.

In Chapter 3, the possibility of exploiting vertex

similarity is examined with a view to reducing the si2e of the

derivation tree. As a consequence, algorithms are proposed for

finding non-similar cliques. The concept of "complete subgraph

equivalence" of vertices is introduced to develop a means for

expressing the cliques of a grafh as the Cartesian product of

vertex subsets.

An algorithm for detecting the existence of a clique of

order k in a certain class cf k-partite graphs in polynomial

time is proposed in Chapter 4. This class consists of all

graphs reducible by the algorithm to k-partite graphs having

at most two vertices per block cf degree greater than o. This

algorithm is shown to provide an efficient heuristic which can

be use~ in a proceaure fer determining ~hether a well-formed

formula is a tautology.

The thesis is conclu~ea with an emfirical analysis cf the

techniques employed by the enumeration algcrithmE of Chapter

2. In addition, the efficiency of the Clique Detecticn

algorithm is compared with that cf the ueaucea Redundancy

algcrithrn.

. I.

CHAPTER 1 : INTRODUCTION

1.1 DEFINITIONS AND NCTATION

1.2 INTRODUCTORY REMARKS

1.3 HISTORICAL SURVEY

CHAPTER 2 : ENUMERATION CF CLIQUES

1

5

6

2.1 INTRODUCTJON 16

2.2 MATHEMATICAL ANALYSIS OF ENU~ERATICN AlGCBITHMS 18

2.3 ANALYSIS CF THE HARARY-ROSS ALGORITHM 22

2.3.1 NOTATION 23

2.3.2 THE ALGORITHM 24

2.3.3 NUMBER OF VERTEX SETS FXAMINFD

2.3.4 STORAGE REQUIREMENTS

2 . 4 BONNER'S ALG9RITH"M

2.4.1 NOTATION

2.4.2 TflE ALGORITHM

2.4.3 NUMBER OF VERT EX SETS GEN FRAT.ED

2.4.4 STORAGE REQUIREMENTS

2.5 ANALYSIS OF PEAY'S ALGORITHM

2.5.1 NO'IATION

2.5.2 THE ALGORITHM

2.5.3 NUMBER OF VERTEX SETS GENERATED

2.5.4 STORAGE REQUIREMENTS

2.6 A NEW ENUMERATION ALGORITHM

2.6.1 DESCRIPTION OF THE ALGORITHM

2.6.2 NCTATION

2.6.3 THE REDUCED REDUNDANCY ALGORITHM

35

38

4,

42

42

46

50

51

52

5)

57

64

E6

70

7C

7 1

2.6.4 NU~EER OF VERTEX SETS GENERATED

2.6.5 ANALYSIS OF AN ITERATION

2.6.6 STORAGE REQUIREMENTS

2.7 THE BRON-KERBOSCH ALGORITHM

2.7.1 NOTATION

2.7.2 TEE ALGORITHM

2.7.3 NUMBER OF VERTEX SETS GENF.RATED

2.7.4 ANALYSIS OF ONE ITERATION

2.7.5 STORAGE REQUIREMENTS

CHAPTER 3 : CLIQUE DETECTION USING VERTEX SIMILARITY

72

75

,76

78

79

79

84

es

88

3.1 INTRODUC'IlON e9

3.2 POINT AND LINE SYMMETRIC GRAPHS 91

3.3 DETERMINATION CF NON-SIMILAR CLIQUES 98

3.4 ALGORITHM FOR FINDING NON-SIMIIAR ClICUES 102

3.5 DISCUSSION OF THE ALGORITHM 105

3.6 ANOTHER APPLICATION OF ORBITAL PARTITIONING 108

3.7 ANOTHER APPROACH TO DESCRIBING THE CLIQUES 111

CHAPTER 4: EFFICIENT DETECTION OF CLIQUES

4.1 INTRODUCTION 126

4.2 CLIQUE CETECTION AND SATISIFIABilITY 127

4.3 CLIQUE DETECTION ALGORitHM 130

4. 4 TI MI NG CONSIDERATIONS 13 S

4.5 STORAGE CONSIDERATIONS 139

4.6 INPLICATIONS OF THE PROCEDURE 140

CHAP!ER 5 : EMPIRICAL OBSERVATIONS AND SUMMARY

5.1 INTRODUCTION 141

5.2 THE TEST DATA 142

5.3 DISCUSSICN OF THE RESULTS 145

5.4 SUMMARY

BIBLIOGRAPHY

APPENDIX A

APPENDIX B

APPENDIX C

149

151

156

157

169

TABLE 4.1

TABLE 5.1

TABLE 5.2

' TABLE 5. 3

RESULTS OF 'IHP. ALGORITHM FCR FIG. 4. 1

CHARACTERISTICS OF THE 'IEST GRAPHS

CCMPABISCN OF ALGORITHMS

COMPARISON OF DETECTION AND ENU~ERATICN

137

14 J

144

148

FIG. 2.1

FIG. 2.2

FIG. 2.3

FIG. 2.4

FIG. 2.5

FIG. 2.6

FIG. 2.7

.FIG. 2.8

FIG. 2.9

LIST OF FIGURES

f<(3,3,3)

HARARl-aoss ALGORITHM: DERIVATION TREE

SUBTREE OF DERIVATION TREE

A PATH CF THE DERIVATION TRFF

BONNER'S ALGORITHM: DERIVATION TREE

SUBTREE OF THE DERIVATION TREE

PEAY'S ALGORITHM: CFRIVATION TREF

tERIVATIGN TREE FOR K(3,3)

MINIMAL COVER COUNTERElAMPLE

33

34

37

40

49

59

62

6 ,3

69

FIG. 2.10 MAXIMAL COVER COUNTFREXAMPLF 69

FIG. 2.11 RECUCEC REDUNDANCY ALGORITHM: DERIVATION TREE 74

JIG. 3.1 POINT SYMMETRIC GRAPH 93

FIG. 3.2 INDUCED SUBGRAPH OF FIG. 3. 1 93

FIG. 3.3

FIG. 3. 4

FIG. 3.5

FIG. 3.6

FIG. 3. 7

FIG. 4.1

POINT-SYMMETRIC GRAPH NOT LINE-SYMMETRIC

GRAPH WITE ALL CLIQUES NON-SIMILAR

A PATH CF DERIVATION OF NON-SIMILAR CLIQUES

CERIVATlCN TREE FOR K(3,3,3,3)

CFRIVATION TREE FOR FIG. 3.6

GRAPH CONTAINING SUBGRAPH K(15)

./

94

107

120

124

125

136

,.

I

• I

\

ACKNOWLEDGEMENT

I wish to thank my supervisor, Professor A. Mowshowitz, for his
assistance both academically and financially in the development and
presentation Jf this thesis, and also Professor E. Lawler for bringing
to my attention the importance of the problem. Finally, I wish to
thank my wife, Patty, for her assistance in the preparation of this
manuscript.

1

The purpose of this thesis will te to examine procedures

which search fer maximal ccmplete subgrafbs of a graph. In

farticular the manner in which algorithms enumerate these

subgraphs will b~ exploLed in order to discover why such

algorithms have an exponential ccmfutaticn time. The protlem

of detecting the existence of a complete subgraph of a

particular order will also be explored and an algcrithm will

be proposed which uses a different ,ethod from that of

enumeraticn. This technique is instrumental in improving the

efficiency of the prccedure of clique detection, and fer a

particular class of graphs the algcrithm can be shown to have

a polynomial computation time.

First we sball prcvide a fairlJ ccmplete list cf

definitions pertinent to the prcblem at hand. Unfortunately,

there is no universall} accepted terminology in graph theory

and for this reason the author has chosen his definitions to

be comr-atible where possible with the widely known text cf

Earary (43]. The definitions will alsc serve to introduce the

notation to be usea in the body of this text for the concepts

defined.

Q~fI~!l!Q~ 1L11 A gf~Eh § consists of a finite set V(G) cf

Y~I!1£g§ together with a prescritea sutset E(G) cf unordered

pairs of elements from V (G) called the~~~§§ of G. If (u,v) is

2

an eage of G then the vertices u ana v are said to be

adjacent.

is the numter of vertices in G aajacent tc v.

DEFINITION l~Ji A lg]~l1iBg of a graph G with IV{G)I = n

vertices is an assignment of n distinguishing latels, one tc

each of the vertices in V (G).

DEFINITTON J~~l A t=E~f!i!~ ~f~£h gJ!1 ~! 2~~~~~!kl is a giafh

whose vertices can be rartiticned intc k tlccks v
1

, v
2

, ••• ,vk

such that for any two vertices u ana v in the same tlcck (u,v)

is not an edge cf G(ro
1

,rn
2

, ••• ,rok). Given such a partition mi

denotes the numter of vertices in t:lock V ••
1

D§FINI1ICN 1L5: A f2ill£1~!g k-E~!!i!~ 2!~£~ K 1m1,m2,·••1rok) is

a k-partite grafh such that for r3ny two aistinct tlocks v., V.
1 J

and any vertex u in V., and any vertei v in V., (t,v) is an
1 J

edge cf K (m
1

,m
2

, ••• ,mk).

DEFINI!ION 1.6: The chromatic BY~]~!L 'X,J~lL of a yrafh G is

the minimum number of blocks v
1

, v
2

, ••• , v'X(G) fCssi tle in any

pa~tition of V (G} such that fer any twc vertices u,v in the

sa me b 1 o c k (u , v) i s no t a n e d g e o f G •

DEFINI1ION 1~11 The £Oint indeEenaence BY~!~! ·f3otG), is the

largest number of mutually non-adjacent vertices in a graph.

CEFI,!!ITION 1.8: The CC[.flerrent , G, of a graph G is a g"Caph

such that V(G) = V(G) and (u,v) is an edge of G if and cnl:y

if (u,v) is not an edge of G and ul-v.

£EFIN11ION 1.9: Let the vertices cf G te latelled 1 through n

where IV (G) l=n. The adjacenc1 matrix , A (G), of the graph G is

a (0,1) matri:.: such that a -=i if and onl1 if (.i,j) is an edge
ij

3

3

of the latelled graph. the adjacencJ set ,A (v), of a vertex v

is the set of vertices adjacent to v.

Qi!l]!l!Qi 1L1~l A unicliillJa! vertex v of a graph G is one

which belongs to exactly one clique of the graph (see

definition 1.14).

DEFINITION 1.11: A subgrg£h Hof a graph G is a graph with

V (H) !5 V (G) and E (H) =- E (G) such that if tu ,v) is an edge of Fl,

then (u, v) is an edge of G •

.£l!.I!L!l1Q] lill Fer any set cf vertices W !: V (G), the _ind]f~g

G w is the maximal subgraph of G with vertex set

v (GW) =W. That is, for any u, v in V (Gw-) (u, v) is an edge cf G-w

if and only if (u,v) is an edge of G.

Q~!I]I!!~] j~Jl~ A comElete sutgraEh of order k of a grafh G

is a sutgrafh defined en k vertices of V(G) for which any two

vertices in the subgraph are adjacent. A !!1~1!91~ cf G is a

complete sutgraph cf order 3.

CEFINijlON 1.14: A E]lg]~ C cf crder k cf a graph G is a

complete subgraph of G fer which there exists no vertex in

V(G)-V(C) adjacent to all vertices in V fC). Cliques are

therefore maximal complete subgraphs.

DEFINITION 1.£.15: An autcmcr~hism cf a grafh G is a permutation

of the vertex set V(G) which preserves adjacencies.

~~!!l!l!~I 1.£.121 The collection of all automcrfhisms cf a

graph G forms a group called the automorEhism srou] ,r(G), cf

the graph G.

CBFINITION J~11l two vertices u,v cf a graph Gare §l!!l!f if

there exists an~ in r(G) such ~~=v.

Q~II!I1IQ! 111~1 A graph G is ~2int=fil!~!!if if fer any twc

4

vertices u,v in V(G) there exists an ot. in r(G) such that«u-=v.

OEFINI!ION j£J~l A graph G is line-s1mmetric if for any two

edge!: (u , V) , (u , V) in E (G) the I e exists an °' in p (G) s UC h
1 1 2 2

that either <Xu
1

==u
2

and ex.\ ==v
2

or otu
1

=v
2

and oc.v
1

.::::u
2

•

CEFINI!ION 1sJ2i An algcrithm which crerates en a grafh is

considered efficient if the computation tim~ and storage

requirements can be expressed as functions of n tounded atcve

by a polynomial inn, where n is the nureter cf vertices in the

g ra F h.

CEFINITION lsl1l !he B!~!!Jfj I£f~~fJ , AXB, cf two matrices A

and Bis the matrix c where c .. =a ..
J.J J.J

t . . •
J.J

5

The focal point cf tbis thesis is the detection of

cliques in grafhs. The importance of this topic frcm both a

graph theoretic and an afplicaticns standfcint will manifest

itself in the historical survey of the next section.

There are several variants or special cases of this

subject which cant~ considered. We will ccnfine ourselves to

a study of the following four problems:

1.) The enumeraticn cf cliques cf a graph;

2.) tetection of the largest clique of a graph;

3.) Determination of the non-similar cliques cf a

graph;

4.) Determination of cliques of a specific order.

The object in each case will be to study the Sfecial

characteristics cf the rrcblem, and then to exploit these

features to develop useful procedures for achieving the gcal.

In addition, an effort will be made to deterGine tounds on the

efficiency of several such procedures and to seek insight into

intrinsic froperties of the methods used which might aid in

estimating the best that cne can exfect from frocedures

designed to solve these problems.

6

1.3 HISTORICAL ~~B1]1

The study of methods for

subgrafhs originated principally

detecting

with the

maximal complete

search fer an

efficient and otjective rerresentaticr cf the structure of

social groups. Such groups can be modeled with a sccicgra~, a

graph which characterizes the resfonses of individuals in a

sociometric test which reguires that each rarticipant specify

some subset of the group to which he wishes to telong t~oreno

[62]). Pioneers in a mathematical treatment of this prctlem

were Forsyth and Katz (33] whc rrcpc~ea rerresentation of

sccicgrams as matrices to ~hich the elementary operations of

row and column rermutations could be applied tc achieve some

more desiratle fcrrr in which the qtcurings cf individuals

could be more easily observed. Such a representaticn was

subsequently refined b_y Luce and Perry [54 J, Festinger [31],

and Luce [55]. A (C,1) matrix, effectively the adjacency

matrix cf the sociogram, was utilized, and the distance

ftCferties cf a graph derived from the square, cute, and

higher powers of the adjacency matri.x were used as indicators

in characteri2ing the structure of the grcup. Festir.ger

observed that a unicligual IDEmher i belcnged tc a clique cf k

persons it and only if the ith diagonal element in the cube of

the adjacency matri.x was equal to (k-1) (k-2). It was therefcre

a simple matter to fina the crder cf the clique to which an

individual telonged, provided he was a member of only one

clique. Weiss and Jacobsen [78] appliea the techniques cf

Luce, Ferry, and Festinger tc analy2e the relationshifS cf

individuals and their tasks in tusiness crgani2aticns.

7

As a result of its sociological beginnings the word

"clique" tecame synonymous with the graph theoretic notion of

"maximal complete subgraph". The apparent usefulness cf the

graphical method of refresentation of sociometric data was

suggested ty tbe early results. However, investigators became

aware cf the general need for more powerful methods cf

manipulationg the socicgram and its asscciated matrix; in

Farticular, of determining in an efficient tut general 1anner

the cliques suggested by the model. The importance of

tecbnigues for studying social grCUfS thus motivated

exflcitation of a graph theoretic approach to the detecticn cf

cliques.

Because of the finiteness of the problem, there exists a

naive, "brute force" method for finding the cliques cf a gtafh

with n vertices--merely examine each of the {~) sets of k

vertices fer k=1,2, ••• ,n. This clearly involves leaking at

i (n)=2n-1 sets, an obviously intractatle numter for even
k=l k
moderately large grafhs. Because sccicgrams could te very

large, analysis by clique membership would te practicatle cnly

with the advent of much tetter aetecticn frccedures.

Early techniques defended frimarily on a "bag of tricks"

which incorporated knowledge of the structure cf the grafh

induced ty the particular afflicaticn, and reEorted to

exhaustive search or estimation when simflification was no

longer fOssible. In 1956 Harary and Ross [41 J prcpcsed a

method whereby a graph was Eystemically reduced to components

each of which contained at least one unicligual vertex and for

8

which the observation of Festinger, previously nenticred,

could te used to find it. The reduction rrccedure emFloyed the

fcllcwing algorithm:

1.) Initially, let the graph G itself te the comfonent

under consideration.

2.) It vis a unicliqual vertex in a component under

consideration, then the subgraph induced en v and those

verticeE adjacerit to vis a clique. Define a new comfonent fer

consideration by deleting frcm the current comfcnent v and all

unicliqual vertices adjacent to v.

3.) If the component under consideraticn contains no

unicliqual vertices, let v be a vertex telonging to a minimal

numter of triangles cf that ccmfonent. Define two new

comfcnents fer consideration:

a.) the subgraph induced on v together with these

vertices adjacent tc v, and

b.) the union of subgraphs induced on the set cf

vertices not adjacent tc v together with their reEpective sets

of adjacent vertices.

Since the union of these two components can te shewn tc be

equal to the current ccrofcnent under ccnsideration, delete it

from the list of components to be ccnsidered.

4.) Cheese a component from the list and gc tc 2 until

the li~t is exhausted.

A procedure fer iwfrcving the efficiency of the algorithm

was also suggested ty Harary and RcEs bJ which a component

I .
I

I
i

9

containing not more than three cliques could te ccwpletely

processed at step 2. lbe Harary and Hess algorithm thus

Frcvided a more fractical methcd than the naive algorithm for

identifying cliques in sociometric data representatle as a

(0, 1) matrix.

sutsequent researchers have fUrsued the development of

techniques for the analysis of variations and generali2ations

of the model in an effort to include and obtain more

information about the structure in a representaticn of a

social group. By asscciating weights with each pair of

vertices in a sociogram, the degree or strength ct the

relationship could be characteri2ed (see for example Hutell

(45]). By utili2ing an adjustable threshold value, a hierarchy

of graphs could be established, each graph teing defined en

the same set of vertices but consisting cf cnly those edges

whose weights exceeded the threshold value. Darien [20],

Johnson [47], and Ecyle [7 J have investigated the

hierarchichal structure cf grcuf~ by this method. In

particular Peay [68] recently developed an algctithro fer

determining the hierarchichal clique structure of such a

representation. A family cf Eets of vertices which we shall

call "potential cliques" is generated from a graph G cf order

n and associated with a threshcld value t.

Initially V (G) is the cnly pctential clique in the

family. Denote by w(v.,v.) the weight of edge (v.,v.) in EfG).
1 J 1 J

2.) If there exists an edge (v.,v.)
1 J

in E(G) such that

w (v. ,v.) < t, and if thei:e exists a potential clique C induced
1 J

10

of k vertices containing vi and vj then twc new

pot en t i a 1 cl i q u es c
1

, c
2

a r e in d u c e d c n c - { v i) a n a c - (v j l •

en a subset

3.) C is a e let e d fr c n, the f ,1 mi 1 'J a n d c
1

a n d c
2

are ad de d

to it prcvided neither is contained in some cur.rent neroter cf

the family.

4.) When it is the case that w(v.,v.)~t for any 1::ai~
l. J

(v. v.) in any potential clique, then the family ccnstitutes
]. J

the set of cliques associated with the threshold value t.

It is clear that the effect cf the algcrithm is to

successively refine sets of vertices which contain r.cn­

adjacent pairs until such refinement is no lcnger fOSsitle;

hence such sets of vertices can te ccnsidered to induce

"rctential cliques". To use the algorithm tc find maximal

complete subgraphs, a th.reshcld value cf 1 is assumed.

Yet another impcrtant scciclogical rrcferty of groups

that stimulated the study of cliques in graphs was the

tendency for individuals tc "cluster" intc groups in such a

way that members of a cluster retained a high degree cf

similarity, while different clusters characteri2ed dissimilar

prcperties (Davis [15]). Cluster theory also had afflicaticns

outside of Sccicmetry. Atraham (1] has used clustering

techniques to solve the ft:Cblem cf minimi2ing the number of

interccnnections of electrical assP~tlies, a fCCtlcrn alsc

explored by Lawler [51], while Bonner (6 J api:;lied such methcds

to medical taxonomy i:;rchlerrs. Bonner's efforts resulted in the

design of an afparently efficient algorithm, so ccnsidered

11

tecause his methcd eliminated the need fer comparing newly

generated vertex subsets with previously generated sets fer

containment, a necessary fart cf the frccedures employed by

Harary and Ross or Peay.

As a consequence, Eonner•s algcrithm enjoyed some

popularity and was used ir. ccmfarative studies with more

recently proposed algorithms. However, Augustson and ~inker

[5] showed this efficiency was often illusory since a large

number of extraneous vertex subsets cculd be generated in

certain cases.

Besides the applicaticn cf

interpretation of socicfetric data,

exflcred application is to the

retrieval. Early develorJents in

retrieval were made by

applied such techniques

Meetham

tc the

cligue detection

the most recent

tc the

~idely

protlem cf infornaticn

the area of document

[57] while

frctlem

Abraham [2,3]

of thesaurus

construction. In addition, the fteviously cited work of Eonner

was also an afplication of clique detection methcds to

information retrieval prctleros.

More recently, Gotliet and Kumar [36] used clustering

techniques to represent the degree of semantic associaticn

between index terrrs used ir. the cla~sificaticn of documents.

The thesaurus problem ~as further explored by Augustscn and

Minker who employed a ne~ algorithm developed by Eierstone

which was shown ty empirical roethcds tc te better than that of

Bonner in many cases. Eierstone•s algorithm was compared

empirically by Mulligan [64J with two recently develcfed

12

algorithms for clique enumeraticn, cne by Bron and Kerhosch

[BJ and the second by Corneil (see Mulligan [64]). Frow this

study Mulligan ccncluden the Eron-Kertosch algcrithrr tc be

superior. The protlems and technigues cf ccmraring some of

these algcrithms will be discussed further in the r.ext

chapter.

Several important graph theoretical problems are related

to the detection of maximal complete sutgrafhs. rt is well

known (see for examrle NordhauE [67:) that the Feint

inderendence number of a graph G is equal tc the order of the

maximal cligue in G, its complement. In addition, tte

chromatic numter cf G is egual tc the minimum numter of

inderendent cligues in G. At present there is no krcwn

efficient means cf ccmruting either cf the~e graphical

invariants. A procedure for determining either numter wculd

provide an imfortant tccl in fUISuing the hcEt of problems

(see fer examrle [14,19,26]) that exist in chromatic grarh

theory, and hence serves to emphasize the irrFortance cf

studying complete subgrarhs.

As a result the literature abounds with a variety of

results relating to the existence of comflete sutgrafhE in

graphs. As an examFle, cne may ccns_ider the celebrated protlem

cf RamEey [70 J concerning the smallest numter of vertices that

a graph may have and ccntain either a complete sutgrafh cf

order m, or an independent set cf k vertices. The

determination of such a number, r(m,k), is an unsclved ftctlem

for general m and k, although the fUhliEhed results include

13

the calculation of specific values, existence theorems, and

bounds (21,29,35,37,38,48]. It is evident that an efficient

clique detecticn frocedure wculd prcvide a useful teal by

Froviding a faster way of examining graphs tor their ccmplete

subgraphs.

PerhaFS the results of extremal graph theory, pioneered

by Turan(76,75], contributed most directly to the clique

detection problem.

In 1965, Mccn and Mcser (60] verified by direct methods

the maximum number of cliques possible in a graph, a result

earlier established ty Erdos (27} thrcugh an inductive

argument:

The maximum number of cliques in a graph with n vertices l.• C • -·
a.) 3 n/3 if n = 0 ll!Cd 3

l:.) 4, 3 (n-4)/3 if n = 1 mod 3

C •) 2 • 3 (n-2)/3 if n = 2 mod 3.

It was also shown that the graphs which contain the

maximum number of cliques were:

a.) the complete .!L-partite graph 1<(3,3, ••• ,3) if n = 0
3

mod 3

t.) the complete il2=..ll - part i te gi:afh 1<(3,3, ••• ,4) if
3

n = 1 mod 3

c.) the complete (n+1)-partite graph K (3, 3, ••• ,2) if
3

n = 2 mod 3.

These graphs shall henceforth te referred tc as Mccn­

Moset gi:aphs.

14

It follows from this result that, as a functicn of the

numher ot its vertices, a gr.aph may contain an exronential

numter of cligues. Hence any algcritbru which examines each

cligue at least once (ie. Sequential) may te expectea tc

require an exponential amount of time to enumerate the cligues

of a graph.

Although from a graph theoretic point of view this is a

disheartening result, an examination of graphs which ccntain

such numters of cliques reveals that all cligues are of the

same or nearly the same order. Further the cliques in such

graphs appear to be homogeneously distritutea ever the

vertices, each vertex telonging tc the sarre er nearly the same

(again exponential) number ot cliques. From a practical feint

of view, the number of edges in the graphical mcdels generated

ty the empirical data cf the a11licaticns suggests that such

conditions are unlikely to occur. The sparseness cf the

adjacency matrix cf such graphs could therefcre te used as a

rough 2 EfiEfi test of the number of cligue~ a aetection

algorithm might be expected tc find.

Cliques in graphs having a maximal numter of cliques are

all cf the same size. ~oon and Moser also shewed that the

numter of different sizes cf cliques in a graph with n

vertices is bounded above by n-log (n). Erdos [30] irr,prcved

their lower bound on this numter tJ showing that it was

bounded be 1 ow t y n-1 o g (11) - H (r.) - o (1) , where H (n) aenctes for

some k the k-fold iterated logarithm, log 1cg ••• lcg(n), and

O (1) is an unsfecified constant.

1 • ..

15

The results cf Erdcs, Mccn and ~cser suggest that an

algcrithm for the enumeration of cliques is an example of an

exponential comtinatorial Ftccess. There has recently been an

effcrt in the theory of comfutaticn tc establish a hierarchy

cf ccmflexity classes of combinatorial algorithms, rotivated

ty the lack of success in finding and ftovi11g efficient

algcrithms for a

processes. This

that ccmbinatorial

large number of important ccubinatcrial

wcrk was fioneered bJ Ccck [11] ijho showed

problems can be expressed as language

recognition problems.

protlems for whict nc

Using such a representation certain

efficient algcrithms have yet teen

devised were shown to be equivalent in the sense that each was

reducible to the protlem cf whether a well-formed formula was

satisfiable. The class of problems so reducitle has teen

expanded ty Lawler (52,53] and Rarf [49] and includes the

clique detection protlem. The princiFal result is that either

there exists a folynomial bounded algorithm fer each frctlem

in the class, or for ncne cf them. However, the nature of the

frcblems strongly suggests that the latter case is in fact

true.

The study of the detecticn cf cliques may belf tc resclve

this question since ~owsbcwitz (61] has shewn that a well­

formed formula ijith k clauses can te represented ty a graph in

such a way that the well-fcrmed fcrmula is a tautologJ if and

cnly if there exists no complete sutgraph of crder k. This

result is stated ty Karr [49~, and is itflicit in Ccck [11].

16

2.1 INTRODUCTION

In order to gain insight into the complexity of the

problem of clique enumeraticn, we shall e)aroine the algorithms

described in Chapter 1 in some detail. The technique evolved

exploits the way in which the vertex sutsets are determined

during an iteration cf each algcrithro. A cligue enumeration

algorithm will then be proposed and shown to be more efficient

than those previously exarrined.

The algorithms of Harary and Ress aud Benner were chosen

because cf their availability in the literature, their

apparent differences cf arfrcach, and their frequency cf

citation as references in sutseguent literature on the subject

of cligues in graphs. In addition, the Harary and Bess

algo~ithw is considered by this author to te the historical

precedent for the develcrment cf clique enumeration

algorithms. Peay's ~lgorithm was chosen because it is

comparatively recent, offers a ccnceptually simrle Rfftoach to

the problero and there appears to te no analysis cf its

efficiency. Although net yet reaaily available at the time of

this documentation, the Bron-Kertosch algorithm has teen

included tecause cf its surericrity ever scme cf the previous

methcds as determined by Mulligan [64].

Although the algorithms cited employ apparently different

techniques to achieve their gc~lE, this difference is

frimaril1 one cf detail, for an examination reveals the

17

following common features:

1.) Each algorithm refines or decomposes a previously

determined vette} subset to obtain new vertex sutsets each

containing at least one cligue cf the criginal graph. A choice

is made of a vertex from the initial vertex subset, and its

adjacency properties are used to define the new subsets. The

old vertex subset is suhseguently removed from further

consideration.

2.) Each algorithm has the prcEerty that every clique of

the original graph is contained in exactly one of the possibly

several vertex sets available for consideration at any stage

of the algorithm.

some device to avoid the 3.)

pitfalls

Each algorithm

of multiply

employs

defining a clique or including as a

maximal. Such a clique some complete subgra~h which is r.ct

situation can occur whenever vertex subsets are generated

which are properly contained in other vertex subsets, or which

contain complete subgraphs roaximal en that vertex subset but

not en the original vertex set.

In the remainder of this chapter it will te seen that it

is precisely these frcperties cf the cligue enumeration

algorithms which profoundly affect the efficiency of such

procedures.

18

2.2 MA'IHEMATICAL A],!LY.§!~ .QI ENUMERATION ALGOiUTHMS

Tc obtain some means of estimating analytically the

computational time required by each alqcrithro, the computation

may be divided into t~o parts. The first consists cf

determining the effcrt required for one iteration of the

algorithm; that is, the time required tc determine new vertex

suhsetE from an old one. The second involves the determinaticn

of the number of iterations required to find all the cliques

of the graph. we shall see that the nurnber of iterations

required is related to the number of vertex sursets generated

during the execution of an enumeration algcrithm A.

vertex set V using algcrithrn A if during scroe iteration in the

execution of A, w is determined from v.

CEFINITlON i~fl A vertex suhset W is derivable from a vertex

subtiet V using algorithm A if there exist subsets u
1
,u

2
, ••• ,uj

such that U is directly derivable frcro V, U, is directly
1 i+l

from u. for i<j, and Wis directly derivatle from u .•
1 J

Since the set Wis contained in the set V from which it

was derived, using these definiticns it is easy to Eee that

derivability induces a partial ordering on the set of all

vertex sutsets generated by algcrithm A during the course of

enumerating the cliques, provided we add the stipulation that

every sutset is directly derivable fro[itself.

This partial ordering roay be rerresented bj a directed

tree whose root represents the vertex set of the graph, and

whose vertices represent the vertex subsets generated by

19

algorithm A. Vertex u, representing subset u, is connected by

a directed edge tc vertex w, refresenting subset w, if w is

directly derivable from v. It is clear that this tree is

dependent upon the enumeration algorithm used and the

labelling of the graFh, hence we shall always associate with

any derivation tree a labelled graph G and an enumeraticn

algorithm A.

DEFINITION 2~3: A vertex subset W will be said to be redundant

if it is properly contained in some vertex subset V from which

it was BQ! derived.

It is interesting to observe that the behavior of clique

enumeration algorithms to be described subsequently can be

compared to a tree searching ftccedure, the tree in this case

being the derivation tree cf a grafh G as determined by an

algorithm A. The determination of methods for ~inimizing the

development of redundant ncdes in the determination of the

derivation tree may then be likened to the protlem of finding

suitable tree pruning techniques.

been noted ty Mulligan (64],

Thi~ similarity has also

while Bron and Rerbosch have

exflcited it in their algorithm which used a "tranch and

bound" technique on the derivation tree.

To determine the ccrr-utaticnal effcrt required during a

single iteration of each enumeration algorithm, a technigue

developed ty Corneil [12, APPENDIX A] will be used. The tasks

perfcrmed within each algorithm will be grcured into blocks.

Each block will he defined from a set of tasic operation tyfeS

determined ty implementation ccnsideraticns. These operation

20

tyfeS and their associated time constants are given in TABLE 1

of APPENCIX A.

Most of the instruction tyfes are self-explanatory. We

shall elaborate briefly. however. on the "push" and "Fer"

operations. The need for such Cferaticns arises from the

indeterminate amount of storage required for saving partially

determined vertex sutsets. It will be seen to be most useful

to save such sutsets, if they are neeoed fer some subsequent

precessing. en a push-down store. Such a data structure i~

easily implemented as a linked list with additional storage

added on as required. The essence of the "push" operaticn is

to obtain storage for the current vertex sutset to te saved

together with a link address feinting tc the next data item in

the store. The top item is always directly accessible through

a pointer to the top cf the stcre The "pop" operation

deletes the top data item of the stcre and resets the pointer

to the store top so that it points to the next data item which

thus tecomes the new tcp of the stcre.

In most cases it is difficult tc obtain an exact

expression for the computation time of the algorithm under

consideration. This is due ftimarily tc difficulties in

determining the number of vertex subsets having a particular

number of vertices. A second factor ccmflicating the

determination cf such an expression is the difficulty cf

determining the extent of search tc ~atisfj some condition

(such as the "first edge" in Peay' s algorithm) during a

particular iteration. Fer these reasons cur princifal gcal

21

will te to determine the order (as a function of the number of

vertices in the graph) of an iteration, and the numter of

vertices in the derivaticn tree.

In determining esti;ates of the required ccmFutation time

for the enumeration of cliques by various methods, the Ftiiary

graph tote considered will be the complete k-partite grafh

with k m vertices per blcck, dencted K(m,m, ••• ,m) or R(m). The

reason for such a choice is that every k-partite grafh is a

subgraph of K (mk) and the derivation tree cf any other k­

partite graph is smaller than the derivaticn tree of R(mk).

As a ccnsequence of this choice of graph for ccnsideraticn it

is possitle to deterroine the nuroter cf vertices in its

derivation tree using each algorithm.

22

2.3 ANALYSIS OF THE HABABY-ROSS ALGORITHM

As mentioned in the introduction of this chapter, the

Harary-Ross algorithm was selected fer ccnsideration in a

comparative study of some clique detection algorithms tecause

of its historical preceaent. It is interesting to note that

despite its frequent reference in subsequent fafers on clique

detection examined by this author, no mention had teen made cf

an error in the algorithm until Harary hiiself referred to its

existence in a recent paper on the application of graph thecry

to the Social sciences [44~. Harary observed that although the

methcd found all the cliques, it alsc included some "other"

subgrafhS in the set of maximal complete sutgraphs as well.

These "other" sutgrafhs are in fact ccmrlete sutgraphs which

are not maximal and hence each is ccntained in some clique.

Although there afpears to be no sutsequent attempt made tc

correct the protlero, pcssitly due tc the existence of more

efficient algorithms by the time of the discovery cf the

error, a modification to ccrrect the defect is fairlJ simple.

When a complete subgrdph has been discovered, determine if

there exists a vertex adjacent to all vertices in that

subgraph. If not, a clique has been fcund. Ctherwise it is

cbvicus that such a sutgraph is not a clique and is therefore

deleted from further consiueration. This modificaticn is

included in the sutsequent analyEis.

In the interests of iwrroving the efficiency cf their

algorithm, Harary and Ross modified the general frocedure

cited in the historical survey by defining a fIOcedure for

23

determining whether or not the subgraph induced on the vertex

set under consideration had at mcst three cliques. If so, then

such a subgraph could te completely precessed by a direct

method (Ia ther than the recursive method of the general

procedure) and the cligues cf the subgrafh determined. However

in most cases only one additional iteration of the general

frccedure is required to determine all the cliques cf a

subgraph containing at most three cligues. In addition such a

scheme requires additional computaticn, namely determining

whether a subgrafh has at most three cliques, during each

iteration of the general prccedure thus increasing the overall

comfutaticn time. For thesP. reasons, the ccntrituticn tc

overall efficiency is small and for simplicity has not teen

included in the analysis er imrlenentaticn cf the Harary-Foss

a lgcri th m.

2.3.1 NOTATION FCR THE AlGCRITHM

.9.l The sutgrarh currently under ccnside:raticn.

YJ.91 The vertex sutset cf the subgrafh G.

!1 The adjacency matrix cf the subgraph G.

£1 An array ~uch that r(i) contains the sum of all

elements in :row i cf B~ A21A , the Hadamard froduct of

the adjacency matri~ and its square.

~.l An array containing the degrees of the vertices in the

sutgrai;h G.

~~ A pointer to the vertex i in G with minimum row sum

r (i).

24

!!l The number of vertices in the vertex sutset V fG).

2.3.2 TF.F ALGORITPM

~!!EQ1 Initially flace V(G) en t~e stack.

~IJRJ1 Choose a vertex set V (G) frcrr the stack of vertex

subsets tote considered. If stack emftJ then gc to step13.

ST~f.f.l Ccmpute the matrix product A2 XA where "X" is the

Hadamard product.

~!.!.RJ1 Let E-= A2 XA • COIEFUte the ICW EUltE r (1) ,.r(2) , ••• ,r (n)

cf E as well as the degrees a (1) ,a 12) , ••• ,d (n) of the

vertices in the subgraph G.

2I!E~l Seti to 1 and rr tc 1.

~.!~£21. If r (i)=d (i)·(d (i)-1) then go to STEP10.

ST~f§l if r (i) < r (m) then set m to i.

2l!R]i set i to i+1. If i~n then go to STEPS.

~l!.!:~l No unicliqual vertices exist. Therefore defin€ twc new

vertex subsets V (G) and V (G) as follows. V (G) i!:i the set cf
1 2 1

all vertices adjacent tc ro, the vertex cf minimum row sum

r (m) • V (G)
2

is the set of all vertices not adjacent tc ~,

together with all vertices adjacent ta at least cne cf these

vertices not adjacent tc ro.

~l!E~l Store V(G
1

) and V(G
2

) on the stack of vertex sets tc be

considered and go to STEP1.

2!!1JQ_; A unicligual vertex i has been found. Compute the

intersection of all rcws ct the adjacenc1 matrix of the

original graph corresponding to vertices adjacent to i.

25

.§!!fJj_;, I f t he result cf STEP 1 C yield s a n em pt 1 s e t then the

comflete sutgraph deter~ined by i is maximal. Hence print i

and the set of vertices adjacent to i.

~!]fJll relete from V(G) vertex i and all vertices adjacent to

i which are also unicligual. Place V(G) en the stack of

vertex sets to be considered and go to STEP1.

~1!f1ll All vertex sets have been 1rccessed. Therefore stcf.

The tasks tc be performed by the Harary-Ross algorithm

may te logically ~ivided intc fcur blccks. The function of

block 1 is to compute the degrees of the vertices of the graph

and to compute [A (G)]2 X A (G) and determine the rcw sums cf

this matrix. Block 2 uses this infcrmaticn tc search for a

unicliqual vertex ty finding a vertex ~hich satisfies the

re la tionshi p r = d • (d -1) where r is the corresponding ro.,,

sum, and a the degree cf the vertex. If such a vertex is net

found, two new sutgraphs are determined in block 3, one of

which is returned to block 1, the other saved for further

processi~g. Otherwise we prcceed tc tlcck 4 tc search for a

complete sutgraph of the grarh G1 induced on the anicligual

vertex v and those vertices to which it is adjacent. If the

complete subgraph is a clique it is Fiinted. All unicligual

vertices in the discovered ccmflete subgrafh are deleted from

V(G
1

) and the subgraph G1 is returned to tlock 1 fer further

processing.

26

]1Q~.!S1

1 pop V (G)

2 i <-- 1

3 r. <-- 0
].

4 j <-- i+l

5 :r . <-- 0
J

6 subst:r (a., j,O)
1

: 0
:;

7 a. <-- a . +,
l 1

8 d. <-- d .+ 1
J J

9 k <-- 1

10 s <-- 0

11

c:
<-- subs tr (ai n a j , k, 1) + s

12 <-- k+1

13 . nG .
14 r. <-- r +s

l i

15 rj <-- r.+s
J

16 j <-- j+1

17 " j : nG

18 i <-- i+1

19
(

i : nG

The parameter nG is egual tc the number cf vertices o.f

the verteJC set V (G), and a (i) denotes the adjacency set cf

vertex i in G.

BLOCK1 dominates the ccmputaticn in the Harary-Boss

algorithm; the other blocks of the procedure will te seen to

depend linearly en nG. Fer this reason we defer their

description until we have further exaroinea BLCC~1.

1

27

In general it is difficult to attain an exflicit

expression for the ccmputaticnal effcrt required ~J the

Hara i:y-Ross algori_thm. This is due to difficulty in

d~termining the numher of times branch ccnditicns are

satisfied It is also difficult, even fer an arbitrary

comflete k-partite graph, to determine the numter of vertex

subsets that are generated with a farticular distritution of

vertices over the blocks. Instead, we shall ccnsider the

behavior of the Harary-Ross algorithm when finding the cligues

of K(3k). A similar prccedure cculd alEc be adopted for each

of the other two types of Moon-Moser graphs. An example of the

derivation tree for K(3k) is given in Pig. 2.2. Each node cf

the tree has teen latelled acccrding tc the distribution of

vertices among the blocks of the induced complete 3-partite

subgraph which it represents.

Let G te an induced subgrafh defined en a vertex subset

obtained during the execution of the Harary-Ross algorithm,

and suppose G

tlocks with 2

has i
1

blccks with 1 vertex per tlcck, i
2

vertices r,er blcck, ar.d i
3

blocks each

containing 3 verticP-s. Necessarily it is the case that

i +i +i =k and i +2i +3i =n. The nuffber cf times
1 2 3 1 2 3

that

execution passes from line 6 tc line 7 during the execution of

block 1 is equal to the numter of one's in the adjacency

matrix of G atove the diagonal. Since the criginal graph is

complete k-partite every induced subgraph containing at least

one vertex per tlock is alsc ccmrlete k- Fartite. The number

of cne•s in G is therefore given by fG

f (i ,i ,i)= [(i +2i +3i) 2-(i +4i +9i)].
G 12 3 1 2 3 1 2 3

(i ,i ,i) where
1 2 3

28

Eence steps 7 through 15 cf blcck 1 will be performed

f G (i
1
,i2,i 3

) times and the computation time of block 1 during

one iteration is given by T
1

(nG) where

with

T 1 (n G) -= ct+n c1+n · (n -1)C1+f (i1 , i 2 , i.3) (CJ! +nG Ct)
1 G 2 G G 3 G 5

Cl = t 1 +t:.!. 1

Cl = 3t
1

+2t
3 2

Cl
3 -= 2t

1
+t

3
+2t

4
+t

8

Cl = 6t 1+4t3 4
Cl = 2\ +2t3 +t 4 ·~ +t8 5

The constants t., i=1,2, ••• ~'10, represent the cycle times
1

for the various operations as SfeCified in APPENDIX A.

21

22

23

24

25

26

where

r (i)

i <-- 1

m <-- 1

r
1
.: a. (d.-1)----.... , Blcck4

]. l.

:\~_";I
i <-- i+1~

Bloc.k3

The computational time for ELOCK 2 is given by:

T (n) = cz+g c2
2 1 i 2

C 2 -= 2t
1 1

cz = 3t +2t +3t +t
2 21 3 4 5

29

It was assumed that line 24 ~hich EOints to the minimal

was executed cne-half the tiroe. ~he term 9. is
J.

equal to

cne less than the label of the first unicliqual vertex i

encountered.

30

I!l.Q~lil

27 V (Gl) <-- a n V (G)
m

28 surstr (V (G
1

) ,m,1) <-- 1

29 i <-- 1

30 V (G
2

) <-- -V (G
1

}

]1 i <-- i+1

31 subs tr: (V (G
1
), i, 1) . 0 .

32 V (G) <-- V (G
2

) u a.
2 l.

33 i <-- i+1

34 ~ i : nG

35 i;:ush V (Gl), V (G
2

)

The computation for: cne iteraticn of blcck 3 is

and d {i)
G

on V (G).

'I
3

(nG) = C i+ (nG -dG (i)) cl+ n c 3, where

C3 = 4t +2t +t
6

+t +t
8 1 1 2 7

C3
2 - tl +t6

\ +t3+2t4 +t8 C3 =
3

is the degree of verte~ i in the subgraph induced

31

I!1Q~!!!

36 C <-- a.
l.

37 substr(C,i,1) <-- 1

38 T <-- TU -T

39 k <-- 1 ..
40 sutstr(C,,k,1) . 0

I
.

41 T <-- TO\:

42 k <-- k+1 (

43 ~ k .
nG .

44 T . 0 + .

OJ
45 print C

46 substr (V (G) ,i, 1) <--

47 j <-- j+1

48 sub.str: (a., j, 1) . 0
.. .

l.

49 r . .
rj .

].

50 substr (VG} ,j, 1) <-- 0

51 j <-- j+1

52 " j .
nG .

53 push V (G)

The computation time fer BLOCK4 is

T (n) = C"+d (i) c•+n C"+hC"-iC•,
4G lG 2 GJ 4 5

the constants being given by

C" = 6t +t +t +t +2t +t
1 1 2 3 4 8 10

C" = 2t +t -t +t
6 2 1 3 4

C" = 3t +t
3 4 8

c• = t +t
4 1 8

c• = t +t +2t +t
5 1 3 4 8

and his the number of unicliqudl vertices in the cligue.

32

For K (3k) the next secticn will Ehc~ that there are 1(3k-
2

3) ccmronents which do not have unicliqual vertices; hence the

value of gi in block 2 for each of these vertex sets is nG,

and therefore the roaxiroum value fer T
2

(nG) is Ci+c 21\z·

For l:locks 3 and 4 dG(i)

r
4

(nG) are

and hare also bcunded by n and . G

also linear polyncmials with

respect to nG. T
1

(n
0

) is thus clearly the dcminant term in the

computation time fer cne iteraticn of the Harary-Boss

algorithm and is a polynomial of order n 3 •

I,
,-

33

5

Fig. 2.1: K.(3, 3, 3)

34

Fig. 2.2

HARARY-ROSS ALGORITHM:

DERIVATION TREE

111

111

111

111

112 ~111

· ~ 111
111

111

111

111

111

111

111

111

111

111

111

111

35

2.3.3 NUMBER OF VERTEX SUBSETS EXAMINED EY THE ALGORITHM

Ftcm an eJamination of the derivation tree of an

arbitrary graph using

example Fig. 2.2) it is

the Harary-Ross algorithm

easy to determine the

(see for

number cf

components or vertex sets that will te generated. This is

because, given that the nu~ter cf cliques in the graph is N,

since the derivation tree from this algorithm is tinary, the

numter of nodes is 2N-1. The ncdes cf the derivation tree cf

K(3k) can te separated intc twc farts acccrding to the type of

precessing carried out on the component reprEsented by that

node of the tree. In particular, whenever a unicligual vertex

is found via block 2, the clique to which it telcngs is

determined in tlock 4 and the ccmfcnent corresponding to this

clique is output rather than returned to the precessing stack,

which consists cf vertex subsets yet to he examined further

for cliques.

Fer example, if we examine Fig. 2.2, and consider the

subgrafh induced on a vertex set having one vertex in every

vertex tlock tut cne (eg. (1,1,3), (1,1,2), (1,2,1), (2,1,1))

we see that all vertices ir. the blcck ccntaining more than one

vertex are unicliqual. ~ vertex would te chosen trot this

vertex tlock, and thrcugh the ccmfutaticn in block 4 of the

algcrithm a clique would be determined and a vertex set

returned for further processing. In the case of the exarfle

such a vertex set would have the fcrm (1, 1, 2) er (1, 1, 1).

For the general ccm[lete k-fartite graFh K(3k), among all

vertex sets generated having unicliqual vertices, there is

36

only one vertex set cf the fcrm (1,1,1, ••• ,1,3). This is

because such a set is derivable only from previous sets having

either one or three vertices r-er vertex block. Such a vertex

set yields three cliques accordiny tc the sequence of

derivations given in Fig. 2.3.

of these three cligues cne is refrccessed in tlcck 1 as a

consequence of the rrevicus discussicn. Cf the remaining 1k-3

c lig ue s, all are derived from vertex sets having twc

unicliqual vertices in sorre tlock, cne vertex in each of the

remaining blocks, and hence again according to the previous

argument one-half ct tbese will be reftccessed one further

time.

The purposE cf this discussicn has teen tc ascertain hew

many vertex sets cf the 2-1<:-1 generated are sutject to

frccessing in block 1 ~here the major portion of ccwputaticn

occurs. This nurrber i.s thus 3k-1+1+..l(3k-3) = 1,(3k-1). In
2 2

addition, the nuroter cf vertex sets containing unicliqual

vertices, and therefore examinea in tlock 4, is 2+1.tJk..J).
2

Finally the number of vertex sets not containing a unicligual

vertex ana therefcre processed in block 3 is given by

(2·3k - 1) - 3k - (2 + 1,Uk - 3)) = 1(3k - 3)
2 ~

If we denote ty T ,T ,T ,T, estimate~ cf the computation time
1 2 3 4

for blocks 1,2,3,and 4 respectively then an estimate of the

computation time is given by:

T = (T +T) {3(31~1)) + if (3(3k-l_1)) + if. (1(3k+1))
a.ppx 1 2 2 3 2 4 2

37

1,1,1, ...• 1,3

1,1, .•• ,1,1

1,1, ••. ,1,1

Fig. 2.3

SUBTREE OF DERIVATION TREE

38

The Harary-Ross algorithm as defined in tlocks 1 thrcugh

4 requires only one aojacency roatrix be stcred, that of the

criginal graph. !he appropriate sub-roatrix is then determined

during each iteration by keeping track of the affrOfriate

vertices defining each induced subgrafh. Alsc, since the rand

d arra1s are fErtinent only tc the induced subgraph currently

under consideration, only one array of size n cf each is

required. As all other terrrs are ccunters er fCinters the cnly

ether storage requirement is made ty maintenance cf a push­

down store for keefing track of the vertex sets remaining to

be processed.

At anJ iteration we usually define two vertex sets named

V(G
1

) and V(G
2

) in the description of the algcrithm. If we

order their position on the fUSh-dcwn store sc that V(G
1

) is

always chosen fir~t from the push-down store, then since no

fath in the derivation tree is of length greater thank, there

cannot te more thank vertex sets waiting in the store. Each

corresponds to the "other" vertex set paired with that vertex

subset refresented by a node lying on the fath in the

derivation tree. As an examFle ccnsider the derivation of

clique (258) in K(3k) as labelled in Fig. 2.1. The sequence cf

events is illustrated in Fig. 2.4.

For each pair cf direct derivations, V(G
1

) corresponds to

the "left" derivation, V (Ci) tc the "rig~t" derivation. Eefore
2

we can reach the vertex in the derivaticn tree latelled

(23,456,789) we must have frccessed (1,456,789) since we have

39

arranged to do this first. consequently all cliques ccntair.ing

vertex l have teen determined and vertex set (1, 4~E:, 789) or

its derivatives no longer appear en the fUSh-down store. A

similar argument applies to (2,4,789) and (2,5,7). The cnly

nodes remaining to te frccessed dte (3, 45E:, 789), (2, E, 789) and

(2,5,9).

From a programming point of view it is most convenient as

well as efficient to naintair lists cf vertices as bit

strings. Since both the vertex sets of the algorithm as well

as the rows of the adjacency rratrix are vertex lists it is

clear that the storage requirements are given ty 2n+C "integer

units" of memory plus r, (n+k) bits. An ".integer unit" will

depend on the storage ccnventicns fer integer refresentation

en a fatticular s1stem. For our purposes during impleuentaticn

this is equal to a "hdlf-wcrd" er 16 bits.

The storage requirements fer the Haratj and Boss

algorithm is thus n(n+k)+16(2n+C) tits where c is the nurrber

of pointers and ccunters required.

40

V(G)

1,456,789

3,456,789

2,4,789

2,5,7

2,5,9

Fig. 2.4

A PATH OF THE DERIVATION TREE

41

2.4 ANALYSIS OF BONNER'S ALGORITHM

Bonner's algcrithre has generated some interest among

researchers wishing to employ the analysis of cliques in

graphs to their particular afflicaticn because cf its apparent

efficiency since no clique or vertex sutset generatea need be

examined for containment in scree Frevicus component . This

difficulty arose in the modified flarary-Bcss algorithm

previously described and is also inherent in Peay•s algcrithm,

to be discussed next. In additicn, Bcnner•s algorithm is

interesting to examine in a comparative study cf clique

enumeration algoritLms tecause it has been compared

empirically with the efficiency of more recent algcrithIDs.

The approach taken by Bonner is rather different frcm

that of Harary and Ross er Peay in that it is a constructive

procedure rather than one of reduction. The method emplcyed is

to tuild up the vertex sets of the cliques froro a set cf

potential candidates, merrbershiF being determined by the

adjacency properties associated with each vertex. we describe

the steps of the algorithm as given ty Bonner (6], including a

minor correction ncted ty Augustscn and ~inker [5] in their

discussion cf the efficiency of the procedure.

The paper of Augustson and Minker shewed that the

efficiency of Bonner's algcrithm may often be illusori because

many ccmplete subgraphs or components may te generated during

the course of executicn cnly tc be diecarded at some later

stage. tt was discovered that graphs containing several very

large cliques and a few very small cnes resulted in an

42

excessive amount of computation being performed en extraneous

components which the algorithm wculd eventually delete. this

generation of extra vertex subsets using Bonner's algorithm is

alsc fresent in the enumeration of cliques cf cororlete k­

partite graphs, upon which we are focusing cur discussion. we

shall establish a generalization of observations made by

Augustson and Minker which will then te used tc determine the

number of vertices in the derivation tree cf K(mk) using

Bonner's algorithm. We first, hcwever, describe the procedure

itself.

2.4.1].Qlh11.Q]

Ai an array representing the set cf cbjects in the

complete sutgraph to the rresent stage cf calculation.

~ l an array ot potential candidates for increasing the

size of the comp]ete subgraph induced on vertices in A •

L : th~ last vertex cf C tc be considered for addition
-i-

tc the comflete sutgraph induced en A.

~ l the adjacency matrix of the original graph.

2.4.2 BONNER'S ALGORITHM (Augustson, Minker[5])

~I!.fJ1 set i to 1 , c
1

to V (G) , Al tc ~ , 11 tc 1 •

~.!1R1..:. lf L is not in set C then set I . to l.+ 1 and go to
i i 1 1

STEP 5 •

.§1:lrnl.:. Set C to {C.nS(L,) }-{L.} and 111·-1 to A u {L.J.
i-1 1 1 l. i l.

43

~I]EE1 set L. 1t o L . + 1 , i t c i + 1 •
1.+ 1.

~I1E2l If there is an elemeut in Ci larger than li then go to

STEP 2.

to A .• If C.=f then A. is a maximal complete
1. 1 1

subgraph. Else either A. has been founa tefore or it is net
1

maximal.

21~E11 Seti to i-1. If i=O then stop.

~I1E1ll set u tc te the set cf all cbjects in c. greater than
1

L. • If U~ T then go to S'I .EP7.
1.

.§1~.R2l Set L. to L.+1 and go to STEP2.
1 1.

The tasks performed by Eonner•s algorithm have teen

divided into twc blocks. The function cf the steps fetformed

in block 1 is to determine whether a discovered complete

subgraph is maxirral and to find the next component tc be

processed. If one is fcund, ccntrcl is transferred to block 2

which constructs another comflete sutgraph returning the

disccvered complete sutgraph to clock 1 for testing.

44

]1Qf.!S1

1 w <-- A.
1

2 C. : 0
1

3 print w

4 i <-- i-1

5 i 0 =)::tCf :

6 u <-- c.
1

7 substr (U ,i, 1) <-- 0

8 = (U U W) : w

9 L. <-- L. -+ 1 ,. 10
1 1

The computation time, 1i foe tlock 1 is given t. y

1.. =Cl+!,t +hCl
1 10 2

with constants l:eing gjven . :Cy

C 1 = 2t
1

+t
3

+t
4 1

c~ = 3t l +t3 +2t 4 +t. 6+t8

and f> = 1 if w is a clique, 0 cther'-ise, and h<" -1 is the first

are the vertices cf a

complete subgrafh contained in a clique net yet fcund.

45

=---• s ubst r (C. ,L .,1) : 0---►•L.<-- 1. +1
]. l. l.].

11

12

13

14

15

16

17

C. l <-- C .nS(Li)
l.+ l.

substr (Ci+l, Li, 1) <-- O

A i+l <-- Ai

substr(A. 1 ,L.,1) <-- 0
l.+ J.

L . l <-- L. + 1
l.-t l.

i <-- i-t1

suhstr(C.,L.•1,n-L.) : 0 4------'
l. l. l

Every vertex subseguert to the original L.
l.

is examined

exactly once until there are nc further vertices to be

included. Therefore loop:17 to 10 is executed at rocst r:-L.
l

times for an arbitrary graph. For K(mk) there are at most ~(k-

j) vertices in c., where j denctes the t::lock to which vertex
l.

L. belongs. For each value of i there ace m-1 vertices not in
l.

c., namely the otter vertices in the block. Since i is net
l.

incremented on such occasions lccf:17 to 10 is executed m-1

times for each of the next k- j -1 blocks of vertices in C .•
l.

If the graph is labelled such that vertices in block i have

1 ab els (i- 1) m + 1 , (i- 1) 111 + 2 , • • • , (i-1) m + 111 , then

An Uffer bound on the time consumed in block 2 is given by T
2

defined as a function of 1
1

and n:

whex:e

T2(Li,n) = e-L!:i~1J}(Ci+(m-1)C2+mCj)

Cf = 6t
1
+7t

3
+t6 +2t

8

c2 = t +t
2 1 3

CJ= t
3
+2\ +2t8

46

Since the value of h in blcck 1 is less than or equal to

n while k-L!,i k1 J is maximi-zed when Li is in the first tlcck,

it is clear that the ccrofutaticn fer cne iteraticn of Bonner's

algorithm is tounded by n = rr-k, the nuaber cf vertices in the

grafh K (m1,.

To determine the nurnher cf ncdeE in the derivation tree

cf Bonner's algorithm it is necessary first to estatlish the

following result, a generalizaticn cf observations made by

AuguEtson and Minker [5).

every complete sutgraph of k .K (m) is

generated during the execution of Eonner•s algorithm.

f£22!1 Using Bonner's nctaticn the set A. consists (.)f a
].

complete sutgraph cf crder i defined en vertices labelled

the set C. consists of all vertices adjacent
].

to every vertex in A • •
].

Sufpose the vertices of tlock V. in V (K (mk)} are labelled
J

(j- 1) m + 1 , (j- 1) m + 2 , ••• , (j - 1 } m + m , for m ~ 2. If w e Fer for Iii t be

algorithm to attain the "first" cligue cf K(mk) we attain the

following assignment tc A.
].

and L.
l.

fer i=l,2, ••• ,k:

Ll = 1 Al - { 1)

12 = m+1 A2 = (1,m+l]

.
Lk = (k-1)m+1 \= {1,m+1,2m+1, ••• ,(k-1)m+1J

47

Let u tea vertex subset cf c. ccnsiEting of all vertices
1

with labels greater than L. such a sutset is net the vertex
i

set of a complete subgraph unless there is at most one vertex

in O because of the labelling of vertices in K(mk). Therefcre,

by execution of the algorithm, Li is set to Li+1 in step 8 and

we return to step 2.

Since i is determined ty the number of vertices in Ai

when we entered step 6, and since every possible value of L.
1

from its initial one of (i-1)Di+1 ur tc mk i.s adjacent to

L
1

,L
2

, ••• ,Li-l and also contained in Ci' it is the case that a

comFlete subgrafh with vertex set given ty A
1

, 1'5i~k+1, is

generated where:

1.) Ai = { 11 , 1
2

, ••• , Li } ,

2.)

We have thus established that for m~2 every complete

subgraph of Ktmk) is generated during the executicn cf

Eonner•s algorithm. The Sfecial case m=1 corresponding to

aFflying the fIOcedure to a complete graph generates k

complete subgraphs as described abcve in determining the first

clique of the graph. Since every possitle sutset U of c . is
l.

contained in , clearly nc return is ever made tc steF 2,

so that the algo.rithn: teririnates after printing

Ak ={1,2, ••• ,kJ.

The derivation tree for Kt33) is given Fig. 2.5 as an

illustration of the vertex sets generated by Bonner's

algcrithm. From this cne can clearly see the property of

48

Bonner's algorithm defined in theorem 2.4. As a result the

numter of components generated by Bcnner•s algorithm on K(m~

is given by the following:

TH~OREM 2.5: The number of nodes in the derivation tree of

K(mk) using Bonner's algorith~ is (1+m)k.

f!££!l From Theorem 2.4 it is clear that every complete

subgraph occurs as a node during some stage of execution. The

number of complete subgraphs cf crder i~k in K(mk) is equal to

the number of waJS of choosing i from k tlocks \ ,v
2

, ••• ,vk,

and then choosing 1 vertex frcm each of the i chosen tlccks.

T:is :s mi(f)• Hence the total numter cf comflete subgraphs is

. £ rn1
(~} = (l+m) k_ 1. Since the root node of the derivaticn

11: 1 l

tree is not yet included this results in a total of (1+m)k

nodes. QEt.

50

The storage reguire~ents for Eonner•s algorithm are

similar to those for the Harary and Ress algcrithm. Two arrays

A and C of length n are required, each element corresponding

to a vertex subset which can be represented as a tit string as

can the rows of the adjacency matxix s. In addition an integer

array of pointers Lis required. ~we teffforary bit strings T

and U are also needed in addition to a counter i. Using the

half-word of 16 tits as the integer unit, the storage

requirements are: 3n 2 + 16 (n + 1) + 2 n = J n 2 + 1 8 n + 16 bi ts.

51

2.5 ANALYSIS OF FEAY'S ALGCHITHM

The computation involvP-d in the Harary-Ross algciithm was

dominated ty the computaticn cf a matiix ftcduct and by the

generation of a large number of components and their

associated complete sutgrarhs, which ~ere later deleted.

Bonner's algorithm was also dominated by the generation of a

number cf superfluous components. Eecause Peay•s algcrithm

generates only cowponents which are e~sential to the final

determination of all cliques, it is of interest as it may have

a reasonatly small derivaticn tree. Hc~ever, the means by

which Peay deletes non-essential ccreponerts results in a large

number of additional operations. Specifically, Peay ccmpares

each of two newly generated ccmfcnents tc an ever growing list

cf vertex sets of cliques and subgraphs which are fOtential

cliques. Thus, fer a grafh with an exrcnential number of

cligueE, as a funr.tion of the numter of vertices, an

exponential numter cf cc«pariscns is required in additicn tc

the time for generation. As will be seen, this cff-sets tc a

considerable extent the time saved by avoiding the analysis cf

reaundant vertex sets. Fer this reascn we discuss here a

modificaticn to the algorithm which reduces the auount cf

storage required. The extent cf this reducticn is determined

in cur storage analysis. ~he procedure tote implemented for

obtaining this imfrovement depends on ordering the selecticn

of vertex subsets sc as to cbtain a develcrment of 11 depth

befcre breadth" of the derivation tree. The stack ccntairing

these vertex subsets is then altered to contain only these

vertex sets which de net induce ccffirlete subgraphs. This

52

drastically reduces the si2e of the push-down stare by

eliminating the growing list cf cligues rreviously being kept

there. Instead, a test for clique memtershiF is made, like

that employed in cur rrcditication of the Harary-Ress

alyoritl1m. Tl1ese modificatic11s ate included in cur subsequent

analysis.

Before proceeding, we shculd ncte however that the

inefficiencies inherent in the algcrithm as cited by feay are

a ccnsequence of the application to which such a fCOcedure was

being put, namely the deter!inaticn cf a hierarchy of cliques

in scciograms. As a rule the goal of a graphical treatment cf

such data is to assign the "individuals" tc cne or more cf a

few sets which it is hoped characterize the structure cf the

group. Hence the nurrter cf cliques in a social grcuf as

determined by such an analysis is small and therefore the

difficulties of a possitly exrcnential number of cliques is

not rertinent. As our treatment of clique detection algorithms

is graph theoretic, we have net aEsumen an1 a priori

information about the structure of the graph induced ty its

physical interpretation and ~ust therefore be ccncerned ~ith

such frcblems.

2. 5. 1].Q1~1.!.Q]

YJ~ll th€ vertEx set currently under ccnsideraticn •

..§1 the sutgrai-: h induced en V (G)

El the numter of vertices in G.

~l the numter of vertex sets in the stack.

AJill adjacency set of vertex i.

VJG l-VJG l: newly generated vertex sets.
- -1 ·- - 2 -

G .G : the subgrar,hs induced on the new vertex sets. - r- 2-

2.5.2 TBE ALGORITHM

~!~RQl Initially flace V(G) on the stack.

53

ST~fll Choose a vertex subset V (G) from the stack cf vertex

sets to be considered. If the stack is empty then star,.

~IlR11 Find a fair of vertices V. , V • beth in V (G) i: uch that
J. J

(v.,v.) is not an edge cf the crigina1 qrar,h. If no such i:air
J. J

exists then go to STEP5.

define

V(G)=V(G)-{v].
2 j

~!lf~l For k=1,2,

new vertex sets

if V (G)
k

is net ccrtained in vertex set

currently on the stack then FUt V(G) en the stack. Go to
k

STEPl.

induces a ccmrlete subgrarh. If there exists no

vertex in the original grarh adjacent tc all vertice:: in v tG)

then print V (G) as a clique. In either case go tc STEP1.

The tasks of Peay•s algorithm can be logically grcurea

into two tlocks. 1~e function ct blcck 1 is tc exa"ine the

subgtaFh induced en a subset of the vertices cf a graph G, in

creder to find a rair of non-adjacent vertices. If a pair is

not found then a clique has been disccvered and it i~ printed.

If two vertices, say v and w, are not adjacent then central is

i:assed to block 2 which defines two new vertex s~ts. Each is

54

saved for further frocessir.g frovided it is not contained in

some previously generated vertex set. Control returns tc block

1 which chooses another vertex set for e~aminaticn.

55

]1Q.f.!SJ

1 - fOP V (G) ,

2 M <-- M-1

3 i <-- 1

4 C <-- cu -c

5 - j <-- i + 1

6 C <-- en a.
l.

7 [subs tr (ai ,j, 1 I 0
:. Block2 :

8 j <-- j+1

9
~ j . n .

10 i <-- i +,

11
$,

i . . n

12 ~
:f:

C : C .

13 print V (G)

If G is in fact a clique, then all n•(n -1) ones in its
2

adjacency matrix atove the aiagcnal will be examined. The

comfutation time of block 1 for one iteraticn is therefcre

tounded at:ove ty

T (n) = Cl+n Cl+n-(n -1)C1
1 1 2 2 3

with constants

Cl = 3t +t +t +t +t
1 1 2 3 4 10

C i = 3t +2t +t +t
2 1 3 4 6

Cl -= t +t +2t +t
3 1 3 4 8

56

1212.f!il

14 V (Gl) <-- V (G)

15 subs tr (V (G
1

) , j, 1) <-- 0

16 V (G
2

) <-- V (G)

17 substr(V(G
2

) ,j,1) <-- 0

18 k <-- 1

19 V (C\) . 0
r. .

20 V (Gl) . V (G(k)) ~ .
21 V(G

1
) <-- 0

22 = V (G
2

) . 0 .
23 V (G

2
) . V (G(k)) .

24 V(G
2

) <-- 0

25 V(G
1

)UV(G
2

) . 0 = , exit .
26 i <-- i+1

27 ~ i :M

28 V (Gl) . 0 == .
29 fUSb V (Gl)

30 f'l <-- M+1

31 = V (G
2

) . 0 .
32 FUSh V(G

2
)

33 M <-- M+1

exit

The computation time is maximized when neither new vertex

set is contained in some previous vertex set. When this occurs

the time for BLOCK2 is T = C2+MCZ where
2 1 2

c2 = 7t +2t +2t +2t +2t
1 l 2 3 4 8

C 2 = t + t +6 t + t
2 1 3 4 6

and M is defined in section 2. 5. 1.

57

The complete aeri vation tree for K 13, 3, 3) using Pea-y 's

algorithm is quite extensive. As will be seen this is due to

the nature of the develcrment cf new vertex sets for

consideration. In order to obtain an expression for the nu~ber

of nodes in the derivaticn tree it ~ill be convenient to

consider the development which occurs during, the frccessing cf

one tlock of vertices. That is, since Feay•s algorithm

determines two new components whenever a vertex pair is

discovered which is uct an edge cf the graph, we shall

consider all such pairs defined UfCn a single vertex block of

G. Fig. 2.6 gives such a development for tlock V = {1,2,3] cf
1

K (3,J,3) as latel]Ed in Fig. 2.1.

Examination cf this sub-tree of the derivation tree

reveals that three components are eventually generated with

the property that each has exactly cne vertex in block 1 and 3

vertices in each of the remaining two tlocks. Since, for each

cf these sets, the one remaining vertex is adjacent tc all

other vertices in the vertex subset cf that ccroponent it is

evident that no further computation will involve that vertex.

Thus the inauced sutgrafh cf each vertex sutset is equivalent

to K(3,3) with vertices labelled 4,5,6,7,8,9. The number of

nodes generated is given by the sum of those determined during

the generation cf th:ree cc1q:cnents, I< (1, 3, 3), from one

comi:cnent, K(3,3,3), and the nun:ber cf ncdes generated in the

reduction of each K(1,3,3) (which is equivalent tc the

reduction of K (3,3)). Therefcre if for K (mk) we can determine

58

the number of

K (1, mk-1) we

of nodes in

algcrithm.

nodes created in generating m ccmponents

can obtain a recurrence relation for the number

the derivation tree of i(rnk) using Feay•s

59

123456789

1456789 3456789 2456789 3456789

Fig. 2.6

SUBTREE OF THE DERIVATION TREE

60

!]!Qi!~ i~&l The nurr,ber cf vertex sets generated ty Peay•s

algcrithm tc find the cliques cf I< 13k) is 3 t3k)-2.

Prccf: let V ,V , ••• ,v be the blocks of K (mk) and label the
------ 1 2 k

vertices in block v/ (j-1)m+1, (j-1)m+2, ••• ,(j-1)m+m. Ccnsider

the sequence of derivaticns aetined bl rrccessing the vertex

fairs (non-edges) (1, 2) , (1,)) , ••• , (1,m). The vertex sets

derived stdrting from ({1,2,3, ••• ,m],V , ••• ,V
2 k

) are

respective 1 y ({ 1 , 3, 4 , ••• , ro] , V , ••• , V } , ({ 1 , 4 , 5 , ••• , m) , V. , ••• , V
2 k 2 k

), ••• ,({1,m),V , ••• ,V), and finally 1{1],V , ••• ,V). If
2 k 2 k

({ 1,i,i+1, ••• ,m),V
2

, ••• ,Vk) is a typical vertex set froro this

sequence of derivaticns, t~c new sets,

((1,i+1, ••• ,m},V , ••• ,V)
2 k

an a

derived by separating vertices 1 and i.

The latter vertex set is deleted since it is ccntair.ed in

the previously deterreir:ea set ({ 2, J, ••• , ll'}, V
2

, ••• , Vk). We

therefcre have a total of 2(m-1) vertex sets dEtermined during

this sequence of derivaticns, half cf ~hich are deleted, the

remaining ones teing thcsP. given abcve. ThiE precess is

illustrated in Fig. 2.7.

The number of

vertex tlock of K (rok)

vertex sets considered in reducing cne
m-1

is given by 1+ r. 2i = 1+m(m-1) •
i::a:l

Let am he the numter cf vertices in the derivation tree
k

cf K (01 k) using Peay•s algorithm. Since the reducticn cf C Il€

block of V (G) yields rr vertell sets whose precessing is

equivalent to that fer K (mk-1) , the number cf vertices is

given by the recurrence relation a m -= 1+mtm-2)+mam whcse
k k-1

solution is: a~= crmk+l+m(m-2). The complete derivation tree

61

for K(3,3) is given in Fig. 2.8 frcm which we chtain am ~ith
k

m=3. Solving for c i we ')et cl= 3 ana at = '3 13 k)-2. QED.

62.

? 4 ~ ' ' V - , , rn ,~2··· k

~------" ----.
' ' ' ' ' ' ' ' '

Fig. 2.7

PEAY 1S ALGORITHM:

DERIVATION TREE

rn,V'2 • .• vK

pruned

m-l,::i,v2 ••• Vk

pruned
m,V,, •• • V,

c. K

pruned

l 7 ,. , ' ? -,j J,.. - "-

Fig. 2.8

DERIVATION TREE

FOR K(3,3)

3456

pruned

36
prun9d

34

26

256 25

26

pruned

24

16

15

16

pruned

14

63

64

As has been observed, Peay•s algorithm as originally

defined required storage srace fer all new vertex sets

generated during its execution. For a graph with an

exponential number of cligues such a demand is net

practicatle. In our discussion we have described and anal}2ed

a modification to the procedure which eliminates the need fer

maintaining in tte stack the cligues as they are discovered.

By developing each path in the derivation tree as far as

possible, the number of nodes placed in the stack is never

greater than the length cf the fath generated, each entry

corresronding to the 11 other 11 vertex subset of the pair of

vertex subsets developed at that stage.

Let V(G) tea vertex sutset such that V(G) induces a

complete k-partite grafh having 1 vertex in i blocks and m

vertices in (k-i) blocks. If we carry out a sequence cf

derivations ty fixing one vertex in tlcck i+1, say v and

sequentially derive new vertex sub~ets frcm the set of non-

edges (v,w), (v,w) , ••• , (v,wk
1

)
1 2 -

then according tc the

argument presented in a discussion of the derivation tree fer

developed ty Peay•s algcrithm, twc verte~ sets ~ill be

added to the stack after such a sequence of derivations. The

first consists of all vertices of the original vertex sutset

other than v. The length cf the fath in the derivation tree

corresponding to this sequence is m-1, the numter of vertices

not adjacent ot v. Since there are k tlccks in k K (m) , the

maximum length of any fath is (m-1)k. Hcwever by choosing non-

65

edges as described, after the (m-1)i th node cnly one cf the

i+l vertex sutsets have teen saved fer further processing,

hence the numter cf verte~ sets en the stack is at most k+1.

The only other storage required is that for the adjacency

matrix and a number of integer counters. Therefore, since each

entry in the stack can be tefresented by a bit-string of

length n, the total storage requirements are n(k+1) + n 2 + 16C

bits.

66

The analysis cf previcus algcrithms, ~hile providing

exfressions for a comparative analysis of sequential clique

enumeration algorithms has alsc revealed some of the

properties desired by a 11 good" procedure and some cf the

hdzards one must attemft to avoid. In addition, certain

properties are characteristic cf algcrithms for explicitly

enumerating the cliques of a graph.

These algorithms appear to require a means cf aeterairing

the sets of vertices adjacent tc a given vertex as all

frccedures discussed use this information to generate the

components tote used in further analysis. This is not too

surrrising since any graph is characterized by this sort of

information. Ho~ever, the adjacency matrix representaticr. cf a

graph provides this RICSt and directly. The

refresentation of the rows of the adjacency matrix as a string

of bits greatl1 simplifies the computation required in

determining new ccmponents. The imfortance cf an adjacency

matrix representation over some other representation is thus

emphasized ty these otservaticns.

The desiratle proferties cf a seguential clique

enumeration algorithm are two-fold. First, generate new

co~ponents which de net destrcy the existence cf maximal

complete subgraphs with ~s little effcrt as fOssitle.

Secondly, g0ner~te as few such components as fossitle. The

best possitle situaticn is tc avcid the need for deterniring

whether a complete subgraph er ccmfcnent just generated is

r
I,

67

frcrerlJ contained in some other clique of the grafh and

requires some means of cheesing ju~t the right Eet of vertices

so that nc redundant component is ever generated. Because cf

the complexity cf tbe fCSsitle intersections of the vertex

sets of cliques in a ~rafh, it is difficult tc determine just

how such a set could be chosen. It is net sufficient tc find

either a maximal er a roinimal independent set cf vertices

which covers tbe vertex set cf a grafh as the follolliing

examrle illustrates. Consider the graph of Fig. 2.9. The

vertices labelled 1 and q in tlte graph constitute a irinimal

independent set cf vertices covering the verte~ set of the

grafh. It is clear however that the clique K (1,1,1,1) induced

on vertices 2,3,5 and 6 contains no verte~ in this particular

minimal covering.

Similarly consider the graph in Fig. 2.10. It has a

maximal independent set of vertices latel1ed 1,3 and ncne

of which is a memter cf the cligue induced en vertices 2,4,

and 6.

Clearly one reqnires the prescient atility to cheese an

appropriate indefendent ccvering set of indefendent vertices

a mo n g a n e x f one n ti a 1 n 11 m h ~ r of poss i t 1 e ch o ices. The c e is

presently no known way fer accomfliEhing ~uch a task in an

efficient manner. The algcrithm tc be described generates a

reduced number of redundant vertex sets, and uses an efficient

procedure for detecting such redundancJ.

It will be seen that with scffe rncdificaticns the

prcced11re to be described combines some of the tetter features

68

of the previous algorithms. As a ccnseguence we shall show

that the performance of this algorithm is comparable ta and in

many cases (eg. Grafhs with 1any cliques) better than that to

be exfected from the others.

69

1 4

6 5

Fig. 2.9

MINIMAL COVER COUNTEREXAMPLE

_______ 2 ______ 3

5

Fig. 2.10

MAXIMAL COVER COUNTEREXAMPLE

70

2.6.1 CESCRIPTION OF THE ALGORITHM

Each vertex subset tc be frccessed is aivided into two

parts; V(G1), the set of all vertices in that sutset yet tc be

examined and V (G2), the set cf all vertices previously

examined and which induce a ccmflete subgrafh in the original

graph. The vertices in V(G1) have the additional property that

they represent all fOSsihle extensions of the complete

subgraph induced on V (G2) which yield a larger complete

subgraph.

If V(G1) is empty, then provided there does net exist a

vertex adjacent to all vertices in V{G2), we have found a

clique. Such a condition is maintained by deleting from

further consideration any vertex subset all of whose members

are adjacent to sor.e vertex cutside the subset.

If V(G1) is net empty then we generate n - d(v) new sets

by first choosing a vertex v, and then considering it together

with then - d(v) - 1 vertices net adjacent to v. Each vertex

frcm this set is used to define a new vertex subset by adding

it to V(G2) and thus extending the set of vertices already

considered, and then defining a new set of vertices to be

considered from V(G1) by including only those vertices

adjacent to that vertex just added to V(G2).

2.6.2 1g1b1IQ!

]J§ll~ set of vertices in the current vertex set yet to

be considered.

71

1J~1ll set cf vertices in the current vertex set which

induces a complete sutgrafh.

!Jfilli new set of vertices tote considered.

1Jtl~ll new expanded set of vertices inducing a complete

subgraph.

I~ set of vertices net adjacent tc a chcsen vertex from

V(G1).

Al the adjacency matrix of the sutgraph induced en

V(G1)U V(G2).

2.6.3 RECUCEC RDUNDANCY ALGOR_I1HM

2I!fQ1 initially flace V(G)Uf er. the stack.

2I!RJ1 Choose a vertex subset V(G1) u V{G2) frcm the stack of

subsets to te considered. If stack eroftJ, stcF ■

2I~Ei1 Tf there exists a vertex adjacent to all vertices in

V(G1)U V (G2) then go to STEP1

~!!..!:].; If V (G1) is e1q:ty tben r:rint V (G2) as a cligue and 90

tc STEP1 •

.§1§E1l Cheese a vertex v in V (G1) and define F to t:e a set

consisting of v together with all vertices not adjacent to v.

§I]..!:~l Choose a vertex w in F ana define a new sutset

V(H1)UV(H2 1diere V(H1) is the set cf all vertices in VfG1)

adjacent tc w, and V(H2) = V(G2)U {w}.

2l!f§l Celete vertex w frc~ sets V(G1) and F.

§1~f1i If F empty then go to STEP1; else go to STEP5

In order to compute the time for one iteraticn cf tne

72

algorithm the instructicns Ferfcrmed are as fellows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

POF V(G1),V(G2)E---------­

C <-- C U -C

i <-- 1

:•:~~r:~:~~-:-~_V_(_G_2_)_,_i_,_1_)_:_0_]_=_

< .
1 : n

C : 0

V (G 1) = : 0 ---~rrint V(G2)--

v < -- ind e x (V (G 1) , 1)

F <-- -A (V)

w <-- irdEx(F,1) ~----­

v (Hl) <-- V (Gl) n A (w)

V (H2) <-- V (G2)

su:t:str:(V(H2),w,1) <-- 1

fUSh V (H 1), V (H2)

substr(V(G1),w,1) <-- 0

subs tr: (F, w, 1) <-- O

...,__=_ F : 0 --'------------

2.6.4 NUMBER OF VERTEX ~JJ] GENERATED

As an example we agair. ccnsider the derivation tree of

K(3,3,3) labelled as previously in Fig. 2.1, the tree this

time being determined by our algorithm. It is given in Fig.

2.11. Each vertex not rerresenting a cligue is labelled by the

73

fair (V (G1) ,V (C2)) representing the vertex sur.set generated by

the algorithm. The nunter ct ncdes in the derivation tree for

K(mk) is given in the following theorem:

THEOR~M 2.7: The number of nodes in the derivation tree cf

K (m k) is rnk+l - 1 ~
rn-1

RI2n!1 Let the nodes of K(rr~ be labelled such that if v. is a
J.

vertex of tlock V., v. a vertex cf tlcck V. and i < j, then
l J J

the label of ~ is smaller than the latel of v .• The algcrithm
l J

processes the vertices cf a grafh in ascending crder cf

lat.elling. A tyfical ccrofcnent during e~ecution of the

algcrithm has i vertices in V (G2), one from each cf the

V (G 1) induces a ccmrlete (k-i) partite

yraph with m vertices rer tlcck. ihis compcnent therefore

determines m ne~ components, one tor a selected vertex in

t lo c k v .
1

an a m- 1 tor t he m- 1 c t he r v er tic cs i n V .
1

the c n 1 y
lt J.+ ..

vertices net adjacent to the selected cne. Each component

therefore determines m new ones, until there are k vertices in

V (G2) in which case there are ncne in V (G 1). The numter of
k

vectice~ in the derivation tree is theretcce ~ roi = mk+1 -1.
i=O ~-1

74

J69

368

367

359
358

357

349

348

347

269

268

267

259

258

257

249

24,789 248

247

169

168

167

159

158

157

lu, 789

Fig. 2.11

REDUCED REDUNDANCY ALGORITHM: DERIVATION TREE

75

The ccmfutational effort for one iteration of the

algorithm to fina the cligueE of g (ak) is eafy to determine

frcm the Iverson description. The loop:7 to 4 is executed n-1

times where n is the number of vertices in the original grarh,

while the loof: 19 tc 12 is determinea as fcllcws. let the

vertex set currently undeL consideration have i vertices in

V (G2), and (k-i)m vertices in V (G1). Then F defined in line 11

consists of all vertices in cne blcck and ccnseguently leap:

19 tc 12 is executed m-1 times.

The expression for the computation time during cne

iteration is therefore given by

where

c~L = 4t 1+t2 2t 4+t
7
+t

9
C 'k = 2 t l + t

3
+ 2 t 6 + t 8

co
3

= 6t +t +t +t 6+3t +t
1 2 4 8 9

frcvided the vertex set under consideraticn does not h~ve

V (Gl) empt_y. If V (G1) is in fact empty, as it will te for all

nodes of the derivaticn tree rerresenting cliques, then cnly

lines 1 through 9 are performed and the comrutation time in

this instance is T 1 (n) = C1tnc~ where c~ is given abcve and

(1 = 2t +t +2t •
1 1 2 4

We can now ccmtine the results cf the computation time

fer cne iteration with the numbec of noaes in the dEcivaticn

tree to ottain an expressicn fer the total ccmfutation time

required to find the cliques of K (mk). '!here are III noaes fer

76

which the computation time fer cne iteraticn T (m k) , and
k+l k

!L.:..l - m =
rn-1

mk- 1 nodes
m-1

where T0 (mk) is the ccmputation time.

Hence T(mk) :::: T
1

(m k) m k+T O (m k) m k - 1 ,
m-1

m> 1. The case fer m = 1

clearly defines a derivation tree consisting of a single fath

of length k. Hence the computation time to determine that

K(1k) is a cligue is T(k) = 'I
1

(k)+(k-1)T
0

(k).

2.6.6 STORAGE RE~UIRF.MENTS

Like the previous algorithms of Harary-Ross, Benner, and

Peay, ·the Reduced Redundarcy algcrithm roaintains only one

adjacency matrix, that of the original graph G. Vertex sutsets

are maintained on a stack and used to select the ar-rror-riate

rows of the adjacency matrix cf G, to obtain adjacency

rrcr-erties of the subgraph of G induced on the vertices in the

vertex sutset. Our algorithm, hcwever, generates n -d(v} new

vertex sets during an iteration where n is the numter cf

vertices in the set and d(v} is the number cf vertices in that

set adjacent to v. For this reason it is more difficult tc

determine the storage reguirements of the push-down store for

an artitrary graph. Instead we shall again examine the

comflete k-partite graph K (mk).

If we again adopt the strategy of developing the

derivation tree in a "defth before breadth" manner, it is

clear that no path is of length greater thank. Further, from

the frevious discussion we know that every vertex set

V (G 1) U V (G 2} is co ro p let e k- part i t e w i th 1 v er t e x in each of i

77

blocks. V(G1) consists of the m(k-i) vertices in the remaining

k - i tlocks. If we select a vertex v f rem V (G 1) to determine

new ccm~onents, the nuater cf vertices net adjacent tc vis m-

1. !herefore, to each node in a path of length kin the

derivation tree there are r-1 ether ncdes ccrresponding to

vertex sets yet to te processed. Hence the fUSh-down store

must be cafable of handling k (m-1) vertex sets.

!he storage requireroents for the new algorithro afplied tc

K (m k) are k (m- 1) + (ro k) 2 + 2 o k + 1 6 C b i t s , C being the numb er of

counters and pointers used. Since we can partition a graph

into k blocks no block of which has more than m vertices fer

k = ')(,(G), tbe chromatic r.umbc.r cf the grarh, this expression

alsc serves as an Ufper touna on the storage requirements for

an atbitrary gtafh.

78

The Eron-Kerbosch algcrithm is the most recent clique

enumeration algorithm known to this author. Mulligan [64] has

descrited the frocedure and fcund it to te sufericr to

Bierstone•s algorithm, a rnethcd alEc discussed hJ Augustson

and ~inker [5].

The algorithm employs a recursive procedure which is used

to modify a glotal vertex set ccnsisting cf all vertices which

form a complete subgra~h of the original graFh• The functicn

of the recursive procedure is tc extend, if possit.le, the

number of vertices in the ccmplete subgraph. This is

accomFlished bJ maintaining several lists and pointers in a

stack generated through recursive calls tc the frocedure.

These include two vertex subsets, one a set of candidates

which can be used to extend the complete subgraph, and the

second a set of vertices which have already been used to carry

cut such an extension. Since the contents of the vertex subset

is under continual mcdificaticn it is also necessary to

maintain a pointer indicating the last entry into the set.

Some other counters are alsc maintained thrcugh recursive

stacking of definiticns which will be affarent from the

descriftion of the algorithm. In what follows we shall use the

notation develored by Mulligan and bis formulation of the

algorithm.

2. 7. 1 !'!~l'!.II.Q!

Dl number cf vertices in the original graph.

£2~E§Y£1 coroflete subgraph currently teing extended.

fl order of ccrrpsub.

Yl vertex set currently under consideration.

~~l number cf vertices already examined in v.

f~l total number cf vertices in V.

79

~1 pointer to selected vertex from V used to extend

compsub.

fQ§l position cf a rotential candidate.

M~jl number cf vertices not adjacent tc a fixed vertex

amcnq the set of vertices in V already examined.

]j~E2~i minimum number of vertices not adjacent tc a

fixed ver:tex.

Ii!~1 vertex with rraxi[uro de~ree in the subgraph induced

en v.

irn].i. new vertex set.

]i!Dgi nurober cf vertices in NEW that have teen exa~ined

before.

!!~£!l total nu~ter cf vertices in NEW.

2. 7. 2 THE ERON-KERBOSCH ALGORITHM (Mulligan [64])

A. ln11i21 £~11 tc recursive Erocedure EXTENC

~!~El.i. Set V to V (G), c to One to O, ce ton.

§l~Ri.i. Call recursive procedure EXTENt

stop.

(V,ne,ce). On return

80

§l~Ell set minnod to ce, nod to O , i too.

~l~Ei1 set i to i+1. If i>ce or minnoa = O then go to STEP6 •

.§.I~iJ.i set count to O. For each V (j), j=ne+1 to ce net

adjacent to V(i) set count to count+l and pas to j.

~Ilf~l if count < rir.ncd then set fixF tc V(i), minnod to

count and go to STEPS; else gc tc S!EP2.

§l~f2l if i ~ ne then sets to pas; else sets to 2 and nod

to 1. In either case go to STEP2.

§!]f§ Set nod to minnod+ncd.

§11E1l If ncd ~ 0 then return.

§!!f~1 Interchange V(s) with V(ne+1).

~!]E21 Set newne equal tc the number cf vertices in

{V(1),V(2), ••• ,,V(ne)} adjacent tc Vfne+1). Set

NEW(1) ,NEW(2) , ••• ,NEW (newne) equal to those vertices.

ST]flQ.l Set NEW (newne+1) , ••• , NEW (newce) equal tc these

vertices in {V(ne+2), ••• ,V(ce)] adjacent to V(ne+1). Newce

equals the total number cf vertices in NEw.

§l~Ell.i set c tc c+l, compsub(c) to V(ne+l).

§!!EJl If newce eguals O then rrint ccmfsub ~i), i = 1,2, ••• ,c

as a clique; else if newne less than newce then call

EXTEND(NEW,newne,newce)

§1!£111 Set c to c-1, ne tc ne+1.

§l~i1~1 set nod to nod-1. If nod> O then choose uncther

vertex from { V (ne+ 1) , ••• , V (ce)] not adjacent tc f ixi:; and net

yet chosen. Go to STEP7.

The Eron-Kerbosch algorithm has been divided into three

blocks. The task performed by block 1 is to extend if possible

81

a complete sutgrafh ccntair.ed in G by cxaw.ining vertices not

freviovsly encountered to see whether they are adjacent tc all

of the vertices of the ccrrflete subgrafh under consideration.

Control is passed to block 3 where if such an extensicn is

fOssible it is made, a record being kept of those vertices

previous!} encountered and yet tc be elanined. If the complete

subgrafh cannot he extenaea it is printed out. Elock 3

recursively calls block 1 returning only after all fCssible

extensions have teen exauired. Centre] is then fassed to block

2 which makes tbe next pcssible extenEicn tc the vertex set

under consideration at the present level of recurtiicn.

82

1!1.Q~~.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Dinned <-- ce

nod <-- 0

i <-- 0

i <-- i+1

i . ce > .
minncd . 0 :: .
count <-- 0

; <-- ne+1 .;

subs t I (A (V (.i)) • V ~ j) , 1)

count <~- count+l

pas <-- j

j <-- j+1

' j . ce .
count . minncd .
fixp <-- V (i)

minncd <-- count

i . ne
s <-- pas

s <-- i'---..

--- nod <-- 1

28

28

. 0 # .

~12~.!Si

21

22

23

24

25

26

27

]1Q.f!S]

28

29

30

11

32

33

34

35

36

37

38

19

40

41

42

43

C <-- C-1

ne <-- r.e+ 1

nod<-- nod-1

s <-- ne+l

[

substr(V(s) ,fixf,1)

.s <-- s+1

S : CE

return

nod <-- minncd+ncd

nod . o= • return .
sel <-- V (s)

V (s) <-- V(ne+l)

V (ne+1) <-- sel

newne <-- 0

i <-- 1

0 +

substr (A (V (i)), V (ne+ 1), 1)

newne <-- newne+1

NEW (newne) <-- V (i)

i <-- i+1

~ i . ne .
newce <-- newne

i <-- ne-+-2

subs tr (A (V (i)) , V (ne + 1) , 1)

newce <-- newce+1

83

. 0 C .

. o J:..+ 45 .

84

44 NEW(newce) <-- V (i)

45 i <-- i+1

46 42 ~ i . ce .
47 C <-- c+l

48 compsub(c) <-- V (ne+1)

49 newce . 0 = .
50 i <-- 1

51 [print compsub (i)

52 i <-- i + 1

53
. . C l .

54 21
..

+-- newne . newce .
55 21 ~ call EXTEND(NEW,newne,newce)

Let v ,v , ••• ,v be the blocks of vertices cf K 'mk), each
1 2 k '

containing m mutually non-adjacent 1ertices. The Eron-Kerbosch

algorithm proceeds ty fixing a vertex and defining a new

vertex subset to be the set of all vertices adjacent to the

fixed vertex. This vertex subset is partitioned into two parts

tc frovide imformation for determining whether a co~plete

subgraph is maxi•al or has been ccnsidered before. At a given

level i cf the recursion other vertex sets are generated

whenever control again returns to that level by choosing aaong

the set of vertices not adjacent to the original fixed vertex.

This selection frocedure is analogous to the sechanism

employed by the 8educed Hedundancy algorithm fer generating

new vertex sutsets and as a ccnseguence the number of vertices

85

in the derivation tree is the same , namely mk♦l-1, To see that
m-1

this is the case it is cnly necessary tc establish an

equivalence between the nodes of the derivation tree generated

by our algorithm and the ncdes in the derivation tree

generated bJ the Eron-Rerbosch algorithm. If we assign level O

to the node of the derivaticn tree corresponding to the

original vertex set of the grafh, then a node at level i in

the algorithm corresponds to the vertex subset of a complete

(k-i) partite grafh while the selecticn cf fixed vertices made

in the generation of a path from the root tc level i is

contained in the array compsub. From previous discussion cur

algorithm has a node a distance i from the root with two

vertex sets V(G1) ,V(G2). G2 corresponds to a complete sutgiafh

of order i, while v (G1) induces a complete (k-i) partite

graph. Ey choosing that Fath cf length i which results in

V(G2) containing the same vertices as compsut, V(G1) is then

the same set as the vertex subset generated ty the Brcn­

Kertosch algorithm.

Since the algorithm employs the same technique fer vertex

set generation as cur algcrithm, the relative efficiencies of

the t~o procedures are dependent upon. how tbe Frcperties cf

the vertex set so generated are exfloited during an iteration.

This depends on three factors; the way the data is

represented, the order of development of the derivation tree

and the means ty which redundant components are avoided.

86

To determine the computation time required ty the Brcn­

Kertosch algorithm as imflemented ty Mulligan let V be a

vertex set under consideration at level i. The maximum depth

of recursion by the algorithm is k. At level i we have i+1

calls outstanding of which i have teen called ty the

procedure EXTEND itself. All rarameters aefined ~ithin the

FIOcedure are saved, a feature important in the determinaticn

of storage requirements.

A vertex set generated by the algorithm in finding the

cliques of K(mk) has the property that at level i all

vertices that have teen cotsidered lie in blccks V l' V2, •••,Vi

while these jet to l:e considered lie in V ,v , ••• ,v •
i+l i+2 k

There are m(k-i) vertices in the latter collection since every

vertex is adjacent to any vertex in V frcm which the selected
i

candidate was chosen. Hence every vertex in the last (k-i)

blocks of K(mk) has the minimum numcer of disconnecticns since

the vertex set unaer ccn~ideraticn can have at most m-1

vertices from any previous tlock already ccnsidered, the

remaining vertex currently in compsut. Since minnod > 0 fer

all vertices in the vertex subset, lcof:14 tc 4 is repeated

ce-ne-1 times plus once more when choosing a vertex for fixp,

while loop:18-to 4 is repeated at most ne times. Finally, the

inner loop: 13 to 9 is repeated ro (lc-i) times for each vertex

already considered and m(k-i-1) times fer each vertex yE:!t to

be ccnsidex:ed.

The time for one iteration cf tlock 1 is thus tounded by

where

C_i = 7 t 1 + t
4

C~: 3t 1+2t3+4t 4
c 3 = 3t

1
+t

4
Cl =
4

87

Loop:54 to 21 is rereated after every return from the

recursive call in line 55. This equals n-d (fiXF), the numter

of vertices not adjacent tc fix1. lcCfS 27 to 25 and 46 tc 42

are refeated ce-ne times, while lccf:39 tc 35 is repeated ne

times. If i<k-1 a clique has not yet teen found sc stateroents

50 through 53 are skipfed. If we define cr.e iteration as being

the total ccmputation fErfcrroed until a return is made at line

29, then the comrutation time for tlocks 2 ana 3 together is

1:ounaed Ly

with

C 2 =
1

c2 =
),

13t
1

+6t
3

(2t
1

+t /t
4

+t
8

) + (\ +t
3

+2t
4

+t
8

)

The order of the computation time fer cne iteration is

therefcre between n and n 2 • For vertex sutsets such that ne:0,

the computation fer ant: it1::raticn i~ cf cr:der m2 (k-i) 2, the

square cf the numter of vertices ir the subset under

consideration.

88

2.7.5 STORAGE RE2UIREMEN1S

As previously cbserved, the maximure defth of recursicn is

k. Hence all variables defined within the recursive functicn

must te stored k times. !his consists cf rcinters and counters

and the arraJ NEW an integer array of si2e u. The adjacency

matrix of the original grarh and the arraJ compsub cf order n

are maintained outside the recursive prccedure. Since the

adjacency matri} is stored as an array of bit strings the

storage requirerrents fer the Bron-Rerbcsch algorithm as

implemented by ~ulligan are n 2 +n (k+1)+16Ck+16 bits where c is

the numrer of integer scalars defined ~ithin the rcutine

FXTENC, and the additional 16 bits are an allowance for a

globally defined variable.

89

CHAPTER 3: CLI~UF. DIT~CTION USING VERTEX SIMILARITY

It is evident from the otservations and results cf

Chapter 2 that the efficient detection of cliques is severely

hampered by the possibly exponential numter cf such subgrafhs.

Even the act cf printing them out can occupy an inordinate

amount of time unless there exists some means of

simultaneously identifying several cliques and alsc scme ,ore

compact form of notation than explicitly defining the vertex

sets of each clique. Two approaches to this prctlem will be

examined separately in this chafter, each of them exploiting

properties which measure the degree to which any twc vertices

are different.

one such device is similarity of vertices. The

automorfhism grcuf of a graph partitions the set of vertices

V(G) into equivalence classes called the orbits of rtG). Two

vertices are similar if and only if they are members of the

same orbit. Hence there exists a permutation in r(G) which

maps u onto w where u and ware vertices in the saae crbit.

An examinaticn cf complete k-partite grarhs with m

vertices in block v, reveals that every vertex in any block

can be interchanged with any other, ie vertices in any block

are similar. Let u, w be two such vertices. Then if we know

the cliques to which u belongs and a permutaticn which raps

u onto w, we also have all the cliques to which w belongs.

such a tepresentation is more compact as it requires

90

explicitly defining only the cliques associated with u.

In the development which follows we shall tacitly assume

that a procedure for determining the orbits is available. For

implementation we shall employ Corneil•s algorith ■(12]. It is

important to note here that while Corneil•s procedures have

not failed on any graFhs encountered to date, that their

correctness depends on an unproved conjecture. Corneil

therefore describes his algorithm as a heuristic one, a policy

which we formally must also follow when using his routines.

A difficulty with such an overall afproach as offered

here for improving the efficiencj of clique detection occurs

when u and w, vertices in the same ortit, are tcth members of

some common clique, in other words u is adjacent tow. This is

often the case as is illustrated by the existence cf connected

point symmetric graphs, which by definition have all vertices

belonging to the same crbit. Since vertex similarity can he

used at several levels of clique detection other than

enumeration we shall defer further discussion on this problem

until later.

91

The remarks cf the introduction to this chapter suggest

that similarity of vertices may contribute to a

characterization cf the cliques in a graph. To what extent

this is true will be examined in this and the next ~ecticn. Of

particular interest will be the behavior of subgrafhS induced

by a single vertex since this is the major mechanism by which

a graph can be decomposed into smaller sutgraphs fer further

processing. This feature has already been observed previously

in the sequential algorithms of charter 2.

The major rcrtion of this section is devcted to an

examination of cliques in point-symmetric and line-symmetric

graphs. Of particular interest is the degree cf syrietry cf

the induced subgrafhs.

!~]Qi]~ l~l~ The subgraph induced on the adjacency set of a

fixed vertex in a line-symmetric graph is point-symmetric.

f£22fl Let G be a line-symmetric 9raph1 v a vertex in V(G),

and denote by {w
1

,w
2

, ••• ,wk] the set of vertices adjacent to

v. Since G is line-symmetric there

cc.
2

,CL
3
, .•• ,oc.k in r(G) such that:

ot.iv,w
1

) = (v,w
2

)

oc.
3

(v,w
1

) = (v,w
3

)

.
« (v,w) = (v,w

1
)

k 1 -;:

exist permutations

These permutations, together with their inverses, held v fixed

and hence belong tc r , the stabilizer of v. Since every c<. in
V

92

r (G) preserves adjacencies, every ac.. maps w. cntc some
].

w j w h ere w i, w j. a re in { w l' ••• • ~] . If wi • w j are an y t w o
-1 vertices in {w 1 , ••• ,wk] thenC(.CIC. (v,w.) = (v,wJ.) and hence J]. .].

the set of vertices {w1 , ••• ,wk} is similar. Further, since

every permutaticn at~ r maps w. onto some wj the integrity of
V J.

the subgraph induced on (w1 , ••• ,wk} is preserved.

The subgraph induced on the adjacency set of a fixed

vertex in a pcint-symmetric graph is not necessarily point­

symmetric. This is illustrated in the counter-examfle given in

Fig. 3.1. The subgraph induced on vertices adjacent to vertex

1 is given in Fig. 3.2 and is clearly not point-syrmetric.

Dauber and Harary (43] and Folkman [32] have investigated

the extent to which line-symmetric graphs are point-symmetric.

The principal result of tauter and Harary is the estatlishment

of conditions which cbaracteri2e such graphs, namely that

every line-symmetric graph with no isolated roints is Feint­

symmetric or bipartite. This result together with the previous

theorem establishes a sufficient condition for feint-symmetric

graphs to have point-symmetric subgraphs induced on the

adjacency set of a fixed vertex, that condition being that the

graph be line-symmetric or regular bipartite. That this

condition is not necessary is illustrated by the graph given

in Fig. 3.3, a graph not line-symmetric or regular tiFartite

but point-symmetric and ever1 subgraph induced on a set of

vertices adjacent to a single vertex is also feint-symmetric.

For this graph the edge (1, 2) is not similar to the edge

(1, 6) •

93

1 2

8 3

7 4

Fig. 3.1

POINT SYMMETRIC GRAPH

2

7

Fig. 3.2

INDUCED SUBGRAPH OF FIG. 3.1

94

1

5 2

4 3

Fig. 3.3

POINT-SYMMETRIC GRAPH NOT LINE-SYMMETRIC

95

We shall denote by A(v) the set of vertices in a graph G

adjacent to the vertex v.

11;1111.! 1.:.11 let v
1

,v, be any two similar vertices of a graph G,
,:.,

and denote and G
2

the subgraphs induced on A(v1) and

A (v,,) respectively. Then there exists ~ in r (G) such that
,::,

«. G
1

££22£1 Since v
1

, v
2

are similar the numter of vertices in G
1

is equal to the number in G
2

• Let a. te an autcn:crphism of G

mapping V ante v2. Then for
1

each u in V (Gl) there exists a

unique image «.a. Further every such vertex ct u in «. V (Gl) . is

adjacent to V
2

since every vertex u in V(G
1

) is adjacent to

vl. Now by definition V (G
2

) is the set of vertices adjacent to

Since «. is an automcrphism, (u, ',1) is

only if (c3'U 1 0LW) is in E (G). Hence for

(u, w) is in E (G
1

) if and only if («u, o£.w) is

"'- u, OLW are vertices from V (G
2

) • Therefore

and hence c(G
l

-= G •
2

in E (G) if and

any u,w in V (Gl),

in E (G
2

) since

E (G
2

) -= o(,. E (G
1

)

As a consequence of this Lemma we have thE fcllcwing:

LEMMA 3.2: Let G be a feint symmetric graph, and denote by

°' , « , ... ,al. automorphisms of G such that
2 3 k

c(. V -= V,
:.::: 1 ,2

()l. V -= V
3 l 3'

.
G(v -= v.

k l k

96

Then it is the case that:

=

=

.
=

where denote the subgraphs induced on

Let te the vertex set of G for

i = 1,2, ••• ,k and suppose without loss of generality, that

OC.v~-= v~. Then clearly if we know the cliques of G1, we can
1 J J

find all the remaining cliques of G knowiny the ferwutaticns

Ql
2
,«.

3
, ••• ,(3(k. To avoid duplication of cliques the following

test can be employed. If we are examining the cliques

associated

containing

with component G.,
l.

then delete all cliques

vertex v. for j = 1,2, ••• ,i-1 as such cliques have
J

already been found during the examination of component Gj.

Such a strategy encounters difficulties on two fronts.

First, as we have seen previously, the pcint-symmetry cf a

graph is no guarantee for the point- symmetry of subgraphs

induced on vertices adjacent to a point, hence the froblea of

determining the cliques of G is as yet unresolved. Secondly,

the determination of automorphisms"'-2 ,oL~ ••• ,«k is in general

a difficult problem.

we can overcome the first difficulty by generalizing the

procedure to include graphs which are not necessarily point­

symmetric. Then, the existence of an algorithm for determining

97

the orbits can be exploited in the following way.

Every membec cf each orbit can be represented by a single

vertex which determines the induced sutgrafh for further

processing. If /) = {v. ,v. , ••• ,v. } is an orbit of r(G) for
11 12 lk

some graph G an d i f « . , oL . , • • • ,Cl(. are p e c mu ta t i C n s i n r (G)
11 12 lk

such that:

Cf.. • V. = V •
1~11 l~

DL. V. = V.
1311 13

.
o(.V. = V,

1 k1 1 J.k
then by an argument simliar to that previously given the

cliques associated with v. , ••• ,v. can te determined if we
l~'. lk

know the cliques associated with v .• The development of an
11

algorithm utilizing such techniques will te the focus of the

next section. The cbject will not be to find all the cliques

because of the difficulties associated with deteruining the

permutations which map similar vertices onto each other.

Rathec, the al~orithm shall attempt to find a set at ncn­

similar cliques cf a graFh G which together with a kncwledge

of the automotfhism grcup r (G) will be sufficient to

determine all the cliques of the graph. The algcrithm can thus

be ccnsidered as a sub-program which when incorporated with a

sub-program for determining the automorfhism grcuf ~ill

provide a mechanism for finding the cliques.

98

The purpose of the procedure to be descrited here is to

somehow characterize the non-similar cliques of a graph. Two

cliques C and C of a graph Gare said tote similar if there
1 2

exists an automorphism ol of G such that ac.c
1

-= C •
2

A naive apFrcach to the problem of determining the non­

similar cliques of a graph which serves to illustrate what we

are attempting to find involves generating the "eguivalence

classes" induced on the set of all unordered k-tuples of

vertices of G by the automorphism r (G) , for

k=1,2, •••• n-1. Fer any given k, we examine the cliques that

are members of each equivalence class, chcrising cne as a

r~presentative member. Since the automorphism group preserves

adjacencies, two k-tuples are members of the same class cnly

if the subgrafhs cf G defined on the vertices represented by

the k-tuples are isomorphic. such a procedure, therefcre,

clearly provides more information than we desire as we are

intersted only in those classes whose k-tuples are the

vertices of maximal complete subgraphs.

The mechanism to be emfloyed will depend primarily on the

observations of the previous section; namely, that it is

possible to generate all the non-similar cliques of a graph by

reducing a graph tc comfonents equal in number to the ortits

of the automorphism group of the graph, each ccmfonent being

the subgrafh induced by a vertei from an orbit. Each component

will then serve as input and subsets of vertices will thus be

generated in a recursive manner analogous tc the sequential

99

procedure described in chapter 2.

There is not, unfortunately, sufficient infcrmaticn tc

determine all the non-similar cliques of a grafh frcm the

orbital partition of V(G) alone. This is illustrated by the

following example. Suppose we afply the frocedure of cheesing

vertices as just described to the graph of Fig. 3.3. Since

this graph is point-symmetric, one vertex shculd be sufficient

to characterize the "first" vertex of all the cliques. Let

that be vertex 1. The subgraph induced on vertices adjacent to

1 consists of three independent vertices 2,5 and 6 each of

which belongs to the same block of the orbital partition of

V(G). The "second"· vertex of all cliques should therefore be

characterized by one vertex, say 2. As (1,2) is a clique cf

the graph and since we have argued that a single vertex and

the subgraph induced on adjacent vertices should be sufficient

to characterize all cliques of the graph, we wculd have tc

claim that all cliques were similar to (1,2) which we know to

be false since the graph being examined is net line-symmetric.

In fact we have previously otserved that edge (1,6) was net

similar to edge (1,2) and therefore should also have been

generated in the determination of the non-similar cliques cf

the graph.

We can resolve the twc non-similar cliques of the graph

of Fig. 3.3 by using not only the orbital partition of V(G)

but also by determining the orbits inducea en 2,5,6 by the

stabilizer of 1. This results in a partitioning of {2.5,6}

into two sets {2,5} and {6}. Ey selecting a refresentative

100

vertex from each cf these sets we can obtain two non-similar

cligues say (12) and (16). This example illustrates the fact

that although the group P(G) of a graph may be transitive on

the vertex set V(G) it is not necessarily transitive on A(v).

We have previously shown that if G is line-symmetric then this

will be the case. Before we present a description of an

algorithm for finding the non-similar cliques cf a graph frcm

its orbital structure ve examine further the orbits of the

stabili2er of a particular vertex v in the follcwing two

theorems.

1~11 Every automorphism 01.. in the stabili2er, r , of v
V

is an automorphism of G, the subgraph of G induced on the set
V

of vertices adjacent to v.

f!QQf: Let P be a fermutation matrix corresponding to the

automorphism ~

vertices of of G

in r. Without loss of generality assume the V .

are labelled 1,2, ••• ,m, and the remaining

vertices in G are labelled m+1,m+2, ••• ,n. Let A (G) be the

adjacency matrix of G, A(G) that of G. ClearlJ A(G) is of
V V

the form:

Since P corresponds to an automorphism in the stabilizer

of v, by Lemma 3.1 F maps V(G) onto V(G) and is therefore cf
V V

the form:

:] where
2

labelled 1,2, ••• ,m, the vertices in

Pl

V (G) •
V

acts on vertices

101

Since is an automorphism of G, it is the case that

As a corollary to this theorem we have following result:

COROLLARY: Every crbit of is contained in some orbit of

£I£2!l By the previous theorem every automorphism of G is one

of G. Let u,w be vertices in V(G) and suppose there existslllt'...
V

in r such that «u = w. Eence o(. is an automorphism of G and u
V V

and w must be members of the same orbit induced on V(G) by
V

rcG) • QED.
V

.!~!Q]!~ 1~1~ Let G be a connected point-symmetric grarh. Then

G is line- symmetric if and only if for an arbitrary vertex v,

the stabilizer r cr,G; of vis transitive on A(v) the set of v-

vertices adjacent to v.

E~£E1l Let A (v) = (w
1

,w
2

, ••• ,w k j. If G is line-symmetric then

for any w. ,w. ,i =#it j, (v,w.) is similar to (v,w.). Hence cL is
l. J l. J

transitive on A(v).

conversely sui:i:ose r is transitive on A (v). Then for any
V

w.,w. there exists OL in r such that ol(v,w .) = (v,w.).
J. J V l. J

Further since G is point-symmetric, for any ether vertex u * v

in v (G), there exists /3 in r(G) such that 13v = u. If

preserves adjacencies

102

A(u) = V3vl'fJw 2, ••• ,/Jwk} and hencet3(v,wi) = (u,xj) for some

x j in A (u). Finally every edge (u,pw i) is mapped cntc (u,15w j)

-1 by the auto1Dorphism /3ol.. p , hence every edge incident to a

vertex u or vis similar to any other edge also incident to a

vertex u or v. Since u was chosen arbitrarily we can conclude

that G is line-symmetric.

The observations made in the previous theorems frcvide

the machinery by which we can define an algcrithv fer

determining the ncn-similar cliques of a graph provided we are

equipped with a procedure for determining ortital fartitions.

Since two vertices which are members of the same orbit

will be members of similar cliques, we initially determine k

representative vertices one for each of the k orbits of the

graph. Further, ve shall require a knowledge of the ortits cf

the respective stabilizers of the representative vertices.

The algorithm recursively decomposes subgraphs defined on

the set of vertices adjacent to a representative vertex into

as many new subgraphs as the number of blocks of the orbital

partition of the stability subgroup fixing that particular

representative vertex. Each new subgraph is determined as the

subgraph induced on the set of vertices of the cld subgraph

adjacent to a single vertex chosen from one of the blocks of

the orbital partition and is subsequently reduced in a si1ilar

manner.

103

A record is maintained of the representative vertices as

they are chosen, and when there exists an isolated vertex in a

block of the partition, a complete sutgrafh has been found.

This subgraph is then examined to see if it is maximal by a

procedure similar to that of the Reduced Redundancy algorithm

in the previous chapter.

As stated freviously, to determine the ortits we shall

employ corneil's algorithm for constructing the Terminal

Quotient Graph, a graph each of whose vertices, it is

conjectured, corresponds to a block of the orbital partition

of V(G) [13]. Corneil's algorithm is ideally suited tc our

purposes since in determining the Terminal Quotient Graph, he

determines not cnly the vertices of the original graph

belonging to each block of the partition tut alsc the crtits

of r for a vertex V from
"

each orbit of Since the

adjacency set of vis obviously a subset of V(G) it is easy tc

determine the orbits of r to ~hich they belong. Corneil's
V

algorithm provides this information in the determination of

the vertex quotient graphs of G which are constructed ty

fixing a vertex and then determining the partition induced on

the remaining ver~ices of V (G). Corneil uses the vertex

quotient graphs tc determine the orbits of r (G) by grouping

two vertices in the saroe class if and only if they have

identical vertex quotient graphs.

104

NOI!IJ.Ql!

8.:theithorbitof r(G).
J.

Ailll row v of the adjacency matrix of G.

Q1l vertices yet to be considered for a particular subgraph.

§21 vertices which induce a comflete subgraph.

~1.i new vertex set to be examined, derived from G1.

~ll expanded vertex set inducing a complete subgraph.

NON-SIMILAR CLI~UES ALGORITHM

2!.Ef1l Use Corneil's algorithm to find the orbits0~,8~, ••• ,I~

of r(G). In addition, let 6}0;, ... ,8;vte the crtits of rv
induced on A(v) •

.§.!]R1l Choose a vertex set (G1,G2,w) fro11 the stack of

candidates. If stack emfty, then stop.

21'.,gf].i Compute T = v~ Glu~
2

A (V). If T not eu,pty then go to

STEP2.

§!]R!l If G1 empty then print G2 as a clique and go tc STEP2.

i to 1 and F to G1.

8"!nG1 emfty then go to STEP10.
J.

Choose v in Q"!f'l G1 not previously chosen. If none left
J.

to ex a m in e , 1 e t v be a n .Y v er t e x i n 8 "_f n G 1 a n d g c t c s 'IE P 9 •
1

§ll.f!!.i. If G2f\ A (v) not empty then go to STEP9; else go to

STEP7.

§!].R.2.i Define a new vertex set (H1, E2,v) with ll1 = FrlA (v) and

H2 = G2U{vJ. Put (H1,H2,v) on the stack.

i tc i+1 and F to Ff\ (~(J"!). If i~k
1

then go to

105

STEP6; else go to STEP2.

3.5]ISCUSSION OF TBE ALGORITHM

The algorithm for enumerating non-similar cliques of a

g~aph is similar tc the sequential algorithm for the

enumeration of all cliques proposed in Chafter 2. However,

whereas the seguential algorithm's efficiency was dependent

upon the number cf cliques in the graph and the number of

elements in a vertex subset, the determination of ncn-similar

cliques by the methcd just described is dependent upon the

similarity of vertices in the graph. It is clear that this

determines the number cf orbits of the group as well as the

number of non-similar cliques. Since it is cr.ly necessary to

consider one vertex from each of the blocks of the partition

of A(v) induced by the statilizer of an aFfrCFriate vertex v,

the number of vertices that need be examined and hence the

number of new vertex subsets generated is reduced if the

number of blocks in the ortital fartiticns determined in stefl

is small.

It is possible for a graph to have an exponential nunher

of cliques, none of which is similar to any ether. This is

illustrated by the grafh of Fig. 3.4. The subgraph induced on

vertices { 1,2, ••• ,8} is K(3,3,2) the graph on eight vertices

with maximum number of cligues. Additional vertices are then

added to insure that the graph has identity grcuf. Hence every

clique of G is ncn-similar to every other. In general it is

106

possible to construct a graph on 6k vertices having crder 3k

cliques in a similar ■anner. The purpose of this demonstration

is to emphasize the fact that the detection of ncn-similar

cliques may itself be an exponential process.

107

Fig. 3.4

GRAPH WITH ALL CLIQUES NON-SIMILAR

108

In the algorithm for determining the non-similar cligues

of a graph. it was not possible for us to apply orbital

partitioning to the vertex sets of each component obtained in

the reduction of the graphs. This was tecause the ncn-siailar

cliques were deter ■ined by the orbits of r v of v, and not

r (GJ. We have previously shown that for every automorphism

of rv' there is an automctphism of r (GJ. However the converse

is not necessarily true since two similar vertices in G might

be non-similar in G. If grouped in the same class, a non-
v

similar clique wculd be lost.

We can however employ this strategy if we wish to

determine only the existence of cliques of different orders.

Such a technique is seen to examine fewer vertex subsets than

a procedure fer finding the non-similar cliques cf a graph,

since we can take advantage of any symmetry that exists in the

subgraph induced on a particular vertex sutset. The vertex

sets which are nearly resolved into cliques exhibit a high

degree of vertex similaritJ and by only distinguishing between

vertices in different orbits, the numter of vertices examined

is greatly reduced. The fact that cliques of all orders

originally present in the graph will

established by the following argument.

te obtained is

If we determine the orbits of r(G) on V(G), two vertices

u,v in V(G) are members of the same ortit if and cnly if the

subgraphs induced on those vertices of V(G) adjacent to u and

those adjacent to v are isomorphic. Hence each induced

109

subgraFh has the same number of cliques of each order and

consequently either induced subgraph may te chosen fer further

processing and the other ignored without fear of losing all

cliques of a particular order.

THE ALGORITHM

.§!~£Q1 Initially flace (G1, /) on the stack.

~!~£11 Choose a vertex set(G1,G2) from the stack. If the stack

is empty ,then stcf.

~!]Rll Compute T = v8YG~(v). If Tis not emptJ then go to

STEP1.

§!]£11 If G1 is empty then print G2 and go tc STEP1.

§!]~~l Determine the orbits 9 1 ,8?-, .. • ,8k of the autcmcrphism

grouF of the subgrafh induced on vertex set G1.

§!]£~1 Set i to 1 and F to G1.

§.!~£&1 Choose v in (J .n G 1 n (A (v)) and define a new vertex set
].

(H1,H2) where H1 = FnA(v) and H2 = G2U{v}. Place (H1,H2) on

the stack.

.§TE£1l Set i tc i+l and F to Fn (-0.). If i~k then go to
l

STEP6; else go to STEPl.

This algorithm is very similar to the Reduced Redundancy

algorithm for the enumeration cf cliques. It is obvious that

the latter algorithm could te employed to deterwine the crders

of the non-isoroorfhic cliques of a graph. However in view of

their possibly exponential number, it is desiratle tc find

some means of reducing the number cf vertex subsets generated

by reducing the number of vertices that need tc te exauired.

110

This is achieved in our algorithm by again exploiting the fact

that two similar vertices belong to the same number of cliques

of different orders and therefore in the situation where we

wish to find the orders of the different sized cliques of the

graph, it is only necessary to treat one of the two similar

vertices.

It should be noted that in step 6 of the algorithm it is

not sufficient to choose one vertex from each of the k orbits

of the automorphism group of the subgrafh induced on G1. This

is because it may turn out that the number of orbits exceeds

the number of vertices not adjacent tc v, in which case our

algorithm would perform more poorly during that iteration than

the Reduced Redundancy algorithm of the frevious chapter since

it would generate more new vertex sets than the sequential

procedure. For this reason v is chosen from B{'G1f'"l (~A (v)).

111

In the previous sections we have attempted tc exflcit the

similarity of vertices in a graph as an aid to the detection

of its cliques. This was only partially successful, cne of the

major difficulties being the difficulty of determining the

group of the graph, which was necessary fer a complete

enumeration of the cliques. Even the task of determining the

non-similar cliques has proved to be limited ty the existence

of few good procedures for finding the orbital partition of

the vertex set. Finally, we saw where it was even rcssitle fer

a graph with identity group to have an exponential number of

non-similar cliques.

In this secticn we shall explore an alternative approach

in which two vertices will be related by a condition stronger

than that of similarity.

DEFINITION 1.1: Twc vertices u and w of a graph Gare said to

be £~~El~!~ ~]~~£~Ih eguivalent JCS eguivalentl if for any

subgraph of G defined on vertices cf V jG) ,

u , V l' V , ••• , V .
~ J

are mutually adjacent if and only if

WV V V ar e mutually adjacent. Two vertices cf degree 0 ' l' 2•••·, j

are cs equivalent.

It is clear from the definition that if two vertices are

cs equivalent then they are similar. This fcllcws from the

fact that two CS equivalent vertices are adjacent to the same

set of vertices and can be interchanged. By finding all the

cliques to which vertex u belongs, we have also found all the

112

cliques to which verte~ w belongs and it is a simple matter to

determine the latter explicitly: for each occurrence of u in a

clique, replace it by w.

A SUFplementary but equallJ important advantage of a

method which reduces the number of vertex subsets to be

considered by finding complete subgraph equivalent vertices is

that it provides a means of representing all the cliques of

the graph in a more concise manner than explicit enumeration.

Given the vertex set V(G) of a graph G, let v 1 ,v 2 , ••• ,vk tea

set of CS equivalent vertices, all of which are by definition

adjacent only to vertices in A(v1), the set of vertices

adjacent to v. If we denote by c1 the set of maximal complete

subgraphs induced on the subsets of A (v1) the Cartesian

product {v
1
,v

2
, ••• ,vk} X c

1
is precisely the set of all

cliques of G containing one of the vertices v1 ,v 2, ••• ,vk. It

is evident that this procedure could be extended sc that the

cliques of c
1

were also expressed as a set of Cartesian

products each one being determined by a set cf cs equivalent

vertices and their common set of adjacent vertices defined on

the subgraph induced on A(v
1

). As an example we may consider

again the graph K(3,3,3) given in Fig. 2.1. The vertices 1,2,

and 3 are cs equivalent and are each adjacent to vertices

4,5,6,7,8,9. In the subgraph induced on this latter set of

vertices, the vertices 4,5,6 are CS equivalent and each is

adjacent to vertices 7,8,9. Since the vertices 7,8,9 are

isolates they are also cs equivalent. Thus all the cliques of

the graph are given by the exfression:

(1, 2, 3} I((4, 5, 6 } X(7, 8, 9 J 1,

113

This is obviously a much more compact way cf defining the

twenty-seven cliques of K(3,3,3).

The primary drawback of implementing the technique just

described is the faucity of vertices which are CS equivalent

in an arbitrary graph. Instead, we shall implerrent a frocedure

which uses a weakened form of the definition cf complete

subgraph equivalence to group the vertices in a similar

manner.

DEFINITION 3.2: Twc vertices u and ware ~~~!1~ f2 ~E]l1~1~]!

if there exists a comflete subgrafh defined on some Eut~et of

vertices of G say u, V l' V , , ••• , V ,• ,_, J
such that the subgraph

induced on w,v
1

,v
2
, ••• ,vj is also complete.

It is clear from the definition that weakly CS equivalent

vertices are not necessarily similar, and that complete

subgraph equivalent vertices are weakly CS equivalent.

We now consider the properties of a set of weakly CS

equivalent vertices defined in the following way. Let l. be an

arbitrary vertex from V(G) and

vertices also from V(G) such

to all vertices in A(v
1

).

let

that

All

(v
2

, ••• ,vj} be

each vertex V.
J.

the complete

a set of

is adjacent

subgrafhs

containing v
1

including the cliques are induced on (11 u A (v
1
).

If induces a complete sutgrafh then

v ,w ,w , •.• ,w alsc induces a complete sucgrafb. Further,
1 l 2 k

since v
1

is adjacent to every vertex in A(v
1
), it is adjacent

tow ,w , ••• ,w and hence{v.,w
1

,w
2

, ••• ,w,J induces a ccroplete
1 2 k J. - ..

subgtafh. Therefcre V V
1

, .
l

are weakly cs equivalent. ~est

114

importantly it is the case that every clique of G with

vertices from the set is induced en

{v
1
,v

2
,. •• ,vj}uA(v1). In other words, given any vertex set

(vi,w1 , ••• ,wk] inducing a complete subgraph, all possible

vertices which could be used to extend that vertex set so as

to induce a larger complete sutgraph must te contained in

(v
1

, V
2

, ••• , V j } U A (V l) •

If we denote by Vl the vertex sets of all complete

subgraphs which are maximal on the sut:grafh induced en

(v
1

, v . , ••• , v . } , and denote by v2 the vertex sets of all
.::, J

complete subgraphs which are maximal on the subgrafh induced

on A(v
1

), then the vertex sets determined by the Cartesian

product v
1

X v
2

induce complete subgraphs which are maximal on

G.

This result has an alternative interFretaticn as a

product of graphs. The j~iE (see for example Harary (43]) of

two graphs G
1

and G
2'

denoted G 1 + G2, is the grafh G defined

on V (Gl) U V (G
2

) such that every edge of Gl or G2 is an edge

of G and for every vertex v in V (Gl) aud vertex w in V (G
2

) ,

(v,w) is also an edge of G. Let c
1

be a complete subgraph

which is maximal on the subgraph induced on {v1 ,v2 , ••• ,vj],

and let C be a subgraph which is maximal on the subgraph
2

induced on A(v
1
). Then c

1
+ c

2
is a clique of G.

We illustrate the determination of the cliques of the

graph by finding weakly cs equivalent vertices in the

following example. Consider the graph of Fig. 2.9. It is

evident by inspection that no pair of vertices exists which is

115

complete subgrafh equivalent. Instead we define two sets of

vertices by first choosing artitrarily vertex 1 and defining

one set to be A(1) = {2,6}. Now vertices 3 and 5 are also

adjacent to (2,6} so the second set is { 1,3,5]. By repeating

this procedure on the subgraphs induced on the first cf these

vertex sets we discover that (2,6} can be separated into two

sets expressible as a Cartesian product {2}X(6] ccrresfonding

to a complete subgraph of order 2. The vertex set { 1,3,5}

however consists cf two components, an isolate 1, and a

complete subgraph of order 2 defined en {3,5} and exrressible

as(JX5}- The ccmflete subgraphs of the sutgrafh induced en

{ 1,3,5} are induced on vertex sets (1} and {3}X{5] and hence

some of the cliques of Gare given ty ([2}X(6]]X[1,[3 }X{5])

which corresponds to the cliques (261) and (2635). It is clear

that not all the cliques have been found for we have not yet

examined vertex 4. We therefore determine two new sets {3,5}

and (2,4,6} in the same way, and the processing of their

induced subgraphs yields f{3}X{5J}X [4,(2}X{6}) giving us the

third subgraph (354).

This examfle illustrates the principal drawback of this

procedure for enumeration, namely the generation of redundant

cliques. We have encountered this type cf frcblero in nearly

all of the algorithms freviously discussed. The most usual

means of overcoming this problem has been tc siw.rly examine

each vertex of the induced subgrdph to see if there exists

some vertex not in the set, yet adjacent to all vertices in

the set. Such a mechanism is clearly not applicable in this

case. Alternatively, Peay in his algorithm as criginally

116

described, maintained all cliques in a stack which he could

compare with newly determined maximal complete subgraphs to

see whether it had been found before. Although more directly

applicable to our situation, this method is net useful since

we have no explicit representation for each clique with which

to compare. In addition we must make use of a possibly

exponential amount of storage. This difficulty is partly

overcome in the following algorithm by making use of

information pertaining to the current derivation path in the

tree of derivations in a manner described in the next section.

§Q~§i!fB EQUIVALENCE ALGORITHM

Two stacks are used in the algorithm. Stack 1 consists of

all vertex sets derived in the development of the current

derivation path except those from which the current set is

derivable. Stack 2 consists of all vertex sets directly

derivable from the last vertex set in the derivation path.

BLOCK A: Initiali2ation procedure.

2!~Ell Let V(G) be the set of all vertices in the graph and

initially set both stacks to be empty.

2!~Rll Call recursive procedure ~NUM(V(G)) defined in BLOCK a.

The order and adjacency matrix of Gare defined glcbally to

ENUM on return, step.

BLOCK B: Recursive procedure ENON (V(G)).

2!!!11 Choose a vertex v in V(G)and define a vertex ~et F

117

equal to the union ot v together with all vertices not

adjacent to v.

§!]£li Choose a vertex w from F and define vertex sets

H 1 == V (G) f"\ A (w) and H2 equal to the set of all vertices in F

adjacent to every vertex in H1.

§!~ill If the vertex set H1 u H2 is contained in a vertex set

previously defined during this iteration then go to STEP?.

§!ll~l If the vertex set H1 u H2 contains a previously defined

vertex set duri~g this iteration then replace that vertex set

by H1 u H2 on stack 2.

§I!R~l Compare Ht u H2 with all vertex sets generated during

previous iteraticns in the developroent cf the current

derivation path ether than those vertex sets from which

H1 u H2 was derived. If Ht u H2 is contained in scrne previous

such set then delete it from stack 2. Otherwise place the new

set on stack 1.

ST]E&l A new pair of vertex sets has teen found. Stack 2

contains their unicn as well as the vertex w used tc define

them.

§!~Ell Delete w from F. If Fis not empty then gc to STEP2.

!IJRil If no new vertex sets have been added to stack 2 this

iteration then return.

§I!£~ Choose a pair of sets H1 u H2 from stack 2 together with

their defining vertex w. Remove this set from stack 1.

§I]E1Qi If Ht is empty then print vertex wand gc to STEP14.

§I~111l Call recursive procedure ENUM(B2).

§I!.f1~.l Print 11 X 11 • (The maximal complete subgrai;hs of

Ht u H2 will be given by the Cartesian Product cf the results

118

upon return from calls in STEP11 and STEP13.

~TBR11l Call recursive procedure ENUM(E1).

ST]f1~l Return H1UH2 and w to stack 1 tut delete it from

stack 2. If stack 2 not empty then go to STEP9.

a!]fJji Return.

As previously described, the algorithm finds the cliques

of the graph by determining sets of weakly cs eguivalent

vertices in a particular way. A new vertex set whose vertices

have been partitioned into two sets of weakly CS equivalent

vertices is determined by choosing a vertex v from a set F and

defining the twc blocks H1 and H2 of the partition according

to STEP2. The set F consists of a vertex v and all vertices of

the induced subgrafh on the current set of vertices, V(G),

under consideration not adjacent to v. This set insures that

all cliques will be found and was employed in the Ha~ary-Ross

algorithm and the Brcn-Kerbosch algorithm as well as our own

sequential algorithm previously discussed in ChaftEr 2.

We are thus guaranteed of finding all the cliques and it

is therefore only necessary to minimi2e the possibility of

finding redundant cliques. As we have mentioned, this is net a

simple problem because of the nature of the refresentation

being exploited in our algorithm. The technique employed is to

keep track of all vertex subsets from which a newly determined

vertex subset could pcssibly be derived. To do this it is

sufficient to keep track of only the initial ncdes cf all

possible branches in the derivation tree which deviate from

the path of derivations we have taken to reach the current

119

vertex subset under consideration. BJ definition all other

vertex subsets derived during the execution will be contained

in one of the vertex subsets represented by these nodes. In a

derivation path of length k, let v. be the defining vertex of
l.

the vertex set Hl v H2 represented ty a node on the derivaticn

path at distance i from the root. It is evident that the

ma xi mum number of vertex subsets generated during the

generation of set H1 u H2 is n.
1

-d(v.
1

) where n.
1 l.- 1- 1-

is the

number of vertices in the i-lst vertex subset in the path of

derivations and v.,
).-J_

is its defining vertex. The maximum

number of vertex subsets placed on stack

k
i~l (1+ (n:L-1-d (V i-1))) •

1 is thus

In Fig. 3.5 we illustrate the vertex sutsets invclved in such

a sequence of derivations. Since our algorithm employs a depth

before breadth technique of develoFment, it is clear that

stack 1 is not exponentially growing. Hence any gains in

efficiency from such a representation will not te ctfset by

inordinate storage requirements.

120

Fig. 3.5

A PATH IN THE DERIVATION OF NON-SIMILAR CLIQUES

121

It is difficult to assess the overall efficiency of this

algorithm because the choice of a "test" defining vertex at

each iteration is a non-deterministic procedure. Clearly. the

worst case occurs when the choice that is made results in an

explicit enumeration of every clique in the grafh. In this

situation. since the mechanism by which new vertex subsets are

generated is similar to that of the Bron-Kerbcsch or our

sequential algcrithm fer the enumeration of cliques. a one-one

correspondence can be made between the nodes of the derivaticn

tree of this new algorithm with either of the previously

discussed sequential algorithms.

k
Because a search of as many as ~ (n .. 1-d (v .• 1)) elements

i=l .L- l.-

i n a stack must be made (see Fig. 3 • .5) for each new vertex

subset in addition to its generation. it is evident that the

time required for one iteration will be longer than that

required by the sequential method. Since we have e~Flcyed the

same techniques of cur previous algorithm to the generation of

new vertex subsets• the time required for cne iteration is

proportional to

required

Chapter 2.

for

k
2::
ial

(n-d(v.))• T(n)
l

where T(n) is the time

one iteration of the sequential algorithm of

When. however. we can take advantage of the weak CS­

equivalence of vertices to minimize the number of vertex

subsets generated. the maximum efficiency is realized by the

greatly reduced derivation tree. This is clearly evident for

any complete k-rartite grafh K (m
1

.m
2
••••• mk). Here, each block

of m. vertices corresponds to a set cf comflete Eutgrafh
l.

122

equivalent vertices, and hence also a set of weakly cs

equivalent vertices. The derivation tree for K(m 1 ,m 2, ••• ,mk)

using our new algcrithm is linear, as only one vertex at each

iteration defines a new subset. We illustrate such a

derivation for K(34) in Fig. 3.6, where the vertices of block

V. are labelled (i-1) m + 1,
1

with m = 3.

(i-1) m+2, ••• , (i-1) m+111,

For the ccmplete k-parti te k graph K(m), the number of

nodes in the derivation tree determined by our algorithm is

mk+2 (k-1) +1 for k > 1 and 2 (k-1) +1 for k ::. 1.

Obviously then the derivation trees are smallest for

complete k-partite graphs. As mentioned previously the wcrst

case to be enccuntered occurs when there are no weakly cs

equivalent vertices in the graph and consequently cligues are

enumerated explicitly. The derivation tree may be used to

determine the number of cliques in the graph. If we again

examine Fig. 3.6, edges of the tree incident tc a comacn

vertex have been related by by the symbols "X" or n n ,

according to whether the sets deter111ined in that derivation

can be combined in a Cartesian Product to obtain a subgraph of

the original grafh G. If not then their union (denoted by",")

is a subgraph of G. we illustrate this notation ~ith the

example of Fig. 3.7, a derivation of the cliques of Fig. 2.9.

Using such a notation, the cliques are given bJ the

expression: {1 X {2 X 6)),(3 X {(2 X (5 X 6}),(4 X 5})}.

From this examfle one can see that the clique (126) bas

been explicitly defined while those containing the vertex 3

123

(ie. (2356) and (345)) are grouped together:. It is evident

from Fig. 3.7 that there cannot be any edges net incident to

the root of the derivation tree which ar:e related by a"," for

a graph whose cliques are all determined explicitly. since the

number of vertex subsets generated from the root is at most n­

d(v) where vis a ver:tex of minimum degree, such a graph has

fewer than n cliques. Hence all grarhs having mere than n

cliques have some vertices which are weakly cs equivalent in

the induced subgraph defined on some vertex subset; therefore

some improvement over a sequential algorithm can cften be

obtained by reducing the number of verte~ subsets that must be

considered.

124

1 2

4 5

7 8

/
I

I

/
/ X

I

3 /
/

/
/

/
/

6

/
I

9

I
/

/

I

10

V(G)

v
1

,v
2

u it
3

u v
4

'\

' " \
'

,

11

Fig. 3.6

•

DERIVATION TREE FOR K(3,3,3,3)

12

/ ,,,. ,,,.
✓,

1

/

/' l
,, I

/ I / X I
I
I

26 3

/\ 2,6
I \

I \
I X \

/ \
I \

I I
I. l

/
/

·"

V(G)

3,2456 y;\
/ \

/ \ / X
/ \

\
\

246,35

pruned

2456

4,5
\ '
\ '
\ ·X ',
\ '
\ ''
\ '

s , 2Ju6

pr uned.

\ , ..
2 6 4 5

I \ 5,6
I \

I X \
I \

I \
I \

I \
5 6

Fig. 3.7

DERIVATION TREE FOR FIG. 3.1

125

126

4.1 IN1RODUCTICN

In the previous two chapters we have explored some cf the

ways in which cliques can te detected in graFhs. we have also

examined how various properties associated with graphs might

be used tc improve the efficiency of such algorithms. The

major otservation to te made is that it is net at all clear

hew one might devise an efficient clique detection algcrithm

even to detect cligues cf a rarticular order. In this chapter,

however, a procedure for the detecticn cf such cliques is

propcsed ~hich can be proved to be an efficient algcrithw fer

a particular class of grarhs and fer which nc counterexample

has yet been found for general k-partite graphs.

An important application of clique detection in grafhS is

motivated ty the fact that it is rcssible tc rerresent a well

formed formula of the propositional calculus in disjunctive

normal form as a k-partite grarh where k is the number of

conjuncts in the sentence. In the survey of Charter 1 we

mentioned briefly the efforts of Cook, Karp and Lawler, arong

others in developing a taxcnomy cf corbinatcrial protlems. In

rarticular we noted an important result of Cook's which

relates the tautology problem to a numter of ether im~crtant

comtinatorial ~rotlems. An extensive list cf theEe problems

has been prepared by Karp [49]. We shall use his notaticr, tc

define the concepts required in de~criting the equivalence ct

a k-partite graph tc a well-fcrmed formula in diEjunctive

127

normal form.

4.2 ~11~.1'~ DETECTION!!] SATISFIAEILI'IY

We turn now tc a ccnsideraticn cf the "Satisfiatility

Prcblem" as defined by Karp [49) and its solution through the

detection of cliques in a grafh as suggested by Mcwshcwitz

[6 3].

DEFINITION J]A]ill The satisfiatilit1 £rotlem is defined as

follows: Given as input the clauses c
1
,c

2
, ••• ,cp, of a well­

formed formula in conjunctjve ncrmal fcrrr, does there exist a

sets {x
1

,x
2

, ••• ,:>1n; i
1
,x

2
, ••• ,xn} such that

A

a.) s does net ccntain a complementary fair of literals

and

for k= 1, 2, ••• , p.

We are thus given the well - formed fcrirula

C n C n .•. /"l C and asked to decide whether
1 2 p

CI not it is

satisfiable. Tc do this we convert its negation to disjunctive

normal form. SupfOSE -A is a tautclcg~. Then fer all possible

assignments of truth values to the variables cf ~A, ~~ is

true and consaguently A is false for all possitle assignwents.

Therefore A is satisfiable if and only if - A is not a

tautclogy. It is the disjunctive normal form cf ,.,A that we

shall represent ty a qr:afh.

Let DuDu ••• uok
1 2

be a sentence of the

f£Ufcsitional calculus in disjunctive normal form with each

conjunct [. -
l.

. . . where a . is a literal.
l. .

J

128

Define a k-partite graph G as follows. Each ve-rtex in V fG)

corresponds to a literal of s, there being as many vertices as

there are literals of s. The unordered vertex pai-r

corresponding to literals a and bis an edge cf G if and cnly

if a is not the complement cf b, and a and b are not toth

members of the same conjunct. Thus to each conjunct of S there

corresponds a vertex tlcck cf G ccnEisting cf mutually ncn­

adjacent vertices.

This representation can be used to determine whether or

net Sis a tautology. The decision rule is:

1!!~Q!HHl !!.1.ll s is a tautology if and only if there does net

exist a clique of order k in the corresponding grri.r;:h G , k

being the numl:er cf conjuncts in the a is ju nc ti ve normal form.

.ff.££11. A clique of order k in G exists if and cnl_y if there

exists a selection cf literals, cne from each conjunct of S

such that no literal and its complement are both ccntained in

the selection. If such a selection exists then we can assign

the value O (false) to each of the literals in the selecticn

and hence negate the well fcrreed fcrmu1a. On the other hand if

such a selection is not rcssible this corresfonds to the fact

that no such assignment to the literals of the well-formed

formula can be made and hence it must ~ea tautology. QED.

The ol:ject of this charter is to describe an algorithm

which f'COVides an efficient heuristic for deterwining whether

a clique of order k exists in an arbitrary k-rartite graph.

Such an algorithm can then be employed th~ough theorem 4.1 as

129

an efficient solution to the tautology problem.

Before presenting such an algcrithm it is necessarJ to

define and discuss a ccllecticn cf vertex sets determined by

the algorithm fer a k-partite graph G which provides the

mechanism for detecting the existence cf cliques of order k.

The importance of these vertex sets will be established in a

subsequent theorem. Fii:st, however, we shall assume that we

are given a k-partite grafh G with its vertex s~t V(G)

Fartitioned into k blocks v1 ,v 2 , ••• ,vk of mutually non­

adjacent vertices.

we define W~(u,w), ics,k-2 tc te tea subset of tlcck V.
l.

associated with an edge (u , w) such that t
W (u, w) t= ~ , m

m-= 1 , 2 , ••• , t ; t = 1 , 2 , ••• , s- 1 •

If i=s then W
5 (u,w) = V .., A (u) n A (Iii) s s where A(u),A{w) dencte

the adjacency sets of u and w resr,ectiveli.

Else for i < ~ W ~ (u, w) is the set of all VE:rtices v. ir; V.
l. l. l.

It is evident frore the definition that fer any particular

value cf s a family of sets associated with an edge {U, W) i S

determined in tl:e order W 5 (u,w),w~ s (U,li) , ••• ,tJ 5 (u,w). This
s s-1 1

order is a consequence cf the fact that W~(u,w) is dependent
l.

ui;on w. 5 (U,'-1) .-,i, 5 ,iu,w) , ••• , ~'1' 5 (u,w).
i+l l.fG s

A number of ftorerties

associated with this family of sets may te readily determined

from the definiticn:

C W s-:- l (U , W) •
1

130

s
W.(u,w)

J.
not

j=1,i, ••• ,s-i, not empty.

empty implies that s
W itjfu,w),

s
PROPERTY 3: Every vertex it ll. (u,w) i.s adjacent to u and w.

l.

4.4 CLI~UF, DETECTION ALGORITHM

The algorithm proceeds ty constructing the vertex sets

w1 (u,w), s-=1,~, ••• ,k-2 fer each edge in the gtaFh G. An edge

(u,w) is deleted tram

for some

the yraph whenever W ~ (u,w)
1

i= 1, 2, ••• , s. After the

teccmes

sets

k-2 . k W • (u,w),1=1,2, ••• , -2,
l.

have been ccnstructed for edges

remaining in G connecting vertices in tlccks vk-l and Vk , and

if s at least one such edge remains, then the sets 'W. fu,w) are
l.

redefined ty iterating the abcve ftccedure. The.se iterations

continue until cne of two conditions cccurs:

(a) All edges have been eliminated from G.

(b) The la test iteration resulted in nc further

deletions.

The following theorem establishes that condition

(a) im Flies G contains no complete su tgr a p h cf crder k.

lJ:rn.Q.!HH~ 1~11. If G has r1 complete sutgraph cf order k then

W ki2 (u , w) i s n c t e mp_ t y f c I s c III e e d g e I u , lj) cf G •

R!££!i From the definition, the theorem is true tor k = 3,4.

Assume that fork= sit is the case that K(1 6
) is a subgrafh

131

of G implies W 5 ~
2 (u,w) is net emrty fer some edge (u,w) in

E(G), where u,w are in V(K(1 5)). Suppose furtter that Kt, 541)

is a sutgraph of G where V(K(1 5 +1)) = (v
1
,v

2
,. • .,vs_

1
,u,w}, vi

being a vertex from block v .• Ccm[lete subgrarhs of order s
].

are defined on vertex sets:

V (K (1 5)) = fv ,v , ••• ,v , I], w J . 1 ;;_ s-2
V (K(1 8)) = { v

1
, v

2
, ••• , v ,, , V , u}

s-.e::: s-1

V (K(1 5)) = {v ,v , ••• ,v . , V , w } •
1 2 s-2 s-1

Therefore from the induction hypothesis v
1

is contained

in each of ws-2 (u w) w s-2 ()
1 ' ' 1 U ' V s-1 1 and W s-2 () Since

1
- w,v

7
•

s- ...

v ,v , ••• ,v ,u,w are mutually ~djacent, contained in
1 2 s-2

\ii Si~ (U, W) is contained in

s.:;:Z[W r-1 (U, v) I"'\ wr-l (w, v) 1 f c r r = 2, 3, ••• , s- 1. n 1 1 r·" r•2 r
definition v

1
is contained in W5i1 (u,w). QEC.

Hence by

The following lemmas and theorem show that if there are

at most two vertices per vertex tlock of G with degrees

greater than O after all rcssible edge deleticns have teen

made then G contains a complete sutgcaph cf order k.

11~~] ~~11 Let v
1

,v
2

, ••• ,Vk dencte the vertex blocks of

fartite graph G and surrcse IV. I = 1 fer i=1,2, ••• ,k.
].

wk-2 (u, w) not emi:;ty implies K (1k) is contained in G.
l

a k-

Then

f£22.!.:. Ey Pcoperty 2 W k-:-2 (u,w) iE not e1q:ty fer i=l,2, ••• ,k-
i

2. Since IV. I = 1 W k:-2 (u, w) = V .• Let vi te the vertex in
1 l. l.

block V. From the detiniticn:
i

r k .,,
wk-2 (u,w) = { v. }f"\ ~ -,., [W r-1 (u,v) W ri-:-l (w,vr)]]

i i r•i+l i r

132

implies v.
J.

is adjc1cent to for r= i + 1 , i + 2 , • • • , k - 2 , and

i = 1 , 2, • • • , k-2 • Hence (v l , v 2 , ••• , v k-2 , u , w } is a set cf

mutually adjacent vertices •

.!&~~A !±..s.ll If G is a k-partite g.caph such that each vertex

block has exactly two vertices, then for any edge (u, w)

k-2 . l. 1 k) W
1

(u,w) not eropty 11q: 1es K(is ccntained in G.

3 £f.Q.Q.t;. Let k=S and suppose v1 is a vertex in W 1 tu,w). Then

the:ce eJ<ists v
3

in W ~ (u,w) such that v_i_ is contained in

2 ? 2 w
1

(u,w)nioi 1 (u,v
3

)nW 1 (w,v 3). It also follows frcre the

d f . . . f 2 2 d 2) h e 1n1t1ons o W
1

(u,w), W 1 (u,~), an W 1 (w,~ tat one can

choose vertices x,y,z in v
2

such that ccrrflete subgraphs are

induced on vertex sets {~,x,u,w},

Now since IV. I = 2, either)(= y,)i = 2, or 'i = 2. If
l.

X = y or X = 2 then X is adjacent to VJ and hence a complete

subgrafh is induced er. { Vl , X, v3 , u, W). If y = 'l then y is

adjacent to w and a ~Cmfie~e subgrafh is induced on

Assume the lemma is true for k=s-1 and SUffOSe v1 is a

vertex in s w
1

tu,w). Ther by definiticn there exists vs in

w s (u, w) s UC h
s

that is contained in

ws-1 (u w) f'\ w s-1
1 ' 1

s-1 (u,v
5
)n w

1
(w,vs). Since v1 is a tr.eo.t:er cf

each of the sets s-1 s-1 s-1 W l (u, w) , W l (u , v
5

) , and W l (w, vs) , t l the

induction hypothesis one can find vertex sets X, 1, and Z such

that ccmplete subgraphs of order s+1 are defined en

133

containr cne vertex from each of the vertex tlccks

V 2 • V 3• • • • , V s-1 •

Let

contains a vertEx from each cf blccks v2 , V 3 , ••• • V s-l s i nee

IVi I -= 2. Since each vertex in S
1

is adjacent to every vertex

in X and Y, it is adjacent to every vertex in s
2

and s
3

and

hence and are a of mutually adjacent

vertices. Similarly each vertex in ~
2

is adjacent to every

vertex in z and s 2u !:i3 is also a set cf mutually

adjacent vertices.

hence

Hence s
1
u s

2
us

3
induces a ccrrplete

subgraph of order s-2. Further, by construction v
1
,\ ,u, and w

are adjacent to every vertex in s
1
us

2
us

3
and therefore G

contains a comflete subgrafh of order s+2. QED.

THEOREM 41 3: If G is a k-partite graph with at rrost twc

. . h '· l k a . f k-2 () . t t f vertices 1.n eac iJ oc , an 1. W
1

- u, w 1.s no emp y CL :::orne

edge (u,w), then G ccntair.r- a ccrnflete subgraph of order k.

1£.Q.S:!l The result follows almost immediately from lemmas 4. 1

and 4. 2. If for sc111e · wk-2 (u, w) contains cnl y one vertex v. 1, .
l l

then as a conseguencl~ of the definition V. is adjacent tc
l

every veLtex in eveLy ether set Wk-2 () u, w ,
j i ' j. Suppose

there are r S k-2 sets having 2 vertices. Ey the method in

18mma 4.2 we can find a complete sutgraph of order r+2 defined

on vertices chosen fLorr thEse sets. Ey the remark atove,

vertex in a set which it is the scle rnemter is adjacent to all

other vertices and therefore G contains a complete sutgrafh cf

134

order k. QEt.

Finally, we note that the following clique detection

algorithm could be modified to work for all ~partite grafhs.

If condition (b) occurs and if the conditicn of theorem 4.3 is

not satisfied, then a clique enumeration procedure can be

applied tc the subgraph of G which remains after no further

edge deletions occur. This methcd has been implemented for

verification purposes and the results are summarized in

Chapter S.

CLI~UE DE!ECTION ALGORITHM

Let G be a k-par.tite graph with tlocks v
1

,v
2

, ••• ,vk.

Cenote ty A (u) tbe adjacency set cf verte:x u.

~1tEJ1 Set s to 1. Define graph H
O

equal tc G.

21.!f1..: If E (H
1

)empty then stq:--K 11k) is net in G.
s-

~11El..:. Cheese an eclge (u, w) in E (H l) s-

v er tic es in V (ii
1

) - V •
s- s

E.'.!'~.!:!±.:. Set W6 (u, w) to V n A (u) n A (w).
s s

§.'.!'~.!:~..:Ifs= 1 then go to STEP16.

§1'~.!:1.:. Set r to i+1. Set P to be empty.

§1~E§l Choose a vertex v in W 8 (u,w).
r

If (U, V) and (1'1, V) are

where \]

edges of

W r~ 11 u , v) fl \oJ r~ 1 (w , v) no t em p t y t h en go to ST E P 1 2.
l J.

ST].!:JQ_;_ Set w 6 (u,w)
r

to W8 (u,w) - {v].
r

and are

H and
s-1

2IlEJJ1 If W8
(u, w)

r
empty then set i~(u,w) tc be empty and go

135

to STEP16.

.§1~~11.:.

STEPS.

If some v in W 5 (u,w) has not teen examined then gc tc
r

~I]fJ~l If P not errpty then set W ~(u,w)
J.

tc s-1 W. (u,w)f'\ P.
J.

Otherwise set W~(u,~) tc te empty and gc tc STEF16.

~I~f12l Set i to i-1. It i~1 then go to STEP7.

~1~f1£l If W~(u,w) has not been computed for all edges (u,w)

in E (H
3

_
1

), where u ,w are in V (fl
5

_
1

) -v
5

, then go to STEP3.

2!.!f j]_: Define gr a F h H ~ H
1

a E f c 11 o,. s :
s s-

an edge of

~I1£J.§1 Set

~I.!f.1.2.:. Let

and only

w k-2 (u, w)
i

I
and G = G

§I!f1Ql If

(u, w) is an edge of E (H) if and only if tu, w) is
s

E (fl s-1) and a w
1

(u,w) i E net e1q: tJ.

s to s+1. If s$ k-2 then gc tc STEP2.

G' te the sutgrafh cf G such that V is in
I

V f G) if

if there exists (u, w) in E (H
s-1

) such that V is in

for some i = 1,2, ••• ,k-2. If G' ;: G then let

go to STEP1.

G' has at mcst 2 vertices in each block of

degree> 0 then K(1k) is ccntained in G; else a clique must te

verified by enumeration.

As an example, ccnsider the grarh of Fig 4.1. We

summarize the results of the algorithm in TAEIE 4.1. The

subgtafh defined by STEP1g ~ftet 1 iteration is the co~plete

subgraph of order 5. The second iteration defines sets fer

this graph as indicated in the table. Vertices ~hich are

deleted according to STEP10 are indicatea in parentheses. By

STEP1g, the algcrithm terminates ~fter the second iteraticn.

136

9 8

1

2

4

Fig. 4.1

GRAPH CONTAINING SUBGRAPH K(l 5)

137

ITERATION EDGE wl 2 2 w3 w3 w.3 w,, Wl 1 ,:. 3 ~ 1

(36) I

(37) 2

{ 3 8) 2

(46) p

(4 7) 2

(4 9) 2

1 (56) 1

(5 8) 1, 2

(5 9) 1, 2

(6 t3) 1 (3) , ~ 1

(6 9) 1 (4) , 5 1

(7 8) 1 , 2 3 2

(7 9) 1, 2 4 2

!89) 1 , 2 5 1, 2 6, (7) 5 1

(56) 1

(5 8) 1

2 (59) 1

(6 8) 1 5 1

(69) 1 5 1

(8 9) 1 5 1 6 5 1

'IABL~ 4.1

RESULTS OF THF ALGORITHM FCR FIG.4.1

138

4.4 11~1!~ CONSIDERATIONS

Let G tea complete k-partite graph \ith m vertices in

each block v.
1.

i = 1,2, ••• ,k. For such a graph any choice cf

vertices v1 ,v 2 , ••• ,vk with v. a member of V. is the vertex set
1. 1.

Further every edge in G is a of some K(1k} contained in r..

member of some E(K(1k}}. G therefore constitutes the "wcrst"

k-partite graph the algorithm can encounter.

During iteration s all edges defined ever

m us t be e x am in e d • 'I h er e a r e .m. 2 (k- s } I k- s - 1)
2

such edges. Fer each edge (u, w) we must cc111t=ute

s s s s
W (u,w),W 1 (u,w), ••• ,W 1 (u,w). W.(u,w) can be determined in s s- 1.

cne intersection (that of rows u and w of the adjacency matrix

treated digit hinary numbers), while s is computed as n W. (u,w)
1.

from the definition as follows.

Vr~~~tu,w)
r-1 r-1 is computed in w • (u,v)I"\ W • (\-1,V) m

i r 1. r

intersections, m-1 unions and m tests for emptyness for each

r = i+1,i+2, ••• ,s. The tctal compitaticn time for w~ (u,w) is
1.

therefore 1+(s-i) (3m-1), sc tc comfute all s sets requires
s-1

1 + z:. ((s-i} (3m-1) + 1} steps. The total nur:rter cf steps at
k=l

iterations for all edges is thus given tJ:

(!!L 2 (k-s} (k- s- 1)) (1 +
2

Since there are k-3

s-1
E ((s- i) (3 m- 1)
i=l

♦ 1)

iterations reguiz:ing these

ccmFutaticns (iteration 1 only computes Wi(u,w) for g_ 2 (k-1) lk-
.t..

2) edges), the total nurote1 cf step: in the cc11i;utc:1tion is:

~(s-1) I 3 m-1) ♦ s
~

m; 1 k 2 - 3 w
5
-3 8 k + 3 p

5
m- 1)]

139

Hence an iteraticn cf the algcrithm is C(k 5) ~ith leading

coefficient m2 (3m-1).
120

Since at least one edge must te deleted during each

iteration of the procedure, a crude Ufper bcund on the number

cf iterations is given by the numter of edges of the grafh. In

general it is difficult tc cttain a sharper tound althcugh

empirical tests en a large samfle cf grafhs yielded none

requiring more than two iterations to reach a decision. In any

case, the time required tc execute the frccedure remains

bounded by a polyncmial ir. k.

4.5 2!QE]§1 CONSICERATIONS

Let G be the graph described in our discussion cf tining

considerations. Beth the adjacency matrix cf G and the storage

required for saving thew-sets place the gr.eatest demand en

space. Each W ~(u,w)
]_

and rcw cf the adj~cency matrix can be

represented by bit strings of length m and mk respectively.

Since edges with incident vertices in V r will net be

considered after iteraticn r-1, such edge5 require storage for

r- 1 terms . .r-1 r-1 -r-1 · · f w- ,w , ••• ,w
1

• An exam1nat1.on o
r-1 r-2 _

the

graph G ~ith block size m reveals that m2

complete

edges will

have k-2 such terms ccmruted fer thew (these with one vertex

in V and one in Vk),
k-1

2m2 edges will have k-3 such

terms, ••• , (k-2)ro 2 edges will have only one such term. Since

only the most recent values

the ma~imum number of terms

cf any .such

k-2
is m2 Y::

i=l

term are ever requirea

i lk-i-1) = !!L2(k)•
2 3

The

140

total storage requirement in bits fer these items is thus

(mk) 2 + .!f (;).

4.6 IMPLICATIONS Q! 1]] PROCEDURE

We have estatlisbed that the frccedure is an efficient

algorithm for detecting k-cliques in graphs having at most two

vertices per tlcck. When used as a tautclogj testing

ftccedure, this agrees with Cook's result(11] that well-formed

formulae having at most two literals per clause can be

determined tote tautclcgies in rclync~ial time. ~oreover, if

graphs having more than two vertices per tlcck, each cf

degree> O, can be reduced tc graphs having at most two fer

block, then the procedure is still guaranteed tc detect the

existence of k-cliques in polynomial time. Thus, the algcrithm

accepts a larger cldss cf w~ll-formed formulae (reFresented as

graphs) than the Cavis-Putnaro frccedure [66].

In light of the wcrk cf Ccok and Karf, the procedure

ftcvides a mechanism for greatly reducing the number cf well­

formed formulae that might require an exfcnential solution to

the tautology problem. The construction of a specific

counterexample might helf tc re~clve the questions raised by

Cock and ~arp concerning the exponential nature of the

tautology problem. Hcwever, finding £uch a counterexample

remain£ an cpen problem.

CEAPTIR 5: EMPIRICAL OB~ERVATICNS ANC su~~ABY

5.1 INTROCUCTION

141

As has tEEn ctserved in Charter 2, the clique enumeration

algcrithms discussed there all operate in essentially the sarne

way, namely the develoEnent cf a derivaticn tree from a ncde

representing the initial vertex set of the graFh tc ncdes

represEnting the cliques cf the grarh. Tl1e the~is of Chapter 2

is that the si2e of the derivaticn tree developed by each

algcrithm applied to a Moon-Moser graph together with the

order of computaticn fer cne iteraticn can be used as a

rneasure cf its efficiency. This efficiency thErefcre depends

on the technigue emfloyed to develop new ncdes cf the

derivation tree in as rruch as this rrcceaure determines their

tctal nurnher. The algorithms examined in Chapter 2 all use

different methods to generate ne~ vertex sutsets with the

exception of the Brcn-Kertcsch algcrithrr ~hich was seen to

develcf the same derivation tree as the Reducea Redundancy

algorithm. The fUifOSe of comparison in this Charter is tc

compare the actual rerfcrmance cf different methods for

develofing the derivation tree with the results cf Chapter 2.

The same set of data used to test the clique enuroeraticn

algorithms was also used tc te~t the efficiency cf the clique

detecticn ftocedure of Chapter 4 in order to deterrrine hew

much letter its fertcrmance was than employing an crdirary

enumeration algorithm.

142

5.2 THF TEST DATA

In order to deteruine the perforwance of the algorithms,

random graphs of various edge densities were generated fer

graphs having 9, 12, 18, and 21 vertices. Each algorithm was

then run en the test data. Fer each graFh and each algorithm

the fellowing statistics were recorded:

a.) The time required to find all the cliques,

b.) The number of vertex sets exa1tined,

c.) The number of cliques found.

Sixteen test graphs were generated and their orders, edge

densities, and number cf cliques are giver in TAEIE 5.1. The

results of applying

given in TABLE 5.2

implementations used

each algorithm to this cf graphs is

the actual (ti me

1tay be

in !:€CO r.d s)

found in

while

AfPENDIX E. Cue to

exce~sive computation time, the algorithms of Harary-Ross and

Peay were not applied tc some cf the graphs. Eecause of the

features cf dynamic storage allocation and bit string

manipulation, FL/1 was used as the programming language fer

the implementations of these algorithms. The Erograms were run

on an IEM 360/67 Cuplex system operating under ~TS. The ~ctual

grafhS may be fcund in AFPFNtIX C.

edge

graph vertices density cliques

1 g 0.4 8

2 9 0.6 10

3 9 0.8 17

4 9 1.0 27

5 12 0.4 1 ~

6 12 0.6 19

7 12 0.8 3 1

8 12 1.0 81
I

9 18 0.4 34

10 1 € 0.6 39

11 18 0.8 69

12 1 e 1 • 0 729

13 2 1 0.4 43

14 21 0.6 58

15 2 1 0.8 1Ll4

16 21 0.9 392

TABLE 5. 1

CHARACTERISTICS OF THE TEST GRAFHS

143

144

GRAPH

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

HARARY-BOSS PEAY'S EONNER'S

ALGORlTHl.'l

TIME NODES

0.51 15

0.11 19

1. 2 8 33

1. 9 7 53

1. 85 21

2.62 37

4.75 61

11. e o 16 1

8.06 67

9.48 19

18.67 137

--- ---
13.91 85

16. 3 2 115

--- ---
--- ---

ALGORI'IHM AlGCRl'IH~

Til'!E NODES 'II P!E NCDES

o. 20 36 o. 15 27

C.48 46 C.17 .34

0.47 49 o. 22 48

0. 71 79 0.27 64

0.64 62 0.25 55

1. 1 1 103 0.36 77

0.97 99 o. 70 14 2

2. llS 241 0.97 256

2.48 182 0.55 117

2.91 221 0.71 143 -,

1 1. 13 655 2.77 465

--- --- 15.31 4096

3. 32 231 0.73 149

6.12 444 1.62 354

21.75 1490 4.80 1177

--- --- 15.03 4023

'IABLE 5.2

COMPABISCN CF ALGORITHMS

R. R.

ALGCBI'Itll"

'II!!E NCI:ES

o. 20 20

0.23 24

0.28 3 1

0.42 40

o. 3 5 37

o.so 51

O. E 8 65

1. 18 121

0.85 7E

1. 36 91

2. 0 1 150

14.03 1093

1. 5 Ll 10€

2 .. .l 5 167

s. 36 374

11.01 688

145
5.3 CISCUSSION OF THE RESULTS

The results cf running each algorithm en the test data of

TABLE 5.1 i.ere used to verify the predictions made fer the

size of the derivaticn tree. Fer this FUrt=ese, the graphs

numbered 4, 8, and 12 were examined as they correspond to

Moen-Moser graphs (see page 13) on 9, 12, and 1 e vertices

respectively. Because cf the slc~ness of the Harary-Ress

algorithm and Peay•s algcrithro fer the smaller graphs no

attempt was made to obtain such results for the ~ccn-~cser

graph on 18 vertices.

For the test cases, the Harary-Ress algorithm generated

the fewest nodes cf the derivation tree in finding the cliques

cf a yraph yet performed more poorly than Eonner•s algorithm

which generated the largest derivaticn trees. This is a

consequence of the fact that the method used by Harary and

Ress to generate new vertex subsets while teing very selective

is also very time ccn5uming as was seen in cur analysis of

this algorithm in Chapter 2. on the other hand, Bonner

sacrifices efficient ncde generatiou in the dErivaticn tree

for a simple means of defining new verte~ subsets. In spite of

its defects as observed by Augustson and Minker [5], this

method appears tc be very successful particularly with srrall

yraphs as one would exfect, since fer such a graFh the si2e of

the derivation tree does not yet dominate the corofutation.

This hypothesis is further SUfferted tJ the ctservation that

the Reduced Redundancy algorithm affears to be most

comfetitive with Eonner•s algorithm for graphs cf high edge

146

density. such graphs have large nurnhers cf cliques and hence

their derivation trees will be large.

Peay•s algorithm performed significantly tetter than the

Harary-Ross algorithm ana wculd prchably have been more

competitive with the other algorithms if the size cf

derivation tree generated were reduced. such a modification

seems feasible if one were to emplcy a technique of examining

all the non-adjacent vertices associated with a particular

vertex at one time rather than step-by-step. This is an

apprcach similar to that taken in the Beduced Bedundancy

algcrithm.

If the order. cf cc1-putaticn fer cne iteration reultiplied

by the numter of nodes ii the derivaticn tree of ~(Jk) derived

in Chapter 2 is used as a rough measure of relative

efficiency, then geed agreement is attained with the empirical

res~lts. Although such an estimate dces net indicate

acrurately how much better one algorithm is than ancther, the

difference in roa~nitudes cf these values, particularly with

large graphs, provides scme guide in cheesing the most

efficient algorith~.

1he inefficiency cf clique enurner~ticn algorithms fer

finding the existence cf a maximal coreFlete ~ubgrafh cf order

k in a k-partite graph is revealed ty the results given in

TAELE 5.3 where we ccropare the ccrrfutation time of the

deciEicn procedure of Chapter 4 applied to the graphs of TABLE

5.1 with the bEst tirre available for the Reduced Redundancy

algorithm. While it is true that such enuroeraticn procedures

147

cculd be modified to terminate when a k-cligue had teen

discovered, this wculd net rreclude the fCssibility of such

cliques being discovered Lather late in the enumeraticn.

148

FNU!UBATION DECISION

ALGORI'IHfll ALGCRITHl'1

GBAPH TIME THIE

1 0.15 0.06

2 o. 17 0.C7

3 0.22 0.09

4 0.27 o. 11

5 0.25 0.15

6 o. 36 0. H

7 C.68 0.20

8 0.97 0.28

9 0.55 0.64

10 0.71 0.77

11 2.01 1. 05

12 14.01 4. 2 8

13 0.73 0.82

14 1. 6 2 o. e9

15 4.80 1.54

16 11. 0 1 3. 98

'IAELE 5.3

CCMFARISCN CF CETECTION ANC ENUMERATION

149

The principal geal cf this thesis has been tc examine

ways of detecting cliques in 9ra1:Jhs. In particular, we have

sought to aerive an efficient algorithrr fer determining the

existence cf a clique of order kin a k-partite grarh. This

goal was achievea in Chafer 4 fer a sutset cf all graphs by

adopting a different apfrcach tc the rrcblem than that offered

in chapters 2 and 3. In these chapters we saw that it was

unlikely that we could solve our protlem ty emflcying any

clique enumeration algerithm. This was because such algorithms

could be compared to tree searching processes whic~ are kncwn

to te inefficient procedures.

ln Chapter 3 we attemrted tc exrlcit some ftoperties of

grafhE which would allow us to group 11 sirrilat" vertices

together so that we wculd net bave tc examine each vertex in

such a grcuf individuall}. !wo kinds of "similarity" were

discussed: graph theoretic similarity, and ccmplete sutgrarh

equivalence. The latter cffered sc[e fCSsibility of

imprcvernent because of the concise notational rerresentaticn.

However no solution was fcund for avciding the prcblerr cf

multiply defining cliques althcugh an attemft was made to

miniroi2e euch behavior. Further, it should te ctserved that

the new type of notation while concise, does net readily

display either the cliques er their orders.

As the number of clique enumeration algcrithms in the

literature increases, it is useful lo carLy out some emrirical

comparison of the rerfcrrrance cf these rrccedures. It has teen

150

CU[observation

algorithms have

which improve

that the implementations of several of these

been extremely sensitive tc modifications

their

have been discussed

efficiency. Some cf these modifications

previously and were included in the

imflementations. The efficiency of these implementations was

examined in the previous section. ijhile ~e have been able to

suggest improvements to the algorithms di~cosEed in this

thesis. such changes have not really changed the basic

approach and as a conseguen~e their ccrrrutation times remain

exponential. Therefore empirical tests of such procedures are

possitle only fer rocderately large grarhs. For very large

graphs. determination of the size of the derivation tree

ftcvides a more useful and less expensive method fer assessing

the performance of enurreration algcrithws.

In Chapter 4, an efficient algcrithm was defined which

detects the existence of k-cliques in certain k-partite

graphs. such grafhs have the ftcrerty that they can te reduced

by the algorithm to graphs having at most two vertices cf

degree> 0 in each vertex tlcck. The wcrk cf Cook and Karp

suggests (tut does not imply) that the algorithm will not work

for all k-fartite graphs. Proving this may helF in

characterizing why the tautclcgy problem does not affEar to be

solvable in polynomial time.

151

.E I EL I CG R AP HY

1 Atraham, C.T. "An arrlicaticn cf clustering
techniques to rrinirni2ing the nurrber cf interconnections
in electrical assemblies" Some Pcotlems In Informaticn
§.f.1f!!.f.§ (M. Kcchen ea.), 1965 ff• 252-265

2 Abraham, C.T. "Techniques foe thesaurus organizaticn

3

and evaluat.icn " Some Prcblems In Information Science (M.
I<ochen ed.), 1965, pp. 111-150

Abraham, C.T. "Graph theoretic
organization of linked data
Information Science (f'. Kochen ed.),

techniques for the
" Some frotlems 1n

1 9 6 5 , F p. 2 2 9- 2 5 1

4 Andrasfai, B. "Ne~ proof cf a graph theoretic theorem
of Turan II Magyar Tua. Akad. Mat. Kutato. Int. Kc2l
7(1962) pp. 193-196

5 Augustson, J. Gary, Minker, Jack "An analysis of some
graph theoretical cluster techniques" J. Assoc cc~iuting
~1!.fh.!.!!~£1 17 (1970) 1:-F• 571-588

6 Bonner, B. E. "Cr. some clustering techniques " IQ!:1 ~.:.
Research And revelo_p,ent 8(1964) rr- 22-32.

7 Boyle, R.F. "Algebraic systems for ncrrral and
hierarchichal sccicgrarrs " Sccicmetr.1 32 (196q) H ;• 99-119

Bron, Coen, Kerbosch, J.A.C.M. "finding all cliques
of an undirected graph" communications Assoc. Cororuting
~~fhi.!!ifY tc arpear

9 Cart'fi!right, c., Harary, F. "Structural balance: i\

generali2r1ticn of t1eid@r's theory " Psvch. Rev. 63 41956)
pp. 14 t- 15 3

10 Cclernan, J.S., l'.lacRae, r. fjr.) "F.lectrcnic

11

processing of socicrretric data for grcurs ur- tr, 1CCC in
Ei2e II Arner. Sociological i~!~ 25(1960) PF• 722-727

Cook, S.A. "The CCIDf]exity cf
procedures" Thi!:£ ACM s1m,2osinm .Q.!!
f2.!!!£!!!.!.!!.9 1970, pr,. 151-158

theorem-proving
The Thecr1 Of

12 Corneil, D.G. "Graph isomorphism " De~artrent Of
Com£uter Sciencei Universit1 Cf 1crcntc Fh.C theEis, 1968

13 Corneil, C.G., Gctlieb, c.c. "An efficient algcrithm

14

fer graph isomorrhism " J. Asscc. Ccmiuting !!fhi.!!!!l
17(1970) r-r. 51-64

Culik, K. "Cn the
chromatic numters cf
.§!.!!.Q.!. 19 5 9 r F. 17 7 - 18 5

chromatic decomFcsiticns and
grarhs" s1is1 Frirod. Fak. Y.!!i!~

152

15 Davis, J.A. "Clustering and structural talance in
graphs" Hu~an Relaticns 20(1967) FF• 181-187.

16 Cirac, G. "Extensions cf Turan•s theorem on graphs"
Acta. Ma th. Acad. Sci. Hun.9ar. 14 (1963) pp. 417- 422

17 Dirac, G. "On complete sutgraphs and complete stars
contained as subgraFhs in grarhs " !~.!!!~ .§9!!1!. 12 (1963)
IF• 3 9-46

18 Cirac, G. "Extensions of the thecrems of Turan and
zarankiewic7" Proc. SJmE• Smolenice 1963 pp.127-132

19 tirac, G. "Chromatic number and tcrolcgical complete
s uh graphs " can ad. ti at h. Bu 11. 8 (19 6 5) pp. 7 1 1- 7 1 5

20 Doreian, P. "A note en the detection cf cliques in
valued graphs II Sccicrnetr1 32 (1969) fF• 237-242.

21 Erdos, P. "Remarks on a theorem of Ramsey"]]11!.
Res. Council Israel Sect.! 7(1957-1958) FF• 21-24

22 Erdos, P. "Graph theory and probability I" f~D~~~ ~£

23

!1~.!!!~ 11 (1959) pp. 34-38

Erdos, E. "Grarh theory and protatility II
!I~ ~~!.!!~ 1 3 (19 6 1) f.l:. 14 6- 3 5 2

"

24 Erdos, P. "On a thecrem cf Rademacher-Turan "!11!. ~!.

jj~.!h~ 6 (1962) FP 122-127

25 Erdos, F. "Cn the numter of complete sutgrar;hs
contained in certain grafhs " ~ag1ar Tud. Akad.]~!!.
K u ta to. In t. Ko 2 l. 7 (1 9 6 2) pp • 4 5 9- 4 6 4

26 Erdos, P. "On circuits and suhgrafhs of chromatic
graphs " 1'1athematika 9 (1962) pp. 170-175

27 Erdos, F. "C~ CCD'flete topological subgraphs cf
certain grarhs " A~n. Univ. Sci. Budafest Eotvos Sect.
11!.!h.!. 7 (1 9 6 4 > r p • 1 4 3- 14 9

28 Erdos, P. "On the number cf triangles contained in
certain graphs" Canan. Math. Eull. 7(1964) pp. 53-56

29 Erdos, F. "ScD'E remarks en Ramsey's theorem" £~13:!.9~

30

1'1ath. Bull. 7(1964) FI• 619-622

Erdos, P. "On cligues in graphs
4 (1966) FF• 233-234.

II

31 Festinger, L. "Time analysis cf scciograms using
matrix algetra " Hun,an Relaticns 2 (1949) fF• 153-158.

32

33

Fclkman, J. "Regular line symmetric
Comtinatorial Thecr1 3(1q67) ff.215-232

grar,hs

153

"

Forsyth, E., Kat2, L. "A
analysis of sociometric data:

ffiatri~ arproach to the
preliminary report "

Sociometr1 q(1946) EP• 140-347.

34 Gill, A. "Analysis cf nets by numerical methods"~~

35

Assoc. Comfuting f"achiner-1. 7 (1960) pp. 251-254

Gicaud, G. "An upper- bound for Ramsey number t5,5)
c. R. Acad. Sci. Paris 265 (1968) pp. 809-811

II

36 Gotlieb, c.c . , Kumar, s. "Semantic clustering cf
index terms" J. Asscc. Ccm1utin3 MachinerJ 15(1968) FP•
493-511

37 Graver, J., Yackel, J. '1 11n upper t:ound fer Ransey

]8

numl:ers "].Y11~ Aner. fllath. Sec. 7211966) n:. 1076-1079

Graver, J., Yackel, J. "ScrrP. grarh theoretic
associated ~ith RamseJ's theorem " J~ ~S!!~
4 (196 8) pp • 12 5- 1 7 5

results
.!.!!.§.£fl'.

39 Hajnal, A., Sur-anyi, ,J. "On the ~Pccmposition of
graphs into complete subgraphs" Ann. Univ. Sci.
Budal?est. Fotvos !:ect. Math. 1 (1958) FF• 113-121

40 llarary, F., Ncrnan, R. z. Gt:a_Eh Thecrv As A

41

M~thematical Medel In sccial ~Si~]S~ Ann-Arbor: Institute
for Social Research, 1953

lldrary, F., Ress, I. "A
~ctection using the group matrix"
p p • 2 0 5- 2 1 5 •

i:rccedure for
scciometr1.

clique
20 (1'?57)

42 Harary, F. "Graph theoretic methods in the rranage11ent
sciences " Mana_serrer.t .2S..!.§Ef~ 5 (1959) rr- 387-403

43 Harary, F • .§.E2~~ 11!£2.El Addiscn-We~ley, Reading,
Ma~s., 1969

44 Harary, F. "Graph theoi:y as a structural morlel in the

45

social sciences " Gta.,Eh 7hecr1 And Its A,E.Elications
Bernard Harris (ed.), 1970, pp. 1-16

Hubbell, C.H. "An input-output
identificaticn" ~ccicmetr1. 28(1965)

apfrcach to clique
FF• 377-399.

46 Il2inia, I. "Finding the cliques cf a graph 11

Avtomat. I. Vychisl. 'l'ekn. #2 (1967) pp. 7-11.

47 Johnson, s.c. "Hierarchichal clusterinef scherees"
Ps1chometrik~ 32(1967) ff• 241-254

154

48 Kalbfleisch, J. "Cn an unknown Ramsey numter" ti.ifL
!t~!l!~ ~~ 1 3 (19 6 6) p F 3 e 5- 3 9 2

49 Karp, R.M. "Reducibility amcng ccmbinatcrial prcblems
" Proceeding Of The IEM Conference on T~e comilexitl Qj
Co11112utations Plenum Press, New York, 1972

50 Kochen m. ~f~~]E2E1~.!!E In Information ~f.i~]f~~
scarecrow P.ress, new ycrk, 1965.

51 Lawler, E.L. "Electrical assemblies with minimum

52

number of intersections " IJH Trans. EC-11 (1962) pp. 86-
88

Lawler, E. L. "Polynomial bounded and
polynomial tcunded lliatrcid ccrnfutaticns
The NYC-~NR SJmEosium en com~inatorial
a pp ear) r r e n t i c e- H a 11 , N e w Y c r l< , 19 7 2

(afparently) ncn
"Eroceedings Cf

Al.9crithrns ttc

53 Lawler, E.L. "Matrcids ~ith faritJ conditions: a new
class of combinatorial optimizaticn prctlems "
Mathematical Pro~ra~min~ submittea 1972

54 Luce, R.D., Perry, A.D. "A methcd cf matrix analJsis
of group structure II Fs_1chometrika. 14 (1949) ff. 95-116.

55 Luce, R.D. "Co~nectivity and generali2ea cliques in
sociometric group structure" Ps1chorretrika. 15(1950) pp.
169-190.

56 Meetham, A.H. "Algorithm tc assist in finding the
cc mp 1 e t e s u b g rap h s of a given graph II li.!!.!:]!.f 2 1 1 I 1 9 6 6) f •
105

57 Meetham, A.R. "Graph separability and wora groupirg"
Proc. Assoc. Com1:. Mach. 21et Naticnal Ccnferenc.:e 1966
ff. 513-514

58 Mendelson, E. Introauction To Mathematical Lo~ic Van
Nostrand, Princetcn, N.J. ,1964.

59 Moen, J.W. "On tl1E number cf cc1iflete eubgrafhs of a
graph" ~~.!!~Q~ Math. Eull. 8(1965) pr,. 831-834

60 Moon, J.W., Mcser L. "On cliques in graphs" 1§.!s~l
~~ ~~!.!!~ 3 (1 9 6 5) f F • 2 3- 2 8 •

61 Moon, J. "On independent cowi:lete subgraphs in a
grafh " f~.!!g9.:. h .t.2.!:h~ 20 (1968) pp. qs-102

62 Moreno, ,J. L. Whc Shall Survive? A New A.£Eroach .!.£ .!ll~

63

fE2!l!! Of Humafr Inter-RelaJicns Eeaccn Hcuee, New York,
1934

Mowshowit2, A., (privdte corowunicaticn)

155

64 Mulligan, G. ll. "Algorithms for finding cliques cf a
graph " Cefartment gJ Ccmiuter Science~ UniversitJ Cf
1£!£E1£ Technical report No. 41, ray 1g72

65 Mulligdn, G.t., Corneil, C.G. "Corrections to

66

Bierstone•s algorithm for generating cligues" ~£ !!!Bf£
Com,Eutin.9 Machiner1 16 (1g72) ff• 244-247

Putnam, H., Davis,
guantificaticn thecry"
7(1960) FF• 201-215

11 11 ccmFuting prcceaure fc-r
~~§£f~ f2m£~!1~~ !~£h!E~f1

67 Nordhaus, E.A. "On the density ana chromatic nuroters
of graphs " Lecture Nctes In Mathen:atics. 110 (1969) ~P•
2 4 5- 2 4 9.

68 Peay, E. R. (jr.) "An iterative cliqne detecticu
procedure II Mich. Math. Ps1ch. Prcg. 4 (1970).

69 Peay, E.R. (jr.) "Nonmetric grcuring: clusters and
c 1 i ':I u e s " i1 if .h ~ M a t h • f:' s .Y ch • P r o .9 • 5 (1 9 7 0)

70 Ramsey, F. "On a ircblem of formal lcgic 11 £!.ff.!.
Lona. Math. f.ff.!. 30 (1':::30) lf• 264-286

71 Rcse, M.J. "Classificat.icn cf a set of elements"
COl:l!!Uter J. 7 (1<J64) Pf• 208-211.

7 2 s au er N. "A q en er a 1 i z at ion of a t h e or e rn o f Tur a n 11 ~~
Corot. Theor1 10(1971) rf.109-112

73 Sims, Cbarles c. "Gtafh.S and finite permutation
grcufs II l:l~.!h~ .z~i.!~£.hI~ 95 (1967) FF 76-86

74 Sp Enc er, J. H. "Cn cligue.s in gr<Jphs " 1.§.!~.§1 J.~ !t~.!l.!.!.
9 (1971) fP• 419-421.

75 Turan, P. "fine extrerralaufgabe ~us der

"/ 6

77

<Jraphenthecrie "!~!~ Ii1~ 1.2.I?~..!s 48(1941) rr- ■ 436-452

TUCdD, F. "Cn the thecry cf giafhS
] (1 9 5 4) pp • 1 9- 3 0

II

Turner, James "Point-symmetric
number of roints "J. combinatoria1
136-145

graphs with a prime
!l.!i211 3(1967) rr-

78 Wei:::s, B.S., Jacoh!':en E. "A rnethcd for the anal~sis
cf the structure of complex organizaticns " l!~!£
Sociolo3ical Review. 20(1955) fF• 661-668.

7q Zelinka, B. "On the nurnter cf indefendent complete
.subgraph~ 11 f].Q!~. t'lath. Cel::recen. 13 (1966) r p. 9:-97

156

APPENDIX A

time
operation symbol constant

STORE <-- tl

PUSH,POP push, pop t2

ADD,SUBTRACT + -, t3

COMPABE .
t4 .

MULTIPLY • t5

UNION,INTEBSECTION U,t"\ t6

COMPLEMENT - t7

SUBSTRING substr t8

INDEX index t9

PRINT print tlO

157

APPENCIX E

158

••*••··· • *
•
* •

THE MODIFIED HARARY-ROSS ALGORITHM

HAROSS:PROC (A,N);
DCL

(A(N),
G,
CLIQ,
GTEMP)
BIT(N),

/* ADJACENCY MATRIX*/
/*CURRENT VERTEX SET•/
/•COMPLETE SUBGRAPH VERTICES */

(N, ;• NUMBER OF VERTICES IN GRAPH*/
WT, ;•NUMBER OF VERTICES ING •/
VTX(N), /* LABELS OF VERTICES OF G*/
R (N), /*ROW SUMS OF (l**2XA) FOR G•/
D(N)) /* DEGRES OF VERTICES OP G */
FIXED BIN,
VSET BIT(•) CTL; /* STACK OP SFTS */

DCL CTR FIXED BIN;
CTR=O;
G=G I (G) ;
PUT SKIP;
PUT SKIP LIST ('THE CLIQUES ARE:') ;

START:
1•

*I
DETERMINE THE VERTICES IN SUBGRAPH G

IF G= 1 0 1 B THEN GO TO NEXT;
GTEMP=GTEMP I (GTEMP);
WT=O;
DO I= 1 TO N;
IF SUBSTR(G,I,1)= 1 0 1 B THEN GO TO LP1;
GTEMP=GTEMP&A(I);
WT=WT+1;
VTX(WT)=I;

LP1: END;

I*

*I

IF GTEMP = 1 0 1 B THEN GO TO NEXT;

CALCULATE ROW SUMS OF (A*•2XA)
AND DEGREES OF VERTICES OF G

R, D =O;
DO I= 1 TO WT- 1 ;
DO J=I+1 TO WT;
SUM=O;
IF SUBSTR (A (VTI (I)), VTX (J), 1) = '1 'B TB!N

BEGIN;
D(I)-=D(I)+1; D(J)=D(J)+1;
DO K=1 TO WT;
IF SUBSTR (A (VTX (I)) &A (VTX (J)), VTX (K), 1)

= 1 1 1 B THEN SUM=SUM+1;
END;
END;

•
* •

I*

*I

I*

*I

I*

*I

I*

*I

R (I) ':R (I) +SUM; R (J) =R (J) +SUM;
END;
END;

SEARCH FOR UNICLIQUAL VERTICES

M. IN= 1 ;
DO I=l TO WT;
IF R(I)=D(I)*(D(I)-1) THEN

DO;

UNICLIQUAL VERTEX DISCOVEREI::

CLIQ=A(VTX(I))&G;
SUBSTR (CLIQ, VTX (I), 1)=' 1' B;

IS THIS A MAXIMAL COMPLETE SUBGRAPH?

GTEMP-=GTEMP I (GTEMP) ;
DO 12= 1 TO WT;

IF SUBSTR(CLIQ,VTX(I2),1)= 1 1'B THEN
GTEMP=GT!MP&A (VTX (12));
END;

IF GTEMP= 1 0 1 E THEN
PUT LIST (CLIQ) ;

DELETE ALL UNICLIQUAL VF.RTICES IN THIS
COMPLETE SUBGRAPH FROM G.

SUBSTR (G,VTX (I), 1)-= 1 0 'B;
DO J=I+1 TO WT;
IF SUESTR(A(VTX(l)) ,VTX(J) ,1)= 1 0 1 0 THEN

GO TO LP2;
IF R(J)=R(l) THEN SUBSTR(G,VTX(J),1)='0 1 B;

LP2: END;
GO TO START;

ENO;
ELSE

IF R(MIN)>R(I) THEN MIN=I;
ILP: END; /* ENC l LOOP */
I*

*I

NO UNICLIQUAL VERTEX ING
DEFINE TWO VERTEX SETS. SAVE ONE
AND PROCESS THE OTHER.

ALLOCATE VSET EIT (N);
GTEMP=G&A (VTX (MIN)) ;
SUBSTR (GTEMP, VTX (MIN), 1) =' 1 1 E;
VSET= GTEMP;
DO J=1 TO WT;
IF SUBSTR(GTEMP,VTX(J),1)= 1 0 1 B THEN

VSET=VSETIA(VTX(J))
END;
VS ET= VS ET & G ;
CTR-=CTR+1;
G=GTEMP;

159

160

I*

*I
NEXT:

GO TO START;

GET A NEW SET FRO~ TH! STACK.

IF CTR> 0 THEN
DO;
G=VSET;
CTR=CTR-1;
PREE VSET;
GO TO START;
END;

FREE VSET;
RETURN;
END; /* ENC HAROSS PROCEtURE */

••
• *
* BONNER 1 S ALGORITHM *
*
*

BON: PROC (G, N) ;
DCL (G(N),A(N),C(N),U,T) Bl'r(N),L(N);

STEP1: I=1; C(1)-= 1 0 1 B; C(1)= C(1); A(1)= 1 0 1 B; 1(1)=1;
STEP2: IF SUBSTR(C(l),L(I),1)='1'B THFN

BEGIN;
STEP3: C (I+1)-=C (I) &G (L (I));

SUBSTR (C (I+ 1) , L (I) , 1) = '0 'B;
A (I+1)=.A (I);
SUBSTR (A (I+1) ,L (I), 1)= '1 'B;

STEP4: L(I+1)=L(I)+1;
I= I+ 1 ;

END;
ELSE L(I)=L(I)+1;

• •

161

STEPS: IF SUBSTR(C(I),L(l),N+1-L(I)) =•O•B THEN GO 'IO S'IEP2;
T=A (I);

STEP6: IF C(I)='O'E THEN
STEP7: I=I-1; IF I-=0 THEN RETURN;
STEPS: U= 1 0 1 B; SUBSTR(U,L(l)+1,N-L(I))

-=SUBSTH (C (I), L (I)+ 1,N-L (I))
IF (T I U) -= T THfN GO TO STEP?;
L(I)=L(I)+l;
GO TO STEP2;

END; /*END BON PROC */

162

··••*••··· • • • •
*

THE ftOCIFIEt PEAY ALGORITHft

PEAY: PROC(A,N);
DCL

(A (N),
G,
GTEMP)
BIT (N),

/• ADJACENCY MATRIX•/
/* CURRENT VERTEI SET*/

(N, /•NUMBER OF VERTICES IN GRAPH*/
WT, /* NUMBER OF VERTICES II G */
VTX(N)) /*LABELS OF G'S VERTICES*/
FIXED BIN,
1 VSTORE BASEC(VPTR), /* STACK OF SETS•/

2 VNXT PTR,
2 VCTR FIXED BIN,

2 VN FIXED BIN,
2 VSET BIT (N REFER (VN)),

VHD PTR; /*POINTS TO STACK TOP*/
DCL P PTR;
DCL CTR FIXED BIN;
G=G I (G) ;
VBD-=NULL;
CTR=O;
PUT SKIP;
PUT SKIP LIST ('THE CLIQUES ARE:');

START:WT=O;
I*

•1
DETERMINE THE LABELS OF THE VERTICES ING

DO I= 1 TO N;
IF SUBSTR(G,l,1)= 1 0 1 B THEN GO TO LP1;
WT=WT+1;
VTX(WT)=I;

LP1: END;
1•

•1

I*

*I

FIND TWO NON-ADJACENT VERTICES ING

DO I=1 TO WT;
GTEMP=A(VTX(I))&G;
SUBS TR (GTE MP , VT X (I) , 1) = 1 1 1 B ;
IF GTEMP = G THEN GO TO FOONC;
END;

G IS A COMPLETE SUBGRAPH. DETERMINE
WHETHER IT IS MAXIMAL.

GTEMP=GTEMPI (GTEMP);
DO I=1 TO WT;
GTEMP=GTEMP&A (VTX (I)) ;
END;
IF GTEMP= 1 0 1 E THEN

•
*
•

I*

*I

IF STACK NOT fMPTY THEN CHOOSE ANOTHER
VERTEX SET FOR FURT"ER PROCISSING

IF VHD ~ NUll THEN
DO;
G=VHD-> VSET;
P=VHD;
VHD=VHC->VNXT;
CTR==CTR- 1;
FREE P->VSTORF;
GO TO START;
EMD;

RETURN;
FOUND:
I*

*I

I*

*I

DETER~INE TWO NEW VERTEX SUDSETS,SAVE ONE
AND PROCESS THE OTHER.

GTEMP= A (VTX (I)) ;
DO K= 1 TO N;
IF K = VTX(I) THEN
IF SUBSTR(A(VTX(I)),K,1)='0'8 THEN

GTEMP-=GTEHPIA(VTX(I));
ENO;
SUBSTR (GTEMP,VTX(I) ,1)='0'.B;

CHECK THE STACK TO SEE IF NEW SET "GTEMP"
IS CONTAINED IN A PREVIOUS ONE AWAITING
PROCESSING.

P=VHD;
DO WHILE (P =NU LL) ;
IF (GTEMPIP->VSET) = P->VSET THEN

GO TO START;
P=P->VNXT;

END;
CTR-=CTR+l;
AlLOCATE VSTORE;
VSET=GTEMP&G;
VNXT=VHD;
VCTR=CTR;
V HD=VPTR;
G=A(VTX{I))6G;
SUBSTR(G,VTX(l) ,1)='1'B;
GO TO START;
ENC; /* ENC PEAY PROCEDURE •;

163

164

·••*••·· • *
• RECUCED REDUNCANCY ALGORITHM *

• *
••
ENU~:PROC(A,N);

DCL

1•

(A(N),
G,
H,
CSUB,

CLQ,
F,
Gt1X,
CMX)
BIT (N),

/* ACJACENCY MATRIX*/
/* CURRENT VERTEX SET*/
/ * N E W LY r:: E.f I N'E C S ET * /
/•COMPLETE SUBGRAPH TO BE

EXTENCEC BY VERTICES IM G *I
/* NEWLY EXTENDED CSUB */
/•SET OF DEFINING VERTICES •1

(V, /• VERTEX CHOSEN FROM F */
N) /* NOMBEB OF VERTICES OF GRAPH•/
FIXEC BIN;

DCL CTR FIXED BIN;
DCL VTEMP PTR;
DCL VSET BIT(•) CTL; I• STACK OF SETS*/
CTR=O;
NN==N*2;
G=G I (G) ;
CSUB='O'B;

DETERMINE WHETHER THERE IS A VERTEX
ADJACENT TO ALL VERTICES IN GJCSUB. IF
YES THEN NO CLIQUE IS DEFINED ON GICSUB
SO CHOOSE A NEW VERTEX SET.

*I
START:

I*

*I

GMX=G!CSOB;
NV=O;

DO I=1 TO N;
IF (A(I)JGMX) = A(l) THEN GO TO NEWSET;
END;
V2 INDEX (G,' 1 'B):

FIS THE SET OF VERTICES ING NOT ADJACENT
TO V.

F=G& (A (V)) ;
LOOP:

I*

H=Gia.(V);
CLC=CSUB;

SUBS TR (C LQ, V , 1) = ' 1 ' B ;
I F H= ' 0 ' B T H E N

NO FURTHER VERTICES CAN BE ACDEC TO
CLQ, HENCE CLQ IS A COMPLETE SUBGRAPH.
DETERMINE IF IT IS MAXIMAL.

*I

OUT:

I*

*I

NXTV:

I*

r:o;
NV=O;

DO 1=1 TON;
IF (A(I) ICLQ)-= A(I) TIJEN GO TO OU'I;
END;

GO TO NXTV;
END;

PLACE HAND CLQ ON TH! STACK FOR FURTHER
PROCESSING

CTR=CTR+1;
ALLOCATE VSET EIT (NN);
VSET=H I I CLQ;

SUBSTR (F, V, 1) = '0 'B;
SUBSTR(G,V,1)= 1 0 1 E;
V=INDEX(F, 1 1 1 B);
IF V =O THEN GO TC LOCP;

ALL VERTEX SETS HAVE NOW BEEN tETERMINEt
FOR THIS ITERATION. CHOOSE A NEW SET
FROM THE STACK FOR FURTHFR PROCESSING

*I
NEWSET:

IF CTR<= 0 THEN RETURN;
G=SUESTR (VS ET, 1, N);
CSUB=SUOSTR(VSET,N+l,N);
FREE VSET;
CTR=CTR-1;
GO TC START;
END; /* END ENUM PROC */

165

166

•• • • • •
ALGORITHM TO DETECT THE EXIST!NCB OF A CLIQUE OP

ORDER KIN A K-PARTITE GRAPH

KGRPH:PROC(A,N,M,K,MX);
DCL

A(N) /* ADJACENCY MATRIX*/
BIT (N) ,
(M(K), /* NO. VERTICES P!R BLOCK *I
MX, /* ftAX. NO. VERTICES/BLOCK */
N, /* NO. VERTIC!S IR GRAPH *I
K, /* NO. OP BLOCKS*/
R,S,T,VX,VTX,POS,POS2,M1ft2) FIXPD BIN;

DCL VB(K) FIXED BIN;
DCL AO (N) BIT (N) ;

DCL U FIXED BIN;
STEPO:AO=A;

ITER-=ITER+1;
Nl=N-M (1) -I!! (K);
POS=M (1) +1 ;
POS2=POSHJ (2);
ft Ht2=POS2;
NS P= (N- M 1 ft 2) • N 1 + N - ft (K) ;

BEGIN;
DCL !'lSUft (K) ;
DCL (P,Q,TEMP,W (NSP,K-2)) BIT (MX);
W= 1 0 1 B;
MSUM(1)=M(1);
DO I=2 TO Ki
MSUM (I)=MSUI!I (I-1) +M (I);
ENO;
DO S=1 TO K-2;
DO I=POS TO N-M(K);

1•

*I

1•

•1

I*

*I

CHOOSE AN EDGE (I,J) NOT YET tELETEC FRO~
FURTHER CONSIDERATION.

DO J=I+1 TON;
IF SUBSTR(A(I),J,1)= 1 1 1 B THEN

BEGIN;
P= 1 0 1 B;

MAP THE VERTEX PAIR (I,J) ONTO AN
INTEGER IJ. INITIALLY DEFINE THE SET W(IJ,S).

IJ=(J-M1M2)*N1+I;
W (I J , S) =SU BS TR (A (I) & A (J) , PO S-M (S) , ft (S)) ;

DEFINE THE SET W(IJ,T) FOR T=S-1,S-2, ••• ,1
AS A FUNCTION OF THE PREVIOUSLl DETERMINED
SETS W (IJ,T+1) ,W (IJ,T+2) , ••• ,W (IJ,S).

DO NT= 1 TO S;

• • • •

T-=S+ 1-NT;
IF T=S THEN GO TO SKP;

DO R=T+1 TO S;
VTX-=INDEX (W (IJ .R) • 1 1 1 B);
CO WHILE (VTX = 0) ;

VX=VTX+MSUM (R-1);

167

IF SUBSTR{A(J) ,VX,1)&SUESTR(A(I) .VX,1)= 1 0 1 B THEN
BEGIN;

I*

*I

SUBSTR (W (IJ.R) .VTX.1)= 1 0 1 B;
GO TO SKP3;
ENO;

Q=W ((J-M1M2) *Nl+VX .T) 6W ((I-M1M2)*N l+VX .T);

IF THERE EXISTS A VERTEX VTX NOT ADJACENT
TO ANY VERTEX IN W(IJ.T) THEN tELETE IT FROM
FURTHER CONSIDERATION

IF Q = '0'B THEN P=PIQ;
ELSE SUESTR(W(IJ.R) .VTX,1)= 1 0 1 B;
IF VTX >= MX THEN GO TO CHK4;
TEMP= 1 0 1 E;

SUBSTR (TEMP, VTX+1. MX+ 1-VTX) =
SUBSTR(W(IJ.R) ,VTX+1,MX+1-VTX);
VTX=INDEX(TEMP.'1'B);

SKPJ:
END;

CHK4:

I*

*I

W(IJ.T)=W(IJ,T)&P;
END; /* END R LOOP*/

IF W(IJ.T) IS EMPTY FOR ANY T=l,2, ••• ,S
THEN DELETE EDGE (I, J) FROM FURTHER
CONSICERATICN

SKP: IF W(IJ,T)='O'B THEN
BEGIN;

SUBSTR (A (I) ,J, 1)= 1 0 'E;
SOBST8 (A (J) ,I, 1)= 1 0 1 B;

GC TO NEXT;
END;

END; /* END T LOOP*/
END; /* END BEGIN BLOCK*/

NEXT:END; /* ENC J LOOP*/

I*

*I

END; /* ENO I LOOP*/
POS=POS2;
POS2=M(S+2)+POS2;

END; /* ENC SLOOP*/

TEST WHETHER ALL ECGES HAVE
FROM THE SET OF CANDIDATES.

AND NOT ALL EDGES HAVE E!FN
TEST FOR FURTHER ITERATION.

BEEN DELETE!J
IF S=K-2
ELIMINATED, THEN

DO I=N-M (K)-1'1 (K-1) +1 TO N-l'l (K);
DO J= N - M (K) + 1 TO N ;
IF W((J-M1M2)*Nl+I.1) = 1 0 1 8 THEN

168

GO TO STEP19;
END;
END;

CONDA:PDT SKIP LIST ('NO K.-,CL.1QDE 1.) ;.

RETURN;
STEP19:DO I=1 TOK;

VB(I)=O;
DO J=1 TO M (I);
U=I*MJ+J-MX;
IF AO (U) = A (U) THEN GO TO STEPO;
IF A(U) = 1 0 1 8 THEN VB(I)=VB(I)+1;
END;
END;

CONDB:PUT SKIP LIST('NO CHANGE');
DO I=1 TO K; ·
IF VB(I) > 2 THEN GO TO STEP20;
END;

PUT SKIP LIST(1 K-CL1QUE EXISTS BY TflEOREM 4.3 1);

RETURN;
STEP20: CALL ENU M (A, N) ;

RETURN;
END; /* ENC KGRPH */

169

AFPENI::IX. C

170

graph 1 g ra rh 2

000101001 C00101001
000001100 000111100
000100101 coo1cc111
101000101 111000111
000000110 01ccoo110
110000110 110000 110
011111000 011111000
101100000 101100000

graph J grai;h 4

000111001 CCC111111
000111110 000111111
000111111 000111111
111000111 111000111
111000110 111C00111
111000111 111000111
011111000 111111COO
011111000 111111000
101101000 111111000

g ra Fh 5 graph 6

000101001000 000101001100
0000011cocoo C00111100111
000100101110 000100111011
101000101101 1"11COC111COC
000000110110 010000110110
110000110011 11ocoo110101
011111000100 011111000110
000011000101 001111000111
101100000111 101100000011
001110111coo 110011110COO
001011001000 011010111000
000101011000 011001011000

grafh 7 graph 8

000111001110 000111111111
000111110101 C C O 1 1 1 1 1 1 1 1 1
000111111111 000 111111111
111000111110 111000111111
111000110111 111000111111
111000111111 1 1 1 C O O 1 1 1 1 1 1
011111000011 111111000111
011111000011 111111000111
101101000111 111111000111
111111001000 111111111 co 0
101111111000 111111111000
011011111000 111111111000

graph 9

COOOC0000111100 111
000001011010111101
oooocooo1111occcc1
oooocoo10000010101
000000001110111001
01oocoooo110100011
000000000101occcc1
010100000011100111
011010000000001cco
101011100000111111
1110110100000101cc
101000110000001000
1100110101ococco10
010110000110000010
010010001101oooco1
110100010110000000
10000101010011cccc
111111110100001000

graph 11

00010110111100111c
000011111111111111
000001110111111111
100000111110100111
010000011111101111
1110cooo11111110 11
1111000001110111cc
011110000001101110
110111000001001011
111111100000111111
111111100000000110
111011111000001111
0111110101ccoco111
011001100100000011
111011111101occccc
111110110111100000
1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 C C 0
011111001101110000

cooco1111100110110
000001000 111001101
cooco1co1101100100
000000111000100111
ccoccco1001c101110
111000000011100011
1001occcooo1111011
100110000011011110
1011cccoccoo110000
111000000000111011
01001101cccco10110
011001110000000001
1011111011ccooo110
100000111110000001
0100101101cccoocoo
1111100100101oococ
100111110110100000
010101100101010000

co O 111111111111111
00 0 11 1 11111111111 1
C C O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
111000111111111111
1 1 1 C C C 1 1 1 1 1 1 1 1 1 1 1 1
111000111111111111
111111coO111111111
111111000 111111111
111111000111111111
111111111000111111
111111111coo111111
111111111000111111
111111111111coo111
111111111111000111
111111111111000111
111111111111111000
11111111111111100 0
1111 1 11111111 1 100 0

171

172

grafh 13

000000000111100111010
00001101011110111cco1
cccoo1000001010100000
000000101100111011100
010000000110100011001
0110000000000100111co
000100000100000100000
010000000011110010100
C00100000001000000101
110110100000001101010
110010010000001110000
1110000110000011c1cc1
110110010000000011100
00110101ooccooococo11
010100000111000001001
111000100111oooccccoo
110111010010100000001
100111000101101ococoo
000101011000100000000
10000000010001ococcco
010010001001011010000

graph 15

00011111111111co11c11
000011111111011010101
000001111111110111101
100000111101001111011
110000010111101110111
111000001111111111110
111100000010111110111
111110000011111111110
111101000000110111111
111111000000111110111
111011110000011110111
111111010000000101111
101011111100000111111
111001111110000011111
01011111011cccooo1111
001111111111100000111
111111111110110 oc co 11
101101011001111000001
0110111111111111ccooo
100111111111111110000
111110101111111111000

graph 14

000111111001010111000
000011100011110011110
000001011011110110110
1ccccoo11111011011011
110000010001001101001
111cocoooo11co1011001
110000000000110011110
10111ccooo11110111000
101100000000111111110
coo1cocoocoo101100100
011101010000011001011
111111010000001010100
011000111100000111101
111100111010000011110
000111001111ooooocoo1
101010011100100000110
111101111001110000010
110111111010110000001
0110001011011101occoo
011100101010010110000
000111000010101001coo

grafh 16

000111111111111111111
000011111111111111111
CCC001111111111111111
100000111111111111111
11 cc coo 11111111111111
111000001111111111111
1111cccoo111111111111
111110000011111111111
111111000001111111111
111111100000111111111
111111110C00011111111
111111111000001111111
111111111100000111111
111111111110000011111
111111111111000001111
111111111111100000111
111111111111110000011
111111111111111cocoo1
111111111111111100000
111111111111111110000
111111111111111111000

