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ABSTRACT 

This paper is an extended argument in favour of the use of models in 

automatic theorem-proving, Gelernter's Geometry Machine is taken as a 

prototype of such a theorem-prover, and is analyzed with the objective of 

extracting its underlying semantic and syntactic formal system, This 

system is later generalized to permit, among other things, arbitrary 

well-formed formulae, arbitrary models, the use of models in making 

inferences and the dynamic modification of models as the proof unfolds, 

The purely logical component of this generalized system resembles natural 

deduction, rather than resolution, The various semantic features of the 

formal system are discussed and illustrated through a number of examples, 

In particular, thesystemis seen to possess a very smooth and natural 

interface between the semantics and the deductive syntax, These syntactic 

and semantic subsystems interact continuously during the search for a proof, 

each suggesting to the other how next to proceed, Another feature is the 

use of semantic information to minimize back-up due to dead-end searches. 

Particularly appealing is the naturalness of the system and its close 

correspondence with many "people oriented" techniques for proof discovery. 

The notions of "model" and "truth in a model" are defined for quantifier

free formulae. It is found that the semantic theory so defined is, in some 

respects, too weak. Infinite models are considered and an attempt is made to 

deal with the problem of finitely representing such models. 



Finally, relationships are indicated between the semantic approach 

to theorem-proving and other areas of artificial intelligence, specifically 

natural language processing, generalization and hypothesis formation, and 

the representation of new knowledge. 



1. 

1. Introduction 

The past dozen years or so have witnessed a great deal of research 

and progranuning energy devoted to mechanizing first-order logic. Motives 

vary over a spectrum of applications: exhibiting intelligent behaviour 

in mathematics [3,4 J, proving correctness of computer programs [ 17 J, 

information retrieval [ 5 J, natural language processing [ 24 ], robot 

problem-solving [ 7 ]. Several first-order proof procedures have been 

proposed and implemented with varying degrees of success. Among these 

are systems of natural deduction [ 25 ], Herbrand search procedures [ 6 ], 

and resolution [ 20 ]. 

It quickly became apparent that these proof procedures alone cannot 

succeed on any interesting mathematical theory, at least not within the 

lifetime of the universe. One approach towards alleviating these 

difficulties was to develop completeness preserving refinements of the 

rules of inference. Essentially, these are suitably restricted rules, 

often depending upon the syntactic structure of the current formulae, 

which generate a narrower (but usually deeper) search tree. Virtually 

all of the results obtained along these lines are for resolution systems. 

Examples are resolution with merging [ 2 ], linear resolution [ 16 ], 

A-ordering [ 22 ] etc. plus a whole host of combined strategies. Experi

mental evidence [ 27 ] indicates that this approach alone fails on 

even mildly serious theorems. 

Virtually everyone is now agreed that knowledge about the problem 

domain must be used in the logic. The question is how. There seem to 

be two approaches. 

1.1 Semantics as Domain Dependent Heuristics 

In this approach, semantic information is embedded, in the logic, 

as suitable domain dependent heuristics which act like new rules of 



2. 

inference. No representation of the problem domain itself is present. 

Semantics is conveyed through some fixed, finite set of heuristic 

procedures representing that knowledge of the problem domain which is 

believed to be significant in guiding the search for proofs. A typical 

paradigm is something like: "If the current formula(e) have such and such 

a syntactic structure and/or if the parameter~ is less than 7.3, then 

apply the following domain dependent rule of inference." (Of course, 

most systems based upon this approach are considerably more sophisticated 

than that - we want only to suggest their flavour.) The point here is 

that this semantic information is incorporated into the system by 

augmenting its purely syntactic rules. The theorem-prover continues to be 

syntax-driven. 

Examples of this approach are [ 4 ] for analysis, [ 3] for set 

theory, [ 18] for equality and [ 23] for partial orderings. It is 

reasonably clear that such domain dependent heuristics will be essential 

components of any theorem-prover capable of doing real mathematics. For 

example, a number theorist will require procedures for solving various 

kinds of equations and for formula manipulation. Bledsoe's system for 

limit theorems in analysis 4] embodies just such procedures and is 

an excellent example of their integration into a logical system. We 

shall ~rgue that much more than this is required. 

If, as we remarked, the theorem-prover is still being syntax-driven, 

what fundamental difference is there between this approach and the 

refinement techr,iques for resolution? In principle, we believe there is 

none. These heuristics are merely domain dependent refinements. 

Because these heuristics are embedded at the syntactic level of 

proof generation, every node of the search tree is treated uniformly. 

This in itself is no criticism. However, each node represents a first 
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order formula which, presumably, means something on the problem domain. 

There are arbitrarily many possible formulae - hence arbitrarily many 

possible meanings. But there are only finitely many semantic heuristics 

coded at the inference level. In effect therefore, this approach assumes 

that the set of all possible formulae can be collapsed to a finite set of 

equivalence classes and that each such class characterizes the meaning 

of its member formulae. Moreover, this finite set of "meanings" is 

sufficient semantic information to efficiently guide the search for proofs. 

We consider neither of these consequences to be plausible. 

However, there seems to be a way out. One could argue that these 

finitely many heuristics need not be independent. If we allow them to 

interact in 'highly complex ways, perhaps we could distinguish semantically 

among all possible formulae. Fine. But how do we determine these inter

actions? For that matter, how do we discover the initial base set of 

semantic heuristics? We must anticipate, at the coding stage, all of that 

knowledge the domain has to offer which could be of assistance in 

discovering proofs, together with their interactions. If later we discover 

a new heuristic, this can lead to a major overhaul of the program. There 

is a very real danger of an overproliferation of special, mutually inter

acting heuristic procedures. In the limit, a program relying solely on 

this approach might suffocate in its own code. Briefly, then, this 

approach lacks transparency, flexibility and generality. 

Worse still is the lack of any kind of reasonable control over dead

end searches. If the application of an heuristic or rule of inference 

leads the proof astray, there is no prov5.sion for using knowledge about 

the problem domain to detect this. Those techniques which are currently 

used such as setting parameters for maximal clause length or depth of 
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function-nesting are clearly ad hoc, and independent of the domain. It 

might be argued that special purpose heuristics can be developed to 

detect blind alleys. Perhaps - but this would only aggravate the first 

problem. 

This difficulty with blind alleys is compounded in the presence of 

a large number of axioms and theorems which might be irrelevant to the 

proof being sought. Such formulae are guaranteed to lead to dead-end 

searches. There is no way that a serious theorem-proving system can 

avoid having to deal with this situation. To our knowledge, no current 

implementation of a theorem-prover, all of which are based on refinements 

and/or domain dependent heuristics, is capable of coping with this problem. 

1.2 Semantics as the Representation of Models 

The main thrust of this paper is the following: Instead of relying 

entirely upon heuristic procedures which represent fixed, a priori 

knowledge about the problem domain, we represent the problem domain itself 

i.e. we present to the theorem-prover a model of the axiomatic system 

involved. Of course, the representation of a model is, by itself, useless. 

In addition what is needed is a set of procedures for extracting information 

about the model when required by the theorem-prover together with a 

flexible, general interface between such a semantic subsystem and the 

purely syntactic logical system. The distinction, therefore, between this 

approach and that based upon domain dependent heuristics is that the latter 

explicitly represents that semantic information which is believed to be 

a priori relevant, while the former implicitly represents all of the 

information available in the model which is capable of being extracted 

by the available procedures. 
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The idea of using models for theorem-provers is by no means new. 

Gelernter and his co-workers (8,9,10,ll,12] developed a system for plane 

geometry whose success was due primarily to its use of geometric diagrams. 

Because our own ideas evolve very naturally from theirs, we devote 

Section .2 to its description. The only other developed theory of the 

use of models in theorem-proving is due to Slagle (22]. If we ignore 

such niceties as what we mean by a model, and truth in a model, we can 

describe his system as follows: The only rule of inference is clash

resolution [ 21 ]. If Mis a model, C, E1 , ... ,Eq are clauses, and cr 

a most general substitution such that 

Ccr = KU{L
1 , •.• ,Lq} is true in M 

Eicr = FiU{Li} is false in M 

and R =KU F
1 

U .•. UFq is false in M 

then Risa latent maximal semantic resolvent. These are the only 

resolvents which need to be inferred. Slagle proves the completeness of 

this inference rule, and gives two examples of semantic proofs. Unfort

unately this approach has never caught on, possibly because these 

maximal resolvents are difficult and costly to compute, and possible because 

Slagle's paper is very abstractly written. In any event we believe that 

his system is worthy of closer study, and that many of the ideas of the 

present paper can be profitably incorporated into semantic resolution. 

The rest of this paper is devoted to an extended argument in favour 

of the use of models in theorem-proving. Section 2 is a study of the 

Geometry Machine with the principal goal of abstracting its underlying 

semantic and syntactic formal system, and isolating those deficiencies 

which prevent the general use of this formal system. Section 3 provides 

formal definitions of "model" and "truth in a model" and attempts to come 

to grips with the problem of finitely representing infinite models. In 
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the process, some unresolved problems are uncovered associated with 

specifying semantics for Skolemized formulae. Section 4 generalizes the 

formal system underlying the Geometry Machine, and discusses some of its 

features. Section 5 indicates relationships between the semantic approach 

to theorem-proving and other areas of artificial intelligence. Section 

6 concludes the paper with some suggestions for further research. 



7. 
2. The Geometry Theorem Machine Revisited 

In a series of articles [8,9,10,11,12] Gelernter and his co-workers 

describe a theorem-proving system for elementary plane geometry. With the 

exception of Gilmore's careful analysis of the logic underlying their system 

[13J this work has been largely ignored by the theorem-proving community, 

despite the obvious success of their use of semantics in dealing with many 

of the problems which plague current theorem-proving programs. In this 

section we outline the basic semantic and logical features of Gelernter's 

work, with a view towards generalizing these ideas in Section 4. Much of 

this outline relies on Gilmore's study [13 ] • 

2 .1 The Axioms 

Gilmore distinguishes two classes of axioms underlying the Geometry 

Machine: 

Class 1 - Universally quantified axioms. With the exception of the identity 

axiom (~)(x=x) these are all implication sentences i.e. sentences of the 

form 

(x1 ) (x2 ) ... (xn) (L1AL2A •.• ALn{'Lm+l) 

where L1 , ••• ,Lm+l are literals and x1 , .... ,xn are all of the free variables 

occurring in the L's. The x's are interpreted as points. In addition, 

every axiom which is an implication sentence has the property that each 

variable occurring in the conclusion Lm+l occurs also in at least one of 

the premises L
1

, ••• ,Lm. Let us call such sentences p-implication sentences. 

Class 2 - Existentially quantified axioms. In fact, there is just one, 

namely 

(xyzw) [ ~xy 11 zw .:> 3 u (coll xyu A coll zwu)] 

which asserts that if line segment xy is not parallel to zw, then there 

exists a point u such that x,y and u are collinear, and z,w and u are 

collinear. However, this axiom is used in a special way which we describe 

later. The important point is that it never explicitly interacts with the 
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purely logical rules of inference, which we now describe. 

2.2 The Rules of Inference 

Gelernter's system is designed to succeed on theorems in geometry 

which are p-implication sentences derivable from the Class 1 axioms. 

Of course, previously proved theorems may be used in the proof, but since 

these are also p-implication sentences, their form is the same as that of 

the axioms. Let (y1 ) ••. (yr)a(y1 , ... ,yr) be the prenex normal form of the 

conjunction of all of the Class 1 axioms and previously proved theorems. 

Let (x1 ) ... (xn)[H1A .•. AHm~sJ, briefly (x1 ) ..• (xn)H(x1 , ... ,xn), be the 

current theorem to be proved. Then our current goal is 

f-(yl) •.. (yr)a..(y1,··•,Yr)~(xl) ... (xn)H(x1,···,xn) 

In Skolemized form (see Section 3.2) this goal is 

1-a(yl' .•• ,yr)~H(A1 , •.. ,An) 

where A1 , ... ,An are 0-place Skolem functions. This is equivalent to 

f-{Z(y1 , •.. ,yr) AH1 (A1 , ... ,An) A ..• AHm (A1 ,, .• ,An)=>S (A1 , ... ,An) (1) 

which is Gelernter's top level goal. The basic rules of inference involve 

substitution for variables, and "backward chaining". Thus to establish 

S(A1 , ••• ,An), find an H identical to it, or an axiom a of a(y1 , .•. ,yr) 

whose conclusion is of the form S(y
1

, ..• ,yn). If such an a can be found, 

make the substitution A1 !Y1 , ••• ,An!Yn in the premises of a. If the 

premises still contain free variables, substitute for these uniformly 

choosing arbitrary elements from the set {A1 , ••. ,An}. Equivalently, find 

a substitution instance cr over the Herbrand Universe {A1 , ••. ,An} such that 

acr has no free variables, and such that acr has S(A1 , •.• ,An) as its 

conclusion. Having succeeded in discovering such an a, we take the premises 

of acr to be the current goals, all of which must succeed, and proceed 

recursively. The rules of inference can clearly be described as "reasoning 

backwards from conclusion to premises". We can present these rules more 

... 
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precisely via the following formal system whose resemblance to that used 

by Bledsoe, Boyer and Henneman [ 4] is intentional: 

Current Subgoal 

1, R 1-B :) C 

If Band Care identical 

If there exists a substitution 

a such that Bcr • C 

2 • R I- (K => B) :::> C 

If there exists a such that 

Ba= C and Ka has no free 

variables 

3. Rf-W.:JU AV 

Next Subgoal 

T (true) 

T 

f- R? KO 

RI- W=>U 

and RI- W ::, V 

R AV I- u::, w 

or R A U I- V =>W 

Here Band Care literals and Ka conjunction of one or more literals. 

U, V and Ware arbitrary wffs. R is what Bledsoe et al. call the 

reserve. Initially, R is the null conjunct ~ and the top level subgoal 

is given by (1). a, of course, is a substitution over {A
1

,.,.,Ao}, 

The rules are applied, in order, to any current subgoal. If any rule 

fails, the next rule is attempted. If all fail on the current subgoal, 

NIL (false) is returned. 

Example 1. The Pons Asinorum. In an isosceles triangle, the base angles 

are equal. Only one axiom is required - "If two sides and the contained 

angle of one triangle are respectively equal to the two sides and contained 

angle of another triangle, then corresponding angles are equal". 



10. 

a.: !::. xyz A !::. uvw A xy=uv A xz=uw A L yxz= L vuw ::> L xyz= Luvw 

The top level subgoal is 

cf> f- a. A !::. ABC A AB=AC :::1 L ABC= LACB 

Two applications of Rule 4 yield the following three subgoals, one of 

which must succeed. 

1. a. A !::. ABC f- AB=AC :::> L ABC= L ACB 

This fails. 

2. a A AB=AC f- !::.ABC ::> L. ABC= LACB 

This fails. 

3. AB=AC A !::. ABC f- a ::::> L ABC = L ACB 

Rule 2 applies and yields cr = (AJx, BJy, c]z, A]u, c]v, B]w). The current 

subgoal is 

4. cf> f- AB=AC A !::. ABC ::, !::. ABC /1. !::. ACB A AB=AC A AC=AB /1. L BAC= LCAB 

Four applications of Rule 3 yield 

5. ¢ f- AB=AC A !::. ABC _---, !::. ABC 

6, ¢ r AB=AC A !::. ABC::-, !::. ACB 

9. ¢ I- AB=AC A t:, ABC => L BAC= L CAB 

all of which must succeed. These all succeed by an application of Rule 4 

followed by Rule1provided, in the case of 6. 8. and 9. the system knows 

a little bit about triangles and equality of line segments and angles. 

2.3 Semantics - The Use of Diagrams 

Clearly, if the above formal system were unleased on any full-blown 

set of axioms and theorems of plane geometry there would be an uncomfortably 

long wait for most proofs. One of the ways Gelernter et al. prune the 

search tree generated by the rules of inference is by means of a geometric 

diagram. Here the Skolem constants A1 , ... ,An are interpreted as fixed 

points in the plane and the occurring predicates like!::. , coll etc. and functions 
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like midpt, intersectionpt, etc. are given their usual geometric inter

pretation. The actual co-ordinates assigned to A1 , .•• ,An must be so 

chosen as to make the hypotheses H1 (A1 , •.• ,An), .•• ,Hm(A1 , ... ,An) true 

when interpreted in the diagram. By a model M we mean such a co-ordinate 

assignment to the A's, together with the standard geometric interpretation 

of the predicate and function symbols. If Wis a wff, MF W means that W 

is true in Mand M~W, that Wis false in M. This, of course, is simply 

an informal description of the usual Tarskian definition of model and 

truth in a model. (We give a formal definition in Section 3.) It follows 

that 

M /=H1 (A1 , .•• ,An) fl., •. fl.Rn (A1 , ••. ,An). 

Also Mr(y1 ) ••• (yr)a(y1 , ••• ,yr). This is not so obvious as it might seem 

at first. It is true because of the special form of the axioms as 

implication sentences. If, for example, the Class 2 intersection axiom 

had been included ina, no model with finite domain {A1 , ••• ,An} would in 

general simultaneously satisfy H1 , .•. ,Hm and a. This is so because all 

possible points of intersection of non parallel line segments would have 

to be explicitly indicated in the diagram. But these new points themselves 

define line segments which in turn define new points of intersection, etc, 

Strictly speaking, there is no finite model for full plane geometry (as 

opposed to the fragment of plane geometry considered by Gelernter et al.) 

However, there is a sense in which there is a useable model, and we shall 

return to this question in Section 3, 

Now consider Rule 2 of the rules of inference and suppose that 

M t1 Kcr. In that case RJKcr is not provable. This is so because each 

conjunct of R is either an axiom, or one of H1 , •.. ,Hm (an easy induction) 

and hence R is true in M. Thus there is a model for R in which KO" is false 
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so by the completeness theorem for first order logic, R~Kcr is not 

provable. It follows that, without diminishing the class of theorems 

provable within this formal system, we can replace Rule 2 by 

2~ R r- (~B)::>C 

If there exists a such that 

Ba =C and Ka has no free 

variables and M f=Ka 

This is the syntactic and semantic formal system underlying the Geometry 

Theorem Machine. We call this system LG. 

Example 2. 

In the presence of the axiom 

e: xylluvJ\coll xwy J\ coll uzv-,Lxwz =L.vzw 

one of the subgoals generated for the Pons Asinorum would be 

/:,. ABC J\AB=AC rf3 ::, L ABC=LACB 

Rule 2 1 would require the substitutions AJx,Blw,CJz,Ajv. But there 

is no substitution for u and y from {A,B,C} which makes 

Ayl ]uA J\ coll ABy J\ coll uCA 

true in a diagram of an isosceles triangle ABC. Hence, this subgoal fails. 

2.4 The Intersection Axiom 

As we remarked earlier, this Class 2 axiom is treated by Gelernter 

in a special way. This is the only axiom which permits the introduction 

of new points. Equivalently, this axiom allows for augmenting the model 

M by explicitly adding new points and line segments to the diagram. 

However, in Gelernter's system this is not done dynamically, as the search 

for a proof unfolds, but only when the search for a proof fails with the 

given model M. In that case, a pair of non parallel lines in the diagram 

is chosen (it is not clear from {8,9,10,11,12] how th~ lines are chosen), 
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their point of intersection Eis determined, the new diagram together 

with the new domain {E,A1 , ••• ,An} serves as the new model and a proof is 

again attempted with LG. This is obviously an ad hoc procedure for 

dealing with one instance of a general problem in plane geometry, namely 

- What constructions should be made? It is clear that the formal system 

LG is well suited for proofs which require no constructions to be made 

in the initial diagram, and that LG alone will fail on any theorem 

requiring a construction. Thus the Geometry Machine would succeed (and 

did) in finding the elegant proof of Example 1 for the Pons Asinorum. It 

could not,even with the intersection axiom,find the usual high school 

proof which requires extending the bisector of angle A to meet the baae 

BC, since this requires an axiom stating that every angle has a bisector. 

Such an axiom is existential and hence not a Class 1 axiom. 

2.5 Another Use of the Diagram 

The Geometry Machine exhibits a certain degree of selectivity between 

what it proves formally, and what it decides is obvious from the diagram. 

For example, if a current subgoal is LBAD=LCAE and if part of the diagram 

looks like 

A 

the Geometry Machine returns "True - by the diagram", rather than a tedious 

syntactic proof of the same subgoal. Aside from the obvious economy 

derived from avoiding certain syntactic subproofs, this methodology requires 

fewer axioms. Thus, instead of cluttering up the axiom set with axioms like 
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coll xyz A coll xuv A between xyz A between xuv .::> L zxv=Lyxu 

the Geometry Machine embeds this as a search procedure on the model. 

This "confusion" of the motions "provable" and "true in the model" 

is one that mathematicians profitably make all the time. For example 

the statement 2+3=5 is true in the standard model for number theory, 

and so we accept it as provable, despite the fact that strictly speaking 

it should be given a syntactic proof within Peano arithmetic. It is clear 

that theorem-provers in general must be capable of making this "confusion" 

in order to avoid trivial, but possibly lengthy deductions. 

2.6 Summary 

The Geometry Machine uses the semantic and syntactic system LG with 

a fixed model M whose diagram satisfies the initial hypotheses of the 

theorem to be proved. The model M may be altered only by appealing to 

the intersection axiom which allows for the addition of new points (as 

intersections of old lines) and new line segments. This is done only 

when LG fails with the model M. In that case the new model is presented 

to LG' and a fresh proof attempted. 

All of the axioms which interact with the system LG are p-implication 

sentences, as are the theorems to be proved. In particular, the semantic 

and syntactic rules are incapable of coping with existentially quantified 

axioms or theorems. 

The formal system LG defines a negationless,logic since the negation 

sign does not appear explicitly in any of its rules of inference. Similarly, 

there is no rule for handling disjunctions. 

The rest of this paper is devoted to generalizing the system LG. In 

particular, the generalized logic and semantics will provide for: 
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1. dynamic modification of models as the proof unfolds 

2. arbitrary wffs as axioms and theorems 

3. negation and disjunction 

4. infinite models (in a sense to be defined) 

5. special treatment of the equality predicate 

6. use of the model to make inferences 
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3. Interpretation of Wffs in a Model 

In the case of the Geometry Machine, all theorems have a specialized 

form: 

H (Al, ... ,A ) ::> S (A
1

, ... ,A ) 
m n n 

and the associated models all have the same characteristics - a fixed 

diagram with finitely many points, each point of which is bound to one 

of the Skolem constants A1 , ... ,An and conversely. To test M FW(x1 , ... ,xr, 

A1 , .•• ,An) try to find points x1 , ... ,xr in the diagram which make W true. 

For the remainder of this paper, we want to adopt a general view of syntax 

and semantics for first order logic, as they apply to theorem-proving in 

mathematical theories. The intuitive notions of model, and truth in a 

model, which we have been assuming in the description of the Geometry 

Machine will no longer be adequate. 

3.1 Some Definitions 

We are dealing with the usual alphabet of symbols for quantifier-free 

first order logic: 

Variables x, y, z, ... , 

Predicate symbols P, Q, R, ... , each of an arbitrary number of arguments. 

Function symbols f, g, h, ... , each of an arbitrary number of arguments. 

Logical connectives :::, , V, A, - (no quantifiers). 

Punctuation symbols as needed. 

Terms, well formed formulae (wffs), atoms, and literals have their usual definitions 

[ 6 ] . An interpretation I is specified by a non empty set D (the domain) 

together with 

1. For each n-ary predicate symbol P, an associated function PI: Dn+{0,1}. 

2. 
n 

For each n-ary function symbol f, an associated function f 1 : D + D. 
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The interpretation I is finite provided Dis finite. Define, for 

(1) (m) 
If t , •.. ,t are terms and f is an m-ary function symbol, and 

x1 , ... ,xr are all of the variables occurring in these terms, then for 

1 .::._ r .::._ n, define 

[f (t(l), .•. ,t(m))]I (a1•···,an) = fI([t(l)]I (a1•···,an), ... ,[t(m)]I(al, ... ,an)) 

If Pis an m-ary predicate symbol, then 

We extend these ideas to non-atomic wffs in the usual way. Define 

[W]I(a1 , ••• ,an) = 1 if [W]I(a1 , .•. ,an) = 0 

= 0 if [W]I(a1 , ... ,an)= 1 

[WA W']I(a1 , ... ,an) = 1 if [W]I(a1 , ... ,a
0

) = 1 and [w'' ]I(a
1

, ... a
0

)=1 

=- 0 otherwise 

etc. 

We want to define the notion "wff Wis true in I". Before doing so, we 

must agree on whether the free variables of Ware to be interpreted as 

universally quantified, or existentially quantified. Later, we shall need 

both notions. Therefore, define 

Ir=E W iff there exist a1 , ••• ,a
0 

e: D such that [W]I(a1 , ..• ,an) = 1 

If=u W iff for all a1 , •.. ,an e: D, [W]I(a1 , ..• ,a
0

) = 1 

If Ir U W, then I is a model for W. This is the usual Tarskian definition of 

model. There are a number of immediate consequ..ences of these definitions. 

Il=E W iff not Iru W 

I FE WVW' if f I FE W or I I= E W 
1 

If Ir E w => w I and Ir u w then Ir-E w· I. 
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This last result provides the basis for our use of semantics in theorem

proving. If W is taken to be the axioms and w' the theorem to be proved, 

we determine an appropriate model M of W. Each subgoal T generated by the 

rules of inference is tested to determine whether Mf=E T. If not, this 

subgoal is rejected. Notice that in our current notation Rule 2
1 

of 

Section 2 should refer to Mj=EKcr. However, since Kcr contains no free 

variables, the distinction is a pedantic one. 

3.2 Wffs in Skolem Form 

One does not usually begin with wffs in quantifier-free form, but 

with first order wffs with quantifiers. The usual procedure is to convert 

these to quantifier-free form by introducing so-called Skolem functions. 

We briefly describe a procedure for doing this. Assume that Wis a first 

order wff with quantifiers and no free variables. Assume further that no 

two occurrences of quantifiers in W quantify the same variable. Transform 

' W into an equivalent wff w· as follows: 

1. Eliminate all occurrences of? through the transformation P? Q + PVQ 

2. Distribute all negations across quantifiers via ~(x)Px _.. (~x)Px and 

3. Distribute all negations across disjunctions and conjunctions via 

~ (PVQ) +PA Q and ~(PA Q) + PVQ. 

Suppose, in w', that (y) is a universal quantifier. Let (3 x
1
), 

(? x
2
), ... ,(~ xn) be all of the existential quantifiers whose scopes contain 

an occurrence of (y). Delete the quantifier (y) from Wand replace each 

occurrence of yin W by f(x
1

, .•• ,xn) where f is a new function symbol. 

f is called a Skolem function. Do this for each universal quantifier (y). 

Delete all the existential quantifiers in W. The resulting wff is quantifier

free, and said to be in Skolem form. 
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W: (x) {(u) [(Pu,x A 3 y ((z) Qy,z,u:::, Rx,y)] ::'l .':J w Sx,w} 

W': (x) C3u[Pu,x V (y) ((z) Q y,z,u A R-x, y)] VS x, w} 

Skolem form of W 

Pu, a A (Q f (u), g (u), u ~ Ra, f (u)) ~Sa, w 

3.3 On Generality of Models 

19. 

For our purposes, there are a number of deficiencies in the Tarskian 

definition of model just given. As we shall see, some of these can be 

resolved in a natural way, while others seem to require a different notion 

of model. All stem from the fact that our wffs are quantifier-free and the 

simple observation that not every quantifier-free wff is the Skolem form 

of some first order wff with quantifiers. 

2 
Consider first the theorem "In a group, if x =e for all group elements x, 

then the group is commutative". Formally, 

r Group Axioms A x2 = e :? ab = ha 

An aopropriate Tarskian model M would be a finite group with domain D for 

2 which d = identity element of D, for each d ED. In addition, a and b 

would each be bound to fixed elements da and db of D. In testing Mr EW(a,b) 

we would determine the truth value of W(da,db). Evidently, there is a loss 

of generality here, since we really want a and b to independently range 

true. Notice that we do not always want Skolem constants to range over 

the domain in establishing the truth value of a wff. Geometry is a case 

in point. However, for algebraic systems, it represents a more general 

test for truth. But now what are we to make of the following formulation 

of the same theorem? 

r Group Axioms A x2 = e A ab = c ::> ba = c 

Here, if Mis a model of the antecedent, then in testing M/=Ew (a,b,c) we 
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cannot permit a, band c to independently range over D. a, band care 

constrained, by M, to assume values da, db, and de in D such that 

A natural solution seems to be to define a number of "parallel" 

Tarskian models, each with the same domain and multiplication table, and 

each with a different interpretation of the Skolem functions. In a 4 

element domain this makes for 16 models M
1

, ••• ,M16 • Then to test, say 

W(a, b, c) in the "general model", test each of M1 i=- EW(a, b, c), ... , 

M16 rEw (a, b, c). Of course, these 16 Tarskian models collapse to a 

single non-Tarskian "general model" under appropriate book-keeping. 

Unfortunately this approach - defining a number of parallel models, 

one for each set of interpretations of the function symbols - fails in general. 

To see why, consider a first order formula of the form .~x(y)W(x,y) with 

Skolem form W(x,f(x)), f being a new Skolem function. Let D be a finite 

domain and consider a number of parallel models each differing from the 

other only in the interpretation off. Suppose there is one such model 

for each function f: D ➔ D. Then testing the truth of W(x,f(x)) in this 

parallel model, is equivalent to evaluating the propositional form 

I\ V W(x,f(x)). But this propositional form is equivalent to 
f :D + D x £ D 

/\ V W(x,y). Evaluating this is equivalent to testing the truth of 
y € D x E :0 

(y) ;:lxW(x,y) which is by no means the wff with which we began. Notice, 

however, that the original wff j x(y)W(x,y) implies (y);JxW(x,y), so that 

if the latter is false in a model, so also is the former. In general, one 

can show that if Q1Q2 ••• QrW is a first order wff, where Q1 , ... ,Qr are all 

of its quantifiers, then Q1Q2 ..• QrW~Q1Q2 ... Q;w is valid, (the reverse 

implication may not be) where Q1Q2 ... Q; is a rearrangement of the quantifier 

string Q
1

Q
2 
... Qr such that all of the universal quantifiers appear first. 

,I 
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One can also show that the use of parallel models in testing the truth of 

Q1Q2 ••. QrW is equivalent to testing the truth of Q1Q2 ... o;w as in the 

example just treated. In particular, if the Skolem form of Q
1

Q
2 
..• QrW 

tests false in a parallel model, then Q1Q2 ••• QrW is false, but if it tests 

true, we know nothing about the truth value of Q
1

Q2 .•• QrW. Fortunately, 

as we have seen for the Geometry Machine (Rule 2') and as we shall see for 

its generalization (Section 4), semantics affects the searc:h-tree for a 

proof only when certain wffs are false in a model. It follows that we 

are justified in using parallel models as semantic aids in theorem-proving. 

What we thereby lose is generality, since Q1Q~ ... Q~W is usually a much 

weaker assertion than Q1Q2 ..• QrW. 

A reasonable looking alternative follows from the observation that 

Skolem functions really mean "for all" so that, for example, W(x,f(x)) 

symbolizes 3x(y)W(x,y) and this compiles into the correct test 

V I\ W(x,y). Unfortunately, this approach fails in general 
X e: D y e: D 

because there are quantifier-free wffs which cannot be translated into 

first-order wffs with quantifiers • . For example, if f is a Skolem 

function, then W(f(x), f(y)) is not the Skolem ronn of any quantified 

first-order wff. In many cases, such a translation is possihle. 

[15] contains an appropriate algorithm. 

There is a need for a semantic theory of quantifier-free wffs which 

provides the generality lacking in the Tarskian or "parallel model" 

approaches. The only other alternative is to reject the quantifier-free 

approach on which so many proof procedures (e.g. resolution [20], natural 

deduction [ 4]) depend - not a cheerful prospect. In any event, the 

re~inder of this paper depends only on the availability of some well

defined notion of model. The notions which we have considered (Tarskian, 
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parallel) will certainly do, despite the fact that, for some wffs, they 

provide a weak semantics. The fact remains that a strong semantic theory 

for quantifier-free wffs would be welcome. 

3.4 Wffs as Procedures 

There are two ways in which a wff can be viewed: Either as a static 

statement which asserts som~thing as true or false in a model, or as a 

dynamic procedure (program, algorithm) which, given a model M, returns 

the value true or false. In our discussions of semantics we shall take 

the latter point of view. Thus, in implementing the test MfEW(x
1

, ..• ,xn), 

we imagine first compiling the expression W(x
1

, ... ,xn) into a procedure IT 

with free variables x
1

, .•. ,xn and then evaluating IT on all n-tuples 

(a1 , ... ,an) of elements of D. This is particularly simple in a programming 

language like LISP, if we choose the syntax of wffs to be the same as 

LISP syntax, in which case IT is identical with W. One then simply EVAL's IT 

over the n-tuplesof D. Although this point of view makes sense for both 

finite and infinite models, the procedural test for the truth of Wis 

guaranteed to terminate only for finite models. 

3.5 On Infinite Models 

We have already remarked that plane geometry has no finite models. 

Certainly number theory has no finite model. In fact, most branches of 

mathematics suffer from (and are enriched by) this fact of life. Nevertheless 

mathematicians have a clear idea of the objects that they are proving 

theorems about. There is an underlying model which directs their proofs 

and suggests new theorems to be proved. How is such an infinite model 

internalized and how does it interact with the purely syntactic process of 

generating proofs? 
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We suggest that infinite models, as used by mathematicians, are not 

really models at all in the Tarskian sense. Rather, they consist,in part, 

of a finite set of procedures which map elements, or tuples of elements 

of the domain D (in the Tarskian sense) into Dor {0,1}. The domain D 

cannot be explicitly specified (as can, say, the domain of a finite group) 

so we cannot hope to inspect it element by element. It is however implicitly 

specified as the domain of definition of the associated procedures, and as 

a data type. Hence, the natural numbers are implicitly specified as the 

domain of definition of the procedures ADD (.,.),LESS THAN(. ,.),MULTIPLY 

(.,.), ADDI(.) etc. and by the type declaration INTEGER. The points of 

plane geometry can be specified implicitly as the domain of definition of 

the procedures BETWEEN(.,.,.), TRIANGLE(.,.,.), DISTANCE(.,.) etc. and 

by the type declaration (REAL,REAL). 

One might be tempted to argue that there is something circular about 

the declaration of a data type as an approach to implicitly specifying an 

infinite domain, e.g. INTEGER for the natural numbers. However, the type 

INTEGER by no means tells you what a natural number is, but rather tells 

you how to represent natural numbers e.g. in decimal if you happen to be 

human, or binary if you are a computer. Specifying a representation is, 

of course, a finite matter. The procedures associated with the infinite 

model then act on the representation specified by the data type. 

Let us be more precise. Suppose that Dis the domain of an inter

pretation in the Tarskian sense. An intentional interpretation is 

specified by (with reference to the definitions at the beginning of this 

section) 

1. a data type for the elements of D. 

2. a finite (possibly empty) subset F of D. 
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3. 

4. 

for each n-ary predicate symbol P, a procedure PI: Dn + {0,1}. 

n for each n-ary function symbol f, a procedure fI:D + D. 

Of course, the procedures in 3. and 4. compute on objects whose 

representation is specified by the data type of 1. Fis intended to act 

as a finite "representative" of the domain. The elements of Fare those 

elements of D which we choose to explicitly represent in the interpretation. 

representation under the intentional interpretation I. Then we shall write 

I rEW(x1 , .•• ,xn) iff there exists a1 , ... ,an ED such that ITI(a1 , ... ,an) 

returns 1. There is a similar definition for IfuW(x
1

, ... ,x
0

). The only 

difference between these definitions and those in the Tarskian sense is 

one of emphasis on the procedural approach. 

If I l=uw, then I is an intensional model for W. If Dis finite and 

F = D, I is an extensional model for W. Obviously the question of the satis

fiability of Win an extensional model is decidable by straightforward enumeration. 

What have we gained by slightly rephrasing the Tarskian definitions 

at the beginning of this section? For one thing, we now have a precise 

way of finitely representing infinite models. This is so because mathematical 

theories have only finitely many predicate and function symbols, so only 

finitely many procedures are required. Another advantage is that these 

definitions provide a conceptual framework within which it is possible to 

interpret the informal notion of "model", the way in which these are 

manipulated in discovering a proof, and the sense in which we informally 

determine truth values of wffs. We illustrate with an example from geometry. 

In the Pons Asinorum, we are accustomed to saying that a diagram of an 

isosceles triangle ABC is a model for the theorem. But what does this 

statement really mean? Triangle ABC is certainly not a model in the Tarskian 

sense for the axioms of geometry. (The existence of mid-points of all line 
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segments precludes this.) We suggest that what is really meant is an 

intentional model like the following: 

1. a data type (REAL,REAL) for the domain elements. 

2. F = {(O,O), (0,1), (.5,2)} (or any other isosceles triangle in the 

Cartesian plane), 

3. finitely many predicate procedures of the kind BETWEEN(.,.,.), 

PERPENDICULAR(.,.,.,.) etc. 

4. finitely many functional procedures of the kind MIDPOINI' (.,.), 

BISECTANGLE (.,.,.) etc. In addition the procedures A, B, C of no 

arguments which return (.5,2), (0,0), (0,1) respectively. 

If, during the course of the proof, we bisect LBAC and extend this 

to meet BC in E, we shall have a new intensional model with F = {(0,0) , 

(0,1), (.5,2), (.5,0)} and the new procedure E of no arguments which returns 

(.5,0). E will be determined as INTERSECTION ((0,0), (1,0), (.5,2), 

BISECTANGLE ((0,0), (.5,2), (1,0))). The moral is that intensional models 

admit constructions. The role of F should by now be clear. F represents 

those objects of the domain D which we choose to represent explicitly. 

Constructions correspond to augmenting F by newly determined explicit 

elements of D. These new elements are computationally determined by means 

of the available procedures. Just what new elements we determine, and how 

the available procedures combine to compute them is determined from the 

syntax of the proof of the theorem, as the proof is being discovered. We 

shall return to this point in Section 4. For the moment it is sufficient 

to remark that a model should be used to guide the proof, and conversely, 

the current state of the incomplete proof should suggest a model. The 

nature of this suggested model is determined by the initial model, and the 

syntactic form of the current subgoal of the proof. During the course of 
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discovering a proof, there should be continuous interplay between the 

syntax and semantics, each suggesting to the other how next to proceed, 

In determining the truth value of a wff W(x
1

, ••• ,xn) in a model we 

are free to use whatever "real world" knowledge that we have about the 

model. In geometry we tend to "eye" the diagram, mentally measuring 

distances_ and angles and moving points to test whether there exist points 

x1 , .•. ,xn so as to make W(x
1

, ... ,xn) true. A more careful student might 

try out various configurations using a ruler and compass for greater precision. 

The computer implemented analogue to this visual process would be Cartesian 

geometry. Since points are thereby represented as co-ordinates in the plane, 

line segments as linear equations, and length as the usual Euclidean norm, 

the wff W(x
1

, •.• ,xn) represents a system Q of linear and quadratic equalities 

and inequalities, and it is straightforward to extract Q from W. Then 

MfEW(x1 , ••. ,xn) iff there is a solution to the system Q. It is tempting 

to argue that this use of Cartesian geometry is a cheat since the Cartesian 

approach is merely an analytic formulation of the Euclidean approach. 

Indeed, is there not something circular about all of this? The answer is no, 

since that knowledge which we bring to bear in the semantics is never appealed 

to in the syntactic proof which we are constructing. As we have seen for 

the Geometry Machine, semantics is used only to prune the search tree for 

the syntactic proof; it never intrudes as part of the proof. In fact, from 

these observations we can posit an even more "paradoxical" use of semantics. 

Suppose that the current theorem being proved is Theorem 47, and that, while 

browsing through the back of the book we discover Theorem 93 which, 

moreover, tells us something about the model we are using in attempting a 

proof of Theorem 47. Even if Theorem 93 depends for its proof on Theorem 

47, we are justified in using its statement as semantic information to 

help us prove Theorem 47. There are clearly some ethical and pedagogical 

I 
t· 
i 
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problems here, but the logic is sound. 

Most of our discussion of intensional models has centered on geometry. 

There is good reason for this - geometry seems to be the best example 

of a mathematical theory for which we have a vast store of "real world" 

knowledge about its principal models. As human theorem-provers, we have 

very good visual and analytic procedures for testing the satisfiability 

of wffs in these models. Moreover, this facility is more or less independent 

of the number, or nature, of the theorems we have proved. Neither of 

these virtues is enjoyed by, say, number theory, even if we ignore the 

induction axiom. The difficulty is that we have no uniform procedure for 

testing satisfiability over the natural numbers, as we do for geometry 

or for extensional models. In testing W(x), the best we can do in general 

is to try W(0), W(l), •.• , etc. in the hope of finding a natural number n 

such that W(n) is true, in which case we know that W(x) is satisfiable. 

There is no way that this process can determine that W(x) is false on 

the natural numbers. Unfortunately, proof trees are pruned only by encounter

ing wffs which are false in the models. (See Rule 2' of LG' and the system L 

of the next section.) Nevertheless, we believe that a reasonable theory of 

counter-examples is possible for number theory. Of course, not every false 

formula admits a counter-example e.g. formulae of the form 3xW(x), but 

many do e.g. (x)W(x). It is intuitively clear that mathematicians combine 

the search for counterexamples to current sub-goals with the search for a 

proof. Counterexamples are semantic notions. What is needed for a semantic 

approach to number theory is a collection of (possibly ad hoc) techniques for 

discovering counterexamples to be used as a proof-tree pruning device, just 

as analytic techniques are used in geometry. To our knowledge, no work has 

been done on this problem, but we believe its solution to be a necessary 
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prerequisite for automating number theory. 

-
What we hope has emerged from this discussion is the fundamental 

role played by knowledge about the models used in mathematics. The more 

one knows about the semantics, the easier it is to find a proof. (Compare 

the success of LG with the performance of its purely syntactic component). 

We believe that geometry is easier than number theory precisely because 

we know much more about diagrams than we do about natural numbers. 

Assuming the legitimacy of this point of view, it becomes necessary to look 

much more closely at models for other branches of mathematics with the 

objective of finding procedures which can detect whether a given wff is 

false in that model. 
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4. A Generalized Semantic and Deductive System 

This section is devoted to generalizing the system LG of Gelernter 

et al. and illustrating a number of its features. The resulting system 

L will be seen to possess the properties promised at the end of Section 

2.6. 

4.1 The Deductive and Semantic System L 

Input 

1. H; R rA ::> B 

If A and Bare identical 

If Acr = Ba 

2. H; R r A A B 

If H ; R f-A yields output a 1 and 

a model M of H can be found such 

that Mr "Ifcr
1 

and if cr is a sub

stitution such that Mr EBcr1 cr and if 

H ; R j- Bcr
1 

cr yields output cr2 

3. H R f-A VB 

If a model M of H can be found 

such that M j=fE A 

If a model M of H can be found 

such that M l=fEB 

Otherwise 

Output 

T 

a 

H 

H 

H 

H 

R j-A 

R f-A or 

R 1-B 
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4. H ; R I- (A ;:-, B) ::> C 

If H ; R ~ B :'.) C yields output 

a1 and a model M of H can be found 

such that Mi= E(B :::, C)o1 and if 

a is a substitution such that 

Mr E Ao lo and if H ; ~ r R ? Ao l er 

yields output cr
2 

5. H R I-A --., (B _-:-, C) 

If H ; R f- A :'.> C yields output o
1 

and a model M of H can be found 

such that Mr EAcr l ::> C and if cr is 

a substitution such that 

yields output cr
2 

7. H;RI-A::->BVC 

If a model M of H can be found 

such that M !=tE A:-:> B 

If a model M of H can be found 

such that M ~ A ::-, C 
E 

Otherwise 

8 • H ; R I- A ::, B /\ C 

If H ; R I- A :::-:i B yields output 

cr
1 

and a model M of H can be found 

such that Mr E A ::> Bcr
1 

and if er is 

a substitution such that Mr EA :::> ccr
1 

o 

and if H ; R I-A :. co1 o yields output cr
2 

H ; R I-A A B :> C 

H 

H 

H 

R I-A:::, B 

R I-A::) B 

R rA:::, C 

a aa 
1 2 

or 

I· 



9. H R rAAB=>C 

10. H R I- C => A V B 

11. H R f-AAB=>C 

12. H R 1- B .::> C 

13. H R f- ~ :::> C 

14. H R rs = t:::::, A 

If a model M of H A s = t 

can be found such that Mf= E A' 

and if cr is a substitution such 

that MF E A' cr 

15 • H ; R r A :---> s = t 

If there exists a substitution 

cr such that scr and tcr are 

identical 

4.2 Remarks 

or 
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H A A RA A r B :::> C 

H A B R A B f-A ~c 

H R 1-c A A ?B 

H R f-B:::>AV C 

H R f-B V C 

H R f- B A C ==' NIL 

HA s = t; cp ~R':-)A'cr 

where R', A' are obtained 

from R,A by substituting 

t for sin R,A respectively. 

cr 

1. The purely deductive aspect of Lis due to Bledsoe, Boyer, and 

Henneman [4 ]. As they themselves remark, it is an incomplete system of 

natural deduction. As such, it stands in contrast to resolution theorem

proving techniques. Aside from its incompleteness, it is much closer 

to the deductive systems used by Wang [25]. Its only point of contact 

with resolution is through the use of the unification algorithm of Robinson 

[20] in returning most general unifiers cr. 
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2. A, Band Care Skolemized wffs, ands and tare terms. R is called 

the reserve by Bledsoe et al. The substitution cr of Rules 1 and 15 are 

obtained by the Unification Algorithm and hence are most general unifiers. 

The substitution cr of Rules 2, 4, 6, 8 and 14 is arbitrary and may be 

null. We explain its role in 5. below. 

3. The top-level subgoal is a Skolemized wff of the form H 

where H1 , ..• ,Hn are the axioms, previously proved theorems, definitions, 

and special hypotheses of the current theorem, R is the null conjunct~, 

and H = H1A ... AHn. The rules are applied, in order, to any current 

subgoal. If any rule fails, the next rule is attempted. If all fail on 

the current subgoal, NIL is returned. 

4. The models M can assume any of the forms discussed in Section 3. 

Thus M may denote a single model (one assignment to the Skolem functions) 

or several "parallel" models (several assignments to the Skolem functions). 

M may be extensional or intensional. 

5. The substitution cr of Rules 2, 4, 6, 8 and 14 allows for "good guesses" 

to be made by the theorem-prover, based upon observations made in the 

model, as to what the occurring free variables actually represent. Thus 

if Mf=Ew(x1 , ... ,xn) and, moreover, if there exist unique objects a1 , ... ,an 

in the domain of M such that W(a
1 , ..• ,an) is true in Mand if these 

a
1

, •.. ,an can be interpreted in the syntax as terms t 1 , .•• ,tn involving 

only Skolem functions, then it would be an excellent guess to attempt, 

as the current syntactic goal, f- W(t1 , •.. ,tn) rather than f-w(x1 , ... ,xn). 

Clearly the first goal will, in general, be much easier to prove than the 

second. Even when the a. are not unique, there may be additional semantic 
1 

information available with which to make a plausible guess, or several 

guesses which are pursued in parallel. We believe that this notion 
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captures a significant way in which humans use models for discovering 

proofs. A good a-guesser would represent a powerful use of the model. 

6. Suppose Rule 8 applies, and succeeds on its first AND-subgoal by 

returning a1. If an appropriate model M of H can be found such that 

M If E A :) Co 1 , or if H ; R f- A .:-> Co 1 o returns NIL, then we back up to 

the first AND-subgoal, attempt to have it succeed by returning a different 

substitution~ 1 , and try to establish the second AND-subgoal with Cl_t_ 1
• 

Without the use of Mand a, this corresponds to the back-up procedure 

used by Bledsoe et al. A similar technique is used with Rules 2, 4 and 

6. This need for back-up is a serious computational limitation of 

Bledsoe's rules of inference~ it also occurs in disguised form in 

resolution based systems of deduction. 

In effect therefore, we are providing for the use of counterexamples 

to prune the search tree. If the test M !=I' EA :"> C a1 succeeds, M is a 

counterexample to the subgoal H; R rA ~ Ca
1 

so there is no sense in 

pursuing the second AND-subgoal. We feel that this use of models as 

"semantic seives" in trapping out incorrect substitutions o
1 

(for example, 

in assuring that there is an appropriate model M such that M f E A _:-, C o
1 

a 

and, moreover, that no counterexample has been found, before embarking 

upon the goal H ; R I-A ·::, C ~ o) will tend to minimize back-up in the 

search for proofs. As we shall see in Section 5, there is an interesting 

analogy between this use of models in theorem-proving and the use of 

"real world knowledge" in parsing sentences in natural language. 

7. The remaining rules which make use of semantics are 3 and 7. 

Without the intervening model, these would each generate two OR-subgoals. 

With the model, we can hope to prune away one of these subgoals. 
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8. The semantic rules all state "If a model M •.. can be found such 

that .•• ". We have chosen this mode of expression to emphasize the 

dynamic nature of models as used by humans in discovering proofs. Thus, 

the model with which one begins a proof need not remain the same through

out the course of the proof. For example constructions may be made as 

in geometry. Or a case analysis may require a different model for each 

case. Because this dynamic facility appears to be central to human 

proof discovery, we have explicitly allowed for it in the system L. 

The remainder of this section is devoted to examples which illustrate 

the features just described. For economy, we shall often suppress 

explicit references to Rand H. 

4.3 Examples 

Example 4 

We first give an example of a proof in propositional logic. The 

top level goal is 

H ; <I> r (A :> B) A ( (A . ., B) _-, (C _--, B)) A (D ~ B) -' (C '..."> D V B) 

with H = (A :, B) A ( (A _:-, B) ::, ( C ~ B) ) A (D _--, B) 

Rule 5 applies. 

1. H ; <I> r (A _., B) A ( (A -' B) , (C =' B)) A (D :, B) A C '."") D V B 

Rule 7 applies. With M = {A, B, C,D} we semantically eliminate one 

of the OR-subgoals, leaving 

11. H ; <I> r (A -., B) A ( (A ~1 B) ., (C -, B)) A (D , B) A C , B 

Rule 9 applies. 

111. H A (D _:) B) ; (A :"> B) A ( (A ":} B) ::) (C ::-, B)) A (D ~ B) f- C => B 

or 112. HA C; C f-(A:~B) A ((A .::>B)--, (C .7B)) A (D .:::> B) J B 

111. fails syntactically. Pursue 112. Rule 9 applies. 

1121. H A C ; C A (A :, B) A ( (A _--, B) .> (C _-:-, B)) I- (D :.) B) _-:-) B 



35. 

or 1122. H A C A (D :, B) ; C A (D ~ B) I- (A -' B) A ( (A _-, B) :-> (C _, B)) _, B 

Pursue 1121. Rule 4 applies, but with M = {A, B, C, D} its second 

AND-subgoal fails. Hence, pursue 1122. Rule 9 applies. 

11221. H A C A (D :;;, B) ; C A (D :-> B) A ( (A :, B) .J (C ..=> B)) I- (A -=> B) ~ B 

or 11222. H A C A (D .::> B) ; C A (D _"') B) A (A -:-> B) f- ((A -:, B) J (C _-, B)) J B 

Pursue 11221. Rule 4 applies, but with M = {A, B, C, D} its second 

AND-subgoal fails. Hence pursue 11222, which is easily established 

syntactically. 

Notice that the semantic proof uses two models, and that these are 

dynamically determined, as the proof unfolds. 

Example 5 

This example illustrates how a diagram in geometry rejects an 

application of Rule 4. The theorem is 

"If b.ABC has equal base angles, then AB=AC". 

Assume that one of the axioms present is 

a. : square x y z w ::> xy = yz 

The theorem is 

t1 A b. ABC A L ABC = L ACB _-:, AB = AC 

where a is a conjunct of all the axioms. Several applications of Rule 9 

will yield as one of its OR-subgoals. 

1 • ~ a. _-, AB = AC 

Rule 4 applies yielding the second AND-subgoal 

~ square ABC w 

which is clearly false in any right angle free diagram of an isosceles 

triangle. 
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Notice that the Geometry Machine would also have rejected this 

application of Rule 4, but for the "wrong" reason. It would have tried 

the three possible substitutions of the given points A, B, and C for w, 

and found that none succeeded, whence the goal 1. would be rejected. 

On the other hand, we reject 1. because nowhere in the plane is there 

a suitable point w. 

Example 6 

This is a geometry example which illustrates the use of semantics 

in rejecting a subgoal generated by Rule 8. The theorem states that for 

each triangle there is a point equidistant from the three vertices. We 

assume that, among the axioms present is 

a : f(u,v)u = f(u,v)v (Each line segment uv has a midpoint f(u,v)) 

The theorem is 

J. A t,, ABC ~ xB=xC A xA = xC 

where [Lis a conjunct of all the axioms. Rule 8 yields the first AND-subgoal 

f- tl fl. t,, ABC :, xB = xC 

Several applications of Rule 9 will yield as one of its OR-subgoals 

1 . I- a ::::> xB = xC 

which succeeds with f(B,C) I x. This backs up to the application of 

Rule 8, yielding the second AND-subgoal 

2. I- (l Ab. ABC--, f(B,C)A = f(B,C)C 

which is false in any "random" diagram of a triangle ABC. Hence, the 

OR-subgoal 1. is pruned from the search tree and the proof continues 

using the remaining OR-subgoals generated by Rule 9. The advantage here 

is not sa much that 1. is pruned, but the time saved in not attempting 

a proof of the invalid goal 2. 
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Example 7 

This example is drawn from Gelernter et al. [11]. It is of interest 

because its proof requires a subtle construction. We sketch a portion 

of the proof, using the system L, which would lead to the necessary 

construction being made as the proof unfolds. The theorem states: 

If ABCD is a trapezoid with BCI IAD, and the line joining the midpoint E 

of AC to the midpoint F of BD meets AB at M, then MA= MB. 

The initial model (without the point K) is 
C 

\ 

\ 
\ 

\ , \ , 
\ ,, 

, 

D 
K 

The crux of the proof is to prove that EFI IAD and then, since, in 

~BAD, FB=FD and MFq !AD, then MB=MA. To prove EFJ JAD, the line segment 

CF must be extended to meet AD in K. (The Geometry Machine was unable 

to discover this construction, and had to be given this hint before it 

found a proof). Then it must be established that FC=FK whence, since 

EC=EA, EFI IAK. We shall indicate how the subgoal EFI IAD leads to the 

subgoal FC=FK by forcing the construction of the line segment CF and its 

extension to M. We assume the presence (among others) of the two axioms 

a: xy 11 uv A coll u v w ::l xy 11 uw 

8: ~ x y z A coll x u y A coll x w z A ux .i= uy A wx = wz _-, uw 11 yz 

Assuming that EFI IAD is to be proved, one of the subgoals generated would be 

J- a .-:i EF I I AD 

Rule 4 applies 
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1. J- xyJ Ju w:, EFJ JAD 

This yields cr1 = {EJx, FJy, AJ~, DJw} 

(any v on AD will do) proceed with 

2. J- R =-'EFJ JAv A coll Av D 

Rule 8. applies. The first AND-subgoal is 

21. J- R -_-., EF J J Av 

Since M J==- E EF I JAv A coll A v D 

Embedded in R will be the axiom S so that after a number of applications 

of Rule 9, we will obtain as an OR-subgoal 

211. J- B :-> EF I JAv 

Rule 4 applies. 

2111. J- uw J I yz ::> EF J J Av 

This yields cr1 = {EJu, FJw, AJy, vJz} 

Now MFE !::,, xAv A coll xEA A coll xFv A Ex = EA A Fx = Fv 

In fact, there are unique satisfying points x and v, namely x = C and 

v = K. Hence, take as the cr of Rule 4, cr = {CJx, KJv}; This yields a 

new model containing the new line segment CFK. The second AND-subgoal 

by Rule 4 is thus 

2112. ~ t::,, CAF A coll CEA A coll CFK A EC = EA A FC = FK 

The first four literals in this conjunct are easily established, leaving 

the goal f- FC = FK which is as far as we wanted to carry the proof. 

There still remains to be established the second AND-subgoal of Rule 8 at 2. 

This yields, backing up the substitution KJv 

22. I- coll AKD 

This goal is clearly true in the new model, and is easily established. 

Notice the use, at 2111, of the substitution cr. This is a good 

example of the use of a model in making "premature instances" of variables, 

and illustrates why Rules 2, 4, 6, 8 and 14 make provision via a for 
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such "good guesses". Again, the example illustrates how the system L 

permits a model to change during the course of a proof. 

Example 8 

This example illustrates the use of semantics in disambiguating an 

incorrect backed-up substitution. The theorem states 

-1 "If Sis a non-empty subset of a group such that xy e:S whenever x and 

-1 then x e:S whenever xe:S," 

rex = x Axe= x A xI(x) = e A I(x)x = e A Sb A (Sx A Sy A xI(y)=z :?Sz)-•SI(b) 

An OR-subgoal due to Rule 9 is 

1. r (Sx A Sy A xI(y) = z :::, Sz) :, SI(b) 

Rule 4 applies and yields as its second AND-subgoal 

11. ~ R -~ Sx A Sy A xI (y) = I (b) 

which is semantically valid. Rule 8 yields as its first AND-subgoal 

111. ~ R ::, Sx which will succeed with b Ix. 

This backs up to the second AND-subgoal of Rule 8 

112. f- R ::, Sy A bI(y) = I(b) 

This subgoal may or may not be semantically valid depending upon the model 

being used. Let us assume this failure is not detected and proceed. 

It is clear that another application of Rule 8 will yield bjy from its 

first AND-subgoal, leaving as its second AND-subgoal 

~ R ~ bI(b) = I(b) which is clearly false in any model in which bis 

not assigned the group identity. This failure backs up to 11. This 

time, take as the first AND-subgoal 

111. j- R ::, xI (y) = I (b) 

which succeeds with ejx, bly, The second AND-subgoal is therefore 

112. f- R :_::) Se A Sb 

which is semantically valid and easily proved. 
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Notice that a clever theorem-prover would have observed that, in M, 

{elx, bly} and {I(b)lx,ely} are the only two obvious "solutions" to 11. 

Hence, it would have returned the two "guesses" cr = {elx,bly} and cr' = 

{I(b)lx,e\y} in its application of Rule 4 to 1. cr' leads to the subgoal 

~R~SI(b)ASe AI(b)I(e) = I(b) 

which is rejected because it is subsumed by the top level goal. cr leads 

to the subgoal 

11. t- R~se ASbA eI (b) = :r(b) 

which has a trivial, back-up-free proof. 
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5. Remarks 

5.1 Some Linguistic Analogies 

We wish to compare our approach to theorem-proving with Winograd's 

to natural language processing· [26], in part because we have been greatly 

influenced by his conceptual framework, in part because a number of 

striking analogies emerge from this exercise. We shall assume that the 

reader is familiar with Winograd's basic results. 

The universe of discourse for Winograd's system is the BLOCKS world, 

consisting of a set of basic relations like (#lS :Bl #BLOCK), (#COLOUR 

:B7 #GREEN) together with a set of PLANNER programs such as TC-ON which 

describe higher order semantic relations in terms of the basic relations, 

or such as TC-MAKESPACE which manipulate and alter the BLOCKS universe. 

The theorem-proving analogue is, of course, a model in which the basic 

relations are things like (CO-ORD A (.5, 2)), or the multiplication 

table for a group, while the higher order semantic relations are procedures 

like ISPRIME (.), QUADRILATERAL (.,.,.,.) etc. and the procedures for 

manipulating and altering the model correspond to constructions like 

BISECTANGLE (. , . ' . ), FINDNTHPRIME (.) etc. 

Under Winograd's procedural approach, natural language sentences 

compile into PLANNER procedures which are then executed either for their 

effect on the BLOCKS world (when the input sentence is a command or 

represents new knowledge) or to return a value (when the input is a question). 

Under our approach to theorem-proving, wffs also compile into procedures 

which affect the model (in those cases when a construction is suggested) 

and which return a value (NIL or T together with the values in the model 

of the wff's free variables). Of course, there is no comparing Winograd's 

compilation process with ours - his requires an extremely involved 
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synthesis of parsing techniques and special semantic routines while ours, 

because of the simple unambiguous syntax and semantics of wffs, is 

essentially trivial - but the resulting procedures perform analogous tasks 

on their respective models. 

Is there a theorem - proving analogue to the linguistic process of 

parsing a sentence? We think that, in many ways, the proof of a wff 

corresponds to the parse of a sentence. We shall try to clarify this 

idea with reference to the purely syntactic component of the system L. 

First, the rules of inference can be viewed as parsing rules; provided 

the input wff has constituents separated by appropriate logical connectives, 

a corresponding rule can be applied to yield output wff(s) which in turn 

must be "parsed". Secondly, there is a notion of syntactic ambiguity, 

since some of the parsing rules are themselves ambiguous (e.g.(A~B)~ (C~D) 

can be parsed by both Rules 4 and 5). Finally, provided the logical 

system is complete (Lis not) and the wff is valid (grammatical?), a 

successful parse is assured. To be sure, there are several linguistic 

concepts on which this analogy crumbles. For one thing, if the wff is 

not valid (ungrammatical?) the parser cannot in general detect this. Also, 

such linguistic notions as deep structure, grammatical categories etc. 

have no obvious analogues in theorem-proving. Nevertheless, let us 

further pursue the analogy. We shall say that a wff is ambiguous if it 

has at least two proofs each of which returns a different substitution at 

the top level. Thus propositional tautologies are unambiguous, Pa~ Px 

is unambiguous, PaAPb~Px is ambiguous. Notice that this is a notion of 

syntactic ambiguity. There seems to be no reasonable notion of semantic 

ambiguity in theorem-proving. 
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Now consider, for example, Rule 2 of L and suppose that H; RI-A has 

been successfully "parsed" returning substitution a
1

• We want, at this 

point, to determine whether or not this parse makes sense in the current 

context before proceeding with the parse of B, ie. we make the semantic test 

M'E: Ba1 • If this test fails, a different parse of the ambiguous wff A 

is attempted. Similar remarks apply to Rules 4, 6 and 8. In effect, we 

are semantically disambiguating the parse as we parse. This process of 

continuous semantic disambiguation for guiding the parse is the same 

principle appealed to by Winograd for natural language parsing. Consider, 

as an example, the sentence "Carry the block in the box". During the 

attempted parse, the parser might consider treating the constituent "the 

block in the box" as a noun group. But in the BLOCKS world, if there is 

no block in the box this constituent should be rejected, just as the 

parse of A is rejected by the model M if M~ Ba 1 • In both cases, "real 

world" information is used to reject contextually meaningless parses. 

In 5.2 below we shall further pursue these analogies by arguing that 

adding new knowledge is a problem common to both natural language and 

theorem-proving systems. 

5.2 On the Role of Theorem-Proving in Artificial Intelligence 

In the past researchers in Artificial Intelligence have tended to 

view theorem-proving as a tool for the solution of problems arising in 

areas other than mathematics e.g. robot problem -solving [7], natural 

language processing [24] etc. The general point of view seems to be: "If 

you can axiomatize your problem domain, do so, then wait until the theorem

proving people have perfected their craft". Whatever the merits of this 

approach, we suggest that research into automatic theorem-proving has 

another, perhaps more fundamental role to play - that of dealing directly 

with problems common to many areas of Artificial Intelligence. Moreover, 



44. 

this role is a realistic one provided a model theoretic view of theorem

proving is adopted. Not only is the concept of a model almost universal 

in Artificial Intelligence, but also many of the problems associated with 

models in general arise in the context of theorem-proving, and must be 

solved if one hopes to do serious mathematics. Some examples: 

Generalization and Hypothesis Formation 

How do we generalize observations made in a model? For example, if 

a given geometric diagram is observed to possess some interesting property, 

how is this observation translated into an appropriate and "most general" 

provable wff? This problem, for mathematics, has as analogue the task of 

generalizing real world experience, which arises for example in robot research 

[19]. There is a fo.rtunate difference, however. In mathematics the criterion 

for a correct generalization is well defined - the generalization must be 

provable. Criteria for interesting generalizations are much more problematic. 

The Description Problem 

A moment's reflection on the generalization problem for geometry 

leads to the conclusion that a prior concern is that of recognizing, and 

describing the relationships among, the various components of the diagram. 

Do we describe the following figure 

B 

as PARGM A,B ,c ,D A DIAG A,c 

or /J. ABC M ACD A AB JI CD AAD I J BC 

or /J.ABC A/J. ACD A Congruent ABC, ACD? 
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The Representation of New Knowledge 

A theorem, once proved, is not superfluous information. On the 

contrary, it represents new knowledge about the problem domain. As such, 

it should not merely be added to the old stock of axioms and theorems 

to be treated as just another wff, but should compile into a semantic 

procedure which interacts with the available semantic procedures. Typically, 

this is desirable when the theorem says something about the combinatorics 

of semantic search procedures e.g. that an object with such and such 

properties can be found in a certain subset of the full domain. Such 

information can be very useful in testing the satisfiability of wffs in 

the model, and hence should be absorbed into the semantics. Similarly, 

if a theorem is an existential statement, its proof yields up a constructive 

definition of the variable(s) asserted to exist. This construction should 

become available in the semantics as a procedure for possible future use. 

Finally, new definitions given syntactically ought to compile into semantic 

procedures. 

This is an old problem in a new guise. It occurs in information retrieval 

problems, as well as in natural language processing. The parallel is 

particularly striking if one compares the theorem-proving analogue with 

Winograd's system for natural language [26]. The semantics of the BLOCKS 

world consists of a set of mutually interacting procedures. Winograd remarks 

that new knowledge, input as declarative sentences (theorems?), must 

translate into new BLOCKS procedures which interact with the old. Clearly, 

theorem-provers will be faced with precisely the same problem. 

Granted that theorem-proving research must confront many problems of 

general concern to the Artificial Intelligence community, what is the 

advantage of formulating and investigating these problems in a theorem-
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proving context? We feel that the principal advantage derives from the 

non trivial, well defined nature of the problem domain. For mathematics 

we have a precise idea of the objects we are dealing with. There is a 

well defined syntax for the language (wffs), we know exactly what wffs 

talk about (a model), and we know what truth means. In other words, the 

"real world" is relatively simple and precisely specifiable, as is the 

language for talking about this world. Within this framework, we can 

investigate problems with wider import in Artificial Intelligence, like 

hypothesis formation and the representation of new knowledge. Moreover, 

this can be done without obscuring the real issues by seemingly open-ended 

considerations involving natural language, and the representation of a 

highly complex domain of discourse. Another advantage is that in theorem

proving the pragmatics of the situation is reasonably clear - a test of a 

theory of hypothesis formation for example, is how well it yields up 

theorems. Finally, since doing mathematics is by no means trivial, we 

necessarily avoid the "toy problem trap". 

It seems reasonable to expect that solutions to these problems in 

mathematics will provide considerable insight into their real world 

analogues. This being the case, we can expect a change of emphasis in the 

future from theorem-proving as a tool for Artificial Intelligence, to 

theorem-proving as a problem environment about which interesting, and 

important general questions may be asked and investigated. 
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6. Conclusion 

We have argued in favour of the use of models in theorem-proving. 

In particular, we have emphasized the importance of a smooth, natural 

interface between syntax and semantics, the way in which the current 

state of the proof suggests the form of the current model, and conversely 

how the model should be used in guiding the proof. We have indicated 

how inferences can be made in the model, and how observations in the 

model can be used to suggest inferences at the syntactic level. The 

semantic and syntactic system L has been used as the principal vehicle 

for conveying these ideas. 

6.1 Some Suggestions for Further Research 

A number of open research problems have been mentioned throughout 

this paper. We briefly summarize these now. 

1. An adequate model theory for quantifier-free wffs. 

2. The development of specialized domain dependent techniques for finding 

counterexamples. 

3. The representation of new knowledge. 

4. The problem of generalizing observations made in a model. 

5. The description problem. 

In addition, a number of other research areas immediately suggest 

themselves. 

Interactive Theorem-Proving 

The system L (or any other like it) is very "human-oriented" and 

hence represents an ideal vehicle for interactive computing. In particular, 

the user would not require specialized knowledge about available proof 

and editing strategies nor would he be required to learn an unnatural 
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deductive system. (cf. the interactive system of [1] which suffers from 

both of these deficiencies.) It is easy to imagine a system based upon 

the ideas of Lin which the computer requests of the user new models, his 

guess of a o, his opinion of an attempted application of Rule 4 for 

backward chaining, counterexamples, his opinion of the plausibility of 

a current subgoal, etc. Particularly appealing is the short training 

period that would be required of a student or mathematician before he 

could sit at a console to play with the system. 

2, The Automatic Generation of Models 

In some sense, presenting the system L with an initial model is a 

cheat. It would be preferable to have techniques which, when presented 

with the special hypotheses of the theorem to be proved, generate an 

appropriate model. This is by no means a trivial problem - indeed, the 

general problem is unsolvable. It can be argued that we are replacing 

one difficult problem (syntactic theorem-proving) by another (model 

discovery), in which case, what have we gained? That remains to be seen 

and depends largely upon a successful solution to the model discovery 

problem. Nevertheless, we believe that this is where many of the real 

problems of theorem-proving arise - in the semantics. 

3. PLANNER - Type Recommendations 

PLANNER [14]is a language specifically designed by Hewitt to do 

theorem-proving. Among its many features is the ability to program in 

recommendations as to what theorem(s) to use in order to establish a certain 

subgoal. For example, it is easy to express, as a PLANNER procedure, a 

recommendation like "In order to prove that line segment xy is parallel 

to uv, first try to prove that length xy = length uv in which case try 
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to prove parallelogram xyvu. If this fails, try to find a point w such that 

~wxy and such that u = midpoint (w,x) and v = midpoint (w,y). If this 

fails, enter a blind search." Virtually all introductory geometry texts 

are full of friendly advice just like this, and every mathematician has 

a bag full of such tricks and special techniques. We would argue against 

exclusive reliance on such recommendations in theorem-proving, since 

these fall lttlder the category of domain dependent heuristics which we~e 

discussed in Section 1. It would be equally foolish to ignore the 

important role they play. The integration into the system L of facilities 

for making recommendations in a transparent and flexible way is therefore 

an important problem. 

4. Extending the System L 

It should be emphasized that what we have presented in this paper 

is a paradigm for theorem-proving rather than a polished system. We 

are in favour of some kind of system of natural deduction - L happens to 

be one such - but Lis incomplete. Unlike many other workers in this area, 

we feel that the underlying logic must be complete. After all, no 

mathematician would deny himself the full deductive power of first order 

logic. We have chosen to deal with the system L because of its simplicity 

and naturalness, and because its syntactic component has been implemented 

and else-where described [4]. Nevertheless, L should be extended to 

a complete semantic and syntactic system of natural deduction. 
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