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Abstract 

This paper is concerned with best two-sided scaling of a general 

square matrix, and in particular with a certain characterization of 

that best scaling: namely that the first and last singular vectors 

(on left and right) of the scaled matrix have components of equal 

modulus, Necessity, sufficiency, and its relation with other charac

terizations are discussed. Then the problem of best scaling for 

rectangular matrices is introduced and a conjecture made regarding a 

possible best scaling. The conjecture is verified for some special 

cases. 





1. Introduction 

Let A be an n x n nonsingular matrix. We are interested in the best 

row and column scaling of A in the l
2 

norm; that is 

Of course this is equivalent to 

min 
DE d (o1 (DAE)/on(DAE)) , iag 

~ a (A) > 0 are the singular values of A. In this 
n 

paper we will discuss the following useful characterization of this best 

two-sided scaling: let A= UL V be the singular value decomposition of A. 

Then A is best scaled in the l
2 

norm if lui1)1 = lu~n)I ,lvil)I = lv~n)I, for 

i=l, ••• ,n. That is, A is best scaled if the first and last columns of U and 

V have components of equal magnitude. We refer to this as the EMC property. 

This characterization has had an interesting history: it was to our 

knowledge first discussed by Forsythe and Straus [3] in connection with 

one-sided scaling, or equivalently best symmetric scaling (DAD) of a positive 

definite matrix A. (For one-sided scaling, only one of U,V is involved 

in the EMC property.) They showed sufficiency of EMC for best one-sided 

scaling. It was also mentioned by Bauer [1] for one-sided scaling; he also 

gave an explicit representation of the best l
2 

scaling for matrices A with 

-1 
A and A having a checkerboard sign pattern. More recently, McCarthy and 

Strang [4] have settled the question of necessity for one-sided scaling: 

for matrices A which when best scaled have a1 and on distinct, the EMC 
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. pro.pe.rty must hol.d; howe.ver tMs is no.t always t-rue if t11 or an is multiple 

even using the inherent ambiguity in the singular vectors, and they give 

counterexamples. 

The EMC property for two-sided scaling was first brought to our attention 

by C.L. Lawson (see also [6, pg 44]) in connection with the matrix 

1 2 3 

\ 

A= 1 -1 1 ) a /a ~ 27.4 
1 n 

0 1 1 

We found the best l 2 scaling by minimizing cr1 (DAE)/crn(DAE) as a function of 

D,E using a function minimizing procedure. This gave D = diag(l, ✓3,3), 

E = diag(l,1/2,1//6), a /a ~ 13.9, 
1 n = 

1 1 ✓6/2 

DAE= 

0 

-✓3/2 

3/2 

1/ ✓2 

✓6/2 

In this paper, we discuss the EMC property for best two-sided scaling 

and how it is related to the Bauer representation for checkerboard matrices. 

Then we discuss the problem of best scaling for a rectangular matrix. 

We end this introduction with a warning: although these best scalings 

are attractive and theoretically interesting, it may be quite improper to 

scale a particular problem this way; this can cause inaccurate data and 

unimportant variables to assume too much influence. Such is the case for 

example in solving ill-posed problems using the singular value decomposition 

(see [5]). Normally several of the equations are ignored and a reasonable 

solution is constructed solving the remaining ones; however "best" scaling 

can cause the whole matrix to become quite well-conditioned, with its 

(well-determined) solution bearing no relation to the solution of the original 

problem. 



3 . 

2. Aspects of the EMC Property 

First we show the sufficiency of the EMC property for best two-sided 

scaling. The proof is a slight extension of Forsythe and Straus [3]. 

Theorem 2.1: 

Let A be an n x n nonsingular matrix. Then A is best scaled in the 

l 2 norm with respect to diagonal scalings DAE if the EMC property holds. 

Proof: 

We have for any nonsingular diagonal D,E, 

cond
2

(DAE) = 

= 
max 
p,q,r,s 

max 
p,q,r,s 

lpTDAEql 
TT P I I 2 I I q I I 2 

l rTDAEsl 

I ID-1pl 12 1 IE-1
q l l2 

l r r Asl 

where u(l) ,u(n) ,v(l) ,v(n) are the appropriate singular vectors of A. Now if 

l(u(n))il = l(u(l))il and I (v(n)\I .. l(v(l))il for i = l, ••• ,n, i.e. if the EMC 

property holds, the term in square brackets is 1 and cond2 (A) s cond2(DAE) 

for all D,E. QED 

For the EMC property to be also necessary for best two-sided l
2 

scaling, 

we must show the existence of a D,E with DAE having the EMC property. However 

as we mentioned earlier, McCarthy and Strang [4] gave examples of one-sided 

best scaled matrices for which the corresponding one-sided EMC property failed 
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to hold. These examples hoever had multiple o 1 or on in best scaled 

form; for matrices with distinct o 
1 

and CJ n in best scaled form, they 

showed that EMC was attainable. From this we easily obtain: 

Corollary 2.2: 

Let A have distinct cr 1 and an in best scaled form; then the EMC 

property is necessary and sufficient for best two-sided l 2 scaling, 

Thus the existence of an EMC scaling is assured with this restriction 

of distinct extreme singular values. Of course it need not be unique: 

for example if A has a special symmetry so that PAQ=A for P, Q 

permutation matrices, then if DAE is best scaled, so is (PDPT)A(QTEQ). 

(This is P(DAE)Q with singular value decomposition (PU)L(VTQ) and this 

has EMC if U l VT does.) 

Now we discuss the relation between EMC and Bauer's characterization 

for best l 2 scaling of a real irreducible checkerboard matrix A. We must 

also assume, although it normally follows from the irreducibility of A, 

the Bauer characterization (see [1]): 
-1 

if A, A have checkerboard 

sign patterns, that is if there exist diagonal orthogonal matrices, 

J
1

, J 2 , J
3

, J
4 

so that J 1AJ2 = IAI ~ 0 and J 3A-1J 4 = IA-1
1 ~ 0, and if 

we let y(l), x(l) be the left and right Perron eigenvectors of IAI IA-1
1 

(and similarly 

scaling DAE for 

(2) 
y 

A is 

X 
(2) 

for 

given by 

then 

y. (1) / 
l. 

the 

x. 
l. 

(1) 
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(Because of the irreducibility, the Perron vectors have 

positive components.) Thus A is best scaled if the left and right Perron 

-1 -1 
vectors of IAI IA I and IA I IA! are equal. But such a matrix A satisfies 

the conditions of Corollary 2.2, so the above must be equivalent to the EMC 

property. We expand on this as follows: 

Theorem 2. 3: 

Let A be a real irreducible matrix with a checkerboard sign pattern. 

-1 -1 , T 
Suppose IAl=J1AJ2 , IA l=J3A J 4 and let A= U l V be its singular value 

decomposition. 

(i) Suppose the EMC property holds. Then lu(l)I is the left and right 

Perron vector of IAI IA-1 1, and lv(l) I is the left and right Perron vector 

of IA-1 11AI. 

(ii) 

it u), 

(1) 
V = 

Proof: 

Suppose the left and right Perron vectors 

-1 and similarly for IA I IAI (call it v). 

J v, v(n) = J v 
2 3 • 

of IAI IA-1 1 are equal 

Then u(l) =Ju u(n) 1 , 

(call 

(i) We have IA! = J1AJ2 = (J1U) l (VTJ2) and this must be the singular 

value decomposition for !Al. Hence J
1
u(l) > O, J

2
v(l) > 0 (positive because 

-1 -1 ,-1 T of the irreducibility of A). Similarly IA I = J
3
A J

4 
= (J

3
V)l (U J

4
) and 

we must have J
3
v(n) > O, J

4
u(n) > O. Now the EMC property and orthogonality 

of the {u(i)}~{v(i)} gives 

J (n)_J (1) 
4U - lu 

J (n)_J (1) 
lu - 4u 

J (l)lJ (1) 
lu 4u 

Consider Q; it is orthogonal and symmetric, and from (1) we see that 

(1) 
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Q1n=Qn1=1 and the rest of the first and last rows and columns of Qare zero. 

Thus 

Thus 

0 . ' , 0 

0 

IAI IA-1 1 (J
1
u(l))=J

1 
U (LQL-l) UT J

4
(J

4
u(n)) 

=Jl U (LQL-l)en 

=J U (ol)e = al (Jlu(l)). 
l a l a 

n n 

So J
1
u(l) = lu(l)I is the unique positive right Perron eigenvector of 

-1 IAI IA I corresponding to the eigenvalue a1/an. A similar computation shows 

it is also the left Perron vector. Likewise, J2v(l) = lv(l)lcan be shown 

to be the left and right Perron vector for IA-1
1 IAI. 

(ii) If the hypothesis of (ii) holds, then from Bauer [1] we have that 

-1 -1 
the spectral radius of IAI IA I and IA I IAI is a1/an. 

-1 °1 
Thus I Al I A I u = 0 u, which gives 

n 

above can be written 

n 
I Bi2 = 1. 
1 

Then the 
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Now take l
2 

norms: 
a a 

i .i: I < ___!!___!) 2 
i ai 

and equality must hold, implying that an= 1, s
1 

= 1 with the other components 

By a similar argument, one can show 

We should also remark that the equivalence of these two characterizations 

-1 can be used to check the accuracy of A , when it is known that both A and 

-1 -1 A have checkerboard sign patterns. For a given A and computed A , one 

-1 -1 can compute the best scaling via the Perron vectors of IAI IA I and IA I IAI; 

then one can test the EMC criterion on the singular vectors of the scaled 

matrix. 

3. Best Scaling for Rectangular Matrices 

Let A be m x n with m > n and rank n. Then we can still ask for the 

best scaled DAE in the sense of minimizing a1/an(DAE). It is clear that 

for the best scaling on the right, the EMC property on Vis still sufficient, 

since ATA is still a nonsingular n x n matrix and the Forsythe-Straus argument 

still holds, However this is not the case for scaling on the left, since in 

particular we could take any n linearly independent rows of A and best scale 

the resulting n x n matrix; this will then have the EMC property (assuming 

a1 and an are distinct) but will not necessarily give the best scaling for 

A. There are in fact (m) such choices of n x n submatrices, so a leading 
n 

contender for the best scaled A would be that n x n submatrix which when best 

scaled gives the minimal condition. This leads to the intriguing 

Conjecture: There exists an n x n submatrix of A which, when best scaled, 

gives the best scaling for A also. 
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It would be better to say one of the best scalings because it is not 

necessarily unique. We cannot prove this in general, only in some special 

cases which we discuss below. We have also verified it numerically on 

several examples. 

Case I: B T A= (FB) where Bis n x n, nonsingular, and FF is diagonal. 

Then ATA=BTB + BTFTFB 

=BT(I + FTF)B 

=BTGTGB 

so the nonzero singular values of A and GB are the same. Now if FTF is 

diagonal, G is diagonal, and thus the best scaling for A occurs when GB (or 

) (D1BE B is best scaled. So one best scaling for A is DAE= 0 ) where D
1

BE is 

best scaled. However this is not necessarily unique: let B be best scaled, 

and consider 

DAE 

Then 

(DAE)T(DAE) = EBT(D
1

2+FTD
2

2F)BE=(GBE)T(GBE). 

Now if Fis such that FTD 2
2F is diagonal for all D2 diagonal (e.g. if F 

has at most one nonzero element in each row and column), then G is also 

diagonal for all choices of D1 and D2 and the best scaling of A occurs for 

E = I and any D1 , D2 such that G = I (since Bis best scaled). That is, we 

mush have 

Of course this will occur for D1 = I, D2 = 0, but there can be many other 

solutions. 

Note also that if Bis an orthogonal matrix, a best scaling is 

certainly obtained with D1 = I, D2 = O, no matter what Fis. 



Case II: n = 2 

We have A= 

u 
n 

and we seek min cond
2

(B=DAE) 
D,E (

Al (BTB)) 1/2 
= min T = / g(D,E) 

D,E >.
2

(B B) 

Then g(D,E) = 1 +/f(D,E) 

1 - /f(D,E) 
where f (D ,E) 

2 2 
= (p-s) +4r 

(p+s)2 

9. 

Since g is a monotone function off, we need only find min f(D,E). As a 

function of e = e2/e1 , we can write 

f(D,E) 

where a, S, y are constants. This is minimized as a function of e for 

e2 = y/a, making p =sand thus BTB = (pr) which has eigenvector matrix 
r p 

( l 1 ) i h EM 
1 

_1 , possess ng t e C property. 

With this E p 

2 r f(D) = 2 = 
p 

2 
=- cos e (Du ,Dv). 

To minimize this, we need to examine three cases. 

(i) some ui or vi= 0. Suppose ui = O, vi~ 0. Taking di+ 00 gives 

f(D) = 0 for any choice of the other dj. If ui =vi= 0, the problem 
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reduces to one of lower dimension. So assume all ui,vi~O. 

(ii) {ui}, {vi} not all of the same sign. Suppose u1 > O, u2 > 0, v1 > O, 

v
2 

< 0 for example. Then we can make (Du)~ (Dv) and f(D) = 0 by choosing 

= 0, i r/: 1,2. 

If r 

Ir IR 
IR - Ir 

best B = DAE == 
0 0 

0 0 

its eigenvector matrix with the EMC property. 

(iii) ui > 0, vi> 0 for all i. Then from a result of Cassels (see 

Beckenbach and Bellman [2, p. 45]), we have 

min f(D) 4rR 4 
= = 

D (r+R)2 2 + E. + ! 
R r 

where r = min ui/vi u /v (say) and R = max u./v. 
i m m i 1 1 

D has d 
m 

1 , ~ = 1 , di = 0, i 1 m,M. 

lumvm l~vM 

0 0 

0 0 

Ir IR th 
best B DAE m 

= = 

IR Ir Mth 

0 0 

0 0 

= "'}/vM. The corresponding 

2 This gives e = rR and 

row 

row 
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T Again BB has its eigenvector matrix with the EMC property. 

Finally, one might think that for rectangular matrices with a 

checkerboard sign pattern,the best scaling could be achieved using Bauer's 

algorithm with A and A~, the pseudo-inverse. We give the following 

counterexample: 

A= 

1 

1 

1 

Best scaling: D = diag(l,0,1/2), E 

with cond2 (DAE) = 3. 

0 
(
-1/3 

Now B~ = , 
213 0 

2/3 ) 
-1/3 

= ( 5/3 

4/3 

4/3 

5/3 

and 

\ 

) 

= (1 0) 
0 2 ' Then B = 

0 
0 
0 

DAE 

4/3 
0 

5/3 
) 

2 

0 

1 

Both of these are symmetric so both have equal left and right Perron vectors. 

Thus the Bauer l
2 

scaling leaves B unchanged, if we call 0/0 = 0 (notice 

IBI IB~I is reducible). However if we try to derive B from A using Bauer's 

algorithm, it fails: 

~ 1 (-4 
A = 14 14 

-1 
7 

5/7) 2 , 

and this has spectral radius= p ~ 3.62 > 3 = cond2 (B). Moreover the left 

and right Perron vectors of IA~I IAI are 

/ p - 2) 
\ 5/7 

' ( p 5/7 )' - 13/7 
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giving a right-hand scaling matrix E ~ (~ O '), not optimal. 2.4 

We might also remark that if the conjecture is valid for arbitrary 

m x n matrices, it would indicate the folly of trying to best scale a 

rectangular matrix arising from a least squares problem for example; only 

n of the observations would be retained! 
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