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Abstract 

A preliminary investigation of the role of look-ahead in one-person 

games is presented. The use of look-ahead in comparing the effectiveness 

of different heuristic functions is discussed. There is a survey of 

recent work in tree-searching including that of Michie and Doran (1966), 

Hart, Nilsson, and Raphael (1968), and Pohl (1969, 1970). Based on some 

of Pohl's results, two theorems are proven in section 2 which suggest a 

possible use for look-ahead. Some experimental results are presented 

in section 3 which satisfy to a limited degree the aforementioned theorems 

and some additional observations are made. In conclusion, an attempt is 

presented to relate look-ahead to the notion of 'informedness' introduced 

by Hart, Nilsson, and Raphael. Finally, some further directions for 

research are suggested. 





Look~Ahead and One~Persort Games 

1. Introduction 

During the period that programs for game-playing have been written,apara­

digm for a heuristic approach to games has evolved. For most non-trivial games, 

i.e. those for which an algorithm is unknown or the tree defined by the 

game is too large to be explored exhaustively in a feasible manner, the 

standard method is to construct a procedure for evaluating board con­

figurations. We will assume that we are dealing, for the moment, with 

two-person games of complete information (which excludes such games as 

poker with bluffing) and which can be associated with a board of some 

sort, i.e. games such as checkers (Samuel 1959, 1967), chess (Newell, 

Shaw, Simon 1958; Greenblatt et al 1967), kalah (Slagle, Dixon 1969) 

GO, Hexapawn, qubic. 

The procedure for evaluating configurations (i.e. the current 

board together with the player to move) defines implicitly a metric 

for the games. In the simplest cases this procedure is a function which maps 

from boards to the real numbers. Thus any two boards can be compared by 

evaluating the function. Under usual conditions the greater the value 

the better the board. A simple notion of better is closer to a winning 

board. That is, a player who follows a path through the game tree 

choosing highly valued boards should improve his chances of winning. 

He cannot guarantee a win, of course, because the evaluation function 

(as we shall henceforth call it) only represents an estimation of how 

good a board is. 
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There is another way of viewing an evaluation function which is 

closer to the purpose of this paper. A perfect evaluation function would 

be equivalent to an algorithm in the following sense. If there exists 

an algorithm for a game it means that at every turn the player chooses a 

move which results in a win (or at worst adraw) based on the algorithm. 

A perfect evaluation function would operate in a similar way. The player 

using it would apply the function to all possible successor boards of the 

current one and choose the one which evaluates to a win condition. Note 

that a perfect evaluation function need only produce such values as 1 

for a win, 0 for a draw and -1 for a loss. Of course, it might produce 

additional values to represent a quick or slow win or loss or even an 

elegant win. 

By choosing a series of boards evaluating to 1, a player would be 

guaranteed a win. But for most non-trivial games no such perfect evaluation 

function has been found and so the alternative is to use a heuristic 

evaluation function together with a look-ahead and back-up procedure. That 

is, instead of basing a decision upon the values of the inunediate successor 

boards, the player (either computer or human, in principle) will produce 

a tree of moves down to some arbitrary depth, usually not very deep, 

evaluate terminal boards and then back up these values to the initial 

board. The usual form of back-up is mini-maxing which will now be 

described with reference to Figure 1. 

It is player A's turn to move and he is called the MAX player 

while player Bis called the MIN player. In Figure 1, squares denote 

MAX nodes and circles MIN nodes. The tree of moves is produced down to 

some depth in this case 2. It is not necessary that the tree be constructed 

uniformly to a fixed depth or that the branching factor be a constant. 

See Figure 2 for another possible game tree. 
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In either case the terminal nodes are evaluated and the mini­

maxing procedure is carried out as follows: 

1. For a MAX node: 

5 . 

If the successor MIN nodes all have values, the MAX node 

is assigned the maximum value of these. 

2. For a MIN node: 

If the successor MAX nodes all have values, the MIN node 

is assigned the minimum value of these. 

There are alternate back-up procedures to mini-maxing, Slagle and Dixon's 

Mand N progrannning (1970) being one of these. 

The basic idea behind mini-maxing is that if it is my turn to move, 

I will try to optimize my position and for player A who is MAX this means 

trying to achieve the highest valued board while for player B this means 

choosing the lowest valued board. All of this is based on the assumptions 

that the evaluation function is fairly good, and that player Bis using 

a very similar function to make his own moves so that by preventing A 

from achieving high valued boards Bis improving his chances of winning. 

At the termination of this process, board.!!._ will be assigned a value 

equal to one of the values of boards e through E!• That is, the value of 

board ~represents the highest valued board player A can achieve, two 

moves hence. Thus A will choose one of boards 2,,~, and .2, for his move, 

depending upon which was assigned the value backed up to board.!.• If 

more than one board has this value some, usually arbitrary, decision is 

made (see Slagle, Dixon, 1970) 

We define look-ahead to be the process whereby an explicit or implicit 

tree or subtree of moves is produced from some initial board. It is not 

necessary of course that the entire tree be produced before terminal nodes 

are evaluated. In fact considerable savings in time without loss of infor­

mation can be achieved by a controlled depth first search called the alpha-
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beta procedure (Samuel, 1967; Slagle, Dixon 1969). This achievement 

depends on the fact that infonnation gained in the early part of the 

search can be utilized to save searching large parts of the tree later 

on. 

We can now return to the notion of a perfect evaluation function 

and consider it with respect to look-ahead. In using the perfect evalua­

tion function, the player need not construct any part of the tree except 

for the immediate successors. (It is even possible for such a function 

applied to the current board to produce the single required move). Thus 

the perfect evaluation contains implicitly sufficient look-ahead to 

guarantee a win and it should be possible to compare the power of heuristic 

evaluation functions in terms of the degree to which they differ in 

effective look-ahead. We will examine this notion more thoroughly with 

respect to one-person games in a later section. 

It is the underlying assumption in all game-playing programs which 

employ a heuristic evaluation function together with look-ahead and 

back-up that an increase in the depth of look-ahead will result in an 

increase in the accuracy of the evaluato~. Clearly in the limit this is 

the case for if look-ahead could be carried out to the actual end of the 

game, the evaluator would thereby be perfect. Slagle and Dixon (1969) 

have investigated this relation and indeed have found a positive correlation 

between an improvement in the heuristic function and an increase in the 

depth of look-ahead. We wish to report some results based on one-person 

games which also bear on this relation. 
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2. One-Person Games 

2.0 Why One-Person Games? 

The term one-person game is a rather cumbersome name for puzzle; 

that is,a game in which a single player attempts to achieve some desired 

state from an initial state via a sequence of legal moves. The first 

question to be discussed is what role does look-ahead have in playing 

a puzzle? In two person games, one uses look ahead to improve the heuris­

tic function by trying to investigate a broad class of moves and responses 

prior to choosing a move. However, in puzzles there is no opponent and 

therefore all moves are made by the player himself. 

As a first approach, one might consider look ahead as a means of 

avoiding cul-de-sacs or at least trying to anticipate the intermediate 

effects of certain moves. This will obviously add to the computational 

effort of playing and does not have the justification of avoiding blunders 

that look ahead provides in two-person games. We will argue in section 

2.2 that under certain conditions look-ahead can result in computational 

savings. 

Another question we wish to explore is the use of depth of look-

ahead as a means of comparing two heuristic functions. Given two heuris­

tic functions h1 and h 2 such that h1 is more effective than h2 (leaving 

aside for now any formal notion of effective) we might be interested in the 

following question: 

What is the minimum uniform look-ahead depth,£, such that h 2 together 

with this look-ahead is as effective as h1? 

This question will be discussed in section 4. 

We have said nothing about the associated back-up procedure but 

for puzzles mini-max is not appropriate. Perhaps the backed up value 
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should just be the optimum value of the terminal boards (maxi-max). 

In the following section some current results on tree searching in one­

person games will be reviewed. 

2.1 Some Results on Tree Searching 

2.1.1 The Graph Traverser 

This is a program written by Doran and Michie (1966) to 

find a path between; two specified nodes in a graph. We have 

previously discussed only trees but the generalization to graphs does 

not alter the problem essentially other than to introduce the difficulty 

of returning to a node already visited. Doran and Michie define the notion 

of an economic search as follows: 

The task is to find a path across the graph as economically 
as possible, i.e. with as little labour as possible expended 
in the search, avoiding as far as possible false trials, 
blind alleys and meanderings far from the final path. If 
the path is short we say that the solution is 'elegant'. 
If the search is short, we say that the solution is 
'economical'.* 

We will now describe the procedure very briefly. The program 

applies to any problem which can be formulated as a graph. That is, 

the nodes of the graph correspond to states of the problem and an arc 

from node a to node b indicates that state b can be achieved from state 

a by the application of one member of the set of legal operators. It is 

not necessary that the graph be synnnetric so that in the above node a 

may not be reachable from node b by a single operator. 

* Doran and Michie (1966) p. 237. 
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The problem statement can be given by the following definitions: 

The problem is specified by a graph G = {x,r} where Xis the set of 

nodes (problem states) and where r is a function which maps X into itself. 

For any specific node xeX, r(x) is the set of nodes resulting from the 

application of all legal operations, defined in the particular one-person 

game, to x. r in a sense contains the rules of the game. Thus given a 

starting node seX and a goal node geX, it is required to find a path 

from s tog, i.e. a sequence of nodes x1 ,x2 , ••• xn for some n, such 

1) x =sand x =g 1 n 

2) for all m such that l~m~n-1, xm+
1

er(xm). 

Economy, then corresponds to a minimal number of applications of r in order 

to find a solution and elegance corresponds to a minimal n. 

To use the procedure the following essential information must be 

supplied: 

(1) A procedure develop , specifying r defined above. 

(2) A procedure evaluate, specifying the heuristic evaluation 

function E which is a function from X to the non-negative 

integers.Eis intended to be a function which for any node 

x estimates the minimum number of arcs from x tog. 

(3) Starting and goal nodes. 

There are other control parameters required and these will be mentioned 

where necessary. 

The procedure begins by applying r to s to produce the set of 

immediate successors r(s). Each node in this set is evaluated by 

applying the function E and the node with the smallest value is expanded 

next (ties being broken arbitrarily). Since the problem space is a 

graph, among the successors of any node x may be a node which has already 

been produced. No connection is then made from x to this node. Thus the 
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process produces a tree which is a subgraph of the problem graph. This 

tree contains two kinds of nodes, those which are developed and those 

which are undeveloped. 

The process will terminate when the node g occurs among the successors 

of the currently expanded node. But for non-trivial problems the condition 

may arise that the growing solution tree exceeds the preset storage 

limitations of the computer. In the earliest version of the program, 

the best undeveloped node is selected and the path from s to it is 

printed. Then the search is continued using this node as a start node. 

The number of repetitions of this process is limited by a program parameter. 

There is no guarantee at all that the search will succeed under these 

conditions. 

In later work on the Graph Traverser, Doran (1967), instead of 

discarding the entire tree up to the current best node, discards only 

that part of the tree a fixed number of steps along the path to the best 

node. 

Most of the early expermental results are based on a class of sliding 

block puzzles called the eight and fifteen puzzles. The eight puzzle 

consists of eight numbered square blocks in a three by three array. A 

typical arrangment is shown below 

1 2 3 

4 5 6 

7 8 0 

Figure 3. 

A typical configuration of the eight puzzle , 



The square labelled O is the empty square. Any configuration can be 

altered by moving into the empty square one of the numbered squares 

adjacent to it. It should be noted that the set of configurations of 

this puzzle can be divided into two subsets. For any two elements of 

the set there exists a sequence of moves which transforms one into 

the other if and only if they are in the same subset. 

This puzzle has been completely solved by Schofield (1967) in an 

exhaustive fashion and it is known, for example, that the longest 

minimum solution path is 30 moves. Figure 5 shows the initial and goal 

configurations for a 30 move problem 

5 2 7 1 2 3 

8 0 4 8 0 4 
30 moves 

3 6 1 7 6 5 

Figure 4 An eight puzzle requiring 30 moves 

The successor function r for this puzzle is well-defined. Several 

different evaluation functions E have been used among which are the 

following: 

(1) The value assigned to a configuration is the total number of 

pieces out of place. Thus the goal will have zero value as it will 

with the other functions. 

(2) A h i
th 

' di h b f ssign a score p. tote piece accor ng tote num er o 
1 

moves it is distant from its goal position, disregarding the 

barrier posed by intervening pieces (i.e. the city-block distance). 

Then an evaluation function based on the position count P of a given 

configuration is given by 
8 

p = r p. 
i=l 1 
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For example, the left side configuration of Figure 4 has a 

position count P equal to 

(4+0+4+0+4+0+4+0) = 16 

(3) Assign a scores to each piece by checking around the then 

non-central squares in turn, allotting 2 for every piece not 

followed by its proper successor and O for every other piece. 

Further, a piece in the centre scores one. An empty non-central 

square is ignored in applying the succession criterion. (i.e. there 

is no great difficulty in obtaining the proper sequence if two 

pieces are separated by a blank square). A sequence count Sis 

given by 
8 

S = l s + c where c=l if the central square is non-empty 
i=l i 

and •0 otherwise 

For the left side of Figure 5, the sequence count Sis 

(2+2+2+2+2+2+2+2) + 0 = 16 

(4) A weighted combination of (2) and (3) such as 

E = P + w S. 

Note that a small change in the value of w may not cause a 

change in the choices determined by the evaluation. 

Doran and Michie use the fourth evaluation function which we shall 

call E
4 

in most of their experiments. A battery of tests were run for 

a fixed value of w=9 over a number of problems with minimum solution 

paths varying from 8 to 30. Another set of tests was run for w taking 

values of 0, 1/9, 2/3, 3/2, and 9. 

Best results in terms of such performance indicators as the length 

of the path produced, Land the number of nodes developed, D occur for 

win the range 3/2 to 9. Both Land D seem to be correlated, i.e. there 

is no evidence that by changing w either Lor D can be improved at the 

expense of the other. 
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We might also mention Doran and Michie's definition of a quantity 

they call penetrartce. If L* is the minimal path length for a given 

problem then L*/L is the path efficiency and L*/D is the development 

efficiency (since L* is the minimum number of nodes to be developed.) 

Note that L*/D = L*/L x L/D 

They define the penetrance, L/D, as the fraction of the total number 

of nodes developed which are incorporated into the actual path 

found. 

For any non-trivial problem L* is not likely to be known but Land 

Dare determined if the Graph Traverser succeeds in finding any solution. 

Penetrance in fact represents the degree to which the search tree is 

elongated and narrow rather than bushy. 

The fact that the product of path efficiency and penetrance is 

equal to development efficiency raises a question about the possible 

predictive power of the penetrance measure. Some tests indicate that 

there is some correlation between the percentage of puzzles solved during 

a second partial search and the value of the penetrance over the preceding 

first partial search. Recall that a solution may require several partial 

searches after each of which the path to the current best node is 

printed and the search begun anew from this node. 

As a final point, we should consider the possibility of operator 

selection at a given node. Instead of fully developing some node it may 

be possible to select the operator with the best chance of producing a 

good successor. Thus there will be three categories of nodes - undeveloped, 

partially developed, and fully developed. For partially developed nodes 

information must be kept as to which operators have so far been applied. 
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The mechanism of operator selection opens up many experimental 

possibilities such as various orderings in the individual operators 

and the possibility of learning to improve this ordering. Of course 

learning may also be involved in determining optimum values for win 

E
4 

or the parameters in other evaluation functions. It is elear 

that the selection of operators also involves the use of information, 

usually heuristic,about the problem. Compare this with the work of 

Newell and Simon on the General Problem Solver (1961) and Ernst and 

Newell (1969). 

More recent results on the Graph Traverser are reported by Michie 

(1967), Doran (1968), Michie and Ross (1970) and Marsh (1970). 

Many other experiments have been run using the fifteen puzzle with 

more complex evaluation functions, as well as the travelling salesman 

problem, but we will now turn our attention to some theoretical results 

on tree searching, which will be used subsequently. 

2.1.2 Results of Hart, Nilsson and Raphael (1968) 

The title of their paper "A Formal Basis for the Heuristic Deter­

mination of Minimum Cost Paths", accurately describes their approach. 

We wish to briefly describe their results which are among the first to 

attempt to formalize heuristic tree searching. Much more detail is 

given in Nils.son's book (1971). 

In their notation a graph G is defined by two sets {ni} the set of 

elements called nodes and {eij} the set of directed line segments called 

arcs. The cost of traversing or executing arc eij is cij• In general 

the existence of arc eij does not imply the existence of arc eji• 

prove their results it is necessary that there be a real number 

To 

o >Osuch that for all i,j, cij ~ o. Graphs satisfying this criterion 

are called o-graphs. 
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A path from n1 to I\ is defined to be an ordered set of nodes 

(n1 ,n2 , ••• I\) with each ni+l a successor of ni. Every path has a cost 

which is obtained by adding the individual costs, ci,i+l' of each arc in 

the path. We define h(ni,nj) to be the cost of an optimal path from ni 

ton., i.e. a path having the smallest cost over the set of all paths 
J 

from ni to nj. 

main results. 

A few more definitions and we will be able to state their 

Ifs is the single start node and G is the subgraph from 
s 

s defined by the problem then we define a nonempty subset T of nodes in G s 

as the goal nodes. For any node n£G, an element of t£T is a preferred 
s 

goal node if and only if the cost of an optimal path from n tot does 

not exceed the cost of any other path from n to any member of T. This 

cost can be represented by h(n) = min h(n,t), 
t£T 

An algorithm is said to be admissible if it is guaranteed to find an 

optimal path from s to a preferred goal node of s for any a-graph, It 

is clear that admissible algorithms may differ both in the order in which 

they expand· nodes and in the number of nodes expanded (the economy of 

the procedure). A search algorithm A* is given and shown to be admissible, 

This algorithm is much like the Graph Traverser but differs in the nature 

of the evaluation function which is defined in the following way: 

For any graph G and any goal set T let f(n) be the actual cost 
s 

of an optimal path const~ained to go through n, from s to a preferred 

goal node of n. Then f(s) = h(s) and in fact f(s) = f(n) for any node 

non an optimal path. It is possible to write f(n) as 

f(n) = g(n) + h(n) 

where g(n) is the actual cost of an optimal path from s ton and h(n) 

is the actual cost of an optimal path from n to a preferred goal node of 

n. Recall that in the Graph Traverser, the evaluation function Eis an 

estimate of the minimal number of arcs from any node x to to the goal node g. 
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Estimates, g(n) and B(n), are proposed for g(n) and 

h(n), respectively, where g(n) is taken to be the cost of 

the path from s ton having the smallest cost so far found by 

the algotithm, a quantity which is easy to calculate. The condition for 

the algorithm A* to be admissible is that the estimate h(n) be such that 

for all n, h(n) ~ h(n), i.e. h(n) must be any lower bound of h. A 

natural question which now arises is how to compare admissible algorithms. 

One obvious criterion equivalent to Doran and Michie'a (1966) concept 

of economy is the number of nodes developed in finding the optimal solution. 

Two additional concepts are defined before a result about the optimality 

of algorithms can be proved. An admissible algorithm is said to be optimal 

if no other admissible algorithm expands fewer nodes. 

Optimality depends first on the heuristic function h satisfying what 

is called, the consistency assumption, a kind of triangle inequality rule 

which states that for any two nodes m and n 

h(m) - h(n) ~ h(m,n) 

i.e. the difference between the estimated costs to the goal from any pair 

of nodes m and n must be a lower bound or the actual cost of an optimal 

path from m ton. This assumption implies a uniformity of application 

of the heuristic function over the problem space. 

The second requirement depends on the following definition Nilsson (1971): 

We shall say the algorithm A is more informed than algorithm B if 
the heuristic information used by A permits computing a lower bound 
on h(n) that is everywhere strictly larger (for all nongoal nodes 
n) than that permitted by the heuristic information used by B. 

Finally, the following Theorem is proven 

Theorem: let A and A* be admissible algorithms such that A* is more 
informed than A, and let the consistency assumption be satisfied 
by the h used in A*. Then for any graph if node n was expanded 
by A*, it was also expanded by A. 

Proof: See Nilsson (1971) pp 61-65. 
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In other words, one procedure will be at least as economical as another 

if its heuristic function is a strictly better lower bound of the perfect 

function. And a heuristic function which satisfies this condition with 

respect to another is said to be more informed. 

We will refer to this concept of being more informed when we 

discuss the relation between look-ahead and heuristic evaluation functions. 

2.1.3 Pohl's Results (1969 , 1970a, 1970b) 

Pohl describes an algorithm which he calls the Heuristic Path 

Algorithm (HPA) and which is similar both to the Graph Traverser (1966) 

and the Hart, Nilsson, and Raphael (1968) algorithm. Perhaps, it is 

worthwhile to present HPA in some detail since this is the algorithm that 

is used in the experiments to be reported in section 3. 

The problem will be defined by a start nodes, a terminal node t 

and a successor function r, such that for any node x, r(x) yields the 

set of successors of x. Let g(x) be the number of edges from s to x 

as found by the search and let h(x), the heuristic function, be an 

estimate of the number of edges from x tot. Then we define an evalua­

tion function f(x) = (1-wt)g(x)+wth(x) where O ~ wt <l. Finally, let S 

be the set of nodes already visited, sometimes called the expanded or 

developed nodes and let S be the set of nodes directly reachable from S 

in one edge but not already in S. 

The algorithm HPA is given as follows, Pohl(1970a): 

1. Places in Sand calculate r(s) placing them ins. 

if xEf(s) then g(x)=l and f(x) = (1-wt)+ wt h(x) 

2. Select nES such that f(n) is a minimum. 

3. Place n in Sand r(n) in S (if not already in S) and calculate 

f for the successors of n. 

If xEf(n) and x~S then g(x)=l+g(n) 
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and f(x) = (1-wt) g(x) + wt h(x) 

4. If n is equal tot then halt, otherwise go to step 2. 

In this formulation of the evaluation function, a value of w =O 
t 

corresponds to an exhaustive breadth first search, a value of wt=l 

corresponds to a pure heuristic search (like that performed by the 

Graph Traverser), andw =½is very much like the type of search produced 
t 

by the Hart, Nilsson, Raphael procedure (1968) where both components of the 

evaluation function are equally weighted. We wish to state some of 

the theorems proved by Pohl (1970a) both to indicate the nature of the 

results obtained and because some of these results will be needed in the 

next section. 

Theorem 1 

If his perfect then for l~wt~l/2, the search by HPA is 

optimal, i.e. includes the fewest nodes in set Sin finding a 

solution path. 

To discuss error in heuristic functions and its effect on search, 

Pohl (1970a) gives the following definitions: 

Leth*= perfect estimator 

£=a bound on the error 0,1,2, ••• 

h = given heuristic function, 

(h*-£)~h~(h*+£) in the problem domain. 

The investigation to follow will be similar to a worst case analysis 

in numerical analysis. It is a particular failing of the theory of 

heuristic tree searching that there are no results based on a statistical 

or probabalistic formulation. 

Anh is to be constructed satisfying the constraints given above 

but in such a manner as to mislead HPA to the greatest extent. In case 

of ties, HPA will always choose the worst nodes, i.e. those off the 



solution path. For example to make has bad as possible 

h = h*+e for each node on the solution path 

and h = h*-e for each node off the solution path. 

The following theorems are established, Pohl (1970a): 

Theorem 7 

19. 

Let k be the distance from the root node to the goal node and 

f=½(gi~h) be the function used by HPA, then the maximum number of 

nodes expanded in a binary tree space is 

where Eis the error bound on h. 

Theorem 8 

Let k be the distance from the root node to the goal node and 

f=h be the function used by HPA, then the maximum number of nodes 

expanded in a binary tree search space is 

k+l E=O 

4E 
2 . k+l E~l 

Theorem 9 

If HPA is searching any tree structured space for some goal 

node then 

(a) f=h will visit at least as many nodes as f=½(g+h) in the 

sense of the above worst case analysis. 

(b) If h
1 

is bounded in error by e1 and h
2 

by e
2 

with e2>e
1

, 

then in the sense of the worst case analysis h
2 

can only 

search more nodes than h
1 

for the same wt value. 

The important point to note is that the inclusion of gin an evalua­

tion function ·cannot harm and may improve the function. Intuitively this 

is because g lends a breadth first component to the search and if the 
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heuristic czornponent tends to cause the search to go off on some tangent, 

g will exert a conservative, stabilizing force. There are of course two 

limitations to the above remarks. First most problem domains are graphs 

and not trees and ·second, the results are based on a worst case analysis. 

2.2 The Role of Look-Ahead 

From the discussion of section 2.1, mainly the experimental work of 

Doran and Michie (1966), attempts to improve the economy of the heuristic 

search depend on changes in one or more parameters in the evaluation 

function. For example most of the experimental work on the eight puzzle 

involves variation in the coefficient win the evaluation function P+wS 

(see section 2.1.1). This presupposes a heuristic function potentially 

good enough to produce acceptable results and requiring only some careful 

tuning. An~ther way of improving an evaluation function may be through 

the use of look ahead. 

6iven an evaluation function look-ahead can be used in the following 

way. We refer to Pohl's algorithm HPA described in 2.1.3. If f is an 

arbitrary evaluation function we define fl to be a new evaluation 

function to be applied to an arbitrary node x by producing the subtree 

from node x to a depth l, evaluating the terminal nodes of this tree 

using f and assigning to node x the minimum value. Thus whenever a node 

is developed or expanded the evaluation function fl' which should be 

thought of as a procedure, is applied to every successor node. In -step 2 

of the algorithm the node n£S is selected such that fl(n) is a minimum. 

Two questions arise: 

(1) Is fl(x) a better estimate of the "goodness" of x than f? 

(2) Even assuming that the answer to (1) is in the affirmative 

doesn't the extra computation involved in evaluating fl(x) 

outweigh any advantage it may have? 

, 
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In partial answer to these we note that if look ahead . does not 

improve the evaluation function, it has been a waste of effort in most 

game playing programs. We will return to this point in section 3, but 

first we wish to examine question (2) more carefully. In most of the 

work reviewed, no attention has been paid to the cost of computing the 

evaluation function. When one function is said to be better than 

another, it is implicitly assumed that while it develops fewer nodes, 

its computational costs are no greater than the other function. It 

is to this point that we now direct our attention. In the spirit of 

Pohl's (1970a) work the investigation will be on the basis of a worst 

case analysis. 

Theorem 2.2.1 

Let (1) hl be a heuristic function with bounded error El 

an integer, 

(2) h
2 

be a heuristic function with bounded error 

E2 (an integer) such that E
2

>E
1 

(3) k be the distance from the root node to the goal 

(4) the problem domain be represented by an m-ary tree; 

then the algorithm HPA using f
2

(x) =½{g(x) + h
2

(x)} will in the worst 

case develop c1 k more nodes than it would using f 1 (x) = ½{g(x) + h1 (x)}, 

E2 El 
where c1 = m - m 
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In an obvious generalization of Pohl's (1970a) Theorem 7 from binary 
£ 

trees to m-ary trees, HPA using f
1 

will expand m 1k+l nodes, whereas 

using f 2 it will expand m£ 2k+l nodes. Therefore f
1 

will expand 

m£ 2k-m£ 1k fewer nodes than £
2

• This can be rewritten as 

m£ 2k-m£ 1 k 

= c1 k 

This result is really an expansion of part (b) of Theorem 9, Pohl 

(1970a). An explicit quantity can be derived because the tree structured 

space is here assumed to be regular (i.e. m-ary). The following result 

will show under what conditions it may be advisable to use a better but 

computationally more expensive heuristic function, again based on a worst 

case analysis. 

At this point it should be noted that implicit in HPA is the require-

ment that every newly generated node must be compared with the nodes previously 

assigned to the sets Sand Sin order to weed out redundant nodes. This 

is an obvious requirement for graph structured problem domains where the 

same node can be reached by different routes. But it can also arise in 

tree-structured domains which have this form because identical problems 

states are not identified. Now Hart, Nilsson, Raphael (1968) prove a 

lemma which shows that for admissible algorithms if h satisfies the 

consistency assumption, a node which has already been developed will never 

be generated again, i.e. if the algorithm expands a node then an optimal 

path to that node has already been found. 

In the theorem to follow since h may exceed the perfect estimator, 

the algorithm HPA using it is not admissible. Thus the necessity for 

comparing nodes will still exist and it is upon this necessity that the 

result depends. 



Theorem 2.2.2 

Given the conditions (1) - (4) of J;'heorem 2.2.l and the 

fact that for all x the cost of computing h1 (x) is greater than 

23. 

the cost of computing h2 (x); then there exists a problem represented 

by an m-ary tree with a sufficiently long solution path of length k such 

that algorithm HPA using f
1

(x)=½{g(x) + h
1

(x)}will require less 

computation time than if it were to use f 2(x)=½{g(x) + h 2(x)}. 

The proof depends on showing that the extra cost of computation using 

h1 increases linearly with k while the extra cost of computation of h2 

due to an increased number of nodes depends on the square of k. From 

Theorem 2,2,1, the number of extra nodes h2 develops is c1 •k where 

c
1 

= mE 2-mE 1 • For the number of nodes h
1 

develops the extra computation 

is c
2

•k•me 1 , i.e. the extra cost of h1 increases as O(k). All other 

computations for both heuristics are the same. 

Because h
2 

must deal with an additional c1 •k nodes (in the worst case 

of course) there will be the associated cost of comparisons to avoid 

redundant nodes. We can compute this cost in the following way. 

Let n
1 

= k•mE 1 and 

n2 = c1 °k. 

Then for a simple comparison search the number of comparisons to be 

made is 

n
1
+n2-l nl+n2-l n -1 1 
I i = I i I i 

i=n 1 i=l i=l 

= Cnl+n2-l)(nl+n2) (n1-l)n1 

2 2 

2 2n1n2 n2 
+ 

n2 
= - -

2 2 2 
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Since n2=c
1 

k, the number of comparisons for a simple search is O(k2). 

Therefore the computational cost of the additional comparisons h
2 

must 

make increases as O(k2). Thus the conclusion of the theorem. 

This is a weak theorem and its general applications may not be very 

widespreadbutit does suggest that there may be some problems where look-

ahead may improve the heuristic function. Further it is clear that there are more 

efficient comparison schemes such as binary search and hashcoding and 

the O(k2) number of comparisons is too high. Binary search will lower 

this to O(k log k) for which the theorem still holds although a larger k 

will be necessary. Using hashcoding will further decrease this with a 

small linear increase in costs due to the hash function computation. It 

will therefore be necessary to carry out some experimentation in order to 

see the applicability of this result. 

3. · Experimental Results 

3.1 Program 

The program is written in ALGOLW and is essentially the same as the 

program appearing in Pohl's thesis (1969). The latter is actually an 

implementation of Pohl's bi-directional search, while the former an 

implementation of HPA (see section2.1.3) is uni-directional with some 

additional features. Obviously the most important feature is a look­

ahead procedure which has been incorporated into the evaluation function. 

Under the control of an input look-ahead parameter, LK, the value of a 

node n is determined by producing the complete tree from n to a depth LK, 

evaluating the terminal nodes, and assigning the lowest value ton. 

Thus for zero look-ahead, LK will be zero and no tree will be produced. 

To be more precise, we should note that the evaluation of the 

terminal nodes is in fact their heuristic evaluation, i.e. the h(x) part 
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of f(x) = (1-wt)g(x) + wth(x). To avoid overshoot~ng the goal each node 

produced in the look-ahead tree is compared to the goal node and the search 

is terminated if the comparison is successful. This adds to the computa­

tional effort involved in carrying out look ahead. 

With reference to the final remarks in the previous section, hash 

coding is used to compare nodes in order to weed out redundant ones. 

This immediately suggests that the results we are looking for may not be 

easy to find. In fact the point of these experiments is really to exhibit 

a problem for which the existence statement of Theorem 2.2.2 holds. In 

no way, do we intend to present an exhaustive set of experiments over a 

wide range of problems. We hope the results presented will be suggestive 

for again it should be noted that the above theorem is proved under very 

restrictive conditions. 

The domain of experimentation is the eight-puzzle discussed earlier 

end specific problems are taken from Doran and Michie (1966) and Schofield 

(1967). We are unable to compare our results directly with Michie and 

Doran's (1966) for two reasons. First they do not describe the individual 

problems for which they have obtained results and second their evaluation 

function is purely heuristic, i.e. there is no g term. Finally, to measure 

the computational effort, we take the amount of central processor time 

used. 

3.2 Results 

All the results are derived from five specific problems. The goal 

configuration is the same for all of these, namely. 

1 2 3 
8 0 4 
7 6 5 

and the initial configurations are shown in Table I together with the 

lengths of optimal solution paths. 
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Problem Initial Optimal 
Number Configuration Path Length 

216 

1 408 18 

753 

825 

2 106 20 

734 

824 

3 107 22 

563 

824 

4 107 24 

356 

765 

5 108 30 

324 

TABLE I The list of problems 



The evaluation function used is 

f(x) • (1-wt)g(x) + wt h(x) 

where h(x) = P+w S, the E4 defined in section 2.1.1. 

The basic parameters in each run are 

the problem 

the maximum number of iterations - MAXITER 

wt - almost always equal to .5 

w - the parameter in the heuristic function 

LK - the look ahead depth 
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First some very general observations. On the basis of Theorem 2.2.2, 

we would expect that problems with fairly long solution paths may be necessary 

in order to achieve a large number of results for which look-ahead reduces the 

overall computation. The experiments reported here range over problems with 

solution paths varying between 18 and 30 and these are not long enough to ensure 

a high proportion of successful runs. Thus, in almost all cases, for a fixed 

value of w, increasing the look-ahead depth LK results in a decrease in the 

number of nodes developed but an increase in the computation time. However, a 

complete set of 25 runs for problem 3 with w taking the values .1, .5, 1,5, 3.0 and 

9.0 and LK taking values 0,1,2,3, and 4 produced two results which satisfy Theorem 

2.2,2. Consider Table II, which for each value of wand LK, gives the number of 

nodes developed (D), the path length (L) and the computation time in seconds (T). 

This problem has an optimum path length of 22. For w ~ 3.0 and LK m O, 

after 200 iterations which took 5.5 seconds, a solution was not found. However 

when LK was increased to 4, after 27 iterations an optimal solution was found in 

4.2 seconds. A similar situation occurred for w m 1.5. In this instance, the 

process without look-ahead discovered an optimal solution after 142 iterations 

requiring 3.7 seconds while with look-ahead to depth 4 an optimal solution was 

foun~ after only 23 iterations in 3.5 seconds. 
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LK .1 

D L T 

0 200 - 5.6 

1 200 - 9.9 

2 200 - 13.3 

3 200 - 19.5 

4 200 - 30.2 

TAJ3LE II 

w 

. 5 1.5 3.0 9.0 

D L T D L T D L T D L T 

200 - 5.7 142 22 3.7 200 - 5~5 65 26 1.5 

200 - 9.9 92 22 4.3 63 28 3.0 63 28 3.0 

200 - 13.2 58 26 3.8 59 26 3.8 32 26 2,1 

184 22 17.9 59 22 5.6 32 28 3.1 26 22 2.6 

90 24 13.5 23 22 3.5 27 22 4.2 30 26 4.6 

Results· obtained for problem 3 

D - number of developed nodes 

L - path length (- means no ~olution was obtained) 

T - computation time in seconds 

LK - look ahead depth 

w - parameter in the heuristic function 



The evaluation fW1.ction f with zero look-ahead is f(x) = 

1/2[g(x) + p + ws] and with depth four we have f 4 
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where w = 1.5 or 3. Clearly f
4 

requires considerably more computation 

than f, but when applied to problem 3 it actually results in a saving 

in computation time. 

The five problems were picked randomly and for only one problem and 

only two pairs of values for wand LK were successful results obtained. 

And as can be seen from Table II, it was only when the use of f
4 

resulted 

in a very rapid solution that sucess was achieved. In one instance, only 

23 developed nodes were produced which is almost the minimum number possible. 

As a general observation one could say that the cases where look-ahead 

might prove helpful are very narrowly circumscribed. Where the heuristic 

function is itself not very effective, limited look-ahead will probably 

not help; similarly, for a very good heuristic function, it is not likely 

that limited look-ahead will improve matters. Somewhere in between is an 

area which may yield worthwhile results. 

3.3 Anomalies and Interesting Points 

In the course of the experiments there arose a few results which 

deserve brief comment. Problem 1 was chosen from Michie and Doran (1966) 

because the complete solution tree is given. (It is also given as an 

example by Nilsson, 1971) By setting wt to 1, the program acts as the 

Graph Traverser, relying only upon the heuristic function. Two complete 

sets of runs were made for this problem, one with wt set to 1 and the other 

with w set to .5. Table III shows some of these results. 
t 

First a note of explanation. Wherever D<L for a set of parameter 

values, this implies that the goal node was found during the look-ahead 

process. The first point to note is that for wt= 1.0 and w = 1.5 and 3.0, 
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w 

· LK w 

0 

1 

2 

3 

4 

TABLE III 

t 
.5 1.5 3.0 

D L D L D L 

1.0 100 - 25 18 24 18 

0.5 39 18 33 18 23 18 

1.0 53 38 65 46 65 46 

0.5 27 18 21 18 21 18 

1.0 39 27 33 27 17 18 

0.5 22 18 19 18 17 18 

1.0 39 31 22 24 22 24 

0.5 18 18 22 24 22 24 

1.0 15 18 21 24 21 24 

0.5 15 18 21 24 21 24 

Some results obtained for problem 1 

D - number of nodes developed 

L - path length 

Wt= 0.5 - inclusion of g(x) in the evaluation function 
= 1.0 - exclusion of g(x); program behaves like the 

Graph Traverser 

LK - look ahead depth 

w - parameter in the heuristic function 

r. 
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the program performs very badly when LK = 1 compared to LK = o. That is, 

a look-ahead of depth 1 causes a serious deterioration in performance. 

This situation results from the parity conditions involved in the length 

of any solution path to this problem. It can be shown (Schofield, 1967) 

that any solution to problem 1 must be of even length. Look-ahead to an 

odd depth, sets the solution off on a poor direction by badly estimating 

the number of st~ps to the goal node, resulting in the worst case in a 

solution path 2½ times as long as the optimal one. This suggests that 

the a priori notion that look-ahead applied to an arbitrary evaluation 

function in an arbitrary problem domain will inevitably improve the 

situation is certainly not well taken. 

Now the effect of g(x) can be noted. Referring to the same set 

of parameter values mentioned above, we note that a solution characterized 

by 65 developed nodes and path length of 46 has been substantially reduced 

to 21 develpped nodes and an optimal path length of 18. For this reason 

wt= .5 was used for the remainder of the experiments. This striking 

result is suggested by Pohl's Theorem 9, stated in section 2.1.3 which, 

however, was proved only by a worst case analysis. At least for the 

conditions of this problem, the addition of g(x) results in a major 

improvement in some cases, no improvement in a few others and only a 

slight worsening in one case. 

Finally one minor point remains. In most versions of tree searching 

algorithms, if the search for the next node to expand on the basis of the 

evaluation function value results in a tie, this tie is broken 

arbitrarily. However, it is possible that different implementations of 

the same algorithm may produce different solutions depending on the actual 

procedure used to break ties. Our program begins its search for the node 

with minimal value from the most recently generated node back to the first 
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node generated. The first occurrence of the minimal value, if there are 

more than one, is automatically selected as the tie breaker. This is 

certainly an arbit~ary method for tie-breaking. Recall the notion of 

admissibility defined by Hart, Nilsson, Raphael (1968). If the conditions 

for admissibility are satisfied an optimal solution will be produced; 

however, if they are not then solutions may depend on the tie-breaking 

procedure. Consider Table IV, where the method described above for 

tie-breaking is called TIE-1 and where TIE-2 is that method modified by 

beginning the search at the earliest node generated and proceeding to 

the most recent. At least for the cases LK = 0 and 1 there is a signi­

ficant difference in the number of nodes developed. Although the path 

lengths are the same in this case, other results showed differences in 

this factor as well. 

Because most algorithms are not likely to be admissible, tie­

breaking procedures should be carefully described so that results can 

be correctly evaluated. 

4. Conclusions 

4.1 Look-Ahead and "Informedness" 

Recall the definition of 'more informed' by Hart, Nilsson and Raphael 

(1968) quoted in section 2.1.2. This describes a means for comparing the 

effectiveness of two heuristic functions but not a very practical one. The 

usual notion of effectiveness, as we have seen, is expressed in terms of 

the number of nodes expanded in finding a solution. It is further assumed 

that the heuristic functions compared are equivalent in terms of their 

computation times. In some cases it may be better to measure the effective­

ness of two heuristic procedures in terms of their overall computational 

efforts. This is, in effect, the import of Theorem 2.2.2. 

In terms of our discussion on look-ahead we might interpret the notion 

i' 



LK 

0 

1 

2 

3 

4 

TABLE IV 

w = 3.0 

TIE - 1 TIE - 2 

D L D L 

40 32 71 32 

36 32 54 32 

46 32 48 32 

39 34 46 32 

44 32 43 32 

Some results obtained for problem S 

D - number of nodes developed 

L - path length 

LK - look ahead depth 

w - parameter in the heuristic function 

TIE-1, TIE-2 - see text 

33. 
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of 'more informed' in the following way. Given heuristic functions 

h1 and h 2 which are equivalent in computation times, which generally 

implies that they differ only in parameter values, such that h1 develops 

fewer nodes than h2 we could say in a loose manner that h
1 

is more in­

formed than h
2

• The formal definition is considerably more restrictive. 

How much more informed, might be determined by a series of experiments 

aimed at discovering a minimum uniform look-ahead depth t such that 

h
2 

becomes as effective as h
1

• That is, h
1 

'contains' an implicit 

look-ahead of depth land thereby saves a certain amount of computational 

effort compared to h
2

• 

By relating effectiveness to look-ahead, we make these ideas 

intuitively clearer than by speaking of heuristic functions as being 

better lower bounds of perfect estimators. For example, with zero 

look-ahead a value of w = 1.5 results in a more economical solution for 

problems than does a value of w = .5. Similarly, for problems 2 and 3 

the value of w = 1.5 produces a solution with fewer than 200 developed 

nodes where none is produced for w = .5. See Table V for the actual 

numbers. Now if the look-ahead depth is increased to 3 while keeping 

w = .5, results are achieved which are comparable to those for w = 1.5 

and zero look-ahead. Of course computation times are also increased by 

a factor varying between 2.5 and 5. 

We should note that increasing the look-ahead depth to 1 improves 

performance for problem 1 but not for problems 2 and 3. Thus as a 

preliminary hypothesis we might say that an evaluation function f 1 with 

w =.Sand a look-ahead of 3 is as effective as f 2 with w ·= 1.5 and zero 

look-ahead. It is of course considerably more time consuming and this 

is why we can say further that f 2 is more informed than f 1 • That is, it 

contains information that f 1 will have to expend more computation effort 

to acquire. 
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Problem 1 Problem 2 Problem 3 

LK w w w 

.5 1.5 .5 l.5 .5 1.5 

D L D L D L D L D L D 

0 39 18 33 18 200 - 172 20 200 - 142 

1 27 18 189 20 200 -
2 22 18 153 20 200 22 

3 18 18 138 20 184 22 

TABLE V Some results obtained from problems l, 2, and 3 

D - number of nodes developed 

L - path length 

LK - look ahead depth 

w - parameter in the heuristic function 

PI~OBLEMS 1, 2, 3 - see TABLE I 

L 

22 
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4.2. Further Discussion 

We have reported a number of experiments based on the 8-puzzle which 

begin to indicate the usefulness of look-ahead. These experiments will be 

extended to the fifteen-puzzle where solution paths are much larger. Under 

these circumstances we can expect look-ahead to result in significant savings 

in computation time. 

As a first step in exploring the usefulness of look-ahead, we have kept 

the look-ahead depth a constant for the entire run. It may be the case that 

the depth of look-ahead should vary depending on the expected length of the 

remainder of the solution path. That is, initially we may be willing to 

invest more effort into look-ahead but as we approach the goal a much smaller 

look-ahead depth may be sufficient. This suggests the possibility of a 

variable depth correlated somehow with the heuristic function's estimate. 

Another avenue for investigation is the possibility of saving the 

look-ahead tree for some of the more promising nodes. This will result in 

the saving of computation required for re-growing some of these trees. There 

will be extra bookkeeping involved in order to erase subtrees no longer 

thought to be useful and to keep track of those still in existence. 

4.3 Final Remarks 

We wish to mention the work in look-ahead done in a more restricted 

context by David S. Johnson (1968) in his M.S. thesis. His work was carried 

out for a very special class of games called "Tree Solitaire" and various 

look-ahead strategies were explored. A more practical application of look-ahead 

is described by A.L. Cherniavsky (1972). He uses a look-ahead method to 

resolve conflicts in a timetable compilation problem for a single-track railway. 

A discussion of the most recent work on the Graph Traverser and its 

relation to the problem of the formation of plans is given by Michie (1971). 



37. 

Acknowledgements 

The financial support of the National Research Council of Canada through 

their grant 67-5552 is gratefully acknowledged. I would especially like to 

recognize the important contribution of James Kestner. He origin~lly proved 

Theorems 2.2.1 and~ in a .graduate course I conducted in Artifici~l 

Intelligence. 



38. 

Bibliography 

Cherniavsky, A.L., (1972), "A Program for Timetable Compilation by a 
Look-Ahead Method, ·"Artificial Intelligence 3,1 pp. 61-76. 

Doran, J.E. (1967), "An Approach to Automatic Problem Solving," in 
N.L. Collins, and D. Michie (eds.), Machine Intelligence 1, 
American Elsevier Publishing Company, Inc. pp. 105-123. 

---(1968), "New Developments of the Graph Traverser", in E. Dale, 
and D. Michie (eds.), Machine Intelligence 2, American 
Elsevier Publishing Company, Inc. pp 119-135. 

and D. Michie (1966), "Experiments with the Graph Traverser 
Program," Proc. R. Soc. A1 294pp 235-59. 

Ernst, G.W. and A. Newell (1969), GPS: A Case Study in Generality 
and Problem Solving, ACM Monograph, Academic Press, Inc. 

Greenblatt, R. et al (1967), "The Greenblatt Chess Program," Proc. 
AFIPS Fall Joint Computer Conference pp 801-810 --

Hart, P.E., N.J. Nilsson, and B. Raphael (1968), "A Formal Basis 
for the Heuristic Determination of Minimum Cost Paths," 
IEEE Trans. of Syst. Sci and Cyb. 4,2 pp 100-107. 

Johnson, D.S. (1968), "Look-Ahead Strategies in One Person Games with 
Randomly Generated Game Trees," M.S. thesis, M.I.T. and 
Artificial Intelligence Memo No. 205, Massachusetts Institute 
of Technology Project MAC, July 1970. 

Marsh, D. (1970), "Memo Functions, the Graph Traverser, and a Simple 
Control Situation:in B. Meltzer, and D. Michie (eds.), Machine 
Intelligence 5, American Elsevier Publishing Company, Inc. 
pp 281-300. 

Michie, D. (1967), "Strategy-Building with the Graph Traverser~in N.L. 
Collins, and D. Michie (eds.):; ·Machine Intelligence 1, American 
Elsevier Publishing Company, Inc., pp 135-152. 

(1971), "Formation and Execution of Plans by Machine," in 
N.V. Findler and Bernard Meltzer (eds.); Artificial Intelligence 
and Heuristic Prograriliiling, American Elsevier Publishing Co., N.Y. 

and R. Ross (1970), "Experiments with the Adaptive Graph Traverser", 
in B. Meltzer, and D. Michie (eds.), Machine Intelligence 5, 
American Elsevier Publishing Company, Inc., pp 301-318. 



39. 

Newell, A., J.C. Shaw, H. Simon (1958),"Chess Playing Programs and the 
Problems of Complexity," IBM J, Res, Develop, 2 pp 320-335. 
Reprinted in E. Feigenbaum and J. Feldman (eds.), Computers 
and Thought, McGraw-Hill Book Co., 1963. 

Newell, A., and H. Simon (1961), "GPS, A Program that Simulates Human 
Thought," in Lernende Automaten, Munich: R. Oldenbourg K.G. 
Reprinted in E. Feigenbaum and J. Feldman (eds.), Computers 
and Thought, McGraw-Hill Book Co., 1963. 

Nilsson, N.J. (1971), Problem-Solving Methods in Artificial Intelligence, 
McGraw-Hill Co. 

Pohl, r. (1969) "Bi-Directional and Heuristic Search in Path Problems", 
Ph.D. Thesis, Stanford University and Report 104, Stanford 
Linear Accelerator. Stanford University, Stanford, California. 

-----(1970a) "First Results on the Effect of Error in Heuri$tic 
Search," in B. Meltzer, and D. Michie (eds.), Machine Intelligence 
-2_, American Elsevier Publishing Company, Inc. pp219-236. 

(1970b) "Heuristic Search Viewed as Path Finding in a Graph" 
Artificial Intelligence 1,3 pp 193-204. 

Samuel, A. (1959), "Some Studies in Machine Learning Using the Game of 
Checkers", IBM J. Res. Develop 3,3 pp 210-229, Reprinted in 
E. Feigenbaum, and J. Feldman (eds.), Computers and Thought, 
McGraw-Hill Book Co., 1963. 

(1967), "Some Studies in Machine Learning Using the Game of 
Checkers, II, Recent Progress," IBM J. Res. Develop. 11,6 

Schofield, P.D.A. (1967) "Complete Solution of the 'Eight-Puzzle'," 
in N.L. Collins, and D. Michie (eds.), Machine Intelligence 1, 
American Elsevier Publishing Company, Inc. pp 125-133. 

Slagle, J., and J. Dixon (1969) "Experiments with Some Programs That 
Search Game Trees", J.ACM 16,2 pp 189-207. 

, ----- (1970), Experiments with the M & N Tree Searching 
Program," Comm. ACM 13,3 pp. 147-154. 




