
ON SELF-MODIFYING PROGRAMS

by

Raymond Reiter

Department of Computer Science
University of British Columbia
Vancouver 8, British Columbia

Canada

May, 1972

f

ABSTRACT

A model for self-modifying program schemata is presented. Eosentially

this augments Ianov program schemata with certain self-modifying primitives.

An appropriate algorithm for the decomposition of a directed graph is

developed and applied to yield a Ianov schema equivalent to a given self­

modifying schema. Generalizations of the model are considered. In

particular, certain growing programs are seen to lie outside the class

of Ianov schemata.

, . .

1.

On Self-Modifying Programs

·,O. Introduction

The usual models of algorithmic processes in the theory of computation

(e.g. Turing Machines, partial recursive functions, etc.) deal with fixed

structures by means of which a computation is effected. Similarly, more

realistic models of programs (e.g. program schemata tJ,5,7]) deal with

fixed structure flowcharts which characterize the flow of control in the

execution of an algorithm. However, all assem~ly languages, as well as

certain high level languages in interpretive mode (e.g. LISP) admit

programs which dynamically modify themselves. Curiously enough there has

been very little research reported on a theory of self-modifying programs.

A very early reference to the problem may be found in [2] where, in their

description of a flowcharting language, Goldstine and Von Neumann introduce

a flowchart primitive, called a variable remote connection, which functions

like the label variable of PL/1. In artificial intelligence circles there

has been continual speculation over the role of program self-modification

in learning, and in the attendant restructuring of intelligent systems.

In [10] Winograd describes a system for understanding natural language

which dynamically generates programs (in MICROPLANNER) for subsequent

execution. The work on automatic program writing by Waldinger and Lee [9]

and more re€ently, Manna and Waldinger [6], can also be viewed in this

light.

Of course no form of self-modification can enlarge the class of

computable functions. What does appear to be affected, in a fundamental

way, is the nature of the control of a computation. Intuitively one feels

that suitable self-modification primitives introduce control structures

very different from the usual program loops, branches, and recursion.

2.

Conceivably this additional descriptive power can lead to languages more

suitable for describing large scale intelligent systems.

One approach to the study of control structures in programming

languages is through the introduction of appropriate program schemata. In

a schema, the control is formalised while the primitive computations and

tests are left uninterpreted. Examples of this approach are: [4] for

parallel control, [8) for recursive control and [3,5) for iterative control.

Given such models, one can then investigate the relative "powers" of

different control mechanisms. For example, it is known [8] that recursion

is strictly more powerful than iteration.

This paper presents a simple model of program self-modification,

embedded in the language of Ianov program schemata [3,7). We ask whether

this additional control structure yields a more powerful class of

schemata than those of Ianov. Because our model is essentially finite

state, the answer turns out to be no. However, by slightly generalizing

the self-modification primitives so as to permit programs to grow, we

can easily obtain programs lying outside the class of Ianov schemata.

Section 1 presents an algorithm which, under appropriate conditions,

decomposes a node labelled directed graph in such a way that we can

associate a unique state with each node of the resulting graph. This

procedure is applied to the model for self-modifying schemata of Section 2

to prove Ianov closure. _ Section 3 briefly discusses generalizations

of the model.

The reader is assumed to be familiar with the basic notions of

Ianov schemata as described in, say [7].

3.

1. Finite State Decomposition of Graphs

We consider finite directed graphs G such that

1. G has a distinguished initial node n
0

.

2. Every node of G is accessible from n
0

,

3. Each node of G is labelled. We denote the labelling of node ni by Ai,

A walk is a sequence of node labellings W = Ai , A. , ... , A. such that,
1 1 2 1 r

for 1 __5 j < r, . n is an immediate successor of n ..
ij+l 1j

n. is the initial
11

node of W, and ni
r

its terminal node. Wis a walk to ni if n. = n
0

•
r 1 1

W will sometimes be called a walk from ni
1

irrelevant to the discussion.

when its terminal node is

We assume that associated with G is a function a which maps the set

of all walks from n
0

into a finite set of states. a must have the

property

n: If w
1

and w
2

are walks to the same node m, if (m,n) is an edge of G,

and if Wis an arbitrary walk from n, then a(W
1

) = a(w2)=> a(W1W) = a(W
2
W).

Let G and G' be node labelled directed graphs, with distinguished

nodes n
0

and n0 respectively. G is a homomorphic image of G' if there

exists a function

h: Node set of G' ~ Node set of G

such that

1.

2.

3.

h(n')=n 0 0

(ni,nj) is an e~ge of G' iff (h(ni), h(nj)) is an edge of G.

n' and h(n') have the same label.

The function his a homomorphism.

It is clear that for every walk W from n0 in G there is an equal

walk from n0 in G' and conversely. This remark is the basis for our

applications of the algorithm of this section to flowcharts as in Section 2.

In this section we show how to construct, given G and a function a

4.

satisfying property 1T, a finite node labelled directed graph G' such

that

1. G is a homomorphic image of G'.

2. For any pair of walks w1 and w2 to the same node n' of G', cr(W1)=cr(W2)

The Algorithm

Essentially, the algorithm does "node splitting" on G. A node is

split whenever two walks to it define different states. Property 1T

together with the existence of finitely many states guarantees termination.

We construct a sequence G ,G ... ,G , •.. , of directed graphs, each
0 l' r

of which contains copies of nodes of G. A copy in G of the node n of G
r

will be denoted by n'. There may be several copies of the same node n

of G, in which case they will all be ambiguously denoted by n'.

1. Let G0 be the edge-free graph with single node n0 labelled AO. This

node is the distinguished initial node of G, for each r. Let r=O.
r

2. Suppose, for all nodes m' of G', that m' has as immediate successor

a copy n' of a node n of Giff (m,n) is an edge of G. Then exit with

G'=G .
r

3. If, in Gr' a node m' has no immediate successor n', while in Gm

has an immediate successor n, then:

(a) Suppose G has one or more, say k, occurrences of a node n' such that,
r

in G, n is an immediate successor of m. Let n,n
1

, ... ,nk be arbitrary

walks, in G, to the node m' and the k nodes n' respectively. (Figure l(a).)
r

If there exists j such thatcr(nAn)=cr(nj), then Gr+l is obtained by adding

the edge (m' ,n') shown dotted in Figure l(a).

(b) Otherwise, Gr+l is obtained from Gr by adding a new node n' labelled

A , together with an edge from m' to this new copy of n.
n

5.

4. Set r + r+-1 and go to 2.

Lemma 1

Let p' be a given copy, in Gr' of a node p of G, and suppose w1 and w2

are walks top'. Then o(Wy=o(W2).

Proof:

Induction on r. For r=O the result is immediate.

for all nodes of Gr, and consider Gr+-1 •

Assume the result

Case (a) Gr+-l is obtained from Gr by 3(a). If all walks in Gr+l top'

exist also in G, the result follows by induction hypothesis. Otherwise,
r

any walk W top' in Gr+-l which does not exist in Gr must "traverse" the

new edge (m' ,n'), in which case there must be a walk v
1

from n' top'

which exists in both Gr and Gr+-1 • If V1= A , A , •.• , A let V= A , •.. , A . n q P q p

Now, by construction, there also exists a walk nj ton' which exists

in both Gr and Gr+-l' Hence njv is a walk top' in both Gr and Gr+-1•

Then we can write

W=UA W1 A W2A .• ,WiA V
n n n n

W are (not necessarily distinct) walks in both
i

Gr and Gr+-1 • (See Figure l(b). Each walk Wk has as initial node an

immediate successor of n' .) Now by the induction hypothesis,

0 (U)=o(n) (See Figure l(a)). Hence, by property w, o(W) = o(n>. w1 >. •••
n n

By construction, o(n>.)=o(n.) so by property P, o(W)=a(QW1>. •••
n J J n

Butnjwl is a walk in Gr, so by the induction hypothesis,

6,

o(njw1)=o(n) whence, by property71', o(W)=o(S1). W2). •.. W.). V), etc.
n n 1 n

Finally, we obtain o(W)=o(S1). V)=o(n.V). But W was an arbitrary walk top'
n J

in Gr+l which does not occur in Gr' so by the induction hypothesis, all

walks top' define the same state,

Case (b) Gr+l is obtained from Gr by 3(b). Then if p' is other than the

node n' added to obtain Gr+l' the lemma holds by induction hypothesis,

since no new walks top' have been created. Otherwise, p 1 is n'. But

then any two walks w1 and w2 top' are of the form w
1

=u
1

An and w2=U2An

where u1 and u2 are walks in Gr tom', so that o(U1)=cr(U
2

) by the induction

hypothesis, By property 71', o(W
1

)=o(W
2
).

Lemma 2 (Termination)

Suppose, in G, there exist two distinct copies p' of a node p of G.
r

If w
1

is a walk to the first copy and w
2

a walk to the second, then

Proof:

Obvious. By Lemma 1, all walks to a given node p 1 of Gr+l define the

same state. By construction, if Gr+l is obtained from Gr by adding a new

copy p', then at least one walk to this new copy in Gr+l must define a

different state than that associated with any other copy p'.

Since there ate only finitely many states possible, Lemma 2 guarantees

termination of the algorithm. Since, in G, all nodes are accessible from

n
O

, the exit condition 2, of the algorithm assures us that the function

h, defined by h(n')=n for all nodes n of G, is a homomorphism.

Theorem

The algorithm terminates with a graph G' such that G is a homomorphic

image of G'. For any pair of walks w
1

, w2 to the same node n' of G', we

have cr(W
1

)=o(W
2
). In G', the number of copies n' of a node n of G is at

most !Range (cr)I.

7.

2. Self-Modi f yi ng Schemata

In this section, we present a simple model of program self-modification.

Essentially, the model augments Ianov program schemata [3,7) with operators

which, upon execution, alter designated instructions of the schema. In

addition, we provide for label variables which permit dynamically changing

GOTO's.

Using the results of the previous seccion, we prove that any such

self-modifying Ianov schema is equivalent to an ordinary schema.

Syntax

Our model of a self-modifying programming language has the following

syntax:

<test variable> ::=plqlr ••.

<operator>: :=Al BI C ••.

<fixed label>: : =LO I 11 I 12 ..•

<.variable label>::=LVOjLVljLV2 ••.

<label>::= <fixed label> I <.variable label>

<Operation>::== <fixed label>do <operator>, goto <label>

~est>::== <fixed label>if <test variable> goto <label> else goto <label>

<label modifier>::== <variable label>+<:-ixed label>

<operator modifier>::== <fixed label>+. <operator> I <fixed label>+ <label modifier> I

<fixed label>+- <operator modifier>

<instruction modifier>::=<fixed label>do<label modifier>, goto<label>I <fixed

label>do <operator modifier>, goto <label>

<instruction>::= <t>peration> I ~est> I <instruction modifier>

A self-modi fying program s chema is any finite sequence of instructions, each

instruction of which is labelled by a unique fixed label.

8.

If an <instructiqn> is an <operatio~> or <instruction modifier> we shall

call it a DO instruction. a. is called the scope of the DO instruction

<fixed label> doa., goto <label>. p is. also called the scope of the test

instruction <fixed label>. if p goto <label> else goto <label>. We shall

often refer to an instruction with, say, <fixed label> =L, as instruction L.

' Interpretation

As usual, the operators are uninterpreted. The test variables are

uninterpreted Boolean variables. The role of fixed labels is clear.

Variable labels are meant to bind fixed variables, and are initially

unbound. An attempt to execute goto <label> is undefined if label is an

unbound variable label, or is bound to a fixed label with no associated

instruction, or if it is a fixed label with no associated instruction.

Otherwise, control is transferred to that instruction specified by <label>

if <label> is fixed, or by its current binding if <label> is variable.

With this condition in mind, if an instruction is an operation or a test

it is interpreted as for Ianov schemata. If an instruction I is an instruction

modifier there are two possibilities:

A. I is of the form

<fixed label> do <label modifier>, goto <label>

Suppose <label modifier> is LV+-L. Then upon e.xecution of I, LV is bound

to L. In addition, if <label> is LV, then the next instruction to be

executed is L.

B. I is of the form

<fixed label> do <operator modifier>, goto <label>

Then <operator modifier> is L+-a. where Lis a fixed label and a. is an

operator, label modifier, or operator modifier. If L has no associated

instruction in the program, or if L labels a test instruction, the result

9.

of executing I is undefined. Otherwise, L labels an instruction of the

form

L do S, goto <label>

where e is an operator, label modifier, or operator modifier.

After execution of I, this instruction is replaced, in the program, by

L do a, goto <label>

and control is transferred to <label> of instruction I.

These informal remarks are now made precise.

We formally specify what it means to execute a self-modifying program

P by defining three sequences:

(a) an admissible label sequence L1 , Li , .•• , Li of fixed labels of P
~ ~ 1 2~ r

(b) an execution sequence L. , L. , ••• , Li
1 1 1 2 r-1

(c) a state sequence s0 , s1 , ••• , Sr··l • If P has m variable labels LVl,

LV2, ••• ,LVm, and n DO instructions labelled Ll,L2, .•• ,Ln then each Si is an

m+n component state (B
1

,B2 , ••• ,Bm,c1 ,c2 , •.• ,Cn).

These sequences must satisfy the following conditions:

1. Li labels the first instruction of P. s0 = (0, ..• ,0,a1 , •.. ,an)
1

where, for l__si._<r, ai is · the scope of the DO instruction Li.

2. Suppose, for l_2j__::r-l, that instruction Li. is
J

L.
1j

and

do a, goto <label>

S
= (B

1
, ••• ,B ,c

1
, ••• ,c).

j-l m n

Case (i) C. is an operator, say C. =A.
1j 1j

<label> :i,s fixed, then L
1

=<label>. If
j+l

LVp, then B +0, and Li =B •
p j+l p

~

Then Sj=Sj-l and Li =A.
j

<label> is variable, say

If

<label> =

Case (ii) Ci is an instruction modifier, say C. =Lk+S. Then Lk is a DO
j 1j

instruction, Sj=(B1 , ••• ,Bm,Cl, .•• ,Ck-l'S,Ck+l'' .• ,Cn), and

L is determined as in Case (i).
ij+l

10.

Li = <label>.
j+l

If <label> is variable, say <label>=LVp, then if p~k,

Li mL, while if p;k, then
j+l

B ~¢ and L =B .
P ij+l P

3. Suppose, for l ~j <r-1, that instruction L. is
l. •

J
Li if p goto <labeb1 else goto <labeb 2

j

and Sj_1=(B1 , •.• ,Bm,Cl'''' ,en). Then Sj=Sj-l and one of the following two

conditions holds.

(i) Li
j+l

is determined from <label>
1

as in 2.
'\.,

Case (i),and Li =p.
j

(ii)
'\., -

L is determined from <label>
2

asin 2,Case (i), and L. =p.
ij+l ij

An admissible label sequence specifies those instructions encountered

in a legitimate execution of the program, where by "legitimate" we mean

that branches on variable labels are taken according to their current

bindings. A state indicates these current bindings (as B1 , ... ,Bm) together

with the current scopes of the DO instructions (as c
1

, ... ,en). B.=0
l.

indicates that LVi is currently unbound. An execution sequence is simply

a history of the operators, test exits, and modifiers encountered in an

execution of the program.

Given an execution sequence ~i , ..•• ~i , an operator•test sequence
1 r-1

'\.,

is obtained by deleting any term L which is an operator modifier or label
ij

modifier, This sequence yields a history of the "real computation", namely

those operators and test exits, in the order in which they are effected,

during an execution of the program.

Two self-modifying programs are strongly equivalent if they have the

same operator-test sequences. Notice that if two Ianov schemata are

equivalent ([7]) they need not be strongly equivalent. However, strong

11.

equivalence implies equivalence, which is sufficient for our purposes.

Example 1

LO do LV+-11, goto 13

13 do A, goto 14

14 .!i p goto 12 else goto LV

12 do 11+-C, goto 15

11 do 13+-LV+-12, goto 15

15 do B, goto 16

16 if q goto 13 else goto 17

17 do H, goto 17

Two admissible label sequences are:

LO, 13, 14, 11, 15, 16, 13, 14, 12, 15, 16 and

LO, 13, 14, 12, 15, 16, 13, 14, 11, 15, 16 with corresponding operator­

test sequences A, p, B, q, p, B nnd

A, p, B, q, A, p, C

Representation as a Directed Graph

In order to utilize the results of Section 1, we represent a self­

modifying program as a directed graph, and then define an appropriate

notion of state on this graph. We then decompose this graph according

to the algorithm of Section 1. Finally, the resulting graph is altered in

a natural way to yield the flowchart of a Ianov schema strongly equivalent

to the original program.

First, represent a program P by a directed graph G. G has a node,

labelled Li, for each instruction Li of P. For each occurrence of

goto Lj in P, say within instruction Li:, G has an edge from Li to Lj.

For each occurrence of a variable label LV in P, determine all of the

possible bindings of LV. There can be only finitely many such bindings,

say 11 , ••• ,Lk. For each occurrence of goto LV in P, say within an

12.

instruction Li, G has edges from Li to each of Ll, ••• ,Lk. (An attempt

to execute goto LV wiH be undefined if LV is currently unbound, or if LV

is bound to a fixed label with no associated instruction. We could

accommodate this possibility by introducing an "undefined11 node, joining

to it the node Li. This approach introduces an inessential complexity to

the analysis, which we choose to avoid by considering only well-formed

programs for which LV is properly bound whenever goto LV is to be executed.

Clearly, there is a procedure for testing a given program for well~

formedness.) Finally, G has as distinguished initial node that node LO

which labels the first instruction of P. With no loss in generality,

assume that all nodes of Gare accessible from LO. Figure 2(a) is the

graph G for the program of Example 1.

For each walk w=Li , ••. ,Li from LO in G, define a state cr(W) as follows:
1 r

1. If Wis an admissible label sequence, then it has associated with it

a state sequence S ,s
1

, ••• ,s 1 . Define cr(W)=S
1

• o r- r-

2. If Wis inadmissible, define cr(W)=n.

It follows that there are only finitely many states, and cr satisfies

property n of Section 1.

Now apply to G the algorithm of Section 1 to obtain a graph G' such

that G is a homomorphic image of G'. In G', all walks to a given node

define the same state so that we can associate a state with each node.

Figure 2(b) is the graph G' for the program of Example 1. The dotted box

n denotes a subgraph all of whose nodes have state n. States are indicated

alongside nodes, If no state is indicated beside a node, its state is

assumed to be that of its predecessor. For clarity; we have used an

"abbreviated" state vector (B
1

,c
1

,c
2

) where B1 denotes the binding of LV,

and c
1

,c
2

denote the scopes of Ll,L3 respectively.

t,

13.

Now, remove all nodes of G' whose associated state is n, together with those

edges directed to them yielding a graph G". By the construction of G, and

the fact that G is a homomorphic image of G', every walk in G" from its start

node is an admissible label sequence of P, and conversely, every admissible

label sequence is such a walk in G". Now, replace each node label Li of G"

by the component Ci of its state, if Li is a DO instruction, or by the

scope of instruction Li if Li is a test instruction. Furthermore, since in

G" all walks to a given node define the same state, we can safely delete

all nodes labelled by an instruction or label modifier. The resulting

graph (after appropriately adding Tor F to the branches of a test) is the

flowchart of a Ianov schema. This schema is strongly equivalent to the

self-modifying program P. Figure 2(c) is the Ianov flowchart for the

program of Example 1.

It follows that all of the problems (e.g. the halting, divergence and

equivalence problems) which are decidable for Ianov schemata remain

decidable for self-modifying schemata.

14.

3, Remarks

Our model of self-modification does not permit test instructions to

be modified, so that program flow of control is alterable only through label

modification. Also, in our model, the size of "core storage" remains

f _ixed - no instruction "locations" are created or destroyed. There are a

number of ways in which the model could be generalized, without altering the

basic result of the previous section. For example, it is not difficult to

see that if we allow any, or all, of the following types of self-modification,

we do not transcend the class of Ianov schemata.

1. Replace any instruction (test, operation, or modifier) by any given

instruction.

2. Replace the instruction Li by the instruction Lj,

3. Create new instructions where these are specified in the program,

e, g. create "13 do A, goto LV2".

4. Erase instructions.

5. Allow fixed labels to be replaced by other fixed labels, or by variable

labels.

or any of a number of different variations on this theme. Essentially, our

model and any generalization of it as above, models self-modifying programs

whose behaviour can be simulated by setting and testing finite switches.

For example, the program of Example 1 can be simulated by the flowchart of

Figure 2(d) which represents a lanov schema augmented by suitable facilities

for setting and testing switches. Using techniques very like those of

Section 2, one can prove that any such augmented Ianov schema is equivalent

to an ordinary schema, which is the basis for our claim that generalizations

like 1-5 above do not change the basic result of Section 2.

15.

On the other hand, if we permit a program to grow in an unbounded

fashion, we can easily exceed the limits of Ianov schemata. For example,

suppose we introduce three new instruction modifications.

1. ~ L to LV. If LV is currently bound to Li, then upon execution,

the body of the instruction labelled L replaces that labelled Li.

2. point L to LV. If LV is cur.rently bound to Li, and if L labels do a,

goto 4abel>, then after execution, L labels do a, goto Li.

3. LV + gen. Upon execution, LV is bound to a new fixed label, distinct

from any which has thus far occurred.

Notice that 1. and 2. together with our language of Section 2 will

yield equivalent Ianov schemata. However, 3. permits dynamic core

allocation for program space, and as the following example shows, takes

us outside the class of Ianov schemata.

LO .!i_ q goto 13 else goto Ll

Ll do A, goto 12

12 do H, goto 12

13 do LV + gen, goto 14

14 ~ Ll- !E_ LV, goto 15

15 point 11 to LV, goto LO

If we interpret Has the halt operator, and define the trace of a

program to be the set of operator-test sequences terminating with H, then

n-1 - n I the trace of this program is {q q AH n>l} which is not regular, and

hence cannot be the trace of any Ianov schema.

The consideration of such growing programs leads to strong analogies

with theories of growing automata [1]. Questions involving minimal complete

sets of self-modification primitives, conditions for self reproduction, and

the synthesis of self-modifying programs seem to us worthy of future

investigation.

16.

Acknowledgement

This work was done under National Research Council of Canada grant

A7642. The author wishes to thank Richard S. Bird for a number of

revealing conversations.

17.

n'
\

-,.

m' -- - - i
-7 ' - n

n'

Figure l(a)

Figure l(b)

18.

LO

~

" /

13

'11

I 14

!

--" ll ,11

Ll 12

V

V
LS I'

\I

I 16

L7

Figure 2(a)

(4>,A,LJ+LV+L2) LO 19.

(Ll,A,L3+LV+L2)

L2

(Ll,A,C)

(Ll,LV+L2,L3+LV+L2)

L7

i 14
I ---, Ll

I

__ t --
, I

: n

[LS I (L2 ,LV+L2 ,C)

I L; I {~~,---=1

~
J

I 14 ~ 12
I

I
- - jil_ - ,

: n ;
·----·-

Figure 2(b)

20 -.

A

T

B

B

H

(---=-T _ __J

B I
\F

Figure 2(c)

21.

sw2-o

SW3•0

SW2=-l

SWl=l

SW3=1

C

H

Figure 2(d)

22.

References

1. E.F. Codd, "Cellular Automata", Academic Press, New York, N,Y, 1968.

2. H,H, Goldstine and J. von Neumann, Planning and coding problems for

an electronic computing instrument, Part II, Vol.1, in "John von

Neumann Collected Works", Vol.V, Pergamon Press, New York, N.Y., 1963.

3. I.I. Ianov, The logical schemes of algorithms, Problems of Cybernetics

(1958), 75-125.

4. R.M. Karp and R.E. Miller,

System Sci, (1969), 147-195.

Parallel program schemata, J. Comput.

5. D.C. Luckham, D.M.R. Park, and M.S, Paterson, On formalised computer

programs, J. Comput. System Sci. (1970), 220-249.

6. Z. Manna, and R.J. Waldinger, Toward automatic program synthesis,

C. ACM (1971), 151-165.

7. J.D. Rutledge, On Ianov's prggram schemata, J.ACM (1964), 1-9.

8. H .• R. Strong, Jr,, Translating recursion equations into flow charts,

J. Comput. System Sci. (1971), 254-285.

9. R.J. Waldinger, and R,C.T. Lee, PROW: A step toward automatic program

writing, Proc. International Joint Conf. on Artificial Intelligence,

Washington, D.C., 1969.

10, T. Winograd, Procedures as a Representation for Data in a Computer

Program for Understanding Natural Language, M.I.T. Project MAC TR-84,

February, 1971.

I
[.

