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Abstract 

The completeness, for consequence-finding, of varioua linear 

resolution strategies is studied. Linear resolution witb merging and 

subsumption is complete. A-ordered, linear resolution with merging is, 

in a certain sense, complete. Linear resolution with merging and C-ordering 

is incomplete. It is argued that the incompleteness of this latter 

strategy for consequence-finding recommends it above the other two as 

a complete strategy for theorem-proving. 



A NOTE ON LINEAR RESOLUTION STRATEGIES IN CONSEQUENCE-FINDING 

1. Introduction 

As initially conceived and applied, the resolution principle of 

Robinson [1] was a proof-finding procedure, i.e. given a set S of clauses, 

prove that Sis unsatisfiable, when it is. Robinson's method is to generate, 

from S, a sequence of clauses by resolution. Sis unsatisfiable iff the 

empty clause is so generated. In [2], Lee addresses himself to the problem of 

characterizing those clauses generated from S when Smay be satisfiable. 

Clearly, any such clause is logically implied by S. Is every clause T, 

implied by S, so generated? Lee proves a completeness theorem to the effect 

that some clause T' which subsumes Twill be generated from S. Lee calls this 

generation procedure consequence-finding. If Sis viewed as a set of axioms, 

then consequence-finding is a complete (in Lee's sense) procedure for 

generating all those theorems whose matrix is a disjunction of literals. As 

such, it is of some interest to the intellectually difficult problem of 

discovering new theorems in axiomatic theories. As we shall see later, the 

theory of consequence-finding may also be of use as a rough comparison of the 

relative efficiencies of various resolution strategies for proof-finding. 

In [3], Lee's completeness results are extended to resolution under 

various restrictive strategies (I-semantic resolution, positive and negative 

hyper-resolution, PI-resolution [4]). The present paper considers the effects 

on completeness of various linear resolution strategies. The basic results are: 

1. Linear resolution with the merging, subsumption and tautology conditions of 

[5] and [6] is complete. 
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2. Linear resolution with the merging, A-ordering, and tautology conditions 

of [7] is, in some sense, complete, while that with the C-ordering condition 

of [7, 8, 9] is incomplete. 

We assume the reader to be familiar with the usual terminology and 

definitions in [1, 4, 5]. 

2. Results 

If Sis a set of ground clauses, and Ta set of ground literals, 

write ST= {C jc• ES and C = C' - T}. If Tis the ground clause 

{T1 , T2 , ••• ,Tn}, write T = {{T1}, {T2}, ••• , {Tn}}. If Sis a set of clauses 

(ground or general), an m.s.1. (merge, subsumption, linear) deduction of R 

from Sis a deduction like that of Figure 1, where 

1. 

2. 

3. 

(i) 

(ii) 

C E S 

No clause in the deduction is a tautology 

For each j, Cj ES or Cj = Ri for some i < j, in which case 

R1 is a merge resolvent. 

The literal of Cj resolved upon is a merge literal of Ri. 

(iii) Rj+l subsumes Rj. 

Figure 1. 
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We omit the proof of the following simple result. 

Lemma 1 

If Lis an unsatisfiable set of ground clauses, and Ta set of ground literals, 

then LT is unsatisfiable. 

Theorem 1 

Suppose that Sis a set of ground clauses, and Tis a ground clause such that 

SUT is unsatisfiable. Then there is an m.s.1. deduction from Sofa clause 

T'c T. 

Proof: 

By applying Lemma 1 to the unsatisfiable set SUT, we deduce that STUT is 

unsatisfiable. But no literal of the clauses of Thas a complement in the 

clauses of ST. Hence ST is unsatisfiable. Let ST be a minimally unsatisfiable 

subset of ST, so that no clause of ST contains tlecomplement of a literal of T. 

By Theorem 5 of [5] there is an m.s.1. deduction D, say Figure 1, of Rn =P 

from ST. In D, replace eachoccurrenceof a clause CitST by the clause c1 of S 

from which it was derived, and let Ri+l' obtained from Ri+l in the obvious way, 

replace Ri+l" Let T' be the set of literals of T which have beed added to D 

to yield this deduction. Then the result is a linear deduction D' of T' cT. 

Since ST contains no clause containing the complement of a literal of T, no 

clause in D' is a tautology. The merge conditions 3(i) and 3(ii) hold in D' 

since they hold in D. To see that the subsumption condition 3(iii) is valid 

in D', notice that if C~ is a merge resolvent, say C' = R' for some i < j, 
J j i 

then Rj contains all those literals of T which R1 contains. Since, in D, 

Rj+l:S Rj, then, in D', Rj+l S Rj. 

Theorem 1 establishes the ground completeness, in Lee's sense [2], 

of m.s.l. deduction for consequence-finding. For SUT is unsatisfiable iff S 

logically implies T. 
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We remark here that the ground results in [3] follow easily, using 

the same method as in the proof of Theorem 1, from the corresponding results 

in [4]. For example, we sketch an elementary proof of Theorem 4 of [3] which 

states: 

Let T be a ground clause which is false in a ground interpretation of SU{T}, and 

let A be an ordering of the atoms of SU{T} such that the atoms of T occur first 

in A. Then there exists a ground maximal AI-deduction from Sofa clause 

T' .S T. 

Proof: 

Let ST be as in the proof of Theorem 1. By Theorem 7 of [4], there exists a 

ground maximal AI-deduction D of O from ST. In D, replace each occurJ?.etra.e 

of a clause CE ST by the clause C' ES from which it was derived, and carry 

out the obvious modifications to the resolvents of D. The resulting deduction 

is a deduction D' of a clause T's T. Clearly, by our assumptions about the 

A-ordering and the fact that Tis false in the ground interpretation, D' is 

a maximal AI-deduction of T'. 

We now lift the results of Theorem 1 to the general level. 

Theorem 2 

Let S be a set of general clauses, and Ta clause such that S logically 

implies T. Then there is an m.s.1. deduction, from S, of a clause E such 

that E subsumes T. 

Proof: 

We use the technique, first used in [3], of introducing new distinct constants 

into the Herbrand Universe. Let x1 , ••• , xn be all of the individual variables 

of T, which we now write T(x1 , ••• , xn). Let b1 , ••• , bn be new distinct 

constants not occurring in Sor T. Since S logically implies T(x1 , • • • ' X ) ' n 

S also logically implies T(b1 , ••• , bn). Let H(b1 , ••• , bn) be the Herbrand 
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Universe of SU{T(b1 , ••• , bn)}. By Theorem 1 of [3], there exists a finite 

set of ground instances S' of S over H(b1 , ••• , bn) such that S' logically 

implies T(h1 , ••• , bn), i.e. such that S'UT (b
1

, ••• , bn) is unsatisfiable. 

By Theorem 1, there exists a ground m.s.l. deduction D1 , from S', of a clause 

E'(b1 , ••• , bn) S T(b1 , ••• , bn). In D', replace each clause C' ES' by that 

clause CE S of which it is a ground instance, and replace each ground 

resolvent of D' by the general resolvent of its two parent clauses. The 

result is a general m.s.l. deduction, from S, of a clause E which has, as an 

instance, E'(b1 , ••• , bn). Since S dqes not contain the symbols b1 , ••• , bn 

there exists a substitution a(b1 , ••• , bn) such that 

Ea(b1 , ~••,bn) ~ E' (b1 , ••• ,bn) S T(b1 , ••• ,bn)' i.e. Ecr(x1 , ••• ,xn) c T(x1 , ••• ,xn) 

so that E subsumes T. 

Using the same method as in the proof of Theorem 1, we can establish 

further results relating known properties of linear resolution strategies in 

theorem-proving to corresponding properties in consequence-finding. We prove 

our results for the ground case. L~fting proceeds essentially as in the proof 

of Theorem 2. Let A be an A-ordering of the atoms of S. _An m.a.l. (merge, 

A-ordered, linear) deduction of R from S ([7]) is a deduction satisfying n 

the definition of p.2 , with (iii) replaced by 

(iii)' The literal resolved upon in producing Ri+l is the maximal literal 

in Ri under A. 

Theorem 3 

Let Sand T be as in the statement of Theorem 1. Let A be an ordering of 

the atoms of SUT such that the atoms of T occur first in A. Then there exists 

an m,a.1. deduction, from s, of a clause T's T. 

Proof: 

Let Si be as in the proof of Theorem 1. By Theorem 1 of [7] there exists an 

m.a.l. deduction from Si, of Rn= □· Proceed in the obvious way, as in the proof 
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of Theorem 1. 

In contrast to this result, one can show that m.c.l. (merge, 

C-ordered, linear) resolution is incomplete for consequence-finding. An m,c.l. 

deduction is like that of p.2, except that the literals of Care initially 

given a fixed ordering, those of C. are ordered arbitrarily during the course 
1 

of the deduction, Ri+l inherits the ordering of Ri and Ci by concatenating 

Ri and Ci with merging to the left, and (iii) is replaced by 

(iii)'' The literal resolved upon in producing Ri+l is the rightmost literal 

of Ri. 

See (7,8,9] for a precise definition. It is easy to see that for S = · {{p,x,y}, 

{q,x,y}, · {q,x,y},· {p,x,y}} there is no m.c.l. deduction o( {p,q} although S 

logically implies {p ,q}. 

An input deduction, from s, of R ([10]) is a linear deduction of 
n 

Rn, as in Figure 1, such that each Ci ES. A unit deduction of R is a 
n 

resolution deduction of R in which each resolvent has at least one parent 
n 

which is a unit clause, In [10], Chang proves that there is an input deduction, 

from S, of D iff there is a unit deduction of O. 

Theorem 4 

Let Sand T be as in the statement of Theorem 1, If there exists a unit 

deduction, from S, of a clause T's T, then there is an input deduction, from 

S, of a clause T'' s T. 

Proof: 

Since the clauses of Tare all units, and since SUT is unsatisfiable, we 

can use these units, together with the unit deduction of T', to obtain a unit 

deduction of D. By Theorem 1 of [10], there exists an input deduction, from 

-SUT, of O. In this deduction, delete every resolution operation with parents 

C and · {Ti} where C E S and Ti E T, and replace the corresponding resolvent by C. 

The resulting deduction is an input deduction, from S, of a clause T'' ST. 

The converse of Theorem 4 is false. 
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3. Remarks 

The completeness of m.s.l. deduction for consequence-finding is 

in some sense a pessimistic result. For this suggests that the m.s.l. 

strategy for theorem-proving is not as restrictive as it might be since no 

essential use is made of the fact that a particular clause, namely O , is 

the one to be generated. On the other hand, deductions involving A-ordering, 

e.g. maximal AI-deduction or m.a.l. deduction, are complete for eonsequence

finding only to the extent that all possible A-orderings must be tried in 

order to generate all possible target theorems, whereas for theorem-proving, 

any fixed A-ordering will do. This suggests that these strategies do make 

use of the fact that, for theorem-proving, the target clause is O . Finally, 

according to this rough measure on the efficiency of strategies for theorem

proving, m.c.l. deduction emerges as the most restrictive of those under 

consideration since it is incomplete for consequence-finding, and hence makes 

essential use of the fact that O is the target theorem. We believe that 

observations of this kind, relating consequence-finding to theorem-proving, 

willlead to more precise techniques for comparing efficiencies of resolution 

strategies. 
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