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Studies of the automorphism group of a graph are principally 

concerned with the following two problems: 1) the existence of a 

graph whose automorphism group is isomorphic to a given group, and 

2) determining the group of a graph. In the case of finite graphs, 

the first problem (posed by Konig [13]) was largely settled by 

Frucht [5] who showed that thete exist infinitely many nonisomorphic 

connected graphs G whose automorphism groups are (abstractly) 

isomorphic with a given finite group A. The same author further 

showed in [7] that the result still holds if the class of connected 

graphs is restricted to those which are regular of degree three. 

This result was sharpened even more by Sabidussi [18] who proved 

that the condition of being regular of degree three can be replaced 

by several other conditions. In the general case of graphs with an 

arbitrary number of vertices, Sabidussi [21] proved that given any 

group A, there exists a graph whose automorphism group is isomorphic 

with A. 

* This research was supported in part by grant NRC A-7328 from the 
National Research Council of Canada. 
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Since the automorphism group of a finite graph can be regarded 

as a permutation group, one can also consider when there exists a 

graph whose automorphism group is permutationally isomorphic with 

a permutation group. This problem is much more difficult than the 

former, and there are correspondingly fewer results on the subject. 

We will discuss the relevant work in connection with the second 

problem mentioned above. 

Computing the automorphism group of a graph is, in general, 

quite difficult. Kagno [12] determined the groups of all graphs 

with up to six vertices; and, more recently, Hemminger [11] sup­

plemented the listing by giving the groups of directed graphs with 

up to six vertices. Moreover, the automorphism group of a tree 

has been determined by Prins [17]. Since direct computation is 

usually not feasible, there is considerable interest in finding 

the group of a composite graph in terms of the respective groups of 

the graphs in the composition. Perhaps the simplest composition 

from this point of view is the repres~ntation of a graph as a sum 

of its connected components. It is well known that the group of 

the sum of non~isomorphic graphs is just the direct sum of the 

groups of the respective graphs in the sum. Moreover, Frucht [5] 

showed that the group of a sum of n graphs which are isomorphic 

with a graph G is the wreath-product of the symmetric group of 

degree n with the group of G. Thus, the automorphism group of a 

graph can be expressed in terms 'of the groups of its connected 
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components, which simplifies matters somewhat. 

Other compositions of graphs which have corresponding group 

compositions are the so-calle~ cartesian product, composition (or 

lexicographic product), and Kronecker product. Harary [8] and 

Sabidussi [19],[20] treated the groups of the cartesian product 

and composition of graphs. Mowshowitz [14] made similar observa­

tions on the Kronecker product. 

Our object here is to exploit the connection between the 

adjacency matrix of a graph and its automorphism group in order to 

determine the latter. It is trivial to verify that a permutation 

o of the nodes of a graph G is an automorphism of G if and only if 

the permutation matrix corresponding to o commutes with the adj a­

cency matrix of G. Using this observation, Chao [2] was able to 

construct graphs whose automorphism groups contain a given transi­

tive group as a subgroup; Mowshowitz [15] proved that if the eigen­

values of the adjacency matrix of a graph are distinct, then every 

non-trivial automorphism has order 2, so that the group is abelian 

which in turn implies (by a result of Chao [l]) that for p > 2 no 

graph with p nodes satisfying this condition has a transitive group. 

Moreover, Chao [3] showed that under the same condition, the auto­

morphism group of a directed graph is abelian. 

In what follows, we will take advantage of the fact that the 

adjacency matrix of a graph is a (0,1)-matrix and thus can be 

regarded as a matrix over GF(2). This point of view has important 
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consequences for the construction of automorphism groups, as we 

propose to demonstrate. 

Since the results in Sections 2 and 3 apply to the most general 

type of graph, we need the notion of a net. A net N = (V,X,f,s) 

consists of a finite set V (containing the nodes of N), a finite 

set X (containing the directed lines of N), and two functions f 

ands both mapping X into V. Two lines x,y EX are said to be 

parallel if their first and second nodes coincide, i~e., if 

fx = fy and sx = sy, respectively; a line xis called a loop if 

fx = sx. A digraph is a net with no loops and no parallel lines, 

i.e., an irreflexive relation; and a graph is a symmetric digraph. 

The adjacency matrix A= A(N) = (a .. ) of a net N with nodes v1 , 
l.J 

... ' v is defined by 
p 

a. . = ] {x E X] f x = 
l.J 

v. and sx = v.} I 
l. J 

The automorphism group r = f(N) of a net N is the set of all one-

one mappings of V onto itself which preserve the adjacency matrix. 

For graph theoretic terms not defined here, see [9],[10]. Through­

out the following, we shall regard the automorphism group of a net, 

and the symmetric group S as groups of permutation matrices. 
p 

2. Nets with non-derogatory adjacency matrix 

Let N be a p-node net with adjacency matrix A= A(N). As we 

observed earlier in wnnection with graphs, an element Pe S is p 



in r(N) if and only if 

PA= AP 
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(1) 

Thus, taking A as a matrix over a field F, r(N) is contained in 

the centralizer of A over F. 

Theorem 1. Let N be a net with adjacency matrix A= A(N). If A 

is non-derogatory (i.e., its minimal and characteristic polynomials 

are identical) over a field F, then r(N) is abelian. 

Proof. Since A is non-derogatory, the centralizer of A is just the 

ring of polynomials in A over F (see, for example, [22]). Thus, 

every PE r(N) is a polynomial in A, from which the result follows. 

Corollary la. (Chao [3]) If the adjacency matrix of a digraph D 

has all distinct eigenvalues, r(D) is abelian. 

Proof. Since A(D) has distinct eigenvalues, it is non-der_ogatory 

over the field of complex numbers. 

Corollary lb. (Mowshowitz [15]) If the adjacency matrix A= A(G) 

of a graph G has all distinct eigenvalues, then r(G) is abelian and 

every non-trivial automorphism has order 2. 

Proof. First, we observe that A is a symmetric matrix, so that all 

of its eigenvalues are real. By hypothesis, A is non-derogatory 

over the reals. Hence, r(G) is abelian. Moreover, since each poly­

nomial in A over the reals is a symmetric matrix, it is clear that 

all non-trivial automorphisms have order 2. 
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3. · Nets with irreducible characteristic polynomial 

An important special case of Theorem 1 arises when the charac­

teristic polynomial is irreducible over the integers. The following 

result is a generalization of some observations of Collatz and 

Sinogowitz [4]. 

Theorem 2. Let N be a net with A= A(N), r = r(N), and the 

characteristic polynomial ~A(x) of degree p. If ~A(x) is irreducible 

over the integers, then r is trivial. 

Proof. Without loss of generality, suppose the rows of A are 

arranged into blocks corresponding to the orbits ~fr. Now, let 

,=[z
1

, ••• ,z
1 

••• zk, ••• ,zk]T be a vector with hi components equal to 

z. where h. is the size of the i-th orbit of r. Consider the result 
l. l. 

of multiplying~ by A. 

k k k k T 
A~ = [ l z . t . . , ••• , l z . t . . , ••• , l z . tk . , ••• , l z . tkJ' ] ( 2 ) 

j=l J J.J j=l J l.J j=l J J j=l J 

where t .. is the number of lines incident from a node in the i-th 
l.J 

orbit to nodes in the j-th orbit of r. (Clearly, the number of 

such lines is the same for all nodes in the same orbit.) 

Now, let T = (tij) for 1 ~ 

consider the equation 

From (2) and (3) we obtain 

(3) 

(4) 
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-Hence, sis an eigenvector of T, and consequently sis an eigenvector 

of A, so that det(T-xI), the characteristic polynomial of T, divides 

~A(x). So, if there exists a PE r with P ~ I, then 1 ~ deg[det(T-xl)] 

< p, from which the result follows. 

Figure 1 exhibits a smallest digraph and graph with irreducible 

characteristic polynomials. 

A 

Figure 1. Digraphs with irreducible polynomial 

The converse of Theorem 2 is not true, as evidenced by the 

fact that the characteristic polynomials of trees with an odd 

number of nodes, and of regular graphs have linear factors. 

4. Construction of the group of a graph with non~derogatory matrix 

According to Corollary lb, every non-trivial automorphism of 

a graph with non-derogatory adjacency matrix (with respect to a 

given field) has order 2. For purposes of constructing the group 

of a graph it is useful to regard the adjacency matrix as one with 

entries in GF(2). So, let G be a p-node graph with group r = r(G) 
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and non-derogatory adjacency matrix A= A(G) over GF(2). 

Since any matrix Q satisfying AQ = QA is a polynomial in A, 

we can write 

p-1 
Q = I 

i=O 
A

i 
a. 

l. 
a. e: GF(2) 

1. 
(5) 

Now, if Q is a permutation matrix (and thus an element of r) we have 

p-1 . 
= [la A1.]2 = 

. 0 i 1.= 
(6). 

Thusl in order to find the elements of r, it suffices to examine 

2 all polynomials f(x) such that f(A) = I; for, if f(A) is a permu-

tation matrix, f(A) e: r. 

Letµ 
2 

(x) 
A 

degµ 2 (x) = m. 

2 denote the minimal polynomial of A, and suppose 

Then every polynomial f(x) satisfying f(A2) = I 
A 

is of the form 

f(x) = g(x) µ 2 (x) + 1 
A 

(7) 

for some polynomial g(x). Hence, every matrix Q such that Q2 = I 

can be expressed in the form 

Q = µ 2 (A) 
A 

where bi e: GF(2). 

p-m-1 . 
I b .A

1 + I 
. 0 1. 1.= 

(8) 
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Lemma 3a. Let A= A(G) be the adjacency matrix of a p-node graph 

G. Suppose A is non-derogatory over GF(2). Then 

2 2 { cp A (x) if p is even 
[µ 2 (x)] = µ 2 (x) = 

A A x cpA(x) if pis odd 

Proof. First, let us regard the coefficients of cpA(x), the 

characteristic polynomial of A, as integers. 

(-l)i p-i 
a. X 

l. 

By Theorem 2 of [16), all the odd subscripted coefficients a. are 
l. 

even. Hence, if pis even 

I p-i 
cpA(x) = i even ai x = I 

i even 

if pis odd 
p-i-1 

( ) ' (x2) 2 cp x = x l a 
A i even i 

Once again, regarding cpA(x) as a polynomial over GF(2), we see 

that 

I 
p-i 

[i 
2 ]2 if is a. X p even 

even l. 

cpA(x) = p-i-1 

x[. I 2 )2 if p is odd a. X 
1 even 1 

Now, suppose p is even and let ·g (x) = 

p-i 
I 2 

i even ai x 
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2 
Clearly, g(A) = O. If h(x) is a polynomial 

h(A
2

) = O, then h2 (x) is such that h2 (A) = 0 

of degree < f and 

2 and deg h (x) < p, 

contradicting the minimality of p. The argument is exactly 

analogous for p odd. 

From Lemma 3a and the foregoing discussion, we obtain the 

following. 

Theorem 3. Let G be a p-node graph with adjacency matrix A= A(G). 

If A is non-derogatory over GF(2), then every automorphism PE r(G) 

can be expressed ·in the form 

p = µ 2(A) 
A 

p-m-1 . 
I b.Ai +'I 

i=O i 
(9) 

for some choice of b. E GF(2), where m =degµ 2 (x) = { f }. Thus, 
i A 

'D 

r(G) can be constructed in at most 2[2]steps. 

The construction may be facilitated by taking advantage of 

some additional information. Multiplying both sides of equation 

(9) on the right byµ 2 (A) gives 
A 

Pµ 
2

(A) 
A 

(10) 

So if Pis an automorphism of G, it can only interchange nodes of 

G corresponding to identical rows ofµ 2 (A). Moreover, if u and 
A 
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v are similar nodes, then the rows ofµ 
2

(A) corresponding to u 
A 

and v must constitute a minimal pair of identical rows. This follows 

from the fact that ifµ 
2

(A) has more than two rows identical to 
A p-m-1 . 

the same one, the matrixµ 
2

(A) l b. A
1 will have a principal 

A i=O 1 

submatrix of order> 2 consisting of all ones. 

Corollary 3a. Under the hypotheses of Theorem 3, a necessary 

condition for two nodes of a graph G to be similar is that the 

corresponding rows ofµ 2 (A) constitute a minimal pair of identical 
A 

rows. Hence, if the rows ofµ 2 (A) are pairwise distinct, r(G) is 
A 

trivial. 

Figure 2 exhibits two identity graphs which respectively 

satisfy and fail to satisfy the condition of Corollary 3a. 

Rows ofµ 2 (A) are distinct 
A 

µ 2 (A) has three minimal 
A 

pairs of identical rows 

Figure 2. Identity Graphs 

From Theorem 2, it follows that if the characteristic poly­

nomial of the adjacency matrix of a graph is irreducible over 

GF(2), then its group is trivial. Of course, the polynomial might 
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be irreducible over the integers and not over GF(2) -- for example 

the digraph of Figure 1 is irreducible over GF(2) but the graph is 

not (indeed the polynomial of a graph is always reducible over GF(2)). 

For a digra?h with non-derogatory adjacency matrix, over GF(2), it 

temain9 to establish a general relationship between the factors of 

its characteristic polynomial and the cyclic subgroups of its 

a1,1tQmorphism group. 
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