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THE CHARACTERISTIC POLYNOMIAL OF A GRAPH 

1 . Introduction 

The search for isomorphism invariants has led to consideration of 

various algebraic properties of the adjacency matrix of a graph. In par

ticular, interest has focused on the characteristic polynomial of the ad

jacency matrix. Of course, the characteristic polynomial does not always 

distinguish between non-isomorphic graphs. Many examples are known 

[l], [6]. Of particular interest is the fact that there exist non-isomorphic 

connected regular graphs with the same polynomial [7], [9]. Let G
1 

and G
2 

be two such graphs. Consider the graphs 

for O ::_ i ::_ k-1, 

i.e., Hi k-l is the union of i copies of G1 and k-1-i copies of G2 • Since 
' 

G1 and G2 are regular, Hi,k-l is regular and the complement Hi,k-l of 

Hi k-l is regular and connected. Clearly, all the Hi k-l have the same 
' ' 

polynomial since their respective adjacency matrices are direct sums of 

matrices corresponding to G
1 

and G2 • Moreover, it is easy to show [2], that 

if two regular graphs have the same polynomial, then their complements also 

have the same polynomial. Hence, the H. (0 < i < k-1) are non-isomorphic i,k-1 - -

connected regular graphs and have the same characteristic polynomial, from 

which we conclude the following. Given any positive integer k, there exists 

an integer n such that there are at least k non-isomorphic connected regular 

graphs with n points all having the same characteristic polynomial.
1 

The present paper is addressed to the problem of determining under what 

conditions the characteristic polynomial does distinguish between non-isomorphic 

graphs. In what follows, we will characterize the coefficients of the characteristic 

polynomial of an arbitrary digraph, and examine the polynomial of a tree in detail. 

lThe foregoing demonstration is due to A. J. Hoffman (personal communication). 



2. 

A digraph (or directed graph) Dis an irreflexive binary relation on 

a finite set V = V(D) of elements called the points (or vertices) of D; the 

collection E = E(D) of ordered pairs of points constitute the li1lfill (or edges) 

of D. We will write uv for the ordered pair (u,v). By the order of a digraph 

D, we shall mean the cardinality of V(D). A graph is a symmetric digraph. 

The adjacency matrix A= A(D) of a digraph D with n points v1 , v2 , ••• , vn is 

defined by its i,j-th entry a .. as follows: 
1.J 

{

l if v.v. is a line of D 
1. J 

aij = 0 otherwise 

for 1 2. i, j 2. n. Two digraphs whose adjacency matrices have the same charac

teristic polynomial will be called cospectral. For graph theoretic terms used 

without explicit definitions, see [S]. 

2. Determination of Coefficients 

Collatz and Sinogowitz (l] investigated the relationship between the 

coefficients of the characteristic polynomial of the adjacency matrix of a 

graph and certain subgraphs. However, no general formula for the coefficients 

was derived. In this section we will generalize their results and derive such a 

formula. 

Let D be a digraph with n points, and A= A(D) its adjacency matrix. 

The characteristic polynomial of A is given by ¢(A)= det (A-Al) which can be 

expressed 

n 
¢(A)= E 

i=O 
(1) 

It is well known [3] that the k-th coefficient ~(l 2. k 2. n) is equal to the 

sum of all principal minors of order k. Since each k order principal submatrix 

of A is the adjacency matrix of a subdigraph of D containing k points, it is 

I· 



clear that any principal minor of A is the determinant of the adjacency 

matrix of a subdigraph of D. Thus the coefficients of the characteristic 

polynomial of A can be expressed in terms of determinants of matrices 

belonging to subdigraphs of D. 

For an arbitrary digraph Hof order k, let fH({i 1, i 2, ... ' i }) 
r 

3. 

denote the number of collections of disjoint directed cycles in Hof lengths 

i 1 , i 2 , ••• , ir where ij .::_ 1 (1 .::_ j .::_ r) and i 1 + i 2 + •.• + ir = k. Using 

the formula for the determinant of the adjacency matrix of a digraph [5, p. 

151], we obtain the following. 

Theorem 1. Let D be a digraph of order n. Then for 1 .::_ k .::_ n, the k-th 

coefficient ak of the characteristic polynomial of A(D) is ·given by 

(-1) J 
i.+1] ... ' i }) 

r 
(2) 

where the summation is taken over all rank r partitions {i
1

, i 2 , ••. , i
2

} 

(1 .::_ r .::_ k) of k; and. a0 = 1. 

In an undirected graph (symmetric digraph) Geach undirected cycle of 

length greater than 2 contributes two directed cycles of the same length. 

Of course, an undirected line contributes exactly one directed cycle of 

length 2, and a loop contributes one directed cycle of length 1. So, if 

for a given partition {i1 , i 2 , ... , 

g(i.) = {1 
J 2 

if l < i . < 2 
J 

if i > 2 
j 

i} of k we let 
Jr 

and define fG ({i
1

, ••• , ir}) as above but for undirected cycles (and lines), 

(2) becomes 

Theorem 2. Let G be a graph of order n. Then for 1 < k < n the k-th coefficient 

ak of the characteristic polynomial of A(G) is given by 

a 
k 

= I 

~

r i.+l 
II (-1) J 

=l 
(3) 



4. 

where the summation extends over all rank r partitions {i
1

, i
2

, 

(1 .::_ r .::_ k) of k; and a0 = 1. 

... , i } 
r 

To fix ideas, let us evaluate the coefficients for the graph shown 

in Figure 1. 

[Fig. 1 about here] 

From (3) we have 

ao = 1 a4 = f({2,2}) -2f({4}) 

al = f({l}) as = -2f({2,3}) +2f({5}) 

a2 = -f({2}) a6 = -f({2,2,2}) +2f({2,4}) +4f({3,3}) -2f({6}) 

a3 = 2f({3}) a7 = -2f({2,5}) +2f({2,2,3}) -4f({3,4}) +2f({7}) 

Counting the relevant subgraphs, we obtain: 

f({2}) = 9 f ( {5}) = 1 f({2,5}) = 0 

f({3}) = 3 f({2,2,2}) = 8 f({2,2,3}) = 1 

f({2,2}) = 17 f({2,4}) = 2 f({3,4}) = 0 

f({4}) = 2 f({3,3}) = 0 f({7}) = 0 

f({2,3}) = 5 £({6}) = 0 

from which one immediately computes the polynomial given in Figure 1. 

From Theorem 1, it is obvious that a digraph D of order n with no 

cycles and no symmetric lines has characteristic polynomial ~D(A) = An. This 

fact gives rise to the following 

Theorem 3. For any positive integer k there exists an integer n such that 

there are at least k non-isomorphic weakly connected digraphs with the same 

characteristic polynomial. 

Proof. Let n = 2k'+l where k' > k. Consider the collection of digraphs 

D
0

, D
1

, ••• , Dk, constructed as follows. D0 is the directed path of length 



2k', i.e., V(D0 ) = {v1 , v 2 , •.• , vZk'+l}, E(D0 ) = {e1 , e 2 , ... , e
2
k,} 

where ei = vivi+l' 1 < i < 2k'. 

For 1 .:::._ j < k' let 

and 

(j) 
••• ' e 2k' } 

where 

(j) _ 1 1 - ·-

{ 

v.+l v. for 1 < i < j 

e i - ei for j+-1 < i < 2k' 

s. 

Clearly, the k'+l digraphs D0 , D1 , ••• , Dk, are pairwise non-isomorphic and 

weakly connected. Moreover, they are acyclic and have no symmetric lines, so that 

they all have the same characteristic polynomial (~(A)= An), which concludes the proof. 

3. 
"l 

Non-Isomorphic Cospectral Trees 

Consider an arbitrary tree T. Since the only cycles in Tare directed 

cycles of length 2 corresponding to the lines of T, the summation in (3) 

need only take into account partitions of the form {2r} = {2,2, ••• ,2}. Now, 

writing hr(T) for fT({2r}) we have the following immediate consequence of 

Theorem 2. 

Corrollary 2.1. Let T be a tree of order n. Then for 1 < k < n the k-th 

if k = 2r for some r > 1 

2A list of n-point trees, 2 :::._ n :::._ 10, together with the coefficients of 
their characteristic polynomials is given in the Appendix to this paper. 

(4) 
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and a
0 

= 1. 

It is evident from (4) that !~I is the number of sets consisting of 

k pairwise non-incident lines of T, which is precisely the number of indepen

dent sets of lines of order kin T. Making this observation from another 

point of view, one sees that Jakl is the number of matchings of order kin T. 

It is of interest to record the foregoing remarks. 

Theorem 4. 
n 

Let ~T(A) = I (-l)k ak An-k be the characteristic polynomial of a 
k=O 

max I .J. tree T with n points. Let m = O<k<n {k ak r O}. Then 

(i) !~I = the number of matchings of order kin T 

(ii) Any maximal matching in Tis of order m, and, thus, the 

number of such maximal matchings is Ja I. 
m 

Counting independent sets of lines in a tree has a useful dual 

formulation. For a given tree T consider its line graph L(T). L(T) is 

defined as follows. The points of L(T) correspond to the lines of T; and two 

points of L(T) are adjacent if and only if the corresponding lines of Tare 

incident. Thus, an independent set of lines of order kin T corresponds to 

an independent set of points of order kin L(T). 

It is known [5] that .a graph is the line graph of a tree if and only 

if it is a connected block graph in which each cut point is on exactly two 

blocks, and each block is a complete graph. The duality 

between independent sets .of lines and points given by a tree and its line graph 

affords some leverage in the construction of cospectral trees. 

Theorem 5 . Let T
1 

and T
2 

be trees. If T
1 

and T
2 

are cospectral, then L(T1) 

and L(T
2

) have the same number of p:,ints and lines. 

Proof. Since T
1 

and T2 are cospectral, hk(T1) = hk(T2) for all k. In particular, 
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this holds for k=l, so that L(T1) and L(T2) have the same number of points, 

say n. 

h 2 (T1) [=h2 (T
2
)] is the number of pairs of non-adjacent points in L(T

1
) [L(T

2
)]. 

So, the number of lines in L(T1) is (~) - h 2 (T1) which is equal to (~) - h
2

(T
2
). 

We turn now to the problem of computing the coefficients of the 

characteristic polynomial of a tree. If Tis a tree and vis a point of T, 

we denote by T-v the tree obtained from T by removing v together with all 

lines incident to v. If u is a point not in T, we form the tree T+uv by 

joining the point u to v. 

The following is a special case of Theorem 2 of [6]. 

Lemma L Let T be a tree and v a point of T. Then 

Proof. The tree T+uv consists of the lines of T and the additional line uv. 

So, there are two ways to construct a matching of order k depending on whether 

or not the line uv is :included. In the former case, we need to find a matching 

of order k-1 in T-v since we cannot choose a line incident to uv. This may be 

done in hk_1 (T-v) ways. In the latter case,all the lines of Tare available 

for choosing a matching of order k. There are hk(T) ways to do this. 

As a simple application of Lemma 1, consider the path P on n points. n 

The following is also derived in [6] but in a different form, looking at the 

polynomial as a function of A rather than at the coefficients. 

Theorem 6. Let P be a path on n points. 
n 

Then 

(i) hk(Pn+l) satisfies the recurrence 

hk(Pn+l) = hk(Pn) + hk(Pn-1) 

(ii) hk(Pn+l) = (n-~+l). 
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Proof. Part (i) is an immediate consequence of Lemma 1. We prove part (ii) 

by induction on k. 

So, assume 

h ( ) = (n-kk+l). 
k pn+l 

Then 

= 

as required. 

A more interesting class of trees whose coefficients can be determined 

rather easily consists of trees homeomorphic to a star. Such a tree is one 

with a single point of degree> 2, every other point being of degree 1 or 2. 

Suppose Sis a tree homeomorphic to a star. Let S be of order n+l, 

and let v be the point in S with degree> 2. Furthermore, let d. be the number 
1 

of points in S whose distance from vis i > 1, and m the maximal distance be

tween v and any other point in S. The tree Sis completely characterized by 

the point v and the parameters d1 , d2 , ••• , dm, so we shall write S = Sv(d1 , 

• • • , d ) • 
m 

Theorem 7. Let S = Sv(d1, d2, ••• , dm) be a tree homeomorphic to a star. Then 

hk(S) satisfies the recurrence 

m di 
hk(S (dl, ••• , d )) = l 

V m i=2 
L hk 

1
(s (d1 , ••• , d. 1-1, d.-r)) 

r=l - v 1- 1 

Proof. Suppose u
1 

is a point of S such that the distance d(u
1

, v) between u
1 

and vis m. Obviously, u
1 

is an endpoint of S. Let u1
1 be the point adjacent 

to u
1

• The number of matchings of order k containing the line u1u1 ' is clearly 

Having used u
1

u
1

1
, delete it from the tree and choose another point u2 such 



that d(v,u2) = m. Let u2 ' be the point adjacent to u
2

• Now, the number of 

matchings of order k including u
2

u
2

1 is 

Continuing in this way until all the d points at distance m from v 
m 

are exhausted, we find the number of matchings of order k contributed by the 

lines incident to those points to be 

d 
m 

rll hk-l(Sv(dl' dz, ••• , dm-1-1' dm-r)). 

Repeating this process successively for points at distance m-j from v for 

1 .::_ j .::_ m-2, we obtain the desired recurrence. 

9. 

Now we will find the solution of the recurrence given in Theorem 7' using 

a direct combinatorial argument. 

Theorem 8. Let S = Sv(d1 , ••• , dm) be as above. 

Then 

(5) 

where the summation for both terms extends over all ordered sequences (i
2

, i
3

, 

••• , im) of non-negative integers satisfying i 2+i 3+ ••• +im = k-1 and i 2+i3+ .•• +im = k 

respectively. 

Proof. There are two cases to consider depending on whether a line incident to 

vis chosen or not. 

Case 1. A line incident to vis chosen. Then k-1 additional lines must be 

selected. The selection may be made by choosing i from those d lines at dis-
rn rn 

tance m from v, and i. from d.-i.+1 (2 < j < m-1) of the d. lines at distance 
J J J - - J 
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j from v, where i 2+i3+ ••• +im = k-1. ij+l lines must be excluded from the dj 

since ij+l lines were chosen from those at distance j+l from v. Clearly, the 

number of ways of making these selections is precisely the first term of (5) 

Case 2. No line incident to vis chosen. In this case, the selection is as 

in case 1 except that k lines must be chosen and d1 lines are excluded. Again 

the number of possible selections under the given constraints is exhibited in 

the second term of (5) 

Expressions for the coefficients of other classes of trees may be 

obtained by examining special types of line graphs. Before considering a 

case in point we will give a recurrence in terms of the line graph of a tree 

which parallels the one given in Lemma 1. In what follows, we will write 
I 

hk(L) for hk(T) when L = L(T) for a tree T. 

Let T be a tree and L = L(T) its line graph. An endblock Kt (complete 

of order t) of Lis a block which is joined to exactly one other block of L. 

Let v be the point in common between K and the block to which it is joined. 
t 

Then the graph L-Kt-v is obtained from L by removing only Kt. 

Lemma 2. Let L = L(T) be the line graph of a tree T, and let Kt and v be as 

above. Then hk(L) satisfies the recurrence 

Proof. There are two cases to consider, depending on whether or not a point 

of Kt (other than v) is contained in an independent set of order k. Clearly, 

the first term of the recurrence arises from the former, and the second term 

from the latter. 

Now we consider a line graph L = L(t1 , ••• , tm) of the following form. 

L consists of a block Km together with m endblocks Kt. (1 .::_ j ..::._ m) joined to Km• 
J 
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Call such a graph a line-star. 

Theorem 9. Let L = L(t1 , .•• , tm) be a line-star as above. Then 

(i) 

+ I 
l.::_i1 <i2 < ••• <ik_1.::_m 

(t. -l)(t. -1) ••• (t. -l)(m-k+l) 
1

1 1 2 1 k-l 

(ii) If t 1 = t 2 = •.. = tm = t, then 

Proof. The two summations in (i) are obtained as follows. Consider an independent 

set of order k. Either all k points are chosen from the endblocks (first term), 

or k-1 points are chosen from the endblocks and one point is chosen from k (second 
m 

term). 

Part (ii) follows from (i) by substituting t for each tj(l .::_ j .::_ m). 

Corollary 9.1. Suppose 11 = (t1 , ••• , tm) and 12 = L(s1 , ••• , sn) are line-stars 

corresponding to trees T1 and T2 , respectively, with tj > 1, sj > 1 and m In. 

Then T
1 

and T
2 

are not cospectral. 

Proof. Taking n > m, the result follows immediately from the observation that 

hn(L1) = O, but hn(L2) > O. 

When t
1 

= t 2 = ••• = tm = t, we will write L(mt) for L(t1 ,t2 , ••• ,tm). As 

an application of Lemma 2, let us evaluate hk(L') where 1 1 is the line graph ob

tained from L(mt)(t>l) by joining an endblock Ks to point v of some Kt. According 

to the Lemma 
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Clearly, L'-K -vis just L((t-1), (m-l)t), and 1 1-K is L(mt). Hence, 
s s 

We conclude with the following result. 

Theorem 10. There exist infinitely many pairs of non-isomorphic cospectral 

trees. 

Proof. Consider the pair of trees T
1 

and T2 shown in Figure 2. 

[Fig. 2 about here] 

Let u,v, x,y be as in the Figure, and let n be the number of lines in T
1 

(and 

T2). It is clear that h1 (T1) = h
2

(T2) = n, and hk(T1) = hk(T2) = O, fork > 2. 

Now h2 (T1) = uv, and h2 (T2) = x(y+l) + y. Equating h2 (T1) and h2 (T1), and 

using the relations u+v = n-1, x+y = n-2, we obtain 

y2 - v2 + (n-l)v - (n-2)y - (n-2) = 0 

Taking y = v+l in (11) gives 

3n-5 
V =--

3 

(6) 

(7) 

So, to obtain a pair of cospectral trees of the desired form, we need 

only find a value of n(~7) which makes van integer. Clearly, n = 7+3k, 

k = 0,1,2, ••• are permissible values, which concludes the proof. 

I' 



Appendix 

The following is a list of n-point trees, 2 2 n 2 10, together with 

the coefficients of their characteristic polynomials. The polynomial of a 

tree Tis given by 

n 
E (-l)i a. 

i=O 1 

n-i 
A 

Note that for all trees, a0 = 1 and a1 = 0 for odd values of 1. 
• 

The present list is an expanded and corrected version of an earlier 

one in Collatz and Sinogowitz [1]; trees preceded by an asterisk are those 

whose polynomials were given incorrectly in that paper. For a complete 

catalogue of the characteristic polynomials of graphs on 7 points, see 

King [8]. 



TREE COEFFICIENTS 
TREE COEFFICIENTS 

o2 o4 o6 og o10 02 04 06 oa 01c 

-- -1 -:>--- -6 9 -3 

-2 =>- -6 9 - 4 

>- -3 0 - -6 10 -4 

-3 1 ~ -7 0 0 0 

X -4 0 ·X· • -7 5 0 0 

>--- -4 2 • >« -7 8 0 0 

-4 3 ":? ~- -7 9 0 0 

>1< -5 0 0 ~ • • -7 9 0 0 

·7 • .. -5 3 0 -x- -7 9 -3 0 

>-< -5 4 0 ·7 • < -7 11 0 0 

> I I • -5 5 0 ?-<- -7 11 -3 0 

• • I • • > ~ -5 5 -1 0 -7 11 -4 0 : 

-5 6 -1 -~ • • • • -7 12 -3 0 

~ -6 0 0 >-r< -7 12 -4 0 

x- -6 4 0 • I I I I u -7 12 -5 0 

·7 < -6 6 0 :1.-:,::.C -7 12 -7 l 

-~ • • • -6 7 0 >---< -7 13 -4 0 

. . I ., • -6 7 -2 ~ - -7 13 -5 0 

>---< -6 8 0 ~ -7 13 -6 0 

~ -6 8 -2 >-<= -7 13 -7 0 

> • • • • -6 9 -2 ~ -7 13 -7 l 



TREE COEFFICIENTS-
TREE COEFFICIENTS 

02 04 06 08010 02 04 0608 a10 

> • • • • -7 14 -7 0 > • • ~ -8 17 -6 0 

• • • I • • • -7 14 -8 0 ~ -8 17 -7 0 

-:>---- -7 14 -8 1 > • ~ • -8 17 -8 0 

* :>--- I > ~ -7 14 -9 1 -8 17 -9 0 

- -715-101 ~ -8 17 -10 0 

~ -8 0 0 0 > I I • -8 17 -10 0 

-~ • -8 6 0 0 ~ -8 17 -11 2 

·X< -8 10 0 0 ~ -8 17-12 2 

-·~ • • -8 11 0 0 ~ • • • • -8 18 -10 0 

• ~ • -8 11 -4 0 >---i-< -8 18 -10 0 

~- -8 12 0 0 >---<2 -8 18 -12 0 

x--< -8 14 0 0 • • • I • • • -8 18 -12 0 

XL. • -8 14 -4 0 ?-r< -8 18 -12 2 

-:>« -8 14 -6 0 D • • • I • • -8 18 -12 2 

-~ • ~- -8 15 0 0 ~ ' I • -8 18 -14 3 

>-E • I • -8 15 -4 0 ::><:: -8 18-16 5 

·;;> ~ • -8 15 -6 0 >------< -8 19 ·-12 0 

¥· 
I • > < -8 15 -7 0 • -8 19-13 0 • I • 

~ -8 15 -10 2 ~ -8 19 -13 2 

➔ I < -8 16 -6 0 ~ -8 19 -14 2 

>t-< -8 16 -8 0 =>---< -819-142 



TREE COEFFICIENTS TREE COEFFICIENTS 
02 04 06 09010 02 04 06 cg 010 

~ -8 19 -14 3 
I : ¾ -9 18 -9 0 0 

~ -8 19 -15 2 ;. ¾ -9 18-13 3 0 

~ -8 19 -15 3 -~ -~ -9 19 0 0 0 

-:>-<: -819-164 ./ -9 19 -8 0 0 

• • I • • • < -8 20-16 2 ~ ~- -9 19 -9 0 0 
• • > >-r+: I I • • -8 20 -17 3 -9 20 -8 0 0 

~ -820-174 
I- >¥< -9 20-12 0 0 

: : > I I -8 20 -18 4 >----7< -9 21 -8 0 0 

=>----- -8 20-18 5 ➔ I ~ -9 21 -9 0 0 

-821-205 -:>-X -9 21 -9 0 0 

~ -9 0 0 0 0 ~ -9 21 -11 0 0 

I *· -9 7 0 0 0 > I ~- -9 21 -12 0 0 

»I< -9 12 0 0 0 ~ -9 21 -12 0 0 

I I ·* -9 13 0 0 0 =>-X -9 21 -13 0 0 

~ 
I 

I I~ < -9 13 -5 0 0 -9 21 -14 0 0 

~ -9 15 0 0 0 ~ -9 21 -15 3 0 

>H< -9 16 0 0 0 =>t-< -9 21 -17 4 0 

> I ~- -9 17 0 0 0 ~ I I ~ -9 22 -9 0 0 

~ -9 17 -5 0 0 
. ~ ~- -9 22 -11 0 0 

>~ • -9 17 -8 0 0 I I I ■x -9 22-13 0 0 

I I I ¾ -9 18 -5 0 0 I '7 ~ -922-150 0 



TREE COEFFICIENTS 
TREE COEFFICIENTS 

02 04 06 as 010 a2 04 06 08010 

~ 
• • • > ~ -9 22 -16 0 0 -9 24 -20 3 0 

-:x -9 22-16 3 0 >-r-r< -9 24-20 4 0 

y -E -9 22-17 3 0 ~ -9 24-20 5 0 

~ ~- • => ~ • • -9 22-17 4 0 -9 24 -21 3 0 

J • • • 
~ -9 22-19 5 0 < -9 24 -21 4 0 l 

~ -9 22-22 9 -1 ~ -9 24 ~21 5 0 

>· I • ~- -9 23-14 0 0 ~ -9 24 -22 5 0 

~ < • • > ~- -923-150 0 -9 24 -22 6 0 I I 

>--+-< I y < -923-160 0 -9 24 -23 6 0 

> ~ -9 23-17 0 0 ~ -9 24 -23 7 0 

~ -923-173 0 ~ -924.249 -1 

> l I I • -923-18 4 0 ·~ < -9 24 -25 9 0 

?t< -9 23-19 4 0 >--r< -9 25 -21 0 0 

> tr -923-204 0 • • • • • I ~ -9 25-22 3 0 

> • • • ~- -9 24-17 0 0 > I • • < -9 25 -22 4 0 

• • > ~ ~ -9 24-18 0 0 -9 25 -23 4 0 • 

~ -9 24-18 3 0 ">r-< -925-23 5 0 

• . ·7 < >-r--<4 -9 24-19 0 0 -9 25-23 6 0 • 

"? < ~ -9 24-19 3 0 -9 25-24 4 0 . 

~ -9 24-19 4 0 I I I I • • • -9 25-24 5 0 

~ 
• • > < -9 24-20 0 0 I -9 25 -24 6 0 



TREE 
COEFFICIENTS COEFFICIENTS 

TREE 
02 04 06 as 010 02 °4 °6 °s 010 

• 7 . . I I I -9 25-24 7 0 :=>-< -9 26-28 8 0 

> ~ I -9 25-25 7 0 • • • I I • I • -9 26 -28 9 0 

:>-i-< -9 25-25 8 0 ~ -9 26 -28 9 0 

~ -9 25 -25 9 -1 • • I I • • I • -9 26 -28 10 -1 
• 3 ~ • • • -9 25 -26 8 0 -9 26 -28 11 -1 

3 • • I -9 25 .2610 -1 ~ -9 26-29 11 0 

~ -· I • -925-2812 -1 --=>-<- -9 26 -29 11 -1 

> . • . I < -9 26-25 4 0 :>-C -9 26-3013 -1 

• • I > < < • -9 26-26 5 0 • • • I • I . -9 27 -30 9 0 

• I > < I I > • -9 26-26 6 0 I . • I -927-3111 0 • 

~ -9 26-26 7 0 l -9 27 .-31 11 -1 
• 

J < ? • -9 26-27 7 0 • • • • • I -9 27 -31 12 -1 

>-< -9 26-27 8 0 : : > I • • -9 27-3212 0 

~ 
I : : :> -926-278 0 I I -927-3213 -1 

:>---< -9 26-27 9 0 =>-- -9 27-3214 -1 

~ -9 26-2710 -1 -9 28-35 15 -1 



Figure 1. The Polynomial of a Seven Point Graph 
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Figure 2. Pairs of Cospectral Trees 
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