An

ALGOL 68 COMPANION

J.E.L.Peck
Department of Computer Science
University of British Columbia

Vancouver

Revised Preliminary Edition
March 1972

rwT—

S et

An ALGOL 68 Companion 1

CONTENTS

Introduction
1 Denotations.

1.1 Language levels. 1.2 Objects. 1.3 Names. 1.4 Variables. 1.5
Denotations. 1.6 Boolean denotations. 1.7 Integral denotations.
1.8 Rezal denotations. 1.9 Character denotations. 1.10 Modes.
.11 String denotations. 1.12 other denotations. 1.13 Progranm
example.

2 Some fundamental concepts.

2.1 Declarers. 2.2 Generators. 2.3 Local generators. 2.4 The
elaboration of a generator. 2.5 Tdentity declarations. 2.6 The
syntax of identity declarations. 2.7 Formal parameters. 2.8 An
extension. 2.9 An assignation. 2.10 The syntax of assignations.
2+ 11 References. 2.12 Dereferencing. 2.13 Initialized
declarations. 2.14 Program example.

3 Unitary clauses.

3.1 Introduction. 3.2 EBases. 3.3 Identifiers. 3.4 Slices. 3.5
Multiple values. 3.6 Trimmers. 3.7 Calls. 3.8 Void cast packs.
3.9 Cohesions. 3.10 Selections. 3.1 Formulas. Fal2
Confrontations. 3.13 1Identity relations. 3.14 Casts. 3.15
Program example.

4 Clauses.

4.1 Conditional clauses. 4,2 Simple extensions of the
conditional clause. 4.3 Case clauses. 4.4 Repetitive statements.
4.5 Closed clauses. 4.6 Collateral phrases., 4.7 Serial clauses.
4.8 Program example.

5 Routine denotations and calls.

5.1 Tha parameter mechanism., 5.2 Routine denotations. 5.3 Mores
on parameters. 5.4 The syntax of routine denotations. 5.5 What
happened to the old call ty name?. 5.6 Program example.

6 Coercion.

6.1 Fundamentals. 6.2 Classification of coercions. 6.3 Fitting.
6.4 Adjusting. 6.5 Adapting. 6.6 Syntactic position. 6.7
Coercends. 6.8 A significant example. 6.9 The syntactic machine.

2 An ALGOL 6B Companion

6.10 Balancing., 6.11 Soft balancing. 6.12 Weak balancing. 6.13
Firm balancing. 6.14 Strong balancinjy. 5.15 Positions of
balancing. 6.16 Program example.

7 United modes.

7.1 United declarers. 7.2 Assignations with united destination.
7.3 Conformity relations. 7.4 Conformity and unions. T
Conformity extensions.

8 Formulas and operators.

8.1 Formulas. B.2 Priority declarations. 8.3 Operation
declarations. 8.4 Elaboration of operation declarations. H.5
Dyadic indications and operators. 8.6 Identification of dyadic
indications. 8.7 Identificaticn of operators. 8.8 Elaboration of
formulas. 8.9 Monadic operators. 8B.10 Related modes. B.11 Peano
curves. B8.12 Chinese rings.

9 The grammar.

9.1 The syntactic elements. 9.2 Two levels. 9.3 The metarules.
9.4 The hyper-rules. 9.5 A simple language. 9.6 How to read the
grammar. 9.7 The indicators.

10 Mode declarations

10.1 Syntax. 10.2 Development. 10.3 Infinite modes. 10.4
Shielding and showing. 10.5 Identification. 10.6 Equivalence of
mode indications. 10.7 Binary trees. 10.8 Insertion in a binary
tree. 10.9 Tree searching. 10.10 Searching and inserting. 10.11
Tree walking. 10.12 A non recursive approach.

11 Easy transput
117.1 General remarks. 11.2 Print and read. 11.3 Transput types.
11.4 Standard output format. 11.5 Conversion to strings. 11.6
Standard input. 11.7 String to numeric conversion. 11.8 Simple
file 2nquiries. 11.9 Other files.

References.

Answers to Review Questions.

An ALGOL 68 Companion ' 3

Introduction

This book is not intended as a complete description of the
language ALGOL 68. That description already exists in the form
of the YReport on the Algorithmic Lanqua ge ALGOL 68",
hereinafter referred to as the "Report"™ and referenced by [R]
(see the references). The Report is, of course, a reference
document and it must, of necessity, strive for the utmost
precision in meaning. Certain sections, therefore, may vyield
their proper intent only after what the reader may think is an
excessive amount of close scrutiny. But then, 1like any 1legal
statute, the Report should be read carefully, for the authors
were determined that, when the reader eventunally gropes his way
to a meaning in a carefully worded passage, it should yield,
beyond all possible doubt, the meaning which was intended, and
not some other meaning which the reader may have had in mind. &
student of law does not learn the law by first studying the
statutes. Likewise, the best approach to a new programming
language may not be throungh its defining document. The law
student must be taught how to find his way among the statutes
and the student of programming needs to be shown how to get the
information he needs from the defining document of a programming
language.

Our intention is therefore to introduce the reader, in easy
stages, to the ideas and the terminolegy contained in the
Report. Since it is assumed that the Report is always at hand
(this book should not be read without it), we absolve ourselves
of the necessity for describing every detail of the lanquage.
Oour purpose Will have been fulfilled, if the reader can, after
studying this book, put it aside, and from that point onward use
the Report alone.

This approach means that it will not be in the interests of
the reader to try to explain ALGOL 68 in terms of the <concepts
used in, say ALGOL 60, or those used in any other programming
language. ALGOL 68 has its own new terminolegy becauss many of
the concepts are new, and though there are similarities with the
concepts in other languages, usually the exact counterpart is
not available. We shall therefore try to be meticulous about
using only the terminology which is employed in the Report; in
this way the transition from the Companion to the Report will be
easier.

We adopt the same typographical devices as in the Report,
whereby examples of the ALGOL 68 representation language are
given in italic, e.g., nbegin print(“algol.68") endo, and
notions (i.e., metasyntactic variables, in the sense of ALGOL
60, or nonterminals in the sense of formal grammars) are in a
type font which 1is larger than normal, e.g., eserial-clausees,
and usually hyphenated. Experience shows that this practice does
not unduly disturb the eye on first reading. It has the

4 An ALGOL 68 Compamnion

advantage that closer examination can reveal whether a word is
used in the ordinary sense of the English language or whether it
is used in a technical sense. For example, if the reader wishes
to know the meaning of “formula", he will look it up in his
favourite dictionary; however, to find out about "eformulae" he
must look at the rule 8.4.7.a of the Report. This practice will
enable us to use words with a precision which would otherwise bhe
difficult to achieve. As with the Report, there are also other
words, like "nawme"™ or "pode" which are not part of the syntax,
but each is given a technical meaning. We shall use quotes, when
introducing the reader to these words, to alert him to the fact
that he is meeting a new word with a special meaning.

At the end of each chapter is a set of review questions,
the answers to which are provided in the fipal pages. Many of
these questions test the material as presented in this text, but
others require a deeper study of some parts of the Report. We
have tried to provide references to the Report wheraver these
may be needed.

Some of the earlier chapters of this text were read and
corrected by Daniel Berry, Wendy Black, Hellmut Golde, Lambert
Meertens, Tad Pinkerton, Helge Scheidig, Aad van Wiijngaarden and
many others who may forgive the lack of mention here. Their
assistance is gratefully acknowledged. Naturally the author is
responsible for any remaining imperfections in this preliminarcy
edition. He hopes that readers will communicate with him,
thereby helping to eliminate as many errors as possible from the
final edition.

The preliminary edition

This preliminary editicn is produced by a text formatting
program written by W. Webk at the University of British Columbia
for use with the TN print chain. This print chain introduces
certain restrictions, some of which are exasperating (e.y.,
there is no genuine multiplication sign). To simulate the effect
of different type fonts, a bracketing scheme is used. ALGOL 68
external objects (program fragments) are represented thus

obegin real x ; x := 3.14 endo '
ALGOL 68 internal obijects (values) are represented thus
strues

and paranotions and modes (syntactic parts) are represented thus
estrong-unitary-real~clauses

This means that, e.g., a collection of three eidentifierse usei

for illustration, should be written

oxo, oalb2c3io, pan identifierno 7
but it will be easier on the eye if we assume that
D, o

may be replaced by

r
so we shall generally use the more pleasing and less cluttered
form
ox, alb2c3, an identifiern,
unless the context calls for greater clarity.

An ALGOL 6B Companion 5

The revised preliminary edition

This edition is a reprint of the preliminary edition after
correction of some errors and misprints. Another edition is
planned for the end of 1972 and may contain additional chapters,
The author is grateful to those who sent corrections to the
preliminary edition and would appreciate further correction of
errors and suggestions for improvement.

6 An ALGOL 68 Companion

1 Denotations
1.1 Language levels

OQur purpose 1is to learn how to read and write ALGOL 68
sprograms=. One might suppose that
obegin real x; x := 3.1% endo
is an ALGOL 68 weprograme, because it is a valid ALGOL 60
eprograme and, in a sense, this is the case, However, the
similarities between ALGOL 60 and ALGOL 68 begin and end Jjust
about here, since
onyprogram: (print(((real lengths > 1 | "multiple" | "single"),
. precision.environment")))mno
is also, 1in the same sense, an ALGOL 68 eprograme. ALGOL 68 is
not an extension of ALGOL 60, though the lessons learned in the
design and use of ALGOL 60 have contributed to the final shape
of the new langquage. It has, in relation to its contemporaries,
a powerful syntactic structure, which enables the defining
document of the language to be kept to a minimum. This Companion
is an introduction to the language, which should be read only
with the defining document, the Report [R], readily at hand. For
example, the reader should now turn to the Introduction in the
Report [R.0], to get some flavour of the new language.

In ALGOL 68 we may speak of eprogramse in the "strict
language" and in the "extended language" [R.1.1.7.a)]. The strict
language 1is that which agrees with the syntax of the defining
document. In a natural 1language, like English, certain
abbreviations, such as "e.qg.", are commonly accepted. We usually
write "e.g." rather than the longer words "for example", kut the
meaning is the same. The abbreviations of ALGOL 68, are known as
"extensions" [R.9]. The application of these extensions to the
strict language yields the extended lanquage. This means that,
though eprogramse may be written in the extended language, their
meaning will be explained in terms of the strict language.

Related to both.of these is the "representation language".
The first example given above, is a representation [R.3.1.1] of
a eparticular-programe [R.2.1.d] of ALGOL 68. We say that it is
a representation because obeqino is a representation of the
esbegin-symbole, nrealm is a representation of the ereal-symbole
and even the point within m3.14n 1is a representation of the
epoint-symhole. Thus, the example
obegin real x ; x := 3.14 endo '
(which happens to be written in the extended language), is a
representation of the following sequence of symbols
spegin-symbol, real-symbol, 1letter-x-symbol, go-on-symbol,
letter-x-symbol, becomes-symbol, digit-three-symbol, point-
symbol, digit-one-symbol, digit-four-symbol, end-symhole.
We sea at once, that it would be too tedious to write eprogramse
or parts of eprogramse without wusing the representations.
Nevertheless, the presence of the strict language, in which all
the terminals end in the word esymbole, will make it easier for
us to formulate syntactic rules and to describe and to use the
Syntal.

An ALGOL 68 Companion i

1.2 Objects

ALGOL 68 is described in terms of an hypothetical computer
which deals with two kinds of "objects"[R.2.2.1]. These are
"internal" objects and "external" objects. Roughly speaking, an
external object is the sequence of symbols represented by the
marks which the programmer makes on his paper when creating, . a
esprograme[R.2.1] and an internal object is an arrangement of
bits within the computer. For example, when the programmer
writes o3, 14o, he makes, from four symkols, an external object,
which is a edenotatione[R.5]. Within the computer this may be
reflected in a certain arrangement of bits, known as a real
value, the particular arrangement chosen depending on the kind
of computer and the implementer's whim. Thus, no3.14n, which is a
sequence of symbols[R.3.1], is an external object and the
arrangements of bits is the internal object. ;

There is an important relationship between external objects
and internal objects. One says that an external object may
"possess" [R.2.2.2.d] an internal object. Thus, the external
object, the edenotatione n3.14n, possesses an internal object
which is a collection of bits within the computer. We shall
speak of the internal object as a "real value" [R.2.2.3.a]. The
form which the internal object takes is of no particular concern
to the programmer. It is decided for him by the manufacturer of
the computer and by the implementer of the lanquage, 1i.e., by
the compiler writer. In this text we shall represent this by
means of a diagram as in figure 1.2, where the internal object

n3.14o

(2)

r i e 1

| 1 (1)
4

N

Fig. 1.2

is suggested by a rectangle as at 1 and the relationship of
possession by the dotted line at 2.

The reader should note that we have introduced, by means of
quotes, some standard terminology from the Report[R]. Wherever
possible, references to the Report will be given and every
effort will be made, in what follows, to remain as close to the
Report as possible in the use of this terminology. In this
manner the reader may be encouraged to obtain more information
about the language by reading the Report itself.

The use of a different type font, such as in edenotatione,
indicates that we are talking about an object in ALGOL 68 which
is described by the syntax of the language (see paranotions
[Re1.1.6.c]). If the same word occurs in normal type font, then
an English dictionary should be consulted for its meaning.

8 An ALGOL 68 Companion

1.3 Names

Computers have a storage structure in which the memory is
regarded as consisting of small pieces, each usually called a
word or byte, with each piece being given a unique address,
i,2., a means by which the computer can leccate that word or
byte. In our hypothetical computer, this situation is modelled
by saying that the computer has "names" [R.2.2.3.5), each
name(1) referring to some value. When we say that a name
"refers" [R.2.2.2.1] to a real value, we are modelling the
gituvation where the real value is an arrangement of bkits which
is stored at a certain storaqge place or address. The name is
thus the address of the place where the value is stored and the
value is the content of that storage place. We have now isolated
another kind of internal object, i.e., a "name", and we note
that there is a relationship between two internal objects, viz.,
a npame may "refer" to a value. In the diagrams a name will be
represented as in figqure 1.3 at 1 and the relationship of

(Mo 1
0 O=====- D 4 I
o (2) bt

Fig.1.3

referring by a directed 1line as at 2. In passing, we mention
that a name is also a value [R.2.2.3] and another name may refer
to it, but we shall return to this point later.

1.4 Variables

Host programmers do not Wwish to work only with
edenotationse such as n3.1l8n, but also with evariablese
[R.6.0.1.2] such as oxo. [In ALGOL 68, as in many other
languayes, if a programmer wishes to consider mxn as a variable,
he writes a edeclaratione [R.7.4.1], e.g., oreal xn, The effect
of this sdeclaratione is to allocate a storage place, 1i.e., to
create a name which may refer to a real value, this name being
possessed by nxo. In figure 1.4 the relationship of possession

O e se we 3
— =]
i
—

S

0 O====D=-=—===4 |

o | R |
Fig.1.4

is indicated by the dotted line at 1. It is important that this
name may not refer to a value of another mode (i.e., to a member
of another class of values), such as sbhooleane or echaractere,
for reasons of security in the elaboration [R.1.1.6] of

- ———

€1) except for =«nils [R.2.2.2.1]

An ALGOL 68 Companion 9

eprogramse. In this chapter we are concerned with edenotationse,
so we leave the subject of edeclarationse and evariablese for
the next chapter.

1.5 Denotations

There are four mutually exclusive classes of "plain" values
[Re2452:3:1]- These are, "boolean", "integral", "real" and
"character" values. The property of belonging to one of these
classes is known as the "mode" [R.2.2.4.1] of the value. A real
value is thus said to be of mode ereals. For each of these four
classes, 1i.e.,, for each of the modes eboolean, integral, reale
and echaracters we have edenotationse, which are certain
sequences of symbols possessing values of that mode. Examples
are, otrue, 12, 5.67o0 and o"w"o. We consider each of these
sdenotationse in tucn.

1.6 Boolean denotations

This is the simplest of the eplain-denotationse. There are
two values (internal objects) of mode ebooleane, viz., strues
and wefalses. Consequently we need two external objects to
possess them. These are the etrue-symbole, aotruem and the
sfalse-symbole, nfalsen. At the risk of tedious repetition, but

for further emphasis, we observe that the external object ntruen
possesses an internal object, which is the boolean value strues,

ntrueno (external)
oty
|strues| (internal)
b4

Fig.1.6

a value of mode ebooleane (see figure 1.6). Of course, a similar
statement applies to ofalsen.

The syntax of eboolean-denotationse is very simple, and
supplies a starting point for a study of the syntactiz
description of the language. This 1is embodied in the rule
[fR.5.1.3.1.a]

esboolean denotation : true symbol ; false symbol. s
which may be read as "a esboolean-denotations may be a -true—
symbole or a efalse-symbole™.

1.7 Integral denotations

An eintegral-denotations, for example, ©p34o or oOm or
00001230, is a sequence of edigit-tokense. This means that an
eintegral-denotatione is easy to recognise and to describe. Its
syntax rule [R.5.1.1.1.a] is

eintegral denotation : digit token sequence.,s i
which means the same as the rule

10 An ALGOL 68 Companion

integral denotation : digit token ;
integral denotation, digit token. "

The full explanation of how to use this syntactic method o
description will be found in Chapter 1 of the Report. It is
important that the reader should, at some time, master this
syntactic description method. For the moment we may bte content
to know that this rule describes an einteqgral-denotatione as a
sequence of edigit-tokense, a edigit-tokene being represented by
wO, 1, 2, 3, 4, 5, 6, 7, 8m or n9no. The Jlanguage makes no
restriction on the length of the sequence of edigit-tckense,
although, in a particular implementation, such a restricticn may
well exist.

An eintegral-denotatione, of course, possesses an integral
value, as one mnight expect. Not surprisingly, the value
possessed by o000123o is =123s, which is equal to that possessed
by n123a.

1.8 Real denotations

There are two kinds of ereal-denotaticne [R.5.1.2]. Sonme
examples are: n3.14, .000123, 123.45e6, 5e-16, 4.7591012pC1), We
classify the first two as evariable-point-numeralse and the
remaining three as efloating-point-numeralse, the latter being
the kind of sreal-denotatione likely to be used by the physicist
or engineer. This classification is stated [R.5.1.2.1.a] in the
rule

ereal denotation : variable point numeral ;
floating point numeral.e i
sVariable-point-numeralse have an optional eintegral-parte, like
0123n, followed by a mandatory efractional-parts like m.14m or
0.0001230. This is expressed [R.5.1.2.1.b] in the rule
evariable point numeral :
integral part option, fractional part.e .
Examples of evariable-point-numeralses are therefore ©123.0,
3.456, .12335c and 0.00023p but not nm3.o. The eintegral-part-
optione means that the einteqral-parte may be present or absent.
An explanation of the syntactic device involving the word
eoptione is to be found in the rule [R.3.0.1.b]
eNOTION option : NOTION ; EMPTY.e
and the fact that any notion may replace the wmetanotion
sNOTIONe, but the casual reader need not concern himself yet
with these mysteries.

We complete the description of evariable-point-numeralse by
the two rules [R.5.1.2.1.¢,d]
eintegral part : inteyral denotation.
fractional part : point symbol, inteqral denotation.e .
Because we have already seen the rule for eintegral-denotatione
and can guess that the representation of the epoint-symbole |is
n.n, this syntax should now be clear.

1) A superscript 10 is used here in place of a subscript 10
which is not available on the TN printer chain.

An ALGOL 68 Companion 11

A efloating-point-numerale consists of a2 estagnant-parte,
like 01230 or ©123.450, followed by an eexponent-parte, like
ne+23, 2, e-16o or o!'%5po. Its syntax is in the rule

efloating-point-numeral : stagnant part, exponent part.e -
Examples of efloating-point-numeralse are therefore, nmnlel,
2.3e—Un and n.3e26o but not on3.eldnm. The edenotatione mw.3e2ébn,
for example, possesses a real value, usually associated with the
number written in physics textbooks as .3%1026_, It could not be
so written for computer input because of the inability of nost
input hardware to accept superscripts. The rule for estagnant-
parcts [R.5:1.2.1.€] is

estagnant part : integral denotation ;

variable point numeral.e .

Thus both m123p and p123.45n0 are acceptable estagnant-partse.
The sexponent-parte is described in the rules
[ReBele@a 1agrh,i,3.0.4:C1]

egxyponent part : times ten to the power choice, power of ten,

times ten to the power choice : y

times ten to the power symbol ; letter e.

power of ten : plusminus option, integral denotation.

plusminus : plus symbol ; minus symbol.e .
The etimes-ten-to-the-power-symbole is represented by t he
subscripted ten n!'%o, but since this is not commonly available,
the eletter-ee is also permitted. The eplusminus-optione means
that the eplusminuse may be omitted. Examples of eexpcnent-
partse are ne-5, el, e+56n and nlo2n.

To review the above, we give some more examples of —ereal-
denotationse: npi123.4, .56789, U6U.6U4e-53p and o9871021p., Note
that n123.m0 is not a sreal-denotatione and there is good reason
that it should not be. The explanation is to be found in the
representation of the ecompletion-symbole [R.3.1.1.f], which is
the same as that of the epoint-symbole, so that, were pi123.no
permitted, ambiguities would arise. Also, nel15n, for example, is
not a ereal-denotations because it might be confused with an
eidentifieres.

1.9 Character denotations

Some echaracter-denotationse are [R.5.1.4] o"a", "c", "§n,
wenm, w3nwg and p""eupg, All except the last appear easy enough to
understand, according to the rule [R.5.1.4.1.a]

echaracter denotation :
quote symbol, string item, quote symbol.e v .
provided one can guess the meaning of estring-iteme

[R.5.1.4.1.b]. However, the edenotatione o""""p possesses the
value which is possessed ty the squote-imagee. This value is the
character P [R.5.1.4.2.a]. When we come to estring-

denotationse, in section 1.11, we shall see that the device
whereby the equote-symbole within a echaracter-denotatione is
doubled is a convenience which enables every member of the
available character set to be in a string.

12 An ALGOL 68 Companion

1.10 Modes

Values within the computer, considered up to now, have been
of four kinds, viz., truth values, integers, real numbers and
characters. Each member of one of these classes is of the same
"mode" [R.2.2.4.1] as any other member of the same class. These
modes are sboolean, integral, reals and echaractere,
respectively. TIf computing were restricted to these four modes,
it would ke dull indeed. A useful computer lanyuage needs to
consider values of other modes. For example, the symbol
manipulator often considers values of mode erow of charactere,
which he thinks of as character strings, and the numerical
analyst considers values of mode erow of row of reale, which he
thinks of as matrices of real values.

In ALGOL 68, a row of values of one same mode, known as a
multiple value [R.2.2.3.3], is also a value of an acceptable
mode, Thus, we may have values which are of the mode erow of
boolean, row of inteqral, row of reale or erow cf charactere. In
the diayrams such a multiple value will he represented as in

F - e f, Do T ey N T T T 1

| | | | | | I |

L A Lt L 1 1]
Fig.1.10

figure 1.10. Many more modes may be considered; in fact, the
number of different modes is infinite. We shall not concern
ourselves here with this interesting point, nor shall we discuss
some of the other modes. Our purpose is tc point out that erow
of charactere is a mode. There are edenotationse for values of
this mode and we shall now consider them.

1.11 String denotations

The syntactic rule for estring-denotatione [R.5.3.1.b] is
erow of character denotation : quote symbol,

string item sequence proper option, quote symbol. e
From what has gone before, the reader will surmise that the
following are examples of -strinq denotationse: ao"abc", "a+b",
“this,is,a,quote,symbol.""."n. Obser ve that in the strict
language, the representation of the —espace-symbole is no.no
[R<3.1.1.&]. The only feature in the above syntax, which we have

o"abc"o

Fig.1.11

An ALGOL 68 Companion 13

not yet encountered, is the use of the word epropere. The exact
explanation is to be found in the rule
oNOTION LIST proper : NOTION, LIST separator, NOTION LIST.s=

[R.3.0.1.g9]. It means that the sequence must contain at least
two members. The use of the combination eproper optione, means
then, that the sequence may contain either zero or two or more
members, This implies that p"a"o is not a estring-denotations,
but that o""p is. Since we have already seen that n"a"m is a
scharacter-denotatione, we can understand the reason for such an
unusual choice of .syntax. A estring-denotatione possesses a
value which is of mode erow of characters, Our diagrams may
represent it as in figure 1.11. The value possessed by o""o is a
row of characters with no elements.

1.12 0ther denotations

This discussion does not exhaust the esdenotationse of ALGOL
68, but it 1is sufficient for us to go on to other elementary
parts of the language. We shall return later to elong~integral-
denotationse like olong Ono [Re5.1.0.1.Db], elong-real-
denotationse 1like mnlong .1m, ebits-denotationse like ol101o
[R.5.2.1], eroutine- denotatlons- like o((ceal a,b) real : (a >b
| a | b))a [R.5.4] and eformat-denotationse like n$16x32d$n

[Re5.5]7.
1.13 Program example

Though we are not yet ready to write eprogramse, it is
helpful to inspect one and perhaps therefrom to glean some
ideas. The following will read some number of values from the
standard input file and then print a count of the numker, the
arithmetic mean of the values and their standard deviation.
Comments are enclosed by the symbol # or the symbol #.

nbeqin real s := 0 ¢for the sum of the valuese,
ss := 0 2for the sum of squaresg,
x #the current value#;
; n :=0 ¢for a count of the numher of valuesg;
i
(get(standin, x) #R.10.5.2.2. be;
S +:3= X ; Ss +:= x **% 2 ; n +:= 1 gR.10.2.11.4,e¢2);
put(standout, 2R.10.5.2.1.b2¢ (“count.=.",n,
",.mean.=.",s / n,
",..standard,deviation.=_"
sqrt((ss - s *x 2 / n) / n) ¢R.10.3.b#))
endn :

Points of relevance to this chapter are that there are four
svariablese mps, ss, xo and ono, some of which are initialized
with the value zero. Also, the sintegral-denotatione o0o occurs
three times and the eintegral-denotatione pilo, once. There are
three erow-of-character-denotationse. References to the Report
are provided as explanation of other points to be covered in
later chapters.

14

a)
b)
c)

d)

a)

b)
c)

a)
b)
c)
a)
€)

a)

b)

a)
b)
<€)

a)

b)

a)
b)
c)

d)

An ALGOL 68 Companion

Review rquestions

1.1 Language levels

How does one recognize a terminal [R.1.1.2.f] in the syntax
of ALGOL 68?

Are there two or three sywmbols of which the colon, o:m, is a
representation[R.3.1.1]?

Ara there any other representations which represent more than
one esymbole “R.3.1.17]?

Is the mack " (" a representation of a esub-symbole or of an
sopen-symbole or of both [R.3.1.1, 9.2.497?

1.2 Objects

What kind of object is possessed hy the edenotatione n3.14n
[Re2.2.2.4]7?

What object may possess a real value?

Is o3.14o an internal object or an external obdject?

Does omtruen possess struee or does strues possess ntruen?

1.3 Nanes

Can a real value refer to a name [R.2.2.3.5]7?

Can a name refer to a name?

Is a name an external object?

Can an external object possess mnore than one name?
Does an external object always possess a name?

1.4 variables

In the reach [R.4.4.2.a] of mreal xm, can the name possessed
by oxno refer to an integral value?
May oreal x, y, zo be a edeclaratione [R.9.2.c]?

1.5 Denotations

How many classes of plain values are there [R.2.2.3.1]?
Is there a class of plain values with finitely many members?
What distinguishes classes of values [R.2.2.4.1.a]?

1.6 Boolean denotations

In the syntax, how should the syntactic marks ":", ";" 4nd
" " hae interpreted [R. 1.1.4177
Is struews an internal object?

1.7 Integral denotations

Can two sintegral-denotationse possess equal values?

Is n-1230 an eintegral-denotatione [R.5.1.1.1]?

Can a sequence of one thousand digits be an eintegral-
denotatione?

Does every sinteqral-denotatione possess a value
[Re521.0.2.b1]2

a)
b)
c)
a)
e)

a)
b)

a)
b)

a)
b)
)

a)

b)
c)

a)
b)
<)
d)
e)

An ALGOL 6B Companion 15

1.8 Real denotations

Can two different esreal-denotationse possess equal values?
Is ol.o a ereal-denotatione?

Is o120 a ereal-denotatione?

I8 n12e-U4n a ereal-denotatione?

Is n-12elln a ereal-denotatione?

1.9 Character denotations

Is g""itg a echaracter-denotatione?
Does every ®string-iteme possess a character [R.5.1.4.217]?

1.10 HModes

How many different modes are there?
Row many different modes can a programmer specify?

1.11 string denotations

Is pt"nig a3 estring-denotatione?

Is n""o a estring-denotatione?

What is the mode of the value possessed by a estring-
denotatione?

1.12 Oother denotations

Are the values possessed by nlong Oo and olong long On the
same?

What is the mode of the value possessed by nl0lo [R.5.2]?

What is the mode of the value possessed by o$16x3zd $n?

1.13 Program example

What is the mode of the value possessed by "count,=.,"?
What are the modes of onsm and onn?

Does the example in 1.13 contain a ereal-denotatione?

fiow many eintegral-denotationse are there in the example?
Does the example contain a echaracter-denotatione?

16 An ALGOL 68 Companion

2 some fundamental concepts
2.1 Declarers

In chapter 1 we found that each value within the computer
is of a certain mode. (There is an exception, viz., the value
anile [R.2.2.3.5.a)], but we shall discuss this exception later.)
Thus, there are values of eintegrale mode, ereale mode,
scharactere mode, erow-of-charactere mode, and so on. The
programmer needs to have some way of specifying wodes, Lecause
when creating evariablese [R.6.0.1.e] he must help the computer
to decide how much storage to allocate., The programmer specifies
the modes by using edeclarerss [R.7.1].

There are five primitive [R.1.2.2.a] edeclarerse, These are
ointo, Wwhich specifies the mode esinteqgrals; =arealm, which
specifies the mode ereale; wpbooln, which specifies the mode
ebooleane; ncharm, which specifies the mode echaractere and
oformatno, which specifies the mode eoformate (of which we shall
hear more later). The mode of a ereal-variables, however, is
esreference to reale and not ereale. This mode is specified by
the edeclarers oref realn. A sedeclarere specifying the mode
srow-of-reale is o[Jrealn, or if actual bounds are requirced,
then say, n[1:10]realo. The mode of a real vector variatle is
ereference to row of reale and this mode is specified by a
declarer like opref[Jrealn or eref[1:n)realo. We see, therefore,
that other esdeclarerse may be built from the primitives by using
the symbols nrefom for ereference-tos and of]Ju for srow-ofe,
Other possible prefixes are nproc, structo and ouniono but thaese

may also involve the use of the symbols o(p and n)n.

This is not a full description of edeclarerse, but enough
for our present purpose. As a taste of what other esdeclarerss
are possible, we list a few examples:

2.2 Generators

At the heart of ALGOL 68 1is the notion egeneratore
[R.B.5.1]. There are two kinds of egeneratorse, elocal-
generatore and eglobal-generatore [R.8.5.1.1.a]. Syntactically,
a slocal-generatore is a elocal-symbole, nlocn, followed by a
sdeclarere, e.g9., nloc intm. A eglobal-generatore is an optional
sheap-symbole, noheapn, followed by a esdeclarece, e.g., nheap
realn or nrealm. The difference in semantics concerns the method
of storage allocation and particularly of storage retrieval. The
inexperienced programmer is unlikely to make explicit use of
sgeneratorse, but elocal-yeneratorse appear implicitly in sone
frequently used edeclarationse, so we shall introduce them now.

2.3 Local generators.
The syntactic rule for slocal-generators might be written

informally as:
local generator : local symbol, actual declarer.

An ALGOL 68 Companion 17

but the strict syntactic rule [R.8.5.1.1.b], in common with many
other rules, contains a feature which the reader'should now
observe. The rule is
ereference to MIDE local generator :
local symbol, actual MODE declarer, e -
The feature to be noticed is the occurrence of the "metanotion"
eMODEe, both to the left and to the right of the colon in the
rule. A full description of this two-level syntax is contained
in the Report [R.1.1). For the moment we may be content with the
explanation that the use of this metanotion is a device whereby
several rules of the language may be combined into one. If we
replace, consistently throughout the rule, the metanotion eMODEe
by a mode (one of the terminal productions [R.1.1.3.f] of eMODEe
like eintegrale or ereales), then we obtain a rule of the strict
language. For example, if we replace sMODEe by ereale, we obtain
the production rule
esreference to real local generator :
local symbol, actual real declarer.e :
If we replace it by ebooleans, we obtain the rule
sreference to boolean local generator :
local symbol, actual toolean declarer.e 5
This device, in this rule, enables +the syntax to tell us
something about the relationship btetween the mode of a
egeneratore and the mode of its edeclarere, Specifically, the
mode of a egeneratore is always ereference toes followed by the
mode of its edeclarere. In the example of the elocal-generatore
nloc realn, its declarer, nrealn, specifies the mode ereale, but
the generator, after its elaboration, possesses a value (a nane)
of mode ereference to reale; but this is the subject matter of
the next section.

2.4 The elaboration of a generator

The "elaboration'" of a eprogqrame consists of a sequence of
actions performed by the hypothetical computer. These actions
are explained in the sections, headed Semantics, in the Report.
We shall now examine the effect of the elaboration of a
egeneratore [R.8.5.1.2). A egeneratore creates a name, i.e., it
allocates computer storage. This name then refers to some value.
This process is so fundamental to the understanding of the

(external)mloc realn(5)

e s s e

(4)

(internal) ;(possess)
o(1) (3) —————1(2)
o0 > 1 |
o (refer to) L———dt
Fig.2.4.a

language, that we will attempt to make it clear by means of a
diagram. We may picture the elaboration of the egeneratore ploc
realn, as in figure 2.4.a. In this figure, the name is at 1, the

18 An ALGOL 68 Companion

value to which it refers at 2, the relationship of reference at
3, the relationship of possession at 4 and the external object
at 5. The broken line then separates the external object fronm
the two internal objects. The elaboration of the elocal-
generatore, nloc realm, thus creates a name which refers to sone
real value. The external object, nloc realo, is then nmade to
possess the name. This last action is thus pictured at 4. The
value referred to is some undefined real value. We shall see
later that this valne may be changed ("superseded"
[ReB.3.1.2.a]) by "assignment".

2.5 Identity declarations

sGeneratorse may occur in more than one context, but the
most important context is the sidentity-declaratione [R.7.U4.1],
We give first an example of an easy eidentity-declaratione
containing no egeneratore,

nint m = 4096n .

The effect of the elaboration of an eidentity-declaratione is to
make two different external objects possess the same internal
object. In the example at hand, we have an eintegqral-mode-
identitiere, nma, and an eintegral-denotatione, ol09%b6o. We have
seen in chapter 1, that o409 o possesses an internal object,
which 1is an 1integyral value. This situation may be pictured,

oint m = 4096n opint m = 4096n
I’_J'_‘—"'""l I"____"'"'{ I""J'--"-"I
|e4096m| | =4 096 = | | s4096 = |
| (| —— 4 L 3 1]
Fig.2.5.a Fig.2.5.b

before the elaboration of the sidentity-declaratione, as in
figure 2.5.a. After the elabhoration of the declaration, oint m =
4096n, the situation is as in fiqure 2.5.b, where omo now
possesses a new instance of the same integral value as that
possessed by oU096o. It is important to note that nmn does not
possess a name and, as a result, nmo wmay not appear as the
esdestinatione of an eassignatione, as for example in om := Oo.
In fact, am := Oo would be just as improper as nl096 := Oom. The
esidentifieres ompo is thus a econstante [R.6.0.1.d].

0f ygreater interest is the declaration of a evariablee, of

which
oref real x = loc realn
is an example. As we have seen already in section 6.4, the
programmer is permitted to write this in the extended form
nceal xo

[R.9.2.a]. The first step in the elaboration of this eidentity-
declarations is the elahoraticn of its eactual-parametere, which
is nloc realn. We have seen, in 2.4, that this will make nmloc

realn possess a name which refers to some (undefined) raal
value, This stage is pictured in figure 2.5.c. After the

An ALGOL 68 Companion 19

elaboration of the edeclaratione, the ereference-to-real-
identifiere nxm possesses the same value as that possessed by
nloc realn. The result, in pictorial form, is shown in figure
2.5.d. Here, because noxm now possesses a name, it may be used as
the edestinatione of an eassignatione, i.e.,, the value to which
the name refers may be superseded [R.8.3.1.2.a] by another value

nref real x = loc realn oref real x = loc realn
(0] (o] [0]
(o B o] o C [o N ¢]
Qpe=——m—""y o 05— 1
Y I L >4y I
| ST e | (| PR 4
Fig.2.5.cC Fig.2.5.d

(provided that it is of mode ereale). When examining diagrams,
such as the one in figure 2.5.c and d, we should keep in mind
the fact that the name possessed by an eidentifiere, which is a
evariablee, is unlikely to be a piece of storage set aside in
the data area. It is rather the value to which this name refers
which may be in the data area. The name itself is more likely to
be part of a machine code instruction. Since programs are not
usually permitted to alter their own coded instructions, it is
essential that the relationship of possession should not be
violated. Thus the name possessed is never changed. If we want
to reach down to the data area, then we must make use of the
name in order to find that part of the data area to which it
refers and which can be changed (superseded).

The possession of a name confers a special privilege. It is
as though the name is the key to a storage cell without which it
may not be unlocked. When it is unlocked, the content wmay be
changed, but without this key, i.e., without the name, the
content of that cell may not be changed, though it wmay be
examined, as if through a window. '

To recapitulate then, the elaboration of an eidentity-
declaratione makes its eidentifiere possess the same value as
that possessed by its eactual-parametere. This is what occurred
in both of the examples mint m = 4096n and mcef real x = loc
realn.

2.6 The syntax of identity declarations

We are perhaps getting a little ahead of ourselves, since
we have not yet examined the syntax of eidentity-declarationse.
This might be described informally by :

identity declaration
formal parameter, equals symbol, actual parameter.
but the rule in the Report [R.7.4.1.a] is
eidentity declaration : formal MODE parameter,
equals symbol, actual MODE parameter.e .
We see here again the use of the metanotion eMODEe, which

20 An ALGOL 68 Companion

enables one to condense many rules into one. The metanoticn mus
be replaced consistently bty one of its terminal productions
[R.1.1.5.a4], ©€.9., by #inteqrale or ereference to reales. Using
the latter vreplacement, we obtain the production rule
TRl Ya2e]

sidentity declaration : formal reference to real parameter,

equals symbol, actual reference to real parameter.e ,

Two of the notions in this rule envelop ([R.1.1.6.73] the mode
sreferance to reale. 1In the edeclaraticne pref real x = loz
realo, the mode of the eqeneratore nloc realo is ereference to
reale and that of the eformal-parametere nref real xm is also
sreference to reale, It follows from the rule on eformal-
parameterse [R.5.4.1.e], that oxo is then a ereference-to-real-
mode-identifiers,

2.7 Formal parameters

We must follow this a little further by examining the rule
for eformal-parameterse [R.5.4.71.e] which is
eformal MOLE parameter :
formal MODE declarer, MODE mode identifier.e
and in which the metanotion eMODEe appears three times. By
substitution we obtain the rule applicable to the sformal-
parametere nref real xm, viz.,
eformal reference to real parameter ;
formal reference to real declarer,
reference to real mode identifier.e .
The sformal-reference-to-real-declarere is nief realo and the
ereference-to-real-mode-identifiere is oxo [R.4.2.2].

2,8 An extension

The object

oref real x = loc realn
is a representation of a edeclaratione in the strict languaqe.
Although, as we have seen above, it enables one to explain the
meaniny of the eidentity-declaratione clearly, it is rather much
to write and would certainly not be popular with programmers. A
similar situation exists with the elisions of a natural
lanquage. It is well known that the sentence "“Who's that?n,
stands for the sentence "Who is that?", and that the former is
used more often than the latter. Moreover, in explaining the
meaning of the first sentence, we always use the second, strict
form, Similarly in ALGOL 68 we may write

nceal xn

to stand for

nref real x = loc realno

with the assurance that the meaning is the same [R.9.2.a]. The

T > 1
(M 1 v

oref real x = loc realo
XXARANXX XXXXX (2)

An ALGOL 68 Companion 21

effect of this extension [R.1.1.7] (one must resist the
temptation to call it a contraction) is that one may omit those
parts which are underlined with X's in figure 2.8. and then nmove
the eidentifiere in the manner indicated (provided that the
following symbol is b,m, n;m or o:=no), It is important to note
that in the extended edeclaratione gpreal xo, the eformal-
declarere pref realo (see figure 2.8 at 1) is omitted, but the
eactual-declarere nprealo (see figure at 2) from the egeneratore
remains. This is of significance when the edeclarerse are for
multiple values. :

Another extension, which we mention in passing, is that,
e.g., oreal x, real yo may be written nreal x, yo [R.9.2.c].

In the examples which follow, the edeclarationse nreal x,
Y. int i, j, n, [1:10]real x1, ylo will always be assumed. Thus,
unless contradicted by another sdeclaratione, mxo and oym will
have the mode sreference .to reale, wni, Jjo and pnm the mode
sreference to integrale and ox1o and oylo the mode ereference to
row of reale.

2.9 An assignation

We have seen before that a name is, as it were, a key with
which to unlock the value to which it refers. This key is needed
when an assignment is made. An external object of the form

ox := 3.14nm
({in the reach of the edeclaratione oreal xo), is an
sassignatione [R.8.3.1] and its elaboration involves an
assignment [R.8.3.1.2.b]. It consists of a edestinatione, which
is nxo, a esourcee, which 4is 3. 14o, and between the two a
ehecomes-symbole, @o:=n. First, both the esourcee and the
edestinatione are elaborated in unspecified order, or
"collaterally® [R.6.2.2.a] (see figure 2.9 at 1), i.e., we
obtain the values possessed by them. The effect of the

essssssssnsessssassssseference-to-real—-assignation
$ |

A

LD LE 1

| . | |
reference-to-real-destination becomes—-symbol real-source

| | |

ox := 3. 14
1 (3) : §
: () 2 (1)
2 o pme— i
R S A WP - | o._)._..l |==========(===:=====I |
[} K i (2) | IS - 4
Fig.2.9

sassignatione is the assignment of the value possessed by n3.14n
to the name possessed by oxpo (see figure 2.9 at 2). MNore
precisely, the name possessed by oXo is made to refer to a copy
(new instance) of the value possessed by ol.1llm [R.8.3.1.2.c,d].
An eassignatione, after its elaboration, possesses a value ani

22 An ALGOL 68 Companion

the value possessed 1is that of its edestinatione, which is a
name (see figure at 3).

2.10 The syntax of assignations

We should now examine the syntax of weassignationse, in

particular, the rule
sreference to MODE assignation :

reference to MODE destipation, becomes symbol, MODE source.e
[R.B.3.1.1.a]. Remembering that the metanotion eMJ)DEe should be
replaced consistently by some mode, we replace it by ereale and
obtain the rule

sreference to real assignation :
reference to real destination,
becomes symbol, real source.s® B

The important point to notice about this rule, which is the rule
governing the object nx := 3.14pm, is the fact that the mode
enveloped by the edestinatione is ereference to reals, while the
mode enveloped by the esourcee is ereale. We see therefore, the
requirement that the edestinatione must fpossess a name, while
the esources need not. Moreover the mode of the edestinatione is
always ereference-toe followed by the wode of the escurces,
Finally, we note that the mode of the eassignatione itself, is
the same as that of the edestinatione, as might be expected from
the discussion in the last paragraph.

We may now examine the ccnstruction
pint m = 4096 ; m := 4095n
and decide that om := 4095n cannot be an eassignatione, Lecause
omn does not possess a name, i.e., its mode does not begin with
eroference-toe. In fact, the mode of pun is eintegrale. We are
therefore justified in using the term econstante [R.6.0.1.d] for
the eidentifiere omn.

2.11 References

These subtle distinctions between sconstantse and
evariablese, the insistence on the difference in mode provided
by ereference-toe and the distinction between those values which
are names and those which are not, may seem a high price to pay
for the understanding of a progqramming language. Nevertheless,
it is at the very heart of ALGOL 68 and should be understood
well before proceeding further. Moreover, we shall find later
that it pays a handsome dividend in chapter 5 when explaining
the parameter mechanism in ecallse [R.8.6.2.2]1 of routines. Sonme
readers may be a little baffled and impatient for the reason
that many well known programming languages(¢(!) appear either not
to make this distinction or te consider it of no importance.
Even mathematicians (but perhaps not logicians) are guilty of
slurring over the differences in meaniny bhetween n2.3 + 4.5 and
oX + yo. Ingrained habits of thought are difficult to dislodge
and it is not easy for us to suppress our ire while
acknowledging that we have not properly understood sowmething

(1) Except for the languages LISP, SNOBOL and TRAC.

An ALGOL 68 Companion 23

elementary. We pursue this point a little further in our next
paragraph.

2.12 Dereferencing

If ox := 3.14p is an eassignatione, then surely ox := yno
(in the reach of the declaration wnreal yo) must be also.
However, the mode of pnxm and that of nym is ereference to reale,
while an eassignatione requires that the mode of the
sdestinatione should be ereference toe followed by the mode of
the esourcee. This means that the mode of nyn should be ereale.
It wonld seem then, that this object does not fit immediately
into the syntax of eassignationse. However, it is an
eassignatione. Diagrammatically, the situation is shouwn in
figure 2.12. The first step is the elahoration of the esourcee
and the edestinatione collaterally [R.6.2.2.a] (figure 2.12 at
1,2,3 and 4). However, the esourcee, in this object, reguires an
extra step in its elaboration. Since oyo possesses a Dhame
(figure 2.12 at 2) referring to a real value, this name is
"dereferenced" (figure 2.12 at 3), i.e., the value to which it

.ssessssssCeference-to-real—-assignation

. M -r a

| I |
reference-to- tecomes—~ real-source

real-destination symbol |

| | |
{u) s s eas ...l’.‘eal-—base

% se 4% BE se BB B4 S0 4e 44 we SE B8 gs B

| |
I | 2 1(3)
(6) | | : reference-to-real-base
| | : |
ox = ya
z (1) : 2 [2)
o e | ey o
s e @ 8" 8w 8a .O 0'—>—* l=="= <== }"'('-—‘0 0
o b () S— | o
Fig.2.12

refers is yielded (figure 2.12 at 4). The act of dereferencing
is known as a "coercion'", of which we shall hear much more later
[R.8.2]. There is thus an intermediate step during which oyo ,
as a esources, possesses a real number. This moment is pictured
in figure 2.12 at 4. From this intermediate situation we are now
ready to make the assignment (figure 2.12 at 5). The value of
the eassignatione is a name of mode ereference to reale (see the
figqure at 6).

The syntactic analysis of the eassignatione, ox := yo, is
not trivial and we are not ready to do it , though we have
sketched it roughly in fiqure 2.12. The wmain point is to
determine how noyo, which is of a priori mode ereference to
reale, can be considered, a posteriori, of mode sreales (see the
figure at 3). The crucial step is contained in the production
rule

24 An ALGOL 68 Companion

estrongly dereferenced to real base : reference to real base.e
which is obtained from 8.2.1.7.a of the Report by suitable
replacements of the metanotions. We do not intend to ge into
fuorther detail here, for coercion is the topic of chapter 6. Our
purpose 1is to affirm that ox := yo is indeed an eassignatione
even though the a priori mode of oym is not ersale,

The reader may wish to persuade himself, from what has gone
befora, that ox := y := 3,14p is also an eassignatione, and has
a different meaning from that of the, rather foolish,
eassignatione o(x := y) := 3. 14no.

2.13 Initialized declarations

The eactual-parameteres of an esidentity-declarations may
also be an eassignations. The pertinent rules are, in simplified
form,

actual parameter : unit ; ol
unit : unitary clause . .6
8
L]

s e

-

.b
2

W =
—

unitary clause : ... ; confrontation ; ...

o O

#1il.a, 8.2.0.d
confrontation : assignaticen : +3.0.1.4

Since nloc real := 3.14p is an eassiqgnations, this means that
nref real x = loc real := 3.1n is an eidentity-declaratione.

But we have seen that the object nref real x = loc realn may be
written oreal xm [R.9.2.a). This means that nreal x := 3. 14o is
also an eidentity-declaratione with the same meaning as that of
nref real x = loc real := 3.14n. This wmeaning should now be
evident once it is realized that the =assignatione, heing the
esactual-parametere, is elaborated before the final step of the
elaboration of the eidentity-declaratione. ALGOL 68 may thus be
considered as a lanquage which contains initiali zed
edeclarationse, although the defining Report does not mention
them.

2.14 Program example

The following eparticular-programe computes the components
(principal and interest) of the monthly repayments of a loan. It
first reads the principal, cpn, the interest rate per unit per
year, nrn, the number of times per year that the 1interest is
converted, oton, the constant monthly payment, ompm and the
number of years, nyn. It then prints an echo of the 1input,
followed by a table of four columns consisting of the month
number, the principal outstanding at the end of the month, the
component of the monthly payment which is principal and that
which is interest. A separate computation is made for the final
monthly payment. Critical computations are made using values of
mode eslong-reals.

obegin long real p ¢the principale,
r ¢the interest rate per unit per yearg,
mp #the constant monthly paymenteg,
int t ¢the number of times per year that the interest is
convertedZ, y £the nusher of years¢ ;
start here : read((p, r, t, nmp, ¥y)) 3

An ALGOL 68 Companion_ 25

outf (sitandout,
$1"repayment. schedule of.a.loan,of."9zd.2d,
1"interest,rate.pers. unit. 'd ud,
"_converted_"sz"_tlmes_perayear",
1"monthly.payment."7zd.24 ,".for."2zd".years."$,
(pe T, t, mp, ¥)) ;
if r > long 1.0
then print({neuline, "interest rate is too high"))
else long real mi = ¢monthly increment multipliere
longexp (leng(t s 12) * longln(long 1.0 + r / leng t)),
lonq real ap ¢accumulated principal at the end of the monthg ;
if (mi - long 1.0) * p > mp
thgn print ((newline, "payment does not cover interest"))
else int j == 0 ¢#¢the month numbere,
lonqg real interest ; y *:= 12 ;
outf{standout, $1 2x8a, 3(12a)3,
("month", "amount", "principal", "interest")) ;
format (standout, $1 uzd, 3(7zd.24d) 35)
¢this associates a format with the standard output filee ;
again : ¢#return to this point for each monthly calculatione
j #+:= 1 ; ap := p * mi ; interest := ap - p ;
if j > y ¢number of years is satisfiedse
or ap < mp ¢#the last payment is dues
then out (standout, (j, 0.0, p, interest))
else ¢reqular monthly paymenteg ; p := ap - mp ;
out (standout, (j, p, mp-interest, interest)) ;
go to again

fi
fi
£i
endn
The output from a run of the above program should be
REPAYMENT SCHEDULE OF A LOAN OF 1000.0
INTEREST RATE PER UNIT 0.0800 CONVERTED, 4/ TIMES PER YEAR
MONTHLY PAYMENT 100.00 for 1 YEARS.
MONTH AMOUNT PRINCIPAL INTEREST

1 906.62 93.38 6.62

2 812.63 9u. 00 6.00

3 718.01 94.62 5.38

4 622.76 95. 24 4.76

5 526.89 95. 88 4,12

6 430.38 96.51 3.49

7 333.23 97.15 2.85

8 235.43 97.79 2.21

9 136.99 98.44 1.56

10 37.90 99,09 0.91

1 0.00 37.90 D25

26

a)
b)
c)

d)
e)

q)
h)

f)

a)
b)
c)
d)

e)
f)

a)
b)
c)

1)

a)
b)
c)

An ALGOL 6B Companion

Review questions
2.1 Declarers

Is nreal refon a edeclarere?

Write down a esdeclarere specifying the mnode ereference to
reference to row of characters,

Is o[1formatn a edeclarere?

15 oref formatm a edeclarere?

Is nreal procm a edeclarere?

Can a value be of more than one mode?

Does a mode specify a edeclarere?

2.3 Local generators

How many ereal-generatorse are there [R.8.5.1.1]?
Write down a elocal-yeneratore which possesses a value of
mode ereference to characters,
Write down a sreference-to-hoolean-local-generatore,
Is there an esintegral-local-generatore?
Is the following a production rule of the strict language
[Rale1:85.a]7
ereference to row of character local generator :

local symbol, actual format declarer.e

Is ereal-procedure-with-hooleane a mode [R.1.2.1]?

2.4 Evaluation of a generator

Does the egeneratore mloc realo, after elaboration, possess a
Do2s the egeneratore omloc realo, after elaboration, possess a
value?

Can a real value refer to a esgeneratore?

Can a real value refer to a name?

Can a name refer to more than one value [R.2.2.3.5.a]?

Can a name refer to meore than one instance of a value
fReZe263:5.8)7

2.5 Identity declarations

Can two different external objects possess the same internal
obiject?

In the reach of onint m = 2o, can the value possessed by omo
be changed?

In the reach of nref real x = loc realn, can the value
possessed by nxn be changed?

Write down a elocal-generatore which, after elaboration,
possesses a value of mode sreference to row of procedure

raale,
2.6 Syntax of identity declarations

Is omode a = realo an sidentity-declaratione?
Is oref real xo a edeclaratione?
In the edeclaratione oref int nno, what is the mode of onno?

)

a)
b)
c)
d)

a)
C)

d)

a)
b)
c)

d)

a)
b)
c)
d)
e)

£)

a)

b)

a)
b)

C)

An ALGOL 68 Companion 27

Write a edeclarationes of- opm as a ereference-to-row-of-
procedure-real-mode-identifiere,

2.7 Formal parameters

Is nreal nn a eformal-parametere? :
Is of Jproc real pqro a sformal-parameters?
Is nloc realn a eformal-parametere?

Is nint 1o a eformal-parametere?
2.8 An extension

Write the edeclaratione nref real xxm in the strict language.
Write the esdeclarations nreal x, yo in the strict language.

Write the edeclaratione pmreal x, y := 3.14n in the strict
language.

Write nref ref real xx = loc ref real + 3.14o in the extended

language [R.9.2.a].
2.9 An assignation

Is 2.3 := 3.4p an eassignatione?

Does an eassignatione, after elaboration, possess a value?

Can an eassignationes, after elaboration, possess a real
value?

Is o(x := 3.14) := 3.15p an =assignatione?

2.10 Syntax of assignations

Is wloc real := 2.3o0 an sassignations?
Is ploc ref real := xo an sassignatione?

Is poloc ref real := 3.14m an eassignatione?

What is the ssourcee in the eassignatione px := y + 2n?

what is the mode of the eassignatione oxx := xo (in the reach
of oref real xx, real xm)?

In the reach of wnbool t = trueas, ;s ot := falseo an

eassignatione? J ' i
2.12 Dereferencing

What is the essential difference hetween the elaboration of
ox := yo and ox := 3. 14n?

Is any dereferencing necessary in the eassignatione opxx :=
xg, in the reach of mref real xx, real xmo?

2.13 Initialized declarations

What are the modes of omo and ono in the edeclarationse pint
n = 2o and pint m := 2o7?

Make a diagram illustrating the eassignatione® mnn := n
in the reach of oref int nn, int no.

Is it possible to apply an extension[R.9.2.a] to oref real x
= real := 3.14n7

= 1o,

ae

2.14 Program example

28

a)
b)
c)

d)
e)

An ALGQL 68 Companion

How mdny occurrences of ap esassignaticne are there ip this
eparticular—-programe?

What coercions are involved in the elabaoratiop of mp := ap -
mpa?

What is the effect of nj +3= An [R.10,2.11,472

Are there any eidentifierse which are econstantse?

What is the mode of npno?

An ALGOL 68 Companion 29

3 Unitary clauses
3.1 Introduction

The sunitary-clausee [R.B] is one of the basic building
blocks of the language. It corresponds roughly to what is known
as the statement or the expression in ALGOL 60. Some examples of
sunitary-clausese are, nx := y, x +y, re of z, 123o and o(x :=
1 3 y := 2)no. eUnitary-clausese are classified further into
econfrontations, formulas, cohesions, basese and other objects
like eclosed-clausese. Thus, nX := yo is a econfrontatione, uox +
yo 1is a eformulae, nre of zm is a ecohesione, pl123n is a ebases
and o(x := 1 ; y := 2)n is a eclosed-clauser.

We now give a simplified syntax of eunitary-clausese, using
the ordinary typefont, to remind the reader that this is only an
approximation to the syntax. The exact rules are in the Report
[R.8.1.1], but a simplified syntactic tree is in figqgure 3.1.

unitary clause : tertiary ; confrontation.

tertiary : secondary ; formula.

secondary : primary ; cohesion,

primary : base ; closed clause ;
conditional clause ; collateral clause.

unitary-clause
|

n 3 |

| |
tertiary confrontation

|

""" 1

| |
secondary formula

|

L

T 1

| I

primary cohesion

A
L] T L al

| |
base closed-clause conditional-clause collateral—-clause

Fig.3.1

The purpose of this chapter 1is to study some of the simpler
aspects of eunitary-clausese and to observe the usefulness of
the classification introduced by the syntax just given. This
classification will help us to decide, for example, the order of
elaboration in a eclausee like
ma or b := ¢ of d of e[f] - gn¢1) ’

where the modes of pma, b, ¢, d, e, fn and ngo are unknown. In
fact the order is as if we wrote

€1) Note that the operator moro may be declared in such a way
that it delivers a name,

30 An ALGOL 68 Companion

ofa or b) := ((c of (4 of (e[£]))) - g)nm .
The purpose of this syntactic classification, then, is to
relieve the ©programmer of the necessity for supplying these
parentheses himself. In addition, it aids the <compiler by
excluding certain mode dependent parsings.

esUnitary-clausese which deliver no value are known as
sstatementse [R.6.0.1.c], while other seunitary-clausese are
known as eexpressionse [R.6.0.1.b). This distinction is largely
historical and is of no significance in ALGOL 68.

3.2 Bases

sBasese are the most elementary eunitary-clausess, so we
begin with them. Some examples of ekasese are opi, 123, a[i],
sin(x)n and o(: random)n. A simplified syntax for base is

base : mode identifier ; denotation ;
slice ; call ; void cast pack. ’

but the strict syntax of the Report shonld be studied
[R.8.6.0.1]. esTdentifierse are as in other programming
lanyuages, e.g., nrandomn and njl4283cn. elfenotationses we have
met before in section 1.5, e.9., 07588 is an einteqral-
denotationes, n3.1n is a ereal-denotatione, nfalsen is a
shoolzan-denotationes, n"gq"n 1is a echaracter-denotatione and
n"abc'"n is a estring-denotaticne. Thus we are already familiar
with saveral obhjects which are ehasess. The ohjects nx1[i Jo and
nx2[d:e,jJo are eslicess, nsin(x)n is a ecalle and o(: random)n
is an example of a evoid-cast-packe. The classification of these
ohjects as ebasese tells us where they stand in the order of
elaboration, and we shall see later, also, that 4 ebasee is one
kind of ecoercende [R.B.2), i.e., an object upon which all
coercions must be expended. But coercion 1is a subject for
chaptar 6.

3.3 Identifiers

A emode-identifiere [R.4.1.7.b] is so called in order to
distinguish it from a elabel-identifiere, which is not a ebasee,
Both of these eidentifierse might be described by the following
simplified syntax rule

identifier : letter ; identifier, letter ; identifier, digit.

which means that an eidentifiere is what one expects it to be
from the use of that terns in other programming languages, i.e.,
a letter followed, perhaps, by any number of letters or digits.
The strict syntax, in the Report [R.U4.1.1.b,c,d], looks more
complex, for a reason which will appear in later discussions
concerning sfield-selectorse [R.7.1.1.i)]. Scme examples of
eidentifierse are, nmalyol 68, a, aib7d9, random, st pierre de
chartreusen (note that spaces are of nec significance within
eidentifierse).

A emode-identifiere usnally possesses a value. This value
is the same as that possessed by the same eidentifiere at its
defining occurrence. In the eassignatione nmx := y + 3p, the
epode-identifiers oxn, supposedly in the reach of the
sdeclarations wpreal xm, possesses a nhanme which refers to some

An ALGOL 68 Companion 11

real value. The value (name, see figure 3.3 at 1) which it
possesses is, in fact, a copy [BR.8.6.0.2.a] of the value (see
fiqure at 2) possessed by nxp at its defining occurrence, i.e.,
its occurrence as the eidentifiere of an eidentity-declaratione.
The effect of the elaboration of the second occurrence of pxpo in
nreal x ; x := y + 3o is shown pictorially in the figure 3.3,

nreal ¢= ¥y % 3n

O oo M
O ¢

(3)
(2)0 o <— (identity)-> o o (1)
o o
| r =y |
s St | =<

— 4

Fig.3.3

where the identity of the two instances of the same name is
indicated at 3. In this figure one should note that the second
occurrence of oxo possesses a copy of the name possessed by the
first occurrence of nxom. Consequently both names refer to the
same instance of a real value [R.2.2.2.1]. The reader should
consult the Report [R.4.1.2] which contains a careful
description of the method by which this identification of
sidentifierse is made.

3.4 Slices

We continue our discussion of ebasese; the next are
sdenotationse, but we have seen these before in chapter 1, so we
go on to eslicese. In the reach of the edeclarationse n[1:n]real
x1, [1:m,1:n])ceal x2no, the following are examples of eslicese

ax1[i], x2{i,3), *2[,31, x1[2:n], x2[i,20], x2[i]a .
A simplified syntax of eslicee is
slice : primary, sub symbol, indexer, bus symbol.
indexer : trimscript ; indexer, comma symbol, trimscript.
trimscript : trimmer ; subscript.
but the strict syntax of the Report [R.8.6.1.1] contains much
more than the skeleton shown above.

The most important point to notice about a eslicee is that
its first constituent notion, e.qg., the oxlo in pxi1[i]o, is a
eprimarye. Also notice that a eslicee, being a ebases, is itself
a eprimarye. Following the eprimarye of a eslices is a esub-
symbole, represented by wo[o, then an eindexere and finally a
ehus-symbole, represented by oln. Thus all of the following, in
the above examples, are eindexerse: nmino, oi,jo, o, jo, o©o2:nn,
pi,?0n. An eindexere is one or more etrimscriptse, separated by
scomma-symbolss, A etrimscripte is a etrimmere or a esubscripte.
The objects nin and ojn are ssubscriptse and m2:nn and pa0p are
etrimmerse, A esubscripte is an eintegral-tertiarye.

In order to accommodate those users whose computers have a
limited character set, a weslicee 1like ox1[i]on may also be
written nx1(i)o [R.9.2.9]. However, we shall not use this

32 An ALGOL 68 Companion

possibility in this text since it then becomes difficult to
distinguish between a eslicee and a ecalls, like osin(x)o.

3.5 Multiple values

A multiple value, as we have seen in chapter 1, is a row of
values [R.2.2.3.3.a). We pay represent it diagrammatically as in

r T T e T T T -

| | | | | | | |

L AL e A L A el A]
Fig.3.5.a

figure 3.5.a, though we shall see later that this picture is not
complate, Sometimes a name may refar to a multiple wvalue, in
which case we may think of it as a multiple evariables, The
difference between the effect of slicing a multiple evariablee
and that of slicing a multiple econstante is important and we
shall now investigate it Lty example. Suppose we have the two
edeclarationse o[1:3)int nt1 := (1, 2, 3)o and o[1:3]int ul = (1,
2, 3)vn. The object n(l, 2, 3)o looks and acts 1like a
sdenotatione of a row of integers, but it is actually a

o[1:37int w1l = (1,2,3)n o[1:3]int n1 := (1,2,3)0o

: 0

CRE IO B o: l"""<_--0 O

: | Q

b (1) D (1)

| I

""""" 7 o 1 l""‘ r— T 1

| | | | | | |

L 1 1 o ¥ { ST i ik 1

Fig.3.5.b

scollateral-clausees [R.6.2). The affect of the elaboration of
these declarations is shown diagrammatically in figure 3.5.b,
from which we see clearly that oulo is a multiple econstante and
onln is monltiple evariaklee, The "D" 1in the figure, at 1,
indicates that a "descriptor" [H#.2.2.3.3.b], which descrikes the
elements, is also part of a multiple value., For the moment we
shall ignore the presence of a descriptor. If we subscript a
multiple econstante we would expect to obtain a seconstante,
€.9., aul[2]m but if we subscript a multiple evariablee, we
obtain a evariablee [R.2.2.3.5.¢], e.9., oni[2]e. Thus anl{2]) :=
bp is an eassignatione but pul[2] := Um is not. This 1is shown
diagrammatically in fiqure 3.5.c, where the name possessed by
onif 2ln (at 1) is constructed from the name possessed by onin
and the esubscripte 2o [R.2.2.3.5.c]. The effect is obtained
syntactically by the fact that the eprimarye of a eslicee is in
a weak position. It involves the «concept of weak coercion
[R.B.2], which we will discuss more fully in chapter 6.

An ALGOL 68 Companion 33

oulf 2) ni[2]o
- o(1)
: o o
: o
- |
= = mp—amege = =R e IRl e e iy
| | | |
| U — - T PR | [| S e
Pig.3.5.c

Observe now the use of the word eweake in the rule B.6.1.1.a of
the Report.

3.6 Trimmers

A programmer who is manipulating multiple values may wish
to choose certain subsets of a multiple value and to allow an
external object to possess that subset or a name to refer to it.
For example, one may wish to choose a row or a column of a
matrix or even a submatrix of a given matrix. This may be done
by using a etrimmere, although, if that subset is to consist of
a single element, then esubscriptse are sufficient. To
illustrate the use of etrimmerse, consider the edeclaratione
of 1:3]int n1 := (5, 7, 9)o. The eslicee nnif2)o is a svariablee
referring, at the moment, to a7a, but the eslicee un1[2:3]n is a
evariablee referring to a row of two integral values «7e« and
«9s; moreover, being a eprimarye itself, it may be subscripted
(if one insists on being foolish), so that on1[2:3][1]n is a
syariablee referring to the same integral value =7s and the
eformulae oni[2:3][1] = n1[2]n possesses the value wtrues. In
fact, it will always be strues no matter what assignments are
made to nnlon. Another way of saying this is that the eidentity-
relatione on1[2:3][1] :=: ni[2])o possesses the value atrues.

The effect of the strimmere pml:um is then to restrict the
range of values of the subscript to run from the value of plp to
the value of pnum and to renumber, starting from wela. If the
renumbering from s1ms is not desired, then the etrimmmere should
be written ml:u@bpn, where the value of obm is to be taken as the
new lower bound. This means that, e.g., oni1[2:3d30)(0] :=: ni1[2]n
possesses the value strues. We may think of this in the sense
that if w©p@bo is omitted, then the default value of obn is slas,
but the fact that the enew-lower-bound-parte may be empty is
actually built into the syntax [R.8.6.1.1.f]. A further
examination of the syntactic rule for strimmerse reveals that
the plo, the pun and the odbn may be omitted, i.e., the elower-
bounde or the supper-bounde or the enew-lower-bound-parte may be
empty [R.8.6.1.1.£], If the elower-bounde of a etrimmere is
empty, then the lower tound of the eslices, in that subscript
position, is the same as that of the eprimarye which is being
sliced; if the supper-boundes is empty, then the corresponding
upper bound of the eslicee is the same as that of the eprimarye;
if the enew-lower-bound-parte is empty, then the subscripts of

34 An ALGOL 68 Companion

the eslicee, in that subscript position, will start from sla. It
is even possible for all three to be empty at the same time.
Thus oni1f:] ::=: ni[1:3lo will possess the value strues.
Extension 9.2.f, in the Report, allows the sup-to-symkbole to be
elided, under certain circumstances, so that the above
eidentity-relatione might be written oni[] t=: ni1[1:3 Jo.

If the edeclaratione of 1:m,1:n]Jreal x2o is used as that of
an m hy n matrix, then nx2[i]o refers to the i-th row of the
matrix, ox2[:,jJo, or even nox2[,jln ([(R.9.2.f], to the j-th
column and nx2[a:b,c:d]ln may refer to a certain submatrix, if
the values of pma, b, ¢co and ndn are appropriate. The rules for
strimmerse [R.B.6.1.1.f,9,h] should be examined to see that wol,
un and nbn in wl:u?abnm are all eintegral-tertiariese., In
particular, a sformulae is a etertiarye but an eassignaticne 1is
not, so that ox2[i +:= 1, j of r]ln is an acceptable eslices hut
ox2[i1 =1+ 1, j of rm is not. The latter, to be acceptable,
should appear as ox2[(i :=1i + 1), j of r]o.

3.7 Calls

A simplified syntax of a escalle is
call : primary, open symhol, actual parameters, close symbhol.
actual parameters : actual parameter ;
actual parameters, gomma, actual parameter,

gomma : Jo on symbol ; comma symbol.
but the strict syntax is to be found in the Report [R.B.6.2.1.a,
5.4.1.¢, 5.4.1.d). Examples of ecallse are nsin(x), char in
string ("a", i, s)o and nf(n; a, b)o. These are familiar
features from other programming languvages, except perhaps the
possibility of nusing a ego-on-symbole, represented by op;n, to
separate the eactual-parameterse of a ecalle. This possibility
is prasent so that the programmer may, if he so wishes, match a
similar se of a eyo-on-symbole in the corresponding ercutine-
denotations [R.5.4.1)], where its use will ferce the 2laberation
of the eactual-parameterse serially rather than collaterally.
Thus, in the ecalle of (n; a, b)n, the nnn might be used as a
bound for the arrays man and phn, provided that a ejo-on-symbole
was used 1in a similar position in the eroutine-denctatione
possessed by nfo. Hote that the ego-on-symbole in a ecalle has a
decorative effect only., It is the presence of a wego-on-symbole
in the eformal-parameters-packe of a sroutine-denotatione which
has the controlling effect.

sRoutine-denotationse are important and must be understood
befora wWwe examine the semantics of ecallse; however, sroutine-
denotationse will be discussed in chapter 5, so we will postrpone
our explanation of these semantics until that time.

The most important point to notice about the syntax of a
ecalle is that 1ts first constituent nction, e.g., osinp in
nsin(x)o, must be a eprimarye. Also notice that a ecalle itself
is a eprimarye so that na(b) (c) (d)o might well be a e®calle in
which the order of elaboration is that suggested by
of((a(b)) (¢)) (d)n. As we have already remarked, in secticn 3.4,
in som2 programs it may not be possible tc determine whether

An ALGOL 68 Companion 35

pa(b)m is a weslicee or a ecalle, without knowing the mode of
nao, but since the parsing tree is similar for these two, this
is of no great hardship for the compiler. We shall see later
that the object oif x < pi/2 then cos else sin fin is a
eprimarye and therefore nif x < pi/2 then cos else sin fi (x)n
is a ecalle. It so happens that mbegin r := s + 2 ; sin end (x)nm
is also a ecalle, and perhaps some programmer will find it
useful.

3.8 Void cast packs

An exanple of a svoid-cast-packe is
o(¢voide = x := 2 * x + 1)np
Its purpose is to void the mode of the eunites contained there1n
in those situations where this is not done implicitly, such as
in m; x := 2 * x + 1 ;o, where the eassignatione is turned into
a estatemente by the fact that it is preceded and followed by
ego-on-symholse. An example where a evoid-cast-packe is needed
is
npLoc gvoide p = (fyoide : x := 2 * x + 1)n

where opo is made to possess a routine, which contains an
eassignatione but the eassignatione should not itself be
elaborated until opo is called. The object pmproc ¢voide¢ p = (x
:= 2 * x + 1)o is not an eidentity-declaratione (the programmer
might find it confusing anyway). A full explanation of the above
edeclaratione involves the concept of coercion which we shall
take up in chapter 6. Readers whose curiosity is aroused may
wish to follow the syntactic analysis suggested by 74a,b, 61le,
81a,b,c,d, 8204, 823a, 860b, B834a, 6le, 81a, B20d, 828a, and
those who could have found it for themselves need not be reading

this book!

A simplified syntax of evoid-cast-packe is
void cast pack :
open symbol, cast of symbol, unitary clause, close symbol.
but the strict syntax is found in more than one place in the
Report [R.8.3.4.1.a, 3.0.1.h, 7.1.1.2].

The svoid-cast-packe may appear to play the role of a
eroutine-denotatione in the case of those routines which deliver
no value and have no eparameterse. An examination of the Report
[R.5.4.1] will reveal that there are indeed no such eroutine-
denotationse. There is however, a proceduring coercion and this,
together with the evoid-cast-packe fills the need. But more
about this later.

3.9 Cohesions

A ecohesione is either a egenerators, e.g., norealo, or a
eselectione, e.g., nre of zpn. The strict syntax is:

«MODE cohesion : MODE generator ; MODE selection.se
[R.B.5.0.1.a]. A scohesione, like a ebasee, is also a class of
scoercendes upon which all coercion must be expended, but we
shall discuss coercion later. We have already examined
sgeneratorss, so we now turn to eselectionse,

36 An ALGOL 6B Companion

3.10 Selections

An example of a eselectione is ore of zv in the reach of
the edeclaratione ostruct (ceal re, im) zom. A simplified syntax
of eselectione is

selection : field selector, of symbol, secondary.
but in the strict syntax of the Report [R.8.5.2.1.a] several
metanotions are used with penetrating effect. 1In order to
understand the meaning of a eselectione, Wwe need to know that
some values, unlike multiple values, may be built from several
values whose modes may be different. Thus we wmay build a
"structured" value consisting of one or more "fields"
[R.2.2.3.21 in which the value of each field has, possibly, a
different mode, The fields of a structured value are then
selected by efield-selectorse, which look like sidentifierse but
which, syntactically, are not eidentifierse. For example, in the
eselectione ore of zm, the efield-selectore is pream.

An example of a edeclarere which sggéifies a structurei
mode is mstruct (real value, string name)n. ‘Values of such a mode
then consist of two fields, one whose mode is ereale and another
whose mode is erow of charactere. If one wishes to obtain, or
assign to, the sreale field of a evariablee pro referring to a
value of such a mode, this is done by using the eselectionse
ovalue of ro; the string field is oktained by the eselectione
oname of ro. Note the similarity with the eslicee ox1[i]n, wheres
an element is selected from the value of the eprimarye according
to the value of the esubscripte niom. In the selection mvalue of
ra, an element is selected from the value of the esecondarys
oro, using the efield-selectore ovaluem. There is, however, one
essential difference in that the value of the subscript, mpiao,
may vary dynamically, whereas the efield-selectors, nvaluen,
cannot. This makes field selection an’ inherently efficient
process.

As with a eslicee, the value of a sselectione from a
esecondarye which is a evariablee, is also a evariablee, but the
value of a selection from a esecondarye which is a econstantes,
is a econstante. Thus with the edeclaraticnse aostruct(int i,
bool b) ib := (1, true)m and o struct(ceal r, char c) rc = (1.2,
"k™myp, ni of ibm is a evariablee and oi of ib := 2p is an
acceptable eassignatione; however, oc of rco is a econstante and
oc of rc := "m"p is not permitted. The reader may wish to note
that these effects are oktained, syntactically, through the use
of the metanotion REFETY and the word eweake in the rule
8B.5.1.1.a o¢f the Report. The same remark applies to the rule
8.6.2.1.a for eslices,

It is important to observe that a eselectione is always
made from a esecondarys and in this way it differs from a
eslices, since only a eprimarye can be sliced. This means that
the order of elaboration of the object ma of b[c]o must be the
same as that of pma cf(b[c])o, for ma of bn is not a eprimarye.
Also, a eselectione is itself a esecondarye so that ma of b of c
of don may be a eselection whose order of elaboration is
suggested by oma of (b of (c of d))m. Observe that if wodo is a

An ALGOL 68 Companion i

esvariablee then pa of b of ¢ of do is also a evariablee.
3.11 Formulas

A simplified syntax of eformulae is
formula : operand, dyadic operator, operand ;
monadic operator , operand.

operand : tertiary.
but the strict syntax contains much more information [R.B8.4.1].
eFormulase with two soperandse are known as edyadic-formulase
and those with one soperande are emonadic-formulase., Since the
same symbol may be used both as a edyadic-operatore and as a
smonadic-operatore, as for example in o(- a - b)o, one must
rely upon some context to determine the full extent of a
sformulae.

A major new feature of ALGOL 68 is the fact that operations
may be declared. This means that any eoperatore, e.g., n+m, mnay
not mean what we think it means unless we have examined the
srangese in which it occurs. An exanmple of an eoperation-
declaratione is

oop or = (real a, bjreal : if a > b then a else b fin .
but since this involves eroutine-denotationse, which we have not
yet discussed, we shall postpone a full examination of
soperation-declarationse,

The syntax given above shows that an eoperande must be a
etertiarye. Also, the syntax given in section 3.1 [R.8.1.1.b]
shows that a eformulae is itself a etertiarye. From this we may
deduce that the elaboration of the eformulae wa of b[i] + co is
in the order suggested by o(a of (b[i])) + co. The reader may
find the following summary useful:

a eprimarye may be sliced and a eslicee is a eprimarye,
a esecondarye may be selected from and a eselectione is a
esecondarye,
spoperandse are etertiariese and a eformulae is a etertiarye,
[R.B.6.1. 1.2, B.6.0.1.a, 8.5.2: 1. a; 8.5.0.1.4a, Bl bty
8.1.1.b,c,d].

A set of standard operations, which the Fprogrammer might

DYADIC MONADIC
___________________ . —
1 2 3 4 5 6 7 8 9 | (10)

p— - - | —
o-:= or & = < - * up i | ~ - + / down up
+:= # < + + lwb | abs bin cepr
*r= 2 +: upb | lwb upb lws ups
/3= > / lus | leng short
+3= elem ups | odd sign round
$1:= | e im conj
= | btb ctho

i i A

Fig.3.11

38 An ALGOL 68 Companion

expect of any prograeming language, is provided [R.10.2] and
standard priorities (from 1 to 9) are given ([R.10.2.0). This
standard set is to be found, in summary, in 8.4.2 of the Report
and 1is reproduced here for convenience. There arce nine
priorities (from 1 to 9) for the edyadic-operatorse. The
smonadic-operatorse all have the same priority (effectively 10)
and when used consecutively, are elaborated from right to left.
A typical epriority-declaratione is
npriority + = 6n

and in fact, this is to be found in the estandard-preludee
[R.10.2.0.a). Operations whose eoperatorse have the highest
priority are elaborated first. This wmeans, e.q., that the

sformulae pa < b = ¢ > do is elaborated in the order suggested
by m(a < b) = (¢ > d)n. Also, the value of m(-1 up 2 + 3)o and
o(3 =1 up 2)o are ele and =2s respectively, a fact which may

com® as a surprise to users of some other lanquages(¢1), In
justification of this choice one must observe that, when
soperatorss and their priorities may be declared, a simple rule
for the priority of emonadic-operatorses is essential. Consider,
for example, the formula

nx
We know immediately tha
suggested by

b

abcyde zo .
t the order of elaboration is that

nx a (b (cy))d (ez)n '
since the monadic operations are performed first, while the
priorities of the edyadic-operatorses nan and ode will settle any
doubt which may remain.

It would take too long to describe all the operations which
are provided in the estandard-preludee, and indeed this would be
a waste of time, for their precise definition is given in
Chapter 10 of the HReport. We shall be content with mentioning
some of the less familiar eoperatorse, beginning with those of
the highest priority. i.e., the smonadic-cperatorse, The
soperatores mnlengm operates cn an integral, a real or a complex
value delivering a value whose length (precision) is 1increased,
while wmshortm has the opposite effect. In some installations
this may mean the change from single precision to double
precision and the reverse [R.10.2.3.q, 10.2.4.n, 10.2.7.10n]. One
should be careful to distinguish between nleng 1.0m which is a
eformulae, and nlong 1.0m, which is a edenotatione
{Re5.1.0.1.b]. The value of modd U4n is efalses [R.10.2.3.s]. The
value of obin 5o is that of ®©101n, i.e., wobinu operates on
integral values and delivers bits [R.10.2.8.17. The value of
pabs "a%o 1is some integral wvalwne, which is implementation
dependent, and that of nrepr abs "a"m is eas, i.e., ocepr abso
is the identity operation on any character [R.10.7.73,k]. Also,
mabs true = 1, abs false = Oo [R.10.2.2.f] and owabs 101 = 5o
[R.10.2.8.1i7, all have the value strues; in fact, obin abso is
the identity operation on certain bLits values. The operator
obtbo converts erow of booleane to bits, e.q., wobtb(true, false,
true) = 101o [R.10.2.8.1] and octbn converts erow of characters
to bytes [R.10.2.9.d]. The inverses of nbtbn and octbm are not

1) Except for users of, e.g., JOVIAL, SNOBOL and APL.

An ALGOL 68 Companion 39

necessary since that job is done by coercion [R.B.2.5.1.c,d].
The emonadic-operatorse nmup, downo and o/n operate on semaphores
and are concerned with synchronization (parallel processing). We
shall not discuss them further here [R.10.4]. The operators
oupb, lwb, upsm and nlwsn are concerned with arrays. We may best
nin, so that onlm is a evariablee referring to a row of integral
values whose index has a lower bound of e2s, which is fixed and
an upper bound of s5s, which is flexible. Then pupb n1 =5, 1lwb
nl1 = 2, ups n1 = false, lws nl = truem¢1), These eoperatorse are
also dyadic and nl upb n1 = upb nim, for all arrays nnilo, while
the eformulae o2 upb n2o delivers the value of the upper bound
in the second subscript position of the array non2no.

There 1is one standard edyadic-operatore nim or ol!o of
priority 9 (the programmer may create more if he wishes). The
value of @px i yo is a complex number with real part pxo and
imaginary part oyo [R.10.2.5.f7. In the standard edeclarationse
the result of the edyadic-operatore n/n, edivided-bye, is real
(or complex) and that of p#nm is integral (integral division of
two integral operands). The operator nelemn delivers an element
from bits or bytes, e.g., n2 elem 101m delivers afalses. Note
that ©o2 elem b := trueo is not an eassignatione [R. 10.2.8.k,
10.2.9.c]). Manipulation of bits can be achieved with the
operators nor, and, upn and nnotm [R.10.2.8.d,e,h,m]. The value
of on #: mo is ono modulo amp, i.e., the remainder obtained on
dividing ono by omo [R.10.2.3.n]. Apart from the fact that mabso
is an operator on real, integral and complex values, rather than
a ecalle, i.e., it 1is not mpabs(x)m, the remainder of the
epoperatorss are probably familiar to most programmers with the
exception of a set of —wesoperatorse of lowest priority =1s. A
typical example is n+:=n, which we can explain by saying that
the eformulas @px +:= 1o has the same effect as nx := x + 1o,
Another edyadic-operatore with priority e1e is o¢=:n, which may
be unsed with two eoperandss of mode erow of charactere
[R.10.2.11.r,t). After elaboration of the eformulae ms +=: tno,
in the reach of nstring s := "abc", t := "def"no, we have ps =
"abc"o and ot = ‘"abcdef"o. On the other hand, after the
elaboration of the eformulae ns #+:= "g"m, we have ns = "akcg"no.

The reader should be careful to note that several
epoperatorse have more than one representaticn, e.g., the eplus-
i-times-symboles has three representations and the eup-symbole
four [R.3.1.1.c] (morevoer, many representations are not
available in this preliminary edition due to the limitations of
the TN print chain).

3.12 Confrontations

There are four kinds of econfrontations according to the
strict rule

(1) Here it is more convenient to say n2%*2 = U4p rather than the
longer but correct statement p2*¥2 = Un rpossesses the value
strues,

40 An ALGOL 68 Companion

*MODE confrontation : MODE assignation ;

MODE conformity relation ;

MODE identity relation ; MODE cast. e
[R.B.3.0.17.a]. The object mx := y + 20 is an eassignaticne, nr
::= in is a econformity-relatione, pa :=: bo is an eidentity-
relatione and pnreal : im is a ecaste. Enough has been said about
sassignationses already in sections 2.9 and 2.10. eConfeormity-
relationse have to do with united modes, which we have not yet
introduced, so it is as well to postpone this discussion to
chapter 7. We shall therefore confine our attention here to
ejdentity-relationse and ecastse. Before passing to these, we
should see that since a econfrontatione is not a etertiarye, and
therefore not an eoperande, the elaboration of the eassignatione
OXX OC yY := xo is done in the order suggested by o(xx or yy) :=
xo. Such an eassignatione might well be possible if the
soperatore porm has been declared in such a way that it will
deliver a nane,

3.13 Identity relations

There are two sidentity-relatorse, the eis-symbole,
represented by wo:=:n and the eis-not-symbole, represented by
o:#:o0. A simplified syntax of the eidentity-relatione is

identity relation : tertiary, identity relator, tertiary.
but the strict syntax of the Report contains more detail to
account for the balancing [R.6.4.1] of modes.

The elaboration of the weidentity-relationes is normally
quite simple. We ask the guestion whether two names, of the same
mode, are the same. This means, in most implementations, asking
whether two storage addresses are the same rather than whether
they have the same content. As an example, suppose t he
edeclaratione nreal x, yo has been made. The sidentity-relatione
ox :=: yo then has the value wfalsews, despite the possibility
that we may have elaborated the eassignationse opx := 3.1, y :=
3.14n. This is because the edeclaratione nreal xn (strictly oref
real x = loc realm) involves the elaboration of the esyeneratorse,
nloc realo, which creates a name different from all other names
[R.7.1.2.d Step B]. The same applies to nreal ym. Hence, the
name possessed by oxo is not the same as the name possessed by
nyn. After the edeclarations nref real a = xo, the name
possessed by pap is the same as the name possessed by mxo, but a
different instance of that name. Consequently, the value of the
sidentity~-relatione nox :=: an will be etrues and will remain
strues no matter what assignments are made to mam or to pxno.
Notice that an assignment to wmam is at the same time an
assignment to oxn.

Now suppose that the edeclaratione pref int ii, jj, int im
is elaborated followed by the eassignationse oii := i, Jj := im.
The sidentity-relatione mii :=: jjo possesses the value mfalses,
for a similar reason to that explained above, but the sidentity-
relations njj :=: im then possesses the value strues. That this
is so can be seen by a close examination. We present this in
figure 3.13. We see in the fiqure at 1 and 2 that the a priori
modes of the eidentifierse c¢n each side of the sis-symbole are

An ALGOL 68 Companion 41

not the sanme. Since an eidentity-relatione must have
etertiariese of the sase mnode [R.8.3.3.1.a] (each of which
begins with esreference-toe), there is a coercion, known as
"dereferencing" [R.8.2.1.1], of the ebasee, njjo (see the figure
at 3), whereupon the eidentity-relatione delivers the value
strues (see the figure at 4). Observe that there is, strictly
speaking, a coercion on the right also, but since the a priori
mode and the a posteriori mode are the same its semantic effect
is therefore absent. Since the dereferencing may occur either on
the 1left or on the right, but not on both sides, there are two
alternatives in the strict syntax of eidentity-relationse
[R.8.3.1.1.a]. The reader should notice that in this syntax, one
of the —etertiariese 1is ®soft"™ and the other is "strong".

boolean-identity-relatioNeeecececccacawases
| :(4)

r e - " strues

| | |
strong-reference-to- | soft-reference—t o-
integral-tertiary identity-relator integral-tertiary

I | |
strong-reference-to- soft-reference-to-

integral-bas€..ccceceaas integral-base
| |
(coercion) (3) (coercion)

(1)
reference-to-reference
to-inteqgral-base

|
reference-to- (2)
integral-base

4

=

we WA EE w0 am s

i %
oij s=s ino
o o o
O O==—m=m D 0 0 <---(identity)---> o0 o
o) o
| I
| 2| |
[, N v e
| ESS————

Fig.3.13

In the case of ojj :=: ipm, the min is soft and the njjo is
strong. This 1is a matter concerned with coercion and the
balancing of modes which will be discussed in chapter 6.

3.14 Casts

The object
oceal : 2m
is a trivial example of a ecaste [R.8.3.4.17.a], but it 1is good
enough to illustrate that a ecaste consists of a edeclarere
followed by a ecast-of-symbole followed by a eunitary-clausee,
The purpose of a ecaste is to coerce the value of its eunitary-
clausee into a value of mode specified by its edeclareres, The
example given is trivial because its value could be obtained
more easily from the ereal-denotatione n2.0mo.

42 An ALGOL 68 Companion

esCastse play an important role 1in eroutine-denotationse,
which are discussed 1in chapter 5. We shall see also that they
are used instead of eroutine-denotationse for those routines
which lack weparameterse. Otherwise, a scaste is pccasionally
useful to effect a coercion which is not implied by the context.
For example, nstring : "a"e is a multiple value, i,e., a row of

characters with one element, and objects like o(ref cell : next

of cell) :=: nilo are essential to 1list processing (see
R.11.12). A ecaste may have a esvoid-declarere, in which case it
is a evoid-caste, e.g., n:x := yo. A wevcid-caste yields no

value. An examination of the syntax will reveal that a evoid-
caste occurs only as a evoid-cast-packe [R.B.6.0.1.b), e.qg., of:
x := y)u, or as part of a eroutine-denctatione [R.5.4.1.b]7,
e.g., w©: get bin(stand back, x)m in o({]Jintype x) : get
bin(standback, x)o [R.10.5.4.2.a). A evoid-cast-packe is5 a
eshasee, as we have already seen in section 3.8. eCastse which
are not oevoid-castse "envelop" [R.1.1.6.3] a mode and are
sconfrontationse., 0One reason for the exclusion of evoid-castse
from econfrontationse is the ambiguity which might otherwise
lurk in the obhject mx :=: yo or nx := :yn.

For those ecastse which envelop a mode, a simplified syntax

is
cast : virtual declarer, cast of symbol, unitary clause.
[R.B8.3.4.1.a]. A evirtual-declarere [R.7.1.1] is a edeclareres in
which all eindexerse contain esboundse which are empty. To £find
typical examples of ecastse we need only examine edeclarationse
involving routines, of which there are a large number in Chapter
10 of the Report. One of them is
nop abs = (bool a)int : if a then 1 els

[R.10.2.2.f]1 in which the escaste is pint : i
fin.

iml@

0
a

let i
1= e

o
en 1 else D

The elaboration of a ecaste is that of its sunitary-clausee
[R.B.3.4.2], always remembering that the mode of the value
delivered, if any, 1is that specified by the edeclarere of the
scaste, Since the a priori mode of its sunitary-clausees is often
not the same as that specified by its edeclarere, the final
steps in the elaboration of a ecaste often involve some kind of
coercion. For this reason it will appear freguently in our
discussion of coercion in chapter 6.

Hecause a ecaste is a econfrontatione and therefore also a
sunitary-clausee, it follows that oreal : real : xo is a scastse,

but its value is the same as that of mreal : xmb. HNote that a
ecaste which envelops a mode 1is not a s=primarye or even a
stertiarye; consequently, ncef real : xx := 3.14oc is not an

sassignatione. The effect perhaps intended could be obtained by
writing o(cef real : xx) := 3.14p.

3.15 Program example

€1) The ALGOL 60 version of this procedure is due to
G.F.Schrack.

An ALGOL 68 Companion 43

The following is a eprocedure-denotatione(!), The routine
vhich is possessed by opm calculates the real coefficients of a
polynomial whose zeros are the elements of a given complex
vector nzo. These zeros may be real or complex, but if conmnplex
must appear consecutively as conjugate pairs. For example, if
the given vector is o(1, 0 i 1, 0 i -1)m, then the polynomial
will be opz*%3 - 2z*¥2 + 2z - 1no. Thus, in the erangee of
o[1:3]compl w = (1, 0 i 1, 0 i -1)o, the value of the ecalle
op(¥)non will be that of o[Jreal : (1.0, =-1.0, 1.0, =-1.0))[30 Ju.
The existence of a non-local eproceduree, perroro, is assumed,
for use upon encountering invalid data.

nproc p = (ceff 1:])compl z)[Jreal :
¢calculates the coefficients of the real polynomial whose zeros
are the elements of the vector z#
begin [O:upb z]real a ; a[0] = 1 ; int i := 1 ;
gthe coefficients are calculated into the vector a¢
while i < upb z do
begin compl zi = z[i] ; a[i] := 0 ;
if im zi = 0
then # a real zerot¢
k from i by -1 to 1 do
[k] -:= re zi * a[k-1]
e #a pair of complex zerost
£ i = upb z then error fi ;
if zi # conj 2z[i+:=1] then error f£i ;
Ieal s = re zi ** 2 + im zi ** 2, t = 2 * re zi ;

afi] 2= 0 ;
for k from i by -1 to 2 do

a[k] -:= t * a[k-1] - s * a[k-2] ;
a[1] -:=

fi ; ¢and now for the next oneg i +:= 1

end ¢the iteration on ie¢ ;
gthe coefficients are now ready in the vector a¢#
a endn

From o[]Jreal :no, on the first line, to the final mepndo is
the scaste of a eroutine-denotatione [R.5.4.1.b]. It begins with
of Jreal :o to ensure that the value delivered by the routine is
of mode erow of reale. Note the use of the soperatore mupbo in
the edeclaratione n[0:upb z]Jceal am, which creates a vector
svariablee with index running from =0s to the upper bound of
nzo. The edeclaratione mcompl zi = z[i]a [R.10.2.7.a] indicates
that, for each value of nipo in the iterative statement, pzip is
a constant. This avoids repeated calculation of nz[iJo later.
Observe that, in the =eformulae pzi # conj z[i+:=1]m, the
sformulae ni+:=1o is elaborated first. The value of the
eyvariablee pim is thus incremented by 1. The value of this
eformulae is the name possessed by ni+:=1n, which is the same as
the name possessed by nin. It is then dereferenced. The oabject
nz[i4:=1]o is a eslicee whose value is the next zero of the
polynomial sought. The edeclarations nreal s = re zi ** 2 + in
zi ** 2pn declares a ereal-constante nsno whose value is the
square of the modulus of one of the conjugate pairs. The value
delivered by the routine is that of pan; conseguently nan
appears as ah eexpressione preceding the final spendn.

Gy

a)
b)
c)

d)

e)

a)
b)
c)

a)
e)

a)

b)
c)

a)

e)

a)
b)
c)
d)
e)

In
uil
a)
b)
c)
d)
e)

An ALGOL 6B Companion

Review questions

3.1 Introduction

Is a ecohesions a esprimarye?

Is a eclosed-clausee also a etertiarye?

Indicate by parentheses the order of elaboration of ma + b of
cf[d] - en.

Wwhat 1is the difference between a estatements and an
egxpressione?

Is a ehases also a sunitary-clauses?

3.2 Bases

Is ox + yo a ebasee?

How many kinds of ebasess can be distinguished?
List all the ebasese in the object

o(a[i] > b of ¢ | sin(x) | cos(x + pi/2))n.
Is o3.o a ebases?

Is ma(b)o a ecalle or a eslicee?

3.3 Identifiers

List the eidentifierse in the object ml:ca := char of file
f + ma5hg,

What is the mode of bmxo in preal x := 3. 14p?

What is the mode of on2o in m[1:3, 1:4]int n2 = m2[3:5,
3:61a?

Do ouo and ovo have the same mode in the edeclarations

10
I

Is n$lineo an ejdentifiere?
3.4 Slices

In the reach of the edeclaratione of1:m, 1:n]real x2, y2o :
is nx2[1])[1]o a eslicee?
is ox2[1]Jo a eslicees and if so what is the mode of its value?
is obeqin x2 end[1,1Jn a eslicee?
is oif i > 0 then x2 else y2 £i [1,1)n a eslices?
Which of the following can be subscripts?
o350, nitem of aom, oi + n * 20, pi := 20, ni +:

2o.
3.5 Multiple values

the reach of the sdeclaratione o[1:m, l:n]real x2, [1:3]int
= (1, 2, 3)o :

is oulo a evariablee?
is ox2[1, 2]o a evariablee?

is oul[2] := 2o an eassignatione?
is ox2[2][1] := 3.74m an eassignatione?
is ox2[1, 1] := 3.14o an =assignatione?

3.6 Trimmers

a)
b)

C)
d)
e)

a)
b)
c)
d)
e)

a)
b)
c)

e)

a)
b)
c)
d)
e)

a)
b)
c)

a)
e)

a)
b)
c)
a)
e)

a)
b)
)
d)
e)

An ALGOL 68 Companion us

Using the edeclaratione given in 3.5 abcve:
what is the value of mul[2:]n?
what can be said about the sformulae
ox2[2:3][2,1] = x2[2,1 o7
what is the value of mul[:220](1]m?
what is the value of pul[a@a2][3n?

is ox2[i:=1:j+:=1, 3]n a eslicee?

3.7 calls

Is gcos(x := pi/4)mn a scalle?

Is nrandomn in ox := randomn a ecalle?

Isocos(x >0 | x| pi/2)o a ecalls?

Under what conditions is pma(b)nm in oa(b) := co a ecalle?
Under what conditions is ma (b) (C)m a ecalle?

3.8 Void cast packs

Is a evoid-cast-packe a eprimarcye?
Is o(: x) := yo an eassignatione?

Is nx := (: y)o an eassignatione?
Is o(: (x))n a svoid-cast-packe?
Is opproc p := X := 3.14o a edeclaratione?

3.9 Cohesions

Is a ecohesione a eprimarye?

Is a ecohesione a etertiarye?

Is n(x + y)n a ecohesione?

Is o[1:3 Jcef struct(int a, real b)o a ecohesione?

Onder what conditions is ma of b := cm an eassignatione?

3.10 Selections

Is a eselectione a eprimarye?

Is the pam in oa of bo an eidentifiere?

Indicate by parentheses the order of elaboration of
pna of b [c]o and of me of g(x)no.

Is n(a of b) of cn a eselectione?

Ispa of (b of c)om a eselectione?

3.11 Formulas

Is a oformulae a etertiarye?

What is the value of n2 elem bin 5am?

What is the value of olwb - 3.14m?

Is o4 +:= 20 a eformulae and if so what is its value?

What is the value of m-(1<2and3>4or5=6+#7>8or true)n?
3.12 Confrontations

Is a esecondarye a econfrontatione?

Is ox1{i:=i+1] a eslicese?

Is nrealn a econfrontatione?

Is oproc : randomo a sconfrontatione?

Is op = x :=: yo an eidentity-relatione or an eassignatione?

ke

i,
a)
b)
c)
d)
e)

a)
b)
c)
d)
e)

a)

b)
c)
d)
e)

An ALGOL 68 Companion

3.13 Identity relations

In the reach of the edeclaratione mint i, j ; ref int ii :=
11 2= G =

what is the value of pii :=: jjo?
what is the value of ni :=: jjm?
what is the value of oi :#: jn?

Is ox :=: 3.14pn an eidentity-relatione?
Is nx :=: x1[2]o an sidentity-telatione?

3.14 Casts

Is a scaste a sprimarye?
Is nint : 3.14o a ecaste?

Is ox := :yo an eassignatione or an eidentity-relatione?
Is of1:1])ceal : 3.14n a ecaste?
Is nref int : ii := 2o an sassignatione?

3.15 Program example

How many occurrences of a ecohesjions are in this eparticular-
programe?

How many occurrences of a eslicee are there?

Is nto a econstante or a evariablee?

What is the mode of nsn?

How many occurrences of an eidentity-relatione are there?

An ALGOL 68 Companion 47

4 Clauses
4.1 Conditional clauses

The econditional-clausee [R.6.4] is a fundamental
programming concept or primitive pertaining to flow of ccntrol.
It is present in some form or other in most languages and allows
for a choice in the elaboration of one out of two eserial-
clausase, depending on the value of a econditione. An example of
a econditional-clauses is

oif a > b then a else b fimo
or, using another representation
o(a>b |l a| b)o p
which therefore has the same meaning. A simplified parse is
shown in fiqure 4.1.a.

conditional-clause

P e e e A o T -

| | | | |
if-symbol condition then-clause else-clause fi-syobol

i

| | e hege oy Pt] |

| | | | | | I

| serial- then- serial- else- serial- |

| clause symbol clause symbal clause |

L i i 4 —_ 4 L
nif a> then a else b fio

Fig.4.1.a

There are two features of the sconditional-clausee which
are noteworthy. The first is that such a eclausee is closed, in
the sense that it begins with an eif-symbole, represented by
oifo or o (o, and ends with a efi-symbole, represented by pfip or
n)o. As a consequence of this, a econditional-clausee <can be,
and is, a eprimarye and is therefore found in syntactic
positions which might otherwise be considered unusual in some
programming languages. The second 1is that no essential
distinction is made between sconditional-expressionse and
sconditional-statementse. The only difference 1is that, if a
sconditional-clauses is used as a estatemente [R.6.0.1.c], then
its value is voided; otherwise, it may be an eexpressione
[R.6.0.1.Db7¢1> and may deliver a value. There is only one
genuine syntactic rule [R.6.4.17. This merging of concepts
permits econditional-clausese like

nif a > 0 then sqrt(a) else go_to error fin '
which may be used in a situation like
mal := if a > 0 then sqrt(a) else go_to error fim ;

€1) Note that rules in the Report marked with an asterisk are
present only for the convenience of the semantic description of
the language. The notions involved never appear in the parse of
a eprogranme.

48 An ALGOL 68 Companion

Some uses of a econditional-clausees which might be
considered unusual, but which stem from the fact that it is a
sprimarye are: o(p | x | y) = 2.3 , (g | cos | sin) (x) , (
r |l x| y)+ (sl uvw | v)m, in which we have used, for
preference, the shorter representations.

A simplified syntax of the econditional-clauses is
conditional clause :
if symbol, condition, then clause, else clause, fi symbol.
condition : serial clause.
then clause : then symbol, serial clause.
else clause : else symbol, serial clause.
but the strict syntax in the Report [R.6.4.1] should be studied
also. One should observe that a econditional-clausees contains
three eserial-clausese (see figqgure U4.1.a). Any one such eserial-
clausece may contain edeclarationse and forms a eranyee
[R.4.7.7.e1. Since a #serial-clauses may contain more than one
eunitary-clausee, this wmeans that frejuent use of nbkeqin endno
pairs (epackagese), as in ALGOL 60, is not necessary. An example
of a econditional-clauses containing a non-trivial econditione
might be:
nif string s ; read(s) ; s = password
then go_to regular
else go_to irregular
fino '
where the wvalue of the econditione is that of its last eunite,
O0s = passwordno.

A sconditional-clausee is elaborated by first elabocrating
the econditione. If the value of the econditione is strueas, then
the sthen-clausee is elaborated; otherwise, the selse-clauses is

strues——>——, r >)

: | | |

P | v

o x >0 | X | -X Yo

L A) l l

: | | |

s falsean p — 3 s S
Fig.4.1.b

elaborated (see figure 4.1.b). In the first instance, the value,
if any, of the seconditional-clausee 1is that of the eserial-
clausee of the ethen-clausee; otherwise, it is that of the
eelse-clausee, For example, the eclausee

a(x >0] x| -x)o
has as its value the absolute value of oxo.

4,2 simple extensions of the conditional clause

A econditional-clauses like
nif a then I else if c then d else
if e then f else y fi £i fino

may occur frequently in programming situations. For this reason
an extension [R.9.4.b) is available whereby the same eclauses

An ALGOL 68 Companion a9

may also be written

nif a then b elsf ¢ then d elsf e then f else g fino .
The essence of this extension is that nelse ifo may be written
nelsfao, if the corresponding pwfim is elided. Using the other
representations, the strict language is

ala | b)) (c |l d] (e £19g)))n v
which may be written '
o(a)] bl: c|) d|:e | £ g)no

in the extended language. This saves the programmer the bother
of counting pnfios so that they match the number of nifms. A
schematic flow of control for this eclausee is shown in figure
4,2 in the case where mao possesses the value =falses and ocno

r——=>=———q atrues 4 = =y
| : | v
o (a | b [f c | d | : e | f | g o
2 11
sfalses L>J
Fig.U4.2

possesses the value setrues. Note that in this case the
sconditione pen is not elaborated. :

A similar extension [R.9.4.b] exlsts, whereby the symbols
elided, but this extension may not be so useful. Because of it,
nif a thef b then c else d fino
has the same meaning as
mif a then if b then c else d fi finm >
In other representations we have that
a(a |: bl c|] d)n
means the same as
o(al(blc]d))o
where the symbol o] :m is used as a representation of the -then-
if-symbole, It is also a representation of the eelse-if-symbole
but no confusion can arise. It is worth noting that, provided
the elaboration of mam and obo involves no side effects, the
effect of n(a |J: b|] ¢)on is the same as that of n(a and b |
c)o, but the former may be faster.

In the strict 1language the =econditional-clausee always
contains an eelse-clausee; however, another extension [R.%9.4.a]
allows nelse skip fio to te replaced by mfim, so that the clause

opif p then go to 1 else skip fino i
may be written

oif p then go_to 1 fimo .
In the eassignatione pmx := (a > 0 | sqrt(a))o therefore, some
undefined real value will be assigned to oxm, if the value of
pao is not positive. This occurs because the wmskipa will be made

to possess some undefined real value [R.8.2.7.2.a].
4.3 Case clauses

A case clause is also an extension of a econditional-
clausee, intended to allow for efficient implementation of a

50 An ALGOL 68 Companion

certain kind of econditional-clauses which may appear
frequently. The eclauses

nif i = 1 then x elsf i = 2 then y elsf i = 3 the
may be written

1=
3]
0
[
|t
Im
-]
rh
=
=]

ocase i in x, y, z out a esacno '
or in another representation,
o(1 | x, Yo 2 | a)no

[K.9.U.c,d]. The flow of control in such a eclausee is indicated

l'_“""> 1 1 P e al

| | | | |

1 als aZn a3nm |

[| | | |
mcase i in x, Y z out a esaco
| | | | |
1 L L ——— e

Fig.4.3

in figyure 4.3. Observe that m(i | x | a)e is not a case clause
for case clauses contain at least two sunitary-clausese hetween
the pino and the moutno.

If the reader is now confused over the use of certain
symbols, the difficulties can be cleared away by ohserving that
each of the symbols, eif-symbol, then-symbol, else-symbole and

efi-symbole has more than one representation. The
representations are [R.3.1.1.a]:
sif-symhole o If casen i
sthien-symhole 1| then innm ’
e2lse-symbole 0| else outno i
sfi-symbale a) fi esacn .
This means that the case clause given above might be written
ncase i then x, y, z | a fino '

and, though most humans would find this difficult to read, the
computer should not.

Because o|m 1is a representation of the eelse-symbole and
ojo a representation of the efi-symhole, the case clause o(i |
X, ¥, Zz | skip)o may be written m(i | x, Yy, z)n, using the
extension [R.9.4.a] already mentioned akove. Note then, that in
the weassiqnatione @ox := (1 | 1.2, 3.4)o, some undefined real
value will be assigned to oxon if pim is not «1s or =2s, but in
the eassignationes no(1 | x, Yy } := 3.4p, there may be no
detectable effect [R.8.3.1.2.c] if the value of nio is not «1ls
Or =las,

Thare are further extensions of the case clause involving
sconformity-relationses [R.9.4.e,f,3], but we shall delay
discussion of these until econformity-relationse themselves have
been axplained.

4.4 Repetitive statements

Repetitive statements, such as
ofor i to n do smo '

An ALGOL 68 Companion 51

are not mentioned in the syntax of the language. Such statements
are in the extended language [R.9.3.a,b] and can stand in the
syntactic position of eunitary-statementse [R.6.0.1.c]. A sinmple
example of a repetitive statement is

nto 10 do randomn .
It is defined to be the equlvalent of the esupnitary-statements
mbegin int j := 1 ;

m: if j < 10 2222 random ; j +4:= 1 ;
go_to n fi
endn -
however, the reader who consults the Report [R.9.3.a] will find
that the above is a gross simplification and that there are many
details, such as increments other than =1e, which must also be
considered.

A more illustrative example is
onfor i from a by b to ¢ do x[i] := sqrt(i)m .
This is defined to be the equivalent of

obegin int j := a, int k = b, 1= c ;

m: if (k>0 | §<1 |z k<0]| 3§21 true)
then int i = j ; x[i] := sqrt (i) ; 3 +:= k ;
go_to m fi

endno

however, this is still not the complete story and may give the
wronqg effect 1if it 1is considered to be the equivalent of the
above repetitive statement 1in a eserial-clausees in which
operations have been redeclared. With this remark in mind the
reader should now examine the extensions,as given in the Report
[R.9.3.a,b], to notice how all eventualities have been covered.

There are essentially two repetitive statements. They are:
nfor i from a by b to c while 4 do en
and
ofor i frow a by b while d do en

These differ in that the first form contains a oton and the
second does not. In both forms nfrom 1m or wnmby 1o or owhile
truen may be elided [R.9.3.c (the statement of this extension is
more precise in the Report)] and if the eidentifiere nin does
not appear in the eunitary-clausee pen, or the eserial-clausee
ndo, then nfor io may be elided. Notice that the control
evariablee (njo in the above example) of a repetitive statement
is hidden from the prograsmer, so that he may make no assignment
to it. Also notice that the use of nfor in means that pin is,
for each elaboration of ndm and pem, an eintegral-constante
declared within a range which contains both ndo and pen.
Consequently no assignment may be made to wpiom. This fact was

used in the examples given above.

Before leaving repetitive statements, we should observe
that the eunitary-clausese wpa, bo and npco are elakorated
collaterally [R.6.2.2.a] and once only, which means, in
particular, that a change in the step size obp or in the upper
bound ncn, after the initial elaboration, will not affect the
further elaboration of the repetitive statement.

52 An ALGOL 68 Companjon

4.5 Closed clauses

Some examples of eclosed-clausese are n(x + y)u, n(((a)))o
and nbegin real x, y ; read((x, y)) i print(x + y) endo. Note
that either ®©o()n pairs (epackse)€!) or wuohegin endo pairs
(»packagese) mway be used, but that o(x + y endo is not a
eclosed-clauses [R.6.3.1.a, 1.2.5.i, 3.0.1.h,i]. A simplifiel
syntax of the eclosed-clauses is

closed clause : open symbol, serial clause, close symbeol ;
begin symbol, serial clause, end symbol.
but the strict syntax of the Report, involving the use of epacke
and epackagee, should he consulted [R.6.3.1.a]. A simple parse
of the eclosed-clauses, n(x + y)o, is shown in fiqure 4.5. Since

closed-clause

|
serial-clause—pack

[e SEE s T 1
open—éymhol seriallclause close—s;mbol
& b 4
o X +y)o
Fig.4.5

the elaboration of a eclosed-clausees is that cf its eserial-
clausees, there is little else to be said about eclosed-clausese,
except perhaps, that a eclosed-clausee is a efprimarye (as is a
econditional-clausees) and that the eserial-clausee of a eclosed-
clausee is a erangee [R.4.1.17.e] and therefcre gplays a role in
the identification of eidentifierse [R.4.1,2,3]. The former
means that, for example, ma * begin b + ¢ endm is an acceptable
eformulae, though most programmers would prefer to write it as
ga * (b e)a,.

4.6 Collateral phrases

A ecollateral-clausee [R.6.2.1.b,c,d,f] consists of two or
more sunitary-clausese (eunitse [R.6.1.1.e]) separated by
sconma-symholse and enclosed bhetween a o ()o pair (epacke) or a
nbeqin endo pair (epackagee). An example of a ecollateral-
clansee is o(1.2, 3.4)n. It may be used in the situations
of 1:2]ceal x1 = (1.2, 3.4 Yo or mcgoppl 2z = (1.2, 3.4)m. In
the first situation the value of the ecollateral-clauses is a
row of wvalues, whereas in the second it is a structure. Thus,
the semantic interpretation of a ecollateral-clausee pay be
determined by its context, HNotice +that o(a)m is not a
scollateral-clauses, for, otherwise, there would be an ambiquity
in that os(a)n is already a sclosed-clausee,

(1) strictly speaking, "pack"™ and "package" are protonotions bhut
not paranotions [R.1.1.6], so you will not find them used in the
semantic text of the Report.

An ALGOL 68 Companion 53

A simplified syntax of the scollateral-clauses is
collateral clause :
open symbol, unit list proper, close symbol ;
begin symbol, unit list proper, end symbol.
unit list proper :
unitary clause, comma symbol, unitary clause ;
unit list proper, comma symbol, unitary clause,
but the strict syntax is rather more conplicated [R.6.2.1] s;nce
it must take care of the two situations hinted at above tagether
with the balancing of modes [R.6.1.1.9, 6.2.1.e, 6.4.1.d], an
interesting topic in itself, which should be postponed. A simple
parse of a ecollateral-clausee is shown in figure 4.6. If a
ecollateral-clausee is used as a estatements, then it may be
preceded by a eparallel-symbole, represented by woparm, if
parallel processing is intended [R.10.4 1.

collateral-clause
|
. - =y
|) L I
open-s ymbol unit-list-proper close-symbol

| | 1

I r . T 1 '

| .) | | |

| unit-list—-proper | | |

| | | | |

| r————t— | | !

| | | | | I :

| unit | unit | unit |
4. = L AL i L i
o (12 % X ¥)a

Fig.U.6

The important feature of a ecollateral-clausee is that the
order of elaboration of the eunitary-clausese of the esunit-list-
propere is undefined[R.6.2.2.a]. This means, for example, that
the value of o(int i := 0, j z=0, ki= 0 ; (i 2= j#1, j 2= k+1,
k 2= i41))m could be that of any one of several rows of three
inteqral values, such as that of m(1, 1, 1)w or m(2, 1, 3)n,
etc.

In like manner, a ecollateral-declaratione consists of two
or more eunitary-declarationse separated by ecomma-symbolse,
with the order of elakoration undefined. This means, for
example, that the ecollateral-declarations woint n := 10,
[1:n]real x1o may, or may not, have the effect perhaps intended
by the programmer. The object mint n := 10 ; [1:n])real x1o would
make more sense. Observe that a ecollateral-declaratione is not
enclosed by an eopen-symbol, close-symbole pair or ebegin-
symbol, end-symbole pair, i.e., neither a epacke nor a
epackagees.

54 An ALGOL 68 Companion

4.7 Serial clauses

sSerial-clausess are put together frem eunitary-clausese
with the aid of eygyo-on-symbols, labels, completion-symbolse and
sdeclarationse [R.6.7.1]. We shall examine this construction by
starting from the simplest constituents. It is expedient, as in
the Report [R.6.1.1.e], to speak of a seunitary-clausee as a
synite. For the convenience of our explanation, we introduce the
notion eparaunite (not in the Report), for a eunite which may be
preceded by zero or more elabelse. Thus
nx := 3o
is a eunite, but for us, :
ox := 3o
and
nl2: x := 3m
are both eparaunitse. The simplified syntax is then:
unit : unitary clause.
paraunit : unit ; label, paraunit.
label : label identifier, label symbol,
and although this is a slight deviation from the strict syntax
of the Report, we shall have no essential difference when we are
through.

A eclause-traine [R.6.1.1.h] i one or more eparaunitse
separated by ego-on-syrholse. The following are therefore
examples of eclause-trainse:

ax := 3n
ol2: x := 3o
nll : y := 2 ; x := 3o

nopen (myfile,"abc", tapeB) ; restart : get (myfile,name)n
fR.10.5.1.2.b, 10.5.2.2.b]. We may now add another simplified
syntactic rule, viz.,

clause train : paraunit ;

clause train, go on symhol, paraunit.
(cf., [Rab.1.1.h]). The semantics of a eclause-traine is simple.
The elaboration of the weunitse proceeds from left to right,
i.e., in the normal sequential order, as 1in most programming
languages.

A esuite-of-clause-trainse [R.6.1.1.f,g9] consists of one or
more eclanse-trainse separated by ecompleterse, where a
ecompletere is a ecompletion-symbole, represented by o. o,
followed by a elabele, The following are therefore examples of a
ssuite-of-clause-trainse:

ax := 3o
oll: y:= 2 ; X := 3o
amid >0 | 1 | x3= 1) o 133 % 2= 2§ %X 2= 30 -

A simplified syntax of a esuite-of-clause-trainse is

suite of clause trains : clause train ;

suite of clause trains, completer, clause train.

completer : completion symbol, label.
[R.6.1.1.f£,9]. The semantics of a esuite-of-clause-trainse is
dramatically different. The effect of the scompletere, as
opposed to the ego-on-symbole, is to force the completion cf the
@lahoration of the eserial-clausee containing it and to yield,
as the value of that eserial-clauses, the value of the seunite

An ALGOL 68 Companion 55

most recently elaborated. In the last example above, if the
value of niom is e-1s, then the value of the eserial-clausee |is
the value of px := 1o and the eclause-traine py := 2 ; ¥ := 3mo
is not elaborated; otherwise, it is the value of ox := 3pm. 1In
fact, the effect is the same as that of o(i >0 | ¥ :1= 2 ; x :=
3) x := 1)o. One might think that any esuite-of-clause-trainse
may be re-written as a econditional-clausee (suggesting
redundancy in the language) and though this may be true in
theory, the example

nfor k to upb s do (¢ = s[k] | i := k ; 1) ; false . 1: truen

[R.10.5.1.2.n], shows that the ecompleters is indeed a useful
tool in practical programwming. It plays a similar role tc that
of the return statement in PL/I or FORTRAN, though in these
languages the return statement applies only to procedures
(subroutines, functions).

A eserial-clausee [R.6.1.1.a] is, roughly speaking, a
esuite-of-clause-trainse preceded by zero or more edeclarationse
and/or estatementse but these estatementse may not be labelled.
Examples of eserial-clausese are

ox := 3o
oll: y := 2 ; x = 3p
p(r > .51 11} x:=1) . 11: y:=2; x := 3n
oreal x, v ; (£ >.5 1 11] x :=1) . 11 y =2 ; x := 3o
or := random ; real x, y ;
(r < .51 11| x:=1) . 112 v 1= 2 3 x := 3n
and
preal r ; r := random ; real x, y i

(€ .5 11T 2x2=1) » 11e §'2= 2 5 x == 30 >

serial clause : suite of clause trains ;
declaration prelude sequence, suite of clause trains.
declaration prelude sequence : declaration prelude ;
declaration prelude sequence, go on symbol,
declaration prelude.
declaration prelude : single declaration, go on symbol ;
statement prelude, single declaration, go on symbol.
single declaration :
unitary declaration ; collateral declaration.
statement prelude : unit, go on symbol ;
statement prelude, unit, go on symbol. =
T he rules Jjust given are close to those in the Report
[R.6.1.1.a,b,c,d]. The reader should now examine the rules of
the Report to ohserve how the metanotions eMODEe and eSORTe have
been carried through the syntax and that balancing of modes may
be necessary when scompleterse are present [R.6.1.1.9].

The elaboration of a eserial-clausee begins with the
protection [R.6.0.2.d] of all eidentifierse and eindicationse
declared within it. The protection is done to ensure that, for
example, all eidentifierse declared within a eserial-clausee,
cannot be confused with similar eidentifierse outside it. Users
of ALGOL 60 or PL/I will recognize this as the matter of scope,
but the reader is warned that the word "scope"™ has a wider
meaning in ALGOL 68 [R.2.2.4.2].

56 An ALGOL 68 Companion

4.8 Program example

The eprocedure-denotatione which follcws possesses a
routine which expects a row of integral values which are the
coefficients of the polynomial

oal 0 J*x**n+a[1 J*x**(n-1)+ ... +a[n]c .
It then finds all the rational linear factors (those of the for
p*x-q, where p and q are integral). It delivers an integral
result, which is the degree of the residual pclynomial, whose
coefficients remain in oman. The number of linear factors is in
nro, any constant factor is in oco and the factors ou[iJ*x-v[i]n
are found in the row of integral values ouo and cvp (1),

oproc factors = (ref(0:]int a ¢the coefficients of the given
polynomial¢, ref int r ¢for the number of rational linear
factorse¢, c¢ ¢for the constant factore¢, ref[lJint u, v #éfor
the linear factors (ufi]*x-v[i]), 1<i<r¢) int

begin int n := upbh a ¢the degqree of the given polynomiale;

= 1 ; ¢initialization#

r ¥=sl) g
while a[n] = 0 do ¢remove the common power of x¢
begin ufr +:= 1] := 1 ; v[r] :=0 §n -:=1 end ;
for p to abs a[0] do
if a[0) +: p = 0
then ¢p divides a[0]#
int q := 0 ; while (q := abs g9 + 1) < abs a[n] do
if a[n] +: q = 0
then ¢q divides a[n]#
int £, g ¢for temporary storage later¢ ;
if g # 1 and p = 1
then ¢look for a constant factore
MORE : for j from 0 to n do

if a[j) #: g # 0

then ¢q does not divide a[j]¢

qo_to NOCONSTANT fi ;
¢remove the constant factor q#
for j from 0 to n do a[j)] #:=q ; c *:= q ;
#q may be a multiple factor so#¢ go_to MORE
fi ¢end the search for a constant factorg ;

NOCONSTANT : ¢try (p*x-q) as a linear factore
g t= 1 3 £ := a[0] ; etry x = q / p¢
for i to ndo f :=f *«q ¢+ afi] * (g *:=) ;
if £ =0
then ¢ (p*x-q) is a factore
ufr 4:= 1) z=p ; v[r] :=q ; n -:= 1 ;
for i from 0 to n do #compute th2 residuale
begin ref int ai = a[i] 3
ai = f := (ai + f * q) &« p end ;
(n = 0| REDUCED | NOCONSTANT)

else ¢if we are here, then (p*x-gq) is nct a factor
so try (p*x+q)#¢ ((9@ := - gq) < 0 | NOCONSTANT)

€1) This procedure is derived from algorithm number 75 in the
Communications of the Assoc. for Computing Machinery, Vol
5(1962) 48, revised by J.S.Hillmore Vol 5(1962)392 and further
revised for the version given above.

An ALGOL 6B Companion 57

fi #end else parte
fi #Zend iteration on qg
fi ¢end iteration on pe ;
REDUCED : (n = 0 | c #*:= af[0] ; af[0] = 1) ;
¢the degree of the residual polynomial is¢ n
endn

In the range of the edeclaratione m[{0:3]int a1 := ([]int :

(1, -1, 2, -2))[a0}], int k, number, constant, [1:3]int m1, nilm,
a scalle of the above eproceduree might be

ok := factors (al,number,constant,m1,nl)no .

whereupon we should have mk = 2, al = ([]Jint :(1, 0, 2, 0))[20],

number = 1, constant = 1, m1 = (1), n1 = (1) o, corresponding to
the factoring

Ox*%*3 - x*&2 + 2%x — 2 = (x**2 + 2) (x - 1)o "
Observe that in the eclausee pbegin ref int ai = a[i] ; ai := f
:= (ai + £ % ¢q) 4+ p endn, the programmer may optimize his

subscript calculation, rather than leave this delicate matter to
the whim of the compiler writer. On a non-optimizing compiler,
of which there may be many, this possibility has clear
dividends. Note also the eassignatione nf := f * g + a[i] * (g
*¥:= p)o, which replaces two statements in the original ALGOL 60
version.

Review questions

4,1 Conditional clauses

a) What is the value of m(0 <0 | 1 i 2 | 3)m?

b) Is mif x < 0 then go_to errorm a econditional-clausee?
c) Iso(x>0 | a| b) of cu a eselectione?

d) Ispmaof (x >0 | b] ¢)oa eselectione?

e) Isop(r | m | n) (s | 1| J)a a eformulae?

f) Is oif x > 0 then else y fi := 3.14o an eassignatione?

4.2 Simple extensions of conditional clauses

a) What is the value of m(1< 2 |: 3 <4 | 5| 6)o?
b) What is the value of n(1 > 2 |: 3 <4 | 5| 6)a?
c) What is the value of o(true | 5| 4) + (false | 3 | 6)o?
d) Simplify the following using the extensicns:
oif p then a else if g then if r then b else ¢ fi else skip

£i fin.
e) Remove the extensions ino(a |: b | c |: d | e)o.

4.3 Case clauses

a) Iso(1 | 2| 3)mn a case clause?

b) What are all the representations of the eif-symbole?
c) What is the value of m(2 | 3, 4, 5 | 6)o?

d) Wwhat is the value of o(0 | 3, 2, 1 | 2)o?

e) Isn(2 | a, b, ¢) of dn a eselectione?

4.4 Repetitive statements

58 An ALGOL 68 Companion

In each of the following, is the object a repetitive
statement, and if so, how many times is the eunitary-clausee nen
elaborated?

a) nfor i do e while (i< 9)a

b) nfor i to 10 by 2 do em

c) ndo eo

d) onwhile false do em

e) nto 0 do en .

Comment on the scopes of pio in the following:
£) ofor i from 1 by 1 to 10 do i := 2 * 1 + 1n
g) omint i := 5 ; for i from 1 by i to i -:= 1do a[i] := i * im,

4,5 Closed clauses

a) Isno(x / ¥y)ao a eclosed-clausee?

b) Is o(p | 1)J)o a eclosed-clausee?

c) Isa(x =1 ; y :=2 3 2z) := 3o an eassignations?
d) Is mif x := y ; z = 2 fip a eclosed-clausee?

e) Is mbegin x := 1 ; := 2)o a eclosed-clausee?

f) Iso(a ; b, c)m sclosed-clausee?

4.6 Collateral phrases

a) Is o(x)m a ecollateral-clausee?
b) Isa(l ; 2 , 3)n a ecollateral-clausee?
c) Iso(l1 | 2 , 3)o a scollateral-clausee?
d) Wwhat is the value of o ("a"™, "h", %“c") + ("dv, "e")o?
e) Is it possible that the value of
m(int i := 2, j := 3 ; (i +:= J, § ¢:= i))m
might be the same as that of mo(7,5)n?

4,7 Serial clauses

a) Is oxn a eserial-clausee?
by Isoa(p | x | 1) . 1: hn a eserial-clauses?
c) Is p3.en a eserial-clauses?
d) Is o(x := 1 3; y := 2)o a eclause-traine?
e) Rewrite the following econditional-clauses as a eserial-
clausee containing a ecompleteres,
n(xory | n:=1;rc| nz:=23;s)ao

4.8 Program example

a) How many occurrences of a econditional-clausee are there in
this eparticular-programe?

b) Wwhat is the mode of manm?

c) What is the mode of main?

d) How many occurrences of a eclosed-clauses are there following
the elabele oNOCONSTANT :n?

e) How many occurrences of a ecollateral-clausee are there?

An ALGOL 68 Companion 59

5 Routine denotations and calls
5.1 The parameter mechanismn

We begin this chapter with a simple illustrative example of
the edeclaratione and use of a nonsense esprcceduree aoupo which
has two eparameterse mpmanm and wobn, and whose effect is to
increment the esreal-variablee pam by the ereal-constante pbp. In
ALGOL 68 the defining occurrence of such a eproceduree is in the
eidentity-declaratione

nproc up = (ref real a, real b) : a +:= bn
and its ecalle might be oup(x, 2)o or mup (x11], y)o. In ALGOL
60, a procedure with similar effect would be declared by
oprocedure up(a, b) ; value b ; real a, b ; a := a + ko
and 1its procedure call might also be mup(x, 2)o or mup (x1[i],
y)a. In PL/I the same procedure might be written
UP : PROC(A, B) ; A= A + B ; END ;

and its call, CALL UP(X,2E0) or CALL UP(X1(I), (¥)). In FORTRAN
it would be .

SUBROUTINE UP(A, B)

A=A+ B

RETURN

END i
with call, CALL UP(X, 2.0) or CALL UP(X1(I), Y).

We have described this procedure in mecre than one language
in order that its intended effect should be clear to all. The
reader will notice that we are concerned with that which, in
ALGOL 60 terminology, is known as a "call by name"™ and a "call
by wvalue"., This has become the accepted way of describing the
fact that in the ecalle pup(x, 2)n, nxo is passed by name to man
and w2o is passed by value to pobo. The manner in which values
are passed at the time of a ecalle is generally known as the
"parameter mechanism",

We shall not describe here the various parameter mechanisms
in other lanquages, except to say that the student is likely to
find this to be the most confusing and perplexing subkject area
in the study of programming lanqguages. EBach language has its own
philosophy and usage, with treacherous traps for the unwary. We
hope to show, in this chapter, that the parameter mechanism of
ALGOL 68 1is exceptional in 1its «clarity, encouraging t he
programmer to state precisely the mechanism he wishes to use,
rather than to rely upon the conventions of a given language or
the whim of an implementer. There are essentially no new ideas
involved beyond those which we have encountered 1in earlier
chapters. A thorough understanding of the eidentity-declaratione
is all that is needed. The reader may soon wish to forgive us
for spending so much time on the explanation of it in chapter 2.
The ALGOL 68 parameter mechanism is defined in terms of a
logical application of the eidentity-declaratione to that
internal object, known as a "routine", which 1is the value
possessed by a eroutine-denotations,

60 An ALGOL 68 Companion

5.2 Routine denotations

The object

o((cref real a, real b) : a +:= b)o
is an example of a eroutine-denotatione [R.5.8.1.a] and is
essentially what stands on the right of the sequals-symbcle in
the edeclaratione of oupo given in secticn 5.1 above. One may
notice that the enclosing symbols n(n and o)n have been onmitted
in saction 5.1, but this is only because of an extension
[R.9.1.4] which allows such omission in this situation. A
sroutine-denotatione, 1like any other edenotatione, possesses a
value, a routine, which is an internal object. This internal
object is a certain sequence of synmhbols, easily derived
[R.5.4.2] from the edenotatione. For example, the routine
possessad by

o((cref real a, real b) : a +:= b)n
is

= (cef real a = skip, real b = skip ; a +:= b)a

and it 1is important to notice that it has the shape of a
sclosed-clauses, in which each of the eparameterse mam and nbn
forms part of an sidentity-declaratione,

As we have seen in section 2.5, an esidentity-declaratione
causes the value of its sactual-parameters (the part to the
right of the seaquals-symbole) to be possessed Lty the
eidentifiere of its eformal-parametere (the eidentifiere to the
left of the seguals-symbols). This means that in the eidentity-
declaratione

oproc up = ((ref ceal a, real b) : a +:= b)o '
the eidentifiere pupn is made to possess the routine
» (cef real a = skip, rLeal b = skip ; a +:= b) s .

Figure 5.2 shows a simple parse of this eidentity-declaratione.
The eroutine-denotatione is shown at 1 and the routine which it
possesses at 2. MAfter the elaboration of the eidentity-
declaratione, the eidentifiere nupnm, possesses the same routine

declaration

A

r T b
| (I |
formal-parameter eguals-symbol actual-parameter
| / |
————beee (S S S ——— S TG m
oprec up - ((cef real a , real b) : a +:= b)n
re..., 02020202 | AR e R B B R e ST s
: (3) H
I e e i L e 1
Is(ref real a = skip, real b = skip ; a +:= b)=|
I —-_——— ——————————
r— 4. e — 1
lw(cef real a = skip, real b = skip ; a +:= b)u]
L —— . 2T J

Fig.5.2

An ALGOL 68 Companion 61

(see figure at 3). The elaboration of the ecalle wmup(x, 2)o is
now easy to describe. Its effect is to replace the two mskipns,
in a copy of the routine, by pxo and o2o respectively and then
to elaborate the resulting external object

o(cef real a = x, teal b = 2 ; a +:= b)o

as if it were a eclosed-clausee standing in the place of the
ecalle pup (x, 2)o.

It is perhaps now clear why the left part of an eidentity-
declaratione is known as its eformal-parametere and the riqht
part as its eactual-parameters, for these are precisely the
roles which they play in the parameter mechanism. Not only does
the eidentity-declaratione play a central role in such a
mechanism, but its power, which the implementer of any languaye
must of necessity provide, is placed in the hands of the
programmer to use as he sees fit. Thus, nref real x1i = x1 i]n
might usefully be used to optimize address calculation while
working with the vector nxlo. An example might be

oX1i 2= 3 * x1i + 2 * x1i *#%* 2n
rather than
ox1[i] := 3 * x1[1] + 2 * x1[1i] ** 2o 4

5.3 More on parameters

It is perhaps worth dwelling on the name-value relationship
created by the parameter mechanism for the example in section
5.1. The eclosed-clausee which is elaborated as a result of the
ecalle pup(x, 2)o is

o(cef real a = x, real b = 2 ; a +:= b)o

and the elaboration of the ecollateral-declaratione which
follows its eopen-symbole results in the relationships depicted

oref real a = x , real b = 2o

o o S -:
o0 o(l)o o : 5

o o : :

L s {2y 3%
r—""-"‘—"1 r 1 r"“ h |
| | | w2« | | w2a |
| — 4 L i [l 1

Fig.5.3.a

in figure 5.3.a. During the elaboration of the ecalle pup(x,
2)n, nan possesses the same name as that possessed by nxo (see
figure 5.3.a at 1), and obo possesses the same value as that
possessed by o2n (see the figure at 2). This means that the
eformulae ma +:= bo has the same effect as if it were written nox
+:= 2o, Both wpao and oxo have a mode which begins with
esreference-toe, a requirepment of the left eoperande of the
spperatore p+:=o [R.10.2.11.e]. Note also that if the ecalle
were oup (x, y)m, then the eclosed-clauses would contain the
edeclaratione preal b = yo and this would invclve a
dereferencing of noyo, depicted in figure 5.3.b at 1. Observe, in

62 An ALGOL 68 Companion

this figure, that nym , considered as an eidentifiers, possesses
a name of mode sreference-to-reale (see 2) but considered as an
eactual-parametere, it possesses a value of mode ereale (see 3).
The coercion occurs at 1. We may say, in general, that if a
sparametere nan is considered as a evariables referring to a
value of mode specified by amo, e.g., if an assignment is to be
made to mam, then the eformal-parametere shculd be nref m ang,

identity-declaration

formal-real-parameter equals~-symbol actual-real-parameter

I
strong-real-base

formal-real- real-mode— (coercion) (1)

48 4u P8 g8 40 g ae 8

Hob————— ——

declarer identifier |
| | reference-tc—-
| | (3) real-hase
sl A 5
oreal b yo
romt———y e | o
|e3.14a| | #3. ap—<——0 0 (2)
L il [RSN | o
F1g.5.3.8

but Lf obm 1is used only as a econstante of mode omo, then the
eformal-parametere may be nmn bo.

5.4 The syntax of routine-denotations

A eroutine-denotatione consists of a eformal-parameters-
packe followed by a ecaste, both toyether enclosed between the
symbols o (n and o)o. Thus in

n((cef real a, real b) : a +:= b)o
the object o(ref real a, real b)m is the seformal-paraceters-
packe and ©: a +:= bn is the ecaste. A simplified syntax of a
sroutine-denotatione is
routine denotation :
open symbol, formal parameters pack, cast, close symbol.
formal parameters pack :
open symbol, formal parameter list, close symbol.
formal parameter list : formal parameter ;
formal parameter list, gomma, formal parameter.
qomma : go on symbol, comma symbol,
but the striect syntax [R.5.4.1] contains metanotions which
ensurs that the number and the modes of eparameterse in ecallss
match those in the eroutine-denotatione. Figure 5.4 shows a
simpla parse of a eroutine-denotatione, We have already alluded,
in section 3.7, to the fact that eactunal-parameterse in a scalle
may be separated by either a ego-on-symbole or by a ecomma-
symbole. Now that we have seen that the elaboration of a ecalle
amounts to the elaboration of a eclosed-clausee in which the

An ALGOL 68 Companion 63

eformal-parameterse of the eroutine-denotatione become
transformed into eidentity-declarationse, it is at once apparent
that a ecomma-symbole separating sformal-parameterse Lecomes a
ecomma-symbole of a ecollateral-declarationes, This means that
t he eparameterss are elaborated collaterally. The ego-on-
symbole, on the other hand, would result in edeclarationse which
are elaborated serially. To take a specific example, the

routine-denotation
|

A

e e T !'l' _‘|f__"'—'___"l
| |
open— formal-parameters—pack cast close-
symbol | | symbol
r s e -1				
open— formal-parameter— close-				
symbol list symbol				
			1	
	r rd iy		l	
	1			
	formal- gomma formal-			
	parameter	parameter		
4 ¥ I S — i i bl E R, JOS . 4
o ((cef real a , Ieal b) : a +:=Db)o

Fig.5.4

eformal-parameters—-packe
o(int n, [1:n])real u)m
may be transformed into
nint n = 10, [1:n]real u = x1 ;no ‘
but the eformal-parameters-packe
o(int n ; [1:n)real u)o
may be transformed into
oint n = 10 ; [1:n]real uv = x1 5o ¢
which is more useful since its elaboration is well defined. The
particular choice of the egommae which separates eformal-
parameterss is therefore of significance but that which
separates the sactual-paraneterss of a ecalle has no semantic
significance.

The semantics of a eroutine-denotatione [R.5.4.2] tells us
how the routine which it possesses is obtained. The essential
points are, that an eequals-symbole followed by a eskip-symbole
is inserted after each eformal-parametere, that the eopen-
symbole which begins the eformal-parameters-packe is deleted and
that its seclose-symbole is changed into a sgo-on-symbole. The
more precise statement in the Report [R.5.4.27] should be
studied.

A further example of a eroutine-denotationse is
n((ceal x)rceal : random * X)no :
where the second occurrence of orealo (part of the ecaste

6u An ALGOL 68 Companion

indicates that the routine is to deliver a value of mode ereale.
The example in section 5.1 delivers no value and therefore uses
a esvoid-caste (whose evirtual-declarere is empty). Note that
nreal : random * 100m ‘
is not a eroutine-denotatione despite the fact that it may
appear in the esdeclaratione
oproc real r100 = real : random * 100n H
however, the coercion known as "proceduring" [R.8.2.3.1.a]
enables the identifier nr100m to possess the routine
= (real : real : random r * 100)= .
Actually, it is only necessary to write
oproc real r100 = random * 100n
and then the routine possessed by or100m will be
= (real : random * 100)w= .

5.5 What happened to the o0ld call by name?

In explaining the parameter mechanism of ALGOL 60, it is
customary to consider an example something like
oprocedure upa(a, b) ; value b ; ceal a, b ;
begin i := i + 1 ; a := a + b endo
and to explain that, in the scope of the fragments oreal array

x1 [1:10] ; integer i ; i := 1n, the procedure call oupa(x1[1i],
2)n will, to the astonishment of most, increment the value of
ox1[2]n rather than that of nx1[1]Jo. This is a result of the
semantic description of procedure calls in ALGOL 60 [N.U4.7.3.2]
involving what 1is usually referred to as the "copy rule". In
ALGOL 68 a routine which achieves a similar effect, for simple
svariablese (not eslicese) passed to man, is
nproc upa = (ref real a, real b) : (i +:=1 ; a +:= b)o

but the wecalle pupa(x1[i], 2)pin the range of o[1:10]Jreal x1 ;
int i := 1o, will increment the value referred to by ox1[1]o and
not nx1f2 Jn. Thus the passing of the eparametere onx1[i]o by
name, as it was known in ALGOL 60, is not achieved, in ALGOL 68,
by wusing the eformal-parametere nref real am. The resulting
eidentity-declaratione nref real a = x1[i Jo is elaborated at the
time of entry to the routine and the old copy rule of ALGOL 60
does not apply.

In the case of expressicns and subscripted variables, this
copy rule of ALGOL 60 amounted to the passing of a procedure
body to the formal parameter and was used by a generation of
instructors to impress students with the idea that ALGOL 60 is a
nice language in which nice things can be dcne in a nice way.
However, the niceties of it were often too subtle for the
beginner, who thus fell into the trap of using a powerful device
when it was not necessary for him to do so. We may now perhaps
look back upon it as a design imperfection in ALGOL 60. There
should have been a <name part> rather than a <value part>
[N.5.4.17. A language should be such that the least effort by
the programmer calls up the simplest implementation schemes. If
he wishes to use a more powerful scheme, then he should be made
aware of it by the necessity for writing a little more 1in his
source program.

To recapture the strange effect of the call by name of

An ALGOL 68 Companion 65

ALGOL 60, the example mentioned above should apgear as

oproc upb = (proc ref real a, real b) : (1 ¢:= 1; a +:= b)no ,
for then the first edeclaratione arising from the &ecalle
oupb (x171], 2)o 1is oproc ref real a = x1[iJo. In this case the
elaboration of ox1[iJu occurs at the time of the deproceduring
[R.8.2.2] of pap in ma +:= bp, and not at the time of parameter

transfer. Thus ox1[2]o is incremented and not ox1[1]n.

The occurrence of nx1[iJe in nproc ref real a = x1[i]o is
another example of a eprocedured-coercende for wx1[ilm is not a
eroutine-denotatione. Nevertheless, the eidentifiere map is made
to possess the routine = (cef real : x1[i])w by a coercion known

as proceduring [R.B.2.3].
5.6 Program example

The following algorithm finds all trees which span a non-
directed graph ngn (1), The edges radiating from node aie in the
graph are represented by bits in the i-th bits structure of the
row-of-bits ongo. A set of nodes is also represented by bits of a
bits structure, the j-th node being represented by the j-th bit,
which is wstrues if that node is present.

The set of nodes in the growing trees (saplings) 1is opso.
The edges in a family of saplings are recorded in omam, which,
like nogn, is of mode erow-of-bitse, The boundary of asa 1is the
set nbo of nodes neightouring the nodes cf oso. Initially nsno
contains only node =1s and obo its neighbours, i.e., ng[1]o. The
recursive routine ngrown iterates over the nodes in nbm. For
each node w=ie in nobn it finds all possible edges (new growth)
from nso to node sis. This new growth is recorded in mao and
removed from omgn. The node wies is removed from the boundary wbn.
The procedure ogrown is then called recursively with the nodes
of the saplings augmented by node mis and the boundary augmented
by neighbours of node wsia.

Since the standard otits widtho (or olcng bits widtheo) may
be larger than the number of nodes, a omaskn is necessary to
mask out the redundant bits when testing bit patterns.

If the number of nodes exceeds nbits widthm, then the
emode-declaratione for obm, in the first line, should be changed
accordingly. If sufficient precision is then not availakle, one
may use the mode esrow-of-tooleane, with suitable declaraticn of
the operations involved.

As an example, for the graph
1(2,3,9), 2(1,3), 3(1,2,4), 4(1,3) .
the algorithm generates eight trees in four families
10, 2101 ; 3(1,2), 41,3 (4 trees)
10, 2. 3(4) ., 4 (1) (1 tree)
€1) Translated from Algorithm 354 by M.Douglas McIlroy. Conn.
Assoc. Computing Machinery, Vol 12(1969) p. 511.

66 An ALGOL 68 Companion

10, 2(3), 3(1) ., 4(1,3) (2 trees)
10, 21(3), 3(W) ., 4(1) (1 tree) .
obegin mode b = bits ¢or long bits, if necessary? ;
proc trees = ([1:] b g ¢the given graphg,
proc ([1b)f ¢the action for each familye):
begin int n = upb g ¢the number of nodes in the graphe;
[1:n]b a #the growing family, saplingse;
b t; b £flips =t or ~ t ¢all flipse ;
b unit = ~(flips up -1) ¢a flip followed by flopse,
mask = ~(flips up -n) #for masking redundant bitse;

proc yrow = (ref[1:nlb g ¢the residual graphe,
b s ¢the nodes of the saplingse,
ref b b ¢toundary of the saplingsg):
S mask
n ¢the family is complete, so¢ f (a)
e for i to n do

v

=i

n ¢examine each node of the boundary¢#
= unit up(1-i) ¢only the i-th bit is flipe;
~ uniti ¢remove node i from the boundarye ;
i] and s ¢this is the new growthe;
i] gnd - s ¢#remove the new growthe;
1:n}b := g ¢pass a copy of the residuesce¢,
or uniti ¢the family now includes node ig,
¢ b := b or gqfi] #the bhouniary is augmented by
e neighbours of ncde i¢) ;
-~ g[i] 2 mask | ¢#¢we cannot move¢ out)

o My -
li=-

1| af1] := ~ flips) ;
loc [1:n]b := q e¢start with a copy#,
unit ¢start with node 1¢,
loc b := g[1] ¢the neighbours of node 1¢)

In the above, the procedure ogrowno has two ecallsse., The
scalle preceding the final opendc, which starts the whole
process, and another recursive wecalle within the eroutine-
denotatione. In both of these ecallse, notice that the first and
third eparameterses must be evariablese. Moreover, new copies of
these evariablese nmust be passed. A convenient way to do this is
to use elocal-generatorss. The second eparametere is a
econstante, and no assignment is made to it.

Review questions
5.1 The parameter mechanism

a) Is the following an eidentity-declaratione?
nreal proc p = (real a) real : a * aop

b)

c)

a)

e)

a)
b)
c)

a)

e)

of
a)
b)
c)

d)

e)

a)

a)
b)
c)

d)
e)

An ALGOL 68 Companion 67

Is the following an eidentity-declaratione?

Give a edeclaratione for a eprocedurse nr2c which has no
eparameterse and delivers a random real value between «Qam
and =2e,

Give a edeclaratione for a eproceduree mmaxm with two ereal-
parameterss which delivers the larger of the two.

Give a edeclaratione of a eproceduree precipo which accepts a
ereal-variablee and replaces it by its reciprocal.

5.2 Routine denotations

Is nref real xy = x ¥ yn an eidentity-declarations?

What is the eformal-parametere of [1:3]Jceal x1 := (1, 2, 3)o?
If opo possesses the routine a (real a = skip, real b = skip ;
a * b)=, what esclosed-clausee is elaborated by the ecall
op(x+1, y)n?

What is the value possessed by the —elenotatione n((real a)
real : a * a)m?

What 1s the value possessed by the edenotatione o(int n, m ;
reff1:n)real a1) real : (n < n | alfn] | alfm])o?

5.3 More on parameters

In the reach of nmreal x := 1.2, y := 3.40, what is the value

op(x, y)o
in the reach cf oproc p = (real a, b) : 1.1@7
in the reach of
omproc p = (ceal a, ref real b) real : (b +:= a ; b)a?
in the reach of

nmproc p = (cef real a, b) ref real : (1> 2| a) o

in the reach of mproc p = (ref ref real a, ref real b)real : a
:= bn?

in the reach of omproc p = ([Jreal a, b)real : b[1] - a[1]n?

5.4 syntax of routine denotations

Translate the following into ALGOL 68:
nprocedure p(a, b) ; value a ; integer a, b ;

5.6 Program exanmple

Is gunito a econstante or a evariablee?

Why is a ncefo not necessary in the eforpal-rarametere oh so?

Why is an esactual-parametere ploc := g[i]o used in the last
scalle?

Why was nto not initialized?

If ono is =3 and obits widtho is =8ae, what is the value of
omaskn?

68 An ALGOL 68 Companion

6 Coercion ‘
6.1 Fundamentals

Coercion is a process whereby, from a value of one mode, is
derived the equivalent value of another mode, e.g., the real
value possessed by ©2.0n is equivalent to [H.2.2.3.1.4] the
integral value possessed by m2p. Derivation of an eguivalent
value is wusually accomplished autowmatically, i.e., by no
conscious effort of the programmer. An exanmple is

nreal x := 2n

where the value possessed by c£2o is of mode eintegrale, but the
value which 1is assigned nmust be of mode sreale, Such coercions
are well known in other languages and are usually described
semantically. In PL/I there are extensive tables [P.Part II,
Section F)] in which the programmer may find what action to
expect given the attributes of a source and those of its target.
Coercion in ALGOL 68 is described by means of the syntax, most
of which is in section 8.2 of the Report.

The particular coercions which are elaborated are generally
determined by three things, viz., 1) the a priori mode, 2) the a
posteriori mode and 3) the syntactic position, or "sort", A
scaste, which was discussed in section 4.13, is a useful object
in which to illustrate coercion, for that is usually its main
purpose. We recall that a ecaste consists of a edeclarere
followed by a ecast-of-symbole followed by a eunitary-clausee,
which is in a strong position. For example, in the ecaste

oceal : 2o
the a priori mode of n2n is eintegrale, the a posteriori mode of
its eunitary-clausee is that specified by its edeclarere, viz.,
ereals, and the "sort" of its esunitary-clausee is "strong™. The
particular coercion called into play is ‘“widening" from
sintegyrale to ereales and is governed by a syntactic rule
[R.B8.2.5.7.a], whose details we will not now unravel.

6.2 Classification of coercions

There are eight different coercions. They are
"jereferencing®, as in
oceal : xo '
"deproceduring®™, as in
nreal : randomno .
"procaduring®, as in
mproc real : x1[i]m '
"uniting", as in
ounion (int, bool) : truen »
"widening", as in
oreal : 2no ‘
"rowing", as 1in
ngs:g:—ﬂg - Ilalig p-

“"hipping", as in
onreal : skipm
and "voiding"™, as in the evoid-cast-packe
o(: p)n 5
These coercions are classified into subsets as follows:

An ALGOL 68 Companion 69

dereferencing and deproceduring are together known as "fitting";
these two together with proceduring and uniting are known as
"adjusting”; and all eight are together known as "adapting™. The
reader will find that this terminology is used in the
metanotions [R.71.2.3.k,1,m]. A diagrammatic scheme is shown in
figure 6.2. Some of the aktove examples would not normally appear
in useful programs. They are chosen for illustrative purposes.

COERCION TREE

Stronga......ADAPTED
L

v T L] Ll 1

| | | i |
| widened rowed hipped voided

firm- L ..oADJUSTED
L

r T 1

| | |
| procedured united
WeadKeeasaaes FITTED

[
r s 1

|
i dereferenced
soft.......deprocedured

Fig.6.2

6.3 Fitting

The result of dereferencing a name is to yield the value to
which it refers. This has been touched upon already in section

strong-real-unit.cceceecacess
| (2) 5
strong-real-base

|
strongly-dereferenced-to-real-base

1(3)
reference-to-real-base

reference-to-real-mode-identifier

#8 BE g4 4% ga Ne pa

oxo
: (1)
o | S |
(o] O‘)"‘ }-c.--.
0 | NS |
Fig.6.3

2.12 and elsewhere. Figure 6.3 shows the parse of pinm as a
sstrong-real-unite. At 1, 1in the figure, nxo, as an
eidentifiere, possesses a name and envelops the mode ereference-
to-reale and at 2, as a eunite, pxo possesses a real value and
envelops the mode ereale. The coercion is shown at 3.

70 An ALGOL 6B Companion

The result of deproceduring is the elaboration of a routine
(without parameters), e.g., the scaste pnreal : randomm forces
the elaboration of the routine possessed by nrandomom and
delivers the next random real value as the value of the ecaste.
Both dereferencing and deproceduring are classified together as
"fitting™ [R.1.2.3.m], and are the two coercions which occur
most frequently.

6.4 Adjusting

Both proceduring and uniting, together with fitting
(dereferencing and deproceduring) are known as "adjusting" and
are so grouped because they can all occur in certain syntactic
positions.

The result of proceduring is a routine. For exawmple, the
value possessed by the ecaste nproc real : x1i]o is the routine
w(real : x1[i])w. It may be recalled, from section 5.2, that a
rountine is syntactically similar to a eclosed-clausee and that,
in the <case where there are no -eparameterse, there are no
sroutine-denotationss. The proceduring coercion makes then

unnecessarye.

Uniting has only a syntactic effect. In the terms of the
Report, the elaboration of a united ecoercendes is the same as
that of its pre-elaboration [R.1.1.6.1i]. This means that no
change of value is involved. Actually, an implementation will
find it necessary, upon uniting, to attach to the value some
record of its mode, so that this may be tested later, especially
if a econformity-relatione is involved, but the particular
details of the implementation mechanism is not of concern to the
programmer. He should, however, be aware that it probalbly occurs
and thus not make use of united modes unnecessarily. The subject
of unions is an advanced topic which we shall postpone to
chapter 7. Uniting occurs, for example, in nunion(int, boel) :
trueno.

6.5 Adapting

The coercions known as widening, TtTowing, hipping and
voidiny, together with adjusting are collectively kncwn as
"adapting” and form the set of all possible coercions in the
language. These are so grouped because they can all occur in
certain syntactic positions.

The effect of widening is to deliver a value of one mode
which corresponds to a given value of another mode. One may
widen from eintegrale to esreale [R.8.2.5.1.a] and from erecale to
complaex [ibid. b]. Consegquently, each of the following possesses
the value mtrues:

o(ceal : 2) = 2.0m ’

o(compl : 2) = 2,0 1 0.0m .
One may also widen from bits to erow of booleane [ibid. c] and
from bytes to erow of charactere [ibid. d]. If obits widtho is
«la, then o([Jbool : 101)n has a value which is that of o (false,

—_—

true, false, true)m. Similarly, if obytes widthn is e=l4e, then

An ALGOL 68 Companion 71

o(string : ctb "abc") = Mabc."o possesses the value strues
(assuming that the w©null characterm [R.10.1.1] is " ") More
than one coercion may be involved in one scaste, e.g., ncompl :
in requires first a dereferencing of pminm to yield an integral
value, a widening of the value to ereals and ancther widening to
complex.

The effect of rowing is to deliver a multiple value which
is a row of =zero or one elements. It occurs, for example, in
of Jreal :o and in of]int : 2po. The value in the first case is a
row of zero elements, each of mode sreale. In the second case
one ohtains a row of one element of mode eintegrale. Note that
of ,]int : [Jint : 2n involves two consecutive rowings which
result in a one by one matrix. The same effect can be oktained
by of[,]int : 2p, since rowing is recursive [E.B.2.6.17.a]. The
scaste n[, Jbool :o will deliver a boolean matrix with one row
which has no columns. Note that when a ccnstant is rowed, the
result is a esconstante nmultiple value, but if a evariablees is
roved the result is a multiple =evariablee. This effect is
achieved syntactically by the metanotion eREFETYe in the rula
for rowing ([R.8.2.6.1.a]. Thus, oreff Jreal : xno will have the
effect of creating a new multiple value whose c¢nly element is
oxo and the eidentity-relatione n(ref[Jreal : x)[1] :=: xn
possesses the value strues no mattetr what value is referred to
by nxmn. Of course, it is arranged [R.8.2.6.1.b] that an empty
cannot be rowed to a evariablee, i.e., no(ref[]Jreal :)o is
syntactically_invalid.

The coercion known as hipping takes care of the eskipe,
uskipo, the enihile oniln, and ejumpse like ngo_to novosibirskno.
This coercion is somewhat different from the others in that, if
it occurs, then no other coercions may take place. Bcth the
eskipes and the ejtmpe may be coerced to any mode, but the
enihile may be coerced only to a mode which begins with
sreferance-tos. The elabtoration of a eskipe delivers some
(undefined) value of the required mode, e.g., the value of preal
: skipn is some real value., The value of a snihile, represented
by onilo, is a unique name which refers to no value. This means
that o(ref real : nil) :=: (cef real : nil)o is mtrues, although

n(ref real : skip) :=: (cef real : skip)m is unlikely to beC1),

observe that n(ref int : nil) :=: (ref real : nil)u is not an
eidentity-relatione because the modes of its etertiariese do not
agree. Also, n(ref real : ref ref real : pnil)m cannot be
elaborated, since no dereferencing can be done on a enihile
[R.B.2.1.2 Step 2]. The elaboration of a ccerced ejumpe is a
jump except in a case like nm(proc ¢void¢ : go_to l)a, where the
value delivered is a routine and the jump itself 1is not
performed [R.8.2.7.2.bJ. Note however that o(ref proc ¢void¢ :

go_to 1l)ow does not deliver a routine.

There remains one other coercion, viz., voiding. The effect
of voiding is to discard whatever value is involved. Thus

€1) It will be interesting to try out some of the compilers on
this point.

12 An ALGOL 68 Companion

o(: 2)n will not deliver the value =2e. The evoid-cast-packe
n(: random)n delivers neither a routine nor a real wvalue, but
causes gnrandomn to be elaborated (deprocedured) once, whereupon
the real value delivered is discarded (see s NONPROCe
[R.B.2.8B.1.b]). This may indeed be Jjust what the programmer
desires. In the reach of nproc real p := randomp, the ppm in n(:
p)n is dereferenced, deprocedured and then voided. T he
sdeclarations mnproc ¢void¢ gq = (: p)m, however, delays these
coercions until ngm is elaborated. He who can correctly perfornm
the syntactic and semantic analysis of nprecc real p := random ;
proc #void¢ q = (: p) i (: g) ; skipm, has no need of further
advice concerning cogrcion.

6.6 Syntactic position

The coercions which may occur depend upon the syntactic
position of an object in the eprograme. There are four sorts of
syntactic position, viz., strongqg, firm, weak and soft. In what
has gone tefore, we have concentrated our attention on the
scastes because its weunitary-clausee is stronq and in this
position all coercions can occur; moreover, strony coercion is
the main purpose of the ecaste. In firm positions only those
coercions collectively known as adjusting are relevant. In weak
positions fitting is relevant. A soft position permits only
deproceduring (see figure 6.2).

Some examples of strong fpositions are seactual-parameterse,
e.g., n2n 1in aoreal x = 2o, esourcese, e.d., n2n in ox := 2n,
sconditionse, e.q., nx=yn in o(x=y | 1)om and esukscriptse,
@.9., w@wio in px1[iJo. In these positions the a posteriori mode
(i.e., the mode after coercion), is dictated by the context.
Examples of firm positions are soperandse, e.9., oxo in nabs xo,
and eprimariese of ecallse, e.q., ncoso in ncos(x)o. Examples of
weak positions are eprimariess of eslicese, e.g9., ox1p in
ox1[i]o and esecondariese of eselectionse, e.g., ocelln in onext
of celln. Examples of soft positions are edestinationse, e.g.,
oxo in ox := yo and etertiariese of eidentity-relationse, e.g.,
pxo in ox :=: xxo. Pigure 6.6.a shows an eassignatione in which
many of these positions occur.

o(x :=: re of z | xx | x¥fi]) := sin(x + (real : pi))o

T 5 3 s prap ™ T = i T G P
S W S W S F P S
e A 5 i A
6] 0 F
T T T
S s
____________ i - — A
0 S
{S = strong, F = firm, W = weak, O = soft}

Fig.6.6.a

It is clear that eoperandse cannot be strong, for otherwise
one could not determine which operation is to be performed in

An ALGOL 68 Companion 73

ol + 2o. Since both eoperandse could be widened, is it addition
of real values or addition of integral values? Because of this
uncertainty, the coercions involved in eoperandse pust be
restricted to those classed as adjusting. This is achieved by
making eoperandse firm [R.8.4.1.d,f). The only coercions
permitted for soperandse are therefore dereferencing,
deproceduring, proceduring and uniting. In particular, since a
eskipe can only be hipped and hipping can only occur in strong
positions, we conclude that the object mskip + skipm is not a
eformulae.

We may recall that if a evariablee, say noxlo, is sliced,
then the result, say ox1[i]o, is a evariablee. Similarly the
eselectione mnnext of celln from the evariablee pcello is also a
evariablee., This means that we need a position in which both
deproceduring and dereferencing are permitted, but that
dereferencing, in this position, must stop short of removing a
final ereference-toes from the a priori mode. Remember that we
may wish to write ox1[i] := 3.14p or nnext of cell := celllp and
that the mode of a edestinatione must begin with ereference-tos.
Such a position is known as weak. It involves only those
coercions known as fitting, with the special proviso concerning
dereferencing.

Finally, in the edestinatione of an eassignatione, e.g.,
pxo in ox := yo, only deproceduring can be permitted and such a
position is known as soft.

Mote that the word ®strong" is used in the sense of
strongly coerced, so that a strong position indicates strength
from outside and not strength from inside.

In the above we have considered the syntactic positions
arising from the strict language only. The programmer, however,
is generally more concerned with the extended language, for that
is what he uses. It is therefore appropriate to examine the
syntactic positions for constructs in the extended language. In
particular, the repetitive statement [R.9.2], shown in figure
6.6.b, contains the objects ma, b, ¢, do and pmemn, all of which
are in a strong position. Note that oim is the eidentifiers of
an eidentity-declarationes and is therefore not coerced. Its mode
is sintegrale (not ereference-to-integrale) and therefore

strong-unitary-void-clause
|

A

nfor i from a by b to c while 4 do en

T T T T T T
integral- strong-unitary- strong- strong-
mode- integral-clause serial- unitary-
identifier boolean- void-
clause clause
Fig.6.6.b

no assignment may be made to it. Moreover, the value of this goin

74 An ALGOL 68 Companion

is unavailable outside of the eclausese ndm and nenm, no matter
how the elaboration of the repetitive statement is completed.
Also observe that the repetitive statement itself is strongly
voided and therefore cannot deliver a value. This is traditional
for several programming languages, so will be understood easily.

6.7 Coercends

Coercions are introduced at certain syntactic positiocns but
are not carried out except upon ecoercendse. For example, in
oproc ref real p = (1 < 9 | x1[i] | yi[i]))ao, the sconditional-
clausee o(1 <9 | x1[1] | y!WNi]l)om is strong and the mnmode
required is that specified by wpproc ref realo. However, a
sconditional-clauses is not a ecoercende itself. In fact, if the
value of pio is w2e, then the routine possessed by opn is no(cef
real : x1[i])m. It is therefore the ebasee nx1[i])n which is
coerced and not the econditional-clausee because a ebasee is a
scoercends.

sCoercendse are easily distinguished and we have met them
all before, although we have not, as yet, classified them as
such. A ecoercende is either a ebasee, e.g., nx1[iln, a
scohesione, e.q., onext of celln, a eformulae, e.q., mabs xn or
a econfrontatione, e.g., ox := yo [R.8.2.0.7.a, 1.2.4.a]. A
certain set of coercions may be dimplied by the syntactic
position (sort) of the object, but none of these coercions will
be elaborated on that object unless it is a ecoercende. The sort
is therefore passed to the ecoercendse within the object. When a
scoercende is met, then all coercions implied by that syntactic
position must be completely expended,

6.8 A significant example

Perhaps we should now lcok closely into the reason uhy
oproc £voidé¢ p = randomn
is not an eidentity-declaratione. The intention was, perhaps,
oproc ¢#void¢ p = (: random)n or wmproc real p = randomom. First we
must observe that no extension could have been applied since
orandomn is not a eroutine-denotatione [R.9.2.d), so this must
be parsed as an eidentity-declaratione in the strict language.
An attempt to parse oproc #void¢ p = randomn must begin with the
facts that ppao is a eprocedure-void-mode-identifiere ani
erandome is a eprocedure-real-mode-identifiere. Since warandomn
is a ebasee, we must therefore attempt to find production rules
in the hope of showing that a eprocedure-real-basee is a
production of estrong-procedure-void-bases. The production rule
for any given notion can be obtained from only one rule of the
Report. If we take that rule [R.B8.2.0.1.d7 and replace the
metanotion #COERCENDe appropriately, we have
estrong procedure void base : procedure void hase ;
strongly ADAPTED to procedure void base.s» .

Since nrandomnm is not a eprocedure-void-bases, we must ncw see
whethar it can be produced from the seccnd alternative. This
means replacing eADAPTEDe by each one of its eight terminal
productions, i.e., by edereferenced, deprocedured, procedured,
united, widened, rowed, hippede and evoidede. We look at each of

An ALGOL 68 Companion 75

these in turn. In the rules for dereferencing [R.B.2.1.1.a], we
have
sstrongly dereferenced to procedure void base :
strongly FITTED to reference to procedure void bases -

Thus the mode enveloped has become longer, i.e., from
sprocedure-voids to ereference-to-procedure-voide. The same will
apply to deproceduring [R.B.2.2.71.a]. Because these two rules
feed into each other, we can only lengthen the mode (in the
sense used above) by using them. Thus we cannot reach our goal
through this route.

The rules for proceduring [R.8.2.3.1.a] yvield
estrongly procedured to procedure void base :

void base ;

strongly dereferenced to void base ;

strongly procedured to void base ;

strongly united to void base ;

strongly widened to void base ;

strongly rowed to void base.e .
Each of these must now be examined. In the first place, orandomn
is not a evoid basee, so we dismiss. the first alternative. For
the others the words (protonotions) edereferenced-to-voide,
eprocedured-to-voide, eunited-to-voide, ewidened-to-voide and
erowed-to-voide lead us nowhere in the appropriate sections
[ReBe2e1a1, Ba2s3a1, B.2.80.1, 8.2.5.1, 8.2.6.17Y.

By examining the left hand sides of the rules for widening
[R.8.2.5.1], rowing [R.B8.2.6.1.] and voiding [R.8.2.8.1], we can
see that productions for estrongly ADAPTED to procedure void
basee through any of these routes cannot be found. Finally, the
rules for hipping [R.B8.2.7.1] cannot be used since they apply
only to eskipse, snihilse and ejumpse and nrandomo is not one of
these. This completes our deduction that moproc ¢veoide p =
randomno is not an eidentity-relatione.

Note that for oproc #void¢ p = (: random)m, the significant
production is
estrongly procedured to procedure void base :
void base.e -
[R.8.2.3.1.a]. Also, for mproc real p = randomo only the empty

coercion is required for norandomo is already of a priori mode
sprocedure-reale.

6.9 The syntactic machine

The coercions are, with the exception of balancing of
modes, all contained in the syntactic rules in section 8.2 of
the Report. A thorough understanding of coercion therefore
requires a knowledge of these rules and a certain dexterity in
their use. The reader is encouraged to try some syntactic
analysis (parsing) for himself, but to help him on the road we
give below a complete analysis, as a estrong-real-unite, of npin
in the wecaste preal : 1ipo, where oinm is in the reach of the
sdeclaratione @pint 1im. The weidentifiere opin is thus a
sreference-to-integral-mode-identifiere and its a priori mode is
sreference-to-integrale. The nrealo in the ecaste indicates that

76 An ALGOL 68 Companion

the a posteriori mode is ereale. The references within braces
are to the particular rules of the Report which are used.

.Stronq real unit. @ & 8 & & % 4 W & @ B4 WSS A S TS S S S RS SS AR S e e
sstrong unitary real clausee{6.1.7.2} c.cccvevecesnccoacanna
estrong real tertiarye® [B8.1.1.2] cecocsccssrcanasansacananse
sstrong ceal setondary® [B:1:i1iD]) siessaessiaansnisneinemeds
OSt'.CDIlg real priﬂlary. [8.1.1.0} L R I I I A B
sstrang Dedl hases § 8. 71. Tl J e nwwmmmem e weuennmes e e saeaee
estrongly widened to real basee {8.2.0.4]) **k*x sk xxhI s
estrongly dereferenced to integral basee {8.2.5.1.a} *##%*x
sreference to integral Fkasee {8.2.7.71.8} cvcuvecnscnascnncns
sreference to integral mode identifiere [8.6.0.7.a} sceenea.l0
sletter ie {U.1.7.D} cecucaanne P e o e e Y 1
sletter’ i syubole [3:0:2:0] ismwssswvevsnansssersasdsvameas 12

WO UNE WK -

In the above analysis the two coercions occur in lines 7
and 8. In lines 1 to 6, the sort, i.e., estronge, is carried
through the parse until it meets with the ecoercende (in this
example a ebasee) in line 6. In lines 9 to 12 all the coercions
implied by the estronge in 1line 1 have been expended. The
elaboration naturally follows the parse in the reverse order. At
line 10 the eidentifiere pin is identified with its defining
occurrence and the a priori mode, ereference-to-integrale, is
established. (This is usually accomplished by an early pass of
the compiler.) In line 8 the dereferencing occurs and this 1is
followed Ly widening in line 7. No further semantics is involved
in lines 6 down to 1.

6.10 Balancing

Balancing is the word used to describe the process of
finding one mode (the balanced mode) to which each one of a
given set of modes may be coerced (1), The process of finding
the balanced mode will be determined by the sort of syntactic
position involved. Balancing in a strong position is a simple
process (some may even claim that it is not really balanciny),
whereas the programmer may need to exercise care in the
balancing of modes in firm positions, for the final btalanced
mode may not be immediately clear.

In the reach of the edeclarations nbool p, re X, Y, ref

al
ft

real xx, [Jceal x1, ref[Jreal xx1a, an example of so balancing
1s
o(p | xx | x) := 3.1o ’
an example of weak balancing is
o(p | xx1 | x1)[i]o '
an example of firm balancing is
n2.3 + (p | 3.14 | x)&
and an example of strong balancing is
oy := if p then 3.14 else x finm .

€1) sStrictly speaking, only ecoercendse are coerced. We shall
find it convenient to speak of coercion of modes, by which is
meant the mode enveloped bty a ecoercende,

An ALGOL 68 Companion 77

In general, gyiven a set of modes, a balanced mode must be
found which is such that each one of the given modes may be
coerced to it. In achieving this, at least one of the given
modes must be coerceable using the given sort, whereas the
others may be strongly coerced, i.e., the 1limitations of the
syntactic position must be accepted by at least one of the given
modes, otherwise the balancing is not possible. An example in
which a balance is not possible is m2.3 + (p | skip | go_to
k Yo, which is therefore not a eformulae.

6.11 Soft balancing

A simple example of soft balancing is

o({ p | xx | x) := 3.1np .
Examination of this object suqgests an eassignatione in which
the mode of the edestinatione, m(p | xx | x)n, should be

sreference-to-reale. A successful parse is thus assured if the
balanced mode of the econditional-clausees 1is ereference-to-
reale, However, the mode of pxxg is ereference-to-reference-to-
reale, whereas that of omxo is ereference-to-reale. The mode of
nxxo may be coerced to the balanced mode by dereferencing (once)
and that of nxm by the empty coercion. If we recall that the
only coercion which 1is relevant in soft positions is
deproceduring, then it 1is clear that oxxno cannot be softly
coercad to the balanced mode. One must therefore allow oxm to be
softly coerced and oxxo may then be strongly coerced
(dereferenced). A sketch of the parse of the edestinatione

reference-to-real-destination

|
soft-conditional-reference—to-real-clause

|

r T il v !
| | | |
if-symbol condition soft-choice- fi~-symbol

l | reference-to-real-clause 1

| | | |

| | PRl iy |

| | I i |

1 | strong-then- soft-else- |

] | reference-to- reference-to- |

| | real-clause real-clause |

| | | | |
4 <A ——— e — e e e e e L
o P] XX | X o

Fig.6.11

is shown in fiqure 6.11. The rule which 1is relevant 1in this

parse is
eFEAT choice CLAUSE : strong then CLAUSE, FEAT else CLAUSE.-
[R.6.4.1.d], in which eFEATe is replaced by esofte and eCLAUSEe
by ereference-to-real-clauses. This same rule has an alternate
production. The complete rule is
oFEAT choice CLAUSE : strong then CLAUSE, FEAT else CLAUSE ;
FEAT then CLAUSE, strong else CLAUSE. s -

78 An ALGOL 68 Companion

The second alternate is clearly necessary for parsing the
eassignatione

a(p | x| xx)o := 3,14p .
for in this case opxxo must be strongly coerced.

Now consider the eassignatione
o{p |l x|} y) := 3.140 -

Here esither pxo or myo may be chosen to be soft. It follows that
a(p | %X | y)o may be parsed as a ereference-to-real-
destinations in two distinct ways, i.e., either the nxo or the
oyo may be chosen as soft with the other strong. This is one of
the rare examples of syntactic ambiguity in ALGOL 68. The
ambiguity might have been avoided, but at the cost of
considerable complexity in the grammar. Since no semantic
ambiguity is involved, greater clarity in the grammar is
achieved by allowing a harmless syntactic ambiguity.

6.12 Weak balancing

A simple example of weak balancing is
nre of (p | 11i2) 3)nmo .
Here the weclausee o(p | 11 2] 3)n is the esecondarye of a
eselectione and is therefore in a weak position [R.8.5.2.1.a].
The mode of n1 i 2o is ecomplexe(l), but that of 3o is
eintegrale. It is clear that the object n3p must be widened
(twice) to ecomplexs, but widening cannot occur in a weak
position. Thus ol i 2o pust be weakly coerced (the coercion is
empty) and o3o may then be strongly coerced (widened twice). The
balanced mode of ws(p | 11 2 | 3)n is therefore ecomplexe. A
sketch of the parse of this ssecondarye is shown in fiqure 6.12.

weak—complex-secondary

|
weak—-conditicnal-complex-clause
|

'

e — = T s e . |
| |
if-symbol condition weak-choice- fi-symbol
| | complex—~clause |
|
e e e 1
| |
weak—-then- strong-el se-

complex—clause complex-clause

| | |
| | I
I i |
I | [
| | |
| | | | I
L i 4
(p)

i e i e — e
o | 112 | 3 o
Fig.6.12

The rule used in this parse is the same as that given in
paragraph 6.11 above, but this time eFEATe is replaced by eweake

1) Here ecomplexe stands for estructured-with-real-field-
letter-r-letter—e-and-real-field-letter-i-letter-me.

An ALGOL 68 Companion 79

and eCLAUSEe by ecomplex-clauses,

A weak balance which involves a harmless syntactiz

ambiguity is
urte of (B | 21 | 22)n

in the reach of the edeclaratione mcompl z1, z2m. In this case
the balanced mode is ereference-to-complexe since weak coercion
does not remove the last ereference-toes [R.8.2.1.1.b]. The
coercion of both nzlo and nz2o is thus empty and either one of
them may be chosen as weak.

6.13 Firm balancing

A simple example of firm balancing is
on2.3 + ((p|] 4.5)] 6)o .
In this example the econditional-clausee, o(p | 4.5 | 6)n, is
an soperande of a eformulae and is therefore in a firm position
[R.8.4,1.4]. The eoperatores p+m 1is that declared -‘in the
sstandard-preludes [R.10.2.4.17. It requires a right weoperande
of mode ereale. Thus pU4.5p is of the required mode while pé6no
must be widened. Since wideniny may not occur in a firm
position, we must choose uli.5o as firm and then allow mén to be
strong. A sketch of the parse of this soperande (esecondarye) is

firm-real-secondary
|
firm-conditional-real-clause

il i i g i s i g e - b i

r— T T -
| | | I
if-synbol condition firm-choice-real-clause fi-symbol

| | | |

| | r h 1 |

| | | 1 I

| | firm-then- strong-else- |

| | real-clause real-clause |

| 1 | | I
4L 4 ————be e it il 4
o P | 4.5 | 6)o

Fig.6.13

shown in figure 6.13. The relevant rule is again the same as
that given 1in paragraph 6.11 above, Lkut eFEATe is replaced by
efirme and eCLAUSEe by ereal-clausee.

An example of a firm balance in which there is a harmless
syntactic ambiguity is
n2.3 + (| Xxx | ¥)n
for dereferencing is perpritted in a firm position and both oxxno
and oxo may be firmly coerced to ereale by dereferencing.

6.14 Strong balancing

A simple example of a strong balance is
oy := (pl x| 1)nm .

80 An ALGOL 68 Companion

Here the sconditional-clausee, o(p | x | 1)o, 1is a esourcee
and is therefore in a strong position [R.8.3.1.1.c]. Both Bbxm
and olo must therefore be strongly coerced to the balanced mode
which is ereale. This neans that nxm is dereferenced and nlo is
widened.

Observe that strong balancing is a trivial process for one
is not faced with the necessity of deciding which of the given
modes should retain the sort of the syntactic position. They all
retain strong. In the example above, as in most cases of strong
balancing, the balanced mode is determined by the context.
Balancing in firm, weak and soft positions, however, is
different. 1In these positions the halanced mode is not given by
the context but must be decided by examining the given modes
alone.

6.15 Positions of balancing

In the example above we have considered balancing only in a
esconditional-clauses. This is a typical situation and is
sufficient to illustrate the principles involved. However,
balancing may occur in other situations and we shall list each
of them here.

echoice-clausee in a econditional-clausee [R.6.4.1.c,d]
€.g., mabs(p | 1) -2.3)uo.
ebalancee in a ecollateral-clausee [R.6.2.1.e]
e.g., nupb(1, 2.3, x)no.
esuite-of-clause-trainse in a sserial-clausees [R.6.1.1.9]
ey QL P T 1) 3 398 & 1.5 Vin.
eidentity-relatione [R.8.3.3.1.a]
e.g., DXX :=: XoO.

Although these are the only balancing positions in the
strict language, the programmer should be aware of their
implications in the extended lanquage. For examgle

a(pl 1i)1:q | x|z | 3.4 | 5) + 2.35n
requires a firmly balanced mode of ereale for the left ecperande
of the soperatore n+m. This is achieved by dereferencing and
then widening wo©ipo, by dereferencing oxm, by the empty coercion
upon o3.14n and by widening nSn. Since an eoperande must be
firm, either oxo or n3.14n could be chosen to be firm, and the
others could then be strong. Note that since widening cannot be
done in a firm position, both wio and nSo must be strong.
Another example of firm balancing in the extended language is
o(i | 1, 3.4, x, random, xx, skip | go_to error) + 1p

in which either m3.14n or nxm or omrandomm or oxxo may be firm
but the others including the ejumpe must be strong.

Notice that a ecollateral-clausee may be only firmly or
strongly balanced [R.6.2.1.c,d]. Examples, in the reach of
o[1:3)ceal x1o are

oupb (x, i, 1o
for firm talancing and

ox1 := (x, i, 1)nm
for strong balancing.

An ALGOL 68 Companion 81

Balancing may occur in a eserial-clausee which contains a
scompletere. A trivial example is
gf{ "1 1 ¥§F 5 .14 « 1 2 1) * 20
Here, if opo is struea, the olo is widened to ereale before the
addition is performed (despite the fact that the right eoperande
is weintegrale), for the firmly balanced mode of the left
eoperande must be decided without reference to the context.

The balancing of an eidentity-relatione is soft. An example
is
OXX :=: Xo
Here the left etertiarye must be dereferenced once and thetefore
cannot be soft. The right etertiarye is therefore chosen to be
soft and the coercion upon it is empty. In the eidentity-
relatione
oX :=: XXo
the choice must be made in the opposite order . The eidentity-
relatione
ox :=: yno
is syntactically ambiguous since either the left or the right
stertiarye may be soft; however, as in the other case mentioned
above, no semantic ambiquity exists. A typical —eidentity-
relations which might arise in list processing is
o(cef cell : next of cell) :=: pilo
in which the onilm can only be strongly coerced. This forces the
left stertiarye to be soft.

6.16 Program example

The following program calculates the greatest common
divisor of a set of integers(1), The original algorithm is in
FORTRAN. The ALGOL 68 version yiven here retains the 1labels as
used in the FORTRAN program (preceded ky the letter 1) in order
to help in the comparison of the two. It is interesting to note
that all the Jjumps of the original naturally disappear except
for mgo_to 110m in the innermost econditional-clausee, This
could perhaps be eliminated by using a ecalle of a recursive
esprocedures at the elabele nl10:m.

oproc gcdn = (ref [1 a #the given set of integerse ;
int z ¢the resulting multiplierse)
begin int n = ggp a #the number of integers¢ ;
int m := 0, k, sgn ;
¢find the first non-zero integer¢
for i to n while a[i] = 0 do (11: z[i] :=0, m := i) ;
¢the first non-zero integer, if any, is in position n+1¢

if (m +:= 1) > n ¢now it is in position m¢#

then ¢all are zero, so exit with resultz 0

elsf 13: m = n

¢only the last one is non-zero# z[m] := 1 ; a[n]

14: ¢check the sign of a[m]¢#

[iss
I® I

e
s

€1) Translated from algorithm 386 by G.H.Bradley, Communications
of the Association for Computing Machinery, Vol 13, No 7, 1970.

82

a)
b)
c)
d)
e)

a)
b)
C)
d)
e)

An ALGOL 68 Companion

=
1)
L]

ref int am = a[m] ; sgn := sign am ;
t cl :=am := abs am ; k :=m + 1 ;

: #calculate via n-m iterations of the gcd algorithng
r i fron m+l to n while c1 # 1 do
be

int g, y1 := 1, y2 := 0, c2 := abs at § k =1 ;

17: if ai = 0
then ai := 1 ; 2[i] :=
else 110:
if g :1= c2 + c1 ; (c2 #+::= c1) £ 0
thef y2 ~:= q * y1 ; g 3= ¢c1 # ¢c2 ; (c1 #::=¢2) # 0
then y1 -:= q * y2 ; go_to 110 ¢eliminate the jump?¢
else 115: (c1 := c2, y1 := y2)
fi ;
120: 2[i] := (c1 - y1 * am) + ai ;
ai = y1 ; am := c1 fi ;
130: skip end ;
¢ if k=n, then the followinyg iteration is empty¢
125: 160: for § from k+1 to n do (165: z[j] := 0) ;
140: for {4 from k-m by -1 to 2 do
([3] *:= a[3+1] ; 150: a[j) *:= a[j+1]) ;
z[m] := a[m+1] * sgn ;
1100: am
£i
endo

Review questions

6.1 Fundamentals

What three things determine the particular coercions?
What are the four sorts of syntactic position?

Is oreal : into a ecaste?

Is nreal : boolo a ecaste?

What coercion occurs in of Jbool : 101n?

6.2 Classification of coercions

How many different coercions are there?
What coercions occur in preal : intn?
What coercions are classified as fitting?
What coercion occurs in nof Jreal : 3.14o?
What coercion occurs in oint : go_to kn?

6.3 Fitting

What coercions occur in nreal : ref
In the reach of nref ref real xxxm,
oref real : xxxo?

In the reach of nref proc int rpinm, what coercions occur in
oint : rpin?

ions occur in

d)

e)

a)
b)
c)
d)
e)

a)
b)
c)
d)
e)

a)
b)
C)
d)

e)

a)
b)

c)

d)
e)

b)
c)

d)

e)

a)

b)
c)

An ALGOL 68 Companion 83

In the reach of oproc ref bool prb, what coercions occur in
obool : prbo?

What rules are wused in the parse of mreal : randomo as a
ereal-caste?

6.4 Adjusting

What coercions occur in mupnion (real, bool) : randomo?
Is uniting a fitting coercion?

What kind of value results from a proceduring?

Is oproc #£yoidf : sino a ecaste?

Is oproc ¢yoide¢ : randomn a ecaste?

6.5 Adapting

Is hipping an adjusting coercion?

What coercion occurs in obool : go_to kn?

What coercions occur in ox := (1 > 2 | 3.4 | 5)a?
What coercions occur in af]Jreal : randomm?

What coercions occur in ounion ([Jreal, bool) : randomnm?

6.6 Syntactic position

What coercions may occur in weak positions?

0f what sort is oio in mx1[i+1]a?

0f what sort is onlm in ax1[ni1[i]])n?

In the range of nref ref []Jreal rri1xm, what coercions occur
in orrc1x[2] := 2.3m?

0f what sort is oxo in ox ;= yo?

6.7 Coercends

What are the four kinds of ecoercends?

List all the ecoercendse in pif a of b then x := 2 else x :=
y + 3 fin.

Is ox := nilo an eassignations?

Is oxX := nilm an eassignatione?

Is onil := 1o an eassignatione?

6.9 The syntactic machine

What rules are used in parsing mcompl : inp?

Is ocompl : union(int, bool)m a scaste?

what rules are used in the parse of noproc ¢void¢ p = (:x :=
1) o?

Wwhat rules are wused in the parse of mrandomo as a estrong-
void-unite?

Is ox + nilo a eformulae?

6.10 Balancing

Can the modes ereale, eintegrale and eformate be strongly
balanced to real?

Can the modes ereale and eintegrale be strongly balanced?
What is the softly balanced mode from the two modes
ereference-to-reale and eprocedure-reals?

84

d)

e)

a)
b)

c)
d)

e)

a)
b)

c)

a)
e)

a)

b)
c)

d)
e)

a)

b)
c)

An ALGOL 68 Companion

What is a firmly balanced mode from the set of modes ereale,
eintegrale, sprocedure-integrale and sreference-to-
integrale?

Can the modes ereale and ebooleane be balanced?

6.11 Soft balancing

Is the parsing of m(p | XX | Yy) := 3.14p ambiguous?

In the reach of pproc ref real pxo, how is o(p | px | xx)
:= 3.14o balanced?

In the reach of oproc ref real pxo, how is o(p | px | go_to
k) := 2o balanced?

Can the pair of modes eprocedure-row-of-reale and ereference-
to-reale be softly kalanced?

Can the modes sereference-to-procedure-reference-to-hbcoleane
and ereference-to-reference-to-booleane be softly balanced?

6.12 Weak balancing

In the reach of nf]lceal x1g, how is o(p | x1 | 2)[i]m
balanced?

Can the modes ereference-to-reales and eunion-of-real-and-
integral-modes be weakly balanced?

Is ol + re of (p 7.2) 3.4 i 5)o a eformulae?

Is ore of (p | 1 2 | 31 4)n syntactically ambiquous?

How is nim of (p r

!
1
| random | 0 1 2)o balanced?

6.13 Firm balancing

Is oskip / skipo a eformulae?

Can sunion-of-reference-to-real-and-reference-to-integral-
modee and ereale be firmly balanced?

Can eprocedure-reale and sreference-to-reale be firmly
balanced to eprocedure-reale?

Isn2 + (p| x| 3.14)o syntactically ambiguous?

Is mabs (p | true | "a")o a eformulae?

6.15 Positions of balancing

Can the set of modes esreference-to-reference-to-procedure-
rafarence-to-reals, ereference-to-procedure-reference-to-
reals, ereference-to-reference-to-reale and ereference-to-
reale be weakly balanced?

Is o(i | xx, nil, skip | go_to error) :=: xo an eidentity-
ralatione?

Is os((p I 11) ; true . 11 : (i > 0) 12) ; false . 12 :
1 o a eclosed-clauses?

How is mupb (1, 2.3, 4 i 5.6, x, xx, i)o balanced?

Is o(p | nil | skip) := 3.14o an eassignatione?

6.16 Program example

Describe the coercions involved in the elaboration of o(m #+:=
1) > nn.

Describe the elaboration of oint c1 := am :=

What is the purpose of the edeclaratione nref

An ALGOL 68 Companion

d) Why does a eskipe occur on line pli10: skip endao?
e) Can you eliminate the wogo_to 130m by using
procedure at the position ol10:o?

a

85

recursive

86 An ALGOL 68 Companion

7 United modes
7.1 United declarers

Although internal objects are always of one non-united mode,
external objects such as sexpressionse [R.6.0.1,a,b] may be of
united mode, indicating that the mode of the value possessed 1is
not known until elaboration (run time). To allow for this, it is
necessary for the language to provide edeclarerse which specify
united modes. Examples of such edeclarerss are ounion(int,
bool) , union([Jreal, [Jchar), union(cef[]Jint, cef[Jreal),

The syntax of eunited declarerse is not trivial but we may
simplify it to the following:
united declarer : union of symbol,
open symbol, declarer list proper, close symbol.
declarer 1list proper : declarer, comnma symbol, declarer ;
declarer list proper, comma symbol, declarer. E
The syntax of the Report [R.7.1.1.cC,...,jJ], however, 1is an
intricate exercise in the use of metanoticns, Its effect is to
allow, syntactically, that unions may be both conmutative and
associative, and that the modes of the union may be treated in
the sense of mathematical set theory. This means that the same
united mode is specified by the edeclarerse mupion(a, b, c),

union(a, ¢, b), union(a, union(b, c))om and ounion(union(c, a),

7.2 Assignations with united destination

Bacause sdeclarerse specifying united modes exist, the
declaration of evariableses using such edeclarerse is possible.
Such a edeclaratione might be ounion (int, bool) ibm, whereupon
the mode of pibo is ereference to union of integral and bcolean
modee, An assignment pmay be made to such a evariablee,

reference-to-union-of-integral-and-boolean-
mode—assignation
|

———- L_T__ ——=1

1 | |
reference~to-union-of- becomes- strong-union-of-

integral—-and-boolean- symbol integral-and-boolean—
destination | : source
| | : (1)
| | : boolean-
| | : ba se
jo L. —t . ——
oib := truen
: (4) 1 (2) :(2)
o(3) 'S M 1 PR st
Q 0__)-_*' l===:===(::======l |
fo] Rl 4 e

An ALGOL 68 Companion 87

but the eassignatione nib := truem is syntactically possihle
only because of the uniting coercion to which the ebasecs,
otruen, resulting from its strong position as a esourcee, is
subjected (see figyure 7.2 at 1). The eassignatione mib := 1o is
also valid. 1In both these assignments the internal object
assigned does not change under coercion, and the object ntruen
possesses the same value whether it is considered, a priori, as
a ehasee, or, a posteriori, as a esourcees (see the figure at 2).
Note that mibo possesses a name (see figure at 3), whose mode is
ereference to union of integral and boolean modee, but that this
name may refer to a value which is either of mode eintegrale or
of mode ehooleane, since values are not of united mode (i.e., a
mode which begins with esunion ofe), Also, the mode of the value
referrad to by such a evariablee as miba, can be determined, in
general, only at the time of elaboration of the eprograme (not
at "compile time"). These considerations 1lead one to suspect
that the wuse of united modes implies storage allocation or run
time organization methods which must be more elaborate than
those required when such modes are not used (see the figure at
4). A certain prize must therefore he paid for the use of united
modes, but in some situations they are essential (see[R.11.11]);
moreover, ALGOL 68 is designed to minimize those places in a
esprograme where a run time check of the mode of a value is
necessary. Such a check is unnecessary for the eassignationse
nib := truem and @oib := 1n. These checks are known as
sconformity-relationses. Before passing to these we examine two
further eassignationse,

In the range of the edeclaratione oint n, bool po one might
be tempted to consider the objects on := ibm and np := ihp in
the hope that the assignment would take place, if possible.
However neither of these two is an eassignatione, for in both
cases, though the mode of the destination begins with
ereferance-toe, it is not followed by the mode of the esourcee.
In particular, there is no deuniting coercion. Thus we must rule
them out as not belonging to ALGOL 68.

7.3 Conformity relations

sConformity-relationse, 1like eassignationses, eidentity-
relationse and ecastse, are econfrontationse. Examples of
econformity-relationse are: omi ::= ir, rteal :: x of gqo and @a
and b :2:= i + 2 * xo. The syntax of econformity-relationse might
be written
conformity relation : tertiary, conformity relator, tertiary.
conformity relator :
conforms to and becomes symbol ; conforms to symbol. .
This syntax makes the econformity-relations appear to be
symmetrical, but this is not the case as an examination of the
strict syntax of the Report [R.8.3.2.1] will reveal. There one
may see that the stertiarye on the left is soft, whilst that on
the right is not of any sort and therefore cannot be coerced.
Moreover, the mode of the left etertiarye must begin with
sreference-toes. We mway recall that the edestinationes of an
sassignations, i.e., the oxo in ox := 3,140, is soft, sa that
there is some similarity between sassignationse and econformity-

88 An ALGOL 68 Companion

relationse, This 1is 1intentional, for the elaboration of a
sconformity-relatione often results in an assignment. The right
esunite of an eassignatione, e.g., n3.MWn in ox := 3.1U4gp,
however, is strong. Thus the right eunite of an esassignatione is
strongly coerced but the right etertiarye of a econformity-
relatione is not coerced.

We may now ask what the difference is between ox := 3.14n
and ox ::= 3.1%np. In the case of ox := 3.14p, an assignment |is
made. In the case of wx ::= 3.14n, an assignment is also made
but not before checking that such an assignment is possible.
Another difference is that the value of ox := 3.14n, after its
elaboration, is the name possessed by nxm, but the value of ox
t:= 3.14n is a truth value, viz., strues,

Now consider ox := 1o and ox ::= 1o. In the case of bpx :=
1o an assignment of the real value, 1.0es, is made to mxm after
the widening of nlon to a value of mode ereale, but ox ::= 1o
delivers the value sfalses and no assiynment takes place. Note
that the @©olo in ox ::= 1o is not coerced and in particular
cannot be widened to ereale. The reader may now protest that any
simple minded compiler could determine, at compile time, that
the value of ox ::= 3.14n is strues and that the value of px ::=
1o is sfalses, thus the information yielded is trivial. We
agree. However, the possibility of using united modes makes the
econformity-relatione an essential tool, as we shall soon
discover.

We have mentioned that the right etertiarye, e.g., the ulnm
in px ::= 1o 1is not coerced. Therefore we may ask what will
happen with px ::= yn and nx ::= in. The semantics of the
esconformity-relatione [R.8.3.2.2)] now comes to the rescue. It
tells us that, instead of returning the value sfalses
immediately, the right etertiarye, e.g., the nyo in ox ::= yo is
dereferenced as often as is necessary or possible. Thus px ::=
yo will deliver mtruems and ox ::= in will deliver efalses and in
arriving at this, both the myn and the pio are dereferenced
once.

boolean-conformity-relation..ceeccecacses
| :

- } y ntrues
| |] (2)
sof t-reference-to- conformity- real
real-tertiary relator tertiary
I (N | |
reference—to- | real-
real-base | denotaticn
L il i
ox 11= 3. 14
o e . ———i—
0 O——=D———§ |==<{==(assignment) ==<{==| |
[e) | SECNPRSEICLR, ¥ | EEEEC—

Fig.7.3

An ALGOL 68 Companion 89

The only difference between the econformity-relationse nox
:= 3.14o0 and px :: 3.14o is that no assignment occurs in ox :
3.14p despite the fact that the value yielded by ox :: 3.14p i
strues. A skeletal parse of the -econformity-relatione rpx ::=
3.140 is shown in figure 7.3, where the only coercion involved
(it does nothing) is shown at 1 and the value possessed by the
esconformity-relatione at 2.

0]

We see therefore that the econformity-relatione is a way of
finding out whether an assignment is or is not possible. Without
united modes, this would be of no value, since this information
is known at compile time. It is only when united modes are used
that the weconformity-relatione is wuseful. Thus the examples
given above are merely for the purpose of illustrating the
fundamentals of the econformity-relatione and have no value in
practical programming.

7.4 Conformity and unions

Suppose now that we are in the reach of the edeclaratione
ounion (int, char) ico. Then the value of the eclausee o(int i;
ic := "a" ; i :: ic)o is wfalses and the value of the eclausees
o(int i ; ic := 1 ; i :: ic)m is =trues. Note that, without
following the logic of the eprograme, these values cannot be
determined at compile time. How can one use these things? The
reader who is irked by trivialities is advised to turn to the
Report [R.11.1, 10.5.2.1.b, T0.5.2.2.a, 10.5.3.1.b; 10.5.3.2.b,
10.5.4.2.b] where there are many examples of econformity-
relationse in action. For those not so brave, consider the

following problem.

We wish to write a eproceduree, say otranslatem, which will
accept either an integer or a character as its only parameter
and will deliver either a character or an integer which is the
environmental equivalent [R.10.1.3,k]. Thus suppose that in a
given environment the integral equivalent of msae is ®193w=, the
ecalle ntranslate("a")o should then possess an integral value
2193a and the ecalle ptranslate(193)m should possess the
character value was, Its declaration then might be

nproc translate = (union(int, char) a) union(int, char) :

begin int i, char c ;

if 1 ::= a then repr i # R.10.1.k &

else ¢ ::= a ; abs ¢ # R.10.1.37 # fi endn -
In the body of this procedure the econditione, gi ::= an,
determines whether the value delivered is prerr im or mabs co.
The value of the sconformity-relatione @mc ::= ao is voided,
since one knows that, if control reaches it, the value will be
strues; however, its presence |is essential because the

soperators pmabso is not defined for operands of united mode.

7.5 Conformity extensions

eConformity-relationses occur in certain extensions, both
for the convenience of the programmer and for the purpase of
allowing more efficient implementation of certain constructions.
Examples of these extensions occur in the Report [R.11.11.9.,ah].

90 An ALGOL 68 Companion

We begin by explaining them in a simple way.

The econditional-clauses
p{ &df=] 1T 18 iz=0 | 2)]s e2x=4 1% 371 0)n
can be written
o[* a, b, c ::= u *]no .
Its effect then is to test several conformities in succession,
delivering as an integral value the 1index of the one which
succeeds. If all of them fail then the result «0a is delivered.
This, in itself, is useful, but its main purpose is for use as
the eunitary-clausee which follows the mcasem in a case clause
[R.9.4.b,c). In this particular situation the two enclosing
symbols o[*o and o*]Jo may be omitted. A case clause might
therefore be
pmcase a, b, ¢ ::= u in f(a), g(b), h(c) out error exit esacno
and its interpretation is the following: if mano conforms.to ani
becomes npum, then the wvalue 1is nf(a)m; otherwise, if obn
conforms to and becomes @opum, then the wvalue |is og (b) o;
otherwise, if ocm conforms to and becomes gum, then the value is
nh(c)o; otherwise the value is that of oerror exitmn. Note that
if both ma ::= um and nb ::= un possess the value aetrueas, then
it is undefined whether the value is nof (a)o or og(b)o. Examples
of the use of this extension are in the Report [R.11.11.q,ah].
We could perhaps write the procedure of section 7.4 as follows:
oproc translate = (union(int, char)a)union(int, char) :

begin int i,

case i, c ::

endo

though little would be gained in this simple example.

The description of the extensions [R.9.4.e,f], however, is
forhidding and it is perhaps worth while taking a little time to
discover why it must appear in this way. Suppose we have the
conformity case clause n(x, X ::= u | 9, 8 | error)m. It is
clear that if it is interpreted as the equivalent of o(x ::= u
| 9 |: x z:=u | B8 | error)o, then the value a8« can never be
delivered. This is unfortunate, for the 1implementer of the
language may find it convenient and more efficient to make the
conformity test in an order different from that given. It
therefore should be made impossible for the programmer to
determine from the Report the order in which the «conformity
tests are made. This can be done by describing the extension by
means of parallel processing. It is worth our while to exanmine
this more closely.

According to the Report [R.9.4.e], the eclausee n[* x, x
::= u *Jo, in the reach of oreal x, union(int, real) wumo, is
equivalent to the following
o(int i, sema s = /1 ; union(int, real
par((x ::= k | down 1
(x ::=k | down s ; i := m)) ; 0O .m :i)nm a
The edeclaratione nounion (int,) k = uo ensures that the
elaboration of oum occurs once only; its value is then held in
oko. The edeclaratione omsema s = /1o, declares a semaphore oso
[R.10.4]) which will be used to control the elaboration of the

two weclausese in parallel. The semaphore is initialized to the

Io
I ee ws
1=

An ALGOL 68 Companion 91

value wlw. The two clauses beginning with nx ::= ko, are, if
this conformity is successful, followed by the eformulaes pdown
sn which drops the value of the semaphore to s«0s and thus forms
a barrier in the elaboration of whichever eclauses did not reach
this action first. From this it is therefore not possible to
predict whether the value els or =2s will be delivered. To the
programmer, this is an unimportant matter, but the meticulous
implementer will be pleased that there is no way in which he can
be caught if he decides on one method of implementation rather
than another.

The reader should now examine the description of the
extensions in the Report [R.9.4.e,f,g] where he will see that it
is necessary in this description to have m(S / 1)m rather than
o/1o because the esoperatore p/m as a eponadic-operatore with an
integral right eoperande could be redefined by the programmer.
The letter oSo stands for the sstandard-preludees and therefore
returns to the original meaning of o/m as a emonadic-operatore
which accepts an integer as right esoperande and delivers an
equivalent semaphore.

Review guestions

7.1 United declarers

a) Is ounion(int, bool) :=: union(bool, 1int)c an eidentity-
relatione?

b) Is ounion(int, bool) := boolm an eassignatione?

c) What is the value of wounion(int, wunion(bool, char)) ::
union (bool, char, int)n?

d) Is of[1:n]Jupion(char, int)mo a edeclarere?

e) Is nmunion(int, struct (int a))o a edeclarere?

a) In the reach of ounion (char, bool) <¢bm, is wocb := 1o an
sassignatione?

b) In the reach of nunion(real, bool) rbo, is oarb := 1o an
eassignatione?

c) In the reach of nunion(real, bool) rbam, what is the mode of
the value referred to by the name possessed by nrbm?

d) Is ounion (bits, bytes) :=: nilo an eidentity-relatione?

e) In the reach of omunion(int, char) ico, is pic := ic + 1o an
eassignatione?

7.3 Conformity relations

a) In the reach of ounion(real, char) rcam, what is the value of
gre ¢¥ ren?

b) What is the value of nx ::= truen?

c) In the reach of omode br = union (bool, real
ibr, br brm, what is the value of mibr ::=

d) In the reach of ounion (bool, int) biam, is obi
eassignatione?

92

e)

a)
b)
c)
d)

e)

a)
b)

c)
a)

e)

f)

An ALGOL 68 Companion

Is gx ::= X ::= xg a econformity-relatione?

7.4 Conformity and unions

In the reach of nunion(char, bool) cbago,

econformity-relatione?

is ox ::= cbo a

In the reach of ounion ([Jceal, real) riro, is nrir ::= 3.14n;

a sconformity-relatione?

Can wounion([]Jint, [Jcef 1int)m be contained in a proper

sprograme?

In the reach of ounion(int, real) irm, can nir := 1o possess

a name referring to a real value?

Declare a eprocedures which will accept
deliver its square root, as an integer if
and, otherwise, as a real value.

7.5 Conformity extensions

What is the value of m(x, i, b ::= [35

What is the value of n(real, real, real ::
10 Ya?

Is osema p = 1o a edeclaratione?

an integer and
it is integral

Is ncase X, i, b :: u in f£(x), g(i) out h esaco a valid ALGOL

68 obiject?

In the reach of ounion(char, int, bool) <cibmn is wocib ::=

skipn a econformity-relations?
Is ox ::= go_to ko a sconformity-relatione?

An ALGOL 68 Companion 93

8 Formulas and operators
8.1 Formulas

In section 3.11 eformulase were discussed and the following
simplified syntax was presented:
formula : operand, dyadic operator, operand ;
monadic operator, operand. .
This is good enough as a first approximation but it does no
help to explain that a eformulae such as
oX + y ¥ zno
is elaborated in the order sugqgested by nx + (y *¥ z)o. The
question then is how the priority of the eoperatorse may be used
to determine the order of elaboration. A closer approximation to
the syntax of eformulae (still ignoring modes and coercion) is
PRIORITY formula : PRIORITY operand,
PRIORITY operator, PRIORITY plus one operand.
PRIORITY operani :
PRIORITY formula ; PRIORITY plus one operand.
priority NINE plus one operand : monadic operand.
monadic operand : monadic formula ; secondary.
monadic formula : monadic operator, monadic operand.
[simplified from R.8.4.1.b,d,e,f,g]. Here the terminal
productions of ePRIORITYe are [R.1.2.4.a,...,0] epriority-ones,
epriority-one-plus-onee, epriority-one-plus-one-plus-onee, etc.
Thus, epriority-NINEe has the meaning that one might expect. It
is evident that the metanotion, ePRIORITYe, is being used here
as a counter to ensure that the 1left eoperande must have
priority not less than that of its associated edyadic-operatore
and the right eoperande must have priority greater than that of
its associated edyadic-operatore. We shall find it convenient to
shorten the terminal productions of ePRIORITYe, in an obvious

p6-formula
|
r -1 4 1
p6—-operand p6-operator p7-operand
| | |
I | r + 1
| | p7-operand p7—-operator pB8-operand
I | | | |
secondary | secondary | secondary
L 4 4 4 i
ox + Y * zZn
Fig.B8.1.a

way, to ep1, p2, p3, ... ®. Using this shorthand notation, we
obtain, from the first three rules above, the following pineteen
rules:
ptl formula
p1 operand

p1 operand, p1 operator, p2 operand.
p1 formula ; p2 operand.
p2 formula operand, p2 operator, p3 operand.
p2 operand p2 formula ; p3 operand.

p9 formula : operand, p9 operator, p10 operand.

e 48 gg B8
o
¢

.
k=]
L=}

94 An ALGOL 68 Companion

p9 operand : p9 formula ; p10 operand.

p10 operand : monadic operand.
We may now present, in fiqure 8.1.a, a simplified parse of the
e formulas ox ¢+ y * zo, remembering that n+m is a epb-operatore
and o*o is a ep7-operators,

Because a edyadic-operatore requires that its left
soperande be of the same priority (or higher) and that its right
eoperande should be of higher priority, the eformulae

nx + y + zZno
is elaborated as if it were nm(x + y) + zn, for the only possible
parse is that sketched in figure 8.1.b.

pb~formula
l

r—————"——-———--"‘*“*“'"’*""— e S S e S |
p6—-operand p6b—operator p7-operand
| | |
p6—formula I |
| | I
s A e 1 | |
p6—operand pé-operator p7-operand | [
| | | | I
secondary | secondary | secondary
4 4 4 i 4
ox + Y + Zno
Fig.8.1.b

It is important to observe that, in a eformulae containing
several eoperatorse, the eoperandse of each eoperatore are
determined solely by the priorities of the eoperatorse and do
not depend in any way upon the modes of the soperandse, Thus,
assuming that the eoperatore ondlom has priority asls, nd2p has
priority «2s and so on, we know that the eformulae

oh d3 i 42 j 35 k d4 147 n @9 no
must be elaborated in the order suggested by
o(h 43 i) 42 ((j 45 k) d4 (1 47 (m 49 n)))n .
without any knowledge of the modes of owh, i, j, k, 1, mo ani
nnn. The compiler writer appreciates the necessity for this mode
independence and the programmer gains hecanse of the resulting
clarity in the meaning of =formulases.

8.2 Priority declarations

sPriority-declarationses were mentioned, in passing, in
section 3.11. An example of a epriority-declaratione is
opriority + = 6o v
which is indeed one of the edeclarationses in the estandard-
preludees [R.10.2.0.a]. A parse of this particular edeclaratione
is shown 1in figure 8.2, where —e6-tokene is used here as
shorthand for sone-plus-one-plus-one-plus-cne-plus-one-plus-one-

tokens.

The syntax of epriority-declaratione is
epriority-declaration : priority symbol,

An ALGOL 68 Companion 95

priority NUMBER indication, eguals symbol, NUMBER token.e ,
[R.7.3.1.a], where we may observe that the metanotion eNUMBERe
[R-1.2.4.f] is used as a counter to ensure that the value of the

priority-declaration

|

¥ e LB et | e Nl |
oo | . l |
priority-symbol pé-indication equals—symbol 6-token
O S— L i 4
opriority + = .
Fig.8.2

stokens on the right is the priority of the wesdyadic-indicatione
on the left.

The first two edyadic-indicationse [R.4.2.1.d] used in
section 8.1 above might have bheen declared in
npriority d1 = 1, priority 42 = 2o

but all of them might be declared more compactly by using an

opriority di = 1, d2 = 2, 43 = 3, d4 = 4,

d5 =5,4d46 =6, 47 =7, 48 = 8, 49 = 9n :
Observe that the programmer may choose his own edyadic-
indicationse, like odlo and od2o and is not constrained teo use
only those which appear in the Report. The particular
representations permitted will be determined by the
implementation, but it is expected that most implementations
will permit representations like mdln and od2o together with
such characters as n?n and n!n, if available, and which are not
already used as representations of some symbols [R.1.1.5.b].

8.3 Operation declarations

Among the well known programming languages epriority-
declarationse may be unique to ALGOL 68. Certainly soperation-
declarationse are rare. The latter exist, perhaps in a more
primitive form, in APL where all priorities are the sanme.

A simplified syntax of eoperation-declaratione is
operation declaration
caption, equals symbol, actunal parameter.

caption : operation symbol, virtual plan, operator.
[R.7.5.1.a,b], but the strict syntax uses the metanotion ePRAMNe
to convey information about the number of and the modes of the
sparameterse and the metanotion eADICe to convey information
about the priority of the eoperatore and whether it is monadic
or dyadic.

An example of an eoperation-declaratione (in the strict
language) is
oop (real, real) real max =
((ceal a, real b) real : (a>b | a | b))n
and a simple parse is shown in figure 8.3. In the extended
language it may be written

96 An ALGOL 68 Companion

nop max = (real a, b) real : (a>b | a | b)nm ‘
for if the eactual-parametere a eroutine-dentatione, then the
eplans may be elided and the eroutine-denctatione may be

operation-declaration

g STt 4
caption equals- actual-
| symbol Faraneter
r P = 4 LE 1 I I
operation- virtual- oper-—| |
symbol Flan ator | |
| | I |
il e s e e, e I RSN i el e i i . et i . g it B SRR —
nop (ceal, real)real max = (real a,b)ceal : (a >b | a | b)o

Fig.8.3

unpacked [R.9.2.e,d]. Before going further we should remember
that this edeclaratione can only occur in the reach of a
spriority-declarations like ppriority max = 7o.

In the reach of the edeclarationse given above, we may have
a eformulae like ox max y + 3.14p. Since the priority of the
standard eoperatore p+o is six, we should expect this eformulae
to be elaborated in the order suggested by n(x max y) ¥ 3.1
If the epriority-declaratione had been a@opriority max = 5no

instead, then the eformulaes would be elaborated as if it were nx
max (y + 3.14)o.

The eactual-parametere need not necessarily be a eroutine-

dcnotatione. For example,
nop (string, int) int si = string into
is an eoperation-declaratione in which the eactual-parametere is
an eidentifiere. The soperatore opsio is then made to possess the
same routine as that possessed by nstring into [R.10.5.2.2.c].
In the reach of this edeclaratione the eformulae n"+123" si 10n
will possess the same value as that possessed by the ecalle
ostring int ("+123", 10)o. Observe that
oop si = string intno

is not an eoperation-declaratione because ostring intm is not a

elided.

[t is not necessary that an soperations should deliver a
value, but if it does not, then a eformulae containing such an
soperatores cannot be used as an eoperande. Thus one loses sonme
of the advantages of soperatorse, except perhaps for the benefit
of compactness of expression.

An exanmple is
pop interchange = (ref real a, b) :
(a *#: b | real t =a ; a := ; b :=t)no i
whose eoperatore, pinterchangem, could be used in the eformulae

ox interchange yo. The sape effect would be obtained by means of
the eidentity-declarationes

1
b

An ALGOL 6B Companion 97

oproc interchange = (ref real a, b) :
(a :#: b | ceal t =a ; a := b : b = t)no F
whose eidentifiere could then be used in the wecalle

ointerchange(x, y)o. One might observe that the sactual-
parametere is the same sroutine—denotatione in both
edeclarationse above.

sOoperation-declarationse may therefore allow a compactness
of algorithms since sformulase wusing eoperatorse of several
priorities may be built to do any djob we may Tequire, A
e formulae like

nx max y max 0.1o
is sometimes a more pleasing expression of thought than a
nesting of ecallse like
nmax (max(x, y), 0.1)ao F

although LISP lovers may not agree.

B.4 Elaboration of operation declarations

An eoperation-declaratione causes its eoperatore to possess
that routine which 1is possessed by its sesactual-parametere
[R.7.5.27. In the elaboration of

oop max = (real a, b) real : (a>b | a | b)a '

the eoperatore opmaxn is made to possess the routine

s (real a = skip, real b = skip ; real : (a >b | a | b))s= .
This is, of course, already the value possessed by the eroutine-
denotatione which is the eactual-parametere on the right, The
elaboration of an eoperation-declarations is thus similar to
that of the eidentity—declaratione, particularly that in which
the eactual-parameters possesses a routine with one c¢r two
sparameterss,

8.5 Dyadic indications and operators

Although the same occurrence of an external object may be a
representation of both a edyadic-indicatione and an eoperatore,
the identification of the object, as it plays each role, is a
distinct process. An example may help to illustrate this. In the
eclosed-clausee

ala, b) real : (a >b | a | b)) ;

X 1= X max y + 3.14)
£3¢o
there are three occurrences of the object omaxm. The first
occurrence is the defining occurrence of a edyadic-indicatione
[Rel.2.7.e, 4.2.2.a)]; the second occurrence is an appliei
occurrence of ommaxo as a edyadic-indicatione and its defining
occurrence as anh eoperatores [R.4.3.1.b, 4.3.2.a]; the third
occurrence of omaxo is an applied occurrence of a edyadic-
indicationes and an applied occurrence of an soperatore. Thus, in
each of the 1last two occurrences, the object nmaxo represents
two notions, both of which are involved in the identification
process. Since an applied occurence must always identify a
defining occurrence [R.4.4.1.b], the last occurrence of nmaxo

98 An ALGOL 68 Companion

identifies two defining occurences, i.e., the first as a
edyadic-indicatione and the second as an soperatore. In figure
8.5 we sketch the parse of each of the three occurrences of
omaxn and indicate by "<===" how the identification occurs.

operation-—
declaration formula
priority- | |
declaration g———— R T pro——— $—————
| | | |
fm—————— fo————— +-a | operator {==== operator
| | | 1 |
| dyadic | dyadic dyadic
| indication €==== | indication <==== indication
| | | | |
A A el R il s
opriority maxao nop maxo oX max yo
Fig.8.5

It is thus helpful to remember that an object 1like nomaxno,
except 1in a epriority-declarations, must be considered first as
a edyadic-indicatione (carrying the information about priority)
and second as an vsoperatores (possessing an operation - a
routine). As a sdyadic-indications it may identify only one
defining occurrence [R.4.2.2, 4.4.2.b], but as an eoperatore it
may, at different applied occurrences, identify more than one
defining occurrence [R.4.3.2]. One need only consider the
e formulase n3.14 + 4,250 and o123 + 456mo to realise that the
standard eoperatores n+m, in the first eformulae, must be that
which adds two real values [R.10.2.3.i) and in the second it is
that which adds two integral values [R.10.2.4.i]. This
"overloading"™ of soperatorse (i.e., allowing them to have more
than one meaning) has been traditional both in mathematics and
in programming languages, so that it should not be difficult for
us to remember that in ALGOL 68 any eoperators may have a
meaning which depends upon the modes of its eoperandss,
Moreover, the programmer now has the power to overload operators
at will.

8.6 Identification of dyadic indications

The identification of edyadic-indicaticnse, 1like that of
eidentifierse, is a simple process. For each applied occurrence
one must search in the current eranges for a defining
occurrence. If it 1is not found, then one searches in the next
outer erangee [R.4.2.2.b]. The process is then repeated. If a
sparticular-programe contains no epriority-declarationse, then
the defining occurrence of any sdyadic-indicationse will be

found in the estandard-preludees (or perhaps a eslibrary-
prelulee). Since edyadic-indicationse, again like eidentifierse,
are subject to protection [R.6.0.2.d4, 6.1.2.a], i.e., to

systematic replacement in a eclosed-clausee in order to avoid
confusion with the same obhject used elsewhere, it follows that
the occurrence of, say

opriority + = 1o

An ALGOL 68 Companion 99

in some erangees will mean that all operatiocns possessed by the
soperatore o+m, in the next outer erangee, will becomne
inaccessible. A small example may help to make this point clear.
In ths object

o(priority max = 7 ;
Z1¢e
op max = (real a, b)real : (a >b | a | b)) ;
g2¢
X := 1.23 max y
Z3¢
(priority max = 5 ;
gy g
X := 2,34 max y)
z5¢

o

the fifth occurrence of omaxo identifies the fourth occurrence.
Moreover, due to protection of the inner eclosed-clausee, both
of these occurrences are systematically changed into some other
sindicante which is not used elsewhere. Consequently, the last
occurrence of omaxo 1is that of an soperators with no defining
occurrence. Because of a context condition [R.4.4.1.b7, this
could not be contained in a proper eprograme. This means that
the changing of priorities of th2 standard eoperatorse cannot bhe
undertaken lightly. Perhaps it is just as well.

8.7 Identification of operators

The identifization of esoperatorse is not as simple. It is
not sufficient for the esymbole to match that which occurs in an
eoperation-declaratione since, as we have said before, one same
edyadic—-indicatione, when considered as an eoperators may, at
different occurrences, identify mor e than one defining
occurcrance. The additional requirements to be satisfied are as
follows. The mode of the left eoperandes must be firwly
coerczable to the mode of the first eformal-parametere in the
soperation-declaratione and the mode of the right eoperande must
be firmly coerceable to the mode of the second eformal-
parametere; otherwise, the search for a defining occurrence
proceads to the other soperation-declarationse in the same
erangee, or, as before, in successive outer esrangese. We shall
illustrate this with a simple example.

nel1¢ (priority o =8 ;
v2¢ op o = (ceal a, b)real : 3.14 ;
e3e (op o = (ceal a, int b)real : 3.15 ;
eug (op © = (bool a, b)real : 3.16 ;
Z5¢ 2.3 o0 x)))o

The gquestion to be answered here is, which defining occurrence
is identified by the eoperatore nmonm in the eformulae n2.3 o xn
in line 5. One first searches the erangee in which that
eformulae occurs. There is an eoperation-declaratione, on line U
in this erangee, using the same edyadic—indicatione non. This is
the first requirement. However, since the mode of the eoperande
n2.3n cannot be firmly coerced to ebooleane, this attempted
identification of eoperatorse fails and we must search in the
next outer erangee. This next outer erangee also contains an
soperation-declarationes, in line 3, but again the identification

100 An ALGOL 68 Companion

fails since the mode of oxo cannot be firmly coerced to
esintegrale. (Note that it is sufficient to have the failure
occur in only one soperande.,) We must now search in the next
outer srangee, which contains yet another soperation-
declaratione, in line 2, wusing the same edyadic-indications.
This time the identification succeeds since the mode of both
n2.3o and oxo can be firmly coerced to esreale. The value yielded
by the sformulae is therefore =3, 14w,

8.8 Elaboration of formulas
In section 5.1 we discussed the elaboration of a ecalle.

The elaboration of a eformulae is similar. As an exanmple,
consider the eclausee

ne 1¢ (priority max = 7 ;

g2¢ op max = (real a, b) rceal :
¢3¢ ({a>b] al b) ;

U4y ¥ := 3.14 pmax y)o

Here the eoperatore pmaxom, in line 2, possesses the routine
=(real a = skip, real b = skip ; real: (a>b | a | b))s.
The elaboration of the eformalae, in line 4, then has the
following effect. 1In a copy of the routine possessed by omaxn,
the two oskipos are replaced by the eoperandse of the eformulae.

The ra2sulting object

on(ceal a = 3.14, real b = y ; real : (a>b | a| b))ms ,
which is a eclosed-clausee, replaces the eformulae and is
elaborated. Its value is then the value of the eformulae. There
is tharefore nothing new to tell about the elaboration of

eformulase.,

Since it seems that each operation in a eformulae involves
a sequence of actions like those in the elaboration of a ecalle,
it may be thought that the execution of ALGOL 68 programs will
be necessarily slow. This need not be the case, for the
implementer will undoubtedly produce 1in-line code for the
translation of a eformulae 1like w©wx + yno (perhaps only one
machine instruction). Provided that the effect is the same, he
is free to produce any machine instructions for doing the job
(see the note after 10.b Step 12 in the Report).

8.9 Monadic operators

The most significant fact concerning emonadic-operatorse is
that they are always of priority ten. There are no epriority-
declarationse for emonadic-operatorse. Because of this, monadic
operations are always performed first. This is a simple rule and
is easy to remember. It means that the value of n-1 %% 2pn is alm
and not e-1s, contrary to its meaning in ALGOL 60 and in
FORTRAN. The reason for making this choice has been explained
earlier in section 3.11.

Because of the syntax
monadic formula : monadic operator ; monadic operand.
monadic operand : monadic formula ; secondary.
[R.8.4.1.f,g], the elaboration of a eformulaes containing a
sequence of emonadic-operatorse proceeds from right to left.

An ALGOL 68 Companion 101

Thus the eformulae
obin round - xm

is elaborated in the order sugqested by obin (round (- x))o.

A sketch of the parse of this eformulae is shown in figure 8.9.

formula
|
i —— e e e)
operator operand

I I

| r— 4 1

| operator operand

| | |

| | FEEEEE RS e 5

| | operator operand
—_— —— <A 4
obin cound - xn

Fig.8.9

The identification of smonadic-operatorss proceeds as tor
the edyadic-operatorse, the only difference being that there is
only one eoperande which must be checked against the only
e formal-parameteres in the monadic seoperation-declarationes. As
for elyadic-operatorse, the mode of the eoperande must be firmly
coerceable to that of the eformal-parametere, An example is

n¢ 1¢ (opm = (heol a) imt = (a | 100 | 0) ;
¢2¢ (op @ = (int a) int : 200 ;
73¢ n true))m

in which the eoperatores omo , in 1line 3, identifies the
soperatore in line 1, since the value possessed by otruem cannot
be firmly coerced to a value of mode eintegrale. The value of
the eformulae om truem is therefore »100s,

8.10 Related modes

Two modes are "related"® if each of them can be firmly
coerced from one same mode [RU4.4.3.b]. An example is the pair of
because hoth can be firmly coerced from the mode specified by
oref realn. (We shall find it convenient here to shorten the
phrase "the mode specified by omo" to "the mode oma", or even to
“pgmo".) Thus oref realm may be coerced to opref realm, by the

empty coercion, and to nproc realm, by dereferencing and then
proceduring. One reason for defining this relationship between
modes 1is to exclude some dubious unions from proper eproyramss
[R.4.U4.3.d]. Consider, for example, the esdeclarationse

Since nxo is in a strong position it wmay be subjected to
dereferencing, proceduring and then uniting, whereupon the
assignment can occur. On the other hand the assignment can also
occur with an immediate wuniting of =axo. There 1is thus an
ambiguity. For this reason, unions of related modes are excluded

from proper eprogramse,

Another reason, which has to do with eoperatorse, may

102 An ALGOL 68 Companion

become clear by examining the following

n(op m = (proc real) int : 0
op m = (cef real) int : 1 ;
X 2= 3,18 3 & 2= o a)n .

What is the value assigned to nin? Is it a0s or sl1a? Since oxn
may be firmly coerced both to the mode nref realn and to the
mode @oproc crealm, it is clear that there are two defining
occurrences of the eoperatore mnmn in the same range. This
possibility must also be excluded from proper eprogramse
[R.4.4.3.4].

A first attempt to achieve this exclusion might be by
forbidding the occurrence of two eoperation-declarationse, in
the same srangee, if their corresponding eoperandse are of
related modes. However, this is not enough as the following
example shows:

o(op + = ([Jref real a, b) real : 0.0 ;
op + = ([Jreal a, b) real : 1.0 ;
x1 := (x, ¥) *+ (¥, x))o a

In this example the modes nf]Jrealon and o[Jref realn are not
related, nevertheless we have two defining occurrances of the
same operator o+om, as used in the eformulae in the last line. It
is for this reason that the concept of "loosely related" is
developed in the Report. For most programmers and most
implementers, this concept is sufficient to exclude multiple
definitions of eoperatorse. It has been shown that there are
certain pathological cases which can still slip through into
proper eprogramse. For a discussion of these the reader is
referred to a paper by WB8ssner and the discussion following it
[W]. A new wording of the context condition [R.U4.4.3.b] is thus
likely to appear in the revised Report.

8.11 Peano curves

In the following example we assume that there is a plotting
device and a elibrary-preludees (for plotting) containing
edeclarationse of the eidentificrse npnx, y, plotn and omoven.
Both oxon and oyo are ereal-variablese, the two coordinates of
the plot pen. The eprocedures pplotn first lowers the pen and
then plots a straight line from its current position to the
position whose coordinates are n(x, y)n. The eprocedurees omoven
first raises the pen and then moves it to the position o (x, y)n.

In mathematics it is known that a uniformly convergent
sequence of continuous curves (e.g., polygonal 1lines) will
converge to a continuous curve. The particular example we have
in mind 1is a sequence which defines a continuous curve passing
through every point of a square. It helps in proving that the
points of a square are in one-to-one correspondence with the
points of a line interval. These are known as the Peano curves.
The plotting of the approximants is an interesting exercise
(provided that one has plenty of computing money) and the
resulting figures are aesthetically pleasing.

Suppose that one begins with a square of side odm. The
first approximant (n = 0) is a single point at the centre of the

An ALGOL 68 Companion

square. To obtain the second approximant
the
solution for the case n =

103

(n = 1), one divides

original square into four squares each of side nd / 2o. The
0 is then applied to each of the

four

small squares. The four plots so obtained are then joinej

r i

| |

| I

| |

| e K= * I

| | | N

| | | |

| | I 1

| A | W——t—~E
| | | |

| | | |

I | | S

I W R » I

I |

| I

| |

L s i J

drmr=m=== @ = =====2>

Fig.8.11.a

by three lines of length md / 2 ** 1o in

then N and then W. The resulting plot is
The process is recursive, but perhaps we
more step. The next approximant (n
8.11.b, in which the method is to apply
r —r— S - a
| |
| L] 200 e€ B0 ———- === ® |
| | |
[| |
[| |
I = L A . L]]
| ~ |
I A |
| * |
1 B ———— [] P————— ° |
[| (I
1 | [
I | 1
| » LT R R L |
| |
L i |
Fig.8.11.b
case n = 1 to the four quarters,
oriented.

first E, then N and then W.

the directions first E,
shown in figure 8,11.a.

should follow it oane
= 2) is shown in figqure
the solution for the

N

|

|

T —

|

|

S

but scaled down and re-

These four plots are again joined by straight lines of
length vd / 2 *%* 2n and in the same directions as before,

i.¢.,

104 An ALGOL 68 Companion

To plot these approximants we consider some orientations of
the case n = 1. A moment of thought will convince us that we
need only four orientations and these are shown 1in figure
8.11.¢c, together with a pair of truth values (the first relatel
to rotation about the NE diagonal and the second related to
rotation about the NW diagonal) and the direction of the second

r 1 S B S R S 1 | g 1 r 1
| | Pt 1 | |
| .—===—=] | | CEEE T] | | [L] | | = ———— . |
| 1 0 1 3 I 1 T T |
| L S 1 % I 1 F ¥ |
| i 1 1] 1 N (N B |
| R s | | e w: | | wmmsk=ss |] =reses LI
| . | E |
| R, 4 L] L J s v i i s e o
(true, true) N (false,true) E (true,false) W (false,false) S

Fig.8.11l.c

of the three straight lines, either of which will determine one
of the four orientations. In the reach of wobool p, qmn, the
e formulae op * quo plots an approximant with the orientation n(p,
q)n. and the etormulae npp + qo plots a straight line of the
required length and with orientation o(p, q)no.

The program¢!) to plot an approximant follows. It first
reads the length ndo of the side of the square and the degree
ono of the approximant. The first step is to calculate the
length of the line segments required and then to move the pen to
the starting position. The plot is then driven by the eformulae
ntrue * truen.

nbegin ¢#Peano curve approximanté¢
op + = (bool p, q) : ¢this plots a straight line of length d¢
((tp=9q9 1 vyl x) *+:= (g | d | -d) ; plot) ;
op * = (bool p, q) : #a recursive operation¢
(n>0
|l n=-:=1; ~p*q;~p+tqg ;p*g;p+tq; ;p*q;
p+-vq;p$-‘q;n+:=1
) i
real d ¢the side of the squareg,
int n ¢the degree of the approximantg ;
start here : read((d, n)) ;
d /:= 2 ** n ¢glength of connecting segmentse ;
X =y :=d / 2 ; move ¢to the starting pointe¢ ;
gnow plot it¢ (true * true)
endo

(1) From an algorithm of A. van Wijngaarden.

An ALGOL 68 Companion 105

8.12 Chinese rings

The next example is a solution to the puzzle of the Chinese
rings. The puzzle may be stated as follows. There are nnm rings
with an elongated D shaped rod passing through them; the rings
are attached, by wires through the D shaped rod, to a ©plate;
this is done in such a manner that, if the first om - 2p rings
have been removed, then the omoth ring wmay be removed (or
replaced) but not the om-1onth ring. The problem is to remove all
the rings. The solution is by induction (12, Removal of rings 1
and 2 1is done in the order "remove 2, remove 1". Assuming that
we know how to remove (and therefore to replace) less than nmn
rings, then all omno rings are removed as follows: "remove m-2
rings, remove ring m, replace m-2 rings, remove m-1 rings".

In the following program¢2> the eformulae nk down in
removes ok - ipo rings. The eformulae mk up im replaces ok - inm
rings. The eformulae @on down 0o then drives the algorithm by

obegin
op down = (int al, b) :
(int a == al ;
({ a -2=Db) >0
| a down 2 ; print(("remove", a)) ; a up 2 ; a down 1)) ;
op up = (int al, b) :
(int a := al ;
((a-2=b) >0
| aup 1 ; a down 2 ; print(("replace", a)) ; a up 2)) ;
int n ;
start here : read(n) ; n down 0
endo

Review questions

8.1 Formulas

a) Is ox := yo a eformulae?
b) Is ox +:= yo a eformulae
c) What is the order of elaboration of
ox + - y - - - abs i over 2m?
d) How many priority levels are there for esdyadic-operatorse?
e) Is ox :=: yo a eformulae?
f) What is the value of n7 - 3 - 2n?

B.2 Priority declarations

€¢1) p.0.Shklarsky, N.N.Chentzov, I.M.Yaglom, The USSR Olympiad
Problem Book, Freeman & Co. 1962, pp 80-84.

€2) fThis algorithm is due to Sharon Dyck and in its final form
to W.L.van der Poel.

106

a)
b)
<)
a)
e)

a)

b)
c)

d)

e)

a)

b)
c)

d)

e)

a)
b)
c)
d)

e)

a)
b)

c)

a)
e)

a)

An ALGOL 68 Companion

Is ppriority :=: = 1o a epriority-declaratione?

Is npriority +:= = 0o a epriority-declaratione?

Is oppriority m = 10m a epriority-declaratione?

Is opriority ? = 5o a epriority-declaratione?

Is opriority ?, ! = 6mn a epriority-declaratione?

8.3 Operation declarations

Is oop :=: ref real a, b) : a = bo an eoperation-

= ol
declaratione?
Is oop t = (:
Is nop ¥
declaratione?
Is nop or = (ref real x, y) ref real : (random > .5 | «x |
Y)o an esoperation-declaratione?
Declare an eoperatore ncreatem so that mof create no has the

same value as ncreate(f, n)o [R.10.5.1.2.c].

)o an eoperation-declaratione?
real a) real =: exp(a)m an eoperation-

8.4 Elaboration of operation declarations

What is the value possessed by oom in the reach of mop o =
(real a) int : round aom?

Is oop (real) real o = randomo an eoperation-declaratione?

What is the value of the sformulae n"+123" si ("+1000" si
2)o using the declaration of nsiom as in 8.37

Is wop or = (proc bool a, b) bhool : (a | true | b)o an
soperation-declaratione?
[s mop (ceal, real) real a = +n an eoperation-declaratione?

B.5 Dyadic indications and operators

How many defining occurrences may be identified by an applied
occurrence of a edyadic-indicatione?
How many operator defining occurrences of n+m are in the
estandard-preludee?
How many epriority-declarationse are in the esstandard-
preludee?
Where is the epriority-declaratione for the eoperatore n?m in
line 3 of 10.5.3.i in the Report?
Is o::=n a edyadic~-indicatione?

8.6 Identification of dyadic indications

Is npriority + = B8, + = 9o a epriority-declaratione?

Can a proper eprograme contain

o(pciority abs = 9 ; x := abs x)n?

Why does the S occur in the description of the repetitive
statement [R.9.2.a,b, 9.c]?

Are edyadic-indicationse subject to protection?

Arz eoperatorse subject to protection?

8.7 Identification of operators
In line 11.11.y of the Report, the eformulae nvalue of ec -

1o 0OCCUTS. Where is the defining occurrence of its
soperatore?

b)
c)
d)

e)

a)

b)

a)
b)
c)
d)
e)

b)
c)

d)

e)

a)

c)

a)
b)
c)

e)

An ALGOL 68 Companion 107

In line 11.11.at of the Report, the eformulae of - onen
occurs. Where is the defining occurrence of its eoperators?
In 1line 11.11.1 of the Report, the eformulae ma = zeron
occurs. Where is the defining occurrence of its eoperators?
Where is the defining occurrence of the eoperatore norm in

the eformulae oi01 or bin 6n?
Where is the defining occurrence of the eoperatore nm in the

8.8 Elaboration of formulas

I

What is the value possessed by oto in mop t (real a) bool :
a > 0n?

What eclosed-clausee 1is elaborated as a result of the
elaboration of the eformulae ot xo in the reach of the

esdeclaratione above?

8.9 Monadic operators

What is the value of n2 + - - + - 3p?

Is ox :=: yo a eformulae?

Is ox +:= rceal : randoso a eformulae?

Is aoreal + realom a eformulae?

What is the value of b-1 i 2 = -1 i -2@?

8.10 Related modes

Are the modes nproc unpion(int, real)o and ounion (proc int,
bool)m related?

Can the edeclarere ounion(groc real, proc)o be contained in a
proper eprogramse?

Can o(op - = (union (bool, ref char) a) in

op - = (upnion(ref int, char) a) : 3 ; -(Qé; = "a"))nm

be contained in a proper eprograme?

8.11 Peano curves

Write this algorithso using four nutually recursive
procedures.
Translate the algorithes into FORTRAN.

8.12 Chinese rings

What is printed by o2 down 0nm?
What is printed by o3 down Omn?

What is the purpose of the sdeclaratione pint a := aim?
What is printed by o6 down 2n?
Rewrite this algorithm without using eoperation-

declarationse,

108 An ALGOL 68 Companion

9 The grammar
9.1 The syntactic elements

The grammar of ALGOL 68 is written using both "small-" ani
"large syntactic marks" (the lower and upper case letters of the
alphabet) [R.1.1.2.a]. Thus, ebasee consists of four small
syntactic marks and eMODEe consists of four large syntactic
marks. A sequence of <zero or more small syntactic marks is a
"protonotion" [R.1.1.2.b]). For example, ebasee is a protonotion
and so is estreets-that-flow-like-a-tedious-argquments, though
the latter will not be found in the ALGOL 68 grammar. (The
presence of hyphens within protonotions may be ignored.)

The syntax of ALGOL 68 is a set of "production rules of the
strict language" ("productien rules", for short). A production
rule is a protonotion followed by a colon followed by a list of
protonotions separated Lty commas and fcllowed by a point. A
“"notion" is a protonotion for which there is a production rule,
i.e., it lies to the left of the colon in some production rule.
For example, eintegral denotatione is a notion because of the
existence of the production rule

eintegral denotation : digit token sequence.s
[R.5.1.1.17.a], but ebasee is not, for there is no production
rule for it [R.8.6.0.1.a).

Any protonotion ending with esymbole, e.g., ebegin-symbole,
is a "symbol".

A "direct production™ of a notion is the part between the
colon and the point in a production rule for that notion. Thus,
edigit-token-sequencee (see above) is a direct production of
eintegral-denotatione and einsertion-option, radix, letter-re is
a direct production of eradix-moulde [R.5.5.2.b]. The direct
production of a notion is therefore a list of protonotions (the
"members") separated by commas [R.1.1.2.b].

A direct production of a notion is also a "“production" of
that notion. If in a production of a given notion, some notion
("productive member") 1is replaced by one of its productions,
then the result is also a production of the given notion. This
replacement process may be repeated as often as we please and,
in parsing, normally continnes until all the notions have been
replaced and the result 1is a list of symbols. Then we have a
"terminal production® of the given notion. For example,

edigit one symbol, digit two symbole
is a terminal production of the notion eintegral-denotatione,

9.2 Two levels

The syntax of ALGOL 68 is a set of production rules for
notions (the production rules of the strict 1language) as
described in section 9.1 above. Only a few of the actual
production rules are explicitly given in the Report. The number
of production rules is infinite and the rule

eintegral denotation : digit token sequence.e

An ALGOL 68 Companion 109

[R.5.1.1.1.a] is one of them. The others may be obtained, when
required, from a two level grammar which we shall now describe.
A typical production rule of the strict language is
esreference to real assignation : -

reference to real destination, becomes symbol, real scurce.s

It is obtained from the rule in the Report
sreference to MIDE assignation :

reference to MODE destination, becomes symbol, MODE source.e
[R.B8.3.1.1.a], by replacing the metanotion eMODEe consistently
by one of its terminal productions, viz., ereals. The rules of
the Report are called simply ryles" without further
qualification. We shall be speaking of several different sets of
rules, so it is perhaps just as well to use the word "hyper-
rule" for the rules (such as the one just given) found in
Chapters 2 up to 8 of the Report, especially if there may be
some doubt about which set of rules we are referring to. &
hyper-rule thus differs from -a producticn rule of the strict
language in that it may contain zero or more metanotions and
zero or more semicolons., A production rule of the strict
language contains no metanotions and no semicolons.

Another set of rules is the "metarules". These are found in

Chapter 1 of the Report. A typical metarule is

eFORESE : ADIC formula ; cohesion ; hase.e
[R.1.2.4.c). A metarule may be distinguished from other rules by
the fact that it has one "metanotion" (a sequence of large
syntactic marks) to the 1left of the colon and zero or more
semicolons to the right. However this is not sufficient to
recognize one, for

eDIGIT : DIGIT symbol.e
[R.3.0.3.d4] is a hyper-rule, not a metarule. From the metarules
we may derive the production rules of the metalanguage in a
rather simple way.

Thus, in summary, the ALGOL 68 grammar consists of two sets
of rules

(i) the metarules (in Chapter 1) and

(ii) the hyper-rules (in Chapters 2 ufp to 8).
The production rules for the strict language are derived from
both the metarules and the hyper-rules by a process which we
shall explain, by example, in section 9.5.

9.3 The metarules

A typical metarule is
¢« FORESE : ADIC formula ; cohesion ; base.s

[Re-1a2.8.C] It provides three production rules for the
metalanguage, which are

e FORESE : ADIC formula.e ’

e FORESE : cohesion.e »
and

e FORESE : base.e .

Thus a production rule of the metalanguage contains no
semicolons. The two direct productions ecohesione and ebasee ars
terminal (in the metalanguage), but the direct production sADIC
formulae may be produced further by wusing the metarule for

110 An ALGOL 68 Companion

®ADICe [R.1.2.4.d)]. The terminal productions of metanoticns are
always protonotions.

The words used for the metanotions are usually chosen in
such a way that they help to convey a meaning. Coined words,
such as oPORESEe are often mnemonic. Thus, eFORESEe is made up
from

formula cohesion base
and FEAT from
firm weak soft =

The reader will find many others, similarly coined and usuall
the mnemonic is glaringly apparent. It 1is useful to remember
that every metanotion ending with eETYe always has eEMPTYe as
one of its (not necessarily direct) productions.

The metanotion eALPHAe is of interest because it has all
the letters of the alphabet (small syntactic marks [R.1.1.2.a])
as direct productions. If more are required (perhaps in
languages other than English), then it is permitted to add thenm
(see 1.1.4 Step 2 in the Report).

Another metarule of significance is
eEMNPTY : .o
[R.1.2.1.i], from which we see that the metanotion eEMPTYe, if
it appears in one of the hyper-rules, or in those derived from
them, may be consistently deleted.

Two metarules to watch are

oCLOSED : closed ; collateral ; conditional.e
[R.1.2.3.Tr] and

sLIST : list ; sequence.s
[R.1.2.5.h7], where a distinction must be made between the
metanotion, which appears on the left of the rule, and the first
production of weach, which 1is a protonotion. In speech this
distinction will be lost.

Another interesting metarule is
*NOTION : ALPHA ; NOTION, ALPHA.=
[R.1.2.5.f7. Roughly speaking, anything is a terminal production
of *NOTIONe, More precisely, any sequence of small syntactic
marks (the 1letters of the alphabet as used in the syntax) is a
terminal production of eNOTIONe. This is so because the
productions of eALPHAe are the small syntactic marks. This fact
is used heavily in the rules of section 3.0.1 of the Report.

One might also wonder about the metarules

*LMODE : MODE.e
and

*RMODE : MODE.e
[R«1.2.2.F,k]. The mystery may be resolved by examining the rule
for eformulase [R.8.4.1.b], where the mode of the left
soperande, that of the right esoperande and that of the result
delivered by the operation all appear in the same hyper-rule.
These modes may be different, so it would not do to use the
metanotion eMODEe for all three of them. Other instances of this
same phenomenon are suggested by the metarule

An ALGOL 68 Companion 11

eLOSETY : LMOODSETY. e
[R.1.2.2.0], which is wused in the hyper-rule for —eunited-
declarerse [R.7.1.%.ee,£ff], and by

*ROWWSETY : ROWSETY.e
[R.1.2.2.d] used in the hyper-rule for eslicese [R.8.6.1.1.a],
where sROWWSETYe counts the number of erow-ofes not involved in
the eindexere and eROWSETYe counts the number of etrimscriptse
vhich are etrimmerss.

The two rules
oLFIELDSETY : FIELDS and ; EMPTY.e
and
eRFIELDSETY : and FIELDS ; EMPTY.e
[R.1.2.2.9,rc] are another pair which play a similar role in the
rule for eselectionse [R.8.5.2.1.a].

There are two metarules in which the only direct production
of the metanotion is a protonotion. They are
eCOMPLEX : structured with real field letter r letter e
and real field letter i letter me
[R.1.2.2.5] and
oLENGTH : letter 1 letter o letter n letter g.e
[R.1.2.2.v]. This means that the presence of one of these
metanotions in some hyper-rule is merely for the convenience of
shortening the rule and plays no other grammatical role,

9.4 The hyper-rules

A good introduction to the hyper-rules is to be found in
section 3.0.1 of the Report, where are collected together
several rules which should be mastered early, for they are used
extensively elsewhere. A typical example is

eNOTION option : NOTION ; EMPTY.e
[R.3.0.1.b]. The first step in deriving production rules of the
strict language, from the hyper-rules, is to make two new rules
as follows:

sNOTION option : NOTION.-=
and

sNOTION option : EMPTY. = =
As a next step we may replace each metanotion consistently by
one of its terminal productions. For example, we might
substitute eintegral-parte for «NOTIONe and nothing at all for
sEMPTYe. This will now give us two production rules of the
strict language. They are

eintegral part option : integral part.ese
and

eintegral part option : .e .

Note that eintegral-part-optione means what the words
suggest. i.e., either the presence or absence of an eintegral-
parte. This is used with good effect in the rule

evariable point numeral :
integral part option, fractional part.se
[Re5.1.2.1.b]. Examples are ©3.450 and n.U5o. Many of the
notions in ALGOL 68 are similarly chosen so that the words
(protonotions) used give some suggestion of the semantic

112 An ALGOL 68 Companion

elaboration.

The pair of hyper-rules
eNOTION pack : open symbol, NOTION, close symbol.e
and
eNOTION package : begin symbol, NOTION, end symbol.e
[R.3.0.1.h,i] are also used in several places elsewhere. Thus,
if oxo is a certain ene, then n(x)n is an en-packe and mbegin x
endo is an ep-packagees.
The hyper-rule
*NOTION LIST proper : NOTION, LIST separator, NOTION LIST.e
[R.3.0.17.9] ensures that at least two eNOTIONes will appear in
the production. It is used, for example, in the rule for
scollateral-declarationse [R.6.2.1.a]
scollateral declaration : unitary declaration list propere
meaning that, for example, npreal x, int io is a ecollateral-~
declaratione but npreal xo is not,

The hyper-rules
sNOTION LIST :
chain of NOTIONs separated by LIST separators.e
and
echain of NOTIONs separated by SEPARATORs : NOTION ;
NOTION, SEPARATOR,
chain of NOTIONs separated by SEPARATORS.e
[R.3.0.1.d4,¢c] are used to describe such objects as
n0123n [
which is a echain-of-digit-tokens-separated-by-EMPTYSe,
nl, 2, 3o i
which is a echain-of-strong-integral-units-segfarated-by-comma-
symbolse, and
gl 3 2 3 3n -
which 1is a schain-of-strong-integral-units-separated-by-go-on-
synholse, These are used principally in the rules for eserial-
clausese [R.6.1.1], but in other places also.

9.5 A simple language

Wwe shall now use this kind of grammar to describe an
interasting but trivial language. By this small example we shall
be able to see the complete grammar in a few lines. There are
only three esymbolse, two hyper-rules and two metarules. Thus it
will be easier to get an overall view of how the grammar works.

The language we choose is that in which the only sentences

(or programs) are
OXyzZO, OXXYYZZD, OXXXYYYZZZO

Perhaps we could say that the following would cause an ALGOL 68
computer to print sentences of this language until it runs out
of time or memory space.

onbegin string a, b, c ;

do print((a +:= "x") + (b +:= "y") + (c +:= Mz¥))

endn .
The reason that this language is of interest is that it is known
[H] that it cannot be described by a context-free grammar such

An ALGOL 68 Companion 113

as that used for the syntax of ALGOL 60.

The three symbols of the language and their representations

are
symbol representation
eletter x symbole oxo
eletter y symbole oyo
eletter z symbole ozo 2

This corresponds to the whole of section 3.1.1 of the Report.
The three hyper-rules are

(1) ssentence :

NUMBER letter x, NUMBER letter y, NUMBER letter z.e ,

(ii) eNUMBER plus one LETTER : NUMBER LETTER, one LETTER.e ,

(iii) eone LETTER : LETTER symbol.,e >
These three rules correspond to all the hyper-rules found in
Chapters 2 up to and including 8 of the Report. Rule (i)
expresses the requirement that the number of occurrences of each
of the different letters should be the same. Rule (ii) will be
used to interpret this number, i.e., actually to count them out
one by one. Rule (iii) is almost the same as the hyper-rules
3.0.2.b and 3.0.3.4 of the Report. Rule (ii) might be compared
with 7.1.1.q of the Report, where the multiplicity of a erowers
is being counted. Rule (iii) is present in order to satisfy the
requirement of ALGOL 68 that only protonotions ending in
esymbole are terminal productions of the grammar. Without this
requirement we could describe the language with two hyper-rules
instead of three,

The two metarules are

(I) eLETTER : letter x ; letter y ; letter z.e P

(II) eNUMBER : one ; NUMBER plus one. e @
These two metarules correspond to the metarules found in section
1.2 of the Report. The first metarule, (I), is there so that we
may be able, with one word, to speak of any one of the letters.
It is similar to the metarule 1.2.1.t of the Report for the
metanotion *ALPHAe. We could do without metarule (I), but then
we should need seven hyper-rules instead of three. Metarule (II)
is essential. In it, eNUMBERe is used as a counter. The terminal
productions of the metanotion eNUMBERe are eonee, eone-plus-
onee, eone-plus-one-plus-ones and so on. The nmetarule is
somewhat similar to the metarule of the Report fer the
metanotion eROWSe [R.1.2.2.b].

We shall now go through, in detail, the process of finding
some of the production rules of the strict language, as defined
by the above grammar. This process is described in sections
1.1.4 and 1.1.5 of the Report. Since there are infinitely many
production rules of the strict language (even for the
minilanguage above), we cannot give them all here.

If we substitute the first terminal production of eNUMBERe,
viz., eonees, for that metanotion, in hyper-rule (i), it yields a
new rule

(a) esentence : one letter x, one letter y, one letter z.se =
The direct production of esentencee in this new rule is not
terminal, since it contains a notion which does not end with

114 An ALGOL 68 Companion

ssymbole., To remedy this we use hyper-rule (iii) and, replacing
sLETTERe by each one of its terminal productions in tuin, we
obtain

(b) eone letter x

(c) eone letter y
and

(d) eone letter z : letter z symbol.-=
The rules (a), (b), (c) and (d) are each production rules of the
strict language. If now, in the right hand side of (a), we make
use of the productions in (b), (c) and ({(d), then we obtain that

eletter x symbol, letter y symbol, letter z symhole

is a terminal production of the notion esentencee., This means
that we may speak of nxyzo as a esentencee in the representation
lanquaqge.

letter x symbol. e 7
letter y symbol.e i

We now take another terminal production of eNUMBERe, viz.,
sone-plus-onee, and substitute that in the hyper-rule (i). It
yields

(e) esentence : one plus one letter x,
cne plus one letter y, one plus one letter z,e
Also, 1in (ii), we replace eNUMBERe by eonee. (Note that this 15
the first use of hyper-rule (ii).) This gives
(f) eone plus one letter x : one letter x, one letter x.e p
(9) eone plus one letter y : one letter y, one letter y.eo
and
(h) eone plus one letter z : one letter z, one letter z,e .
Now, combining production rules (e), (), (g) and (h) with
production rules (b), (c) and (d) obtained above, we have that
the object
sletter x symbol, letter x symbol, letter y symbol,
letter y symbol, letter z symbol, letter 2z symbole

is also a terminal production of ssentences, In the
sentence
|
r g = e —— -
one-plus—one— one-plus-one— one-plus—one-
letter—x letter—y letter—-z
I | |
e 1 vy ey
ons— one-— one-— one- one- one-—
letter—-x letter-x letter-y letter-y letter-z letter-z
| | | | | |
letter—x— letter-x- letter—-y- letter-y- letter-z—- letter-z-
symbol symbol symbol symbol symbol symbol
| | | | | |
ox X y Y z Zo
Pig.9.5

representation language we may therefore now say that

nXxyyzzno
is a esentencees of the strict lanquage. A sketch of the parse of
this esentencee is shown in figure 9.5. Perhaps we have now done
enough of this to suggest that it is easy to show that
DXXXYyYzzzno is a esentencee. A crucial new rule in this process

An ALGOL 68 Companion 115

is
eone plus one plus one LETTER :
one plus one LETTER, one LETTER.e :
moreover, the process for finding more esentencese of the
language should be clear.

It will also be obvious that the same 1language might be
described more concisely by the grammar

(1) L %X ¢t ¥ % 2 (i) 5: Nx, N ¥, N 2z,
(II) N : ; N Pp. (ii) NpL: NL, L.
(iii) L : L symbol.

and if we drop the requirement that every terminal must end with
ssynmbole by agreeing that ex, ye and eze are already terminals,
then even more concisely by

(1) L : x3; 73 zZ. (i) s : NXx, Ny, N zZ.

(IT) N : ; N p. (ii) 3 pLz B Y L. v
For the student of formal grammars this is wore natural, for he
is by nature an algebraist who 1is dedicated to the cult of
concise expression. In a description of a practical programming
language we can afford to be more verbose so that even those who
are not algebraists can read the rules and think that they
understand then.

9.6 How to read the grammar

How do we really use a grammar such as the one we are
considering? How do we read it? 1Is it necessary always to
perform, in our minds, the replacement of the metanotions by
their terminal productions before we can understand what the
hyper-rules say? The answer to this is probably that we should
have the experience of making these detailed substitutions at
least once. With this experience we may then proceed as does the
mathematician who finds that it is unnecessary to prove a
theorem every time that he uses its result. His method is
normally to check through the proof of the theorem at least once
and then to remember its hypothesis and its conclusion.

For us, the metalanguage plays the role of a body of
theorems and the results we need to remember are the shape of
the terminal productions of the metanotions. For example, in the
grammar of the minilanguage given in the last section, we need
only remember that the terminal productions of =LETTERe are
sletter-x-symbole, eletter-y-symbole and eletter-z-symbole and
that the terminal productions of sNUMBERe are eones, eone-plus-
onee, eone-plus-one-plus-onee and so on. With this information
at hand, the complete 1lanquage may be comprehended merely by
reading the three hyper-rules

(i) ssentence : :

NUMBER letter x, NUMBER letter y, NUMBER letter z.e .
(ii) eNUMBER plus one LETTER : NUMBER LETTER, one LETTER.e ’
(iii) eone LETTER : LETTER symbol.e : "

The same method of comprehension applies to ALGOL 68. The
metarules should be well studied first and the shape of the
terminal productions -(at least of the commonly used ones) should
be known. With this knowledge we can then read the hyper-rules

116 An ALGOL 68 Companion

and comprehend their meaning.

The most important metanotion in ALGOL 68 is eMOLCFe, For
this reason its terminal productions should be well known before
trying to read the hyper-rules. A chart is sometimes a helpful
aid in understanding the metalanquage, though others may prefer
to rely upon the alphabetic listing of the metarules which comes
as a loose page with the Report. If you have not already done

MODE
|
P —— d e 1
| |
MOOD UNITED
| |
o S R "_J | J
| | |
TYPE STO WFRD union-of-LMOODS-MOOD-mode
| | |
r “Jl r 4 ——— "____T _____ 8 |
| | | | |
format | structured-with-FIELDS row-of-MODE LMOODS—-LMOOD
| | |
r T 4] E T 1 | 4

| | ! | | |
PLAIN reference-to-MODE PROCEDURE FIELDS-and-FIELD MOOD-and

o ey r J g
| A | |
INTREAL | character procedure—-PARAMETY-MOID MODE-field-TAG
| | | |
!’_-“l““'J l r T 4 r o 1 | e 4 “
1| | | | | | |
| REAL boolean with—PARAMETERS EMPTY MCDE void LETTER |
| | | |
| by rr——— A 1 r 4
| | | | | |
INTEGRAL LONGSETY-real PARAMETERS—and-PARAMETER TAG-LETTER |
| | | |
e Ss 4 - 1 r———————d == e

| I | | |
LONGSETY—integral 1long—LONGSETY EMPTY MODE-parameter TAG-DIGIT

Fig.9.6

50, it is a good idea to take this loose page and arrange it so
that it is attached to your copy as a fold-out page in such a
way that it may be in view no matter what page of the Report you
have open. For those who like charts, we reproduce, in figure
9.6, an abbreviated syntactic chart for the metanotion eMODEe,
in which eLETTERe and eDIGITe are the only metanoticns not
produced. Whichever method you prefer, ("people who 1like this
sort of thing will £ind that this is the sort of thing they
like"™) a careful study of the metalanguage is essential to the
comprehension of the hyper-rules and thus of the grammar of the
language.

An ALGOL 68 Companion 117

9.7 The indicators

A "hypernotion™ [R.1.3] is a sequence of metanotions and/or
protonotions, e.g., eMODE field TAGe, A hyper-rule (in the sense
used in section 9.2 above) is therefore a hypernotion followeil
by a colon, followed by zero or more hypernotions separated by
semicolons and/or commas and followed by a point; e.g.,

estrong COERCEND : COERCEND ;
strongly ADAPTED to COBRCEND.e
[R.8.2.0.1.d]). If, in a given hypernotion, one or more of its
metanotions is consistently replaced by a production of that

strongly-ADAPTED-to-COEBRCEND

i e i
| p——————
I MOID FORM
| | |
| MODE |
| | |
ADJUSTED MOOD I
| | |
| TYPE FORESE
I 1 |
| PLAIN |
| | |
I INTREAL |
i i SR
strongly-deprocedured-to-real-base
e D SRR
| INTREAL |
| I
PLAIN |

TYPE FORESE
| |
MOOD |
| I
| MODE |
B — i . |

STIRMly-deprocedured-to—-MOI D~-FORM

Fig.9.7

metanotion, then we have another hyper-notion, or perhaps a
protonotion. Let us call this an "offshoot"™ of the given
hypernotion; e.g., estrongly deprocedured to real basee is a
terminal offshoot of sestrongly ADAPTED to COERCENDe, and
sINTREAL basee is an offshoot of ¢MODE basee. In order to read
the grammar easily, we frequently need to know whether two given
hypernotions have a common offshoot. For example,
estrongly ADAPTED to COERCENDe

and

» STIRMly deprocedured to MOIL FORMe
have at least one common offshoot, say

estrongly deprocedured to real bases .
That this is so can be seen by examining fiqure 9.7, where the

118 An ALGOL 68 Companion

steps in obtaining this offshoot are shown. In fact, exanination
of this same figure shows that there are infinitely many common
terminal offshoots of these two hypernotions. They are all
offshoots of a "maximal common offshoot", the hypernotion
estrongly deprocedured to MOLL FORMe .
It is the existence of some maximal common offshoot, rather than
that of any particular common terminal offshoot which Lecomes
the point of focus when looking at two such hypernotions, Note
that because of the requirement of consistent replacement, sonme
offshoots may be too restrictive to be useful, e.g., the
offshoot eprocedure-with-MODE-parameter-and-MODE-parameter-MODE-
PRIORITY-operatore of the hypernotion eprocedure-with-LMODE-
parameter-and-RMODE-parameter-MOID-PRIORIT Y-operatorse
[Ralie3s 1-D.

In the process of parsing, given some hypernotion to the
right of the colon in a hyper-rule, we need to know how to fini
a hyper-rule whose hypernotion to the left of the colon has a
common offshoot with the given one. To help us in this search
there are "indicators® [R.1.3]. The example considered above
will actually occur in reading the Report. Zonsider the two
hyper-rules [R.8.2.0.1.4]

estrong COERCEND : COERCEND ;
strongly ADAPTED to CCERCEND {B22a}.e
and [R.8.2.2.1.a]
»STIRMly deprocedured to MOID FORM{ 8204} :
procedure MOID FORM ;
STIRMly FITTED to procedure MOID FORM.e .
We have copied these two hyper-rules from the Report, tocgether
with two of the indicators, "822a" and "820d"., 1In order to
conserve space within the hyper-rules of the Report, the
indicators have been compressed, according to cbvious
conventions [R.1.3). If we expand them again, i.e., 822a becones
8.2.2.1.a and 820d becomes 8.2.0.1.d, then we see that the
hypernotion on the right of the hyper-rule 8.2.0.1.d points to
the hyper-rule B8.2.2.1.a and the hypernotion on the left of
hyper-rule 8.2.2.1.a points to hyper-rule 8.2.0.1.d. We are “hus
aided, in both directions, in finding hypernotions with common
offshoots,

The indicators are clustered rather thickly in the hyper-
rules concerning coercion, in section 8.2 of the Report. Perhaps
this is evidence that it is in this section that the power of
the two-level grammar is being used to its fullest, A similar,
or perhaps greater, clustering of indicators might have been
found in section 3.0.1 of the Report, dealing with chains,
lists, seguences and options, but these have not been included
in the Report since their great number would have rendered their
presence of little value. Instead, the indicators have bypassed
this section, which the reader is therefore advised to becone
familiar with at an early stage.

Sometimes a hyphen, "-", appears after a set of indicators
for a hypernotion. This tells us that there is at least one
offshoot of the given hypernotion which is a "dead end", i.e.,
it is not an offshoot of any hypernotion (on the other side of

An ALGOL 68 Companion 119

the colon) in any hyper-rule. An example of this occurs in the

hyper-rule for strong coercion quoted above [R.8.2.0.1.4]. 1In

this case it is there because, e.q.,
sstrongly-widened-to-procedure-real-bases

is a dead end. It is not an offshoot of any hypernotion on the

left of any hyper-rule [R.8.2.5.1]; in fact, it 1is not a

enotione,

Review questions

9.1 The syntactic elements

a) Is eMODE basee a protonotion?

b) Is eall-mimsy-were-the-borogrovese a protonotion?
c) Is ecaste a notion?

d) Is eMABEL identifiere a notion [R.4.4.1.b7]2

e) Is elong-integral-denotatione a notion?

9.2 The metarules

a) How many production rules of the strict lanquage are there
for ALGOL 687?

b) How many production rules of the strict language are 1listed
explicitly in section 6.1.1 of the Report?

c) How many production rules of the strict language can be
derived from 7.1.1.s?

d) How many production rules of the strict language can be
derived from 6.1.1.4?

e) What are the terminal productions of eVICTALe?

9.3 The metarules

a) Is »LETTER : LETTER symbol.s a metarule?

b) How many production rules of the metalanguage can be derived
from 1.2.1.r of the Report?

c) Is eNONSTOWED : TYPE ; UNITED.e a production rule of the
‘metalanguage?

d) Are the terminal prodoctions of eNONPROCe also terminal
productions of eMODEe?

e) Is eFIELDe a production of «MODEe?

9.4 The hyper-rules

a) Is ePARAMETER : MODE parameter.e a hyper-rule?

b) Is edigit-tokene a production of edigit-token-seguence-
propere?

c) Is n()on a estrong-closed-[m]-clausee, where [m] represents
some mode?

d) What production of eLFIELDSETYs would be used in parsing uoim
of zm?

e) What production of eLMODEe is used in parsing ox + ym?

9.5 A sinmple language

120

a)

b)

c)

a)
b)

c)

d)
e)

a)
b)

c)

d)

e)

An ALGOL 68 Companion

Define, by means of a two-level grammar, the language whose
sentences are printed by
nbegin string a, b := "y", C ;
do print((a +:= "x") + (b +:= "y") + (c +:= "z2"))
endn.
Define, by means of a two-level grammar, the language whose
sentences are printed by
obegin string a, b, ¢ ;
do (print(a+b+c) ; (a +:= "X", b +:1= WyH, c +:= MzW))
endn.
Rewrite the grammar of the language considered in 9.5 using
two metarules and two hyper-rules and yet requiring that
terminals end in esymbole,

9.6 How to read the grammar

Is ereal-formate a terminal production of e40DEe?

Is sreference-to-procedure-row~-of-charactere a terminal
production of eMODEe?

Is elong-structured-with-real-field-letter-le a terminal
production of eMODEe?

Is eproceduree a terminal production of eMODEe?

Is sprocedure-with-real-parameter-reale a terminal production
of eNONPROCe [R.1.2.2.h7?

9.7 The indicators

Why is there a dead end in eMOID FORMe in 8.2.3.1.a of the
Report?

What is a maximal common offshoot of evirtual NONSTORED
declarers and eVICTAL MODE declarere [R.7.1.%1.a,n]?

What is a maximal common offshoot of »firmly ADJUSTED to
COERCENDe and oSTIRM1ly dereferenced to MODE FORMe
[ReB.2.2.17.7

What is a maximal common offshoot of ¢STIRMly rowed to MOID
FORMe and sstrongly rowed to REFETY row of MODE FORMe
[R18¢206.1]?

what is a maximal common offshoot of e¢SORTly ADAPTED to
COERCENDe and eSTIRMly united to MOIL FORMe [R.B8.2.0.1,
8.2.3.17?

An ALGOL 68 Companion 121

10 Hode declarations
10.1 Syntax

A typical smode-declaratione is
opode compl = struct(real re, real imn
which, by virtue of extensions [R.9.2.b,c], may be written more
concisely as
ostruct compl = (real re, im)o .

This emode-declaratione is, in fact, one of the edeclarationse
of the estandard-preludes [R.10.2.7.a], which means that the
programmer may assume that he is within its reach (unless he has

made a similar edeclaratione himself). A simplified parse is

mode-declaration

- A
T T T e e e e L Al

| I |
mode-symbol mode-indication egquals-symbol actual-declarer

S - SUREES R - - - S
omode compl

W -

Fig.10.1

shown in figure 10.1. The hyper-rule for a smode-declaratione is
emode declaration : mode symbol, MODE mode indication,
equals symbol, actual MODE declarer.e
[R.7.2.1.a]). The two occurrences of eMODEe here ensure that the
mode of the eactual-declarere on the right is then enveloped by
the emode-indicatione on the left.

It is perhaps worth while to look at the hyper-rule
eMODE mode indication : mode standard ; indicant.s
[R.4.2.1.k] and to realise that the programmer may choose his
own eindicante more or less at will [R.1.1.5.b]. He is, however,
subjected to the restrictions of his installation. It is
expected that most implementations will permit such eindicantse
as omabcn and om12n, i.e., objects which 1look 1like identifiers
but are in bold face (or underlined). Objects which are emode-
standardse are ostring, sewa, file, compl, bits, bytes, 1long
bytes, long long bits, long long long complo, etc. This means
that one may write
nmode file = into
or
omode long compl = complo '

each of which is legitimate but unpleasant for the human reader.

10.2 Development

One purpose of the spode-declarationes is to introduce a
shorthand whereby the programmer may save himself troutle. If he
uses some complicated edeclarere, then he may avoid writing it
out in full each time that he uses it. A simple example might be
a numerical analyst, working with vectors and matrices, who may
wish to use the convenience of the edeclaratione

122 An ALGOL 68 Companion

amode v = [1:n] real,
mode m = [1 n, 1:n] realu .

In the reach of this Odeclardtlon- he may now use these esmode-
indicationse as edeclarersses by declarinq a vector variable with
ov x1o or a matrix variable with om x2n. It should be carefully
noted that the value of pmno which occurs in the ekboundse of
these mwmultiple variables is that which is possessed by onp at
the time of elaboration of the edeclaratione ov x1, m x2p and
not that possessed at the time of elaboration of the emode-
declaratione. An example may help to make this clear. In the
reach of nint no, the elaboration of

on := 5 ; mode v = [1:n] ceal ;

n := 3 ; v x1 ; print(upb x1)no
should print the value =3s and not the value «5e. This means
that the edeclaratione myv x1m acts as though the novyo were
replaced by o[1:n] realn. This process is known as "developingy"
the edeclarere [R.7.1.2.c]. An important consequence is that, in
the reach of the edeclarationse

omode v = [1:n] ceal,
realvec = [1:n] cealno '

the emode-indicationse wovm and orealvecn, when used as
edeclarerss, both specify the same mode. The actual esymbole
(eindicante) chosen therefore has no influence on the mode.
Observe that the sanme principle applies to eidentity-
declarationse, for

nref int namel = i, name2 = in
means that both onamelo and oname2o possess (different instances
of) the same name. In the reach of the edeclaratione omode ¢ =
[1:27ceal, s = [1:3)realn, the eindicantss orn and oso also
specify the same mode, when used as edeclarerse; however, values
of such modes may run into trouble when assigned, for then the
bounds are checked [R.8.3.1.2.c Step 3].

)

The examples we have given are simple. However, a emode-
declaratione may be used for introducing a emode-indicatione
which, when used as a wedeclarere, will specify a mode which
contains a reference to itself. 1In fact, this will onormelly
occur in a 1list processing application. For such a mode, the
compiler must be able to make some checks to determine whether
storage space for a value of that mode is indeed possible. It is
therefore not surprising that the process of developing a mode
should have some rather natural restrictions.

10.3 Infinite modes

Wwhat we call here "infinite modes" are those hinted at in
the last paragraph. An infinite mode will arise from the
edeclaratione

nstruct link = (int val, ref link next)n .
In its reach, the elaboration of
wlink a := (1, liwk := (2, link := (3, nil)))a
will generate values linked together as shown in figure 10.3. In
such a linked list, the value of the last name is enilea. If we
try to write the mode specified by mlinkm, using small syntactic
marks, it will be
estructured-with-real-field-letter-v-

An ALGOL 68 Companion 123

letter-a-letter-l-and-reference-to-
[link J-letter~-n-letter-e-letter-x-letter-te
where [link] represents the same mode which we are trying to
write. Since the mode contains itself, it is not unnatural to

Damo
o]
o o > T —0—1
o] | =la jo o]
L e e d
I
S
l
b—————=y—0—1
| =2s jo o]
L ad -
1
=<
|
k ———7—0—4
| s3s |oBo|
| U T - |
Fig.10.3

call it an infinite mode(1), The programmer (and the conpiler)
however, always works with a finite formulation of that mode, so
that this infiniteness need not bother hinm.

10.4 Shielding and showing

If we consider the mode specified ty mmo, in the reach of
nmode m = struct(real v, m next)n '
we soon come to the conclusion that, unlike olinkm above, the
field selected by nnextn contains, not a name, but a value of
the same mode. Of course, this value in turn has such a fieli
and so on ad infinitum. This is troublesome, for if we try to
visualize how storage might be allocated for such a value, it is
clear that it cannot be done in a computer whose storage is of
finite size. It is therefore necessary to exclude such emode-
declarationses from proper sprogramse, The exclusion rests upon
the fact that, in this emode-declaratione, its sactual-
declarere, natruut{real v, m next)m, "shows" [R.4.4.U4.LF] pno,
which is the emode-indications on the 1left. It 1is therefore
illegal. However, in
omode n = struct (real v, ref n next)o

the eactual-declarere nstruct (real v, ref n next)o does nct show
ono, so that this edeclaratione may be contained in a proper
sprograme. Whether an sactual-declarere shows a smode-
indicatione rests upon whether that emode-indicatione is not
"shielded"™ [R.U.H4.U4.a]. We must therefore know what is meant by

(1) Those who are bothered by these infinities should consult
the work of C.Pair [Pa], Ll.Meertens [M], and W.Brown [B].

124 An ALGOL 68 Companion

shielding a emode-indicatione before we can understand how
certain emode-declarationse can be excluded. Roughly speaking, a
epmode-indicatione contained in a given edeclarere is shielded if
its presence in that position does not lead to difficulties in
allocating computer storage for a value of the mode which that
edeclarere specifies.

For the emode-indicatione omo, examples of edeclarerse in
which that opo is shielded are

ostruct (int k, ref » n)o '
ncef struct(m n, char a)n '
oproc (m, int)n .

oproc (real) mno
and
o[1: (node m = int ; @ k ; read(k) ; k)] realn

Examples of edeclarerse in which nmo is not shielded are

omo i
oref oo ’
npLoc mo '

r

o[1:n] mo
and

oupion (int, m) .
The precise definition of shielding is given in the Report
[R.4.U4.4.a], so we shall only paraphrase it here by saying that
ono is shielded if there is both a mstructm and a orefm to its
left, or if it is in, or follows, a eparameters-packe, or if it
is essentially local to one of the bounds of the edeclarere.

As a first approximation, one may now say that a esmode-
indicatione which is not shielded is shown by the edeclarere
containing it. We then exclude from proper eprogramse all emode-
declarationse whose emode-indicatione is shown by its eactual-
declarere. This immediately excludes such undesirable objects as

opnode a = a,
b = proc b,
c = ref ¢,
d =[1:n] 4,
e = union(e, char)n .
£

the edeclarationse
onmode f = ref g,
g = proc fa

reveals that we are still in trouble with the first
approximation to the concept of showing. For, although oref gm
does not explicitly show ofn, the elaboration of nref go
[R.7.1.2 Step 1] involves the development of ogo and would give
us the edeclarere pref proc fo, which does indeed show wnfo. It
is therefore necessary to insist that we must develop all emode-
indicationse which are not shielded in order to find the emode-
indicationses which are shown by an eactual-declarere. The
definition of showing 1is carefully stated in the Report
[R.4.4,4.b], so we shall not repeat it here. Perhaps the
motivation given here for that careful statement is sufficient
for its understanding.

However, examination o

An ALGOL 68 Companion 125

10.5 Identification

Within a eserial-clausee containing a emode-daclaratione,
emode-indicationse are subject to protection [R.6.0.2.d7, in the
same manner as are sjideuntifierse and edyadic-indicationse, in
order that they may not become confused with the same
sindicatione used elsewhere, It is possible therefore to write

o(mode r = real ; £ x = 2 ;

(mode £ = int ; L x := 1
Elo——=l====l g
print (x))
print (x))m
whereupon the values printed should be s1s and =2.0a. The method
of identification of the emode-indicationse is shown by "--<--#,

Although this identification process is familiar (it works
the same way for eidentifierss), there is one small point to be

declaration

L e e e e T T'"__'L_ T T e |
sub- rower bus- | |
symbol | symbol | |
| e e o | I |
| unitary-clause | unitary-clause| | identifier
] I					
P A :		declarer				
	formula	up-to- formula				
			symbol			
L 3 1 b i & SOER SR 4 4 1						
o (a b) £ b + c) d en						
T T =T T r el e T - T						
' +- 4						
I formal- cast-of- unitary-						
parameters— symbal clause						
open- pack		close-				
symbol i		symbol	operand			
L 2 e = A						
routine—-denoctation cperator						
	I					
operand I						
L T m e ol s s i 4						
formula
Pig. 1045

watched carefully. It is that no eindicante may be used both as
a emode-indicatione and as a smonadic-indicatione [H.1.1.5.h].
The rzason for this is best shown by the fellowing example.

nele begin int b, ¢, @ ; # ... #
g2 begin mode a = real ;
€3¢ {tab) : b +c) d e

eh ¢ Z 4o &

126 An ALGOL 68 Companion

€5¢ end ;

26¢ op a = (int x) int : 1+ x ;
¢7¢ £ ... ¢

¢8¢ mode d = bool

29¢ £ovis B
210¢ endn

The problem here is whether n(a b) : b + cn is a erow-of-rowere
(remember that it is permitted to replace o[Jo by n()no
[R.9.2.91]) and therefore o((a b) : b + ¢) d en is a
sdeclaratione, or whether m((a b) : b + ¢)mn is a eroutine-
denotatione and therefore m((a b) : b + ¢) d en is a eformulae.
These two possibilities are sketched in figure 10.5. If it wers
such that mpap could be used as a emode-indicatione in line 2,
and again as a emonadic-indicatione, in line 6, then confusion
would reign, for the matter can only be resolved when we meet
the eleclaratione of odo in line 8. If we ncw make it illegal to
use wpao both as a emonadic-indicatione and as a smode-
indicationes, then this unhappy sitvaticn does not arise. For
those interested in compilation problems, this example shows why
it is necessary to identify all emode-indicationse pefore a
detailed parse of the eprograme is made, for the identification
of the second occurrence of mbn on line 3 depends upen the
information discovered in line 6.

10.6 Equivalence of mode indications

In the emode-declaratione
nmode a = ref real,

b = ref realn
it is rather obvious that both pam and obo, when used as
sdeclarerse, spacify the same wmode. However, since a emode-
declaratione has the possibility of depending on other emode-
declarationss, or on itself, one mnmay wmake several -emode-

declarationse like

onstruct a = (cef a left, ref a right),
b = (ref b left, ref struct
(ref b left, ref b right) right),
c = (zef d left, ref e right),
d = (ref e left, ref ¢ right),
e = (ref c left, ref d right)no

in which it is not immed1ately clear whether the modes spec;fleﬂ
by wma, b, ¢, do and peo are all different or perhaps whether
some of them are the same. In fact, a close examination reveals
that each of them specifies exactly the same mode. Each is
merely a different way of thinking about the same kind of data
structure. It might be thought that, because the human reader
(presumably) has trouble in deciding that the five emode-
indicationse are equivalent, it would also be difficult ani
expensive for the compiler. But this turns out not to be the
case(1), Thus, in large programs, perhaps written by several
persons, each person may describe the basic data structure in
his own way. If these are indeed the same, then the compiler
will guickly find out about it.

€1) See the papers of Koster [Ko], Goos [G] and Zosel [Z].

An ALGOL 68 Companion 127

10.7 Binary trees(1)

We shall now consider some procedures for manipulating
binary trees. These are data structures of the shape shown in
figure 10.7.a. in which each Mo" is called a "node" of the tree.
At each node there are two branches a "left-" and a "right
branch", In more detail, the value of each node is, as is shown
in figqure 10.7.b, a structured value with at least three fields.
The first and last fields are references to the left and right
branches, respectively, and the middle field contains sone

el S |

| | |

r———0——— ———0——5 —O—yp——————d ey —0—y
| | I | r—+0 o| wmattributes |0 04—
o r——0 p==0==y 0—— | —odb——— — —— —tg=d |
| | | | | |
o o] o o
Fig.10.7.a Fig.10.7.b

information, perhaps a string, which is an attribute of that
particular node.

The necessary emode-declaratione would be

I il —_———=

We may observe that the mode specified by onodeo is infinite, in
the sense described in section 10.3 above.

A binary tree is used for many different purposes. PFor an
illustration, we shall use it to store and retrieve character
strings in alphabetic order.

10.8 Insertion in a binary tree

Suppose that we are given three strings %jim", "sam" ani
"hob", in that order, and that we wish to store these in a
binary tree such as that discussed above. Storing the first
string would result in the structure shown in figure 10.8.a.
After the second and third strings have been stored, the

r=0—y———de——y0—y

i r+0 0| »jime jOo Oy

r—OC—7y -+ T—0— | t—0-4 -0~ |

|o€c| =Jjims |080} I |
L-o—4 L0 — O—y———v—0—y = O0—y———b——y—0—q
|oeo| mhobe |0€0| |080] ssans |080|
e md e Oed b O d_O—d

Fig.10.8.a Fig.10.8.b

C1) Por an authoritative discussion of binary trees, see Knuth
[Kn] Section 2.3.1.

128 An ALGOL 68 Companion

structure is that shown in figure 10.8.b. Note that the shape of
the tree will depend upon the order in which the strings are
encountered. Whichever string is stored first generates a node
vhich beconmes the "root"™ of the tree. The succeeding strings are
then compared with those already present to determine whether to
branch to the left or to the right.

A procedure to insert a given string oso into a tree whose
root is referred to by nrootw is as follows.
aproc insert = (string s, ctef ref node root) :
(ref ref node n := root ;
while (ref node : n) :#: nil do
n:= (s <val of n | left of n | right of n) ;
(cef ref node : n) := node := (mil, s, pil)

)o .
Suppose that we start with an empty tree, i.e., the
esdeclaratione

aoref node tree := nilm

[——

and then elaborate the wecalle ngpinsert("jim", tree)m. The

otreeno otreeno orooto ono
-7t T T T
(s] o] o o
0o o o o o0 o 0

Q [¢] o] (o]

| | | |

o | o)
080 t—>—0 0—=<—-=0 0o
o] s] o]

|

r—0 "“l‘-_"'"""__'r_o_‘l

|]o€o| mjim= |080|

L_o-—-L i_0-=4

Pig.10.8.c Fig.10.8.4d

situation both before and after this ecalle is shown in figures
10.8.c and d. Observe that the modes of both the eformal-
parametere prootm and the eactual-parametere notreea are the
same, viz., that specified by nref ref nodem, so that no
coercion occurs when the parameter is passed.

The sdeclaratione oref ref node n := rooto implies that the
mode of nnn is that specified by oref cef ref noden. Since
nrootn is of mode specified by mref ref noden, the initializing
assignment to ono invokes no coercion. In the esassignatione

o(cef ref node : n) := node := (nil, s, nil)n .
the second occurrence of onoden is a sglobal-generatore

generating a name of mode pref noden, to which is assigned the
value of the estructure-displaye o(nil, s, nil)m. Because the
mode of ono is oref ref ref nodem, it must be dereferenced once
before the new node is assigned. This 1is the reason for the
ecaste oref ref node : no. This ecaste is necessary. In fact, on
:= nodem is not an eassignatione, for there is one sreference-

to-e too many on the left.

An ALGOL 68 Companion 129

If now ve elaborate the ecalle npinsert(“"sam", tree)pm, we
have what is shown in figure 10.8.e. Here we have effectively
elaborated the assignation mn := right of no in going from
figure 10.8.d4d to 10.8.e, In the eselectione oright of no, onn
has the a priori mode nref ref ref nodem, but being in a weak
position, it is dereferenced (twice) to pmref nodem. The a priori

mode of noright of no is thus noref ref noden, since the field

otreeno orootno oho oho otreen orootno
e = T T - -
o o o o o o
oo oo oo o o0 00 0o o
o o o o o o
| I i | | |
| o] o o o |
Leeeo>——-0 © o o0 oo 0 O——==l=ed
o o o o
| = £ |
r"'O—‘r—f‘——'l—G—'l r—0—p————3-0—
|oGo|sjime |0 04>y ¢<+0 o|sjimmjo 04>,
L e Sare S I | | t—0—4——ee—d_0-4 |
- [[
r—0-r - —0— —O—p————7—0— (O—g—Lt———yr—0—y
|o80| msame |080| |080| =bobs |080| |0BO| =sams |0Bo0|
L_c 'l A fo o | L-o i A o . | t_c A A O-=d
Pig.10.8.e Fig.10.8.f

selected by pright of nn is thus a name which refers to a nanme
in a node. Since the mode of nno is nref ref ref noden, the
assignment now takes place without further coercion. This moves
ono down the tree by one node. After elaboration of
pinsert ("bob", tree)om, we would have what is shown in figure

10.8.f-
10.9 Tree searching

Another process in tree manipulation is the searching of a
tree for a node which contains a given attribute. In the reach
of the edeclarationse of section 10.8, and of mnref node m :=
nilo, this would be accomplished by the following:

oproc search = (string s, ref ref node root) bool :
(ref cef node n := root ;

while (ref node : n) :#: nil do
if s = val of n
then m := n ; go_to done
elsen := (s < val of n | left of n | right of n) ;
£i ; false .

done : true

]I:I -
The value delivered by the eprocedurees is aetrues if the node
with string nsm is found; otherwise, it is sfalsew. As a side
effect, the node where the string occurs is assigned to the non-
local evariables pmn; otherwise, omo remains referring to snilas.
Using the tree constructed in section 10.8, the result of

130 An ALGOL 68 Companion

elaboration of the ecalle nsearch("sam", tree)no would result in
the situation pictured in figure 10.9.

The evariablee pmo serves to remember where the node was
found. In the sassignatione om := no, ono is dereferenced twice.
Note also that in the eformulae ns = val of no, first pno is

otreen orootno ohno on o
T— T T T T
4] o} o} o]
o o 0 0 o0 o0
[+] o o o
| | | |
| o o |
bee2>——0 © 0o o0 |
(o} o] |
| r— |
r=0—y—=d——g—0— o

r—<40 o|sjims|o 04>—¢<-0 O

| t—o=deee——d_p-d 1 o
| |
~O0=p———d——— = 0—y —O—y———t———yp—0—4
|oBo| wbobs |080| |080| wsanms | 0BGo|
[T S WO . | (T, S N T |

Fig.10.9

dereferenced twice, then oval of no is dereferenced once before
the comparison of strings is nade.

10.10 Searching and inserting

The two processes just described are often combined into
one., Thus we may wish to search a binary tree for a given
string, to insert it if it is not there, and, in any case, to
return with a knowledge of its position. This would be the kind
of action necessary if the tree were being used as a symbol
table for a compiler. A procedure to accomplish this might be as

follows.
proc searchin = (string s, ref ref node root) ref ref node :

(ref ref node n := root ;

—_— =

while (cef ref node : n) :#: nil do

—_———— —_—= =S _———_ e

if s = val of root

then go_to done
else n := (s < val of n | left of n | right of n)
fi ;

(cef ref node : n) := node := (nil, s, nil) ;

done : n

o
All the elements of this procedure have been seen already. It is
therefore sufficient to remark that the value delivered fy the
procedure is that of the ono which follows the label mdone : o,
after this mno has been dereferenced once.

An ALGOL 6B Companion 131

10.11 Tree walking

Another fundamental manipulation with binary trees is known
as a "tree walk®. This is a process of visiting each and every
node of the tree. OUOsually some action is to be taken at each
node, e.g., printing its string, or counting the node. A tree
walk is called a "pre walk®", "post walk" or "end walk" (see
Knuth [Kn]) depending on whether the action is to be taken wupon
first reaching the node, or between examining its left and right
branches, or upon leaving the node for the last time. For

r—4—
e B ey
| S I
r—— ey
| A 1| I C |
e (S

Fig.10.11

example, for the tree displayed in figure 10.11, a pre walk
would perform action on the nodes in the order B A C, a post
walk in the order A B C and an end walk in the order A C B.

We shall now write a procedure for printing the strings of
the nodes, in alphabetic order, by doing a post walk over a
binary tree. This 1is a typical problem in which rTecursion
provides a neat solution, which is as follows: if the tree is
enmpty, then do nothing; otherwise, using an induction hypothesis
that we know how to walk a tree with the number of nodes 1less
one, first walk the left branch, then print the string, then
walk the right branch. The procedure is as follows.

og1g proc post walk = (ref node root) :
g2 (root :#: pnil

£3¢ | post walk(left of root) ;

[21Y print (val of root) ;

£5¢ post walk(right of root)

£6¢)m

In lines 3 and 5, the eactual-parameterse nleft of rootm and
oright of rooto are dereferenced once. Note that an end walk is
similar - merely interchange lines 4 and 5 (except for m;m). For
the pre walk we interchange lines 3 and & (except for the n|m).
For the tree discussed in section 10.8, the ecalle ppost
walk (tree)no should print its strings in alphabetic order. Note
that the eactual-parametere ntreem is dereferenced once.

We may now make this procedure more useful by generalizing
it to perform a given action at each node. The action is in the
form of a eproceduree which is passed as a parameter.

pproc post walk a = (ref node root, proc(ref node) action) :
begin proc q = (ref node r) :
(r :#: nil
| q(left of r) ; action(r) ; q(right of r)) ;
g(root)
endn

132 An ALGOL 68 Companion

10.12 A non recursive approach

The recursive solution to the tree walk problem, given in
section 10.11 above, 1is simple +to program and easy to
understand. When proving the correctness of programs, this is an
important consideration. However, by using recursion, a certain
price must be paid for this convenience, because the run-tinme
organization may need to build a stack to remember the nested
scallse and this stack will require storage the size of which is
unknown. In certain situations the programmer may not wish to
pay this price. For example, he wmay be writing a garbage
collection routine which must work well just when the amount of
free storage is at a minimum, For this reason other schemes of
walking trees are exploited [SW]. We shall outline such a schene
here.

The rasic principle is that the tree is broken apart at one
node, some of the names are reversed and three variables are
used to keep track of where the break occurs. As we move the
break down the tree, the names are reversed to refer to where we
came from. As we move up the tree, the names are restored to
their former state. Also, when we move from the left branch to
the rigyht branch of a node, it 1is necessary to shift the
reversed name from the left to the right. The extra storage
required consists of three variables wp, qom and orm of mode
specified by opref ref noden, and the existence of a boolean
field in each node (or corresponding to each node) which
remembers whether we have already moved across that node (i.e.,
whethar the name which refers upward is on the riqht). The value
of this field is initially efalses.

The emode-declaratione given above is thus amended slightly
to
nstruct node =

(ref node left, string val, bool flag, ref node right)ao -

The situation at some moment in moving down the tree is

ogo opo
[e] | o] o
0o o | ———{~——-0 0--0 0
o] | r—O-4———4+——=¢-0- © o
I t<+o o] 1o o4->—4
o | W, VA —— N, N |
o o —Dm——— |
o r—O0-7 = r— 0= o=t gy
r<t0 o] 1o o434 <to o] o o>
| L=t 1 _0-4 | | Lt=0—dteeeee——d-_pd |
|
r—O0—y———t———g=0-4
r<to o] 10 04>,
| t—-0—4+—-—e——1_0-4 |

Fig.10.12.a

An ALGOL 68 Companion 133

pictured in figure 10.12.a.

The steps in the process of moving down are

o r := left of q ;
left of q := p ;
P := 9 3
q :=r)o
after vhich the situation is as shown in figure 10.12.b. We neei
nqo opo
o a
o o oo
o} o} |
| | | r=0—-r————=p—0—
o o L{40 o |0 04=>—+
o o 0 O==——==D———q L—0—d eyl _0-J |
o o] r b—=> 4 |
I l'-o-'l_"-'"‘"_"'_l""o_"l I"-o"""--"l""-"T-‘o_'l
i lo o] |C 04>, r<+0 of |0 0424
| b4 _0—4 | | L—0—2 N o | |
Eaa ey
r—O0—y——t——=3-0—
r<{o o] o 04>,
T, S W

Fig.10.12.b

only add some way to stop this process. This is accomplished by
the econditione
o(cef node : q) :#: nilo

one should also check that the process starts from the nrootno
correctly and works properly when o(ref node : q) :=: nilnm.

when the walk on the 1left branch is done we must move
across the node. The situation before is as in figure 10.12.:Z

ogqn opn
o ') o
o o | L ——— 0 0--0 O
o | r—0—pr—=—de—q—7—0— o o
i @ L{{o o] |Flo o4=>—
L0 0>4 L o 3 S T . |
o | |
r—=0—r 4 ™10 O pm———dmny =0~y
<+0 0| IFlo 04>y (<40 o} IFlo 04>,
l | S, Y S Lt g4 | I L_p—4 l_d_ -1 l

Fig.10.12.¢

and the steps in the process are
or : ;

:= right of p ;

left of p ;

q
right of p
left of p

n)
o
"

134 An ALGOL 68 Companion

The situation after elaboration of these statements is as in
figqurz 10,.,12.d. Now we perform the action at this node and then
remember that we have done so by
maction(p) ;
tag of p := truen .
The process of moving up the tree is the opposite of moving dow
the tree except that we must check whether we are done,

o(cef node : q) :=: rooto ,
and whether we should change to moving across
o~ tag of pm 2

Also, as we move up, the value of the flag field is restored t
afalses.

opo oqo
o o o
Q 0==0 DeemmeD ey | oo
o O ¢=O0—r . r—10-1 | o
r—<—+0 0| |TIo o4>4 o |
i L=k e r<o o-J
| | o
r=0=7v mdrsmipespu oy S R W T,
<40 0] IFlo 04>, r<40 o] |Flo o4>4
| t—o—4L——————_1 1 -1 | | Lb—Odme 13 |

Fig.10.12.4

The complete algorithm is expressed as follows:
node) action)

f node root, proc (re
= :

f no
root, g := root, r

down : while (ref node : q) :#: nil do
(¢see figure 10.12.a#
r := left of q ; left of q :=p ; p :=q ;
q := r ¢see figure 10.12.b2) ;

across : £see fiqure 10.12.c¢

r :=q ; q := right of p ; right of p := left of p ;

left of p := r ; ¢see figure 10.12,d¢
tag of p := true ; acticn(p) ;
if (ref node : q) :+#: nil then down fi ;
up : while (ref node : g3) :#: root do
if tag of p
then tag of p := false ; r := right of p ;
right of p :=q ; g :=p s p =T~
else across
£i

a)
b)
c)

e)

a)
b)
c)

a)
e)

a)
b)
c)

d)
e)

a)
b)

c)
d)

e)

a)

a)
b)
c)

)

An ALGOL 68 Companion 135

Review questions

10.1 Syntax

Is omode real = long into a emode-declaratione?

Is umode a = [1:n]realo a emode-declaratione?

Is opmode £ = [Jrealn a emode-declaratione?

Is nunion a = (b)o a emode-declaratione?

Is ostruct u = (int q, real s)o a emode-declarationse?

10.2 Development

In the reach of nmode a = ref b ; mode b = [1:n] int, 4 =

proc bn, develop the edeclarere nstruct (a a, d d)a.

What 1is printed by aobegin mode a = [1:2] int ; ref a v ;
print (upb v) endn?

Develop the edeclarers nformom in 11.11.t of the Report.

Develop the edeclarere nmtriplem in 11.11.k or the Report.

Develop the edeclarere nbookm in 11.12.w of the Report.
10.3 Infinite modes

What are the two occurrences of mlinkm on line 4 in section
10.3?

What are the three occurrences of mlinko on line 6 of section
10.3?

Is the mode specified by mam, in the reach of omode a = ref
b, b = struct(a a)m, an infinite mode?

Build the list structure shown in figure 10.3 from top down.

Is nlink a := (1, (2, (3, nil)))m a edeclaratione?

10.4 Shielding and showing

\

Is npo shown in ostruct (cef a a, b b)m, in the reach of mmode
a=1[1:10]m, b = proc mm?

Can nmode ® = ref proc mm be contained in a proper eprograme?

Can omode m1 = ref m2, m2 = struct(ml f)o be contained in a
proper eprograme?

Can opode ml1 = upnion(m2, m3), m2= struct(ref ml a, [1:n)n3

b), m3 =—p;§§[51]n be contained in a proper eprograme?
10.5 Identification

Isao(b: u) a vo a oformulae or a edeclaratione?

10.6 Egquivalence of mode indications

In the reach of nomode a = [1:10] chacro, are the modes

a = struct (ref a x), t = ref struct(b x)m, equivalent?

Simplify the emode-declaratione nstruct a = (int u, ref
struct (int u, ref a v) v)e.
In the reach of mstruct a = (ref b r, bool s), b= (bool s,

136

e)

a)

b)

a)
b)
c)

d)
e)

a)

a)

b)

a)

An ALGOL 68 companion

ref a r)am, are the modes specified by wman and nbn
equivalent?
In the reach of nstruct k

===

ref 1 a, int b), 1 = (cef a a,

=
int b), m = (ref k a, int b)o, are the modes specified by
?

ok, lo and omm equivalent
10.7 Binary trees

In the reach of omode nood = ref struct (nood 1, string val,
nood r)nm, does nnoodn specify an infinite mode?

lsing a4t most three statements, in the reach of the smode-
declaratione for onodenm of 10.7, construct the binary tree

of figure 10.8.b.
10.8 Insertion in a binary tree

Write, as one sassignatione, the equivalent of minsert ("ron",
tree)n, for the situvation in figure 10.8.f.

For the tree as shown in figure 10.8.f, what is printed by
gprint (val of left of tree)m?

For figure 10.8.f, what is the value of n(ref node : root)
= no?

For figure 10.8.f, what is the value of pleft of tree

For figure 10.8.f, what is the value of oleft of n :
and that of nleft of n :=: (ref node : nil)no?

?

na?
nilo

10.9 Tree searching

Rewrite the edeclaratione of mnosearcho without using a
ecompleterse,

10.11 Tree walking

Define a eproceduree nplo such that op1l(tree)o will print the
strings of a tree (see figure 10.11) in the form

((OAD)IB(OCO)).))

Define a eproceduree np2o such that op2(tree)o will print the
strings of a tree (see figure 10.11) in the form (A,B,C).
10.12 A non recursive approach

Alter the algorithm of 10.12 from a post walk to a pre walk.

An ALGOL 68 Companion 137

11 Easy transput
11.1 General remarks

The transput routines of ALGOL 6B are written in ALGOL 68
itself [R.10.5]. This means, in theory, that it is not necessary
to explain any of them here. In order to understand what the
transput routines do, we need only to act like a computer and to
elaborate the routines of the Report. However, most of us prefer
not to emulate a computer. For this reason, extensive pragmatic
remacrks are included in section 10.5 of the Report and some
informal remarks on the simple routines, which would be used by
a beqginner, are appropriately the subject of this chapter.

The general philosophy is that no new language tricks are
used. This means that what we have already learned about the
language should be sufficient for the understanding of the
transput routines, The transput does not depend upon exceptions
or special cases.

11.2 Print and read

The two most useful routines for the beginner are
oprintn
and
oreadn .
We have met them before in several examples in preceding
chapters. The procedure pprintp is used for unformatted output
to the standard output file (probably a line printer) and the
procedure oreado is used for unformatted input from the standarid
input file (probably a card reader). Fxamples of their use are
gprint (x)m
gprint (("answer.=.", i))nm
oprint ((new page, title))m
and
oread (x) o
pread ((i, J))o
oread ((x1, new line, ¥y1))o
nread ((a, space, b, space, C))n 5
An important point to notice is that both woprinto and oreadn
accept only one eactual-parametere., Thus oread(x, y)o |is
incorrect. The mode of the eparametere of oprinto and opreadn
begins with erow-of-e. This means that noread((i, Jj))o or
gprint((i, j))m is acceptable since n(i, j)o is a srow-displaye.
Note that pprint((x))m is as good as mprint(x)o, for nm(x)m is a
eclosed-clausee whose value 4is oxo and oxo will be rowed to a
multiple value, a row with one element.

Observe that, in addition to evariablese like mxm (and for
oprintn, econstantse like o"answer.=."o), the eunitse of the
erow-displaye (or the single sparametere) may be certain layout
procedures like wnspace, backspace, new linen or onew pagem, to
allow for a rudimentary control over the standard dinput and
output files. Thus oprint((new page, "page,10", new line,
"name", space, "address"))m, should result in the following
output at the top of a new page.

138 An ALGOL 68 Companion

PAGE 10
NAME ADDRESS

11.3 Transput types

In order to understand what values can be printed and read,
we should examine the emode-declarationse for the hidden
esindicantse pouttypeo and ointypen [R.10.5.0.1.b,e]. We call
these "hidden™ because, although they appear in the Report in
the form o% outtypen and a¥ intypen, they may not be used
directly by the proqrammer. They are present only for the
purpose of description of the transput routines. If one is used
by a programmer, then it will be regarded as an eindicante with
no defining occurrence.

The declaration of mouttypen may be paraphrased as follous:
nouttypen specifies a union of the modes nint, real, boolo and
ncharo, together with prefixed nmlonqns where applicable, and all
multiple and/or structured modes built from these. Examples are
o[]int, string, complo and of Jstruct(int n, [Jboel bl)pn. Note

that values of each of these modes are constants.

If we consider a union of the same modes as for mouttypenm,
but each preceded by ereference toe, then we have the mode
specified by nintypen. Examples are oref int, ref char,
reff Jint, cef string, ref complo and nref[Jstruct(int n, [Jbool
b1)ao.

Thus, woouttypem is an appropriate union of those constants
which we might expect to print and omintypem is a wunion of the
corresponding evariabless,

It is now perhaps convenient, for our discussion, to
suppose that there is a epmode—declaratione

e ——— V=

r
although such a enmode-declarationes does not exist in the
estandard-preludee., W®With this in mind, we may now say that the
and that of preadm 1is that specified by of Jreadtypen. This
means, in particular, that the woxo in oprint(x)m will be
subjected syntactically to the coercion of dereferencing to
orealn, upiting to oprinttypes and then rowing to of Jprinttypen,
whereas in aoprint((x, y))n, the last coercion is not necessary
since n(x, y)n is already of mode serow ofs. 1In nprint(new
page)n, the opnew pagem is of a priori mode oproc(file)m and it

is united to noprinttypem and rowed to o[Jprinttypem. These
particular coercions are of little concern to the programmer
except perhaps that their understanding helps to prevent such

errors as oprint(x, y)o.
11.4 Standard output format
We shall now examine what to expect of the appearance of

econstantse on the standard output file nstand outm as a result
of a ecalle of oprintm. For this purpose, the mode specified by

An ALGOL 68 Companion 139

the hidden eindicante n31nplog§u [R.10.5.0.1.a] is relevant to
our explanation. It is a union of the modes specified by mint,
real, compl, bool, charn and nstringm together with prefixed
olongns, if applicable. We shall be able to understand the
output appearance then, if we consider the action of pprinto on

values of each of these modes in turn.

We shall also need some assumptions about the environment,
if we are to give illustrative examples. Therefore let us assume
that, in our environment, nmint widtho [R.10.5.1.3.h] is «aSa,
oreal widtho [R.10.5.1.3.i] is »7a, pnexp widthn [R.10.5.1.3.7]
is 2= and nmax char[stand out channel]on (the 1line length)
[R.10.5.1.1.m, 10.5.1.3.e] is eblda (the same as this text).

With these assumptions then, the result of the scalle
nprint ((newline, true, false, 1, 0, =1, 1.2,
0.0, -.0034, ma", "ahc", 1i2))n

is
10 +1 +0 -1 +1.200000E +0 +0.000000E +0
—-3.400000E -3 A ABC +1.000000E +0 I +2.000000E +0
The value -3.400000E -3 was prxnted on a new line because there
was not enough room on the first line. ©Note that an integral
value occupies 6 (oint width + 1m) print positions, a real
constant 13 (preal width + exp width + 4o) print positions, a
complex value 28 and a boolean or a character value 1 each. Also
each of these 1is separated from the previous one by a space,
unless we are at the beginning of a line.

Multiple values are also included in the wunited mode
specified by wpouttypen and therefore nmultiple values may be
printed. For example, in the reach of [1:3)int ul1 = (1, 2, 3)no,
the result of oprint((ul, 4))o is

+1 +2 +3 +4 .
Also, in the reach of w[1:2, 1:2]int n2 = ((5, 6), (7, 8))o, the
result of mprint(n2)mo is

+5 +6 +7 +8
Actually, the description of oprintm [R. 10.5.2.7.a,b]) 1n61cates
that each of the sunitse of a erow-displaye n(a, b, ¢, d)o in
pnprint((a, b, ¢, d))um 1is first “"straightened" (unravelled)
[R.10.5.0.2.c] to a value of mode specified by o[]Jsimploutn and
each of the elements of each of these straightened rows is then
printed with the standard format discussed above. This means,
for example, that the on2c in oprint (n2)o, given above, is,
within the eproceduree nprintm, straightened from wmouttypeo to
o[Jsimploutn [R.10.5.2.1.b, 10.5.0.2.a]. Thus, all multiple
values and all structures (except for wncomple and nstringn,

which are already in nsimploutn) are straightened to

of Jsinploutn before printing.

~ The exceptions for ostringo and ocomplp are that, although
ostringm has the mode erow of charactere, the result of
opprint(®abcd")n is ABCD and not A B C D, which would be the case
if it were treated like other multiple values, and mprint (1.2 1
3.4) o gives
+1.200000E +0 I+3.400000E +0
rather than

140 An ALGOL 68 Companion

+1.200000F 40 +3.400000E +0
which would be the case if it were treated in the same way as
the other structured values.

One final point is that the appearance of the result of
oprint(x) ; print(y)o is exactly the same as that of oprint ((x,
y))n. In particular, each ecalle of oprinto does not start the
output on a new line. A new line is started only when there is
not enough room on the old 1line or when one of the 1layout
procedures onew linem or onew pagem is called.

11.5 Conversion to strings

For those who find that this standard format does nct meet
their needs, there are a few eprocedurese which allow for sonme
form of simple control over the appearance of the ocutput,
without resorting to the use of formats., These procedures
convert integer or real values and their long variants to
strings. They are pint string, real string, dec stringom and the
same preceded by nlongus, if applicable [R.10.5.1.3.¢,d,e].
Thus, if it is desired to print the integral value #25e using a
width of three print positions, this can be done by

pprint (int string (25, 3, 10))n s
The second sparametere of omint stringm is the string length an
the third is the radix. The ecalle

gprint (int string(25, 3, 8))m
would yield +31, because 25 = 3 * 8 + 1, Fcr real values the
value of nreal string(3.14, 10, 3, 2)n is a+3,.100E+00s and the
value of mdec string(3.14, 10, 3)o is «+00003.1740=. TIn both
eprocedurese, the second esparameters is the length, the third is
the number of digits to the right of the point, and for nreal
stringo, the fourth eparametere is the length of the exponent.

Notice that the value of gpint string(25, 8, 10)m is
«+0000025=, so that those who require zero suppression must
either accept what they get from nprint(x)m or use formatted
output. Another possibility is to do the zero suppresion cneself
by defining a eproceduree like the hidden eproceduree o% sign
supp zerom [R.10.5.2.1.9).

11.6 Standard input

The philosophy for unformatted input is that any reasonable
representation of the value to be read is acceptable, that it
may appear anywhere on the line and may be c¢f any width. What is
expected for each value depends upon the mode of the evariablee
to which it is to be assigned. Remember that the mode <c¢f the
eparametere of areadm 1is of Jreadtypemn, where agreadtypeo is

munion (inttype, proc(file))o. Thus, in oread((a, b, c))m, the
pag is either a layout wegproceduree, 1like onew linec, or a
evariables (or perhaps a eclausee which delivers a name of the

appropriate mode).

The modes we need to consider are those in the union
specified by msimplouto, each preceded by sreference toe, i.e.,

oref int, cef real, ref compl, ref bool, ref char, ref stringm

An ALGOL 68 Companion 141

and their long versions like pref long realom and so on. For
convenience let us suppose that this union is specified by
osimplino. We shall need to consider each of these nodes in
turn. '

In the reach of mint i, long int lin, the ecalle oread((i,

li))n would be satisfied by two eintegral-denotationse like
3 -2
or
+ 304 - 0000005 .

The eprocedures oreado looks for the first non blank character
from the current position on the input file and interprets what
it finds as a value of the required mode. It allows fcr the
possibility that, in the case just cited, there will be two
sintegral-denotationses with zero or more blanks between the sign
and the first digit, if a sign appears at all, but that no
blanks may appear between the digits. Note that the same set of
characters may be presented for nintn as for olong 4into (a
elong-symbole is not used).

In the reach of mnreal x, long real 1xno, the ecalle

oread ((1x, x))o would be satisfied by
2 - 3.45

or by ,

6.789 e + 2 .00003
or by

123-4.56 .

Note that the values on the input file need not necessarily be
separated by blanks or commas, although most people would
naturally do this. '

In the reach of nmcompl 2z, bool ba, the ecalle aread((z,

b)) o would be. satisfied by
3.456 e -3 i + 7.69 1
or by
.000345160 ”

Observe that although nreadm will widen from mintm to orealn,
when necessary, there is here no widening from pintn or orealn
to ncompln. If the evariablee to be assigned to is of mode nref
compln, then it expects two values acceptable as worealos and
separated by a splus-i-times-symbole,

In the reach of nchar cn, nread (c)o merely reads the next
character from the input file and assigns it to omco even if that
character is a blank. In the reach of o[1:10]char cla,
pread (c1)m will read exactly 10 characters, including blanks,
and assign these to pclon. If however, we have o[1:3 flex]char
cfln, then npnread(cfl)m reads characters until it finds the end
of line or one of the characters which belcngs to the string
pterm of stand ino ([R.10.5.1.mm], whereupon the preceding
characters are taken to be those to be assigned to ocfiln.
Whichever bound is flexible is then adjusted suitably. If both
of them are flexible, e.g., in the reach of no[0 flex: 0
flexJchar sillym, the wecalle nread(silly)m will result in a
lower bound of =1e for osillym. The programmer may specify the
terminators as for example in oterm of stand in := "2!"n, which

142 An ALGOL 68 Companion

changes the set of terminators to "?" or "wiw,

For multiple and structured —evariablese in the union
nintypea, the first step is to straighten to o[]simplinm, where
gsimplinm is the union of wmodes discussed above. Thus, in the
reach of nof[1:3, 1:2]real x2, struct(int a, bool b) co, the

ecalle pnread ((x2,c))ao would be satisfied by
3 .6 4 .2 & 50 4

11.7 String to numeric conversion

The eprocedures nreado must of necessity convert character
strings to integral or real values, and in doing so it makes use
of three standard eprocedurese, uostring int, string decn and
ostring realo [R.10.5.2.2.¢c,d,e). These eprocedurese are not
hidden. The programmer may use them himself. The first
eproceduree, nstring intm, converts a given string to an
integral wvalue. It assumes that the first character of the
string is a sign. Any character which is not a (hexadecimal)
digit, e.g., a space, is treated as a 0. Thus the value of
nstring int ("+,.23%, 10)o is «23m (the second parameter is the
radix). The sproceduree nstring decn converts a evariable-~point-
numerals, e.g., @oO"+2.3450"o, to a real value and ostring realn
converts a efloating--point—-numerale, e.g., o"+2.3045e-2"o to a
real value. The value of nstring dec ("+2.345")n is =2.345s and
that of ostring real ("+2.3450e-1")n is =.2345.. These
eprocadurese, although available, are not likely to be useful
for input since nmreado itself has all the flexibility needed.
However, thay may well be used for internal manipulation of
strings.

Another eprocedures which may be mentioned here is mchar in
stringa [R. 10.5.1.2.n]. It has three eparameterse; the first |is
of mode echaractere, the second of mode ereference to integrale
and the third of mode erow of charactere., The eproceduree
delivers a boolean value which is struee if the character, which
is the first eparametere, is found in the string, which is the
third eparametere, in which case its positicen is assigned to the
esinteger—variablee; otherwise, the value delivered 1is sfalses
and no assignment is made. The result of achar in string ("+", i,
"x.+.y")o is therefore strues and the value e3s is assigned to
oio.

11.8 Simple file enguiries

For any file, it is ©possible to make simple enquiries
concerning the current position in the file. There are three
eprocedurese, ochar number, 1line numberm and npage onumberm
[R.10.5.1.2.v,¥%,x], each yielding an integral value, the three
coordinates of the nbookm. In the case of the standard dinput
file, the ecallse nochar number (stand in), line number (stand in)m
and npage number(stand in)m should each yield the value =1la
after the ecalle nread ((c, back space))n, if this is the first
call of nreado and is 1in the reach of ochar cn. Notice that
these eprocedurese deliver integral values and not names, so

An ALGOL 68 Companion 143

that they are for enquiry only and cannot be used to alter the
position in the file,

There are also three eprocedurese nline ended, page endedn
and nofile endedo [R.10.5.1.2.h,1i,3J), each of which delivers an
appropriate boolean value, but a careful distinction must be
made between w©nfile endedm, which tests whether the maximun
capacity has been exceeded, and nlogical file endedn
[R.10.5.1.2.k], which tests whether the usable information in
the file has been exhausted. In the case of the file nstand inn,
if it is a card reader, then nfile ended (stand in)m is likely
always to be w=falsea, but omlogical file ended(stand in)n may
become struee each time we reach the end of the data for a
particular job. The ecalle nlogical file ended (stand out)mo will
always yield mfalsea, because nget possible[stand out channel]o
[R.10.5.1.1.7F, 10.5.1.3.b] is likely to be sfalses, i.e., ostand
outn is not an input file. But nfile ended(stand out)o may well
become true when the page limit for a particular job is reached,
or when the box of paper is exhausted.

11.9 Other files

It is worthwhile noticing now that nprint(x)o is the same
as oput(stand out, x)o and pread(x)om is the same as nget (stand
in, x)o; in fact, this is the way that nmprintm and nreadnm are
defined [R.10.5.2.1.a, 10.5.2.2.a]. This means that if another
file is available, say in the reach of the edeclaratione nfile
fo, then what we have said about unformatted transput on the
standard files applies also to the file pfo by using, e.g.,
oput (£, x)o and nget(f, x)o. Such files must be opened (and
closed) by the programmer, but this is the subject matter of
another chapter.

Another standard file which is always available, i.e., is
opened automatically, is nstand backn., This file may bhe used for
saving intermediate results during the elaboration of a
eprograme. When the elaboration is completed, this information
will be lost, since the file is locked [R.10.5.17.1ii, 10.5.1.2.t]
by the sstandard-postludees. The two relevant eprocedurese here
are nuwrite bino and oread bino. The mode of the eparametere of
owrite bino is o[Jouttypen, and that of oread binmo is
of]Jintypeo. PFor example, in the reach of o[1:n]real x1o, if we
want temporarily to save the values of a rather large array,
this could be accomplished by the ecalle gwrite bin(x1)o. The
array can then be recalled by mread bin (x1)pn. If another file,
say nfn, 1s available, the same could be done by nmput bin(f,
x1)o and nget bin(f, x1)m, and if the file nfm is not locked
then these two ecallse might appear in different eprogramse.

Review questions

11.2 Print and read

a) Is oprint (new page, new line)o a ecalle?

144 An ALGOL 68 Companion

b)
c)

d)

e)

a)
b)
c)
d)

e)

Is oprint (nil)o a ecalle?

What is the result of woprint(get possible[stand in
channel]) o?

In the reach of oref real xx := loc real := 3.14n, what is
the result of oprint (xx)no?

In the reach of oref real xx := loc real := 3.14n, what is

the result of oprint (cef real : xx)n?

11.3 Transput types

What is the result of oprint(for i by 2 to 10 do 3)m?

In the reach of pref real ixom, can oxxom be coerced to
a[Jreadtypen?

In the reach of ostruct (ref c next, int n) s := (nil, 2)nm,
what is the result of oprint(s)no?

In the reach of nformat fo, is oread(f)o a ecalle?

11.4 Standard output format

In the following, assume the same environment as given in

section 11.4.

a)
b)
c)

d)
e)
£)

What is the result of oprint(("?", int width))mo?

What is the result of mprint(("2?", space, "abc"))?

In the reach of nref real xx := loc real := 3.1no, what
coercions occur to oxxo in oprint(("?", xx))o and what is
printed?

How many real values can be printed on a line?

How many integral values can be printed on a line?

Is the result of aprint((®a"™, "b"®™, "c"))o ABC or A B C?

An ALGOL 68 companion 145

References

[B] W.Brown, The cross-referencing of a van Wijngaarden grammar,
Oniversity of Calgary, 1969.

[6] G.Goos, Some problems in compiling ALGOL 68, ALGOL 68
Implementation, NWorth-Holland, 1971, pp. 179-196.

[H) J.B.Hopcroft and J.D.Ullman, Formal Languages and their
Relation to Automata, Addison Wesley, 1969.

[Kn] D.EB.Knuth, The Art of Computer Programaming, Vol. 1,
Fundamental Algorithms, Addison Wesley, 1968.

[Ko] C.H.A.Koster, On infinite modes, Algol Bulletin, No. 30,
reh. 1969' pp. 36-‘89 (lB-30¢3.3)U

[M] L.Meertens, On the generation of ALGOL 68 programs involving
infinite modes, ALGOL Bulletin, ¥o 30, Feb. 1969, pp. 90-92
(AB30.3.4).

(8] P.Haur, Revised Report on the Algorithmic Language ALGOL 60,
Comm. Assoc. Computing Machinery, 6(1963) pp. 1-77.

[Pa] C.Pair, Concerning the syntax of ALGOL 68, Algol Bulletin,
AB 31.3.2, March 1970.

[P] PL/I Language Reference Manual, IBM Form C28-8201-2.

[R] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck and C.H.A.
Koster, Beport on the Algorithmic Language ALGOL 68, Numerische
Mathematik, 14 (1969) pp. 79-218.

[SW#] H.Schorr and W.M.RWaite, An efficient machine independent
procedure for garbage collection in various 1list structures,
Comm. Assoc. Computing Machinery, Vol. 10 (1967), pp. 501-506.

[W] H. WOssner, On identification of operators in ALGOL 68,
ALGOL 68 Implementation, North Holland, 1971, pp. 111-118.

[Z] Bary Zosel, Hode classification, Univ. of Washington, 1970.

146 An ALGOL 6B Companion

Answers to review questions

1.1 a) It ends with esymbole. b) Three, elabel-symbole,
ecast-of-symbole and eup-to-symbole, unless one observes that
the elabel-symbole is in italic, and the other two in normal
type. c) Yes, e.g., m.o, which represents a spoint-symbole and a
scompletion-symbole, d) It is a representation of the sopen-
symbole, but, by extension 9.2.g, it may be used in place of
of o.

1.2 a) An internal object which is a real value. b) A
sreal-denotatione (amongst other things). c) It is an external
object. d) ntruen possesses strues.

1.3 a) No. b) Yes. c) No, it is an internal object. d) No,
i.e., not at the same time, but in the course of time - yes. e)
No. s

1.4 a) No. b) Yes, a ecollateral-declarationes [R.6.2.1.a].

1.5 a) There are four classes: integral values, real
values, truth values and characters. b) Yes, the truth values.
c) The mode.

1.6 a) The mark ":" is read as "may be a%", ";" as %or a"
and "," as "followed by a". b) Yes.

Tu'l a) Yes, e.g., 0123pn and o000123a. b) No, but it 1is a
eformulas. c¢) Yes. d) Mo, not if this value would exceed mmax
intm [R.10.1.b].

1.8 a) Yes, e.g., possibly p2.34o and p23.4e-1m. b) No. Oh,
please no. c) No. d) Yes. e) No, but it is a =formulae [R.8.4].
1.9 a) No. b) Yes.

1.10 a) Infinitely many. b) As many as he likes, but always

a finite number.

1T a) No, it is a echaracter—denotatione. b) Yes. c) =row
of charactere.

112 a) No [R.2.2.3.1.b]J. b) estructured with row of boolean
field letter alephe. c) eoformate.

113 a) erow of charactere., b) ereference to reale,
sreference to integrals c) No. d) Six. e) No.

2:1 a) No. b) Yes., c) wmref ref [Jcharom. d) Yes. e) Yes. f)

No. g) No, except for snils. h) No, a edeclarere specifies a
mode.

An ALGOL 68 Companion 147

2.3 a) Nome. b) oloc charm. c) nloc boolm. d) No. e) FRo. f)
No.
2.4 a) No, but it possesses a name referring to a real

value. b) Yes. c) Ho. d) Waq. e) No. f) No, i.e., not at the same
time, but in the course of time - yes.

2.5 a) Yes, but not the same instance [R.2.2.1]. b) No. ¢)
No, but the value referred to by the name possessed by oxo may
be changed. d) woloc{ 1:3]proc realn.

2.6 a) No. b) Yes, in the extended lanquage. c) ereference-
to-reference-to-integrale. d) nof 1:3]proc real pn.

2.7 a) Yes. b) Yes. c) Ho. d) No.

2.8 a) ocef ref real xx = loc ref realm. b) oref real x =
loc real, ref real y = loc realn. c) oref real x = loc real, ref
real y := loc real := 3.14n. d) It is not possible; moreover, if
oto has its usual meaning, then this is not a edeclaratione.

2.9 a) No. b) Yes. c) No. d) Yes, but a rather foolish one.
2.10 a) Yes. b) Yes. ¢) No. d) ny + 2;m. e) ereference-to-
reference-to-reale, f) No,

2.12 a) The nyn is dereferenced and the m3.14o 1is not. b)
No.

2.13 a) the ono is an eintegral-mode—identifiere but the omn

is a ereference-to-integral-mode-identifier; i.e., nonon is a
econstante and omo is a evariablee, c) No.

2.14 a) Pour. b) Both papo and ompon are dereferenced. c) It
is equivalent to nj := j + 1o, d) Yes. omin. It's mode is elong-
reale. e) ereference—to-long-reale,

3.1 a) No. b) VYes. c¢) o(a ¢+ (b of (c[d]))) - en. d) An
sexpressione may possess a value but a statement cannot. e) Yes.

3.2 a) No. b) Five, emode-identifier, denotation, slice,
calle and evoid-cast-packe. c) ma[i]}, a, i, ¢, sin(x), sin, x,
cos(x + pi/2), cos, x, pi, 2o. d) Bo. e) It could be either,
depending on the mode of mao [R.9.2.9].

i3 a) w©nl, ca, fa. b) ereference-to-reale. c) erow-of-row-
of-integrale., 4) Yes. e) Ho.

3.4 a) Yes. b) Yes, its mode is ereference-to-row-of-reale.
c) Yes. d) Yes., e) o35, item of a, i + n * 2, i #:= 2n.

3.5 a) No. b) Yes. c) No. d) Yes. e) Yes.

3.6 a) The same as that of n(2,3)m. b) It possesses the

value strues only vhen ox2{3,1] = x2[2,1]Jo. c) e2as, d) s2e. e)

148 An ALGOL 68 Companion

No, because pni := 1o is not a etertiarys and therefore not a
slower-bounde,

37 a) Yes. b) ©¥o, it is a edeprocedured-coercende
[R.8.2.2.1.a]). c) No, but mcos((x >0 | x | pi/2))m is a ecalle.
d) When the mode of pam is esprocedure with M1 paranmeter
reference to M2e where eMle and oH2e are terminal productions of
MODE. e) When the mode of manm is eprocedure-with-Ml-parameter-
procedure—with-M2-parameter—-M3», i.e., oao is a eproceduree with
one weparametere which delivers a esproceduree with one
sparametere, and the modes of pbo and oco are eMie and eM2e
respectively.

3.8 a) Yes. b) No, m(: x)m has no mode. c¢) VYes, provided
that the mode, after soft coercion, of oxo is ereference-to-
procedure-voide. d) Yes. e) No [R.8.2.3.1], but mproc p := (: «x
:= 3.14)n is a sdeclaratione.

339 a) No. b) Yes. c¢) Ho. d) Yes. e) When the mode of wbnm
is structured, has a field selected by panm whose nmode is
ereference—-to-Ml1e where eM1e is the a posteriori mode of pcn, or
when nbo is a evariablee and will refer to structured values
that have a field selected by mao whose mode is M1.

3.10 a) No. b) No, it is a #field-selectore [R.7.1.1.i]. «cC)
na of (b[c]), e of(g(x))u. d) No, m(a of b)o is not a efield-
selectore. e) Yes, it could bhe.

3.11 a) Yes. b) =falsew (if the value of opbits widthe is
e«3a). Cc) e-4s. d) No, the 1left eoperande of the eoperatore
o+:=n, as declared in the estandard-preludee, must possess a
name, e) efalses.

312 a) No. b) No, mi := 1 ¢ 1n is not a etertiarye. c) No.
d) No, aproc : (:random)o is. e) It is an sassignatione.

3.13 a) msfalsem. b) strues. c) struew. d) No, n3.14p does
not possess a hame. e) Yes.

3.14 a) No. b) It 1looks 1like one, but o3.14m cannot be
strongly coerced to an integral value. <c¢) An sidentity-
relatione. d) No, because o[71:1]realn is not a wevirtual-
declarere. e) No, nref int : iio is not a etertiarye.

3.15 a) None. b) Eleven. c) A seconstante. d) -ereals. e)
None.
4.1 a) The same as that of @3 i On. b) No. c) No. d) Yes.

e) Yes. f) Yes.

4.2 a) »5=. b) Some undefined integral value. c) ella., d)
oif p then a elsf q thef r then b else ¢ fin. e) m(a |(b | ¢
I(d | e | skip))| skip)o.

4.3 a) No. b) pif, casen and o(m. ¢) =lm. d) =2=. e) No.

An ALGOL 68 companion 149

4.4 a) No. b) No. c) VYes, pem is elaborated infinitely
often, or until a jump occurs to a elabel-identifiere outside of
it. d) VYes, zero times. e) Yes, zero times. f) The second and
third occurrences of mim identify the first, but oi := 2 * j +
1o is not an eassignatione since nin does not possess a name. g)
The last three occurrences of nin identify the second
occurrence, but the third and fourth occurrences identify the
first occurrence.

4.5 a) Yes. b) No. c) Yes. d) No. e) No. f) No.

4.6 a) No. b) No. c) No. d) The same as that of m"abcde™n.
e) Yes, e.g., if the order of elaboration happens to be mj +:= i
i i +:= jo.

o7 a) Yes. b) Yes. c) No. d) Yes. e) m(x o0y | 1) 3 n
2 2 18 . 120 3= 1 2 ro.

4.8 a) Seven. b) sreference-to-row-of-integrale, c)
ereference-to-integrale, d) Four. e) Nonme.

5.1 a) No, nmreal procm is not a edeclarere. b) No, @mo(real
a)realn is not a evirtual-plane [R.7.1.1.xJ). ¢) mproc real r2 =
2 * randomn. d) pproc max = (real a, b) real : (a> b | a |
b)n. e) mproc recip = (cef real a) : a := 1 / ao.

5.2 a) No, unless n*n has been redeclared and possesses an
operation which delivers a name. b) oref[Jreal x1po. c) m(ceal a
= x +1, real b=y ; a *b)o. d) no(ceal a = skip ; real : a *
a)o. e) e(int n = skip, int m = skip ; cef[1:n])real al = skip ;
real : ((n < m | al[n] | alfm]))a.

5.3 a) The value is voided. b) sslU.6m, in the sense of
numerical analysis. c¢) That of oym. d) The object mop(x, y)o is
not a call, since oref ref real a = xo 1is not an eidentity-
declaratione. e) =2.2w, in the sense of numerical analysis.

5.4 a) woproc p = (ipt a, proc ref int b) : b *:= 2 * ag,
but in most applications oproc p = (int a, ref int b) : b *:= 2

* an would be sufficient. Note that since mbn is passed by name
in ALGOL 60, the side effects of mb := b * 2 * am occur twice
but in mb *:= 2 * an they occur only once.

5.6 a) A econstante, b) Because no assignment is made to
nsSn. C) Because ngn 1is a econstante and mngrowo requires a
evariablee in its last eparametere. d) It's value is irrelevant
for it is used only in the eformulae nt or -tpm. e) The same as

6.1 a) A priori mode, a posteriori mode and syntactic
position. b) Strong, firm, weak and soft. <¢) Yes. d) ©No. e)
Widening.

6.2 a) Eight. b) Dereferencing and widening. c)

150 An ALGOL 6B Companion

Dereferencing and deproceduring. d) Rowing. e) Hipping.

6.3 a) Dereferencing (four times). b) Dereferencing (twice)
c) Dereferencing, dereferencing and deproceduring. d)
Dereferencing, deproceduring and dereferencing. e) B34a, 71b,c,
61e, B81a,b,c,d, 8204, 822a, B860a, 41b,c, 302b.

6.4 a) Deproceduring and uniting. b) No. ¢) A routine. 4d)
No. e) No, ngorandoem is of a priori mode sprocedure-reale, it
cannot be procedured to eprocedure-voide [R.8.2.3.1).

6.5 a) No. b) Hipping. c¢) Widening of wS5wo. d) Deproceduring
and rowing. e) None, this is not a scaste since rowing cannot be
followed by uniting [R.8.2.4.1.b].

6.6 a) Dereferencing and deproceduring. b) Firm. c) Weak.
d) Dereferencing of nrrixm twice (not thrice). e) Soft.

6.7 a) eBase, cohesion, formula, confrontatione. b) ©oh, a
of by X; 2, X 2= 2y Xy Yo 3¢ 3 ¥ 3, X 3= ¥ %+ 3In, c) Yes, but its
elaboration is undefined since the dereferencing of a enihile is
undefined [R.B.2.1.2 Step 2]. d) Yes, assuming the edeclaratione
oref real xxom. e) No, hipping cannot occur in a soft position.
6.9 a) 834a, 71b, 421b,c, 61e, 8la,b,c,d, 8204, 825b,a,
821a, B860a, 41b, 302b. b) No, there is no deuniting coercion. c)
74a, S4e, 71b,w,aa,z; U41b, 302b; 74b, 61e, B1la, 8204, 823a,
830a, 834a, 71z; 61e, B1a, 820d, B28a, 830a, 831a,b, 81b,c,d,
820q, 860a, 41b, 302b; 831c, 61e, B81a,b,c,d, B20d4d, 825a, B860a,
511a, 303¢,d. d4) 61e, 81a,b,c,d, 8204, 828b, 822a, 860a, Uu1b,c
302b. e) No, hipping cannot occur in a firm position.

6.10 a) No. b) Yes. c) ereale, d) ereale or esprocedure reale
or weunion of integral and reale or sunion of integral and real
and booleane etc. e) No.

6. 11 a) No. b) opxom is softly deprocedured and oxxo is
strongly dereferenced. ¢) npxo is softly deprocedured and mqu_to
ko is strongly hipped to sreference-to-reale. d) Yes. e) No.

6.12 a) ox1o is weakly coerced, o2m is strongly widened and
then rowed to erow-of-reale, b) Yes, strongly-weakly to ereale,.
c) Yes. d) Yes. e) nrandoernm is strongly deprocedured and widened
and n0 i 2o is weakly coerced.

6.13 a) No. b) Ho. c) Yes, firmly-strongly. d) Yes. e) No.

6.15 a) Yes. b) VYes, the balanced mode is sreference-to-
reale. c) No, it cannot be balanced. d) o4 i 5.6m is f£firm, the
others strong. e) No.

6.16 a) The object om +:= 1o is interpreted as om := m + 1m
s0 nmo is dereferenced once, pm +:= 1o is dereferenced as the
left operand of om>m. b) This is equivalent to oref int c1 = loc
int := am := abs amo. First pamo is dereferenced to einteqrale
and the absolute value of this integer is found. It is assigned

An ALGOL 68 Companion 151

to mamo. Then a name is created by nloc intm, the eassignatione
pam := abs amp is dereferenced and the integral value (referred
to by mamn) is assigned to this name. Finally ncio is npade to
possess the name. c) The identifier maim is made to possess the
same name as that possessed by ma[i]n. This happens for each
repetition of the repetitive statement, in which there are five
occurrences of painm, thus saving time on subscript calculation.
d) This 1is the position of the statement number 30 in the
FORTRAN program. It is redundant in ALGOL 68, but ml30: endo is
not permitted for there is no empty statement. e) ?

Tail a) Yes, its value is sfalses [R.7.1.2.c Step 8]. b)
Yes, but rather useless. c¢) strues., d) Yes. e) Yes.

7.2 a) No, eintegrale mode cannot be united to weunion of
character and booleane, b) Mo, in R.8.2.4.1.a, estronge goes to
firm, so the nlo cannot be widened. <c¢) Rither ereale or
esbooleane, d) Yes, and its value is sfalses. e) Yes, provided
that it is in the reach of a suitable declaration of the
soperatores n+no,

7.3 a) strues, b) =sfalsew. c) wtrues. d) Yes. e) No, opx ::=
¥o is not a etertiarye [R.8.3.2.1.a).

7.4 a) Yes, 1its value is efalses. b) Yes, its value is
strues. c) Yes [R.4.4.3.c,d]. d) No. e) woproc sqirt = (int
i)unjon (int, real) : (real x = sqgrt(i) ; int j = round x ; (J *
j=i1 31 x))m.

7:5 a) ebs, b) Either s7m or =8s or =% [R.10.4.27]. c) No,
it should be omsema p = /1o. d) Yes, surprisingly, and if the
value of pum is of ebooleans mode, then the value of the
expression is that of mhn. e) No, because a sskipe can only be
hipped and must therefore be in a strong position. The right
etertiarye of a sconformity-~relatione is of no sort
[R.B8.3.2.1.a). f) No, a ejumpe can only be hipped (see the
ansver to e).

8.1 a) No, it is a econfrontatione. b) Yes. c) m(x + (-¥))
- ({ -(-(abs 1i))) over 2)m. d) Nine. e) No, it is a
econfrontatione. f) e2a.

8.2 a) No, m:=:n is not a edyadic-indicatione. It is a
sidentity-relatore. b) No, the stokene on the right must be > 0.
c) Mo, the token must be < 10. d) Yes, if the implementation
permits n?n as a edyadic-indicante., e) No, perhaps the intention
was opriority ? = 6, ! = 6n.

8.3 a) No, n:=:m is not an esoperatore., It is an eidentity-
relatore. b) No, the eactual-parametere must possess a routine
with one or two eparameterse. c) No, o*o is not a emonadic-
operatore [R.3.0.4.a, 4.2.1.f, 4.3.1.c]). Think about ox*#*2p. 4d)
Yes. e) nmop (cef file, int) create = createn.

_—— == ——— o — —

8.4 a) s(real a = skip ; int : round a)s. b) No, norandomn

152 An ALGOL 68 Companion

possesses a routine which has no eparameterse. c) «83s. d) Yes.
e) No, m#o is not an pactual-parametern.

8.5 a) One. b) 16 times a sufficient number [R.10.b Step 3,
10203103, . 10.2.4.1,19, 10.2.5.a,b, 10.2.6.b,
10.2.7. J, k. p,q,I,8, 10.2.10.5,k,1]. c) 30, [R.10.5.2.2.b,
10.5.3.2.f, 10.2.0]. d) There is none since this is a emonadic-
operatore. e) No, it is a econformity-relatore [R.8.3.2.1.b].

8.6 a) Yes, but it cannot be contained in a proper program.
b) Yes, because the second occurrence of pmabso is that of a
emonadic-indicatione. and does not identify the first. c¢) 1In
order to reinstate the edyadic-indicationse and eoperatorse of
the sstandard-preludee. They may have been re-declared. d) Yes
[Re6.1.2.a, 6.0.2.d Step 1]. e) Yes [R.6.1.2.a, 6.0.2.d Step 2].

8.7 a) R.10.2.5.a. b) R.11.11.k. c) R.11.11.1 4)
R.10.2.8.d. e) R.10.2.10.1i.

8.8 a) om(ceal a = skip ; bool : a > 0)m. b) n(real a = x ;
bool : a > 0)nm.

8.9 a) =-1=. b) FNo, it is an eidentity-relatione. c¢) No, a
ecaste is not an eoperande. d) Yes. e) sfalses.
8.10 a) No. b) No. c) Yes, try coercing from pmintn or from

oproc intm., d) VYes. e) No, there is a multiple definition of
o-—-0.

8.11 a) It draws a straight 1line of 1length @mdo in the
direction S. b) Try, on, s, e, wo. c) !

8.12 a) Remove 2, remove 1, b) Remove 1, remove 3, replace
1, remove 2, remove 1. c¢) The eformulae requires that omam should
be a evariablee, d) Remove 2, remove 1, remove U4, replace 1,
replace 2, remove 1, remove 3, replace 1, remove 2, remove 1. e)
Try oproc upn and oproc downn.

Tt a) No. b) Yes. c) No [R.8.3.4.1.a]. d) No. e) Yes
[R.5.1.0.1.b]. -

9.2 a) Infinitely many. b) Six. c¢c) Two. d) Two. €)
evirtual, actuale and eformale.

9.3 a) No [R.3.0.2.bJ). b) Three. c) No, it is a metarule.
d) Yes. e) No.

9.4 a) No [R.1.2.1.m]). b) No. c¢) Yes, erow-of-charactere,
say. d) ereal-field-letter-r-letter—e—-ande [R.8.5.2.1.a]. e)
sreale.

9.5 a) (I) L : x ;v s 2. (II) N : ; Np. (i) s : Nx, YyNy,
NNzZ. {i1) NpL: 2:8L: L. DY“IE) L. 523X 5 ¥ 5 2. (II) R = p & Hp.
(i) s :+ Nx, Ny, Nz, (ii) NpL : NL, L. (iii) pL = . ¢) (I) L : «x
T Y : Z. (II) N : ; pN. (i) s : letter x symbol N, letter y
symbol N, letter z symbol N. (ii) letter L symbol pN : letter L

An ALGOL 68 Companion 153

symbol, letteér L symbol N.

9.6 a) No. b) Yes. c) No. d) No. e) Yes, eNONPROCe eixcludes
only eprocedure-M0IDes or the same preceded by esreference-toe or
erow-of e,

9.7 a) evoid-cohesione or evoid-confrontatione [R.8.5.0.1].
b) evirtual NONSTOWED declarere. c) efirmly dereferenced to MODE
FORMe d) estrongly rowed to REFETY row of MODE FORMe. e) eSTIRM
ly united to MOID FORMe,

10.1 a) No, orealm is not a emode-indicatione [R.U4.2.1.Db,
1.1.5.b]. b) No, mamn is an eidentifiere, not an eindicante. ()
No, [Jreal is not an eactual-declarere, d) Perhaps, if obn
already specifies a united modenm [R.7.1.1l.cc, 9.2.b]. ek Yes
[R.g-z.h]- ’

10.2 a) ostr a, froc b d)m b) This is undefined. In

= loc ref aom, the egeneratore mnloc ref

au. contains mab which is virtval and is therefore not developed
[Re7.1.2.c]). c) ounion (ref ccnst, ref var, Ief ¢triple, ref

l)m. d) ostruct(union(ref const, cref var, ref triple, ref

= ———— ¥ e ¥ e s 2 s e —_——= ===

1
11) left operand, int operator, union (ref const, ref var,
i
t

Iy
e
17 Iehl

i

ple, ref call)right operand)m. e) ostruct([1:0 flex] c

rler I IO

-

le, ref book next)un.

10.3 a) The first is its defining occurrence as a enode-
indicatione and the second is an applied occurrence as a
svirtual-declarers. b) The first is a edeclarere and the other
two are eglobal-generatorse, c¢) Yes. d) olink a := (1, nil) ;

next of a := link := (2, mil) ; next of next of a := link := (3,
nilo. e) No [R.6.2.1.f].

10.4 a) No. b) Yes. c) No. d) Yes. e) Yes.

10.5 a) If mam is a edyadic-indicatione, then it is a

e« formulae and wb : uo 1is a —ecaste; if pam is a esmode-
indicatione, then it is a edeclaratione and ob :un is a erow-of-
rowers,

10.6 a) Yes. b) No. c) wstruct a = (int u, ref a v)m. d) Wo.
e) Yes.

10.7 a)Yes. b) nmnode tree := node := (pil, "bob", nil),
“"jim", node := (nil, "sam", nil))no.

10.8 a) wnleft of right of tree = node := (nil, "ron"

nil)n. b) BOB. c) efalses, d) mstrues. e) sfalses, strues.

10.9 a) In line 2, insert mbool b := truem; lines 7 and B8
become ofi ; b := false ; done : bo.

10.11 a) unproc pl = (ref node root) : (print("("™); (root :#:
nil | p1(left of root) ; print(val of root) ; pl1(right of root))
i print(")"))o. b) mproc p2 = (ref node root) : (root =:#: nil
l: left of root :=: (ref node : nil) and right of root :=: (ref

154

node : pil) |
3 print(",")

root) ; print (“)"))ao.
10.12 a) Remove
line 8.

11a:2 a) No,

only be hipped, but
therefore

10.5.0.2 Table 1]. 4d)

print(val of root)
print(val of root) ;

maction(p)m

oprinto has only one parameter. b)
since
in a firm position [R.8.2.4.1.b]J. ©)

An ALGOL 68 Companion

| print (" (") ;
print (*,") ;

p2(left of root)
print (right of

from line 12 and insert it in

No, mnilm can

united, it is
1 [R.10.5.1.1.£,
+3. T4 0000E +0. e) +3.140000E +0.

it mudt also be

113 a) Undefined, since the repetitive statement is void
and therefore cannot he coerced to noprinttypem. b) No
{R.B.2.4.1.bJ. c) Yes, dereference to pref realm, unite ¢to
ointypeas and then row it. d) Undefined, since mso cannot be
coerced to oouttypem. e) No, woformatom cannot be coerced to
of Jreadtypen.

11.4 a) 2 +5, b) ? ABC. c) Twice dereferenced and then

left over. e)

d) Four and 9 spaces

Nine and 2 spaces left over. £f) A B C.

An ALGOL 68 Companion 155

An
ALGCL 68 COMPANION
J.E.L.Peck
Revised Preliminary Edition

March 1972

This document may be ordered from
The Bookstore,
University of British Columbia,

Vancouver 8, B.C.,
Canada.

The price is $2.00 plus bhandling charges.

Please send me copies of An ALGOL 68 COMPANION,
and bill ne.

NADE 5igiine i elie/w'iale e sssassswssas

RAAERRE st asss i hnsnni st i e v sne

