
_.. -
-- ~

1-. 0 J l Cl C

"!;tt o ...-I:- 79]

An

ALGOL 68 COMPANION

J.E.L.Peck

Department of Computer Science

University of British Columbia

Vancouver

Revised Preliminary Edition
March 1972

An ALGOL 68 Companion

CONTENTS

Introduction

1 Denotations.

1.1 Languaqe levels. 1.2 Objects. 1.3 Names. 1.4 Variables. 1.5
Denotations. 1.6 Boolean denotations. 1. 7 Integral denotations.
1.8 Real denotations. 1.9 Character denotations. 1. 10 Modes.
1.11 String denotations. 1.12 other denotations. 1.13 Program
example.

2 Some fundamental concepts.

2.1 Declarers. 2.2
elaboration of a
syntax of identity
extension. 2. 9 An
2.11 References.
declarations. 2.14

Generators. 2 .3 Local generators. 2 .4 T he
generator. 2. 5 Identity declarations. 2 . 6 The
declarations. 2.7 For mal parameters. 2 . 8 An
assignation. 2.10 The s y ntdX of assig nations.

2.12 Dereferenci ng. 2. 13 I nitialized
Program example.

3 Unitary clauses.

3.1 Introduction. 3.2 Bases. 3.3 Identifiers. 3.4 Slices. 3.5
Multiple values. 3.6 Trimmers. 3.7 Calls. 3.8 Void cast packs.
3.9 Cohesions. 3.10 Selections. 3.11 Formulas. 3.12
Confrontations. 3.13 Identity relations. 3. 14 Casts. 3.15
Program example.

4 Clauses.

4.1 Conditional clauses. 4.2 simple extensions of the
conditional clause. 4.3 Case clauses. 4.4 Repetitive statements.
4.5 Closed clauses. 4.6 Collateral phrases. 4.7 Serial clauses.
4.8 Proqram example.

5 Routine denotations and calls.

5.1 The parameter mechanism. 5.2 Routine denotations. 5.3 More
on parameters. 5.4 The syntax of routine denotations. 5.5 What
happened to the old call ty name?. 5.6 Program example.

6 coercion.

6.1 Fundamentals. 6.2 Classification of coercions. 6.3 Fitting.
6.4 Adjusting. 6.5 Adapting. 6.6 Syntactic position. 6.7
Coercends. 6.8 A significant example. 6.9 The syntactic machine.

2 An ALGOL 68 Companion

6.10 Balancing. 6.11 Soft balancing. 6.12 We:ik balancing. 6.13
Firm balancing. 6.14 Strong balancinJ. 5.15 Positions of
balancing. 6. 16 Program example.

7 United modes.

7.1 United declarers. 7.2 Assignations with uniterl destination.
7.1 Conformity relations. 7.4 Conformity and unions. 7.5
conformity extensions.

8 Formulas and operators.

H.1 Formula • Y.2 Priority declarations. 8.3 Operation
declarations. 8.4 Elaboration of operation declarations. H.5
Dyadic indications and operators. 8.6 Identification of dyadi=
indications. 8.7 Identificdtion of operators. 8.8 Slaboration of
formulas. 8.9 Monadic operdtor-s. 8.10 Related morh!s. B.11 Peano
curves. 8.12 Chinese rings.

9 The grammar.

9.1 The syntactic elements. 9.2 Two levels. 9.3 The metarules.
9.4 The hyper-rules. 9.5 A simple language. 9 . 6 How to read the
grammar. 9.7 The indicators.

10 Mode declarations

10.1 Syntdx. 10.2 Development. 10.3 Infinite modes. 10.4
S hielding and showing. 10.5 Iden tification. 10.6 Equivalence of
mane indications. 10.7 Binary t rees. 10.8 Insertion in a bim,ry
tree . 10. g Tree searching. 10.10 Searching an<l inserting. 10.11
'fre e walkinq. 10. 12 A non recursive approach.

11 Easy transput

11.1 General remarks. 11.2 Print and read. 11.3 Transput types.
11.4 Standard output format. 11.5 Conversion to strings. 11.6
Standard input. 11.7 String to numeric conversion. 11.8 Simple
file enquiries. 11.9 Other files.

References.

Answers to Review Questions.

I

1·
I

j.
I

An ALGOL 68 Companion 3

Introduction

This book is not intended as a complete description of t he
language ALGOL 68. That description already exists in the form
of the "Report on the Algorithmic Language ALGOL 68",
hereinafter referred to as the "Report" and refere nced by (R]
(see the references). The Report i~, of course, a reference
document and it must, of necessity, strive for the utmost
precision in meaning. certain sections, therefore, may yi e ld
their proper intent only after what the reader may think is an
excessive a mount of close scrutin y. But then, like any legal
statute, the Report should be read carefully, for the authors
were determined that, when the rea der e ventually gropes bis way
to a meaning in a carefully worded passage, it should yield,
beyon:1 all possible doubt, the meaninq wh ich was intended, a n:1
not some other meaning which the reader may have had in mind. A
student of law does not learn the law by first studying the
statutes. Likewise, the best approach to a new progcammlng
language may not be through it s defining aocume nt. The law
student must be taught how to find his way among the statutes
and the student of programming needs to be s hown how to get the
information he needs from the defining document of a programming
language.

Dur intention is therefore to introduce the reader, in easy
stages, to the ideas and the terminology contained in the
Report. Since it is assumed that the Report is always at hand
(this book should not be read without it), we absolve ourselves
of the necessity for describing every detail of the language.
our purpose will have be e n fulfilled, if the reader can, af ter
studying this book, put it aside, and from that point onward use
the Report alone.

This approach means that it will not be in the interests of
the reader to try to explain ALGOL 68 in terms of the concepts
used in, say ALGOL 60, oc those used in any other programming
1 nguage . ALGOL 68 has its own new terminology because many of
the concepts ace new, and though ther . are simila ities with the
concepts in other languages, usually the e~act counterpart is
not available. we shall therefore try to be meticulous about
usinq only the terminology which is employed in the Report; in
this way the transition from the Companion to the Report will be
easier.

We adopt the same typograph ical devices as in the Report,
whereby examples of the A.LGOL 68 representation language a re
given in italic, e.g., aQ~.!1!-!! print (11 algol~68") endc, nd
notions (i.e., metasyntactic variables, in the sense of ALGOL
60, or nonterminals in the sense of formal grammars) are in a
type font which is larger than normal, e.g., •serial-clause•,
and usually hyphenated. Ex~erience s hows that this practice does
not unduly disturb th e e ye on first reading. It has the

An ALGOL 68 Companion

advantage th t closer examination can reveal whether a word is
used in the ordinary sense of the English language or whether it
is used in a technical sense. Fo~ example, if the reader wishes
to know the meaning of 11 formula 11 , he w·11 look it up in his
fdvourite dictionary; however, to find out about 11 •formula• 11 he
must look at the rul a.q.1.a of the Report. This practice will
e nabl us to use words with a precision which would o herwi se be
difficult to achieve. As with t he Report, thei::e are nlso other
words, like "name" or "mode" which are not part of the syntdX,
but each is gi ven a technical meaning. We shall use quotes, when
introducing the reader to these words, to lert him to the b::t
that be is meeting a new word with a special meaning.

At the end of each chapter is a set of review questions,
the answers to which are provi~ed in the fin 1 pages. Many of
these questions test the material as presented in this text, but
oth rs require deeper study of some parts of the Report. We
have tried to provide efere nces to the Report wherever th se
may b needed.

Some of the earlier chrlpters of this text were re d :tnd
corrected by Daniel Berry, Wendy Black, Hellmut Gld, Lamb rt
Mertens, 'l'ad Pinkerton , Helge scheidiq , Aad van Wijn gaarnen :111:l

many others who may forgive the lack of mention here. Their
assistance is gratefully acknowledq a. Naturally the author is
responsible for any remaining imperfect·ons in this preliminary
eliitio n. He hopes that readers will com municate with him,
thereby helping to eliminate as many errors as possible from the
final edi tiou.

This preliminary editicn is produced by a ·ext formatting
progri'lm written by w. Web); at the University of British Colum bia
for use with the TN p int chain. This print chain introduces
certain cestrictions, so1n of which are exas ~erating (e.t.J.,
th re is no genuine multipl·cation sign). To sim ul ate the eff ct
of different type fonts, a bcacketing scheme is used. ALGOL 68
external objects (proyram frayments) ace represented t hus

CQ~91Q fg~1 X; x := 3.1~ ~Ege
ALGOL 68 internal objects (values) are represented thus

■ true ■
and paranotions and modes ~yntactic parts) are represented thus

•strong-unitary-real-clause•
This means that, e.g., a collection of three •identifiers• use3
for illustration, should be written

axa, aa1b2c3a, aan identifier □
but it will be easier on the eye if we assume that

c, a
may be replaced by

so we shall generally use the more pleasing and less cluttered
form

ax, a1b2c3, an identifier □,
unless the context calls for greater clarity.

An ALGOL 68 companion 5

This edition is a reprint of the preliminary edition aft•r
correction of some errors and misprints. Another edition is
planned for the end of 1972 and may contain additional chapters.
The author is grateful to those who sent corrections to the
preliminary edition and would appreciate further correction of
errors and suggestions for improvement.

6 An ALGOL 68 Companion

1 Denotations

1.1 Language levels

~ur purpose is to learn how to read and write ALGOL 68
•programs • . One might suppose that

□ Q~9.!!! £~!!! x; x : = 3. n enQ □
is an ALGOL 68 •program•, beci:iUSe it is a valid ALGOL 60
•program• and, in a sense, this is the case. However, the
similarities between ALGOL 60 and ALGOL 68 begin and end just
about here, since
□myprogram: (print (((real lengths > 1 I "multiple" "single") ,

"&precision&environment")))a
is also, in the same sense, an ALGOL 68 •pro<,Jram•. ALGOL 68 is
not an extension of ALGOL 60, though the lessons learned in the
design and use of ALGOL 60 hav e contributed to the final sh1pe
of tha new language. It has, in relation to its contemporaries ,
a powerful syntactic structu re, which enables the defining
document of the language to be kept to a minimum. This Companion
is an introduction to the langu ge, which should be read only
with the defining document, the Report [R], readily at hand. For
example, the reader should now turn to the Introduction in the
Report [R.0], to get some flavour of the new language.

In ALGOL 68 we may speak of •programs• in the "strict
language" and in the "extended language" [R.1.1.1.a]. The strict
language is that which agrees with the syntax of the defining
document. In a natural language, like English, certain
abbreviations, su::h as "e.g.", are commonly accepted. We usually
write "e.g." rather than the longer words "for example", tut the
meaning is the same. The abbreviations of ALGOL 68, are known as
"extensions" [R.9). The application of these extensions to the
strict language yields the extended language. This means th3t,
though •programs• may be written in the extended language, their
meaning will be explained in terms of the strict language.

Related to both.of these is the "representation language".
The first example given above, is a representation [R.3. 1.1] of
a •particular-program• [R.2. 1.d] of ALGOL 68. ie say that it is
a representation because □£gg1~0 is a representation of the
•begin-symbol•, □f~~1□ is a representation of the •real-symbol•
and even the point within a3.14a is a representation of the
•point-symbol•. Thus, the example

DQ~gig £~~1 X; X := 1.14 ~llQ □
(which happens to be written in the extended language), is a
representation of the following sequence of symbols

•begin-symbol, real-symbol, letter-x-symbol, go-on-symbol,
letter-x-symbol, becomes-symbol, digit-three-symbol, point­
symhol, digit-one-symbol, digit-four-symbol, end-symbol•.

We sea at once, that it would be too tedious to write •programs•
or parts of •programs• without using the representations.
Nevertheless, the presence of the strict language, in which ~11
the terminals end in the word •symbol•, will make it easier for
us to formulate syntactic rules and to describe and to use the
syntax.

An ALGOL 68 Companion 7

1.2 Objects

ALGOL 68 is described in terms of an hypothetical computer
which deals with two kinds of "objects"[R.2.2.1). These 'l r:e
11 internal11 objects and "external" objects. Roughly speaking, tn
external object is the sequence of symbols represe n ted by th~
marks which the programmer makes on hi s paper: whe h creating ; , a
•proqram•[R.2.1) and an inter nal object is an a rrangement of
bits vi thin the computer. For example, wb e n the pro ramm~r:
writes a3.14a, he makes, from four: symbols, n external objec;t,,
which is a •denotation•(R.5]. Wit hin the computer: this may ~e
reflected in a certain a~ran gement of bits, kno wn as a r aal
value, the particular arrangemen t chosen dependin on t he kind
of computer and the implementer' s 11him. Thus, a3.14a, which i s a
seguence of symbols[R.3.1], is an external object and the
arrangements of bits is the internal object.

There is an important relationship between external objeats
and internal obje=ts. One says that an extern~! object may
"possess" [R.2.2.2.d] an internal object. Thus, the external
object, the •denotation• a3.14a, possesses an internal object
which is a collection of bits within the computer. We shdll
speak of the internal object as a "real value" [R.2.2.3.a]. The
form which the internal object takes is of no particular concern
to the programmer. It is decided for him bj the manufacturer of
the computer and by the implementer: of the language, i.e., by
the compiler writer. In this text we shall represent this by
means of a diagram as in figure 1.2, where the internal object

: (2)

r--.L---,
I I (1)
L------.J

Fig. 1.2

is suggested by a rectangle as at 1 and the relationship of
possession by the dotted line at 2.

The reader should note that we have introduced, by means of
quotes, some standard terminology f r:om tn e Report[R]. Wherever
possible, references to the Report will be given and every
effort will be made, in what follows, to remain as close to the
Report as possible in the use of this terminology. In this
manner the reader may be encouraged to obtain more information
about the language by reading the Report itself.

The use of a different type font, such as in •denotation•,
indicates that we are talking about an object in ALGOL 68 which
is described by the syntax of the language (see paranotio-ns
[R.1.1.6.c]). If the same word occurs in normal type font, then
an English dictionary should be consulted for its meaning.

An ALGOL 68 Companion

1. 3 Names

Comp uters have a storage struct ure in which t he memoty is
regpraea as co nsisting of small pieces, each usually called a
wQrd or byt e , with each piece being gi ve n a unique address,
i,e., a mea ns by which the c om puter c~n locate t hat word or
byt,e. In our hypothetical computer, this situation is mod elled
by sa ying that the computer bas 11 na mez" [R .2.2 . 3.5], each
na"l e (I > cefei:ring to some val ue . When we sa y that a nii. me
"ref er-s " rR. 2.2.2.1) to a real value , we are mod elli ng the
~ituation whee the real val ue is an arrangement of bits which
is stored at a certain storaqe place or address. The name is

hu s the ddress of the place where the value is stored and the
v3lue is t he conte nt of that sto rage place. We have now isolated
another kind of internal object, i.e.~ a "name", and we note
that there is a relationship between two internal objects, viz.,
a pame may "refer" to a value. In the diagrams a name will be
tepresented as .in figure 1.3 at 1 and the relationship of

(1) o r------,
o o------>-------~

0 (2) L _____ J

Fiq.1.3

~EJferring by a directed line as at 2. In p3ssing, we mention
that a name is also a value (R.2.2.3) and another name may refer
tQ it, but we shall return to this point later.

Most pr ogram mers do not wish to work only with
• enot tio ns• s uch as □ 3.14a , but lso with •variabl e s•
rR. 6 •• 1. el suc h as ax □• ru ALGOL 68 , dS in many other
languages, if a programmer wishes to consi~er □ xa as a variable,
he writes a •declaration• rR.7.4. 1), e .g., □!~!! xa. The effect
(i)f his •decl cation• is to allocate as o ag1~ place, i.e., to
cre~te a n me which ma y i:efer to a I:Pal value, this name being
possessed by nxa. In figure 1.4 t ile relationship of possession

axe

: (1)

0 r------,
o o---->------.

0

Fiq.1.4

is indicated by the dotted line at 1. It is important that this
na~e may not refer to a value of another mode (i.e., to a member
pf another class of values), such as •boolean• oi: •character•,
for reasons of security in the e laboration [R.1.1.6] of
-r----
~1) except for . nil ■ [R.2.2.2.l]

An ALGOL 68 Companion 9

•programs•. In this chapter we are concerned with •denotations•,
so we leave the subject of • declarations• and •variables• for
the next chapter.

1. 5 Denotations

There are four mutually exclusive classes of "plain'' values
fR.2.2.3.1). These are, "boolean", "integral", 11 r-eal 11 and
11 character 11 values. The property of belonging to one of these
classes is known as the 11 mode 11 (R.2.2.4.1 J of the value. A real
value is thus said to be of mode •real•. For each of these four
classes, i.e., foe each of the modes •boolean, integral, real•
and •character• we have •denotations•, which are certain
sequences of symbols possessing values of that mode. Examples
are, atr_yg, 12, 5. 670 and 0 11 w11 c. We consider each of these
• denotations• in turn.

1.6 Boolean denotations

This is the simplest of th e •plain-denotations•. There are
two values (internal objects) of mode •boolean•, viz., ■ true■
and ■ false ■• Consequently we need two external objects to
possess them. These are the •true-symbol•, a!r.!!~a and the
•false-symbol•, □li!.!.§go. At the risk of tedious repetition, but
for further emphasis, we observe that the external object ctrueo
possesses an internal object, wh ich is the boolean value ■ true;,

r----L--,
I ■ true■ I
L-----J

Fig.1.6

(external)

(intern:1.l)

a value of mode •boolean• (see figure 1. 6). Of course, a similar
statement applies to cfAl§!C•

The syntax of •boolean-denotations• is very simple, and
supplies a starting point for a study of the syntacti=
description of the language. This is embodied in the rule
rR.5.1.3.1.aJ

•boolean denotation : true symbol ; false symbol.• ,
which may be read as 11 a •boolean-denotation• may be a •true­
symbol• or a •false-symbol•"·

1.7 Integral denotations

An •integral-denotation•, for example, 034□ or c0c or
00001230, is a sequence of • digit-tokens•. This means that an
•integral-denotation• is easy t o recognise and to describe. Its
syntax rule (8.5.1.1.1.a] is

•integral denotation : digit token s equence. •
which means the same as the rul e

·I
I
! .

10 An ALGOL 68 Companion

integral denotation : digit token ;
integral denotation, digit token.

The full explanation of hov to use this syntactic method of
description will be found in Chapter 1 of the Report. It is
important that the reader should, at some time, master this
syntactic description method. For the moment we may be content
to know that this rule describes an •integral-denotation• as a
sequence of •digit-tokens•, a • di it-token• being represented by
□O, 1, 2, 3, 4, 5, 6, 7, 8a or □go_ rhe 1:1nguage makes no
restriction on the length of the sequence of •digit-tokens•,
although, in a particular implementation, such a cestricticn may
well exist.

An •integral-denotation•, of course, possesses an integral
value, as one might expect. Not surprisingly, the value
possessed by a000121u is •123 ■, which is equal to that possessej
by n123a.

1.8 Real denotations

There are two kinds of •real-denotation• (R.5.1.2]. Some
examples are: n.J.14, .000123, 121.45e6, Se-16, 4.1591012a<n. We
classify the first two as •variable-point-numerals• and the
remaining three as •floating-point-numerals•, the latter being
the kind of •real-denotation• likely to be used by the physicist
or engineer. This classificdtion is stated [R.5.1.2.1.a] in the
rule

•real denotation: variable point numeral ;
floating point numeral.•

•Variable-point-numerals• have an optional •integral-part•, like
□ 123a, followed by a mandatory •fractional-p:irt• like □ .14c or
□ .000123 □• This is expressed [R.5.1.2.1.b] in the rule

•variable point numeral:
integral part option, fractional part.•

Examples of •variable-point-numerals• are therefore 0123.0,
3.456, .12335 □ and a.00023a but not al.a. The •integral-part­
option• means that the •integral-part• may be present or absent.
An explanation of the syntactic device involving the word
•option• is to be found in the rule [R.3.0.1.b]

•NOTION option : NOTION ; EMPTY.•
and the fact that any notion may replace the metanotion
•NOTIJN•, but the casual reader need not concern himself yet
with these mysteries.

We compl ete the description of •variable-point-numerals• by
the two r u 1 es [R. 5. 1 • 2. 1 • c, d]

•integral pa rt : integral denotation.
fractional part : point symbol, integral denotation.•

Because we have already seen the rule for •integral-denotation•
and can guess that the representation of the •faint-symbol • is
a.a, this syntax should now be clear.

<1> A superscript 10 is used here in place of a subscript 10
which is not available on the TN printer chain.

An ALGOL 68 companion 11

A •floating-point-numeral• consists of ¼ •stagnant-part•,
like c123c or c123.45c, followed by an •exponent-part•, like
oe+23, e2, e-16a or 0 1 050. Its syntax is in the rule

•floating-point-numeral: stagnant part, exponent part.•
Examples of •floating-point-nu merals• are therefore, a le 1,
2.3e-4a and a.3e26a but not a .e1 4a. The •denotation• o.3e26o~
for example, possesses a real val ue, . usually associated with the
number written in physics textbooks as .3*1026. It could not be
so wxitten for computer input because of the inability of most
input hardware to accept supe rscripts. The rule for • stagnant­
part• [R.5.1.2. 1.f] is

•stagnant part: integral denotation ;
variable point numeral.•

Thus both a123c and □ 123.45 □ are acceptable •stagnant-parts•.
The •exponent-part• is described in the rules
f R.5.1.2.1.g,h,i,3.0.4.c)

•exponent part: times ten to t he power choice, power of ten.
times ten to the power choice:

times ten to the power symbol ; letter e.
power of ten: plusminus option , integral denotation.
plusminus : plus symbol ; minus symbol.•

The •times-ten-to-the-power- symb ol• is represented by the
subscripted ten 0 100, but since this is not commonly available,
the •letter-e• is also permitted . The •plusminus-option• means
that the •plusminus• may be omitted. Examples of •expcnent­
parts• are ae-5, e4, e+56a and 0 1020.

To review the above, we give some more exilmples of • real­
denotations•: 0123.4, .56789, 464.64e-53c and c987 1 021c. Note
that □ 123.a is not a •real-denotation • and there is good reason
that it should not be. rhe e xplanation is to be found in the
representation of the •completion-symbol• [R.3. 1.1.f], which is
the same as that of the •point-symbol•, so that, were 0123.a
permitted, ambiguities would ari se. Also, ae15c, for example, is
not a •real-denotation• because it might be confused with an
•identifier•.

1.9 Character denotations

some •character-denotations• are [R.5.1.4) a"a", "c", "$",
"+", "3"a and c""""o. All except the last appear easy enough to
understand, according to the rule [R.5.1.4.1.a]

• character denotation:
guote symbol, string item, quote symbol.• , .

providen one can guess t he meaning of •string-item•
[R.5.1.4.1.b]. However, the •denotation• □""""a possesses the
value which is possessed ty the •quote-image•. This value is the
character •"•· [R.5.1.4.2.a]. When we come to •string­
denotations•, in section 1. 11, we shall see that the device
whereby the •quote-symbol• within a •character-denotation• is
doubled is a convenience which enables every member of the
available character set to be in a string.

12 An ALGOL 68 Companion

1. 10 Modes

Values within the computer , consideced up to no w, hav e been
of four kinds, viz., truth values, integers, real number s nd
characters. Each member of one of these class s is of the s me
" mod e " (R.2. 2.4. 1] as an y other me mber of the sa me class . These
mocl->s are •boolean, integral, real• and •character•,
r spP.cti vel y. If computinq were restricte<l to these f our mod s,
it would te aull indeed. A useful computer lanyua ge ne eds to
consider val u es of other moil es. For exa rn ~le , the s ymhol
ma nipu l ator often c on siders values of mod e •cow of c har acter•,
whicn he t hink s of as c ha rac t er stri ng s , and t he numeri~ 1
a n a ly st considers values of made •row of cow of r ea l•, which be
thinks of as matrices of real va lues.

In AtGOL 6U, a row of values of one sa me mode, known as a
mu l tiple val ue [R. 2. 2. 3. 3), is lso a val u e of an acceptable
mod . . Thus , we may have values whi c h are of the mode • row of
boolean, row of integral, row of real • or •row of :: haracter•. I n
th e dia~c ms such a multiple val ue will be cepres nted as in

r------T------T----r-----T-----,-----T------,
I I I I I I I I
L------i------~-----~----___l.----'------~-----J

Fig.1.10

figure 1.10. Many more modes may be considered; in fact, the
number of different modes is infinite. we shall not concern
ourselves here with this interesting point, nor shall we discuss
some of the other modes. our purpose is to point out that •row
of character• is a mode. There are •denotations• foe values of
this mode and we shall now consider them.

1.11 String denotations

The s yntactic ru le f oe •string-nenotati on• [R. 5. 3. 1. b] is
•row of c haracter denotation: quo t symbol,

string item seq ue nce pr oper option, quot e s ymbol.•
From wha t ha s go ne be fo re, the rea der will surmise that the
following ce examples of • strinq-de notations•: a 11 abc 11 , 11 a+b 11 ,

"this~is~ a.!... u ote=.sy mbol~'"' ~"r.i. Obser ve t h t in the strict
language, t h e rep re sentat ion of the •sp:ice-symbol• is □ =. □
ra.3.1.1. b) . The on ly fea tu re in the dbove s ynt ax, which we have

o11 abc 11 o

~---r----~-- -,
I ■ a ■ I ■ h ■ I ■ c ■ I
L-------1------'-----J

Fig. 1. 11

An ALGOL b8 Companion 13

not yet encountered, is the use of the word •proper•. The exact
explanation is to be found in the rule

•MOTION LISr proper : NOTION, LIST separator, NOTION LIST.•
(B.3.0.1.g). It means that the sequence must contain at least
two members. The use of the combination •proper option•, means
then, that the sequence may contain either zero or two or more
members. This implies that o"a 11 a is not a •string-denotation•,
but that a 1111 a is. Since we have already seen that a"a"a is a
•character-denotation•, we can understand the reason for such an
unusual choice of .syntax. A •string-denotation• possesses a
value which is of mode •row of character•. our diagrams may
represent it as in figure 1.11. The value possessed by a 1111 a is a
row of characters with no elements.

1.12 Other denotations

This discussion does not exhaust the • denotations• of ALGOL
68, but it is sufficient for us to go on to other elementary
parts of the lang~aqe. ie shall return later to •long-integral­
denotations• like a!g~g Oa [R.5.1.0.1.b], •long-real­
denotations• like a}Q~g .la, •bits-denotations• like cjQJa
f R.5.2.1], •routine-denotations• like a ((£.!t~! a ,b) !gg,! : (a > b
I a I b))a [R.5.4] and •format-denotations• like a$16x37d$a
[R.5.5].

1.13 Program example

Though we are not yet ready to write •programs•, it is
helpful to inspect one and perhaps therefrom to glean some
ideas. The following will read some number of values from the
standard input file and then print a count of the number, the
arithmetic mean of the values a nd their standard deviation.
Comments are enclosed by the symbol¢ or the symbol#.

ah~gi~ Egg1 s := 0 ¢for the sum of the values¢,
ss := O ¢for the sum of squarest,
x tthe current value¢;

int n := 0 tfor a count of the number of values¢;
ih}!g ~ logical file ended(standin) ftQ

(get(stanilin, x) itR.10.5.2.2.bt;
s +:= x; ss +:= x ** 2; n +:= 1 tR.10.2.11.d,et);

put(standout, ttR.10.5.2. 1.bt ("countL=.!..11 ,n,
".!...!..meanL=L",s / n,
11 •• standard.deviation.=. 11 ,

--sqrt((ss-- s ** 2 / n) / n) itR.10.3.bit))

Poin ts of relevance to th is chapter are that there are four
•variables• as, ss, xa a nd enc, some of which are initialized
with the value zero. Also, the •integral-denotation• aOa occurs
three ti mes and the •integra l-denotation• a1a, once. There are
three •ro ~- o f-character-denota tions•. References to the Report
are prov ided as explanation of other points to be covered in
later chapters.

..

14 An ALGOL 68 Companion

f(eview (Juestions

1.1 Language levels

a) How does one recognize d terminal (R.1.1.2.f] in the syntax
of ALGOL 68?

b) Ara there two or three symbols of which the colon, □: D, is a
representation[R.3. 1.1]?

c) Ara there any other representations which rep resent more than
one •symbol• :a.3.1.1]?

d) Is the mark " (" a representation of a •sub-symbol• or of an
•open-symbol • or of both [R.3.1.1, 9.2.g]?

1.2 Objects

a) What kind of object is possessed by the •denotation• 03.14 □
[R.2.2.2.d]?

b) What object may poEsess a real value?
c) Is □ 3. 14 □ an internal object o .r an external object?
d) Does □!£~~ □ possess ■ true ■ or does ■ true ■ possess □ ~[~~a?

1.3 Names

a) Can a real value refer to a name (R.2.2.3.5]?
b)
c)
d)
e)

~an a name refer to a name?
Is a name an external object?
Can an external object possess
Does an external object always

1. 4 Variables

more than one name?
possess a name?

a) In the reach (R.4.4.2.a] of □.!~2! xo, can the name possessed
by ax □ refer to an integral value?

b) May □£g2.! x, y, za be a •declaration • [R.9.2.c]?

1.5 Denotations

a) Bow many classes of plain values are there [R. 2. 2. 3. 1]?
b) Is there a class of plain values with finitely many members?
c) What distinguishes classes of valm~s (R.2.2.4.1.a]?

a)

b)

1.6 Boolean denotations

In the syntax, how should the syntactic marks
", 11 be interpreted [R. 1.1.41?

Is ■ true ■ an internal object?

1.7 Integral denotations

n • n . ,

a) Can two •integral-denotations• possess equal values?
b) Is a-123 □ an •integral-denotation• fR.5.1.1.1)?

ti • "

'
and

c) Can a sequence of one thousand ~igits be an •integral­
denotation•?

d) Does every •integ~al-denotation• possess a value
fR.5.1.0.2.b]?

ln ALGOL 68 Co ■panion 15

1.8 Real denotations

a) can tvo different • real-denotations• possess equal values?
b) Is a1.D a •real-denotation•?
C) Is D12D a •real-denotation•?
d) Is a12e-ija a •real-denotation• ?
e) Is n-12e4a a • real-denotation•?

1.9 Character denotations

a) Is a"""a a •character-denotation•?
b) Does everJ •string-item• possess a character [R.5.1.4.2]?

1.10 ~odes

a) Hov many different modes are there?
b) Hov many different modes can a programmer specify?

1.11 string denotations

a) Is a""'"'a a •string-denotation•?
b) Is a""a a •string-denotation•?
c) What is the mode of the value possessed by a •string­

denotation•?

1.12 Other denotations

a) Are the values possessed by alQll~ Oa and c!2ng JQng Oc the
same?

b) What is the mode of the value possessed by clQla [R.5.2]?
c) What is the mode of the value possessed by c$16x3zd$c?

1.13 Program example

a) What is the mode of the value possessed by "couot!..=!.. 11 ?
b) What are the modes of cso and cno?
c) Does the example in 1.13 contain a •real-denotation•?
d) Rov many •integral-denotations• are t here in the example?
e) Does the example contain a •character-denotation•?

16 An ALGOL 6B Companion

2 Some fundamental concepts

2.1 Declarers

In chapter 1 we found that eac h v~lue within the computer
is of a certain mode. (There is an e xcept ion , viz., the value
•nil• rR.2.2.3.5.a), but \lie sha ll discuss thi s exception lat L)
Thus, there are values of •integca l• morle, •real• rno rle,
•character• mode, •ro\11-of-cha racter• mooe, and so on. 'l'h
programmer needs to have some way of specifying modes, tecause
when creating •variables• [R.6.0.l.e) he must help the computer
to decide how much storage to allocate. rhe programmer specifies
the modes by using •declarer:s• [R. 7. 1].

There are five primitive [R.l.2.2.a) •declar:ers • . These ar:e
□i!!!: □, which specifies the mo_de •in.t.egral•; □!~~:!a, which
specifies the mode •real•; □.QQQ.±CI, \llhich Sfec ifies the mode
•boolean•; cfhl!!:CJ, which specifies the mode •c har acter• dnd
□ f2!!!!.l!!: □, which specifies the mode •format• (of which we sh1ll
hear more later). The mode of a •real-v.=iriable•, howeve:r, is
•reference to real• and not • real•. This mode is specified by
the •declarer• □I~! !!~Ja. A • declarer• specifyin g the mo e
•row-of-real• is □[)!:!l!.1 □, or if actual boonds are requirud,
then say, r.if 1: 10]f~i::!1□• The mode of r al vector v riat:le is
•reference to row of real• and this mode is specified by a
declarer like □Eg![)!:_~];a or □fgJ[1 :n]f:gl!.! □• We see, therefore,
that other • ee l recs • may be bu ilt from the frimitives bJ using
the sy mbols a_i;;gf □ for:: •reference-to• and c[Jc for •row-ot•.
Other possi bl e prefixes are □~fQ£ , §!E~f!□ and ay~iQg□ but th 2se
may also involve the use of the symbols □(□ and c)n.

This is not a full description of •c1eclarets•, but enough
for our present purpose. As a taste of what other •declarers•
are possible, we list a few examples:

□I~f r~! rg~1, [l:D !.1gl)fh1!, Ef2£(fgl!l)!g!1, [1:n]fQ!:~a!,
,2r:oc, stc:uct (real re, ill), union(real, int, bool) a.

2.2 Generators

At the heart of ALGOL 68 is the notion •generator•
[R.8.5.1]. There are two kinds of •generators•, •loc1.l­
':lenerator::• and •global-generato r• [R. A. 5 .1.1. a] . Sy nt actica lly,
a •local-generator• is a •local- s ymbol•, alo£ □, followed by a
•declarer•, e.g., □ 12.~ !.!!!: □, A •global--1enecator• is a.n or.;tional
•heap-symbol•, chg!!J?. □, follow ed by a •declateL•, e.g. , □!HHE
real □ oc: □realo. The difference in sema ntics concerns the met hoj
;1-itorage-iIIocation and particularly of storage retrieval. The
inexperienced programmer is unlikely to make explicit use of
•generators•, but •local-generators• appear implicitly in some
frequently used •declarations•, so we shall intro~uce them now.

2. 3 Local generators.

The syntactic rule for:: •local-generator• might he written
informally as:

local generator : local symbol, actual declarer.

An ALGOL 68 Companion 17

but the strict syntactic rule fR.8.5.1.1.b], in common with many
other rules, contains a feature which the reader ' should now
observe. The rule is

•reference to M)DE local genera tor :
local symbol , actual ~ODE dec larer.•

The feature to be noticed is the occurrence of the "metanotion"
•MODE•, both to the left and t o the right of the colon in the
rule. A full description of this two-level syntax is contained
in tha Report (R.1.1]. For the mo ment we may be content with the
explanation that the use of this metanotion is a device whereby
several rules of the langu ge may be combined into one. If we
replace, consistently throughout the rule, the metanotion •MODE•
by a m:>de (on e of the terminal productions [R.1.1.3.f] of •MODE•
like •integral• or •real•), the n we obtain a rule of the strict
language. Por example, if we replace •MODE• by •real•, we obt:1in
the production rule

•reference to real local generator:
local symbol, actual real declarer.•

If we replace it by •boolean•, we obtain the rule
•reference to boolean local generator:

local symhol, actual boolean declarer.•
This device, in this rule, enables the syntax to tell us
something about the relationship between the mode of a
•generator• and the mode of its •declarer•. Specifically, the
mode of a •generator• is always •reference to• fo llowed by the
mode of its •declarer•. In the e xample of the •local-generator•
o!QQ £~~la~ its declarer, □[g~1 □ , specifies the mode •real•, but
the generator, after its elabora tion, possesses a value (a name)
of mode •reference to real•; but this is the subject matter of
the next section.

2.4 The elaboration of a generator

The "elaboration" of a •program• consists of a sequence of
actions performed by the hypothetical comput er. These actions
are explained in the sections, headed Semantics, in the Report.
we shall now examine the e ffect of the elaboration of a
•generator• [8.B.5.1.2). A •generator• creates a name, i.e., it
allocates computer storage. This name then re£ers to so me value.
This process is so fundamen tal to the understanrling of the

(external)a1Q£ !~~!a(S)

: (4)
(internal) : (possess)

o (1) (3) r------, (2)
0 0-------->---~

o (refer to) L._._ ____ J

Fig.2.4.a

language, that we will attempt to make it clear by means of a
diagram. we may picture the elaboration of the •generator• □!Q~
I~~!c, as in figure 2.4.a. In this figure, the name is at 1, the

18 An ALGOL 68 Companion

v lue to which it refers at 2, the relationship of reference at
1, the relationship of possession at 4 nd the external object
at 5. Th e broken line then separates the external object from
the two internal object • The elaboration of the •loca.1-
qener tor•, □ lac realc, thus creates a name which refers to some
real value. The-external object, □,!Q~ ~~la, is then made to
possess the name. This last action is thus pictured at 4. The
value referred to is some undefined r~al value. We shall see
lat r that this valu may be changed (11 supersed ed 11

r R.1:1.).1. 2.aJ) by "assignrnP.n 11

2.5 Identity declarations

•Generators• may occur in more than one con text, but the
most important context is the •identity-declaration• [R.7.4.1].
We give first an example of an easy •identity-declaration•
containing no •generator•,

ai nt m = 4096□
Th . ffect of the ela boraiI~n of an •id ntity-declaration• is to
mak. ~ two d'tferent external obj cts pos~ess the same internal
ob-ject. In th example at hand, we have n •int gral-mone­
iilentitier•, □ mD, and an •intRgral-de notation•, aq09bc. We hdve
seen in chap er 1, that □40960 possesses ,,n internal object ,
which is an integral value. This situa ion may b~ pictur .d,

D!,_!!}: m = 4096 □

r-.l.----,
1•4096 • 1
L------.J

Fig.2.5.a

r------~
I ■ It 096 • I
L _____ _.J

,.l.----,
1 ■ 4096 • 1
L_ ____ __.

Fig. 2. 5. b

before the elaboration of the •identity-declaration•, as in
figure 2.5.a. After the ela bor tion of the eclaration, aint m =
4096a, the situation is as in figure 2.5.b, where iii now
possesses a new instance of th . same in cgr 1 value as that
possessed by 04096 □• It i s impoctan to note that ema does not
possess a name and, as a result, □ me may not appear as the
•destination• of an •assignation•, as for ex mple in o m:= Oa.
In fact, am:= 0a would be just as improper as e4096 : = 0 □• The
•identifier• cma is thus a •constant• [B.b.0.1.d].

Of greater interest is the declaration of a •variable•, of
which

acef real x = lac reale
is an example. As we have seen already in section 6.4, the
proyrammer is permitted to write this in the extended form

er eal xa
r R. 1L 2 . 1- 'r h e first step in-the elabor tion of this •identi y-
1laclara ion• i., the elabor tion nf its •actu 1-i:ai:ameter•, 1<1hich
i s □ loc r la. we h ve seen, in 2. 4, that thi - will make clo:::
renlo possess a name which C'efers to some (unrlefined) r0dl v-luP. . Thi :5tage is pi tutetl in figuce 2.5.c. After the

An ALGOL 68 Companion 19

elaboration of the •declar~tion•, the •reference-to-real­
ideotifier• axe possesses the same value as that possessed by
c!2£ £~~10. The result, in pictorial form, is shown in figure
2.5.d. Here, because axa now possesses a name, it may be used as
the •destination• of an •assignation•, i.e., the value to whi:::l)
the name re£ers m11y be superseded (R.8.3.1.2.a] by another value

0 0

0 C
0

0 0 0 0

Or-:e-----,
L~ . I

0 Or----,
L--->---~~ I

L------' L ______ J

Fig. 2. 5.c Fig.2.5.d

(provided that it i s of mode •real•). When examining diagrams,
such as the one in figure 2.5.c and a, we should keep in mind
the fact that the name possessed by an •identifier•, which is a
•variable•, is unlikely to be a piece of storage set aside in
the data area. It is rather the value to which t h is name refers
which may be in the data area. The name its elf is more likely to
be part of a machine code instruction. Since programs are not
usually permitted to alter their own code d instructions, it is
essential that the relationship 9f possession should not be
violated. Thus the name possessed is never changed. If we want
to reach down to the data area, then we mus t make use of the
name in order to £ind that part of the data area to which it
refers and which can be changed (supersede d).

The possession of a name confers a special privilege. It is
as though the name is the key to a storage cell without which it
may not be unlocked. When it is unlocked, the content may be
changed, but withou t this key, i.e., without the name, the
content of that cell may not be changed, though it may be
examined, as if through a window.

To recapitulate then, the elaboration
declaration• makes its •identifier• possess the
that possessed by its •actual-parameter•. This
in both of the examples ci~i m = 4096c and er~!
~g~!c. .

2.6 The syntax of identity declarations

of an • identity­
same value as

is what occurred
.,!g~_! X = !Q~

We are perhaps getting a l ittle ahead of ourselves, since
we have not yet examined the syntax of •identity-declarations•~
This might be described informal ly by

identity declaration :
formal parameter, equals symbol, actual parameter.

but the rule in the Report [R.7. 4.1.a] is
•identity declaration: formal MODE parameter,

equals symbol, actual MODE parameter.•
We see here again the use of the metanotion •MODE•, which

20 An ALGOL 68 Companion

enable~ one to condense many rules into one. The metanoticn must
be replaced consistently by one of its terminal productions
r B. 1 .1. 5. ill, e.g., by •integra l• or •reference to real•. Using
the latt c repl~cement, we obtain the production rule
fR.1.1.2.cl

•identity decliirati.on formal cefArence to r al paramet<?r,
egur1ls symbol, actual reference to real parameter.•

Two of the notions in this rule envelop [B.1.1.6. j] the mode
,refer .nee to real•. 1n the •rleclar ticn• □_!gf !:~~1 x = :!,Q~
£~~!. □, the mpae of the •qeueriltor • □.!!1£ £.~!!..! □ is •reference to
rel• and that of the •formal-parameter• □E~! f~!J xo is lso
•r ference to real•. It follows from the rule on •form:11-
p ramet rs• [R.5.ll.1.e1, that axe is then a •ref cence-to-re 1-
mofle-id e ntifler•.

2.7 Formal parameters

We must follow this a little further by examining the rule
for •formal-parameters• [R.5.4.1.e] which is

•formal MODE parameter :
formal MODE declarer, MODE mode identifier.•

anq. in which the metanotion •MODE• appears three times. By
substitution we obtain the rule applicable to the •formal­
par~meter• □£!! £~~! xa, viz.,

•formal reference to real paramqter :
f~rmal reference to real declarer,
reference to real mode identifier.•

The •formal-reference-to-real-declarer• is aref realc and the
•reference-to-real-mode-identifier• is ax □ [R.4:2:21~--

2,8 An extension

The object
aref real x = lac real □

is a representation of a •declaration• in the strict langudqe.
A.lthough, as we hav see n ahove, it enables one to exp lain the
meaniny of th •id ntity-decl ration• clearly, it is rath r much
to write and would ce tainly not b popular with programmers. A

imildc situation exis s with the elisions of tl natural
l~nqudge. It is well known that tbe se ntence "Who's th t?",
stands fC>c the sentence 11 Who is hat? 11 , and that the former is
use,1 m re often th II th l<1tt e1:. Moreover, in explaining the
meanin~ of the first sentence, we always use the s .cond, strict
form. Similarl y in ALGOL 68 we may wcite

□!:~~! xn
to stand for

D£~f £~~1 x = loc reala
with the assurance that the meanin~-Is-i~; same [R.9.2.a]. The

r----->------,
(1) I V

Cf~f £~1! X = !Q£ £~g!a
XXXXX1!XX XXXXX (2)

Fig.2.8

An ALGOL 68 Companion 21

effect of this extension [R.1.1. 7] (one must resist the
temptation to call it a contraction) is that one may omit those
parts which are underlined with X's in figure 2.8. and then move
the •identifier• in the manner indiGated (provided that the
following symbol is o,o, o;o or o:=o). It is impoctant to note
that in the extended •declaration• areal xa, the •formal­
declarer• D£~! !~~!o (see figure 2.8 at 1)is omitted, bu t the
•actual-declarer• Df~~.!o (see figure at 2) fro m the •genera tor•
remainL This is of. significance when the •declarers• are for
multiple values.

Another extension, which we mention in passing, is that,
e.g., D£~~.! x, !~!! ya may be written of~~! x, ya [R.9.2.c].

In the examples wh ich follow, the •declarations• a£~~! x,
y, !!!.! i, j, n, [1:10]_£eaJ x1, y1o will always be assumed. Thus,
unless contradicted . by a nother •declaration•, axe and eye will
have the mode •reference .t o real•, ai, . jo and ona the mode
•reference to integral• an d cx1o and ay1a the mode •reference to
row of real•.

2.9 An assignation

we have seen before that a name is, as it were, a key with
which to unlock the value to which it refers. This key is needed
when an assignment is made. An external object of the form

DX := 3.1ijc
(in the reach of the •decla ration• Cf~~! xo), is an
•assignation• [R.a.3.1 J and its elaboration involves an
assignment [R.8.3. 1.2. b]. It consists of a •destination • , which
is axe, a •source•, which is a3. 14n, and between the two a
•becomes-symbol•, a :=a. First, both the •source• and the
•destination• are elaborated in u nspecified order, or
"collaterally" [R.6.2.2.a] (see figure 2.9 at 1) , i.e., we
obtain the values possessed by them. The effect of the

•··•·•••··•···•·•·•·•reference-to-real-assignation
I

r
_____ ...i..._r

I . I
reference-to~real-destination

I
becomes-symbol real-source

I I I
DX := J. 14 C

: (3)
.: (1} : (1)
o r----, r---L--,

: •••••••••••••• o o->-~ 1==========<==:======1 I
0 L-----1 (2) L-------'

Fig.2.9

•assignation• is the assignment of the value possessed by o .14a
to the name possessed by axe (see figure 2.9 at 2). More
precisely, the name possessed by axa is made to refer to a copy
(new instance) of the value possessed by a3.14a [R.8.3.1.2.c,cl] .
An •assignation•, after its elaboration, possesses a value and.

• I

22 An ALGOL 68 Comp~nion

the value possessed is that of its • destiniltion•, which is a
name (see figure at 3).

2.10 The syntax of assignations

we should now examine the syn~ax of •assignations•, in
particular, the rule

•reference to MODE assignation
reference to MODE destination, becomes symbolr MODE source.•

[R.8.3.1.1.a]. Remembering that the metanotion •M~D~• should be
replaced consistently by some mode, we replace it by •real• and
obtain the rule

•reference to real assignation :
reference to real destination,

b comes symbol, real sou rce. •
The important point to notice about this rule, which is the rule
governing the object ax .- 3.140, is the fact that the mode
enveloped by the •destinatiqn• is •reference to real•, while the
mode enveloped by the •source• ·s •real•. We see ther fore, the
r:equir:ement that the •destination• must I=Ossess a name, while
th •s ur:ce• need not. Moreover the mode of the •destination• is
always •reference-to• followed by the mode of the •sourc •.
Finally, we note that the mode of the •a~signation• itself, is
the same as that of the •destination•, as might be expected fcom
the di s cussion in the last paragraph.

We may now examine the ccnstruction
□ int m = 4096 ; m :• 4095c

and decide that om :;-40950 cannot be an •assignation•, cecause
cm □ doe s not possess a name, i. e., its mode does not begin with
•ref rence-to•. In fact, th mod e of orno is •integral•. We c1re
there fore ju tified in using the term •constant• [R.6.0.1.d] for
the •identifier• ama.

2.11 References

These subtle distincti ons between •constants• -l nd
•variables•, the insistence on the difference in mod provided
by •reference-to• and the disti nction between those values which
are names and those which are not, may seem a high price to pay
for the under tanding of proqramming language. Nevertheless,
it i s at the very heart of ALGOL 68 and should be understood
w 11 before vcoceeding further. Moreover, we shall find 1 ter
that it pays a handsome dividen in chapter 5 when explaining
the parameter mechanism in •calls• [ll.8.6.2.21 of routines. Some
r:~aners may be a little baffled an<l impatient for the reason
that many well known pcogr:amminq lanyuagesC 1 > appAar: either not
to make this distinction or to consider i of no importance.
Even mathematicians (but perhaps not logici;1ns) ace guilty of
slurring ave~ the differences in meaniay between n2.3 + q_sc ~nd
ax + ya. Ingrained habits of thought are difficult to dislodge
and it is not easy for u s to suppress our ire while
acknowledging that we have not properly understood something

Ct> Except for the languages LISP, SNOBOL and TRAC.

An ALGOL 68 Companion 23

elementary.
paragraph.

We pursue this point a little further in our next

2.12 Dereferencing

If ox : = 3.140 is an •assignation•, t h e n surely ox : = yo
(in the reach of the declacation o!;'._~ft1 ye) must be also.
However, the mocle of oxo and that of aya is •reference to ceal•,
while an •assignation• requires that t h e mode of the
•destination• should be •reference to• followed by the mode of
the •source•. This means that the mode of eye sho uld be •real•.
It would seem then, that this object does not fit i mmediat .ly
into the syntax Of •assignations•. However, it is an
•assignation•. Diagrammatically, the si tua ti on is shown in
figure 2.12. The first step is the el bocation of th. •source•
and the •desti11ation• collaterally [R.6.2.2.a] (figure 2.12 at
1,2,3 a nd ij). However, the •source•, in this object, requires an
ext a step in its elaboration. Since aye possesses a name
(fi gure 2. 12 at 2) referring to a real value, this name is
"dereferenced" (figure 2.12 at 3), i.e., the value to which it

. •••••••••• reference-to-real-assignation
t

,-------"-T-.....J._
I I

reference-to- becomes-
real-destination symbol

I I
I I
I I

(6) I I
I I

ox :=
: (1)

,
I

real-source
I
I

(4) ••••••••• real-base
I{))

reference-to-real-base
I
yo
: (2)

o r----, r-----, o
: •••••••••• o o->--i I===<== I •-<--o o

0 L-----' (5) L-, ___ _. 0

Fig. 2. 12

refers is _yielded (fig ure 2.12 at 4). The act of dereferencing
is known as a "coercion", of whic h we shall hear much more later
rR.8.2]. There is thus an intermediate step during which cyo ,
as a •source•, possesses a real number. This moment is picturej
in figure 2. 12 at 4. from this i ntermediate situation we are now
ready t:> make the assiqn111ent (fi gure 2. 12 at 5). The value of
the •assignation• is a name of mode •reference to real• (s€e the
figure at 6).

The syntactic analysis of the •assignation•. ax: = ye, is
not trivial and we are not ready to do it , thoug h we h v e
sketched it roughly in figure 2.12. The main point is to
determine how aye, which is of a priori mode •reference to
real•, can be considered, a i:osteriori, of mode • cea l• (see t he
figure at 3). The crucial step is contained in t he production
rule

24 An ALGOL 68 Companion

•strongly dereferenced to rea l base : reference to real base.•
which is obtained from 8.2. 1.1.a of the Report hy suitable
replacements of the metanotions . WR do not intend to go into
further detail here, for coercion is the topic of chapter 6. Our
purpose is to affirm that ox : = ya is indeed an •a ss ignation•
even though the a priori mode of oyo i s not •rea l•.

The reader may wish to persuade himself, from what
before, that ax := y := J. Ha is also an •assignation•,
a different meaning from that of the, rather
•,issignation• □ (x := y) := 3. 14 □•

2.11 Initialized declarations

has gone
and has
foolish,

The •actual-parameter• of an •identity-declaration• may
also be an •assignation•. The pertinent rules are, in simplified
form,

actual parameter: unit;
unit: unitary clause.
unitary clause: ••• ; confrontation

R.7.4.1.b
R.6.1.1.e

R.8.1.1.a, 8.2.0.a
co nfrontati on : assiqnHtion : ••• • R.8.3.0.1.a

Since oloc real := 3.14a i an •Rssir,nation•, thi s means that
□ ref re~I-i =-I;~ f!i1 : = • 14n is an •identity-declaration•.
But we h ve seen that the ohj .ct □ ref real 1< = loc re_la may be
written □ 1:~~! xa [a.9.2.a]. This means thc1t □£~.!!1 x : = 3.14 □ is
c1lso an •identity -decl ration• with the sa me meaning as that of
□ ref real x = loc real := 3.14c. This meaning shoula now be
evid nt once it is realized that the •ds i~nation•, being the
•actual-parameter•, is laborated before the final step of the
el bocation of tb •identity-declaration•. A~GOL 68 may thus be
consi e-red r1s c1 languaqe which contains initialize:l
•declaratio ns •, alth ugh th~ defining Report does not mention
th in.

2.14 Program example

The following •particular -p rogram• computes the components
(principal and interest) of the monthly repayments of a loan. It
first reads the principal, c:pa , the interest rate per unit per
y~ar , ore, the number of times per year that the interest is
c nve rted , ata, the constant monttily payment, amp □ and the
number of years, aya. It then prints an echo of the input,
followed by a table of four columns consisting of the month
number, the principal outstanding at the end of the month, the
componen t of the monthly pay ment which is principal and that
which is interest. A separate computation is made for the final
monthly payment. Critical compu tations ace made using values of
mode •lo ng-real•.

o~~~i~ lQEg £~~1 p tthe principal¢,
r ¢the interest rate per unit per year¢,
mp ¢the constant monthly payment¢,

i~t t ¢the number of times per year that the interest is
converted¢, y ¢the number of years¢

start here: read((p, r, t, mp, y))

,,.-, :::, J

\ 2
./ '---'

An ALGOL 68 Companio~ 25

outf (s .. andout,
$ l " r epa yment,.:.sc heclu le.:. of.:.a..:. loan.:.of.:. 11 9 zd. 2d,

l 11 ii:iter est.:. ra te.:.per_ uni t..:. 11 d. 4d,
11.:.converted.!. 11 2zd".:. times.!.per.:.year",

l 11 monthly.=,payinent.:. 11 7zd. 2d ,".:.for.:."2zd 11 ..:.years. 11 $,
(p, r, t, mp, Y))

J! r > 1QM 1.0
!hg~ pcint((newline, "interest rate is too high"))
else lo.!!.fl real mi= ¢monthly i ncrement multiplier¢
longexp C!~.!!9 (t / 12) • longln (12.!!.9 1. 0 + r / J,~Qg t)),
l2ng £~~1 ap ¢accumulated principal at the end of the montht

jf (mi - lOQE 1.0) • p > mp

fi
~!!~;

_!!!en print((newline, "payment does not cover interest"))
~l.e~ in!_ j := 0 iz:the month number¢,
±QllS £~al interest ; y •:= 12 ;
outf (standout, $1 2x8a, 3(1 2a)$,

("month", "amoun t 11 , "princ ipal 11 , "interest 11))

format (standout, $1 4-zd, 3 (7 zd. 2d) $)
¢this associates a format with the standard output file¢ ;
again : ¢return to this poin t for each monthly calculation¢
j +: = 1 ; a p : = p • m i ; in t e re s t : = a p - p

lf i ~ y ¢number of years is satisfied¢
Q£ ap 5 mp ¢the l st payment is duet

t!:!.~.!! out(standout, (j, 0. 0, p, interest))
~12~ ¢regular monthly payment¢ ; p := ap - mp ;
out (standout, (j, p, mp-interest, interest))
!IQ _!:Q aga'in
fi n,--

The output from a run of the above program should be

REPAYMENT SCHEDULE OF A LOAN OF 1,600.0~
INTEREST RATE PER UNIT 0.0800 CONVERTE ~ ?TIMES PER YEAR
MONTHLY PAYMENT 100.00 for 1 YEA£i?• 1

MONTH AMOUNT PRINCIPAL INTEREST
1 906.62 91.38 6.62
2 812.63 94.00 6.00
3 718.01 94.62 5.38
4 622.76 95.24 4.76
5 526.89 95.88 4.12
6 430.38 96.51 3.49
7 333 .2] 97. 15 2. 85
8 235.43 97.79 2.21
9 136.99 98.,rn 1.56

10 37.90 99. 09 0.91
11 0.00 37.90 0.25

26 An ALGOL 68 Companion

Review questions

2.1 Declat'ers

a) rs areal i:ef □ a •declarer•?
h) ls aref[]ref real □ a •declarer•?
c) Writ down a •decldr~r• ,-pecif yin g the mode •reference to

raference to row of ch~racter• .
d) ls ar 1fO£.!!)~,t.n a •declar1~r•?
e) I!:i □ t'ef fot'mat □ d •decldrer•?
f) ls a£_ a 1 p£.Q£ a •de c la er:- • ?
q) Can a valu he of more t han o n mod ?
h) Doe5 a mod e ~p city •decl rec•?

2.3 Local qeneratot's

a) t➔ ow many •real-1;iener tot's• r1re there (R.8.5.1.1]?
b) Wt'ite down a •loc 1-,Jenerator• which possesses a value of

moa •reference to ch-acacter •.
c) Wcite down a •r fecence-to-boo lean-local-qenerator•.
d) Is thece a11 •in teqcal-1ocal-q necator•?
e) ls th following a production rule of the strict language

fB.1.1.5.a]?
•ceference to row of character local generator

local symbol, actual focmat decl~rer.•
f) Is •real-procedure-with-boolean• a mode [R. 1. 2.1)?

2.4 Evaluation of a qenerator

a) Does the •generator• □ 12£ I~~! □, aftet' elaboration, possess a
real value?

b) DO2s the •generatoc• aloe!:~!!! □, aftec elaboration, possess a
value?

c) Cao a ceal v lae refer to d •generator•?
d) Can c al v1.lue refer to a name?
e) Can name refer to more than one value [R.2.2.J.5.a)?
f) C n a name refer to mar than one instance of a value

f R.2 . 2.3.5.d)?

2.5 Identity declarations

a) can two different external objects possess the same internal
object?

b) In the reach of □ int rn = 2a, can the value possessed by □ma

be changed?
c) I n the r-each of □ ref real x =]::Qf £.~~! □, can the value

possessed by □ x □-be changed?
d) Write down a •locr1l-genec to e• which, :1fter elaboration,

pos~esse$ d value of mo~e •reference to row of procedure
r2 l•.

2.6 Syntax of identity declarations

<i) Is □ mode a -= real □ an •identity-declac-ation•,
h) Is □ ref t'eal x □ a •declaration•?
c) In the-•tleclaration• 0£.ff !!!! nn □, what is the mode of cnn □ ?

An ALGOL 68 Companion 27

d) write a •declaration• of , apa as a •reference-to-rcw-of­
procedure-real-mode-identifier•.

2.7 Formal parameters

a) Is □ £~~1 na a •formal-parameter•? ,
b) Is of]E!,.Qf £~!!! pgr□ a •formal-parameter•?
c) Is □1Qf £~~!□ a •formal-parameter•?
d) Is □in! 1o a •formal-parameter•?

2.8 An extension

a) Write the •declaration• □!~! fg~1 xxa in the strict language.
b) Write the •declaration• □£~~! x, ya in the strict language.
c) Write the •declaration• □!~~! x, y := 3.14a in the strict

language.
d) Writa aref ref real xx= 1~£ f~! E~~l + 3.14c in the e)tended

language [R. 9. 2. a].

2.9 An assignation

a) IS □2.3 := 3.4 □ an •assignation•?
b) Does an
c) Can an

value?

•assignation•, after elaboration, possess a value?
•assignation•, after elaboration, possess a real

d) Is a(x := 3.14) := 3.15 □ an •assignation•?

2.10 Syntax of assignations

a) Is a1oc ~al : = 2. Jo an •assignation•?
b) Is alOf £~! £g~! : = xa a n •assignation•?
c) Is alof £~! real : = • 14 □ an • assignation•?
d) What is the ;source• in the •assignation• ax :=
e) What is the mode of the •assignation • □ xx:=

of aref real xx, real x □)?
f) In the reach of □~QQ1 t = !f~~a, is at

• assignation•?

2.12 Dereferencing

xa
y + 2a?
(in the rei:lch

a) What is the essential difference between the elaboration of
ax := ya and ax := 3. 14a?

b) Is any dereferencing necessary in the •assignation• oxx :=
xo, in the reach of □I~! f~~! xx, £gg! xc?

2.13 Initialized declarations

a) What are the modes of cmc and cna in the •declarations• c!n!
n = 2o and cint m := 2a?

b) Make a diagram-illustrating the •assignation• cn n := n := 1c,
in the reach of □ref int nn, int no.

c) Is it possible to apply-an e xtension(R.9.2.:1 J to cref I~~.! x
= £g~1 := 3.14c?

2.14 Program example

.,

.I

28 An ALGO~ 68 Companion

a) How many occurrences of dP •assignaticn• are there in this
•particular-program•?

b) What coercions are involved in th~ elabQr~tion of ap := ap
mpo?

c) What is the effect 9t Qj +J= le [R.10'1--'• 11,d]?
d) Are th~re any •id~ntifier~, yhich are ,constant~,?
e) What is the mode of ape?

3 Dnitary clauses

3.1 Introduction

An ALGOL 68 Companion 29

The •unitary- clause• [a.8] is one of the basic building
blocks of the language. It corresponds roughly to what is known
as the statement or the expression in ALGOL 60. Some examples of
•unitary-clauses• are, ax: = y, x + y, re Q! z, 1230 and a(x :=
1 ; y . - 2) a. •Unitary-clauses• are classified furthe r into
•confrontations, formulas, cohesions, bases• and other objects
like •closed-clauses•. Thus, ax: = ya is a •confrontation•, ax+
ya is a •formula•, are Q! za is a •cohesion•, a12Ja is a •base•
and a (x := 1 ; y : = 2) a is a • closed-clause•.

ie now give a simplified syntax of •unitary-clauses•, using
the ordinary typefont, to remind the reader that this is only an
approximation to the syntax. The exact rules are in the Report
fR.8.1.1), but a simplified syntactic tree is in figure 3.1.

unitary clause: tertiary; confrontation.
tertiary: secondary ; formula .
secondary : primary ; cohesion.
primary: base; closed clause ;

conditional clause ; collateral clause.

unitary-clause
I
1:----- - ------- -,
I I

tertiary confrontation
I
t--------- ---------,
I I

secondary formula
I
t------ ----------,
I I

primary
I

cohesion

r ~ - -~ ,
I I I I

base closed-clause conditional-clause collateral-clause

Fig • .3.1

The purpose of this chapter is to study some of the simpler
aspects of •unitary - clauses• and to observe the usefulness of
the cla~sification i ntroduced by the syntax just given. This
classification will he lp us to decide, for example, the order of
elaboration in a •clause• like

ca Q! b := c ~! d Q! e(f] - ga<1> ,
where the modes of ca, b, c, d, e, fa and age are unknown. In
fact the order is as if we wrote

<1> Mote that the operator og~o may be declared in such a way
that it delivers a name.

30 An ALGOL 68 Companion

□ (a Qf b) .- ((c 2! (d QE (e[f)))) - g) □
The purpose of this syntactic classification, then, is to
relieve the programmer of the necessity for supplying these
parentheses himself. In addition, it aids the compiler by
excluding certain mode dependent parsings.

•Unitary-clauses• which deliver no value are known as
•statements• [R.6.0.1.c], while other •unitary-clauses• are
known as •expressions• [R.6.0.1.b). This distinction is largely
historical and is of no significance in ALGOL 68.

3.2 Bases

•Bases• a.r the most elemen tary •unitary-clriuses•, s o we
be,Jin with them. Some exam{:lP, s of •r.ases• are opi, 123, a[i],
- in(x) □ anrl a(: random)a. A sim plified syntax for base is

bds~ : mode icleutifiec ; clenotation ;
slice ; call ; void c,u; ac k. ,

but the strict s yntax of the Report should be s tu~ied
r tL8.6.0.11- •Id e ntifier :;; • re as in other prognsmming
lanyuay s, e.g., □ random□ and nj1428 ca. •Cenotations• we hr1ve
met before in section 1. "i, e. q., □ 7"iRc is an •i ntegn 1-
enot tion•, o).1 □ is i'\ •real-denotation•, □ false□ is a

• boo la an-denotation•, n"q" a is a •character-d-noti tion• 1 nd
0 11 abc 11 0 i!:> d •string-denotaticn•. Thus we are alceady familiar
with sa ver 1 ohjects which are •bases•. The ohjects ox1[i)c nd
ox2r d: , j Jo ace •slices•, nsi n (x) □ is a •c 11• and □ (: random) a
is an example of •void-cast-pack•. The classification of these
objects a •bases• tells us wh . ce they stand in he order of
elahordtion., and we shall ~ee later, also, th t c1 •base• is one
kind oE •coe cend• [R.8.2], i.e., an object upon which :111
coercions must b expended. But coercion is a s ubj ct for
cha tee 6.

1. 3 Ioentifiers

A •mode-identifier• [R.4. 1.1.h) is so called
distinguish it from a •label-identifier•, which is
Both of these •identifiers• might be described by
simplified syntax rule ·

in order to
not a •base•.
the fallowing

idf'ntifier : letter ; in ntifier, letter ; identifier, digit.
which means tha an •identifi er• is what one expects it to be
from th?. use of that term in other program ming la n g uages, i.e.,
a lett r Eollo1o1ed, perhaps, by any numher of lett r s or digits.
T lt E> - trict synta.x, in t.he Report (R.LI. 1.1.b,c,d], looks more
complex, for a re son which will appear in later discussions
concerninq •field-sel ctors• [R.7.1.1.i). Some examples of
•identifies• are, □ algol 68, a , alb7ti9, random, st pierce de
c h ctce us a (note that spaces are of no significance within
•ide nt.ifiers•).

r,. •inode-inentifier• usnitlly po ssesses a value. This value
is th e 8a me s that possessed by the same •identifier• at its
defininq occurrenc e . [n the •d si1,1natio11• ox : =- y + 3 □, the
•mod -inentifier• axn, s up oserlly in th 3 each of the
• rleclaci\tion• cfg~J, xo, po sessP.s ,, name which refers to som e

An ALGOL 68 Companion . 31

real value. The value (name, see figure 3.3 at 1) which it
possesses is, in fact, a copy (R. 8. 6. O. 2. a J of the value (see
figure at 2) possessed by 1uo at it's defining occurrence, i.e.,
its occurrence as the •identifier • of an •identity-declaration•.
The effect of the elaboration of the second occurrence of DID in
D!~~! x ; x := y + 3a is shown pictorially in the figure 3.3,

X : = y ♦ 3a

O (3) O

(2)o o <-(identity)-> o o(1)
0 0

I r-----, I
'--)--f r--<-J

-----'
Fig.3.3

where the identity of the two instances of the same name is
indicated at 3. In t~is figure one should note that the second
occurrence of oxa possesses a copy of the name possessed bJ the
first occurrence of oxo. Consequently both names refer to the
same instance of a real value [R.2.2.2.1). The reader should
consult the Report ra.4.1.21 which contains a careful
description of the method by which this identification of
•identifiers• is made.

3.4 Slices

We continue our discussion of •bases•; the next are
•denotations•, but we have seen these before in chapter 1, so we
go on to •slices•. In the reach of the •declarations• o[1:n)!~~!
x1, f 1:m,1:n)~~! x2~, the following are examples of •slices•

ox1[i1, x2[i,j], x2[,j], x1[2:n], x2[i,ill0), x2[i]o
A simplified syntax of •slice• is

slice : primary, sub symbol, in dexer, bus symbol.
indexer: trimscript ; indexer, comma symbol, trirnscript.
trimscript: trimmer : subscri pt.

but the strict syntax of the Report [R.8 . 6.1.11 contains much
more than the skeleton shown abov e.

The most important point to notice about il •slice• is that
its ficst constituent notion, e.g., the cxlo in ax1[i]c, is a
•primary•. Also notice that a •slice•, being a •base•, is itself
a •primary•. ~allowing the •primary• of a •slice• is a •sub­
symbol•, represente-d by o[a, then an •indexer• and finally a
•bus-symbol•, represented by c]a. Thus all of the following, in
the above examples, are •indexe,rs•: aio, oi ,ja, a, ja, a2: no,
ai,illOa. An •indexer• is one or more •trimscripts•, separated by
•comma-symbols•. A •trimscript• is a •trimmer• or a •subscript•.
The objects aio and oja are •subscripts• and a2:na and caOa are
•trimmers•. A •subscript• is an •integral-tertiary•.

In order to accommodate those users whose computers have a
limi tea character set, a •slice• like cx1 [i)a may also be
written ax1 (i)o [R.9.2.g). However, we shall not use this

32 An ALGOL 68 Companion

possibility in this text since it then becomes difficult to
distinJuish between a •slice• and a •call•, like asin(x)a.

l.5 Multiple values

A multiple value, as we have seen in chapter 1, is a row of
values fR.2.2.3.3.a]. We may represent it diagrammatically as in

r------T------T------,------T-----,------,------,
I I I I I I I I
L-------'-------'-------'-------l------'-----~------.l

Fig.3.5.a

figur 1.5.a, though we shdll see later that this picture is not
complete. sometimes a name may refar to a multiple valu e, in
which Cdse we my think of it as multiple •variable•. 1'h
~ifference be ween the effect of slici nq a multiple •vari bl •
anH th t of slicing a roultlple •constant• is important and we
shall now investigate it ty example. Suppose we have the two
•clecl .c tions• ar1:3Hn! n1 := (1, 2, 3)c and □(1:]]iB.!: u1 = (1,
2, 3)a. The object □ 11, 2,) □ looks :tnd acts like a
•denotation• of a row of integars, but it is actually a

□[1 : 3 l! . .!!!:. u 1 = (1 , 2 , 3) a

D (1)
I
~-----r------T------1
I I I I
L------L------~------J

Fiq.3.5.b

□[1 : 3)!.!!!:. n 1 • - (1 , 2 , 3) a

0

r---<---o o
I o
D (1)

I
~-----r-----T------,
I I I I
L-----L----~-----J

•collateral-clause• (R.6.27. ·rhe effect of the elaboration of
these declarations is shown diagrammatically in figure 3.5.b,
from which we see clearly that au1 □ is a mu1t·p1e •constant• nd
on1o is mul tiple •vari · ble•. The 11 D" in the fig\lre, at 1,
indicat s that a "descriptor" f R. 2.2.1.1. b], whicb desct'i es the
elements, is also part of rl multiple v lue. For the moment we
shall ignot'e the presence of a descriptor. If we subscript a
multipl •constant• we would xpect to obtai n a •constant•,
e.g., au1(2]a hut if we subscript a multiple •variable•, we
obt · in a •variable• [H.2.2.1.5.c], e.g., an1[2]a. 'I'hus on1[2] :=
Llt:1 is n •assignation• but cu1[2] := 4-n is not. This is shown
nia~rammatically in fiqure 1.5.c, where the name possessed by
□ n 1r 2 lc (dt 1) is constructed fro m the name possessed b-y an 1 a

nil the •subscript• o2o fH.2.2.3.5.c]. The effect is obtained
syntactically by he fact that the •primary• of a •slice• is in
a we k position. It involves the concept of weak coercion
f B.H.21, which we will iliscuss more fully in chapter 6. I

I
I.

An ALGOL 68 Co■panion 33

au 1(2) n 1(2 Jo
: :
: o (1)

0 0

: 0

:
r -r--:--,- , r -r---t--,- ,

I I I
L -L-----J- J L _L_ ___ J_

.J

Fig.3.5.c

Obserye nov the use of the word •weak• in the rule B.6.1.1.a of
the Report.

3.6 Triamers

A programmer who is manipulating multiple values 111a1 wish
to choose certain subsets of a multiple value and to allow an
external object to possess that subset or a name to refer to it.
For example, one may wish to choose a row or a column of a
matrix or even a submatrix of a given matrix. This May be done
by using a •trimmer•, although, if that subset is to consist of
a single element, then •subscripts• are sufficient. To
illustrate the use of •trimmers•, consider the •declaration•
a(1 :3Ji!!.!: n1 :~ (5, 7, 9) a. The •slice• ao1[2Jo is a •variable•
referring, at the moment, to ■7 ■, but the •slice• an1[2:J]a is a
•variable• referring to a row of two i ntegral values ■7 ■ and
■ 9 ■; moreover, being a •primary• itself, it may be subscriptei
(if one insists on being foolish), so that an 1(2 :3)[1]a is a
•variable• ceferrinq to the same integral value ■ 7 ■ and the
•formula• an1(2:3)[1) = n1[2]a possesses the value ■true ■• In
fact, it will always be ■true■ no matter what assignments are
made to anla. Another way of saying this is that the •identity­
relation• an1(2:3][1] :=: n1(2]c possesses the value ■ true ■•

The effect of the •trimmer• al:ua is then to restrict the
range of values of the subscript to run from the value of clD to
the value of aua and to renumber, starting from ■ 1 ■• If the
renumbering from ■ 1• is not desired, then the •trimmmer• should
be written cl:uaba, where the value of cba is to be taken as the
new lower bound. This means that, e.g., an1[2:3i0](0] :=: n1(2]a
possesses the value ■ true ■• we may think of this in the sense
that if aiba is omitted, then the default value of aba is ■ 1•,
but tbe fact that the •new-lower-bound-part• may be empty is
actually built in to the syn tax (R. 8. 6. 1. 1. f]. A further
exa ■ ination of the syntactic rule for •trimmers• reveals that
the ala, the cue and the a~bc may be omitted, i.e., the •lower­
bound• or the •upper-bound• or the •new-lower-bound-part• may be
empty (R.8.6.1.1.fJ. If the •lower-bound• of a •trimmer• is
empty, then the lower bound of the •slice•, in that subscript
position, is the same as that of the •primary• which is being
sliced; if the •upper-bound• is empty, then the corresponding
upper bound of the •slice• is the same as that of the •primary•;
if the •new-lover-bound-part• is empty, then the s ubscripts of

34 An ALGOL 68 Companion

the •slice•, in that subscript position, will Stdrt from ■ 1 •. It
is even po sible for all three to be mpty at the same time.
Thus □ nlf:) .-. n1[1:3]a will possess the value ■ true ■•
Extcn ion 9.2.f, in th R port, allows the •up-to-symbol• to be
e lidej, under certain circumsta nces, so that tbe above
•identity-rel tion• mi rJ ht be written on1[) :=: n1[1 :))a.

If the •ileclaration• ar 1:m, 1: n]~~-:± x2 □ is use as th t of
a11 m hv n 111atrix, then ax2[i Jc cet . cs to the i- h row of the
md rix, □ x2r:,j)□, or even ox2[,jln [R.CJ.2.fl, to the j-th
colurun and ox 2ra:b, c :d)a III y refP.r to acer ain s ubmatrix, if
th Vdlues of o , b, c□ rlnd □ rt □ re dppropriate. 't'he rules for
•trimm s • [R.8.6.1.1.f,q,hl sho11l b . x mined to se that □l,
u □ and nb□ in □ l:u1lba are 1 1 •integr· 1-te ctiit ie. •. In
p~cticular, a •formula• is a •t ert iary• but an •a ss ignaticn• is
not, so that ox2[i +:== 1, j ~! t1n is an r1cceptable • s lice• hut
ax2r i := i + 1, j 2! r 1 □ is not . 'rhP. l tt c, to bP. ccep ;\hle,
should appear as ax2[(i :== i + 1), j Q._ c]a.

3. 7 Calls

A simplified syntax of a •call• is
c a 11 : pr- i ma r y , o p e n s y m ho 1 , a c t u a 1 p a r a m et e c s , c 1 o se s y m h o 1 •
actual parameters: actual ~acameter ;

actual pdrameters, qo~ma, actual parametec.
gommd : ~o on symbol ; comma s ymbol.

hut th stric syntax. is to be fauna in the Report (R.8.6.2.1. ,
S.4.1.c, S.4.1.d]. Bxdmpl s of •Cdlls• are □ sin (x), char in
string ("d", i, s)a and □ f(n; a, b)a. rhe se re familiar
features from other programming langua· es , except p rhaps the
possibility of usinr, •qo-on- ymbol•, represente by o;o , to
se parate the •a :.:t ud.l-pacameters• of d •call•. This possibility
i• pr !5,rnt so th t the 1_.>roqcamrner may, if he so wi s hes, match a
lmil r us of •yo-on-s ymbol• in the corresponding •routin e-

n notation• rn.5.4.11, wher e its use will force the alabocation
of thE:! •a ct ual-parameters • secial ly cath ec than collateralJy.
Thus, in the • cdl l• □f (n; a , b) r1, the nna might be used ,ts a
bound for th e arrays aaa ann □ ho, providea that a •90 - on-s ymhol•
w=,.· used i11 a simi lac position in the •routine-de notation•
pns:,es ed by □ fa. Uote that the • go-on-symbol• in a •call• has a
decoca ive eff c nly. It is th e presence of a •go-on-symbol•
in the •formal -paca me ters-p ck• of a •routine-aenotation• which
has tl1e con trolling effect.

•Routine-denotations• are import a n t dnd must be understood
b e fore we examine the semantics of •c a lls•; however, •routine­
denotations• will be discussed in chapte r 5, so we will postpone
our explanation of these semantics unti l that time.

The most impoctant point to notic~ about the syntax of a
•call• is that its first con stituent nction, e.g., asino in
osin (x) □ , must be a •prim ar y•. Al so notice that a •call• itself
is i'I •pr imar y• so that □ d (h) (C) (d)o might well be a •call• in
whic h the order of elahorat ion is that suggested by
c((a(b)) (C)) (d)a. As we hav e a lreacly rem c1. rk ed, in section 3.4,
in s ome proqrdms it may not be possible tc determine whether

1. ·.

An ALGOL 68 Companion 35

oa(b)u is a •slice• or a •call•, without knowing the mode of
cao, but since th.e parsing tree is similar for these two, this
is of no great hardship for the compiler. we shall see later
that the object D!f x < pi/2 !hgn cos ~!§~ sin {ic is a
•primary• and therefore □ !! x < pi/2 !~fill cos ~1§~ sin!! (x)c
is a •call•. It so happens that DQ~gin r : = s + 2 ; sin ~ng (x)a
is also a •call•, and perhaps some programmer will find it
useful.

3.8 Void cast packs

An example of a •void-cast- pack• is
D(¢voidlt: x : = 2 • x + 1)a

Its purpose is to void the mode of the •unit• contained therein
in those situations where this i s not done implicitly, such as
in a; x := 2 + x + 1 ;a. ~here the •assignation• is turned into
a •statement• by the fact that i t is preceded and followed by
•go-on-symbois•. An example where a •void-cast-pack• is needed
is

□£!:~ lt!Q,igtt p = (ltyoigrt : x : = 2 * x + 1) a
where ape is made to possess a routine, which contains an
•assignation• but the •assignation• should not itself be
elaborated until cpa is called. The object D.EE.2£ ¢,YQ.!g¢ p = (x
:= 2 * x + 1) c is not an •identity-declaration• (the programmer
might find it confusing anyway). A full explanation of the above
•declaration• involves the concept of coercion which ve shall
take up in chapter 6. Readers whose curiosity is aroused may
wish to follow the syntactic analysis suggested by 74a,b, 61e,
81a,b,c,d, 820d, 823a, 860b, 834a, 61e, 81il, 820d, 828a, an:1
those who could have found it for themselves need not be reading
this book!

A simplified syntax of •void-cast-pack• is
void cast pack :

open symbol, cast of symbol, unitary clause, close symbol.
but the strict syntax is found in more than one place in the
Report [R.8.3.4.1.a, 3.0.1.h, 7.1.1.z).

The •void-cast-pack• may appear to play the rol'e of a
•routine-denotation• in the case of those routines which deliver
no value and have no •parameters•. An examination of the Report
(R.5.4.1] will reveal that there are indeed no such •routine­
denotations•. There is however, a proceduring coercion and this,
together with the •void-cast-pack• fills the nee~. But more
about this later.

3. 9 Cohesions

A •cohesion• is either a • generator•, e.g., D£~glc, or a
•selection•, e.g., are of za. The strict syntax is:

•MOOE cohesion: MODE generato r ; MODE selection.•
rn.8.5.0.1.a). A •cohesion•, like a •base•, is also a class of
•coercend• upon which all coercion must be expended, but ve
shall discuss coercion later. We have already examined
• enerators•, so we now turn to •selections•.

36 An ALGOL 68 Companion

3.10 Selections

An example of a •selection• is are 2! zo in the reach of
the •declaration• astruct (real re, im) z □• A simplified syntax
of • selection• is

selection: field selector, of symbol, secondary.
but in the strict syntax of the Report [R.B.5.2.1.a] several
metanotions are used with penetrating effect. In order to
understand the meaninq of a •selection•, we need to know that
some values, unlike multiple values, may be built from several
values whose modes may he different. Thus we may build a
"structured" value consisting of one or more "fields"
[R.2.2.3.27 in which the value of each f ield has, possibly, a
different mode. The fields of a struct ured value are then
selected by •field-selectors•, which look like • identifiers• but
which, syntactically, are not •identifiers•. For example, in the
•selection• ore 2! zo, the •field-selector• is ore □•

An example of a •declarer• whi cih sp\cifies a structure:l
mode is astruct (real value, string na111e) a. 'Values of such a mode
then consist of two fields, one whose mode is •real• and another
whose mode is •row of character•. If one wishes to obtain, or
assign to, the •real• field of a •variable• ora referring to a
value of such a m~de, this is done by using the •selection•
□value Q.f. ra; the string field is ot:tained by the •selection •
□name ~f ra. Note the similarity with the •slice • □ xl[i]a, where
an element is selected from the value of the •primary• according
to the value of the •subscript• aia. In the selection avalue of
ra, an element is selected from the va lue of the •secondary;
era, using the •field-selector• avaluea. There is, however, one
essential difference in that the value of the subscript, cio,
may vary dynamically, whereas the •field-selector•, avalueo,
cannot. This makes field selection an ' inherently efficient
process.

As with a •slice•, the value of a •selection• from a
•secondary• which is a •variable•, is also a •variable•, but the
value of a selection from a •secondary• which is a •constant•,
is a •constant•. Thus with the •declaraticns• astruct(int i,
QQQ.! b) ib := (1, .H:.!!g)a and o 21EY£!(£g~.! r, ~ll~! c) re= (1.2,
11 k") o, ai 2! ibo is a •variable• and ai E! ib := 2c is an
acceptable •assignati,o n•; however, ac Qf rcti is a •constant• an:i
ac of re:= "m"a is not permitted. The reader may wish to note
that- these effects are obtained, syntactically, through the use
of the metanotion REFETY and the word •weak• in the rule
8.5.1.1.a of the Report. The same remark applies to the rule
8.6.2.1.a foi: •slice• ..

It is important to observe that a •selection• is always
m~de from a •secondary• and in this way it differs from a
•slic e •, since only a •primary• can be sliced. This means that
the order of elaboration of the object ca 9! b[c)a must be the
same as that of aa Qf(b[c])a, for aa Qf be is not a •primary•.
Also, a •selection• is itself a •secondary• so that ca Q.f b 2! c
2! da may be a •selection• whose order of elaboration is
suggested by aa 2! (h 2.!. (c .2.! d)) a. Observe that if ado is a

An ALGOL 68 Companion

•variable• then ca Q! b 2! cg! dais also a •variable•.

3 .11 Formulas

A simplified syntax of •formula• is
formula: operand, dyadic operator, operand

monadic operator, operand.
operand : tertiary.

37

but the strict syntax contains much more information [R.8.4.1).
•Formulas• with two •operands• are known as •dyadic-formulas•
and those with one •operand• are •monadic-formulas•. Since the
same symbol may be used both as a •dyadic-operator• and as a
•monadic-operator•, as for example in a(- a - b)a, one must
rely upon some context to determine the full extent of a
•formula•.

A major new feature of ALGOL 68 is the fact that operations
may be declared. This means that any •operator•, e.g., a+a, may
not mean what we think it means unless we have examined the
•ranges • in which it occurs. An example of an •operation­
declaration• is

□QE Q£ = (r~~! a, b)t~~!: !! a> h !h~~ a else b fia
but since this involves •routine-denotations•, wi1~i we have not
yet discussed, we shall postpone a full examination of
•operation-declarations•·

The syntax given above shows that an •operand• must be a
•tertiary•. Also, the syntax given in section 3.1 [B.8.1.1.b]
shows that a •formula• is itself a •tertiary•. From this we may
deduce that the elaboration of the •formula• aa 2! b[i] + co is
in the order suggested by o(a gf (b[i])) + ca. The reader may
find the following summary useful:

a •primary• may be sliced and a •slice• is a •primary•,
a •secondary• may be selected from and a •selection• is a

•secondary•,
•operands• are •tertiaries• and a •formula• is a •tertiary•,

[R.8.6.1.1.a, 8.6.0.1.a, 8.5.2.1.a, 8.5.0.1.a, 8.4.1.f,
8.1.1.b.c,d].

A set of standard operations, which the programmer might

DYADIC

1 2 3

a-:= 2!. &
+:=
•:=
1·-.-
+:=
+· ·= ..
+=:

4

=
~

l'!ON ADIC
------------r------------

5 6 7 8 9 I (10)
--------------- --------1---------

< * QE i I~ - +/do~~ ~E
~ + + !~E I abs bin reEr
~ +: Q£E I lwb ueb lws UES
> I 1]§ I !~ng ~~£tl

~l~!! Q£§ I odd sign ~ound
I!~ !.!! ~£!!j
I .!!.!:!? ct b c

----~---
Fig.3.11

,;

38 An ALGOL 68 Companion

expect of any programming language, i proviae [R. 10.2) and
standard priorities (from 1 t o 9) ar ~iven (R.10.2.0). This
standard set is to be found, in summary, in 8.4.2 of the Report
and is reproduced here fo r convenience. Tbece are nine
priorities (from 1 to 9) foe the •dyadic-operators•. The
•monadic-operators• all have the same priority (effectively 10)
and when used consecutively, ace elaborated from right to left.
A typical •priority-declarati on• is

a_g£i ori!,1 + = 60
and in fact, this is to be found in the •standat:d-pcelu e•
f R.10.2.0.a). Operations whose •Operators• have the highest
priority are elaborated ficst. 'T'hi!::i medns, e.g., that the
•formula• aa < b; c > d □ is elaborated in the order suggested
by □ (a< b)::: (c > d)a. Also, t he value of o(-1 .!J.E 2 + 1) □ i;1,nd
o(3 - 1 l1.£ 2) □ ace •4• and •2 ■ respectively, a fact which may
comP as s urprise to users of so me other languages<1>. In
iustification of this choice one must observ that, wheo
•operators• and th ir priorities may be declared, a si mple rule
tor the priority of •monadic-operators• is esse ntidl. Consid er ,
!or eKarnple, the fOrillula

we know immediately
su gested by

ax~~ £ y _ ~ za
tha · the l)tder of elaboration is that

ax ~ (.Q (f y) l Q (g z) □ ,
since the monadic operations are performed first, \olhile the
prioritie of the •dyadic-operators• a~□ and o~ □ will settle ~ny
douht which may remain.

It would take too long to describe all the operations which
are provided in the •standard-prelude•, and indeed this would be
a waste of time, for their precise definition is given in
Chapter 10 of the Heport. We shall be content with mentioning
some of the less familiar •operators•, beginning with those of
the hiqhest priority. i.e., the •monadic-operators•. Tha
•operator• □ !~n3□ operates en an integral, a real or a complex
value daliv ec ing a valu whose length (precision) is increased,
while □ ~~2£! □ has the opposite effect. In some installations
this may mea n the cha nge from single precision to double
precision an d the rever se [R,10.2.3.<J, 10.2.4.n, 10.2,7.n]. One
should be car eful t o dis tinguish between □!fn9 1.0 □ which is a
•formula•, and □!~M 1.0 □, which is a •denotation•
rH.5.1,0.1. b) . The value of □.QQ9 4a is • false• (R.10.2.1.s]. Th e
value of aJ2i.!! So is that of □.!Qlo , i . e., □!!in □ operates on
inteqral values and delivers bi t s [R. 10,2.8.1). The value of
oabs "a"a is some integral value , which is imµlementatio n
dependent, and that of □ £~.E ,!; !!.Q§ " a" □ i::; •a•, i.P.., □£~.E£ [Q.§□
is the identity operation on il.ny c ha rac t er [R. 10.1. j, k]. Also ,
□!Q§ !EY~ = 1, !!.Q§ f~1~~ = 0c [R.10 . 2.2.f] ~na □ ~.Q§ 1Q1 = 5a
fR.10.2.8.i], all have the va lll ■ t i:: ue ■ ; in fact, □ .!2i!! !!.Q~ □ i s
the identity operation on certa i n bits vRlues. The operato r
□Q!.Q □ converts •row of boolean• to bits , e.g., □Qtb(!~g~, !~!§~,
!rQ~) = l.Q.la [R.10.2.8.1) and □£! Q□ con verts •row of chacacter •
to bytes rR.10.2.9,dl. The inverses of □ .Q!.Q □ and □£!]□ are not

c1> Except for users of, e.g., JOVIAL, SNOBOL 3nd APL.

An ALGOL 68 Companion 39

necessary since that job i s done by coercion (R.8.2.5. 1.c,d].
The •monadic-operators• oy~, ~g~ no and a/a operate on semaphores
and are concerned with synchroni zation (parallel processing) . we
shall not discuss them further here (R.10.4]. The operators
c~p~, lwB, YB~o and a1~§o are concerned with arrays. we may best
illustrate them by considering t he • declaration• o[2:5 Il~~]in!
nla, so that anl □ is a •variable• referring to a row of integral
values whose index has a lower bound of ■ 2 ■, which is filed and
an upper hound of ■ 5 ■, which is flexible. Then □YEh n1 = 5, b~Q
n1 = 2, y~ n1 = ~~ls~, l~~ n1 = !fY~a< 1 >. These •operators• are
also dyadic and a1 ~El) n1 = y~Q n1a, for all arrays on1o, while
the •formula• o2 ~EQ n2a delivers the value of the upper bound
in the second subscript position of the array an2a.

There is one standard •dyadic-operator• oia or c!c of
priority 9 (the programmer may c reate more if he wishes). The
value of ax i ya is a compl ex number with real part oxo ~nd
imaginary part aye [R.10.2.5.f]. In the standard •declarations•
the result of the •dyadic- operator• o/o, •divided - by•, is real
(or complex) and that of a+o is integral (integral division of
two integral operands). The ope rator a~!~ma delivers an element
from bits or bytes, e.g., □ 2 ~le~ lQl□ delivers ■ false ■• Note
that a2 ele!J! b :-= !!:~~a is not an •assignation• [R. 10. 2.8.k,
10.2.9.c]. Manipulation of bits can be achieved with the
operators a£~, ~g~, ~Ra and onQ! □ [R. 10.2.8.d,e,h,m]. The value
of an+: ma is an□ modulo □ me, i.e., the remainder obtained on
divid·ng ana by am □ [R. 10.2.3.n]. Apart from the fact that a~Q§□
is an operator on real, integral and complex values, rather than
a •call•, i.e., it is not cabs (x) a, the remainder of the
•operators• are probably familiar to most program~ers with the
exception of a set of •operators• of lowest priority ■ 1 ■ • A
typical example is a+:= a, which we can explain by saying that
the •formula• ex +:= 1o has the same effect as ax := x + 1a.
Another •dyadic-operator• with priority ■ 1 ■ is a+=:a, which may
be used with two •operands• of mode •row of character•
fR.10.2.11.r,t). After elaboration of the •formula• as +=: to,
in the reach of □string s : = "abc", t := "def"a, we have os =
"abc"a and ot = "abcdef"o. On the other hand, after the
elaboration of the •formula • cs+:= "g"o, we have as= "a bcg"a.

The reader should be careful to note that several
•operators • have more than one representaticn, e.g., the •plus­
i-times-symbol• has three representations and the •up-symbol •
four (R. 3. 1. 1. c) (morevoer, many representations are not
available in this preliminary edition due to the limitations of
the TH print chain).

3.12 Confrontations

There are four kinds of •confrontation• ~ccording to the
strict rule

<1> Here it is more convenient to say o2*2 = 4a rather than the
longer but correct statement a2*2 = 4o possesses the value
■ true ■•

40 An ALGOL 68 companion

•MODE confrontation : MODE assignation
MODE conformity relation
MODE identity relation; MO DE cast. •

r R.8.3.0. ,.a]. The object D.X :== y + 2c is an •assignation•, □ r
: := i□ is a •conformity-relation•, □a :=: be is an •identity­
relation• and areal: ic is a •cast•. Enough has been said about
•assignations• - already in sections 2.<} and 2.10. •Confcrmity­
relations• have to do with united modes, which we have not yet
introiuced, so it is as well to postpone this discussion to
chapter 7. We shall therefore confine our attention here to
•identity-relations• and •casts•. Before passing to these, we
should see that since a •confrontation• is not a •tertiary•, and
therefore not an •operand•, the elaboration of the •assignation•
axx Q!: yy :: xc is done in the order suggested by c (xx Q!. yy) :=
xa. Such an •assignation• might well be possible if the
•operator• core has been declared in such~ way that it will
deliver a name-:-

3.13 Identity relations

There are two •identit y-relators•, the •is-symbol•,
represented by a:==:a and the •is-not-symbol•, represented by
o:1:a. A simplified syntax of t he •identity-relation• is

identity relation : tertiary, id~ntity relator, tertiary.
but the strict syntax of the Report contains more detail to
account for the balancing [R.6. 4.1] of modes.

The elaboration of the •identity-relation• is normally
quite simple. we ask the yuestion whether two names, of the s~me
mode, are the same. This means, in most implementations, asking
whether two storage addresses are th e same rather than whether
they have the same content. As an example, suppose the
•declaration• areal x, ya has been made. The •inentity-relation•
ax :=: ya then - has the value ■ false ■, despite the possibility
that we may have elaborated the •assignations• ax :~ J. 14, y :=
3.14c. This is because the •declaration• □re~! xa (strictly D£~1
real x = lac realc) involves the elaboration of the •generator•,
oloc real□, which creates a name different from all other names
(a-:-1.1-:-2:-d Step 8]. The same applies to af_,g~1 ya. Renee, the
name possessed by axe is not the same as the name possessed by
oya. After the •declaration• af~! re~! a ~ x □, the name
possessed by cao is the same as t he name possessed by axe, but a
different instance of that name. Consequently, the value of the
•identity-relation• ex :=: ac wil l be ■true■ and will remain
■ true ■ no matter ~bat assignments are made to caa or to cxc.
Notice that an assignment to cac is at the same time an
assignment to □ xa.

Now suppose that the •declaration• 0£.§! !!'!.! ii, jj, !.!J~ ia
is elaborated followed by the •a ssignations• oii : = i, jj := io.
The •identity-relation• cii ::: jja possesses the value ■ false■,
for a similar reason to that explained above, but the •identity­
relation• cjj :=: ia then possesses the value ■ true ■• That this
is so can be seen by a close examination. We present this in
figure 3.13. We see in the figure at 1 and 2 that the a priori
modes of the •identifiers• en each side of the •is-symbol• are

An ALGOL 68 companion 41

not the same. Since an •identity-relation• must h;1ve
•tertiaries• of the same mode (R.8.3.3.1.a] {each of which
begins with •reference-to•) , t here is a coercion, known as
"dereferencing" [R.8.2.1.1), of the •base•, cjjc (see the figure
at 3), whereupon the •identi ty-relation• delivers the value
■ true ■ (see t h e figure at 4). Ob serve that there is, strictly
speakiµg, a coercion on the ri ght also, hut since the a priori
mode and the a posteriori mode a re the same its semantic effect
is therefore absent. Since the dereferencing may occur either on
the left or on the right, but not on both sides, there are two
alternatives in the strict syntax of •identity-relations•
[R.8.3.1.1.aJ. The reader should notice that in this syntax, one
of the •tertiaries• is "soft" and the other is "strong".

boolean-identity-relation •••••••••• ~·••
I (4)

r---------------11-----
I
I

I
strong-reference-to­
integral-tertiary identity-relater

I
stronq-reference-to­

integral-base •••••••••
I :

(coercion) (3)
I (1)

reference-to-reference :
to-integral-base

.J..-

I
I
I
I
I
I
I
I

-------, ■true■

I
soft-reference-to­
integral-tertiary

I
soft-reference-to­

in tegral-bas e
I

(coercion)
I

reference-to-(2)
integral-base

.J.

cjj :=: in

0 0 0

o o------>-----o o <---(identity)---> o o
0 0 0

I I
I ..-------, I
L--)----1 1--(---J

L-----J

Fig. 3. 13

In the case of cjj .-. ic, the cic is soft and the
strong. This is a matter concerned with coercion
balancing of modes which will be discussed in chapter 6.

3.14 casts

The object
areal : 2c

ajja is
and the

is a trivial example of a •cast• [R.B.3.4. 1.a], but it is good
enough to illustrate that a •cast• consists of a •declarer•
followed by a •cast-of-symbol• f ollowed by a • unitary-clause•.
The purpose of a •cast• is to c oerce the value of its •unitary­
clause• into a value of mode specified by its •declarer•. The
example given is trivial because its value could be obtained
more easily from the •rea 1-denota tion• c2. Oc.

42 An ALGOL 68 Companion

•Casts• play an important role in •routine-denotations•,
which are discussed in chapter 5. We shall see also that they
are used instead of •routine-denotations• for those routines
which lack •parameters•. Otherwise, a •cast• is occasionally
useful to effect a coercion which is not implied by the context.
For example, □§iI!.!!9 : "a"o is multiple value, i.e., a cow of
characters with one element, a nd objects like o(c E cell : next
Q! cell) :-=: !!i!a are essenti 1 to li t processing (ee
R.11.12). A • cast• may have a •void-~eclrlrer•, in which case it
is a •void-cast•, e.g., □ :x := ya. A •vcid-cast• yields no
value. An examination of the syntax will reveal that a •void­
cast• occurs only as a •void-cast-pack• (R.8,b.0.1.b], e.g., a(:
x := y)a, or as part of a • routine-denot tion• (R.5.4.1.h],
e.g., a: get bin(stand back, x)n in o([l!!Ul'..2.~ x) : 9et
hin(st ndback, x) □ [R.10.5.4.2.a]. A •void-cast-pack• is
•hase•, as we have already seen in section 3.8. •Casts• which
a ·ce not •void-casts• 11 envelap11 [R.1.1.6.j] a mode and are
•confcontations•. One ceason f or th?. P.Xclusion of •void-casts•
from •confrontations• is the ambiguity which might otherwise
lurk in the object ax :=: ya or ax := :ya.

For those •casts• which e nvelop a mode, a simplified syntax
is

cast: virtual declarer, cast of symbol, unitary clause.
rR.B.3.4.1.a]. A •virtual-declarer• [R.7.1.1] is a •declarer• in
which all •indexers• contain •bounds• which are empty. To find
typical examples of •casts• we need only examine •declarations•
involving routines, of which there are a large number in Chapter
10 of the Report. One of them is

□QE ~.Q§ = (QQQ]: a) J,nt : .H a then 1 ~!.§~ 0 ti□
r R.10. 2. 2.f 1 in which the •cast• is-□1Et i.! a .!!!~!! f!§~ 0
n,a.

The elaboration of a •cast• is that of its •unitary-clause•
r R.8.3.4.2), always remembering that the mode of the value
delivered, if any, is that specified by the •declacer• of the
•cast•. Since the a priori mode of its •unitary-clause• is often
not the same as that specified by its •declarer•, the final
steps in the elaboration of a •cast• often involve some kind of
coercion. For this reason it will appear frequently in our
discussion of coercion in chapte r 6.

~ecause a •cast• is a •confrontation• and therefore also a
•unitary-clause•, it follows that □!~~!:£~~!: xa is a •cast•,
but its value is the same as that of nreal: xa. Note that a
•cast• which envelops a mode is ;~i- a •primary• or even a
•tertiary•; consequently, □£~! E!rn1: xx .- 3.14a is not an
•assignation•. The effect perhaps intended could he obtained by
writinq c ([_gf £~~! : xx) : = 3. 14a.

3.15 Proqram example

<1> ~he ALGOL 60 vecsion of this procedure is
G.F.Schrack.

due to

An ALGOL 68 Co■panion 43

The following is a •procedure-denotation•<•>. The routine
which is possessed by ope calculates the r eal coeffic ie nts of a
polynomial whose zeros are the elements of a gi ve n complex
vector aza. These zeros may be real or c omplex, but if complex
must appear consecutively as conjugate pai rs. For example, if
the given vector is o(1, 0 ! 1, 0 j -1)c , th en the polynom ial
will be az••J z••2 + 2 1a. Th us, in the • range• of
c[1:3]£2!2.± w := (1, 0 i 1, 0 i -1)o, the value of th e •ca l l •
cp(w)o will be that of o(f]£,g~!.: (1.0, - 1.0 , 1.0, - 1. 0))[iiO]a .
The existence of a non-local •procedure• , oer rora, i s assum ed,
for use upon encountering invalid data.

DE.!"2~ P -= (U![1 :]£Q!!E.! z) []!:.~~!. :
tcalculates the coefficients of the real polynomial whose zeros
are the elements of the vector zt

h~!!!. [O:y,E!! z]~~~J, a; a[O] := 1 ; .i.!!!:. i := 1 ;
tthe coefficients are calculated into the vector at
!hl!~ is y~ z ~2

!!!!Ii!! £.Q.!!.E.! zi = z[i] ; a[i] : = 0 ;
if im zi = 0
then-, a real zero,
--fo!:_ k !£.!2m i QI - 1 !2 1 ~Q

a(k] -:= !'~ zi • a[k-1)
~!2~ t a pair of complex zerost

i{ i = ~~Q z !~a error fi ;
it z i I £Qnj z[i+:=1] !:.h~.!! error fi
real s= ~e zi •• 2 + im zi •• 2, t = 2 • !~ zi
a(i] := 0-;
fQ!:. k !£~! i QI -1 1Q 2 ~.Q

a[k] -:= t • a[k-1) - s • a[k-2] ;
a[1] - : = t

fi; tand now for the next onet i +:= 1
end tthe iteration on it;

tthe-coefficients are now ready in the vector at
a !!!!,~D

From a[]~~!! :a, on the fi rst line, to the final a~~~D is
the •cast• of a •routine-denotation• [R.5.4.1.b]. It begins with
o[]~~!.! :a to ensure that the val ue delivered by the routine is
of mode •row of real•. Note the use of the •operator• D~£QD in
the •declaration• o(O :_ye.!1 z)~~!! ac, which creates a vector
•variable• with index running from ■ O ■ to the upper bound of
cza. The •declaration• D£9~.E.! zi = z(i]a [R.10.2.7.a] indicates
that, for each value of oio in t he iterative statement, c2io is
a constant. This avoids repeated calculation of nz[i]a later.
Observe that, in the •formula • ozi I £Qnj z[i+:=1Ja, the
•formula• oi+:=lo is elaborated first. rhe value of the
•variable• cio is thus increm ented by 1. The value of this
•formula• is the name possessed by ci+:=1o, which is the same as
the name possessed by aio. It is then dereferenced. The object
czf i+:=1]c is a •slice• whose value is the next zero of the
polynomial sought. The •declaration• ar~al s = f~ zi ** 2 + im
zi •• 2c declares a •real- constant• oso who se value is the
sguare of the modulus of one of the conjugate pairs. The value
delivered by the routine is that of aaa; conseguently aac
appears as an • expression• preceding the final a~n[o.

,I

44 An ALGOL 68 Companion

Review questions

3. t IntI."oduction

a) Is a •cohesion• a •primary•?
b) Is a • closed-clause• also a •tertiary•?
c) Indicate by parentheses the order of elaboration of oa + b 2!

c[d] - eo.
d) What is the difference between a •statement• and an

•expression•?
e) Is a •base• also a •unitary-clause•?

3.2 Bases

a) Is ax + ya a •base•?
b) How many kinds of • bases• can be distinguished 7
c) List all the •bases• in the object

a (a[i] > b 2! c I sin (x) I cos (x + pi/2)) a.
d) Is al. a a •base•?
e) Is ca (b) a a •call• or a •slice•?

3. 3 Identifiers

a) List the •i dent if iel."s • in the object a 1: ca : = char 2f file 2!:
f + 11 a5 11 a.

b) What is the mode of axo in areal X := 3. 14 o?
c) What is the mode of an2a--In a[t: 3, 1: 4 Un!: n2 = m2[3: 5,

3: 6 la?
d) Do DUO and ava have the same mode in the •declaration•

r 1 : 1 o JS:h!!!: u, [1 : 1 0 !.1~!]£.!!~! va?
e) Is a$linea an • identifier.•?

3.4 Slices

In the I."each of the •declaration• a[l:m, 1:n].£~~.! x2, y2o:
a) is ax2[1][1) □ a •slice•?
b) is ax2[1)a a •slice• and if so what is the mode of its value?
c) is a~~gi~ x2 ~!11f 1,1]a a •slice•?
d) is aif i > 0 !:!!~!! x2 ~.!§~ y2 !.! [1, 1]a a •slice•? I_

e) Which of the following can be subscripts?
a35n, aite111 Qf a □, □ i + n * 2a, ai := 2 □, oi + := 2a. I

3.5 Multiple values

In the reach of the •declaration• a[1:m, 1:n).!~!!1 x2, [t:3J!.!l! ~
ul = (1, 2, 3)a:
a) is au1 a a •variable•?
b) is ox2[t, 2] □ a • val."iable • ?
c) i s a u 1 [2] : = 2 □ an • ass i g na t ion • ?
d) is ax2[2][1] .- 3.14a an •assignation•?
e) is ox2[1, 1) .- 3.14 □ an •assignation•?

3.6 Trimmers

An ALGOL 68 Companion

Using the •declaration• given in 3.5 abcve:
a) what is the value of au 1[2:)c?
b) what can be said about the •formula•

cx2[2: 3 JC 2, 1] = x2[2, 1 Jc?
c) what is the value of au1[:2~0)[1)c?
d) what is the value of au1[i2)[3]c7
e) is cx2[i:=1:j+:=1, 3]a a •slice•?

3.7 Calls

a) Is a cos (x : = pi/4) c a •call•?
b) Is arandoma in ex := randomo a •call•?
c) Is ocos(x > 0 t x I pi/2)a a •call•?
d) Under what conditions is ca(b)a in ca(b) := ca a •call•?
e) Under what conditions is ca (b) (c} a a •call•?

3.8 Void cast packs

a) I s a •void-cast-pack• a •primary•?
b) I s a(: x) : -= yo an •assignation• 7
c) I s ax : = (: y) a an •assignation•?
d) I s a(: (X)) a a •void-cast- pack• 7
e) I s ae.£2.f p := x := 3. 14a a •declaration•?

3.9 Cohesions

a) Is a •cohesion• a •pri mar ye?
b) Is a •cohesion • a •tertiary•?
c) Is o (x + y) o a •cohesion•?
d) Is o[l:3]£~! §~!Y£!(i~! a,!~~! b)o a •cohesion•?
e) Under what conditions is ca Q! b := co an •assignation•?

3.10 Selections

a) Is a •selection• a •primary•?
b) Is the cac in ca of be an •identifier•?
c) Indicate by parentheses the order of elaboration of

ca Q{ b [c)a and of ae 2! g(x)a.
d) Is a(a Q! b) Qf cc a •selection•?
e) Is oa Qf (b Q± c }a a •selection•?

3.11 Formulas

a) Is a •formula• a •t~rtiary•?
b) What is the value of c2 elem bin 5a?
c) What is the value of alwb-:-3:1qa1
d) Is a4 +:= 2c a •formula;-and if so what is its value?
e} What is the value of c~(1<2~~g3>4Q£5=6#7>8QI !fY~)c?

3.12 Confrontations

a) Is a •secondary• a • confrontation•?
ax1[i:=i+1] a •slice•? b) Is

c) Is oreala a •confrontation•?
d) Is

45

e) Is
a~iQ.f randoma a •confrontation•?
op:= x :=: yo an •identity-relation • or an •assignation•?

46 An ALGOL 68 Companion

3. 13 Identity relations

In the reach of the •declaration • ain! i, j
i , j j : = ia :
a) what is the value of oii :=: ii □ 7
b) what is the value of □ i :=: jja?
c) what is th value of ai : I: jo?
d) Is ox : =: 3.14a an •identity-relation•?
e) Is □ x : = : x1r 2]o an •identity-relation•?

3.14 Casts

·1 a) Is a •cast• a • primary•?
.-1 b) Is nint : .3. 14 □ a •cast•?

c) Is □ i-:= :ye an •assignation• or an •identity-relation•?
d) Is ar1:1]£~i!.!: 3.14a a •cast•?
e) Is □!:~! !.!!t : ii := 2a an •assiynation•?

1.15 Program example

a) How many occurrences of a •cohesion • are in this •particuldr-
program•?

b) How many occurrences of a • slice• at:e there?
c) Is ate a •constant• or a •variable•?
d) What is the mode of as □ ?
e) How many occurrences of an •identity-relation• are there?

An ALGOL 68 companion 47

4 clauses

4.1 Conditional clauses

The •conditional-clause• [R. 6. 4] is a fundamental
programming concept or primitive pertaining to flow of ccntrol.
It is present in some form or other in most languages and allows
for a choice in the elaboration of one out of two • s erial­
clauses•, depending on the value of a •condition•. An example of
a •conditional-clause• is

oif a> h then a ~l§~ b !ic
or, using another representation

o(a> b I a I b)o ,
which therefore has the same meaning. A simplified parse is
shown in figure 4.1.a.

conditional-clause
I

r----r----------t--------T--------,
I I I I I

if-symbol condition then-clause else-cl¼use fi-symbol
I I I I I
I I r-------L-, r , I
I I I I I I I
I serial- then- serial- else- serial- I
I clause symbol clause symbol clause I

J.

a>b

Fig. 4. 1. a

.L

b
J..

!ia

There are two features of the • conditional-clause• which
are noteworthy. The first is that such · a •clause• is closed, in
the sense that it begins with an •if-symbol•, represented by
ai!o or a (o, and ends with a •fi-symbol•, represented by c!ic or
o)o. As a consequence of this, a •conditional-clause• can be,
and is, a •primary• and is therefore found in syntactic
positions which might otherwise be considered unusual in some
programming languages. The second is that no essential
distinction is made between •conditional-expressions• ~nj
•conditional-statements•. The only difference is that, if a
•conditional-clause• is used as a •statement• [R.6.0.1.c], then
its value is voided; otherwise, it may be an •expression•
rR.6.0.1.b l < 1 > and may delive r a value. There is only one
genuine syntactic rule [R.6 .IJ .11. This mergin g of concepts
permits •conditional-clauses• like

o!! a > 0 !hen sgct(a) g1~~ ~Q_!Q ecr or fia
which may be used in a situation like

oa1 : = if a> 0 !h~E sqrt (a) gJ§g gQ_tQ error {io

<•> Note that rules in the Report marked with an asterisk are
present only for the convenience of the semantic description of
the language. The notions involved never appear in the parse of
a •program•.

48 An ALGOL 68 Companion

Some uses of a •conditional-clause• which might be
considered unusual, but which tem from the f ct that it is a
•primary• are: c(p I x I y) : = 2.3 , (g I cos I sin) (X) , (
r I x I y) + (s I u I v) c , in .ihich we have use d, for
preference, the shorter represe ntations.

A simplified syntax of the •conditional-clause• is
conditional clause :

if symbol, condition, then clause, else clause, fi symbol.
condition: serial clause.
t he n clause: then s ymbol, ser ial clause.
else cla use: else s ymbol, serial clause.

but the stri s ynt ax in the Heport [R.6.4.1] s hould be studiej
also. One s houl d observe tha a •conditional-clduse• contains
three • serial-clauses• (see fiqure 4.1.a) . Any one such • ser i al ­
cla use• may contain •declarations • and forms a •ran~e •
rl:{.4.1.1. e l . Since a •serial-clause• may cont in more than one
•un·tdry-clause•, thi s 1Iteans that fce:iuent use of abe.9.!_] ~n.sJ o
p:iirs (•packages•), as in ALGOL 60, is not necessary. An e xam pl e
of a •conditional - clause• conta ining a non-trivial •condition•
miqht be:

a1! §!f!ng s; read(s) s = password
then go_to reqular
else go_to irregular
fie

where the value of the •condition• is that of its last
as = passwordc.

A •conditional-clause• is elaborated by first elaborating
the •condition•. If the value of the •condition• is .true ■, then
the •then- clause• is elaborated; otherwise, the •else-clause• is

a (

■ true ■-->--, r------>-------,
I I I

I V
X) 0 X -x

I
■ false ■-------->-------J

Fig.4.1.b

elaborated (see figure 4.1.b). In the first instance, the value,
if any, of the •conditional-clause• is that of the •seri~l­
clause• of the •then-clause•; otherwise, it is that of the
•else-clause•. For example, the •clause•

a (x ~ 0 I x I -x) c
has as its value the absolute value of cxc.

4.2 Simple extensions of the conditional clause

A •conditional-clause• like
nif a then t else if c then d else

if e then f else g fi fi fie
may occur frequently in programming situations. For this reason
an extension [R.9.4.b] is available whereby the same •clause•

.1

An ALGOL 68 Companion 49

may also be written
aif a then b elsf c then d elsf e then f else g fie

The essence of this extension is that aelse iio may be written
□!lsfa, if the corresponding af1o is elided: Using the other
representations, the strict language is

a(a I b I (c I d I (e I f
which may be written

g))) D

c(aJbl:cJdl:elflg)a ,
in the extended language. This saves the programmer the bother
of counting □fies so that they match the number of □ifas. A
schematic flow of control for this •clause• is shown in figure
4.2 in the case where aaa possesses the value •false ■ and cca

a (

r--->----, • true ■

I
a I b I: c I

I I
■ false ■

.------->---------,
I v

d 1: e f g)a

Fig.4.2

possesses the value ■ true ■• Note that in this case the
•condition• aea is not elaborated.

A similar extension [R.9.4.b) exists, whereby the symbols
□tE~Il !fa may be replaced by □!E~!a if the corresponding afia is
elided, but this extension may not be so useful. Because of-it,

□i! a !het b !h~n c ~1~~ a !ta
has the same meaning as

aif a then if b then c else d ii !la
In other representations we .have that--

a(a I: b I c I d)a
means the sam e a s

a(al(blcld))c ,
where the sy mbol □ I :a is used as a representation of the •th e n­
if-symbol•. I t i s also a representation of the •else-if-symbol•
but no confusion can arise. It is worth noting that, provided
the elaborati on of aaa and cha involves no side effects, the
effect of a (a I: b J c)a is the same as that of a(a ~ng b I
c)a, but the fo rmer may be faster.

In the
contains an
allows a~)s~

strict language the • conditional-clause• always
•else-clause•; however, another extension [R.9.4.a)
§.fi.E f!D to 1:e replaced by afia, so that the clause

cif p then ~o_to 1 else ski,E fio
may be written

aif p then go_to 1 fie
In the •assignation• ax:= (a> 0 I sqrt(a))a therefore, some
und efined real value will be assigned to axa, if the value of
aaa is not positive. This ~ccurs because the a~liED will be made
to possess some undefined real value [R.8.2.7.2.a].

4.3 Case clauses

A case clause is
clause•, intended to

also
allow

an extension of a •conditional­
for efficient imflementation of a

50 An ALGOL 68 Companion

certain kind of •conditional-clause•
frequently. The •clause•
□i! i = 1 th~!! X ~1§f i = 2 ih~~ y ~12f i =
may be written

which

□£~§~ i !.!! x, y, z Q~! a~§~£ □
or in another representation,

a(i Ix, y, z I a)a

may

r H.9.4.c,dl. rhe flow of control in such a •chuse• is indicatei

r---->----,-----,-----, --------,
I I I I I
I ■ 1 ■ ■ 2 ■ ■ 3 ■ I
I I
i x, y, z Q!!.t a

I I

Fig.4.J

in fiLJUre 4.L Observe that a(i I x I a)a is not a case clause
for case clauses contain at least two •unitary-clauses• between
the □!£□ and the □Qy!□-

If the reader is now confused over the use of certain
symbols, the difficulties can be cleared away by observing that
~ach of the symbols, •if-symbol, then-symbol, else-symbol• and
•fi-symbol• has more than one representation. The
rl'!pre.ent..1tio11s are ra.3.1.1.a):

•if-symbol• □(if £!§ga
• tl1en-symhol• a I .!:h,g.!! !!!□
•P.lsc-symhol• □ I else Q~,!a
•fi-symbol• a) II-- !§!£□

This mnans th~t th case clr:1us given above 111ight be written
□£!§~ i !hf~ x, y, z I a !i □ ,

and, thou'::Jh most humans would find this nifficult to read, the
computer should not.

necause □lo is a representation of the •else-symbol• dOd
□)a a representation of the •ti-symbol•, the case clause □ (i I
x, y, z I §~.!.P)o may be written □(i I x, y, z) o, using the
c xt - nsion fR.9.4.a] already mentioned atove. Note then, that in
the •assiqnation• ox := (i I 1.2, 3.4)a, some undefin€d real
value will be assiyned to oxo i£ □ in is not ■ 1• or ■ 2 ■, but in
the •assi1nation• □(i I x:, y) := J.4 □, there may be no
detectable effect [R.8.].1.2.c::1 if the value of ni□ is not • 1•
or • 2 ■•

Thare are further extensions of the case clause involving
•conformity-relations• rR.9.4.e,f,g], but we shall delay
discussion of these until •conformity-rela t ions• themselves have
been explained.

4.4 Repetitive statements

Repetitive statements, such as
af~~ i ton QQ so

An ALGOL 68 Companion 51

are not mentioned in the syntax of the language. such statements
are in the extended language [R.9.3.a,b] and can stand in the
syntactic position of •unitary-statements• [R.6 . 0.1.c]. A simple
example of a repetitive statement is

cto 10 do randomc
It is defined to be the eq uivalent of the •unitary-statement•

a~~in in! j := 1 i
m: i! j 5 10 !!!£] random ; j +:= 1;

gg_!,.Q m !..i
~od e ,

however, the reader who consults the Report (R.9.3.a] will find
that the above is a gross simFlification and that there are many
details, such as increments other than ■ 1 ■, which must also be
considered.

A more illustrative example is
o£Q_ i !fQ~ a Bl b !.2 c do x[i] := sqrt(i)o

This is defined to be the equivalent of
abeg~n iQ! j : = a, in!. k = b, l= c;
m: i! (k > 0 I j ~ 1 I: k < 0 I j ~ 1 I !EY~

!!!~~ i!!! i = j ; x[i] : = sqrt (i) ; j + :: k
g.Q_!,,2 Ill £.!

endc
however, this is still not the complete story and may give the
wrong effect if it is considered to be the eguivalent of the
above repetitive statement in a •serial-clause• in which
operations have been redeclared. With this remark in mind the
reader should now examine the extensions,as given in the Report
rR.9.3.a,bJ, to notice how all eventualities h~ve been covered.

and

There are essentially two repetitive statements. They ar e :
a!Qf if~~ a ~J b !Q c ~hilg d QQ ea

D!Q! i f£Q! a ~y b ~hi1@ d QE ea
These differ in that the first form contains a a!QD and the
second does not. Io both forms o!.!~ la or □!:!..I 1o or cwhi!~
ify~o may be elided [R.9.3.c (the statement of this extension is
more precise in the Report) J and if the •identifier• oic does
not appear in the •unitary-clause• aeo, or the •serial-clause•
ado, then a!~f ia may be elided. Notice t hat the control
•variable• (cjo in the above example) of a repetitive statement
is hidden from the prograa~er, so that be may make no assignment
to it. Also notice th.at the use of □for ic means that aia is,
for each elaboration of ado and aeo,--an •integral-constant•
declared within a range which contains both ado and a.ea.
Consequently no assignment may be made to cic. This fact was
used in the examples given above .

Before leaving repetitiv e statements, we sho u ld observe
that the •unitary-clauses• ca, ba and oca are elaborated
collaterally (8.6.2.2.a] and once only, which means, in
particuiar, that a change · n the step size obc or in the upper
bound aca, after the initial elaboration, will not affect the
further elaboration of the repet itive statement.

52 An ALGOL 68 Companion

4.5 Closed clauses

Som examples of •clo ed-clauses• ace o(x + y) a, a (((a))) a
and o~~tl!! Ht!!! x, y ; .read ((x, y)) ; print (X + y) g__!!gc. Note
that either □ ()a pairs (• packs•)< 1 > or □Q~.9.!!! ~!)_g □ paics
(•packaqes•) may be used, but that □ (x +- y e nd□ is not a
•closed-clause• (H.6.3.1.a, 1.2.5.i, 1.0.1.h,i]. ;;--simplific3.
syntax of the •closed-clause• is

closed clause: open symbol, s erial clause, close symbol ;
begin symbol, serial clause, enn symbol.

but the stcict syntax of the Report, involving the use of •pack•
and •package•, should be consu lted [R.6.3.1.a]. A simple parse
of the •closed-clause•, a{x + y) a, is shown in figure 4.5. Since

closed-clause
I

serial-clause-pack
I

.------------
1

open-symbol
I

.1.

a (

I
serial-clause

I

X ♦ y

Fig.4.5

--,
I

close-symbol
I

.1.

) a

the elaboration of a •closed-clause• is that cf its •secial­
clause•, there is little else t o be said about •closed-clauses•,
except perhaps, that a •closed-clause• is a •1=rimary• (as is a
•conditionc1l-clause•) and that the •seci;i.1-clause• of a •closcd­
claus2 • is a •range• [B.4.1.1.e] c:1nd tberefc.ce E,lays a role in
the identification of •identifiers• [R.4.1,2,3J. The former
means that, for example, a • ,!?g.9.J,g b + c ~Q □ is an acceptable
• formula•, though most programmers would prefer to write it as
aa • (b + c) a.

4.6 Collateral phrases

A •collateral-clause• fR.6.2.1.b,c,d,f) consists of two or
more •unitary-clauses• (•units• [R.6.1.1.e)) se1:1arated by
•comma-symbols• a nd enclosed between a a() a pr1ir (•pack•) or a
□ Qegin_ ~n~ □ pair (•p ckage•). l'ln example of a •collater:il­
clause• is □(1.2, 3.4)a. It may be used in the situations
af1:2]E~l x1 = (1.2, J.4)a r 0£Q.!lle.! z;:: (1.2, 3.4) □• In
the first situation the value of the •collateral-clause• is a
r:-ow of values, whereas in the second i is a structure. Thus,
the semantic interpretation of a •collateral-clause• may be
det~rmined by its context. Notice thdt a(a)a is not a I
•collate al-clause•, for, otherwise, there would be an ambiguity I:
in that a (a) a is already a •closed-clause•.

c1> Strictly speaking, "pack" and "package" are protonotions hut
not para.notions (R.1.1.61, so you will not find them used in the
semantic text of the Repoct.

I

An ALGOL 68 Companion

A simplified syntax of the • collateral-clause• is
collateral clause :

open symbol, unit list proper, close symbol
begin symbol, unit list proper, end symbol.

unit list proper:
unitary clause, comma symbol, unitary clause ;
u n it list proper, comma symbol, unitary clause.

53

but tbe strict syntax is rather more complicated (R.6.2. 1] since
it must take care of the two situations hinted at above together
with the balancing of modes [R.6.1.1.g, 6.2. 1.e, 6. 4 .1.d] , an
interesting topic in itself, which should be postponed. A simple
parse of a •collateral-clause• is shown in fig ure 4 .6. If a
•collateral-clause• is useu as a •statement•, then it may be
preceded by a •parallel-symbol•, represented by a~~E c , if
parallel processing is intended [B.10.4].

collateral-clause
I ,----------- +--

' open-symbol
I
I
I
I
I
I
I
I

J.

D(

' unit-list-proper
I

,---.J.----T------1

I I I
unit-list-proper I I

I I I
r---+--, I I
I I I I I

unit I unit I unit
.J.

1.2
J.

,
.J.

X

Fig.4.6

.J. .J.

"J

---,
I

close-symbol
I
I
I
I
I
I
I
I

.J.

) n

The important feature of a •collateral-cla use• is that the
order of elaboration of the •unitary-clauses• of the •u nit-list­
proper• is undefined[R.6.2.2.a]. This means, for example, that
the value of a(i!!t i : = O, j := 0, k: = 0 ; (i : = j+1 , j := k+1,
k := i+1))a could be that of any one of several rovs of t hree
integral values, such as that of a (1, 1, 1) c or a (2, 1,)) c,
etc.

In like manner, a •collateral-declaration• consists of two
or more •unitary-declarations• separated by •c:>mm.a-symbols•,
with the order of elaboration undefined. This mea ns, for
example, that the •collateral-declaration• □ int n := 10,
[1: n]r~~l xla may, or may not, have the effect perhaps i ntended
by t he progra mmer. The object ct~! n := 10 ; [1:n)!~2! xlc would
make more sense. Observe that a •collateral-declaration• is not
enclosed by an •open-symbol, close-symbol• pair or •begin ­
symbol, end-symbol• pair, i.e., neither a •pack• nor a
•package••

54 An ALGOL 68 Companion

4.7 Serial clauses

•Serial-clauses• are put together frcm •unitary-clauses•
with the aid of •go-on-symbols, labels, completion-symbols• and
•declarations• r R. 6. 1. 11. We shall P-xamine this construction by
starting from the simplest constituents. It is expedient, as in
the Report fR.6.1.1.el, to speak of a •unitary-cla use• as a
•unit•. Foe the convenience of ouc explanation, we introduce the
notion •paraunit• (not in the Report) , for a •unit• which may be
preceded y zero or more •labels•. Thus

ax : = 3a
is a •unit•, but for us,

ax := 3a
and

" al2 : x :-= 3 □
are both •paraunits•. The si mplified syntax is then:

unit : unitary clause.
pd aunit: unit ; label, paraunit.
label : label identifier, label symbol.

and although this is a sli ght deviation from the strict syntax
of the Report, we shall have no essential difference when we are
tbrouy h.

A. •clause-train• (R.6.1.1.h]
separated by •go-on-sy~hols•.
examples of •clause-trains•:

is
The

a:x : = 3 □
□ 12: X :=]a

one or moi:e
following are

la

•para units•
therefore

all : y : = 2 ; X :=
aopen (myfile,"abc 11 , tape8) ; restart

rtLl0.5.1.2.b, 10.5.2.2.b]. We may now
syntactic cule, viz.,

: get(myfile,name)c
add another simflified

clause train: paraunit ;
clause train, go on symbol, paraunit.

(cf., (R. 6. 1. 1. h]) . The semantics of a • clause-train• is simple.
The elaboration of the •u nits• proceeds from left to right,
i.e., in the normal seguentia l order, as in most programming
lan uages.

A •suite-of-clause-trains• [R.6.1.1.f,g] consists of one or
more •cl use-trains• separated hy •completers•, where a
•completer• is a •completion- symbol•, represented by c.c,
followed by a •label•. The follo wing are therefore examples of a
•suite-of-clause-trains•:

a :x : = 3c
ell: y : = 2 ; x := 3 □

Cl(i > 0 I 11 Ix: = 1) • 11: y := 2; x := 3 □
A simplifi~d synt~x of a •suite-of-clause-trains• is

suite of clause trains : clause train;
suite of clause trains, completer, clause train.

complete : completion symbol, label.
ru.6.1.1.f,g). The semantics of a •suite-of-clause-trains• is
dramatically different. The effect of the •completer•, as
opposed to the •go-on-symbol•, is to force the completion of the
elahoration of the •serial-clause• containing it and to yield,
as the value of that •serial-clause•, the value of the •unit• I

I.

An ALGOL 68 Companion 55

most recently elaborated. In the last example above, if the
value of aio is ■ -1 ■, then the value of the •serial-clause• is
the value of ax := 1a and the •clause-train• ay := 2 ; x := 3c
is not elaborated; otherwise, it is the value of ex .- 3c. In
fact, the effect is the same as that of c(i > 0 I y : = 2 ; x :=
3 I x := 1)c. One might think that any •suite-of-claus e-trains•
may be re-written as a •conditional-clause• (s uggesting
redundancy in the language) and though this may be true in
theory. the example
a.fQ! k !.Q y£.!2 s Q2 { c = s[k] Ii:= k; l); .!!.!.§~. 1: tcu e □
[R. 10 .5.1.2.n), shows that the •completer• is i ndeed a useful
tool in practical programming. It plays a similar role to that
of the return statement in PL/I or FORTRAN, though in these
languages the return statement applies only to procedures
{subroutines, functions).

A • serial-clause• (R.6.1.1.a] is, roughly speaking, a
•suite-of-clause-trains• preceded by zero or more •declarations•
and/or •statements• but these •statements• may not be labelled.
Examples of •serial-clauses• are

ex : = 3c
cl1: y := 2 x := 3a

c(r > .5 I 11 I x := 1) • 11: y := 2; x : = 3o
cf~! x. y (r > • 5 I 11 I x : = 1) • 11: y : = 2 ; x : = 3 a

er:= random;~~~! x, y;
(r < .5 I 11 x := 1) • 11: y := 2 x :== Jo

and
Df~~1 r r := random ; real x. y

(r < • 5 I 11 I x : = 1) • 11 : y -: = 2 ; x : == 3 c
A simplified syntax of •serial-clause • i s:

serial clause: suite of clause trains ;
declaration prelude sequence, sui te of clause trains.

declaration prelude sequence: declara tion prelude ;
declaration prelude sequence, go on symbol,
declaration prelude.

declaration prelude : single declaration, go on symbol
statement prelude, single declaration, go on symbol.

single declaration :
unitary declaration ; collateral declaration.

statement prelude : unit, go on symbol;
statement prelude, unit, go on symbol.

The rules just given are close to those in the Report
(R.6.1.1.a,b,c,dJ. The reader s hould now examine the rules of
the Report to observe how the metanotions •MODE• and •SORT• have
been carried through the syntax and that balancing of modes may
be necessary when •completers• a re present [R.6.1.1.g].

The elaboration of a •serial-clause• begins with the
protection [R.6.0.2.d] of all •identifiers• and •indications•
declared within it. The protecti on i$ done to ensure that, for
example, all • identifiers• declared within a • seria 1- clause•,
cannot be confused with similar •identifiers• outside it. Users
of ALGOL 60 or PL/I will recogn ize this as the matter of scope,
but the reader is warned that t he word "scope" has a wider
meaning in ALGOL 68 (R.2.2.q.2].

56 An ALGOL 68 Companion

ij.8 Program example

The •procedure-denotation• which follcws possesses a
routine which expects a row of integral values which are the
coefficients of the polynomial

aa[0]•x••n+a(1l*x**(n-1)+ ••• +a[n]c
It then finds all the rational linear factors (those of the form
p•x-g, where p nd g ar-e integral}. It delivers an integral
result, which is the deijree of the residual pclyn omiftl, whose
coefficients remain in □ a□• The number of linear factors is in
or □, any constant factor is in aca and the factors ou(i]•x-v[i] □
are found in the row of integral values auo and cvo ct>.

□EIQ~ factors = (f~!(O:l!n! tthe co fficients of t he given
polynomial¢, ,!! in! r ¢for the number of rational linear
factors¢, c ¢foe the constant factor«, £~!.J Ji..!!~ u, v ¢for
the linear factors (ufi]•x-v[i)), 1:Si:Sri) !..!!! :

Q~~in in~ n : = ~ Q a «the degree of the given polyn omial¢;
r := 0 ; c := 1; ¢initialization¢
~ni1g afn) = 0 gg ¢remove the common power of x~

.!l!£i!l u[r •: = 1 J : = 1 ; v[r] : = O ; n - : = 1 !m!
!2f P· !Q ab§ a[0) Q2

it af o l +: p = o
thgn tp divides a[Olt
!~! q := 0 ; whi!~ (q : = ~£2 q + 1) 5 1t2 a[n) gQ

.U ar n J +: q = o
!.b_gg fl!q divides a[n]¢
1n! f, g «for temporary storage later¢

!f y , , ~~g p =,
then ¢look for constant factor¢
MORE: !2£ j ffQfil O 12 n QQ

if a[j J •: g , o
the] tq does not divine a[j]«
gQ_to NOCONSTANT f! ;

¢remove the constant factor q¢
for j !£2fil O !Q n do a[j] +:= q; c •:= q;
¢g may be a multipl factor so¢ g2-!2 MORE
fi tend the search for a constant factor¢ ;

NOCONSTANT : stti::y (p•x.-q) as a linear factort
g : = 1; f :=a[Ol «try x = g/p¢
!Q!: i !2 n gg f ::: f • q + a[i] * (q •: = i:);

if f = 0
.!.h~.!! ¢ (p•x-q) is a factor¢
ur r ♦: = ,) : = p ; vf r) : = q n - : = , ;
fQ£ i f!:2~ 0 !Q n 12 ¢com pute th~ residual¢

begin ref int ai = a[i J ;
ai : = f : = (a i + f • q) + p ~!![

(n = 0 I .REDUCED I NOCON STANT)
~1~~ ¢if we are here, the n (p•x-q) is net a factor
so try (p•x.+g) ¢ ((q := - g) < 0 I NOCONSTANT)

c1> This procedure is derived from algorithm number 75 in the
Communications of the Assoc. for Computing Machinery, Vol
5 (1962) 48, revised by J.S.Hillmore Vol 5 (1962) 392 and further
revised for the version given above.

An ALGOL 68 Companion

!! ¢end else part¢
!i ¢end iteration on q¢

!! ¢end iteration on pt;
REDUCED : (n = 0 I c *:= a[O]; a(O] := 1) ;
¢the degree of the resid ual polynomial is¢ n
~!!~D ,

57

In the range of the •declaration• a[0:3Ji.n! a1 : = ([]i.nt:
(1, -1, 2, -2))[ii0], .!!!..!: k, number,. constant, (1:3H!!t m1, n1 □,

a •call • of the above •procedure• might be
ck:= factors(a1,nurnber,constant,m1,n1)c ,

whereupon we should have ok = 2, al= ([)!.!!!. :(1, O, 2, O))[@O],
number = 1, constant = 1, m 1 = (1) , n 1 = (1) a, corresponding to
the factoring

ax**3 - x**2 + 2*x - 2 = (x**2 + 2) (:x - 1) a
observe that in the •clause• obegin ref int ai = a[i] ; ai . - f
:= (ai + f 11< ',l) + p en!!a, the programmer may optimize his
subscript calculation, rather than leave this delicate matter to
the whim of the compiler writer. On a non-optimizing compiler,
of which there may be many, thi s possibility has clE'!ar
dividends. Note also tha •assignation• a : = f * q + a(i] • (
•:= p) o, which ceplaces two statements in the original ALGOL 60
version.

Review questions

4.1 Conditional clauses

a) What is the value of o (0 < 0 I 1 i 2 I 3) a?
b) Is aJ,f x < 0 _!:.!!~!! 9,.0 tg errora a • conditional-clause•?
c) Is a(x > 0 I a I b) Q! cc a •selection•?
d) Is ca 2f. (x > 0 I b I c)c a •selection•?
e) Is a (r I m I n) < (s I i I j) a a •formula• 7
f) Is □if x > 0 !Dg!! x el§~ y f! := 3.14a an •assignation•?

4.2 Simpl e extensions of conditional clauses

a) What is the value of D (1 < 2 I : 3 < 4 I 5 I 6)a?
b) What is the value of a(1 > 2 I : 3 < 4 I 5 I 6) a?
c) What is the value of a(lE!!~ I 5 I 4) + (!~!.§~ I 3 I 6) a?
d) Simplify the following using the extensions:

a_g P !h~n a ~!§~ !!. q thgn .!! r !hQ!! b g!§g C !i g.!!H §~.!£
!! !.!a.

e) Remove the extensions inc(a 1: b I c 1: d I e)c.

4.3 Case clauses

a) Is a (1 I 2 I 3) a a case clause 7
b) What are all the represent ations of the • if-symbol•?
c) What is the value of a(2 I 3, 4, 5 I 6)a?
d) Wha t is the value of a(0 I 3, 2, 1 I 2) g?
e) Is a (2 I a, b, c) Qf da a •selection•?

4.4 Repetitive statements

58 An ALGOL 68 Companion

In each of the following, is the object a repetitive
statement, and if so, how many times is the •unitary-clause• aea
elaborated?
a) a!Qf i 92 e while (i < 9)a
b l afQf i ~Q ,o-~i-2 QQ ea
c) ado ea
d) awhile !~!2~ .QQ ea
e) a!Q_O_.Q.Q ea

Comment on the scopes of cia in the following:
f) afor i from 1 ~y 1 !Q 10 .QQ i := 2 * i + 1a
g) a}rr! i :;-s; !Qf i fr2~ 1 Q! i !Qi-:= 1 12 a[iJ .- i * ia.

4.5 Closed clauses

a) Is a (x / y) a a •closed-clause•?
b) Is a (p I 1) o a •closed-clause•?
c) Is a (x := 1 ; y := 2 ; z) := .la an •assignation•?
d) Is aif x := y; z := 2 fia a •closed-clause•?
e) Is aiiii!! x : = 1 ; y :=-~)o a •closed-clause•?
f) Is a (a ; b , c) c a •closed-clause•?

4. 6 Collateral phrases

a) Is c (X) a a •Collateral-clause•?
b) Is a (1 ; 2 , 3) a a •collateral-clause•?
c) Is a (1 I 2 , 3) a a •collateral -clause•?
d) What is the value of a ("a", 11 h 11 , " c ") + ("d", "e") a?
e) Is it possible that the value of

D (!.!!!: i : : 2, j ! = 3 i (i +: = j , j + ! -= i)) a
might be the same as that of o(7,5)a?

4.7 Serial clauses

a) Is axa a •serial-clause•?
b) Is a (p I x I 1) • 1: ha a •serial-clause•?
c) Is u3. ea a •serial-clause•?
d) Is a(x := 1 ; y := 2)a a •clause-train•?
e) Re-.,rite the following •conditional-clause• as a •serial­

clause• containing a •completer•.
o (x Qf y I n : = 1 ; r I n : = 2 ; s) a

4.8 Program example

a) How many occurrences of a •conditional-clause• are there in
this •particular-program•?

b) What is the mode of cao?
c) What is the mode of aai □?
d) How many occurrences of a •closed-clause• are there following

the •label• aNOCONSTA~T :a?
e) How many occurrences of a •collateral-clause• are there?

An ALGOL 68 Companion

5 Routine denotations and calls

5.1 The parameter mechanism

59

we begin this chapter with a simple illustrative example of
the •declaration• and use of a nonsense •procedure• aupo which
has two •parameters• oan and □ ba, and whose effect is to
increment the •real-variable• ca □ by the •real-constant• cbc. Io
ALGOL 68 the defining occurrence of such a •procedure• is in the
•identity-declaration•

oE.£oC up = (£ef r~! a, 1~~! b) : a+:= be
and its •call• might be oup(x, 2) c or aup (x1[i], y)a. In ALGOL
60, a procedure with similar effect would be declared by

D£.£Qf~.Q..!!fg up(a, b) ; yal_g_g b ; £~~1 a, b ; a := a + be
and its procedure call might a lso be nup(x, 2)a or aup (x1(i],
v)a. In PL/I the same procedure might be written

UP : PRO C (A, B) A = A + B ; END ;
and its call, CALL UP (X,2EO) or CALL UP (X1 (I), (Y)). In FORTRAN
it would be

SUBROUTINE UP(A, B)
A = A + B
RETURN
END

with call, CALL UP(X, 2.0) or CALL UP (X1 (I), Y).

We have des=ribed this Frocedure in more than one langu ge
in order that its in tended .ffect should be clear to all. •r he
reader will notice that we are concernea with that which, in
ALGOL 60 terminology, is known as a 11call by name" and a "call
by value". This has become the accepted way of describing the
f ct that in the •call• aup(x, 2)a, axe ·s passed by name to aa □
ana c2 □ is passed by value o obo. The manner in which values
are passed at the time of •call• is generally known as the
11 parameter mechanism 11 •

we shall not describe here the various parameter mechanisms
in other languages, except to say that the student is likely to
find this to be the most confusing and perplexin sut:ject area
in the study of programming languages. Each language has its own
philosophy and usage, with treacherous traps for the unwary. ie
hope to show, in this chapter, that the parameter mechanism of
ALGOL 68 is ex=eptional ~n its clarity, encourayiny the
programmer to state precisely the mechanism he w·shes to use,
rather than to rely upon the conventio ns of a given language or
the whim of an implementer. There are essentially no new irteas
involved beyond those which we have encountered in earlier
chapters. A thorough understanding of the •iden ti ty-dec lara tion•
is all that is oeeded. The read r may soon wish to forgive us
for spending so much time on the explanation of it in chapter 2.
The ALGOL 68 parameter mechanism is defined in terms of a
logical application of the •identity-declaration• to that
internal object, known as a "routine", which is the val.ue
possessed by a •routine-denotat ion•.

60 An ALGOL 68 Companion

5.2 Routine denotations

The object
c ((£~!: £~~1 a , £~!!.! h) : a + : = b) c

is an example of a •routine-denotation• [R. 5. 4. 1. a] and is
essP.ntially what stands on the riyht of the •equals-symbol• in
the •declaration• of oupo given in secticn 5.1 above. one may
notice that the enclosing symbols □(□ and c) □ have been omitted
in saction 5. 1, but this i s only because of an extension
[R.g.1.d] which allows such omission in this situatio n. A
•routine-denotation•, like an y other •denotation•, possesses a
value, a routine, which is an internal object. This internal
ob;ect is a cP.rtain seguence of symbols, easil y derived
r R.5.4.2] from the •denotation•. For example, the routine
possessed by

is
• (£~!£~~!a= §!!E, !:~~! b = §!!E; a+:= h) •

and it is important to notice that it has the shape
•closed-clause•, in which each of the •parameters• □ ao and
forms par-t of an •identity-declaration•.

of a
ab □

As we have seen in section 2.5, an •identity-declar-ation•
causes the value of its •actual-parameter• (the pact to the
right of the •equals-symbol•) to be possessed cy the
•ioentifier• of its •formal-parameter• (the •identifier• to the
left of the •eguals-symbol•). t his means that in the •identity­
dec 1 a r-a tion•

0££.Qf up = ((£~! £~!!! a, !~~.! b) : a + := b) a
the •identifier• oupa is made to possess the r-outine

• (£~!£~~!a=§~!£, £~!!1 b = 2!!£; a+:= b) •
Figure 5.2 shows a simple parse of this •identity-declaration•.
The •routine-denotation• i s shown at 1 and the routine which it
possesses at 2. After the elaboration of the •identity­
declaration•, the •identifier• □ upo, possesses the same routine

dee la r-a tion
I

r----------T-------~----------------,
I I I

formal-parameter equals-symbol actual-parameter
I / I

____ .a..___ I ----------- ___ .J_ _____ (1)

CE!:Qf up = ((£~!!~!!!a, £~~1 b) : a+:= h) □

,----------------
: (2)

r------------------~----------------------,
I• (!~!: £g~1 a= §!lE, E~~1 b = §!!E : a+:= b) ■ I
L--~

r---.L--,
I • (£~! !:~!!1 a= §!!E, £~~! b = §!iE ; a +:= b)•I L--------------------------- ___________ J

Fig.5.2

t

I:

An ALGOL 68 Companion 61

(see figure at 3). The elaboration of the •call• aup(x, 2)c is
now easy to describe. Its effect is to replace the two a2~!£as,
in a copy of the routine, by cxo and c2a respectively and then
to elaborate the resulting external object

a(ref real a; x, real b = 2 ; a+:= b)a
as if it were -a-;closed-cl;use• standing in the place of the
• call• aup (x, 2) o.

It is perhaps now clear why the left part of an •identity­
declaration• is known as its •formal-parameter• and the right
pact as its •actual-parameter•, for these are precisely the
roles which they play in the parameter mechanism. Not only does
the •identity-declaration• play a central role in suc h a
mechanism, but its power, which the implementer of any language
must of necessity provide, is placed in the hands of the
programmer to use as he sees fit. Thus, cf~!!~~! x1i = x1(i)a
might usefull y be used to optimize addr~ s calculation while
working with the vector oxla. An example might be

cxli := 3 * x1i + 2 * x1i ** 2a
rather than

ox1[i] := 3 * x1(i] + 2 * x1[i] ** 2o

5.3 ~ore on parameters

It is perhaps worth dwelling on the name-value relationship
created by the parametec mechanism for the example in section
5.1. The •closed-clause• which is elaborated as a result of the
•call• cup(x, 2)a is

a(t~! I~~1 a= x, !~alb= 2 ; a+:= b)a
and the elaboration of the •collateral-declaration• which
follows its •open-symbol• results in the relationships depicted

0 0

o o (1) o o
0 0
L-)T(_J

r--.L--,

I I L ______ J

Fig.5.3.a

(2)
r-----L-,

I • 2• I
L------J

r----,
I • 2 • I
L_ ____ J

in figure 5.).a. During the elaboration of the •call• cup(x,
2)o, cac possesses the same name as that possessed by o~c (see
figure 5.3.a at 1), an<'I oba possesses the same value as that
possessed by a2a (see the t· gure at 2). This 1neans that t he
•formula• ca+: = ba has the same effect as if it were written ax
+: = 2a. Both aaa and axe have a mode which begins with
•reference-to•, a requirement of the left •opecand• of the
•operator• c+:=c [R.10.2.11.e). Note also that if the •call•
were cup (x, y)a, then the •closed -clause• would contain the
•declaration• areal b = yo and this would invclve a
dereferencing of~;~; depicted in figure 5.3.b at 1. Observe, in

62 An ALGOL 68 Companion

this figure, that aye , considered as an •identifier•, possesses
a name of mode •reference-to-real• (see 2) but considered as an
•actual-parameter•, it possesses a value of mode •real• (see J).
The coercion occurs at 1. We may say, in general, that if a
•parameter• aaa is considered as a •variable• referring to a
value of mode specified by □! □, e.g., if an assignment is to be
made to aaa, then the •formal-parameter• sbculd be □ E!{ ! aa,

identity-declaration
I

r--------------Ti -----,
I I

formal-real - parameter equals-symbol
I

actual-real-parameter
I I

r----''----

1
formal-real­

declarer
I
I

, I
I I

real-mode- I
iu.en tifier I

I I
I I
4

b

,-i---,
1 ■ 3.14 ■ 1
L_ _____ J

i

Fig.5.l.b

(]) :

I
strong-real-base

I
(coercion) (1)

I
reference-tc­
real-base

i

ya

r--L--, o
I ■ 3. 14 ■ 1--<--o o (2)

0

but if aba is u~ed only as a •constant• of mode am□, then the
•formal-parameter• may be n! ba.

5.4 The syntax of routine-denotations

A •routine-denotation• consists of a •formal-parameters-
pack• followed by a •cast•, both toyether enclosed between the ~
symbols a (a and a) a. Thus in

a((ref real a, real h) : a +:= b) a
the object o(rg! ~!~1 a, Egal b)a is the •formal-parameters­
pack• and a: a +:= ba is the •cast•. A simplified syntax of a
•routine-denotation• is

routine denotation :
open symbol, formal parameters pack, cast, close symbol.

formal parameters pack :
open symbol, formal parameter list, close symbol.

formal parameter list: formal parameter ;
formal parameter list, gamma, formal parameter.

qomma : qo on symbol, co mma symbol.
but the strict syntax rR.5.4.1) contains metanotions which
ensure that the number nd th modes of •parameters• in •calls•
m- tc h those in the •ro uti ne-d~nota tion •· Figure 5. 4 shows a
simple parse of a •coutine-denotation•. We have alceady alluded,
in section 3.7, to the fact that •actual-parameters• in a •call•
may be separated by either a •go-on-sjmbol• or by a •comma­
symbol•. Now that we have seen that the elaboration of a •call•
amounts to the elaboration of a •closed-clause• in which the

An ALGOL 68 Companion 63

•formal-parameters• of the •routine-denotation• become
transformed into •identity-decla rations•, it is at once apparent
that a •comma-sym bo l• separating •formal-parameters• becomes a
•comma-sy mbol• of a •collateral-declaration•. This means that
the •parameters• are eiabora ted collaterally. The •go-on­
symbol•, on the other hand, woul d result in • declarations• which
are elaborated serially. To take a specific example, the

routine-denotation
I

r----------------r---'------
1 I

open- formal-parameters-pack
sy bol I

I
r------------r--L---------,
I I I

open- formal-parameter- close-
symbol list symbol

I I I
I r----r4-----, I
I I I I I
I formal- gomma formal- I
I parameter I parameter I
I I I I I

I
cast

I
I
I
I
I
I
I
I
I
I
I
I

.L

a(

.L ____ .a. ____ _
J..

.L -----'-----

f~.! f!:H!.! a

Fig.5.4

•formal-parameters-pack•
a(!ni n, [1:n]f~~.! u)a

may be transformed into

: ~ + := b

□!!!in= 10, [1:n]!~~.! u = x1 ;a
but the • formal-parameters-pack•

a(!nt n; [1:n)f~~.! u)c
may be transformed into

I
close­
symbol

I
I
I
I
I
I
I
I
I
I
I

.&.

) D

□i!!! n = 10 ; [1:n]fg~.! u = x1 ;o ,
which is more useful since its elaboration is vell defined. The
particular choice of the •gamma• vhich separates •form3.l­
parameters• is therefore of significance but that which
separates the •actual-parameters• of a •call• has no semanti=
significance.

The semantic s of a •routi ne -denotation• [R.5.4.2] tells us
how the routine which it possesse s is obtained. The ess ential
poin ts are, that an • equals-symb ol • followed by a •skip-s ymbol•
i s i nserted after each •formal -p arameter•, that th e •open­
s ymb ol• which begins t he •formal- pa rameters-pack• is de let ed and
t hat its •close- symbol• is c ha nged into a •go-on-symbol•. The
more precise sta teme nt in t he Beport [B.5.4.2] should be
studied.

A further example of a •routine-denotation• is
c((f~~1 x)t~~±: random• x)a ,

where the second occurrence of cf~~.!a (part of the •cast•)

64 An ALGOL 68 Companion

indicates that the routine is to deliver a value of mode •real•.
The example in section 5.1 delivers no value and therefore uses
a •void-cast• (whose •virtual-declarer• is empty). Note that

areal : random• 100a ·
is not a •routine-denotation• despite the fact that it may
appear in the •declaration•

DE£Q£ f~gJ r100 = f~~1 : random• 100a
however, the coercion known as 11 proceduring 11 [R.8.2.3.l.a]
enables the identifier ar100c to possess the routine

• (real : real: random r • 100) ■
Actually, it is only-necessary to write

DEfQ£ I2~J r100 = random• 100c
and then the routine possessed by ar100c will be

• (I2~1: random* 100) ■

5.5 What happened to the old call by name?

In explaininy the parameter mechanism of ALGOL 60, it is
customdry to consider an examfl e something like

aQrOf~QYf~ upa(a, b) ; Y~1]~ b; £~~± a, b ;
Qg3!~ i := i + 1 ; a := a+ b ~TI~ O

and to explain that, in he scope of the fragments Cf~~l _ffil
x1 f1:10]; in!,,gg~f i; i := 1a, the proceduC'e call aupa(x1(i],
2) a 1o1ill, to the astonishll'ent of most, increment the value of
ax1[2]□ rather than that of ax1(1Ja. This is a result of the
semantic descript · oa of procedure calls in ALGOL 60 [N.4.7.3.2]
involving what is usually r-eferred to as the "copy rule". In
ALGOL 68 a routine which achieves a similar effect, for simple
•vacidbles• (not •slices•) passed to oaa, is

□£rOf upd = (f~E Egal a,£~~~ b) (i +:= 1 ; a +:= b)c
but the •call• oupa(x1fi], 2)cin the range of cf1:10Jre~! x1;
i!!.!: i :-= 1 □, will increment the value referred to hy ax1[1 Jc ctn:i
not ox1f2]er. rhus the passing of the •parameter• cx1[i) □ by
name, as it was known in ALGOL 60, is not achieved, in ALGOL 68,
by using the •formal-parameter• D£gf r~_! aa. The resulting
•'d ntity-declaration• ore!£~_! a= x1[i Jc is el borated at the
tim of entry to the routine and the old copy cul of ALGOL 60
a oe s not a pp 1 y.

In the case of expcessicns dUd subscripted varidbles, this
copy cul of ALGOL 60 amounterl to the passing of a procedure
body to the formal p~rdmeter and was used by a generation of
instructors to impress students with the itlea that ALGOL 60 is a
nice lanq uaqe in w hic.h nice things can be dcne in a nice way.
How ver, the ni=eties of it wece often too subtle for the
beginnec, who thus fell into the trap of using a powerful device
when it was not necessarv for him to do so. We may now perhaps
look back upon it as a design imperfection in ALGOL 60. Ther-e
should have been a <name pa.rt> rather than a <value part>
r N. 5. 4. 1 7. A language should be such that the least effort by
the programmer calls up the simpl st implementation schemes. If
be wishes to use a more powerful scheme, then be should be m de
aware of it by the necessity far writing a little more in his
source pr:oqram.

To recapture the strange effect of the call by name of

An ALGOL 68 Companion 65

ALGOL 60, the example mentioned above should appear as
DflfQf upb = (~~Q~ f~! £~~! a, f~al b) (i +:= 1: a+:= b)o,

for then the ficst •declaration• arising from the •call•
aupb(x1fi], 2)c is o.E,£2_£ :£~.! I~~1 a = x1[i]a. In this case the
elaboration of ax1[ila occurs at the time of the deproceduring
fR.8.2.2] of aao in aa +:-= bo, and not at the time of parameter
transfer. Thus cx1[2)a is incremented and not cxl[l]c.

The occurrence of ax1[i]c in □.eroc ref real a= x1[i Ja is
another example of a •procedured-coercend• for oxl[i]c is not a
•routine-denotation•. Nevertheless, the •identifier• oao is made
to possess the routine ■ (£~! f~~!: xl[i])• by a coercion known
as proceduring [R.8.2.3].

5.6 Program example

The following algorithm finds all trees which span a non­
directed graph ego < 1 >. The ed ges radiating from node •i• in the
graph are represented by bits in the i-th bits structure of the
row-of-bits ago. A set of nodes is also represented by bits of a
bits structure, the j-th node being represented by the j-th bit,
whicb is ■ true■ i that node i s present.

The set of nodes in the growing trees (saplings) is csa.
The edges in a family of sapl ings are recorded in aaa, which,
like age, is of mode •row-of-bits•. The boundary of as□ is the
set aba of nodes neiqhtouring the nodes cf cs □• Initially as□
contains only node ■ 1• a nd □bo i ts neighbours, i.e., ag[1Jc. The
recursive routine aqrowa iterates over the nodes in abo. For
each node ■ i ■ in aba it finds all possible edges (new growth)
from asa to node ■ i ■• This new g rowth is recorded in oac and
removed from ago. The node ■ i ■ i s removed from the boundary ab □•
The procedure cgrow □ is then c alled recursively with the nodes
of the sapli nqs augment d by node • i ■ and the boundary a ug mente3.
by n ighbours of node ■ i•.

Since the standard □ tits widtha (or olcng bits widtho) may
be larger than the number of nodes, a □maskc is necessary to
mask out the redundant bits when testing bit patterns.

If the number of nodes exceeds obits widtha, then the
•mode-declaration• for □~a, in the first line, should be changej
accordingly. If sufficient precision is then not available, one
may use the mode •row-of-boolean•, with suitable declaration of
the operations involved.

As an example, for the graph
1 (2,3,4), 2 (1,3), 3(1,2,4), 4 (1,3)

the algorithm generates eight trees in four families

1 () ,
1 () ,

2 (1 l ,
2 (1) ,

3(1,2),
J (4) ,

4 (1, J)
4 (1)

(4 trees)
(1 tree)

<t> Translated from Algorithm 354 by M.Douglas Mcllroy. Comm.
Assoc. Computing Machinery, Vol 12(1969) p. 511.

66

1 () ,
1 () ,

2 (3) ,
2 (]) ,

An ALGOL 68 Companion

3 (1) ,
J (4) ,

4 (1,3)
4 (1)

(2 trees)
(1 tree)

abeEin mode b = bits ¢or long bits, if necessary¢ ;
.Q!:.Qf trees = ([1:] .Q g ¢the given graph¢,

£f.Qf ([)!!)f ¢the action for each fat11ily¢)
h~9.!!! .in.1 n = ~.EQ g ¢th. nu mber of nodes in the graph¢;
f1:nlQ a ¢the growing fruil y, saplings¢;
b t; h flips= t Q!.., t ¢al l flips¢ ;
Q u n it= -.(flips !rn -1) ¢a flip followed by flops¢,

mask = .., (flips !!E -n) ¢for masking redundant bitsrt;
.2!2~ grow= (!:.~.![1:nl.!! g ¢the residual graph¢,

.Q s ¢the nodes of the saplings¢,
!:.~! .Q b rttoundary of the saplings¢):

ifs~ mask
~li~~ ¢the family is complete, so¢ f (a)
~1§~ for i ton do

if i-elem-b --
iE~rr ¢examine each node of the boundary¢
!! uniti = unit .!!£(1-i) rtonly the i-th bit is flip¢;
b := t ~]g.., uniti ¢remove node i from the boundary¢
af il := g[i] 5!.!!9' s itthis is the new growth¢;
q[i l : = q[i) 5!.!!9' .., s ¢remove the new qrowthit;
qrow (1.Q.f [1: n]Q := g t. pass a copy of the residue¢,

s BI uniti ¢the family now includes node i¢,
JQ.f !! := b 2! gfi] ¢the boun3ary is augmented by
the neighbours of node i¢)

(.., g[i) ~ mask I ¢we cannot move¢ out)
!.i:

out : §.H.E
!.! :

(n ~ 1 I a[1] : = --. flips) ;
grow(lQf [1:n)Q := q ¢start with a copy¢,

unit ¢start with node 1¢,
12£ ~ := g[1] ¢the neighbours of node 1¢)

In the above, the procedure aqrowa has two •calls • . rhe
•call• preceding the final □ endc, which starts the whole
process, and another recursive--•call• within the •routine­
denotation•. In both of these •calls•, notice that the first and
third •parameters• must be •variables•. Moreover, new copies of
these •variables• must be passed. A convenient way to do this is
to use •local-generator:s• . The second • rarameter• is a
•constant•, and no assignment is made to i t .

Review questions

5.1 The parameter mechanism

a) Is the f o 11 owing an •id en tit y- d ec 1 a ration • ?
□!:,g~! Ef.Qf P = (Eg5!! a) !~11: a * ao

An ALGOL 68 Companion

b) Is the following an •identity-declaration•?
aEroc(real a)real p = a • aa?

67

c) Give a •declaration• for a •procedure• ar2c which has no
•parameters• and delivers a random real value between •0 ■
and ■ 2 ■•

d) Give a •declaration• for a •procedure• amaxa with two •redl­
parameters• which delivers the larger of the two.

e) Give a •declaration• of a •procedure• □ recipe which acceptG a
•real-variable• and replaces it by its reciprocal.

5.2 Routine denotations

a) Is argf !:£~! xy = x * yn an •identity-declaration•?
b) What is the •formal-parameter• of (1 :3)£~~1 x1 :~ (1, 2, 3) o?
c) If □ pa possesses the routine ■ (f~~l a= §!i~, !'~~! h = §!i~;

a • b) ■, what •closed-clause• is elabm:ated by the •call
ap(x+1, y)a?

d) What is the value possessed by the •;le notation• u((!:~~l a)
real : a * a) a?

e) What- is the value possessed by the •denotation• D(!ll! n, m;
f~![1 : n 1£.g~! a 1) f~~l : (n < m I a 1 [n) I a 1 (m l) a ?

5.3 More on parameters

In the reach of D_!~~.± X : == 1. 2, y :~ 3. 4 a, what is the value
of ap(x, y) D

a) in the reach cf Dj?_!.Q£ p = (real a, b) 1. 1 a?
b) in the reach of

DE!.Q£ p = (£~~! a, fg! !:~~l b) I£~1 (b +: = a : b) a?
c) in the reach of

D.[!fQ£ p = (!:~! !~~1 a, b) E~.! real : (> 2 I a I b) a?
d) in the reach of D_.E_!Q£ p = (£~! firfg~1 a, E~1 !'~~! b)f~~l :i

: = ba?
e) in the reach of □1:?!Qf p = Ir)!~~,! a, b) !:~~1 : b[1] - a[1]a?

5.4 syntax of routine denotations

a) Translate the following into ALGOL 68:
a£~g£~gyf~ p(a, b) y~l,yg a iE!f9~E a, b

b : = b * 2 * aa.

5.b Proqram example

a) rs aunita a •constant• or a •variable•?
b) Why is a o~~!c not necessary in the •formal-rarameter• ab sa?
c) Why is an •actual-parameter• aJ2£ := g[i]a used in the last

•call•?
d) Why was ate not initialized?
e) If ana is ■ 3 ■ and obits widtho is ■ 8•, what is the value of

amaskc?

68 An ALGOL 68 Companion

6 Coercion

6.1 Fundamentals

coercion is a process whereby, from a value of one mode, is
derived the equivalent value of another mone, e .• , the r al
value possesse by o2.0o is equivalent to (R. 2.2.1.1.d) the
integral Vdlue ~assessed y o2c. Derivation of an equi valent
value is usually accomplished automatically, i.e., by no
conscious effort of the programmer. An example is

c r ea 1 x : = 2 o
where the value possess d by c2c is of mode •integral•, but the
value which is assigned must be of mode• eal•. Such coercions
are well known in other languages and are usually describej
semantically. In PL/.t there are extensive tables [P. Part rr,
Section F] in which the programmer may find what action to
e~pect given the attributes of a source and those of its target.
Coercion in ALGOL 6H is described by means of the sy ntax, most
of which is in section 8.2 of the 8eport.

The particular coercions which are elaborated are generally
detP.rmined by threl:! things, viz., 1) the a priori mode, 2) thP. a
posteriori mode and 3) the syntactic position, or "sort". A
•cast•, which was discussen in section ~.13, is useful object
i •n which to illustrate coercion, for that is usually its m:iill
purpose. we recall that a •cast• consists of a •declarer•
followed by~ •cast-of-symbol• followed by a •unitaty-clause•,
which is in a strong position. For example, in the •CdSt•

ot"eal : 2o
the a priori mode of o2a is-;integral•, the a post . riori mode of
its •unitary-clause• is thc\t specified hy it •de:::lal"er•, viz.,
•rettl•, and the "sort" of its •unitary-clause• is "strong". The
p'.ltticular coer:::ion called into play i "w ide ninq" from
•inte,Jral• to •real• and is governed hy -1 syntactic rule
r IL8.2.5. 1. a], whose detail we will not now unravel.

6.2 Classification of coercions

There are eight different
"dereferencing", as in

"neprocedurinq", as in

11 proceduring", as in
a:£~!!1 : random□

"uniting", as in

"widening" , as in
aunion(int, bool)

11 rowinq", as in

11 hippinq", as in
0£~!!1: .§11:ED

and "voiding", as in the •void-cast-pack•
Cl (: p) D

coercions.

These coercions are classified into subsets as

They are

follows:

An ALGOL 68 Companion 69

dereferencing and deproceduring are together known as "fitting";
these two together with proceduring and uniting are known as
"adjusting"; and all eight are together known as 11 adapting". The
reader will find that this teiminology is used in the
metanotions [B.1.2.3.k,l,m]. A diagrammatic scheme is shown in
figure 6.2. some of the above examples would not normally appear
in u seful programs. They are chosen for illustrative purposes.

COERCION TREE

strong •••••• ADAPTED
t----
1

,..----T-------,
I I I

1 widened rowed hipped voided
firm •••••••• ADJUSTED

1------------r-
l I
I procedured

,
I

united
weak •••••••• FITTED

!-------------------,
I I
I dereferenced

soft ••••••• deprocedured

Fig.6.2

6. 3 Fitting

The result of dereferencing a name is to yield the value to
which it refers. This has been touched upon already in section

strong-real-unit ••••••••••••
I (2)

strong-real-base
I

strongly-dereferenced-to-real-base
I (3)

reference-to-real-base
I

reference-to-real-mode-identifier
I

CXC
: (1)
0 l

o o->-,4 ~ •••••• :
0 L-------

Fig.6.3

2.12 and elsewhere. Figure 6.3 shows the parse of cxc as a
•strong-real-unit•. At 1, in the figure, axe, as an
•identifier•, possesses a name and envelops the mode •reference­
to-real• and at 2, as a • unit•, axe possesses a real value an1
envelops the mode •real•. The coercion is shown at 3.

70 An ALGOL 68 Companion

The result of deproceduring is the elabon tion of a routine
(without parameters). e.g., the •cast• ai;:~~l randoma forces
the elaboration of the routine possessed hy arandoma and
delivers the next random real value as the value of the •cast•.
Both dereferencing and deproceduring are classified together as
"fitting" fR.1.2.3.m], and are the two coercions which occur
most f reg uentl y.

6. 4 Ad justing

Both proceduring and uniting, together with fitting
(dereferencing and deproceduring) are known as "adjusting" dnd
are so grouped because they can all occur in certain syntacti=
positions.

The result of proceduring is a rootine. For example, the
value possessed by the •cast• □E!Q~ r~l: x1(i]a is the routine
•(!!~1 x1[i]) ■ • It may be recalled, from section 5.2, that a
routine is syntactically si~ilar to a •closed-clause• and that,
in the case where there are no •parameters•, there are no
•routine-denotations•. The proceduring coercion makes them
unnecessary.

Uniting has only a syntactic effect. In the terms of the
Report, the elaboration of a united •coercend• is the same as
that of its pre-elaboration [R.1.1.6.i]. This 11eans that no
change of value is involved. Actually, an implementation will
find it necessary, upon uniting, to attach to the value some
recorj of ito mode, so that this mar b tested later, especially
if a •conformity-relation• is involved, but the particular
details of the implementation mechanism is not of concern to the
programmer. He should, however, be aware that it prohatly occurs
and thus not make use of united modes unnecessarily. The subject
of unions is an advanced topic which we shall postFone to
chapter 7. Uniting occurs, for example, in □union (int, bool)
!:rn~o.

6.5 Adapting

The coercions known as widening, rowing, hipping ind
voidiny, together with adjusting are collectively known as
11 at1apting 11 and form the set of all possible coercions in the
languag e . Thes e are so grouped because they can all occur in
c rtain syntactic positions.

The effect of widening i s to deliver a value of one mode
whidh corresponds to a given val ue of another mode. One may
widen from •integral• to •real• (R.8.2.5. 1.a] and from •real• to
comple x ribid. b]. Consequently, each of the following possesses
the value ■ true■:

□ (£~!1: 2) = 2.00
o (£Q.!l!.! : 2) = 2.0 i O. Oc

One may also widen from bits to •row of boolean• [ibid. c] and
from bytes to •row of character• [ibid. d]. If ab its width a is
■ 4 ■, then o([)~22!: 1Q1)o has a value which is that of o(!!!§g,
true, false, true)o. Similarly, if abytes widtho is ■4 ■, then

An ALGOL 68 Companion 71

c(§!!ing: £!~ "abc") = "abc~"c possesses the value • true ■
(assuming that the anull charactera [R.1O.1.1] is"-~"). More
than one coercion may be involved in one •cast•, e.g., af.Q~£1 :
in requires first a dereferencing of aia to yield an integral
V¼lue, a widening of the value to •real• and ancther widening to
complex.

The effect of cowing is to deliver a multifle value which
is a row of zero or on elements. It occurs, for example, in
ar lf~~.1 :a and in a[]int : 2 □• The value in the first case is a
row of zero eleme nts, each of mode •real•. In the seco nd case
one obtdins a row of one el ment of mode •integral•. Not e that
a[, l!!!.! ().!!!! 211 involves two consecutive rowings whic h
result in a one by one matrix. The s ame effect can be ot:taine:i
by a[,]in! 2 □, since rowin') is recuC'sive [R.f:1.2. 6. 1.a). The
•ca st• o[,).Q.QQ1 :a will deliver a boolean matt:'ix with one row
which has no columns. Note that when a canst nt is I:'owed, the
result is a •constant• multipl e value, but if a •vaC'iable• is
rowed the result is a multiple •var · ble•. This effect is
achieved s ynta ctically by the metanotioo •REF8TY• ih the rule
for rowing (R.8.2.6.1.a). Thus, D!:~U]!:.!!~:!.: xa will have the
effect of creating a new multiple value whose only ele ment is
ox □ and the •identity-relation• □ (£~fl)£~~!. x)[1] :-=: xa
possesses the value ■ true• no mattet what value is referred to
by axa. Of course, it is arranged [R.8.2.6.1.b] that an empty
cannot be rowed to a •variable•, i.e., □ (!~.H]!~!!1 :)a is
syntactically-invalid.

The coercion known as hipping takes care of the •skiµ•,
□e!1E□, the •nihil• □!!ilc, and •jumps• like □~Q_to novosibirska.
This coercion is somewhat different from the others in that, if
it occurs, then no other coercions may take place. Beth the
•skip• and the •jYlmp• may be coerced to any mode, but the
•nihil• may be coerced only to a mode which begins with
•reference-to•. The elat:oration of a •skip• delivers some
(un defined) value of the required mode, e.g., the value of ofg~!.

§~!QO is some real value. The value of a •nihil•, represented
by □g!.! □, is a unique name which C'efers to no value. This means
that □ (£~!:~!!!: !!.H) :=: {.£g! fg!!..! : .!!i.!)o is .true ■, although
□ (!~! £!!~1 : ski.I?) :=: (:£_g1 !:~!!1 : §.He)a is unlikely to be< 1 >.
Observe that □ (Ht! !!U:: nil) :=: (Eg{ £~_J, : !!11)a is not an
•identity-relation• because the modes of its •tectiat:'ies• do not
agree. Also, a(f~! fg!!1 £_! f~1 re!!1 n1!) a cannot be
elaborated, si nc e no de eferencing can be ~one oo a •nihil•
f R.8.2.1.2 Step 2). The elaboration of ccerced •jump• is a
iump e xcept in a case like a (prof ¢YQ!~¢ : gg _ _!Q 1) a, wh ere the
value delivered is a routine and the jump itself i& not
perfoC'med (R.8.2.7.2.bl. Note how ev r that □ (f~! EfQ£ t12ig¢
gQ_.!:Q l)a does not deliver a routine.

There C'emains one other coercion, viz., voiding. The effect
of voiding is to discard whatever value is involveo. Thus

c1> It will be interesting to try out some of the compilers on
this point.

72 An ALGOL 68 companion

□(: 2) □ will not deliver the value •2 ■• The •void-cast-pack•
a(: random) □ delivers neither a routine nor a real value, but
causes ara ndom □ to be ela borated (deproceoured) once, whereupon
the real value delivered is discarded (see •NONPROC•
ra.8.2.8.1.b]}. This may inrleed be just what the programmer
desires. In the reach of □ .E!:.Q£ f~~! p : = randomo, the opo i n a(:
p) a is deceferenced, deprocedured and then voided. The
•declaration• a~f2£ ¢1Q!Q¢ q = (: p)a, however, delays thP.se
coercions until aqo is elaborated. He who can correctly perform
the syntactic and semantic a11alysis of OE!:.2£ fg~! E? := random i
.Ef:2£ rt,Yoigtt y = (: p) (: g) ; §.!U,.E □, has no need of furt her
ddvice concerning coercion • .
6.6 Syntactic position

The coercions which may occur depend UfOn the syntacti:
position of an object in the •program•. There are four sorts of
syntactic position, vi-z., strong, firm, we:1k and soft. In what
has gone tefore, we have conce ntrated our attention on the
• cast• because its •unitary-clause• is strong and in this
position all coercions can occur; moreo ver, stron~ coercion is
the main purpose of the • cast •. In firm positions only those
coercions collecti vely known as adjusting are relovant. In weak
positions fitting is relevant. A soft position permits only
deproceduring (see figur b.2).

Some examples of strong FOsitions ijre • ctual-parameters• ,
e .g., c2o in Of~~1 x = 2a, •source s •, e.g., c2a in ox: = ia,
•conditions• , e .g., ax= yn in o(-,;=y I 1)c ancl •subscripts •,
e.q., aio in ox1[i)o. In these positions the a posteriori m >de
(i. e. , the mode after coercion). is dictated by the context.
Exa~ples of firm positions are •opera nds •, e.g., oxo in □!~§ xo,
and •primaries• of •calls• , e.g., ncosa in ocos(x) o. Examples of
weak positions are •primaries• of •slices •, e .g., o)(1c in
ox,r i l □ and •secondaries• of •selections•, e.g., □cello in cne xt
of cello. Examples of soft positions are •destinations•, e.y.,
;xo in ax := ye and •tertiaries• of •identity-relations•, e.g.,
axe in ax:-=: xxa. Figure 6.6.a s how s an •assignation• i n which
many of these positions occur.

a (X .- . re .Q! z xx X 1(i] := sin (x + (.!~!!.! : pi)) c

T T T- T- T r-
s w s w s s

__ T ___ --T--
0 0

---r----- ----~-----
s s

---~-----------
0 s

{S = strong, F = firm, W = weak, o = soft}

Fig.6.6.a

It is clear that •operands• cannot be strong, for otherwise
one could not determine which operation is to be performed in

An ALGOL 68 Companion 73

c1 + 2a. Since both •operands• co uld be widened, is it addition
ot real values or addition of integral values? Because of this
uncertainty, tbe coercions involved in •operands• must be
restricted to those classed as adjusting. This is chiev d by
malting •operands• firm [R.8.4.1.d,f]. The only coercions
permitted for •operands• are ther-efore dereferencing,
deproceduring, proceduring and uniting. In particular, since a
•skip• can only be hipped and hipping can only occur in strong
positions, we conclude that the object C§.!!..E + skl,J:!c is not a
•formula•.

we may recall that if a •variable•, say ox1c, is sliced,
then the result, say axl[i]c, is a •variable•. Similarly the
•selection• anext of cell □ from the •variable• □cello is also a
•variable•. This mea'iis that we need a position in which both
deprocedurinq and dereferencing are permitted, but that
dereferencing, in this position, must stop short of removing a
final •reference-to• from the a priori mode. Remember that we
may wish to write oxl[i l := 3.14a or onext of cell := cell 1c and
that the mode of a •destination• must be~in-;ith •reference-to•.
such a position is known as weak. It involves only those
coercions known as fitting, wi th the special proviso concerning
dereferenci nq.

Finally, in the •des ti nation• of an • assignation•, e.g.,
cxc in ex:= ye, only deproceduring can be permitted and such a
position is known as soft.

Mote that the word "strong" is used in the sense of
strongly coerced, so that a strong position indicates strength
from outside and not strength from inside~

In the above we have considered the syntactic positions
arising from the strict language only. The programmer, however,
is generally more concerned with the extended language, for that
is what he uses. It is therefore appropriate to examine the
syntactic positions foe constructs in the extended language. In
particular, the repetitive statement [R.9.2), shown in figure
6.6.b, contains the objects ca, b, c, do and oeo, all of which
are in a strong position. Note that oi□ is the •identifier• of
an •identity-declaration• and is ther-efore not coerced. Its mode
is •integral• (not •reference-to-integral•) and therefore

r
integral­

mode­
identi tier

strong-unitary-void-clause
I

T T T
strong-unitary­
integral-clause

Fig.6.6.b

T
strong­
seria 1-
boolean­
clause

T
strong­
uni tar y­
void­
clause

no assignment may be made to it. ~oceover, the value of this oio

• I

74 An ALGOL 68 Companion

is unavailable outside of the •clauses• ada and aea, no matter
how the elaboration of the repetitive statement is completed.
Also observe that the repetitive statement itself is strongly
voided and therefore cannot deli ver a value. This is traditional
for several programmin g languages, so will be understood easily.

6.7 Coercends

Coercions are introduced at certain syntactic positions but
are not carried out except upon •coercends•. For example, in
o,eroc ref real p = (i < q I x 1(i] I yl[i]) o, the •condition 1-
clause• a(i < 9 I x1[i] I yl[i])o is strong and the mode
required is that specified by □2£Q£ ill !~~!□- How ever, a
•conditional-clause• is not a •coercend• itself. In fact, if the
value of oio is •2•, then the routine possessed by apa is a (f~.!
I~~! xl(i])a. It is therefore the •base• axl[i]o which is
coerced and not the •conditional-clause• because a •base• is a
•coercend•.

•Coercends• are easily distinguished and ve have met them
all before, although we have not, as yet, classified them as
such. A •coercend• is either a •base•, e.g., ox1[i]c, a
•cohesion•, e.g., onext 2£ cello, a •formula•, e.g., a~~~ xo or
a •confrontation•, e.g., ox := yo fR.8.2.0.1.a, 1.2.4.a]. A
certain set of coercions may be implied by the syntactic
position (sort) of the object, but none of these coercions will
be elaborated on that object unle ss it is a •coercend•. The sort
is therefore passed to the •coercends• within the object. When a
•coercend• is met, then all coercions implied by that syntactic
position must be completely expended.

6.8 A significant example

Perhaps we should now lcok closely into the reason why
D££2£ t~oiQt p = randomo

is not an •identity-declaration•. The intention was, perhaps,
DEfQf ¢~Q!Q¢ p = (: random)o or OEfQf ~~! p = randomo. First we
must observe that no extension c ould have been applied since
crandomc is not a •routine-denotation• [R.9.2.d], so this must
be parsed as an •identity-declara tion• in the strict language.
An ttempt to parse aeroc tvoidt p = randomc must begin with the
facts that cpo is a •procedure-void-mode-identifier• n:i
•random• is a •procedure-real-mode-identifier•. Since orandomo
is a •base•, we must therefore attempt to find production rules
in the hope of showinq that a •procedure-real-base• is a
production of •strong-proced~re-void-base•. The production rule
for any given notion can be obtained from only one rule of the
Report. If we take that rule (R.8.2.0.1.d] and replace the
metanotion •COBRCEND• appropriately, we have

•stcong procedure void base: p rocedure void base ;
strongly ADAPTED to procedu re void base. •

Since crandoma is not a •procedure-void-base•, we aust new see
whethar it can be produced from the seccnd alternative. This
means replacing •lDAPTED• by each one of its eight terminal
productions, i.e., by •dereferenced, deprocedured, procedured,
united, widened, rowed, hipped• and •voided•. We look at each of

I.
I
I

An ALGOL 68 Companion 75

these in turn. In the rules for dereferencing [R.B.2.1. 1.a], we
have

•strongly derefecenced to proce dure void base:
strongly FITTED to reference to procedure void base•

Thus the mode enveloped has be come longer, i.e., ftom
•procedure-void• to •reference-to - procedure-void•. The same will
apply to deproceduring [R.8.2.2.1.a]. Because these two r ules
feed into each other, we can only lengthen the mode (in the
sense used above) by using them. Thus we cannot reach our goal
through this route.

The rules for proceduring [R.8.2.3.1.a] yield
• strongly procedured to procedure void base

void base ;
strongly dereferenced to void base;
stronqly procedured to voi d base
strongly united to void ba se ;
strongly widened to void base ;
strongly rowed to void base.•

Each of these must now be eKamined. In the firs t place , ~randomo
is not a •void base•, so ve dismiss-th e first alternative. For
the others the words (protonotions) •dereferenced-to- void•,
•procedured-to-void•, •united- to-void•, •w · dened - to - void• and
•rowei-to-void• lead us nowhere in the a ppropriate sections
[R. 8. 2. 1. 1, B. 2 •· 3. 1 , B. 2. II • 1 , B. 2. 5. 1 , 8. 2. 6 • 1] •

By examining the left hand sides of the rules for widening
[R.8.2.5.1), rowing [R.8.2.6.1.J and voiding (R.8.2.B.1), we can
see that productions for •strongly ADAPTED to procedure void
base• through any of these routes cannot be found. Finally, the
rules for hipping [R.8.2.7. 1] cannot be used since they apply
only to •skips•, •nihils• and •jumps• and arandoma is not one of
these. This completes our deduction that DE£Q£ t~gigt p =
randoma is not an . •identity-relation•.

Note that for CE!Q~ t_yoi_gt p = (: random) a, the significant
prod uc tio n is

•strongly procedured to procedure void base :
void base.•

[R.8.2.3.1.a]. Also, for a££g£ !~~! p = randomc only the empty
coercion is required for arandoma is already of a priori mode
•procedure-real•.

6.9 The syntactic machine

The coercions are, with the exception of balancing of
modes, all contained in the syntactic rules in sectio n 8.2 of
the Report. A thorough understanding of coercion therefore
requires a knowledge of these rules and a certain dexterity in
their use. The reader is encouraged to try some syntactic
analysis (parsing) fo[' himself, but to he lp him on the road we
give below a complete analysis, as a •strong-real - unit•, of cia
in the •cast• areal i a, where aio is in the reach of the
•declaration• oint--ia. The • identifier• aic is thus a
•reference-to-ini~~ral-mode-identifier• and its a priori m~de is
•reference-to-integral•. The of~~!a in the •cast• indicates that

76 An ALGOL 68 Companion

the a posteriori mode is •real•. The references within braces
are to the particular rules of the Report which are used.

•stro ng real un it • ••• 1
•st ro ng unitary r eal clause•{6.1.1.e} •••••••••••••••••••••• 2
•st ro ng real tert iary• (8.1.1.a} ••••••••••••••••••••••••••• 3
•st ro ng real secondary• (8.1.1.b} •••••••••••••••••••••••••• 4
•st ro ng real pr im ary• (8. 1. 1 .c} •••••••••••••••••••••••••••• 5
•strong real ba se • { 8.1. 1.d) ••.••.•...•.................... 6
•st ro ngly widened to real base• {8.2.0.d} ••••••••••••••••• 7
•strongly dereferenced to integral base• {8.2.5.1.a} •••••• 8
•reference to integral l:ase• {B.2.1.1.a} ••••••••••••••••••• 9
•reference to integral mode identifier• {8.6.0.1.a} •••••••• 10
•letter i• {4.1.1.b} ••••••••••••••••••••••••••••••••••••••• 11
•letter i symbol• {3.0.2.b} •••••••••••••••••••••••••••••••• 12

In the above analysis the two coercions occur in lines 7
and 8. In lines 1 to 6, the sort, i.e., •strong•, is carriel
through the parse until it meets with the •coercend• (in this
example a •base•) in line 6. In lines 9 to 12 all the coercions
implied by the •strong• in line 1 have been expended. The
elaboration naturally follows t be parse in the reverse order. At
line 10 the •identifier• ci a is identified with its defining
occurrence and the a priori mode, •reference- to- in tegra h, is
established. (This is usually accomplished by an early pass of
the compiler.) In line 8 the dereferencing occurs and this is
followed by widening in line 7. No further semantics is involved
in lines 6 down to 1.

6.10 Balancing

Balancing is the word used to describe the process of
finding one mode (the balanced mode) to which each one of a
qiven set of modes may be coe rced er,. The process of finding
the balanced mode will be determ ined by the sort of syntactic
position involved. Balancing in a strong position is a simple
process (some may even claim tha t it is not really balanciny),
whereas the programmer may need to exercise care in the
balancing of modes in firm posit ions, for the final balanced
mode may not be immediately clear.

In the reach of the •declaration• abool p, £~~1 x, y, I~!
I~~.! xx, [)re~.! xl, f~H)!:~~.! xxla, an example of soft balancing
is

a(p I xx I x) := 3.14a
an example of weak balancing is

a (p I xx 1 I x 1) [i]a
an example of firm balancing is

a2. 3 + (p I 3.14 I x) a
and an example of strong balancing is

ay := if p !h~E 3.14 ~1§~ x f!D

< 1 > strictly speaking, only •coercends• are coerced. We shall
find it convenient to speak of coercion of modes, by which is
meant the mode en~eloped by a •coercend•.

An ALGOL 68 Companion 77

In general, given a set of mode s, a balanced mode must be
found which is such that each one of th e given modes may be
coerced to it. In achieving this, at least one of the given
modes must be coerceable usin q the giv en sor t, whereas the
others may be strongly coerced, i .e. , the limita tio ns of the
syntactic position must be accept ed by at least on e of the given
modes, otherwise the balancing is not possible. An example in
which a balance is not possible i s o2. 3 + (p I .§~i:e I gg_tQ
k) □, which is therefore not a • formula•.

6.11 Soft balancing

A simple example of soft balancing is
□(p I xx I x) : = 3. Ho

Examination of this object su ggests an •assignation• in whic h
the mode of the •destination•, □ (p I xx I x) a, should be
•reference-to-real•. A success ful pa1;se is thus assured if the
balanced mode of the •conditional-clause• is •reference-to­
real•. However, the mode of cxx o is •reference-to-reference-to­
real• , whereas that of ax□ is •reference-to-real•. The mode of
oxx □ may be coerced to the balanced mode by dereferencing (once)
a nd that of ex □ by the empty coercion. If we recall that the
only coercion which is relevant in soft positions is
deproceduring, then it is clear that □ xx □ cannot be softly
coerced to the balanced mode. on e must therefore allow □ xo to be
softly coerced and axxa may then be strongly coerced
(dereferenced). A sketch of the parse of the •destination•

reference-to-real-destination
I

soft-conditional-reference-to-real-clause
I

,------T---------- -,------------
1 I

if-symbol condition
I I
I I
I I
I I
I I
I I
I I
I I

a(

.J.

p

1
soft-choice­

reference-to-real-clause
I

r-

1
strong-then­
reference-to­
real-clause

I
-----L---

xx

Fig.6.11

l

I
soft-else­

reference-to­
real-cl1l use

I ____ J.. __

X

I
f i-s ymbol

I
I
I
I
I
I
I
I

.I.

) D

is shown in figure 6.11. The rule which is relevant in this
parse is

•FEAT choice CLAUSE : strong t hen CLAUSE, FEAT else CLAUSE.•
ra.6.q.1.d], in which •FEAr• is replaced by •soft• and •CLAUSE•
by •reference-to-real-clause•. This same rule has an alternate
prod uctio n. The complete rule is

•FEAT choice CLAUSE : strong t hen CLAUSE, FEAT else CLAUSE
FEAT then CLAUSE, stronq else CLAUSE.•

78 An ALGOL 68 Companion

The second alternate is clearly necessary for parsing the
•assignation•

a(p Ix I xx)a:= 3.14c
for in this case axxa must be strongly coerced.

Nov consider the •assignation•
a(p I x I Y) := 3.14a

Here either axe or aye may be chosen to be soft. It follows that
a (p I x I y) a may be parsed as a •reference-to-real­
destination• in two distinct vays, i.e., either the axe or the
aye may be chosen as soft with the other strong. This is one of
the rare examples of syntactic ambiguity in ALGOL 68. The
ambiguity might have been avoided, but at the cost of
considerable complexity in the grammar. Since no semantic
ambiguity is involved, greater clarity in the grammar is
achieved by allowing a harmless syntactic ambiguity.

6.12 Weak balancing

A si mple example of weak balancing is
are of (p I 1 i 2 I 3) c

Here the •clause• a(p J 1 ! 2 I 3)n is the •secondary• of a
•selectio n• and is therefore in a weak position [R.8.5.2.1.a].
The mode of cl ! 2a is •complex•<•>, but that of c3c is
•integral •. It is clear that the object a3c 111ust be widenei
(twice) t o •complex •, but widening cannot occur in a weak
position. Th us al ! 2a must he weakly coerced (the coercion is
empty) an d a3c may then be strongly coerced (widened twice). The
balanced mode of c (p I 1 !. 2 I 3) a is therefore •complex•. A
sketch of the parse of this •secondary• is shown in figure 6.12.

weak-complex-secondary
I

weak-conditional-complex-clause
I

r-------r- --.l.-------------------,
1 I

if-symbol condition
I I
I I
I I
I I
I I
I I
I I
.J.. .I.

a (p

I
weak-choice-­

complex-clause
I r _ _____ _,L_ ___ ~

I
weak-then­

comp lex-clause
I

-----L----
1 ! 2

Fig.6.12

I
strong-else­

complex-cla use
I _____ _J._ __

J

I
fi-symbol

I
I
I
I
I
I
I

.I.

) C

The rule used in this parse is the same as that given in
paragraph 6.11 above, but this time •FiAT• is replace~ by •weak•

<•> Here •complex• stands for •structured-with-real-field­
letter-r-letter-e-and-real-field-letter-i-letter-m•.

' .

An ALGOL 68 Companion 79

and •CLAUSE• by • complex-clause•.

A weak balance which involves a
ambiguity is

harmless syntacti:::

are Q! (f I z1 I z2)a
in the reach of the •declaration• □fQ~E1 z1, z2n. In this case
the balanced mode is •reference-to-complex• since weak coercion
does not remove the last •reference-to• (R.8.2. 1. 1.h]. The
coercion of both □ z1 □ and □ z2a is thus empty and either one of
them may be chosen as weak.

6.13 Firm balancing

A simple example of firm balancing is
□ 2. J + (p I 4. 5 I 6) a

In this example the •conditional-clause•, a(p I 4.5 I 6)a, is
an •operand• of a •formula• and is therefore in a firm position
[R.8.4.1.d]. The •operator• a+□ is that declared -in the
•standard-prelude• (R.10.2.4.i]. It requires a right •operand•
of mode •real•. Thus a4.5a is of the reguired mode while □ 6 □
must be widened. Since widening may not occur in a firm
position, we must choose □4.5 □ as firm and then allow □6 □ to be
strong. A sketch of the parse of this •operand• (•secondary•) is

firm-real-secondary
I

firm-conditional-real-clause
I

r---------r-----------_J_-----r-----------------,
I I I I

if-symbol condition firm-choice-real-clause fi-symbol
I I I I
I I r-------L------1 I
I I I I I
I I firm-then- strong-else- I
I I real-clause real-clause I
I I I I I
L

a (
.L

p

__ _--i ___ _

4.5

Fig. 6. 1 3

_____ ,L ___ _
-L

6) a

shown in figure 6.13. The relevant rule is again the same as
that qiven in paragraph 6.11 above, l:ut •FEAT• is replaced by
•firm• and •CLAUSE• by •real-clause•.

An example of a firm balance in which there is a harmless
syntactic ambiguity is

□2. 3 + (p I xx I x) a
for dereferencing is permit t ed in a firm position and both axxa
and axa may be firmly coerced to •real• by dereferencing.

6.14 Strong balancing

A simple example of a strong balance is
ay := (p I x I 1)a

80 An ALGOL 68 Companion

Here the •conditional-clause•, c(p I x I 1) c, is a •source•
and is therefore in a strong position [R.8.3.1.1.c]. Both cxc
and c1o must therefore be strongly coerced to the balanced mode
which is •real • . This means that nxc is dereferenced and olo is
widened.

Jbserve that strong balanc ing ·s a trivial process for one
is not faced with the necessi ty of deciding which of the given
modes should retain the sort of the syntactic position. They all
retain strong. In the example a bove, as in most cases of strong
balancing, the balanced mode i s determined by the context.
Balancing in firm, weak and soft positions, however, is
different. In these positions the balanced mode is not given by
the context but must be decided by ex~mining the given modes
alone.

6.15 Positions of balancing

In the example above we have considered balancing only in a
•conditional-clause•. This is a typical situation and is
sufficient to illustrate the principles involved. However,
balancing may occur in other situations and we shall list e~=h
of them here.

•choice-clause• in a •conditional-clause• [R.6.4.1.c,d]
e.g., a~Q§(p I 1 I -2.3)a.

•balance• in a •collateral-clause• [R.6.2.1.e]
e.g., D!!I?Q(1, 2.3, x)a.

•suite-of-clause-trains• in a •serial-clause• [R.6. 1. 1.gJ
e.g., c ((p I 1) ; 3. 14 • 1 : 1) c.

•identity-relation• [R.8.3.3.1.a]
e.g., cxx :=: xa.

Although these are the only balancing positions in the
strict language, the programmer should be aware of their
implications in the extended language. For example

a (p I i I : q I x I : r I 3. 14 I 5) + 2. 3 Sa
requires a firmly balanced mode of •real• for t be left •operand•
of the •operator• a+a. This is achieved by dereferencin g a nd
then widening aia, by dereferencing a~a, by t he empty coerci on
upon a3.14c and by widening cSc. Since an • o perand• must be
firm, either cxa or c3. 14c cou ld be chosen t o be firm, a nd t he
others could then be strong. Note that since wi dening cann ot be
done in a firm position, both oia and aS c must be s tron g.
Another example of firm balancing in li e e xtend ed language is

c(i I 1, 3.4, x, random, xx , skie I g_g_~,2 error) + 1c
in which either c3.14o or axe or arandom□ or axxa may be fi rm
but the others including the •jump• must be strong.

Notice that
strongly balanced
o[1:3]f~~1 x1 □ are

a •collateral-clause• may be only firmly or
[R.6.2.1.c,d]. Examples, in the reach of

for firm balancing and

for strong ba l ancing.

a~.QQ (x, i, 1) a

ax1 := (x, i, l)o

An ALGOL 68 Companion 81

Balancing may occur in a •serial-clause• which contains a
•completer•. A trivial example is

c ((p · I 1) ; 3. 14 • 1 : 1) + 2D
Here, if ape is ■ true ■, the a1c is widened to •real• before the
addition is performed (despite the fact that the right •operand•
is •integral•), for the firmly balanced mode of the left
•operand• must be decided without reference to the context.

The balancing of an •identity-relation• is soft. An example
is

axx :=: xa
Here the left •tertiary• must be dereferenced once and therefore
cannot be soft. The right •tertiary • is therefore chosen to be
soft and the coercion upon it is empty. In the •identity­
relation•

DX : =: XXCI

the choice must be made in the opposite order. The •identity­
rela tion •

ax :=: yo
is syntactically ambiguous since either the left or the right
•tertiary• may be soft; however, as in the other case mentioned
above, no semantic ambiguity exists. A tyfical • identity­
relation• which might arise in list processing is

o(fg! £~11: next 2! cell) :=: ni1o
in which the c~i1a can only be strongly coerced. This forces the
left •tertiary• to be soft.

6.16 Program example

The following program calculates the greatest common
divisor of a set of integers< 1 >. The original algorithm is in
FORTRAN. The ALGOL 68 version given here retains the labels as
used in the FORTRAN program (preceded by the letter 1) in order
to help in the comparison of the two. It is interesting to note
that all the jumps of the original naturally disappear except
for ogQ_i2 110a in the innermost •conditional-clause•. This
could perhaps be eliminated by using a • call• of a recursive
•procedure• at the •label• al10:o.

DE!Qf gcdn = (!~! [1:] iEi a ttbe given set of integers¢ ;
!~![1:~E~ a] in~ z ¢the resulting multipliers¢)

¢the gcd resultt ill! :
£~lln ini n = YE~ a tthe number of integers¢ ;
iu! m := 0, k, sgn ;
¢find the first non-zero integer¢
!Qr i i2 n ~~i!~ a[il: 0 gQ (11: z[i] := O, m := i)
¢the first non-zero integer, if any, is in position m+1¢
!! (m +:= 1) > n ¢now it is in position mt
then tall are zero, so exit with resultt 0
eisI 13: m = n
th~n ¢only the last one is non-zero¢ z[m] := 1 a[n)
~1§~ 14: ¢check the sign of a[m)t

<1> Translated from algorithm 386 by G.H.Bradley, Communications
of the Association for Computing Machinery, Vol 13, No 7, 1970.

82 An ALGOL 68 Companion

Egf int am = a(m) ; sgn := §19!! am ;
in t c 1 : = a rn : = ~ bs a rn ; k : = m + 1 ;
15: ¢calculate via n- m iterations of the gcd algorithm¢
for i from m+1 to n while c 1 -; 1 do
--~~in-£~! 1rr!-ai =-afI1; --

int q, y1 : = 1, y2 := O, c2 .- 2 .Q 2 ai k := i
17: if ai = 0
:t.!:!~n- ai := 1 z[i] := 0
else l 1:):
--rI q : = c2 + c 1 ; (c 2 -l: := c 1) I 0

thef y2 -:::; q * -y1 ; q :=cl+ c2; (c1 +::= c2) -IO
ili;ii y1 -:= q * y2; gQ_!Q 110 ¢eliminate the jump?¢
else 115: (cl := c2, yl := y2)
fi-:--- .

120: 7[i] := (cl - y1 * am) + ai
ai : = y 1 ; am : = c 1 !1 ;

13 0 : §~i.e g!!f! ;
¢ if k=n, then the following iteration is empty¢
125: 160: .!QE j fro! k+ 1 !_Q n Q.Q (lb5: z[j) := 0)
14 0 : f.Qf: i !fQ!! k- m 121 - 1 !2 2 9.Q

(Z[i J •:= a(j+1 J ; 150 : a[j) •:= a[j+ 1])
z [rn) : = a(m + 1] • sg n ;
1100: am
f i

~!!_gc

6.1 Fundamentals

Review questions

a) What three things determine the particular coercions?
b) What are the four sorts of syntactic position?
c) Is □fg~1: in! □ a •cast•?
d) Is areal : boola a •cast•?
e) What-~~~rci~i-;ccurs in a[]~22! !QJa?

6.2 Classification of coercions

a) How many different coeccions are tl1ere?
b) What coercions occur in areal : inta?
C) Wbat coei:cions are classified as-fitting?
d) What coeccion occucs in a[J.Eg2.! : 3.Ha?
e) What coeccion occurs in ain!: gQ_!Q ko?

6.3 Fitting

a) What coercions occur in areal : fgf ref ref realo?
b) In the reach of aref £~!: ~;~! xxxa, what coercions occur in

aref real: xxx □?--
c) In--the--reach of D£~f £CO£ i!!! rpia, what coercions occur in

Di!!.!: : r pi o?

An ALGOL 68 Companion 83

d) In the reach of a.,eroc ref bool prb, what coercions occur in
c!;!QQ.! : prba7

e) What rules are used in the parse of □!g~! : randomc as a
•real-cast•?

6.4 Adjusting

a) What coercions occur in aunion (real, bool) : randoma?
b) Is uniting a fitting coercion?
c) What kind of value results from a proceduring?
d) Is □E£Q£ tygigt sine a •cast•?
e) Is a£~Q£ ¢!.2!~¢ : randoma a •cast•?

6.5 Adapting

a) Is hipping an ad justing coercion?
b) What coercion occurs in aQ.QQ! : 9.Q_.!;Q k □ ?
c) What coercions occur in ax := (1 > 2 I 3.4 I 5)a?
d) What coercions occur in a[1£~!!! : randomc?
e) What coercions occur in aunion ([]real, !!.22!) : randomc?

6.6 Syntactic position

a) What coercions may occur in weak posi ti ans?
b) Of what sort is aia in ax1[i+1]a?
c) Of what sort is an1a in ax1[n1[i)]□ ?
d) In the range of afgf £~! []!gi!! rr1 xc, Wh"lt coercions occ: u r

in arr1x[2] . - 2. 3a? . -
e) Of what sort is axe in ax := y □ ?

6.7 Coercends

a) What are the four kinds of •coercend•?
b) List all the •coercends• in a.H a Qf b .!:hg!! X := 2 ~.!§g X .-

V ♦ 3 !!□-
c) Is DX := nil a an •assignation• 7
d) Is DXX := -iil!a an •assignation•?
e) Is an!.! := la an •assignation•?

6.9 The syntactic machine

a) What rules are used in parsing □£QfilE.!: i □ ?
b) Is acom£l : union (int, .!!.2.2.!) a a •cast•?
c) What rules are used in the parse of □E[.Qf tygi~t p = (:x :=

1) a?
d) What rules are used in the parse of arandoma as a •strong­

void-unit•?
e) Is ax + ni!c a •formula•?

6.10 Balancing

a) Can the modes •real•, •integral• and •format• be strongly
balanced to real?

b) can the modes •real• and •integral• be strongly balanced?
c) What is the softly balanced mode from the two modes

•reference-to-real• and •frocedure-real•?

84 An ALGOL 68 Companion

d) What is a firmly balanced mode from the set of modes •real•,
•integral•, • procedure-integral• and •reference-to-
in teqral•?

.. , e) Can the modes •real • and •boolean• be balanced?

6.11 Soft balancing

a) Is the parsing of a (p I xx I y) := 3. 14a 3.mbiguous?
b) In the reach of a2roc ref real pxa, how is a(p t px xx)

:= 3. 14a balanced?
c) In the reach of aEroc ref real pxa, how is c(p I px g.Q_!Q

k) := 2 c balanced?
d) Can the pair of modes •procedure-row-of-real• and •reference­

to-real• be softly balanced'?
e) Can the modes •reference-to-procedure-reference-to-bcolean•

and •reference-to-reference-to-boolean• be softly balanced?

6.12 Weak balancing

a) In the reach
balanced?

b) Can the modes
integral- mode•

c) Is a 1 + r e .Q! (
d) Is are 2! (PI
e) How is aim 2! (

of a[]£~~1 x1a, how is c(p I xl I 2)[i]a

•reference-to-real • and •union-of-real-and­
be weakly balanced?
p I 1.2 I 3.4 .i- 5)a a •fornula•?
1 l 2 t 3 ! 4)a syntactically ambiguous?
p I random IO i 2)a balanced?

6.13 Firm balancing

a) Is □.21iE / §~.!l?ll a •formula•?
b) Can •union-of-reference-to-real-and-reference-to-integral-

mode • and •real • be firmly balanced?
c) Can •procedure-real• and •reference-to-real• be firmly

balanced to •procedure-real•?
d) Is □ 2 + (p I x I 3.14) a syntactically ambiguous?
e) Is aab2 (p I !!.!!~ I 11 a 11) c a •formula•?

6.15 Positions of balancing

a) Can the set of modes •reference-to-reference-to-procedure­
reference-to-real • , •reference-to-procedure-reference-to­
real•, •reference-to-reference-to-real• and •reference-to­
real• be weakly balanced?

b) Is a (i I xx, nil, skip I 3o_to error :=: xa an • identity­
relation•?

c) Is c ((p I l 1) ; !!:.!!~ • 1 1 : i > 0 I 12) ; t~.!2~ • 12 :
1) □ a •closed-clause•?

d) How is C.!!.EE (1, 2.3, 4 ! 5.6, x, xx, i)c balanced?
e) Is a(p I nil I §~.!£) := 3.14a an •assignation•?

6.1b Program example

a) Describe the coercions involved in the elaboration of c(m +:=
1) > na.

b) Describe the elaboration of cint cl :=am:= abs amo.
c) What is the purpose of the • declaration• ar~!-1~! ai = a[i]a?

An ALGOL 68 Companion 85

d) Why does a • skip• occur on line cl10: e~!E ~ngc?
e) Can you eliminate the cgQ_!Q 1300 by using a recursive

procedure at the position cl10:o7

86 An ALGOL 68 Companion

7 United modes

7.1 United declarers

Although inte nal objects are always of one non-united mode,
external objects such as •expressions• (R.6.0.1,a,b] ma y be of
united mode, indicating that the mode of the v3lue possessed is
not known until elaboration (run time). To allow for this, it is
necessary for the lanquage to provide •declarers• which specify
united modes. Examples of s uch •declarers• are a~nign(in!,
!22Q.! l , .!:!.!!!212 ((]£~!!.!, [Jch~f:) , £J1!Q!I. Ct~.![l!!L!:, £~f[J~ea_!),
union(a,union(b, c) , d)a.

The syntax of •united declarers• is not trivial but we may
simplify ·t to the following:

united declarer : union of s ymbol,
open symbol, declarer list proper, close symbol.

declarer list proper declarer, comma symbol, declarer ;
declarer list proper, comma symbol, declarer.

The syntax of the Report [R.7.1 .1.cc, ••• ,jj], however, is an
in ricate exercise in the use of metanoticns. Its effect is to
allow, syntdctically, that union s may be both commutative and
associative, and that the modes of the union may be treated in
the sense of mathematical set theory. This means that the same
unite mode is specified by the •declarers• D]QlQU(~, Q, £),
~nl2n(~. £, £), ~nl2n(g, yQion(Q , ~))a and agnJ2n(Yll!QB(£, ~),
~!!.i:~rn (£, ~))a.

7.2 Assignations with united destination

Because •declarers• specifying united modes exist, the
declaration of •variables• using such •declarers• is possible.
Such a •declaration• might be cunion (int, bool) iba, whereupon
the mode of aiba is •reference to union of integral and bcoleai
mode•. An assignment may be made to such a •variable•,

reference-to-union-of-integral-and-boolean­
mode-assignation

I
r--------------'-.----------,
I I I

reference-to-union-of- becomes- strong-union-of-
integral-and-boolean- symbol integral-and-boolean-

destination I source
I I I (1 l
I I boolean-
I I base

.J._

aib
(4)

:=
(2)

__ .J._

J:£]~0
: (2)

a (3) r r------1 : • • • • • • ,--,
o o-->-~I 1=======<========1

0 LL-------'

Fig 7.2

l-

1

l

An ALGOL 68 Companion 87

but the •assignation• oib : = trueo is syntactically possihle
only because of the unit"ng--coercion to which the •base•,
ot!Q~ □, resulti ng from its strong position as a •source•, is
subjected (see figure 7. 2 at 1). The •assignation• oib := 1 □ is
also valid. In both these ass ignments the internal object
assigned does not change under coercion, and the object otrueo
possesses the same value whether it is considered, a priori;--;s
a •base•, or, a posteriori, as a •source• (see the figure at 2).
Note that aiba possesses a name (see figure at 1), whose mode is
•reference to union of integral and boolean mode•, but that this
name may refer to a value which is either of mode •integral• or
of mode •boolean•, since values are not of united mode (i.e., a
mode which begins with •Uni.on of•). Also, the mode of tht: value
referr<?d to by uch a • vari bl e• as aiba, can be determined, in
general, only at the time of el aboration of the •program• (not
at "compile time") . These conside rations lead one to suspe:::t
that the use of unitP.d modes im plies storage allocation or run
time organization metboas which must be more elaborate than
those required when such mod es are not used (see the figure at
4). A certain pri=e must therefore he paid for the use of unite~
modes, but in some situations they are essential (see(R. 11. 11)) ;
moreover, ALGOL 68 is designed to min i miz e those places in a
•program• where a r un time c heck of the mode of a value is
necessary. Sucb a check is unnecessary for the •assignations•
aib . - trueo and aib : = la. These checks are known as
•conformity=relation s•. Before passing to these we examine two
further •assignations•.

tn the range of the •neclaration• □ int n, QQQ.J: pa one miijht
be t mpted to consider the objects an: = ibo and op:= ihc i n
the hope that the assignment woulrl take place, if possible.
Howev er neitbe.r of these two is an •assignation•, for in both
cases, though the mode of the destination begins with
•refere nce-to• , it is not follo wed by the mode of the •source•.
In particular, there is no deuni ting coercion. Thus we must rule
them out as not belonging to ALGOL 68.

7.3 Conformity relations

•Conformity-relations • , like •assignations•, •identity-
relations• and •casts•, are •confrontations•. Examples of
•conformity-relations• are: ci ::= ir, E~~1 :: x Qf qo and a~
and b ::= i + 2 • xo. The syntax of •conformity-relations• might
tie-written

conformity relation : tertiary, conformity relator, tertiary.
conformity relator:

conforms to and becomes symbol ; conforms to symbol.
This s yntax makes the •conformity-relation• appear to be
s ymm etrical, but this is not th e case as an examination of the
strict syntax of the Report rR.8.3.2.1] will reveal. There o ne
may see that the •te tiary• on the left is soft, whilst t hat on
the eight ~s not of an y sort and therefore cannot be coerced.
Moreover, the mode of the left •tertiary• must begin with
•reference-to•. We may recall that the •destination• of a n
•assignation•, i.e. , the □ xo in ox :== 3.14 □, is soft , so tbat
there is so me similarity between • ssig nations• and •conformity-

·-

88 An ALGOL 68 Companion

relations•. rhis is intentional, for the eldboration of a
•conformity-relation• often results in an ssignment. The right
•unit• of an •:1.ssignation•, e.g., o3.14c in ex := 3.140,
however, is strong. Thus the right •unit• of n •assignation• is
strongly coerced but the r·ght •tertiary• of a •conformity­
relation• is not coerced.

We may now ask what the difference is betwee n ax:= 3.14 □
and ex : := J.1qa. In the case o f ex : = 3. 140, an assignment is
mdde. I.n the case of ax : : = 3.11.i-a, ao assignment is also m de
but not before checking that such an assignment is possible.
Another difference is that the value of ex: = 3.14a, after its
elaboration, is the name possessed by axe, but the value of ax
:: = 3.14a is a truth value, viz. , a true a.

Now consider 011. := 1 □ and ex : := 1c. In the case of ax : =
1a 40 ssignment of the real val ue, ■ 1.0 ■, is made to axe after
th e widening of a1a to a value of mode •re:l.l • , but ax::= 1a
delivers the value ■ false• and no assiynment takes place. Note
that the a1a in ex :: = le is not coerced and in particular
cannot be widened to •real•. The reader may now protest that dny
simple minded compiler could determine, at comfile time, that
the value of ax::= 3.14c is ■ true ■ ana that the value of ex:: =
1a is ■ false■, thus the information yielded is trivial. We
agree. However, the possibility of using united modes makes the
•conformity-relation• an essen tial tool, as we shall soon
discover.

we h ave mention ed that the right •tertiary•, e .g., the u1a
in ax : := 1c is no t coerced. Therefoce we may ask what will
h ppen wi th ex : : = ye a nd ex. · · = ia. The semantics of the
•conform i ty-relation • fB.8.3.2.2) now comes to the rescue. It
tells us that, in stead of returning the value ■ false ■
immediate ly, the rig ht •tertiary•, e.g., the aye in ax ::= ye is
derefere nced as of ten as is necessary or possible. Thus ex::=
ya will deliver ■ tru e ■ and ex::= ia will deliver ■false ■ and in
arriving at this, bo th the cya and the oia are dereferenced
once.

boolean-conformity-relation ••••••••••••••
I :

r--------------------+-----------------, ■ true■

I I I
soft-reference-to- conformity- real

real-tertiary relator tertiary
I (l l I I

reference-to- I real-
real-base I denotation

L

ax
-L--

3 • 14 C

O ,-----, r---L--,
o o--->---i t==<==(assignment)==<==t I

0

Fig.7.3

(2)

An ALGOL 68 Companion 89

The only difference between the •conformity-relations• ex
::: 3.14c and ex:: 3.14c is that no assignment occurs in ex ::
3.14c despite the fact that the value yielded by ax :: 3. 14c is
■ true ■ • A skeletal parse of the • conformity-relation• ex ::=
3.14c is shown in figure 7.3, where the only coercion involved
(it does nothing) is shown at 1 and the value possessed by the
•conformity-relation• at 2.

We see therefore that the •conformity-relation• is a way of
finding out whether an assignment is or is not possible. Without
unitei modes, this would be of no value, since this information
is known at compile time. It is only when united modes are used
that the •conformity-rel~tion• is useful. Thus the examples
given above are merely for the purpose of illustrating the
fundamentals of the •conformity-relation • and have no value in
practical programming.

7.4 conformity and unions

Suppose now that we are in the reach of the •declaration •
cunion(int, char) ice. Then the value of the •clause• c(int i;
ic :: "a" ; i :: ic)c is ■ false■ and the value of the •cI;~se•
c Un! i ; ic := 1 ; i : : ic) c is ■ true■• Note that, withollt
following the logic of the •program•, these values cannot be
determined at compile time. How can one use these things? The
reader who is irked by trivialities is advised to turn to the
Report [R.11.1, 10.5.2.1.b, 10.5.2.2.a, 10.5.3.1.b, 10.5.3.2.b,
10.5.4.2.b] where there are many examples of •conformity­
relations• in action. For those not so brave, consider the
following problem.

we wish to write a •pcocedure•, say □tcanslate □, which will
accept either an integer or a character as its only parameter
and will delivec either a character or an integer which is the
environmental equivalent [R.10.1.j,k]. Thus suppose that in a
qiven environment the integral equivalent of ■a• is ■ 193 ■, the
•call• ntranslate("a")c should then possess an integral value
■ 193 • and the •call• atranslate(193)c should possess the
character value ■ a • . Its declaration then might be

□J:!f:Q.£ translate = (union (int, char) a) union (int, £h~!:) :
beg~~ in1 i, fhar C;
1!: · : := a !h_gn !:~.Ef i t a.10. 1. k t
else c ::= a ; abs ct R.10.1.j t fi endc

In the body of this procedure the •condition-; , ci : : -= a □,
determines whether the value delivered is □!:~~! ic or □~~§ ca.
The value of the • confocmity-relation• cc ::= a □ is voided,
since one knows that, if control reaches it, the value will be
■ true ■; however, its pcesence is essential because the
•operator• c~Q§D is not defined for operands of united mode.

7.5 Conformity extensions

•Conformity-relations• occur in certain extensions, both
for the convenience of the programmer and for the purpose of
allowing more efficient implementation of certain constructions.
Examples of these extensions occur in the Report [B.11.11.q,ah).

90 An ALGOL 68 Companion

We begin by explaining them in a simple way.

The •conditional-clause•
□ (a::= u I 1 1: b ::= u I 2 I: c ::= u 1: 3 1 0)a

can be written
□ [* a, b, c ··= u *]□

Its effect then is to test several conformities in succession,
delivering as an integral value the index of the one which
succeeds. If all of them fail then the result ■ O ■ is delivered.
This, in itself, is useful, but its main purpose is for use as
the •unitary-clause• which follows the □case~ in a case clause
f R.q.4.b,c]. In this particular situation--the two enclosing
symbols □[•a and □*l□ may be omitted. ~ case clause might
therefore be

a£~§~ a, b, c ::= u 1g f (a), g(b), h(c) 2Y! error exit ~§~£C
and its interpretation is the f ollowing: if aaa conforms . to ani
becomes aua, then the value is af (a)a; otherwise, if ab □
conforms to and becomes aua, then the value is cg (b) a;
otherwise, if aca conforms to and becomes cue, then the value is
ah(c)a; otherwise the value is that of □ error exit□• Note that
if both a a :: = u a and ab ::= ua possess the value ■ true■, then
it is un defined whet her the value is af (a)c or aq(b) □• Examples
of the us e of th is ex tension are in the Report [R.11.11.q,ah].
We could perhaps writ th e procedure of section 7.4 as follows:

□~IQ£ translate= (~ni2n(in!, £h~r)a)Yn!Qil(Jn!, fh~~) :
begin i nt i, cha r c ;
~~ i, c ::= a !fl £~EE i, ~~§ c ~~~£
end □

though little would be gained in this simple example.

The description of the extensions [R.q.4.e,f], however, is
forhidding and it is perhaps worth while taking a little time to
discover why it must appear in this way. Suppose we have the
conformity case claus a (X, x : := u I 9, 8 I error) a. It is
clear that if it is interpreted as the equivalent of □(x ··= u
I q I: x : : = u I 8 I error) o, then the value •8 • can never be
nelivered. This is unfortunate, for the implementer of the
languag e may find it convenien t and more efficient to make the
conformity test in an order different from that given. It
therefore should be made impossible for the programmer to
determine from the Report the order in which the conformity
tests are made. This can be done by describing the extension by
means of parallel processing. It is worth our while to examine
this more closely.

According to the Report [R.9.4.e), the •clause• a[* x, x
::= u •]a, in the reach of oreal x, union(int, real) uc, is
equivalent to the following

□ (inti,§~!~ s = /1 ; YillQTI(int, £~~!) k = u ;
.E~E ((x : : = k 1 gg~n s ; i : = 1 ; m) ,

(x : : = k I ~Q.!!.Il s ; i : = 2 ; m)) ; 0 • m : i) a
The •declaration• aunion (int, real) k = ua ensures that the
elaboration of aua occurs once only; its value is then held in
aka. The •declaration • a§~!~ s = /la, declares a semaphore aso
rR.10.4] which will be used to control the elaboration of the
two •clauses• in parallel. The semaphore is initialized to the

An ALGOL 68 Companion 91

value ■ 1 ■• The two clauses beginn ing with ax : := ka, are, if
this conformity is s uccessful, followed by the •formula• adown
sa which drops the value of the s emaphore to ■ 0 ■ and thus forms
a barrier in the elaboratio n of whichever •clause• did not reach
this action first. From this it is therefore not possible to
predict whether the value ■ 1• or ■ 2 ■ will be delivered. To the
programmer, this is an unimportant matter, but the meticulous
implementer will be pleased that there is no w~y in which he can
be caught if he decides on one method of implementation rather
than another.

The r eader s hould now examine the description of the
extensio ns in the Report [R.9.4.e,f,g] where he will see that it
is necessar y in thi s description to have a(S / l)o rather than
a/1a because the • opera tor• c/c as a •monadic-operator• with an
integral right •ope rand• could be redefined by the programmer.
The l etter oSc stands for the •standard-prelude• and therefore
return s to the orig inal meaning of a/a as a •monadic-operator•
which accepts an integer as right •operand• and delivers an
equivalent semaphore.

Review questions

7.1 United declarers

a) rs D.Y!!..!2.!! Ci!!~, QQQ,!) : =: union (boo 1, !.!!!) D an
relation•?

b) Is aunion(int, .QQQ,!) := .Q.Q.Q!c an •assignation•?
c) What--Is- the value of cunion(int, union(bool,

union(bool, char, int)a?
d) rs a[1:n]union(char, int)D a •declarer•?
e) Is a union (int, struct (int a)) a a •declarer• 1

7.2 Assignations with united declarers

•identity-

a) In the reach of □ union (char, bool) cbo, is acb := 1D an
•assignation•?

b) In the reach of D.Y.!!iQl!(fg~J:, QQQ,!) rba, is orb:= 1D an
•assignation•?

c) In the reach of a union (real, bool) rbn, what is the mode of
the value referred to by the name possessed by arba?

d) Is aunion(bits, bytes) :=: n il □ an •identity-relation•?
e) In the reach of a un ion (int, char) ica, is Die := ic + 1D an

•assignation•?

7.3 conformity relations

a) In the reach of aunion (real, g!J~f) rca, what is the value of
arc:: rca?

b) Wh at is the value of ax::= truea?
c) In the reac h of amo ne br = union (bool, real) ; union (int, .Qf)

ibc, br bra, what is the va lu~ of ailJr ::= bra?
d) In the -reach of a union (bool, int) bia, is □bi := i : := 1D an

•assignation•?

92 An ALGOL 68 Companion

e) Is □ x ::= x :: = x □ a •conformity-relation•?

7.4 Conformity and unions

a) In the reach of aunion (char, .QQQ,!) cha, is □ x : : = cba a
•conformity-relation•?

b) In the r:each of □ union([]real, real) r1ra, is cr1r ::= 3.14c
a •conformity-relation•?

c) Can □ .!!.!!!SL!! ([l!!!!, [)t~! !.!!!) c be contained in a proper
•program•?

d) In the reach of □ union (int, rea l) ira, can cir := 1a possess
a name referring to a real val ue?

e) Declare a • pt'oced ut'e• which will accept an integer and
aelivet' its square root, as an integer if it is integral
and, otherwise, as a real value.

7.5 Conformity extensions

a) what is the value of a (x, i, b : := 1 I 3, 4, 5, I 6) c?
b) What is the value of C (£~!!1, !~~.!. :£~~.! .. 3. 14 I 7, 8, 9 I

10) a?
c) Is □ §~.!!!~ p = 1 □ a •declaration•?
d) Is Cf~§~ X, i, b .. u !.!! f (X) , g (i) Q.!!! h ~§~£0 a valid ALGOL

68 obiect?
e) In the t'each of □ union (char, .!!!!, !222ll ciba is acib : : :::

§!.!.E!.□ a •conformity-t'elation•?
f) Is ax : : = g:.Q_!Q kc a •conformity-relation•?

An ALGOL 68 Companion

8 Formulas and operators

8.1 Formulas

9 .3

In section 3.11 •formulas• were discussed and the following
simplified syntax was presented:

£ormula: operand, dyadic opera tor, operand;
monadic operator, operand.

This is good enough as a fir st approximation but it does not
help to ex.plain that a •formula• such as

DX+ y * ZC
is e laborated in the order suggested by DX + (Y * z) c. The
qu estion then is how the pr ' orit y of the •operators• may be used
to determine the order of elaboration. A closer approximation to
the syntax of •formula• (s till i gnoring modes and coercion) is

PRIORITY formula : PRIORirY operand,
PRIORITY operator, PRIORITY plus one operand.

PRIORITY operan1 :
PRIORITY formula ; PRIORITY plus one operand.

priority NINE plus one operand: monadic operand.
monadic operand: monadic formula; secondary.
monadic formula: monadic operator, monadic operand.

[simplified from R.8.4.1.b ,n ,e,f,g]. Here the terminal
productions of •PRIORITY• are f R.1.2.4.a, ••• ,n] •priority-one•,
•priority-one-plus-one•, •pri or ity-one-plus-one-plus-one•, etc.
Thus, •priority-NINE• has the meaning that one might expect. It
is evident that the metanoti on , •PRIORI?Y•, is being used here
as a counter to ensure that the left •operand• must have
priority not less than that of its associated •dyadic-operator•
and the right •operand• must have priority greater than that of
its associated •dyadic-operator•. We shall find it convenient to
shorten the terminal productions of •PRIORITY•, in an obvious

p6-operand
I
I
I
I

secondary
.J.

ax

p6-formula
I _ "-T _ ______ .J. ______ -,

p6-operator p7-operand
I I
I
I
I
I

..1.

+

r---- - ---+· - ------ ,
p7-operand p7-operator p8-operand

I I I
secondary I secondary

.J.

y

Fig.B.1.a

.J.

*
.J.

ZD

way, to •pl, p2, p3, ••• •· Using this shorthand notation, we
obtain, from the first three rules above, the following nineteen
rules:

p1 formula
pl operand
p2 formula
p2 operand

p1 operand, p1 operator,
pl formula ; p2 operand.
p2 operand, p2 operator,
p2 formula ; p3 operand.

p2 operand.

p3 operand.

p9 formula: p9 operand, p9 operator, p10 operand.

94 An ALGOL 68 Companion

p9 operand: p9 formula ; p10 operand.
p10 operand : monadic operand.

We may now present, in figure 8.1.a, a simplified parse of the
•formula • ox+ y • zo, refflembering that o+o is a •p6-operator•
and o•o is a •p7-operator•.

Because a •dyadic-operator• requires that
•operand• be of the same priority (or higher) and that
•operand• should be of higher priority, the •formula•

ox + y + zc
is elaborated as if it were c(x + y) + zo, for the only
parse is that sketched in figure 8.1.b.

p6-formu la
I

its left
its ri•Jht

possible

r­
p6-operand

------'------------------,
p6-opera tor

I
p7-operand

I I
p6-formula I I

I I I
r-----------Lr---------, I I

p6-operand p6-operator p7-operand I I
I I I

secondary I secondary
.L ~ ~

I
I

.L

I
secondary

.L

ox y + zo

Fig.8.1.b

It is important to observe that, in a •formula• containing
several •operato s•, the •operands• of eacb •operator• are
determined solely by the priorities of the •operators• an<l do
not depend in any way upon the modes of the •operands•. Tbus,
assuming that the •Operator• OQjc has priority •l•, □glo has
priority ■ 2 ■ antl so on, we know that the •formula•

oh ~1 i gI j .Q2 kg~ 1 g] m g2 no
must be elaborated in the order suggested by

o (h d3 i) ~l ((j d5 k) !'.!.1 (1 .§:Z. (m g2_ n))) o
without any knowledge of the modes of oh, i, j, k,
one. The compiler writer appreciat s the necessity for
independence and the progr mmer gains because of the
clarity in the meaning of •formulas•.

8.2 Priority declarations

l,mo,1n:i
this mode
resulting

•Priority-declarations• were mentioned, in passing, in
section 3. 11. An example of a •priority-declaration • is

which is
prelu.l.e•
is shown
shorthand
token•.

D£I!Qf!l1 + = 6a ,
indeed one of the •declarations• in the •standard­
[R.10.2.0.a]. A parse of this particular •declaration•
in figure 8.2, where •6-token• is used here as
for •one-plus-one-plus-one-plus-one-plus-one-plus-one-

The syntax of •priority-declaration• is
•priority-declaration : priority symbol,

An ALGOL 68 Companion 95

priority NUMBER indication, eguals symbol, NUMBER token.• ,
fR.7.3.1.a], where we may observe that the metanotion •NUMBER•
[R.1.2.4.f] is used as a counter to ensure that the value of the

priority-declaration
I

r---------------T----------'----,--
1 I I

priority-symbol p6-indication equals-symbol
---L--- L L

DE£!Q1i!1 + =

Fiq.8.2

-,
I

6-token
~

6c

•token• on the right is the priority of the •dyadic-indication•
on the left.

The first two •dyadic-indications• [R.4.2.1.d] used in
section 8.1 above might hdve been declared in

c~riority d1 = 1, ECioritI d2 = 2 □
but all of them might b declare d more compactly by using an
extension fR.q.2.c) which allows elision of Df!i2!i1I□ s, as in

llE£!.QI!.tY .\!l ~ 1 , gJ = 2, ·~J. = 3, !i.!! = 4,
as = 5, d6 = 6, d7 = 7, dB= 8, d9 = qi]

Observe that the -programmer may--choose-his own •dyadic­
indications•, like adla and cd2 □ and is not constrained to use
only those which-- appear-- in the Report. The particular
representations permitted will be determined by the
implementation, but it s expected that most implementations
will permit representations like □~Jc and □gl □ together with
such characters as o?□ and ale, if available, and which are not
alr~any used as representations of some symbols [R.1.1.5.b].

8.3 Operation declarations

Among the well known programming languages
declarations• may be unique to ALGOL 68. Certainly
declarations• are rare. The latter exist, perhaps
primitive form, in APL where all priorities are the

• priori t Y­
•operat ion­
in a more

same.

A simplified syntax of •operation-declaration• is
operation declaration:

caption, equals symbol, actua l parameter.
caption: operation symbol, virtual plan, operator.

r a.7.5.1. ,b], but the strict s yntax uses the metanotion •PR~M•
to convey information about the number of and the modes of t he
•parameters• and the metanotion •ADIC• to convey information
about the priority of the •operator• and wnether it is monadic
or dyadic.

An example of an •operation-declaration• (in the strict
language) is

ao,e (real, real) real
((real a, real b) real: (a>

and a simpleparse Is-shown--In figure
language it may be written

!!!~.! =
blalb))a
8.3. In the extende:l

96 An ALGOL 68 Companion

DQE. .!!l!!.! = (f!t~1 a, b) !~~!: (a> b I a I b)a ,
for if the •actual-parameter• is a •routine-dentation•, then the
• plan• may be elided and the •routine-denctation• may be

operation-declaration
I

r------- -,----.1.
caption equals-

I symbol
r----------~--r-------, I

operation- virtual- aper- I
symbol flan ator I

I I I I

,
actual-

parameter
I
I
I
I

i ____ _ -i__ ~ ----------------l-----------
(£~~1, ~~~!)~~!± ~~~ = (!~~1 a,b)£~~1: (a> b I a I b)a

Fig.8.3

unpacked [H.9.2.e,d]. Befoce going further we
that this •declaration• can only · occur in
•priority-declaration• like cRriority max= 7a.

should
the

relllember
reach of a

I n the ceach of the •declarat·ons• given above, we may have
a •formula• like ox ~2! y + .140. since the priority of the
standard •operator• c+a is six, we should expect this •formula•
to be elal:;orated in the order sugyested by o (x .!!!~~ y) + 3.14c.
If the •priority-declaration• had been DEriority max ~ Sa
i nstead, then the •formula• would be elaborated as if it were ax
.!!!!!! (y +) • 14) C.

The •actual-parameter• need not necessarily be a •routine­
dcnotation•. For example,

aOE (string, int) int si = string into
is an •operation-declaci\tion• in wh ich the •actual-parameter• is

n •i~entifier•. The •operator• c§jc is then ma~e to possess the
s me routine as that possessed by astring intc fB.10.5.2.2.cJ.
In the reach of this •declaration• the •formul • 0 11 +1 23 11 si 10a
will possess the same value as that possessed by the-;call•
cstrinq i nt(" + 123 11 , 10) o. Ohserve that

□QE. 2! = string int□
is not an •operation-declaration• because cstring int□ is not a
•routine-denotation• so the •plan• a(§!E!ng, !!!!) .iu!: □ cannot be
elided.

It is not necessary that an •operation• should deliver a
v alue, but if it does not, then a •formula• containing such an
•operator• cannot be used as a n •operand•. Thus one loses some
of the advantages of •operators• , except perhaps for the benefit
of compactness of expression.

An example is
co_E in terch ange== (ref real a, b)

(a : 1: b I !:!Ht! t = a ; a :a:: b ; b : = t) o ,
whose •operator•, ainterchangea, could be used in the •formula•
ex .!!!!:~.tfhan.51~ ya. The sa me effect would be obtained by means of
the •identity-declaration •

An ALGOL 68 Companion 97

□.E!.QS: interchange = (!~!. !:.~~! a, b) :
(a :I: b I real t = a ; a := b: b := t)a

whose •identifier• -could then be used in the
cinterchange(x, y)a. one might observe that the

,
•call•

•actua 1-
in both parameter• is the same •routine-denotation•

•declarations• above.

•Operation-declarations• may
of algorithms since •formulas•
priorities may be built to do
•formula • like

therefore allow a compactness
using •operators• of several

any job we may require. A

ax~~! y ~~! 0.1 □
is sometimes a more pleasing expression of thought thau a
nesting of •calls• like

a max (max (x, y), O. 1) a
although LISP lovers may not agree.

8.4 Elaboration of operation declarations

An •operation-declaration• causes its •operator• to possess
that routine which is possessed by its •actual-parameter•
[R.7 .5.2]. rn the elaboration of

□22 ~~! = (feal a, b) ~1 : (a> b I a I b)a
the •operator• o~!~ □ is made to po ssess tho routine

• (!:~J!l: a -= ski,.E, !;'.~-5!1 b = ~1i.2 ; !~21 : (a > b I a I b)) • •
This is, of course, already the va lue possessed by the •routine­
deno tation• which is the •actual-parameter• on the right. The
elaboration of an •operation-decLaration• is thus similar to
that of the •identity-deciar~tion•, particularly that in which
the •actual-parameter• possesses a routine with one er two
•parameters•.

8.5 Dyadic indications and operators

Although the same occurrence of an external object may be a
representation of both a •dya~ic-indication• and an •operator•,
the identification of the object, as it plays each role, is a
distinct process. An example may help to illustrate this. In the
•closed-clause•

a(EI!2£!!l !~! = 7 ;
¢1¢

2£ .!!!!!! = (real a, b) £~-2.! (a > b I a I b)
t2¢

X := X ~2! Y ♦ 3.14)
¢3¢□

there are three occurrences of the object □fil-2! □- The first
occurrence is the defining occurrence of a •dyadic-indication•
[R.4.2.1.e, 4.2.2.a]; the second occurrence is an applie:1
occurrence of DJ!!~! □ as a •dyadic-indication• and its defining
occurrence as an •operator• [R.4.3.1.b, 4.~.2.a]; the third
occurrence of □.!!!~! □ is an applied occurrence of a •dyadic­
indication• and an applied occurrence of an •operator•. Thus, in
each of the last two occurrences, the object □~!!□ represents
two notions, both of which are involved in the identification
process. Since an applied occurence must always identify a
defining occurren=e [R.4.4.1.bl, the last occurrence of □~~! □

98 An ALGOL 68 Companion

identifies two defining occurences, i.e., the first as a
•dyadic-indication• and the second as an •operator•. In figure
8.5 we sketch the parse of each of the three occurrences of
□~~! □ and indicate by"<===" how the identification occurs.

priority­
declaration

I
r-------+------~,
I I
I dyadic
I indication <====
I I

--.L----- -.l.-

□E.f.!Q.Eill .!!!~!C

operation­
declaration

I
r--·
I
I
I
I
I
I

I
opera tor

I
dyadic

indication
I

.J._ --.L

□g_p !!!~!tl

Fig.8.5

<====

<====

formula
I

,---+---,
I

operator
I

dyadic
indication

I
_J__

ax.!!!~! yo

It is thus helpful to remember that an object like □!!!O,
except in a •priority-declaration•, must be considered first as
a •dyadic-indication• (carrying the information about priority)
and second as an •operator• (possessing an operation - a
routine). As a •dyadic-indication• it may identify only one
defining occurrence [R.4.2.2, 4.4.2.b], but as an •operator• it
may, at different applied occurrences, identify more than one
defining occurrence [R.4.3.2]. One need only consider the
• formulas• a3. 14 + 4.25□ and c123 + 456a to realise that the
standard • operator • o+a, in the first •formula•, must be that
which adds two real values fR.10.2.3.i) and in the second it is
that which adds two integral values [R.10.2.4.i]. This
"overloading" of •operators• (i.e., allowing them to have wore
than one meaning) has been traditional both in mathematics and
in programming languages, so that it should not be difficult for
us to remember that in ALGOL 68 any •operator • may have a
meaning which depends upon the modes of its •operands•.
Moreover, the programmer now has the power to overload operators
at will.

8.6 Identification of dyadic indications

The identification of •dyadic-indications•, like that of
•identifiers•, is a simple process. For each applied occurreuce
one must search in the cu rrent •range• for a defining
occurrence. If it is not found, then one searches in the next
outer •range• rR.4.2.2.b]. rhe process is then repeated. If a
•particular-program• contains no •p iority- declarations•, then
the defininq occurrence of any •dyadic-indications• will be
found in the •stan ard-prelude• (or perhaps a •library­
P e lu~ e •). Since •dyadic- indications•, again like •identifiers•,
are s ubj c t to protection [R.6.0.2.d, 6.1.2.a), i.e., to
systematic replacement in a •closed-clause• in order to avoid
confu s ion with the same object used elsewhere, it follows that
the occurrence of, say

An ALGOL 68 Companion

in some •range• will mean that all operations possessed
•operator• c+c, in the next outer •r;,nge•, will
inaccessible. A small example may help to make this point
In the object

a (E!:!2r.!tI .!!!2.! = 7
¢1¢

2.E !H! =
¢2¢

(!:~-5!± a,

X := 1.23 ~~! J;
¢3¢

) D

_Eriori ty max = 5
,:4 ¢

X : = 2. 3 4 .!!!2! Y)
¢5¢

(a > b I a I b)

99

by the
become
clear.

the fifth occurrehce of D!~! □ id entifies the fourth occurrence.
Moreover, due to protection of the inner •closed-clause•, both
of these occurrences are systematically changed into some other
•indicant• which is not used elsewhere. Consequently, the last
occurrence of amaxc is that of an •opec to• w~th no defining
occurrence. Because-of a contex t condition [R.4.4.1.b], tbis
could not be contained in a proper •program•. This means that
the changing of priorities of the standar~ •operators• cannot be
undertaken lightly. Perhaps it is just as well.

8.7 Identification of operators

The identifi:;ation of •operators• is not as simple. It is
not sufficient tor the •s ymbol• to match that which occurs in an
•op ration-declaration• since, as we have said before, one Sdme
•dyadic-indication•, when consicl ered as an •operator• may, iJt
different occurrences, ident ify more than one defining
occurrence. rhe additional requi rements to be satisfied are as
follows. The mode of the left •operand• must be firmly
coerceable to the mode of the fi rst •formal-p,11:ameter• in the
•operation-declaration• anr1 the mode of the right •operand• must
be £irmly coecceable to th e mode of the second •formal­
parameter •; otherwLse, the search for a defining occurrence
proceeds to the other •operation-declarations• in the ssme
•range •, or, as before, in successive outer •ranges•. We shall
illustrate this with a simple example.

□ l!!H (.E.f!Ori_!y Q = 8 ;
1!!21!! QE Q = (£~!!!a, b)£~H.!: 3.14;
¢]¢ (QE Q = (~~! a, 1~! b)£~!!!: 3.15
rt4rt (QE 2 = (~2Q! a, b)£~!.! 3.16 ;
¢5¢ 2 • J Q X))) D

The question to be answered here is, which r1efining occurren:;e
is identified by the •operator• □Q□ in the •formula• □ 2.3 2 xu
in line 5. One first sea.rches the •r,1nge• n which that
•formula• occurs. There is an • operation-declaration•, on lin . 4
in this •range• , using the same •dyadic- indication• □ ~a. This is
the first cequirement. Flowever, since the mode of tbe •ape r 11d •
o2.J□ cannot be firmly coerced to •boolea n•, this attempted
identification of •operators• fails and we mu s t search in the
next outer •range•. Thi s next outer •range• also contains an
•operation-declarfttion•, in line 3, but agdin the identification

100 An ALGOL 68 Companion

fails since the mode of oxa cannot be firmly coerced to
•integral•. (Note that it is sufficient to have the failure
occur in only one •operand•.) We must now search in the next
outer •range•, which conta ins yet another •operation­
declaration•, in line 2, using the same •dyadic-indication•.
Tbis time the identification succeeds since the mode of both
□ 2.lo ana axa can be firmly coerced to •real•. The value yielded
by the ■ formula• is therefore ■ 3 .14 ■•

8.8 Elaboration of formulas

In section 5.1 we discussed the elaboration of a •call•.
The elaboration of a •formula• is similar. As an example,
consider the •clause•

a¢1¢ eriority max= 7;
¢211! 2E ID!1 = (f~2.! a, b) f~~!
II!]¢ (d > b I d I b)
t411! ~ := 3.1 4 !!~ y)a

Hece the •operator• □~~a, in line 2, possesses the routine
• (!~!.! a = s ki..e, f~.1.! b = 2..!s.i.E ; !~!.! : (a > b I a I b)) ■ •

The elaboration of the •formula•, in line 4, then has the
following effect. In a copy of the routine possessed by □!!!D,
the two □~kines are replaced by the •operands• of the •formula•.
The rasulting object

a(£~!.! a= 1.14, r~l b = y
which is a •closed-clau~e•,
elabor te • Its value is then
is therefore nothing new to
•formulas•.

· re a 1 : (a > b I a I b)) a ,
~eplaces the •formula• and 1s
the value of the •formula•. There
tell about the elaboration of

Since it seems that each operation in a •formula• involves
a sequence of actions like hose in the elaboration of a •call•,
it may be thought that the execution of ALGOL 68 programs will
be n cessacily slow. This need not be the c ase, for the
implementec will undoubtedly produce in- line code for the
translation of a •formula• like ax + yo (pechaps only one
machine instruction). Provided that the effect is the same, be
is free to produce any machine instructions for doing the job
(se the note after 10. b Step 12 in the Report).

8.9 Monadic operators

The most significant fact concerning •monadic-operators• is
that they are always of priorit y ten. There ace no •priority­
declarations• for •monadic-operators•. Because of this, monadic
operations are always performed first. This is a simple rule an1
is easy to remember. It means t hat the value of a- 1 •• 2a is ■ 1 ■ !.
and not ■-1 ■, contrary to its meaning in ~LGOL 60 and in
FORTRAN. The reason for maki ng this choice has been explained
earlier in section 3. 11.

Because of the syntax
monadic formula : monadic operator ; monadic operand.
monadic operand: monadic formula ; secondary.

[R.8.4.1.f,g], the elaboration of a •formula• containing a
sequence of •monadic-operators• proceeds from right to left.

An ALGOL 68 Companion 101

Thus the •formula•
a bin cound - xa

is elabocated in the order-suggested by DQ!B (£2~!!1 (- x))a.
A sketch of the p:trse of this •formula• is shown in figure 8.9.

formula
I

r--------1..---------,
opecatoc operand

I I
I r--------1------,
I operator operand
I I I
I I r-----~-----,
I I operator Oferand

~- --~-- .J. .J.

DQ!!! £Q~!!~ xa

Fig.8.9

The identification of •monadic-operators• proceeds as toe
the •dyaoic-opecators• , t he only difference being that there is
onl y one •operand• which must be checked aqdinst the only
•formdl-parameter• in the mona~ic •opecation-declaration•. As
for •j y die-op rator~•, th e mone of the •opecann• must be firmly
coerceable to that of the • for mal-parameter•. An example is

a¢ 1 ¢ (Q[! ~ = (.Q2.Q1 a) i!!! : (a I 100 I O)
¢2¢ (Q.E .!!! = (i!!i a) i!!! : 200
¢3¢ ~ !E.Y~))a

in which the •operator• a_!!!o , in line), identifies the
•operator• in line 1, since the value possessed by a!E~ga cannot
be firmly coerced to a value of mode •integral•. The value of
the •formula• a~ l!Y~a is therefore • 100 ■ •

8.10 Related modes

Two modes :tre "related" if each of them can be firmly
coerce fro m one same mode fR 4. 4.3.b]. An example is the pair of
manes specified by aref real □ a nd aEroc reala. These are related
because both can be firmly oerc ed from the mode specified by
oref .real□• (li e shal l fi nd i t convenient here to shorten the
phrase -"the mode S!)ecified by C!!!_ a" to "the mode 0!!] □ 11 , or even to
11 a!!,1_a " .) Thus aE~..f E~~la m.1y be c oerced to D!:~! !~~.!□, by the
e mpt y coeccion , and to □ pro£ !~~!a, by dereferencing and then
pcocejuciog . one Leason foe defining this rel¼tionship between
modes is to exc lude some dubious unions from proper • proyrams•
r R. 4. 4. 3. d l- consider, for example, the •declaril tion•

aunion (2roc real, ref real) pr : = xa
since ax □ is in a strong position it may be subjected to
dereferencing, pc-oceduriIHJ and then uniting, whereupon the
assignment can oc~ur. On the other hand the assignment can also
occur with an immediate unitiny of oxa. There is thus an
ambiguity. Foe this reason, unions of related modes are exclu~ed
from proper • programs • .

Another reason, which has to ~o with •operatocs•, may

102 An ALGOL 68 Companion

become clear by examining the following:
□ (.QE ~ = (EEQ£ £~~.!) !n! : 0 ;

.QE ~: (£~f £~~1) in!: 1 :
X := 3.14 ; i := ~ X) □

What is the value assignerl to □ ia? Is it aOa or •1•? Since axe
may be firmly coerced both to the mode oref reala and to the
mode aero£ £g~!a, it i- clear that-there-are two defining
occurrences of the •operator • a~□ in the same range. This
possibility must also be excluded from pro~er •programs•
rR.ij.4.3.d).

A first attempt to achieve this exclusion might be by
forhidding the occurrence o f two •operation-declarations•, in
the same •range•, if their corresponding •operands• are of
related modes. However, thi s is not enough as the following
example shows:

a(.Q.E + = ([]£gf £~~1 a, b) fg~.!: 0.0
.Q.E + = ([)I~~.! a, b) !~~.! : 1. 0
x1 := (x, y) + (y , X))o

In this example the modes □[]fg~!o and □[]£~! f~~l□ are not
related, nevertheless we have two defining occurrences of the
sdme tiperator c+ □, as used in the •formula• in the last line. It
i.s for this reason that the c oncept of "loosely related" is
developed in the Report. For most programmers and most
implementers, this concept is suf.ficient to ex:clude multiple
defini ions of •operators•. It has been shown that there dee
certain pathological cases which can s till slip through into
proper •programs•. For a discussion of theso the reader is
referred to a paper by WGssner and the discussion following it
rw1. A new wording of the context condition [R.4.4.3.b) is thus
likely to appear in the revised Report.

8.11 Peano curves

In the following example we assume that there is a plotting
device and a •library-prelude • (foe plotting} containing
•declarations• of the •iclentif·~ cs• ax, y, plota and cmo~~o.
Both axa and aya are •real-variable s•, the two coordinates of
the plot pen. The •procedure• aplota first lowers the pen and
then ~lots stTaight line from its current fOSition to the
position whose coordinates are c(x, y)a. The •procedure• omoveo
first raises the pen and then moves it to the position □ (x, y) c.

In mathematics it is know n that a uniformly converg nt
sequence of continuous curves (e.g., polygonal lines) will
converge to a continuous curve. The particul r example we have
in mind is a sequence which defines a continuous curve passing
through verv point of a square. It helps in proving that the
points of ~ square are in one-to- one correspondence with the
po int s of d line interv 1. Th ese are known as the Peano curves.
The plotting of the approximants is an interesting exercise
(provided that one has plenty of computing money) and the
resulting figures are aesthetically pleasing.

Suppose that one begins with a square of side ado. The
first approximant (n = 0) is a single point at the centre of the

An ALGOL 68 Companion 103

square. To obtain the second approximant (n = 1), one divides
the original square into four squares each of side cd / 2c. The
solution for the case n = 0 is then applied to each of the four
small squar-es. The four- plots so obtained ilre then joinei

r--------------------------,
I
I
I

•------~------• I
I I
I I
I I
f. I
I I
I I
I I

•------➔------• I
I
I
I

L-------------------------_J
< - - - - - a - - - - - - >

Fiq.8.11.a

by three li nes of length nd / 2 ** 1o i n
the n N and then w. The resulting plot is
The process is re=ursive, but per:haps we
more step . The next approximant (n
8 . 11.b , in which the method is to appl y

r------- ------,

I
I • ••••~• •• ------•
I
I
I
I •------• •------•
I •

I •
I •
I •------ • •------•
I
I
I
I • •••• ➔ • ••------•
I
L--------------------------

Fig.8.11.b

N
I
I

W--+--E
I
I
s

the directions first E,
shown in figure 8.11.a.
should follow it one
= 2) is shown in figure
the solution for the

N
I
I

W--t--E
I
I
s

case n - 1 to the four quarters, but scaled down ano re­
oriented. rhese four plots are again joined by straight lines of
length ad/ 2 ** 2a and in the same directions as hefor-e, i.e.,
first E, then N and then W.

104 An ALGOL 68 Companion

To plot these approxim~nts we consider some orientations of
the case n = 1. A moment of thought will convince us that we
need only fou..r: orientations and these ace shown in figure
8.11.c, together with a pdir of truth values (the first relatei
to rotation about the NE diagonal and the second related to
rotation about the NW diagonal) and the direction of the second

r----------, .-- l .---------, r ---,
I I I I I I I I
I •-----. I I •--➔---. I I • • I I •------• I
I I I I I I I I I I
I ' I I I I I I V I
I I I I I I I I I I
I •-----• I I • • I I · ---<--• I I •------• I
I I I I I I I I L_ _________ _J L_ _________ .J

l ---------.J

(true,true) N (false,true) E (true,false) W (false, false) s

Fig.8.11.c

of the three str3ight lines, either of which will determine one
of the four orientations. In the reach of DQ~Q! p, qc, the
•formula• op* ~a plots an approximant with the orientation o(p,
g) a. and the •tormula• op + go plots a straight line of the
required length and with orientation a(p, q) □•

The proqram< 1 > to plot an approximant follows. It first
reads the length ode of the side of the square and the degree
enc of the approximant. The first step is to calculate the
length of the line segments regnired and then to move the pen to
the starting position. Th plot is then driven by the •formula•
D!;;fgg * _!~D.

a~~~!rr tPeano curve
QE + = (,!2QQ! p, q) :

((p=q1y1:1
QP * = (!2~! p, q)

(n > 0

approximan t¢
¢this plots a straight line
+: = (q I d I - d) ; plot
ta recursive operation¢

I n - : = 1 ; -.p * q ; ., P + g ; P * q ; P + q
p + -.q; p * -.q ; n +:= 1

)
real d tthe side of the square¢,
Int-n ¢the degree of the approximant¢
stirt here : read ((d, n)) ;
d /:= 2 ** n tlength of connecting segments¢
x := y := d / 2 ; move tto the starting point¢
¢now plot itt (!!Y~ * ~£Y~)
~!!Q. Cl

<1> From an algorithm of A. van Wijnqaarden.

of length dt

p • q

.

t

An ALGOL 68 Companion 10 5

8.12 Chinese rings

The next example is a solut ion to the puzzle of the Chinese
rings. The puzzle may be stated as follows. rhere are e nc rings
with an elongated D shaped rod passing through them; the ri n gs
are attached, by wires through t he D shaped rod, to a plate;
this is done in such a manner that, ~f the first cm - 2c ri n gs
have been removed, then the cmath ring may be remo v e d (o.r
replaced) but not the cm-10th ring. The p-roblem is to remove all
the rings. The solution is hy induction Ct>. Removal of rings 1
and 2 is done in the ordec- 11 remove 2, remove 1". Assuming that
we know how to remove (and therefore to replace) less than nma
rinqs, then all ama rings are removed as follows: "remove m-2
rings, remove r~ng m, replace m- 2 rings, remove m-1 rings".

In the
removes ok ..;.
rings. The
removing all

following program< 2 > the •formula• ck Q2!n ic
ic rings. The •formula• ak !!E ia replaces ak ia
•formula• an £2!~ Oa then drives the algorithm by
the on □ rings.

□!!~9!!1
QE [QJ!!! = (!D! al, b)

(in!. a : = a 1 ;
((a-:-=b)>O
I a Q.Q.!.D 2 : print (("remove 11, a))

QE .l!E.-= (int a1, b)
(!!!:!: a : = a 1 ;

((a -:= b) > 0

a !!I? 2

I a ~E 1 ; a g,Q.!!l 2 ; prin t(("replace", a))
.!!t! n ;
start here : read (n) ; n Q.Q!B 0
!!~Qa

Review questions

8. 1 For mu las

a) Is ax := ya a •formula•?
b) Is ox+:= ya a •formula•
c) What is the order of elaboration of

ax+ - y - - - ~Q§ i Q!~~ 2a?

1))

d,!!£2))

d) How many priority levels are there for • dyadic-operators•?
e) Is ax :=: ye a •formula•?
f) What is the value of c7 - 3 - 2a?

8.2 Priority declarations

<t> D.O.Shklarsky, N.N.Chentzov, I.M.Yaglom, The USSR Olympiad
Problem Book, Freeman & Co. 1962, pp 80-84.

<2> This algorithm is due to Sharon Dyck and in its final form
to W.L.van der Poel.

106 An ALGOL 68 Companion

a) Is □1H.iO£i.D . - . . - . = la a •priority-declaration•?
b) Is D££iorit.I +:= = O □ a •priority-declaration•?
c) IS □.1n:ioci~1 !! = 10a a •priority-declaration•?
d) Is Dl::..£,!Q£!,~j 1 = Sa a •priority-declaration•?
e) IS o.eriori,ty , . , I = 6a d •priority-declaration•?

8.3 Operation declarations

a) Is □ QE. :=: = (£~! ~~1 a, b) a = ba an •operation-
declarati on•?

b) Is □QE. 1 = (: !!Y~)a an •operation-declaration•?
c) Is □ QE. * = (£~~1 a) !~!! exp(a)a an •operation­

dec lara ti on•?
d) Is □QE. Q£ = (!~! £~~1 x, y) Eef E~~1 random> .5 x

y)a an •operation-declaration •?
e) Declare an •operator• aff~~tga so that af £!~!!~ na has the

same value as acreate(f, n) □ [R.10.5.1.2.c].

8.4 Elaboration of operation declarations

a) What is the value possessed hy □Qa in the reach of □QE Q =
(reaJ a) int : round aa?

b) rs oo.e. (real) real o = candoma an •operation-declaration•?
c) ~hat is the value of the •formula• □"+123" si ("+1000" §i

2)a usinq the declaration of □§ia as in 8.3?
d) Is □QE. Q~ -= (J?!Q£ !;!ooJ a, b) .QQQ]; : (a I !E.Y~ b) a an

•opecation-declaratioD•?
e) Is ao.e. (r eal, real) real a = +c an •operation-declaration•?

8.5 Dyadic indications and operators

a) How many defining occurrences may be identified by an applied
occurrence of a •dyadic-indication•?

b) How many operator defining occurrences of □ +a are in the
•standard-prelude•?

c) How many • priority-declarations• are in the •standard­
prelude•?

d) Where is the •priority-declaration• for the •operator• o?a in
line 3 of 10.5.J.i in the Report?

e) Is a:: =o a •dyadic-indication•?

8.6 Identification of dyadic indications

a) ls a.e.riori:t_1 + = 8, + = 9a a •priority-declaration•?
b) Can a proper •p rogram• contain

a(e£!Ori:t.Y ~~e = q ; X := ~~§ x)a?
c) Why does the S occur in the description of the repetitive

statement [R.9.2.a,b, 9.c]?
d) Are •dyadic-indications• subject to protection?
e) Are •operators• subject to protection?

a)

8.7 Identification of operators

In line 11.11.y of the Report, the •formula• ovalue of ec
1a occurs. Where is the defining occurrence-of its
•operator • ?

An ALGOL 68 Companion 107

b) In line 11.11.at of the Report, the •for11ula• af onec
occurs. Where is the defining occurrence of its •operator•?

c) In line 11.11.1 of the Report, the •formula• aa = zeroa
occurs. Where is the defining occurrence of its •operator•?

d) Where is the defining occurrence of the •operator• ogre in
the •formula• a101 or bin 60?

e) Where is the defining-occurrence of the •operator• a<a in the
•formula• c"a" < (§1£iDg :)a?

8.8 Elaboration of formulas

a) What is the value possessed by a_!c in D.Q_E .t = (f~g.! a) Q.Q.Q± :
a > Oa?

b) What •closed-:::lause• is elaborated as :l result of the
elaboration of the •formula• a_! XD in the reach of the
•declaration• above?

8.9 Monadic operators

a) What is the value of a2 + - - + - 3a?
b) Is ox : =: ya a •formula•?
c) Is ax+:= real : randoma a •formula • ?
d) ls areal +-realc a •formula•?
e) What-is-the-value of c-1 i 2 = -1 i -2a?

8.10 Related modes

a) Are the modes a£!Qf i~!D and □!£~.!a related?
b) Are the modes aref ref into and aref £CCC inta related?
c) Are the modes a2roc union(int, real)o and aunion(eroc in!,

!;!QQl) a related?
d) Can the •declarer• aunion(froc real, eroc)c be contained in a

proper •program•?
e) Can a (oe - = (union(bool, ref char) a) int: 2

QE - == (J!.!!!2!! (!~f in!, £!!!!!) a) : 3 - (£!!!!! : = "a")) c
be contained in a proper •program•?

8.11 Peano curves

a) What would the •formula• c!~!§~ + falsea accomplish?
b) Write this algorithm using four- mutually recursive

procedures.
c) Translate the algori th II into FORTRAN.

8.12 Chinese rings

a) What is printed by c2 Q.Q!~ Oc?
b) What is printed by a3 Q.Q!.!! Oc?
c) What is the purpose of the •declaration• Di!!! a : = ale?
d) What is printed by a6 Q.Q!.!! 2o?
e) Rewrite this algorithm without using •operation-

declarations•.

108 An ALGOL 68 Companion

9 The grammar

9.1 The syntactic elements

The gra111mar of ALGOL 68 i s written using both 11 small- 11 an:i
"large syntactic marks" (the l ower and upper case letters of the
alphabet) ra.1.1.2.a). Thus, •base• consists of four small
syntactic marks and •MODE• co nsists of four large syntactic
m<1.rks. A sequence of zero or more small syntactic marks is a
11 protonotion" [R.1.1.2.b]. For example, •base• is a protonotion
and so is •streets-that-flow-like-a-tedious-argument•, though
the latter will not be found i n the ALGOL 68 grammar. (The
presence of hyphens within protonotions may be ignored.)

The syntax of ALGOL 68 is a set of "production rules of the
strict language" ("production rules", foi: short). A production
rule is a protonotion followed by a colon followed by a list of
protonotions separated by commas and followed by a point. A
11 notion 11 is a protonotion for which there is a pro~uction rule,
i.e., it lies to the left of t he colon in some production rule.
For example, •integral denotation• is a notion because of the
existence of the production rule

•integral denotation : digit t oken sequence.•
[R.5.1.1.1.a), but •base• is not, for there is no production
rule for it [R.8.6.0.1.a).

Any protonotion ending with •symbol•, e.g., •begin-symbol•,
is a 11 symbol11 •

A 11 direct production" of a notion is the part between the
colon and the point in a prod uction rule for that notion. Thus,
•digit-token-sequence• (see ab ove) is a direct production of
•integral-denotation• and • insertion-option, radix, letter-r• is
a direct production of •radix-mould• [R.5.5.2.h). The direct
production of a notion is t herefore a list of protonotions (the
"members") separated by commas [R.1.1.2.b].

A direct production of a notion is also a "production" of
that notion. If in a production of a given notion, some notion
("productive member") is repl aced by one of its productions,
then the result is also a production of the given notion. This
replacement process may be repeated as often as we please and,
in parsing, normally continues until all the notions have been
replaced and the result is a list of symbols. Then we have a
"terminal production" of the given notion. For example,

•digit one symbol, digit two symbol•
is a terminal production of the notion •integral-denotation•.

9.2 Two levels

The syntax of lLGOL 68 is a set of production rules for
notions (the production rules of the strict language) as
described in section 9.1 above. only a few of the actual
production rules are explicitly qiven in the Report. The number
of production rules is infinite and the rule

• integral denotation : digit token sequence.•

An ALGOL 68 companion 109

(8.5.1.1.1.a] is one of them. The others may be obtained, when
reguired, fro11 a two level gramm ar which we shall now describe.
A typical production rule of the strict language is

•reference to real assignation :
refere_nce to real destination , becomes symbol, real source.•

It is obtained from the rule in t he Report
•reference to MJDE assignation :

reference to MODE destination , becomes symbol, MODE source.•
fR.8.3.1. 1.a] , by replacing the metanotion •MJDE• consistently
by one of its terminal producti ons, viz., •real•. The rules of
the Report are called simpl y "rules" without further
qualification. We shall be speaking of several different sets of
rules, so it is perhaps just as well to use the word "hyper­
rule" for the rules (such as th e one just given) found in
Chapters 2 up to 8 of the Report, especially if there may be
some doubt about which set of ru les we are referring to. A
hyper-cule thus differs from a production rule of the strict
language in that it may contain zero or more metanotions and
zero or more semicolons. A production rule of the strict
languag e contains no metanotions and no semicolons.

Another set of rules is he "metarules". These are found in
Chapter 1 of the Report. A tyFical metarule is

•FOBESE : ADIC formula ; cohes ion ; base.•
(R. 1.2.4. c). o\ meta.rule may be d istinguished from other rules by
the fact that it has one 11 meta notion 11 (a sequence of large
syntactic marks) to the left of the colon and zero or more
semicolons to the riybt. Howeve r this is not sufficient to
recognize one, for

•DIGIT: DIGIT symbol.•
(R.3.0.3. d] is a hyper-rule, not a metarule. From the metarules
we may derive the production rules of the metalanguage in a
rather simple way.

Thus, in summary, the ALGOL 68 grammar consists of two sets
of rules

(i) tbe metarules (in Chapter 1) and
(ii) the hyper-rules (in Chapters 2 up to 8).

The production rules for the strict language are derived from
both the metarules and the hyper-rules by a process which we
shall explain, by ex ample, in section 9.5.

9.3 The metarules

A typical metarule s
•FORESE : ADIC formula; cohes ion ; base.•

(R.1.2.4.cl. It provides th ree production rules for the
metalanguage, which are

•?ORESE ADIC formula.•
•FORESE: cohesion. •

and
•FORESE base.•

Thus a production rule of the metalanguage contains no
semicolons. The two direct pro~u ctions •cohesion• and •base• are
terminal (in the metalanguag e), but the direct production •ADIC
formula• may be produced f urthe r by using the matarule for

110 An ALGOL 68 Companion

•ADIC• [R. 1.2.4.d]. The terminal productions of metanoticns are
always protonotions.

The words used for the metanotions are usually chosen in
such a way that they help to convey a meaning. Coined words,
such as •PORESE• are often mnemonic. Thus, •FORESE• is made up
from

formula coh~sion ba§~
and FEAT from

firm weak soft
The reader will find many-others, similarly coined and usually
the mnemonic is glaringly apparent. It is useful to remember
that every metanotion ending witb •ETY• always has •EMPTY• as
one of its (not necessarily direct) productions.

The metanotion •ALPHA• is of interest because it has all
the lettei:-s of the alphabet (small syntactic marks [R.1.1.2.a))
as direct productions. If more are required (perhaps in
languages other than English), then it is pei:-mitted to add them
(see 1.1 . 4 Step 2 in the Report).

Another metarule of significance is
•EMPTY : • •

[R.1.2.1.i], from which we see that the metanotion •E!!PTY•, if
it appears in one of the hyper-rules, or in those derived from
them, may be consistently deleted.

Two metarules to watch are
•CLOSED: closed ; collateral; conditional.•

[R. 1. 2. 3. r] and
•LIST : list ; sequence.•

rR.1.2.5.h], where a distinction must be made between the
metanotion, which appears on the left of the rule, and the fii:-st
production of each, which is a protonotion. In speech this
distinction will be lost.

Another interesting metarule is
•NOTION : ALPHA ; NOTION, ALPHA. •

fR.1.2.5.fl. Roughly speaking, anything is a terminal pr:oduction
of •NOTION•. More precisely, any sequence of small syntacti=
m r:ks {the letters of the alphabet as usea in the syntax) is a
terminal production of •NOTION•. This is so because the
productions of •ALPHA• are the small syntactic marks. This fact
is used heavily in the rules of section 3.0.1 of the Report.

Jne might also wonder about the metarules
•LMODE MODE . •

and
• Rl'IODE MODE.•

r R. 1.2.2. j,k 1- •rhe mystery may be resol ved by examining the rule
fo •forrnu_las• [R. 8. 4. 1. bl, where the mode of the lP.ft
•opera nd•, that of the righ •operand• and that of the result
delivered by the operation all appear in the same hyper-rule.
These modes may be different, so it would not do to use the
metanotion •MODE• for all three of them. Other instances of this
same phenomenon are suggested by the metarule

l
l
I
l
I
I

r

I •

AD ALGOL 68 Co■panion 11 t

•LOS!TI : LftOODSETY. •
[R.1.2.2.o], which is used in the hyper-rule for •united­
declarers• [B.7.1.1.ee,ff), and by

•ROWVSETY: ROWSETY.•
[R.1.2.2.d] used in the hyper-rule for •slices• [R.B.6.1.1.a],
where •ROWWSETY• counts the number of •row-of•s not involved in
the •indexer• and •ROWSETY• counts the number of •trimscripts•
vhich are •trimmers•.

The two rules
•LFIELDSETY PIELDS and EMPTY.•

and
•RFIELDSETY: and FIELDS EMPTY.•

[R.1.2.2.g,r] are another pair which play a similar role in the
rule for •selections• [R.B.5.2.1.a).

There are two metarules in which the only
of the metanotion is a protonotion. They are

•CO~PLEI: structur ed with real field letter
and real field letter i letter m•

direct production

r letter e

fR.1.2.2.s] and
1 letter o let ter n letter g.• •LENGTH : letter

fR,1.2.2.v]. This
metanotions in some
shortening the rule

means that the presence of one of these
hyper-rule is merely for the convenience of
and plays no other grammatical role.

9.4 The hyper-rules

A qood introduction to the hyper-rules is to be
section 3.0. 1 of the Report, where are collected
several rules which should be ma stered early, for they
extensively elsewhere. A typical example is ~

•NOTION option: NOTION ; EMPT Y.•

found in
together
are use:l

[R.3.0.1.b]. The first step in detiving production rules of the
strict lang uage, from the hyper-rules, is to make two new rules
as follows:

•NOTION option: NOTION. •
and

•NOTION option EMPTY ••
As a next step we may replace each metanotion con sistently by
one of its terminal produc tions. For example, we might
substitute •integral-part• for • NOTION• and not hing at all for
•EMPTY•. This will now qive us two produc tion rules of the
strict language. They are

•integral part option : integral part.•
and

•integral part option: .•

Note that •integral-part-option• means what the words
suggest. i.e., either the presence or absence of an •integral­
part•. This is used with good effect in the rule

•variable point numeral:
integral part option, fract ional part.•

ra.5~1-2.1.b]. Examples are c 3.45c and c.45c.
notions in ALGOL 68 are similarly chosen so
(proto notions) used give som e suggestion of

!!any of the
that the words
the semanti=

112 An AtGOL 68 Companion

elaboration.

The pair of hyper-rules
•NOTION pack: open symbol, NOTION, close symbol.•

and
•NOTION package: begin symbol, MOTION, end symbol.•

r R.1.0.1.h,i] are also used in several places elsewhere. Thus,
if axe is a certain •n•, then a(x)a is an •n-pack• and aQ~gln x
~QQa is an •n-package•.

The hyper-rule
•NOT IO N LIST proper: NOTION, LIST separator, NOTION LIST.•

r R.1.0. l. CJ J e nsures that at least two • NCTION•s will appear in
the production. It is used, t or example, in the rule for
•collateral-declarations• [R.6.2 .1.a]

• collateral declaration: unitary declaration list proper•
meaning that, for example, Df~~1 x, !:.!!!. ia is a •collaterc1l­
declaration• but □£~~! xa is not .

The hyper-rules
•NOTION LIST :

chain of NOTIONS separated by LIST separators.•
and

•chain of NOTIONs separated by SEPARATORs: NOTION
NOTION, SEPARATOR,

chain of NOTIONS
fR.3.0.1.d,c] are used

separated by SEPARATORS.•
to describe such objects as

a123a
which is a •chain-of-digit-tokens-separated-by-EMPTYs•,

al, 2, 3o ,
which is
symbols•,

a •chain-of-strong-integral- uni ts-se Fara ted- by-comma­
a nd

a1 ; 2 ; 3a ,
which is a •chain-of-strong-integral-units-separated-by-go-on­
symbols•. These are used principally in the rules for •serial­
clauses• [R.6.l.1], but in other places also.

9.5 A simple language

~e shall now use this kind of grammar to describe an
interestin~ hut trivial language. By this small example we shall
be able to see the complete grammar in a few lines. There are
only three •symbols•, two hyper-rules and two metarules. Thus it
will be easier to get an overall view of how the grammar works.

The language we choose is that in which the only sentences
(or programs) are

□xyza, axxyyzzo, axxxyyyzzza •••
Perhaps we could say that the following would cause an ALGOL 68
computer to print sentences of this language until it runs out f
of time or memory space. t

□ begin string a, b, c;
~Q print ((a +:= 11 x11) + (b +:= "Y") + (c +:= "z"))
enda

The reason that this languaqe is of interest is that it is known
r H] that it cannot be described by a context-free grammar such

An ALGOL 68 Companion 113

as that used for the syntax of ALGOL 60.

The three symbols of the language and their representations
are

symbol
•letter x symbol •
• letter y symbol •

representation

•letter z symbol•
This corresponds to the whole of section
The three hyper-rules are

(i) •sentence :

DXD
eye
CZD
3. 1 • 1 of .the Report.

NUMBER letter x, NOMBER letter y, NOMBER letter z.•
(ii) •NUMBER plus one LB'rTER : NUMBER LETTER, one LETrER.•
(iii) •one LETT .ER : LETT ER symbol. •

These three rules correspond to all the hyper-rules found in
Chapters 2 up to and including 8 0£ the Report. Rule (i)
expresses the requirement that the number of occurrences of each
of the different letters should be the same. llule {ii) will be
used to interpret this number, i.e., actually to count th e m out
one by one. Rule (iii) is almost the same as the hyper- rules
3.0.2.b and 3.0.3.d of the Report. Rule (ii) mig ht be compaced
with 7.1.1.q of the Report, where the multiplicity of a •ro.,er•
is being counted. Rule (iii) is present in order to satisfy the
reguirement of ALGOL 68 tbat only protonotions ending in
•symbol• are terminal production s of the grammar. Without tbis
require~ent we could describe the language with two hyper-rules
instead of three.

The two metarules are
(I) •LETTER : letter X : lette r y i letter z ••
{II) •.NUMBER : one ; NOIH!ER plus one ••

These two metarules correspond to the metarules found in section
1.2 of the Report. The first metarule, (I), is there so that we
may be able, with one word, to speak of any one of the letters.
It is similar to the metarule 1.2.1.t of the Report for the
metanotion •ALPHA•. We could do without metarule (I), but then
we should need seven hyper-rules instead of three. Metarule {II)
is essentLal. In it, •NUMBER• is u~ed a s a counter. The term~n 1
productions of the metanotion •NUMBER• ace •one•, •one-plus­
one•, •one-plus-one-plus-one• and so 011. The meta.rule is
somewhat similar to the metarule of the Report for the
metanotion •ROWS• [R.1.2.2.b].

We shall now go through, in detail, the process of finding
some of the production rules of the strict 1 nguage, as defined
by the above grammar. This process is described in sections
1.1.4 and 1.1.5 of the Report. Since there are infinitely many
production rules of the strict language (even for the
minilanguage above), we cannot give them all here.

If we substitute the first terminal production of • NUMBER•,
viz., •one•, for that metanotion, in hyper-rule (i), it yields a
new rule

(a) •sentence: one letter
The airect production of
terminal, since it contains

x, one letter y, one letter z.•
•sentence• in this new rule is not

a notion which does not end with

114 An ALGOL 68 Companion

•symbol•. To remedy this we use hyper-rule (iii) and, replacing
• LETTER• by each one of its terminal productions in t'.l~ -n, we
obtain

(b) •one letter x
(c) •one letter y

and

letter x symbol.•
letter y symbol.•

(d) •one letter z letter z sym bol.•
The rules (a), (b), (c) and (d) a re ea ch production r ules of the
strict language. If now, in the right hand side of (a), we make
use of the productions in (b), (c) and (d), then we o btain tbilt

•letter x symbol, letter y symbo l, letter z sym bol•
is a terminal production of the notion •sentence•. This means
that ,l'e may spe k of axyzo as a • sente nce• in the rep res entation
1 nquaqe.

We now take another terminal production of •NUKBER•, viz.,
•one-plus-one•, and substitute that in the hyper-rule (i). It
yields

(e) •sentence : one plus one letter x,
one plus one letter y, one plus one letter z.•

Also, in (ii), we replace •NUf'IBER• by •one•. (Note that this is
the first use of hyper-rule (ii).) This gives

(f) •one plus one letter x one letter x, one letter x. •
(q) •one plus one letter y: one letter y, one letter y.•

anil
(h) •one plus one letter z one letter z, one letter z. •

Now, combining production rules (e), {f), {g) and (h) with
production rules (b), (c) and (d) obtained above, we have that
the object

•letter x symbol, letter x symbol, letter y symbol,
letter y symbol, letter z symbol, letter 2 symbol•

is also a terminal production of • sentence•. In the

sentence

r-------------------+-------------------,
one-plus-one- one-plus-one- one-plus-one-

le tter::-x letter-y le tter-2
I I I

r----.L.-----,
one- one-

letter-x letter-x
I I

letter-x- letter-x­
symbo 1 symbol

I I
ax X

r----.L.----,
one- one-

letter-y letter-y
I I

letter-y- letter-y-
symbol symbol

I I
1 y

Fig.9.5

r----~--,
one- one-

letter-z letter-z
I I

letter-z- letter-z-
symbol s1mbol

I I
z zc

representation language we may ther::efore now say that
axxyyzza

is a •sentence• of the strict language. A sketch of the parse of
this •sentence• is shown in figure 9.5. Perhaps we have now done
enouqh of this to suggest that it is easy to show that
axxxyyyzzza is a •sentence•. A crucial new rule in this process

An ALGOL 68 companion 115

is
•one plus one plus one LETTER:

one plus one LETTER, one LETTER.• • aoreover,. the process for finding more •sentences•
language should be clear.

of the

It vill also be obvious that the same language might be
described more concisely by the grammar

(I) L x ; y i z. (i) s N x, N y, N z.
(II) N : i N p. (ii) ff p L : N L, 1..

(iii) L L symbol.
and if ve drop the requirement t hat every terminal must end with
•symbol• by agreeing that •x, y• and •z• are ¼lready terminals,
then even more concisely by

(I) L : x ; y ; z. (i) s : N x, N y, N z.
(II) N : ; N p. (ii) N p L : N L, L.

For the student of formal grammars this is more natural, for he
is by nature an algebraist who is dedicated to the cult of
concise expression. In a description of a practical programming
language we can afford to be more verbose so that even those who
are not algebraists can read the rules and think that they
understand them.

9.6 How to read the grammar

How do we really use a grammar such as the one we are
c onsidering? How do we read it? Is it necessary a l ways to
perform, in our minds, the replacement of the metanot i ons by
t heir terminal productions before we can understand what the
hyper-rules say? The answer to this is probably that we should
have th.e experience of making these detailed substitut ions at
l east once. With this experience we ma~ then proceed as does the
mathematician who finds that it is unnecessary to p rove a
t heorem every time that he uses its result. Ris me thod is
normally to check through the proof of the theorem at lea st once
a nd then to remember its hypothesis and its conclusion.

For us, the metalanguage plays the role of a body of
theorems and the results we need to remember are the shape of
the terminal productions of the metanotions. For example, in the
gra■ mar of the minilanguage given in the last section, we need
only remember that the terminal productions of •LETTER• are
•letter-x-symbol•, •letter-y-symhol• and •letter-z-s ymbol• and
that the terminal productions of •NUMBER• are •one•, •one- plus­
one•, •one-plus-one-plus-one• a nd so on. ~ith this infor mation
at hand, the complete language may be comprehended merely by
reading the three hyper-rules

(i) •sentence:
HUMBER letter x, HUMBER letter y, NU~BER letter z.•

(ii). •NUMBER plus one LETrER : NUMBER LETTER, o.ne LETTER. •
(iii) •one LETTER : LETTER Sjmbol..

The same method -0f comprehension .applies to ALGOL 68. The
metarules should be well studied first and the shape of the
terminal productions ·(at least of the commonly used ones) should
be known. With this knowledge we can then read the hyper-rules

11 6 An ALGOL 68 Companion

• 1 and comprehend their meaning.

•£he most important meta notion in ALGOL 68 is •MOCE•. Foe
this reason its terminal productions should be well known before
trying to rean the hyper-rules. A chart is so~etimes a helpful
aid in understan1ing the metalanquage, though others may prefer
to rely upon the alphabetic listing of the metarnles which comes
as a loose page witb the Report. If you have not already done

MODE
I

,-------------.I----~
I
MOOD

I
~

I
UNIT ED

I
,-------'

I
TYPE

I
STOWf.D

I
union-of-LMOODS-MOOD-mode

I I I
,-------~
I I

,------------L---------, ..._ ___ T _____ 'l

f ormat I
I I
structured-with-FIELDS row-of-MODE

I I
,-------T-1.---------------, L---,-------,
I I I I I

I I
LMOODS-LMOOD

I
,------.J

PLAIN reference-to-MODE PROCEDURE FIELDS-and-FIELD
I
MOOD-and

I I
,---.&.---~.
I I I
INTREAL I character

I I
,---.--J I r
I I I

,----------.J
I
procedure-PARAMETY-MOID

I I
__J ,---.I--,

I I

I
,.--J
I
MODE-field-TAG

I
,--------i

I REAL boolean
I
with-PARAMETERS

I
EMPTY l'ICDE void

I I
LETT ER I

I I I
I L---, ,-------'------,
I I
INTEGRAL LONGSETY-real

I I
PARAMETERS-and-PARAMETER

I I I
,-------J L-,------------, r-------J

I I I

I
,.--------~
I I
TAG-LETT ER I

I
,--------J

I I
LONGSETY-integral long-LONGSETY EMPTY MODE-parameter r AG-DIGIT

Fig.9.6

so, it is a good idea to tdke this loose page and arrange it so
tha it is attached to your copy as a fold-out page in such a
way that it may be in view no matter what page of the Report you
have O[l n. For those who like charts, we reproduce, in figure
9.6, an abhreviated syntactic chart for the metanotion •MOD E•,
in which •LETTER• and •DIGIT• ace the only metanotions not
produced. Whichever method you prefer, ("people who like this
sort of thing will find that this is the sort of thing they
like") a careful study of the metalanguage is essential to the
comprehension of the hyper-rules ana thus of the grammar of the
language.

An ALGOL 68 Companion 117

9.7 The indicators

A 11 hypernotion 11 [R. 1.3 J is a sequence of metanotions and/or
protonotions, e.g., •MODE field TAG•. A hyper-rule (in the sense
used in section 9.2 above) is t herefore a hypernotion followei
by a colon, followed by zero o r more hypernotions separated by
semicolons and/or commas and fol lowed by a point; e.g.,

•strong COERCEND : COERCEND;
strongly ADAPTED to COERCEND .•

ra.8.2.0. 1.d]. If, in a given hy pernotion, one or more of its
metanotions is =onsistently r eplaced by a production of that

strongly-ADAPTED-to-COERCEND
-~r--- ___ T __ _

1
I
I
I
I

ADJUSrED
I
I
I
I
I
I

t---- ..
l'lOID FORl'l

I I
l'IODE I

I I
MOOD I

I I
TYPE FOHESE

I I
PLAIN I

I I
INTREAL I

----'-------- ~--- --'-
strongly-deprocedured-to-real-base

T---
!NTREAL

I
PLAIN

I
TYPE

I
1'100D

I
MODE

--T-

l
I
I
1

FOHESE
I
1
I
I

--~-- ~-- --'--
STIRMly-deprocedured-to-l'IOID-FOR,

Fig.9.7

metanotion, then we have another hyper-notion, or perhaps a
protonotion. Let us call this an "offshoot" of the given
hypernotion; e.g., •strongly deprocedured to re,al base• is a
terminal offshoot of •strongly ADAPTED to COERCEND•, and
•INTREAL base• is an offshoot of • MODE base•. in order to read
the grammar easily, we frequently need to know wbether two given
hypernotions have a common offshoot. For example,

•strongly ADAPTED to COERCfND•
and

•STIRl'lly deprocedured to MOIC FORM •
have at least one common offshoot, say

• strongly deprocedured to real base •
That this is so can be seen by examining figuie 9. 7, where the

118 An ALGOL 68 Companion

steps in obtaining this offshoot are sbo wn. In fact, examination
of this same figure sho ws that there are infinitely many common
terminal offshoots of these two hy~ernotions. They are all
offshoots of a "maximal common offshoot", the hypernotion

•strongly deprocedured to ~OID FO~M•
It is the existen=e of some maximal common offshoot, rather than
that of any p rticular common terminal offshoot which becomes
the point of focus when looking at two such hypernotions. Note
that because of the reguirement of consistent replacement, some
offshoots may be too restrictive to be useful, e.g., the
off shoot •pi:-ocedu re-with- l'IODE- para me tei:--a nd-1100 E-par a meter-MO Dl: ­
PBIOR ITY-opera tor• of the hypernotion •procedure-with-LMOD8-
parameter-and-RMODE-parameter-HOID-PRIORITY-operator•
rR.1.1 •• 1.b].

In the process of parsing, given some hypernotion to the
right of the colon in a hyper-rule, we need to know how to fin3
a hyper-rule whose hypernotion to the left of the colon has a
common offshoot with the given one. To help us in this search
there are 11 indic tors" [H.1.3]. The example considered above
will actually occur in reading the Report. :onsider the two
hype r - rules [8 • 8. 2. 0. 1 • r1]

•stronq COEBCENO : COE.RCEND ;
strongly ADAPTED to COF.RCEND {822a}.•

auc'l rri.B.2.2.1.a]
•STIRMly deprocedured to ~OID FORM{820d}

procedure MOID FORM ;
STIRMly FITTED to procedure MOID FORM.•

We have copied these two hyper-r:ules from the Report, together
with two of the indicators, 11 822a 11 and "820d". In order to
conserve space within the hyper-rules of the Report, the
indicators have been compressed, according to cbvious
conven ions ra.1.3). If we expand them again, i.e., 822a becomes
8.2.2. 1. a and 820d becomes 8.2.0. 1. a, then we see that the
hypernotion on the right of the hyper-rule 8.2.0.1.d points to
the hyper-rul e 8.2.2.1.a and the hypernotion on the left of
hyper-rule 8.2.2.1.a points to hypec-rule 8.2.0.1.d. We are ·: bus
aided, in both directions, in finding hypernotions with common
off shoo ts.

The indicators are clustered rather thickly in the hyper­
rules concerning coercion, in section 8.2 of the Report. Pechaps
this is evidence that it is in this section that the power of
the two-level grammar is being used to its fullest. A simil~r,
or perhaps greater, clustering of indicators might have been
found in section 3. O. 1 of the Report, dealing with chains,
lists, seguences and options, but these have not been incluned
in the Beport since their great number would have rendered their
presence of little value. Instead, the indicators have bypassed
this section, whi=h the redder is therefore advis d to become
familiar with at an early stage.

Sometimes a hyphen, "-", appears after a set of indicators
for a hypernotion. This tells us that there is at least one
offshoot of the given hyper:notion which is a "dead end", i.e.,
it is not an offshoot of any hypernotion (on the other side of

An ALGOL 68 co■panion 119

the colon) in any hyper-rule. An example of this occurs in the
hyper-rule for strong coercion quoted above [R.8.2.0.1.d]. In
this case it is there because, e.g.,

• strongly-widened-to-procedure-real-base•
is a dead end. It is not an o f fshoot of any hypernotion on the
left of any hyper-rule [R.8.2.5.1); in fact, it is not a
•notion•·

Review questions

9.1 The syntactic elements

a) Is •MODE base• a protonotion?
b) Is •all-mimsy-were-the-borogroves• a protonotion?
c) Is • cast• a notion?
d) Is •MABEL identifier• a notion [R.4.4.1.b]?
e) Is •long-integral-denotation• a notion?

9.2 The metarules

a) How many production
for ALGOL 68?

rules of the strict language are there

b) Bow many production rules of
eKplicitly in section 6.1.1

c) How many production rules
derived from 7.1.1.s?

the strict language are listed
of the Report?

of the strict language can be

d) How many production rules of the strict language
derived from 6.1.1.d?

e) What are the terminal productions of •VICrAL•7

9.3 The metarules

a) Is • LETTER: LETTER symbol.• a metarule?

can be

b) How many production rules of the metalanguage can he derived
from 1.2.1.r of the Report?

c) Is •HOBSTOWED : TYPE ; UNITED.• a production rule of the
metalanguage?

d) Are the terminal productions of • NONPROC • also terminal
productions of •MODE•?

e) Is •FIELD• a production of • MODE • ?

9.4 The hyper-rules

a) Is •PARAMETER: MODE parameter. • a hyper-rule?
b) Is • digit-token • a production of •digit-token-seguence­

proper•?
c) Is o()o a •strong-closed-(m]-clause•, where [m] represents

some mode?
d) What production of •LFIELDSETY • would be used in parsing aim

of za?
e) What production of •LMODE• is used in parsing ax+ ya?

9.5 A simple language

120 An ALGOL 68 Companion

a) Define, by means of a two-level grammar, the language whose
sentences are printed by

nl:!~.9!..!! ~E!.!:!!9. a, b := "Y", c ;
g2 print((a +:= "x") + (h +:a: "Y") + (c +:= "zz"))
endc.

b) Define,-by means of a two-level grammar, the language whose
sentences are printed by

cbegin string a, b, c i
.Q2 (print(a+b+c) ; (a+:= "x", h +:a: "Y", c +:= "z"))
endc.

c) Rewrite--the gi:ammar of the language considered in 9.5 using
two metarules and two hyper-rules and yet i:equiring that
terminals end in •symbol•.

9.6 How to read the grammar

a) Is •real-format• a terminal production of .,ODE•?
b) Is •reference-to-procedure-row-of-character• a terminal

production of •MODE • ?
c) Is •long-structured-with-real-field-letter-1• a terminal

production of •MODE•?
d) Is •procedure• a terminal production of •MODE•'?
e) Is • procedure- with-real-parameter-real• a terminal production

of •NONPROC• [R.1.2.2.h)?

9.7 The indicators

a) Why is there
Report?

a dead end in •MOID FORM• in 8.2.3.1.a of the

b) ~hat is a maximal common
declarer• and •VICTAL MODE

c) What is a maximal common
CJERCEND• ani •STIRMly
fR.8.2.2.1].?

offshoot of •virtual NONSTOWEO
declarer• [R.7.1.1.a,n]?

offshoot of •firmly ADJUSTED to
dereferenced to MODE FORM•

d) What is a maximal common offshoot of •STIRMly rowed to MOID
FORM• and •strongly rowed to REFErY row of MODE FORM•
[R. 8. 2. 6. 1]?

e) What is a maximal common offshoot of •SORTlf ADAPTE~ to
COERCEND• and •STIRMly united to MOIC FORM• [R.8.2.0.1,
8. 2. 3. 1)?

10 ~ode declarations

10.1 Syntax

An AtGOL 68 Companion

A typical •mode-declaration• is
cmode com£l = struct(real re, real im)a

121

which, by virtue of extensions [R.9.2.b,c], may be written more
concisely as

cstruct com~l = (real re, im)a
This •mode-declaration• is, in fact, one of the •declarations•
of the •standard-prelude• (8. 10. 2. 7. a], which means that the
programmer may assume that he is within its reach (unless he has
made a similar •declaration• himself). A simplified parse is

mode-declaration
I

.------------.------J.--.--------------,
I I I I

mode-symbol mode-indication equals-symbol actual-declarer
I I I I __ J. __

.J.

fQJ!!.e.! struct(real re, £~.! im)a

Fig.10.1

shown in figure 10.1. The hyper-rule for a •mode-declaration• is
•mode declaration : mode symbol, HOOE mode indication,

equals symbol, actual MODE declarer.•
[R.7.2.1.a]. The two occurrences of •MODE• here ensure that
mode of the •actual-declarer• on the right is then enveloFed
the •mode-indication• on the left.

It is perhaps worth while t o look at the hyper-rule
•MOOE mode indi=ation : mode s tandard ; indicant.•

the
by

f ll.Q.2.1.b] and to realise that the programmer may choose his
own •indicant• more or less at will [R. 1. 1.5.b]. He is, however,
subjected to the restrictions of his installation. It is
expected that most implementations will permit such •indicants•
as o~Q£a and □!!!11 □, i.e., object s which look like identifiers
but are in bold face (or underlined). Objects which are •mode­
standards• are astring, sema, fi le, com~l, bits, bytes, long
.QY.!:~§, long 1,.Q.1}9 !t!.!2, J&.!!9 .!Q!!g .!Q!El .f.Q!!!.EJ:.c, etc. This means
t ha t one mil y write

or
amode long comEl = com£1 □ ,

each of which is legitimate but unpleasant for the human reader.

10. 2 Development

one purpose of the •mode- declaration• is to introduce a
shorthand whereby the programmer may save himself trouble. If he
uses some complicated •declarer•, then he may avoid writing it
oot in full each time that he uses it. A simple example might be
a nu merical analyst, worki11q with vectors and mat.rices, who may
wish to use the convenienc of the •declaration•

122 An ALGOL 68 companion

□~Qi!~ y = [1:n) £~~1,
~ode!= [1:n, l:n) £~~!a

1TI the reach of this •declaration•, he may now use these •mode­
indications• as •declarers• by declaring a vector variable with
ay xla or a matrix variable w·th D! x2n. It should be carefully
noted that the value of ana which occurs in th •bounds• of
these multiple variables is that which is possessed by enc at
the time of elaboration of the •declaration• av xl, m -x2c and
not that possessed at the time of elaboration of-the •mone­
declaration•. An example may help to make this clear. In the
reach of aint na, the elaboration of

--- an : = 5 ; J!!.Q.Q~ y = (1 : n) £~!!! ;
n : = 3 ; .:t. x 1 ; pr in t (..Ye~ x 1) a

should print the value ■ 3• and not the value ■ 5 ■• This means
that the •declaration• □i xla acts as though the aye were
replaced by □(1: n] £:~21□- This proce s is known as 11 developin IJ"
the •declarer• fR.7.1. 2.c]. An important consequence is that, in
the redch of the •declaration•

□ !.Q9~ ! = [1:n] £~~!,
realvec = [1:n] t~~!a ,

the •mode-indications• -~!~--and arealveco, when used as
•declarers•, both specify the sai~-i;~i. The actual •symbol•
(•indicant•) chosen therefore has no influence on the mode.
Observe that the same principle applies to •identity­
declarations•, for

oref int namel = i, name2 = i □
m~ans that both □ndiiie,;-and aname2a possess (different instances
of) the same ndme. In the reach of the •decl ration• □ mode f =
r1:21!::~~1, ~ -= [1:3]~~.!a, the •indicants• □fa and~ic also
specify the same mode, when used as •declarers•; however, values
of such modes may run iato trouble when assigned, for then the
bounds are checked (R.8.3.1.2.c Step 3).

The examples we have given are simple. Bowevec, a •mode­
declaration• may be usea for introducing a •mo e-indication•
wh.ich, when used as a •declarer•, will specify a mode which
contains a reference to itself. In fact, this will norm~lly
occur in a list processing application. For such a mode, the
compiler must be able to make some checks to determine whether
storage space for a value of that inode is indeed possible. It is
therefore not surprising that the process of developiTig a mode
~houla have some rather natural restrictions.

10.3 Infinite modes

What we call here "infinite modes" are those hinted at in
the last paragraph. An infinite mode will arise from the
•declaration•

□struct link= (int val, I~!. li.!l! next)c
In its reach, the elaboration of

oli.!}~ a := (1, liuk := (2, lin! := (3, n11))) □
will qe necate values linked togethe r as shown in figure 10.3. In
such a linked list, the value of the las t name is •nil ■• If we
try to write the mode specified by □1~n!a, using small syntactic
m cks, it vill he

•structured-with-real-field-letter-v-

where
write.

An ALGOL 68 companion 123

letter-a-letter-1-and-reference-to-
[link]-let ter-n- let ter-e-le t ter- x-let ter-t • ,

[link] represents the same mode which we are trying to
Since the mode contains itself, it is not unnatural to

cac

0

0 0----)----T------,-o-,
o I ■ h 1001

L------.L-o-J

r--<----J
I
.. ------T-o-,
I . • 2■ Io o I
L-----.L-o-J

r--<---J
I
.. -----,-o-,
I ■ 3 • 10001
L------..1.-Q-J

Fig.10.3

call it an infinite modeC1>. The programmer (and the compiler)
however, always works with a finite formulation of that mode, so
that this infiniteness need not bother him.

10.4 Shielding and showing

If we consider the mode specified ty □~ □, in the reach of
□ mode m = stcuct (r eal v, m next) c ,

we soon come to the conclusion that, unlike clink□ above, the
field selected by □ next□ contains , not a name, but--a value of
the sa me mode. Of course, this value in turn has such a fiell
and so on ad infinitum. This is troublesome, for if we try to
visualize how storage might be llocated for such a value, it is
cle r that it canno be rlone i n a computer whose storage is of
finite size. It is therefore necessary to exclude such •mode­
declarations• from proper •programs•. rhe exclusion rests upon
the fact that, in this •mode-declaration•, its •actu~l­
declarer•, □2!:f!!~!:(~~~J: v, !!! next) □, "shows" [R.4.4.4.t] □!!!_ □,
which is the •mode-indication• on the left. It is therefore
illegal. However, in

cmode n = struct(real v, r~f n next) □
the •actual-declarer• cstruct (r eal v, ref n next) □ does net show
□no, so that this •declarat ion• may be contained in a proper
• program•. Whether an •actual-declarer• shows a •mode­
indication• rests upon whethe r that •mode-indication• is not
" shielded" [R.11.4.4.a]. We must therefore know what is meant by

c1> Those who ~re bothered by these infinities should consult
the work of C.Pair [Pa], L.Meertens (M], and W.Brown [BJ.

124 An ALGOL 68 Companion

shielding a • mode-indication• before we can understand how
ce rtain •mode-declarations• can be excluded. Roughly speaking, a
•mode-indication• contained in a given •declaret• is shielded if
its p resence in that position does not lead to difficulties in
alloc ating computer storage for a value of the mode which that
•declarer• specifies.

For the •mode-indication• cma, examples of •declarers•
which that amc is shielded are

astruct(int k, ref m n)a
are£ struct(m n, char a)a
a_er.Q£ (!!!, 1:!!_!) D

□E!:.Qf (!!!!1) .!!JC
and

a[1: (!!!.Q~!! !!!. = !!!~ ; !!! k ; read (k) ; k)] £~~1,a
Examples of •declarers• in which DJ! □ is not shielded are

C.!!JC

□£~! J!!D
D_E£.Q£ J!!D
a[1:n] !! □

and
Dj!l!i 0!! (!!!__!:, J!!)

in

The precise d~finition of shielding is given in the Report
[R.4.4.4.a], so we shall only paraphrase it here by saying that
cma is shielded if there is both a astructa and a arefa to its
left, or if it is in, or follows, a •pirameters-pack•;-or if it
is essentially local to one of the hounds of the •declarer•.

As a first approximation, one may now say that a •mode­
indication• which is not shielded is shown by the •declarer•
containing it. We then exclude from proper •programs• all •mode­
declarations• whose •mode-indication• is shown by its •actual­
declarer•. This immediately excludes such undesirable objects as

c,m9g~ ~ = ~.
!! = E!:~ ~,
£ = £~{ £,
Q. = [1:n] g,
~ = YB!On(~, Ch!!) □

However, examination of the •declaration•
c_!g~~ ! = .!'~! g_,

.9 = .E~Q£ fa
reveals that we are still in trouble with the first
approximation to the concept of showing. For, although erg! go
does not explicitly show □! □, the elaboration of or~! go
[R.7.1.2 Step 1) involves the development of c.9a and would give
us the •declarer• a;~t ££~£ ta, which does indeed show etc. It
is therefore necessary to insist that we must develop all •mode­
indications• which are not shielded in order to find the •mode­
indications • which are shown by an •actual-declarer•. The
definition of showing is carefully stated in the Report
[B.4.4.4. b], so we shall not repeat it here. Perhaps the
motivation given here for that careful statement is sufficient
for its understanding.

An ALGOL 68 Companion 12S

10.5 Identification

Within a •serial-clau.·e• contili0inq a • mode-declari\tion•,
•moue-indica tions• are s ubject to protection (R.6.0 . 2.d] , in the
same ma n ner as are • i de u ifiers• and •cly dic-in:lications • , in
ord r thdt th e y may not becom confused with th e same
•indi=a tion• used e l se wher e . It is possible th P. r efore to write

□ (mode I= rg~! ; ! x : = 2;
(t t. ---- <-----.1 ¢.

(~QQQ I= i~! : £ x .- 1
¢ L----<----J ¢.

print(x))
print(x))a

whereupon the values pcinted should be ■ 1 ■ and ■ 2.0 ■• The metho1
of identification of the •mode-indications• is shown by"--<--".

Although this identification process is familiar (it works
the same way for •identifieC"s•), there is one small point to be

declaration
I r--------------,--.J.__ __________ T---,------,

sub- rower bus- I I
symbol symbol I I

I r---------+-----, I I I
I unitary-clause I unitary-clause! I identifier
I I I I I I I
I r-----+-----, I I l declarer I
I I formula I up-to- formula I l I
I I I I symbol I I I I
J.. J.. __ .,L __ J. J..

____ .J. ____
J. ..L J.

□ (~ b b + C g ea
T T --T-- T r

____ T ____
T "T T

I L-----t-----J I I I I I
I formal- cast-of- unitary- I I I
I parameters- symbol clause I I I

open- pack I I close- I I
symbol I I I symbol I ope rand

L---------.l.-------TJ. _____ _..,L _______ J I I
I I I

routine-denotation cpera tor I
I I I

operand I I L _________ T _ ____ __..L ______ J

w:itched carefully.
a •mode-indication•
The reason for this

a!t1!t
¢.2 ¢.

¢3 (t

(tl.j ¢

I
formula

Pig. 10. 5

It is that no • i n~ ica nt• m y b . used both as
and , s •m o narlic- incl.ication• (R. 1. 1.5.h].
i s best s hown hy the followinq example.

1:1~9.!~ :!:.Q! h , c , - ; rt ¢

begin mode a = real
((£! b) : h + c) Q. e

¢. • • • ¢

126 An ALGOL 6B Companion

¢5¢ ~]Q;
¢6¢ QE ·~ = <in! X) in! 1 + x
fl¢ ,. ••• ¢

¢8¢ ~2g~ 1 = QQ21
¢9¢ ft ••• ¢

t10rt endo
The problem here is whether o(a b) b + co is a •row-of-rower•
(remember that it is permitted to replace o[Jo by o()o
fR.9.2.g]) and therefore □ ((!! b) b + c) g_ eo is a
•decl ration•, or whether a ((~ b) b + c) a is a •routiue­
denotation• dnd therefoc-e o ((~ b) : b + c) g eo is a •formula•·
These two possibilities are sketched in figure 10.5. If it were
such that D!! □ =ould be used as a •mode-indication• in line 2,
and again as a •monadic-indication•, in line 6, then confusion
would reign, foe- the mattec- can only be resolved when we meet
the •ieclaration• of odo in line 8. If we new make it illegal to
use o~o both as a •monadic-indication• nd as a •moae­
indicatioo•, then this unhappy situ tion does not arise. For:
those interested in compilation problews, this example shows why
it is necessary to identify 11 •mane-indications• before a
detailed parse of the •program• is made, for the identification
of the second occurrence of obo on line depends upon the
information discovered in line 6 .

10.6 P.quivalence of mode indications

In the • mode-declaration•
amode a= ref real,

~ = Egi !:~~la
it is rather obvious that both 010 and oba, when used as
•decl r e cs•, specify the same mode. However, iince a •mode­
d~claration• has the possibil ity of depending on other •mode­
declarations•, or on itself, one may make several •mode­
d clarations• like

□ 2t£!!£1 ~ = (r:ef ~ left, f~! A right) ,
Q ;:: (rel !2 left, ref struct

(ref b left, ref b right) right),
c = (ref Q left: £gf ~ right):
Q = (ref~ left, f~f £right),
~ = (f.S! £ left, E~t g right) o ,

in which it is not immediately cled.r whether the modes specifie1
by 01, ~. f, ~a and a~a are all different or perhaps whether:
some of them are the same. In fact, a close examin tion reveals
that each of them spec"fies exactly the same mode. Each is
merely a different way of thinking about the sa.me kind of ddta
structure. It might be thought that, because the human reader
(presumably) has trouble in deciding that the five •mode­
indications• are equivalent, it would also be difficult nj
expensive for the compiler. But this turns out not to be the
c:iseO>. Thus, in large programs, perhaps wr·tten by several
pe on s , each person may describe the basic data structure in
his wn way. If these are indeed the same, then the compiler
will quickly find out about ·t.

ct> See the papers of Koster [Ko], Goos [G] and Zosel [Z].

&n ALGOL 68 Coapanion 127

10.7 Binary trees<t>

We shall now consider some procedures for manipulating
binary trees. These are data structures of the shape shown in
figure 10.7.a. in which each "o" is called a "node" of the tree.
lt each node there are tvo branches a "left-" and a "right
branch". In more detail, the value of each node is, as is shown
in figure 10.7.b, a structured value with at least three fields.
The first and last fields are references to the left and right
branches, respectively, and t be middle field contains some

----o----,
r---o---,
I I
o r--o

I
0

I
.--o--,
I I

r--o--, o--,
I I I
0 0 0

Pig.10.7.a

r-0-,.-------·- -----r-O-,
,to 01 ■ attribute ■ 10 o+-,

L-o_J__--------L-o-~ I
I

Pig.10.7.b

information, perhaps a string, vhich is an attribute of that
particular node.

The necessary •mode-declaration• would be
ostruct node= (ref node left, string val, ref nod~ right)c .

We may observe that the mode specified by c~~2~c is infinite, in
the sense described in section 10.3 above. ·

A binary tree is used for many different purposes. For an
illustration, we shall use it to store and retrieve character
strings in alphabetic order.

10.8 Insertion in a binary tree

Suppose that we are gi ve n t hree strings "jim", "sam" ani
11 bob" , in that order , a nd t hat we wish to store these in a
b i nary tree such as t hat discussed above. Storing the first
stri n g vould result in t he s tructure sbovn in figure 10.8.a.
After t he second and third s trings have been stored, the

r-o-r--~--r-o-,
1oeo1 • jim ■ 10001
L-o--------~-oJ

Fiq.10.8.a

r -0-,----1- -r-o-,
r+o 01 ■ ji■ ■ 10 o+,
I L-o-L-----~oJ I
I I

, 0- i I 0-'I r-0~-~--r-o-,
lo&ol ■bob ■ 1000110001 ■sam ■ 10001
L- 0 - - ------0-.J 1-O-----...._o-~

Fig. 10. 8. h

<t> For an authoritative discussion of binary trees, see Knuth
[Kn] section 2.3.1.

128 An ALGOL 68 co~panion

structure is that shovn in figu re 10.8.b. Note that the shape of
the tree will depend upon t he order in which the strings are
encountered. Whichever string i s stored first generates a node
which becomes the "root" of the tree. The succeeding strings are
then compared with those already present to determine whether to
branch to the left or to the right.

A procedure to insert a given
root is referred to by arootc is as

□E!~ insert= (§1ring s, f~! !~!
~J ~! n2Q~ o :=root;
while (re! QQde : n) :#: ~i!

n := (s < val Qin I left
(ref f~! TI2~~ : n) := ngg~

) a
Suppose that we start vith an
•declaration•

string csa into a tree whose
follows.
!!QQ.~ root)

do
2! n I right Q! n
: = t.!!i.! , s , .!!.il >

empty tree, i.e., the

aref node tree := nila
and then elaborate--ihi--;call• aiiiirt("jim", tree)c. The

atreec
--r-

0

0 0
0

0

oeo
0

Fig.10.8.c

ctreea crootc DOil

T -~- --r--

0

:
0

0 0

0

. .
0

0

I

0

0

0 0
0

0 0

L-->--o o--<--o o
0 0

I
,-o~--L-~-o-,
1oao1 ■ jim ■ 10001
L-o-.L--.---~-o-J

Fig.10.8.d

situation both before and after this •call• is shovn in figures
10.8.c and d. Observe that the modes of both the •formal­
parameter• aroota and the •actual-parameter• atreea are the
same, viz., that specified by af~; ref rrgg~a, so that no
coercion occurs v hen the parameter is passed.

The •declaration• or~!~~! nQ~~ n := roota imp lies that the
mode of ana is that specified by aref r ef re f nodec . Since
aroota is of mode specified by aref r ef nodea, the initializing
assignment to Dna invokes no coercion. In the •a ssignati on•

a(r~! I!! ~2g!: n) := n~~~ : = (Q!!, s, ~iJ)o ,
the second occurrence of DQQ~~a i s a •glob al-generator•
generating a name of mode er~! QQ£~a , to wh"ch is assigned the
value of the •structure-display• a(~!1, s, ~il) o. Beca use the
mode of ana is cref ref ref nodec, it must be dereferenced once
befor~ the new node is assigned. This is the reason for the
•cast• oref ref node : nc. This • cast• is necessary. In fact, an
:= Q~~~a is not an •assignation •, for there is one •reference­
to-• too many on the left.

ln ALGOL 68 Companion 129

If nov ve elabora te t he •cal l• ainsert ("sam", tree)c, we
have what is s hown in f i gure 10. 8.e. Here we have ef~ectively
elaborated the assigna ion en:= r ight of no in goi ng f rom
figu re 10.8.d t o 10.8.e. In the •selection• crigh t Qt nc, one
has the a priori mode aref ref re f nodea, but being in a veak
position, it is derefe rence d (tvice) to aref nod~a. The a priori
mode of aright 2f na i s thus D!~f ~t ~~g~a, sinc e t he fi eld

atreea aroota ana
-~- -r- T . : . . .

0 0 0

0 0 0 0 0 0

0 0 0

I I I
I 0 0

L-->--O 0 0 0

0 0

I r--1
r-0 r -r-0-,
to8of ■ jim ■ 1O ot>,
L-o-L-----~-o-J I

ana atreea aroot c
T ~- ~

0

0 0
0

I
0

0

:
0

0

I
0

0

0 0

0

I
I

0 0 0 o----<---'
0 0

L-, I
r-o~-~--~o-,

r<to ot ■ jim■ IO ot>,
I L-o-'------~-o-J I
I I

0

r
r-D-T-~-~o-,
1oeo1 ■ sam ■ 1oeo1
L-o._J._-----~-o-J

,-o--r-•-...___---r-o-, ,-o---.T-----r-o-,
10001 ■ bob ■ fo8ol 10&01 ■sa ■ • 10001
L-0,-------0--' L-o -& o-J

Fig.10.8.e Fig.10.8.f

selected by aright of na is thus a name which refers to a name
in a node. Since the mode of ana is aref ref ref nodec, the
assignment now takes place withou t further coercion. This moves
ona down the tree by one node. After elaboratio~ of
oinsert("bob", tree)a, ve would have what is shown in figure
10.8.f.

10.9 Tree searching

Another process in tree an ipulation is the searching of a
tree for a node which contains a given attribute. In the reach
of the •declarations• of sect ion 10.8, and of aref node m :=
nilc, this would be accomplished by the following: --- ---­
-~.E!:Q£ search = (~!Iing s, ~~! ~!!~~~root) ~22!:

(ref ref ~E~! n :=root;
vhile (~! ~Qde : n) :#: nil ~2

ifs= val Q.f n
then m := o ; .!l!L12 done
else n := (s <val~! n left Q.{ n I right Q.{ n) i
ti; fil!~

done: U!!!
) a

The value delivered by the •procedure• is etrue■ if the node
with string asc is found; otherwise, it is •false ■• As a side
effect, the node where the string occurs is assigned to the non­
local •variable• omc; otherwise, cmc remains referring to ■ nil ■•
Using the tree constructed in section. 10.8, the result of

130 An ALGOL 68 Companion

elaboration of the •call• csearch("sam", tree) c would result in
the situation pictured in figure 10.9.

The •variable• ama serves to remember where the node was
found. In the •assignation• cm:= nc, ana is dereferenced twice.
Note also that in the •formula• as= val .Qf na, first enc is

c tree a arootc ana cmc
--T- ~-

0

:
0 0

0 0 0
0 0

0

L---)--0 0
0

T . .
0

0

0

0
0

0
I ,---J

T
:
0

0 0

0

0

,--o~--~-~o-, o

0

,--<to ol • jim • lo ot>-T<-o o
I L-o-.l.------1-o-' I 0
I I

,-o-T---L---.-o-,
10001 ■ bob ■ 10001
L-Q-~-------L-Q-J

,o-~--L---~o-,
10001 ■sam■ 1000 1
~o--L---.- o-J

Fig.10.9

dereferenced twice, then oval of no is dereferenced once before
the comparison of strings is made.

10.10 Searching and inserting

The two processes just describerl are often combined into
one. Thus we may wish to search a binary tree for a given
string, to insert it if it is not there, and, in any case, to
return with a knowledge of its position. This would be the kin1
of action necessary if the tree were being used as a symbol
table for- a compiler. A procedure to accomplish this might be as
follows.

E!Q£ searchin = (§!£illil s, £~! !~! ~gg~ root) ref ref node
(ref ref node n := r oot ;

) D

while (ref ref node : n) :#: ~i! QQ
ifs= val Qt roo t
i!!~.!! g.Q_!Q done
~ls~ n := (s < val 2! n left .Qt n I right Q£ n)
ti i

(ref ref node n) := n~Q~ := (nil, s, n1!)
done: n

All the elements of this pi:-ocedure have been seen already. It is
therefore sufficient to remark that the value delivered ty the
procedure is that of the anc which follows the label adone :a,
after this ana has been dereferenced once. l

j·

I

An ALGOL 68 companion 131

10.11 Tree walking

Another fundamental ■anipulation with binary trees is known
as a "tree walk". This is a process of visiting each and everJ
node of the tree. DsuallJ some action is to be taken at each
node, e.g., printing its string, or counting the node. A tree
walk is called a "pre walk", "post walk" or "end walk" (see
Knuth [Kn]) depending on whether the action is to be taken upon
first reaching the node, or between examining its left and right
branches, or upon leaving the node for the last ti ■ e. For

r~-,
r-, B P--,
I L---' I

r~ ,.-J-,
I A I I C I

Fig .10.11

example, for the tree displayed in figure 10.11, a pre walk
would perform action on the nodes in the order BA C, a post
walk in the order l B c and an end walk in the order Ac B.

We shall no v write a procedure for printing the strings of
the nodes, in alphabetic order, bf doing a post walk over a
binary tree. This is a typical problem in which recursion
provides a neat solution, which is as follows: if the tree is
empty, then do nothing; otherwise, using an induction hypothesis
that ve know how to walk a tree with the number of nodes less
one, first walk the left branch, then print the string, then
walk the right branch. The procedure is as follo ws.
atlt ~~QE post walk= (£~! B2Q2 root)
i2i (root :#: B!!
t3t t post walk (left .Qf root) ;
t4t print (val .Q! root)
t5i post walk(right 2{ root)
t6t)o

In lines 3 and 5, the •actual-parameters• cleft of rootc and
aright 2t roota are dereferenced once. Note that an end walk is
similar - merely interchange lines 4 and 5 (except for a;c). For
the pre walk we interchange lines 3 and 4 (except for the cl a).
For the tree discussed in section 10.8, the •call• cpost
walk(tree)o should print its strings in alphabetic order. Note
that the •actual-parameter• atreeo is dereferenced once.

we may no w make this procedure ■ore useful bf generalizing
it t o perform a given action at each node. The action is in the
form of a •procedure• which is passed as a parameter.

DE!~£ post walk a= (~! ~.Q~~ root, J?!'..Q£(!~f B.Qg~) action) :
~tl!~ pro£ q = (£~! n2Q~ r) :

(r : tt: ni!
I g (left .Q! r) ; action (r) ; q (right .2! r))

g (root)
!!!~a

132 An ALGOL 68 Companion

10.12 A non recursive approach

The recursive solution t o the tree walk ttoble m, given in
section 10.11 above, is sim ple to program and easy to
understand. When proving the correctness of programs, this is an
important consideration. However, by using recursion, a certain
price must be paid for this convenience, because the run-time
organization may need to build a stack to remember the nested
•calls• and this stack will require storage the size of which is
unknown. In certain situations the programmer may not wish to
pa.y this price. For example, he may be writing a garb,lge
collection routine which must work well just when the amount of
free storage is at a minimum. For this reason other schemes of
walking trees are exploited [SW]. We shall outline such a scheme
here.

The basic principle is that the tree is broken apart at one
node, some of the names are reversed and three variables a.re
used to keep track of where the break occurs. As we move the
break down the tree, the names are reversed to refer to where we
came from. As we move up the tree, the names are restored to
their former state. Also, when we move from the left branch to
the riyht branch of a node, it is necessary to shift the
reversed name from the lef t to tbe right. The extra storage
required consists of three var iables ap, qa and ar □ of mode
specified by aref ref n-Ode c, and the existence of a boolean
field in each node (or cor responding to each node) which
remembers whether we have already moved across that node (i.e.,
whether the name which refers upward is on the right). The value
of this field is initially ■ false ■•

to
The •mode-declaration• given above is thus amended slightly

(£~!

'l'he

astruct node =
n2g~ left, §.!E.i!lg-vaI: ~921 flag, E~! !!2Q~ right)a

situation at some moment in moving down the tree

age

0

0 0

0

0

apn

I o o
I ,---<---o o--o o
I r-o-~--i---r-o-, o o
L(to 01 10 ot->-,

L-o-~-----L-o-J I
o o---->----, I

o r-o-r---L---r-o-1

r<+o 01 lo a+>,
I L-o-~ ____ o-J I
I

r-o-~-~---T-o-,
r<to 01 lo ot>,
I L-o-1--------'--o-J I

r-0-r---L---r-o-,
r<to o I I o ot>,
I L-o.J.. _______ i_o_J I

fig.10.12.a

is

An ALGOL 68 Companion

pictured in figure 10.12.a.

The steps in the process of moving down are
a(r := left Qf q;
left .2! g := p

p : = g ;
q := r) D

133

after which the situation is as shown in figure 10.12.b. We neef

aqo ope

0 0
0 0

0

f

0 0
0 f

f r- 0 -T-----r-o-,
0 o L(fo of I a at->-,

o a
0

o o---->---, L-o~--~--J.-o_J
0 ,----+-->------J

f
f
f
L--)--,

r-o--r--~---.-o-,
Io o I I c ot>,
L-o_.....__ __ _J__o-J f

r-o-T---~---T-o-,
r<to of toot>,
I L-o-'-------'--o.J I

r-0-...--........ - -T-o-,
r<+a a I I o o+>,
f L-o.J.. ~-o-J f

Fig.10.12.b

only add some way to stop this process. This is accomplished by
the •condition•

D (,Egf .!]_2Q_g ! g) :#: .!!!J.c
one should also check that the process starts from the crooto
correctly and works properly when c (!'.~f !!Q.9~ : g) :=: ni.J::c.

When the walk on the left branch is done we must move
across the node. The situation before is as in figure 10.12.=

oqc cpa

0

0 0

0

0 0

,--<----o o--o o
I r-o-r---..L--r--r-o-, o o

0

L-o o>,
o I

L(to o f I F I O at->-,
L-o-'-----A--..L...o-J f

I
r-0-T---..l.--T-T-o-,

r<to o I IF Io ot>,
f L-o-..L...-----..L-..L-o-J I

r-0 -T---..L...--,-T-o-,
r<+o of IFfo at>,
f L-o-l--------~-..L-o-J I

Fig.10.12.c

and the steps in the process are
er : : q

g := right Qf p ;
right Qf p := left Q! p ;
let t Q! p : = re

134

The situation
fiqur~ 10.12.d.
remember that we

An ALGOL 68 Companion

after elaboration of these statements is as in
Now we perform the action at this node and then

have done so by
caction(p) ;

tag .Q! p := !fQ~D
The process of moving up the tree is the opposite of moving down
the tree except that we must check wh~ther we are done,

a(fgf. !!2£~: g) :=: rootc
and whether we should change to moving across

a-. tag 2! po
Also, as we move up, the value of the flag field is restored to
■ false ■•

ape

0 0

o o--o o-->---,
o o r-O-r---i--,-,-o-, I

ego

0

0 0
0

r-<-+o o I I Tl o ot>J
I L-o-~------~-~-o-J
I

0

r<o o-J
I o

r-0-r----~--T-r-0-1
r<+o o I IP Io o+>,
I L-o-~------.J.-~-o-J I

r-o-T---~--.-.-o-,
r<to o I IF Io ot>,
I L-o--'------'--'--o-J I

Fig. 10. 12. d

The complete algorithm is expressed as follows:

□£fQ£ walk= (!~! !!.Q1g root, E~.Q£(fgf .!!2Q~)
begin ref node p := root, g := root, r;

.H. root :1: !!.H
then
d;wn : while (ref node : q) :1: .!!i! Q.Q

(¢see figure 10.12.art

3.ction)

r := left Qf q ; left .Q! g := p
q := r ¢see figure 10.12.b¢)

p : = q

across : ¢see figure 10.12.c¢
r : = q ; q : = right Qf p ; right Qf p . -
left Qf p := r ; rtsee figure 10.12.dt
tag 2! p := ~-rn~ ; acticn(p) ;

if (£g! !!QQg: g) :I: ni! !]g!! down l!
up : whil~ (Egf nod~: g) :I: root QQ

if tag .Q! p

left Qf p

!hen tag Q_ p : = !2!~~
right 2! p := q; g : = p
~1§~ across

r := riyht Q! p
P := r

fi
fi--

~!l.~- ¢ walkrt

,.

An ALGOL 68 Companion 135

Review questions

10.1 Syntax

a) Is D.J!!Qde £~1 = !Q!Lll i!t~o a •mode-declaration•?
b) Is amode a= [1:n]reala a •mode-declaration•?
c) rs D,!!!Q.Q~ !: = [J!:galo a •mode-declaration•?
d) I s aunion a = (b) a a •mode-declaration • ?
e) Is astruct - u = (int q, real s)o a •mode-declaration • ?

10.2 Development

= a) In the reach of D!Qg~
EEQf Ea, develop the

b) What is printed by

~ = f~! !! ; .!!!Q.Qg E = [1:nJ !!!!, g
•declarer• astruct (a a, a d)a.

O~~g!.!! !!!Q~~-i-;-[1:2] JU!;[~!~ V
print(y£~ v) ~Q~o?

c) Develop the •declarer•
d) Develop the •declarer•
e) Develop the •declarer•

Df~E~c in 11.11.t of the Report.
o~£iE!~a in 11. 11.k or the Report.
o!!~Q!D in 11.12.w of the Report.

10.3 Infinite modes

a) What are the two occurrences of 01_!.!!~0 on line 4 in section
10.3?

b) What are the three occurrences of o.H.!!.!D on line 6 of section
10. 3?

c) Is the mode specified by O!O, in the reach of DfilQQ.g ~ = fgt
!!, b = 2 .t_ruf.t_ (~ a) a, an infinite mode?

d) Build the list structure shown in figure 10. 3 from top down.
e) Is a.U . .!!! a : == (1 , (2, (3 , .!!!!))) a a •declaration•?

10.4 Shielding and showing

a) Is oma shielded in o[1: n]st rue t (m a, int b) o?
b) Is aio shown in ostruct ~ef a a, b b)o, in the reach of om2~~

~ = [1:10].!!!, ~ = EEQS: ~a?
c) Can D.!!QQ~ ! = £~! EEQS: ~a be contained in a proper •program•?
d) can amode m1 = ref m2, m2 = struct(m1 f)c be contained in a

proper •program•?
e) Can amode ml = union(m2, m3), mJ= ~!rYf!(!~f ml a, [1:n]~1

b), ~J = E~Qf(!l)o be contained in a proper •program•?

10.5 Identification

a) Is a (_Q : u) ~ va a •formula• or a •declaration•?

10.6 Equivalence of mode indications

a) In the reach of Dfil2~g ~ = r 1:10] fh~£a, are the modes
spec"fied by o~a and a~tringa equivalent?

b) Are the modes specified by c~a and DE□, in the reach of DIDQ~~
a = st~uct(ref ax), t = ref struct(b x)o, eguivalent?

c) Simplify the •mode-declaration• D§!EYf! ~ = (!n! u, fgf
struct (in t u, ref a v) v) o.

d) ln the re ch of astruct a = (r ef b r, bool s), Q = (bool s,

136 An ALGOL 68 companion

ref a r)a, are the modes specified by a~a and age
equivalent?

e) In the c-each of □.2!!:.!!£.! ls : (!~! 1 a, i.!!!. b) , ! = (E~! !!! a,
1~! b), ! = (E~! ! a, i.!!!. b)c, are the modes specified by
c!s, la and a]!!a equivalent?

10.7 Binary trees

a) In the reach of amode nood = ref struct (nood 1, !!.EiEg val,
IlQQ~ r)a, does agggga specify dn infinite mode?

b) Using dt most three statements, in the reach of the •mode­
declaration• for □non~a of 10. 7, construct the binary tree
of figure 10.8.b.

10. 8 Insertion in a binary tree

a) Write, as one •assiqnation•, the equivalent of □ insert("ron",
tree)c, for the situation in figure 10.8.f.

b) For the tree as shown in figure 10.8.f, what is printed by
cprint(val 2! left Qf tree)c?

c) For figure 10.8.f, what is the value of a (fg.! !!Q~~ root)
: = : nc?

d) For figure 10.8.f, what is the value of □left Qf tree :=: na?
e) For fiqure 10.8.f, what is the value of cleft 2f n : =: .!!!.! □

and that of □left Qf n · =· (!~! !!21!! : Bi!) c?

10.9 Tc-ee searching

a) Rewrite the •declaration• of asearchc without using a
•completer•.

10.11 Tree walking

a) Define a •procedure• apla such that ap1 (tree) □ will print the
strings of a tree (see figure 10. 11) in the form
((() A())B(()C())).

b) Define a •procedure• ap2 □ such that ap2(tree)a will print the
strings of a tree (see figure 10.11) in the form (A,B,C).

13.12 A non recursive approach

a) Alter the algorithm of 10.12 from a post walk to a pre walk.

11 Easy transput

11.1 General remarks

An ALGOL 68 co■panion 137

The transput routines of ALGOL 68 are written in ALGOL 68
itself [B.10.5]. This means, in t heory, that it is not necessary
to explain any of them here. In order to understand what the
transput routines do, we need onl y to act like a computer and to
elaborate the routines of the Report. However, most of us prefer
not to emulate a computer. For th is reason, extensive pragmatic
remarks are included in sect ion 10.5 of the Report and some
informal remarks on the simple r outines, which would be used by
a beqinner, are appropriately the subject of this chapter.

The general philosophy is that no new language tricks are
used. This means that what we have already learned about the
language should be sufficient for the understanding of the
transput routines. The transput does not depend upon exceptions
or special cases.

11.2 Print and read

and

The two most useful routines for the beginner are
cprin to

cread c
We have met them before in several examples in preceding
chapters. The procedure oprintc i s used for unformatted output
to ~he standard output file (p robab ly a line printer) and the
procedure areada is used for unfo rmatted input from the standard
input file (probably a card reade r). Examples of their use are

cprint (X) a
aprint (("answe r.!.=!.. '' , i)) a

aprint((new page, title))c
and

oread(x) a
cread ((i, j)) a

aread ((xl, new line, fl))c
aread((a, space, b, space, c))c

An important point to notice is that both □ print□ and creadc
accept only one •actual-parameter•. Thus oread(x, y)c is
incorrect. The mode of the •parameter• of cprintc and creada
begins with •row-of-•. This means that aread((i, j)) o or
aprint ((i, j))c is acceptable since o (i, j)c is a •row-display•.
Note tbat cprint((x)) a is as good as aprint(x) □, for a(x)c is a
•closed-clause• whose value is cxa and cxo will be rowed to a
multiple value, a row with one e lement.

observe that, in addition to •variables• like ax □ (and for
oprinta, •constants• li.ke c"answer!..=!.."a) , the •uni.ts• of the
•row-display• (or the single •para1nete r•) may be certain layout
procedures like aspace, backspace, new linec or anew pagec, to
allow for a rudimentary control over th e standard input nd
output files. Thus oprint((new page, "page..!.10 11

, new line,
11 name", space, "address")) a, s hould result in the following
output at the top of a new page.

138 An ALGOL 68 Companion

PAGE 10
NAME ADDRESS

11.J Transput types

In order to understand wha t values can be printed and read,
we should examine the •mode-declarations• for the hidden
•indicants• DQY!!IE~D and o!.!!!IE~a [R.10.5.0.1.b,e]. We call
these "hidden• because, although they appear in the Report in
the form a% ~Y!!iE~a and al ! U!I£ga, they may not be used
directly by the programmer. They are present only for the
purpose of description of the t ransput routines. If one is used
by a programmer, then it will be regarded as an •indicant• vitb
no defining occurrence.

The declaration of DQY!!l.P~D may be paraphrased as follows:
DQY!!Ie~o specifies a union of the modes oin!, !~~!, bogla nd
a£~~!□, together with prefixed a!gngas where applicable, and all
multiple and/or structured modes built from these. l!lxamples are
a[Ji!l!, ~!ti.!!.9, f2!!E!o and a[].2!!Y£.! (i,nt n, []ho~?.! b1) c. Note
that values of each of these modes are constants.

If we consider a union of the same modes as for agyttnga,
but each preceded by •reference to•, then we have the mode
specified by D!!!..!:f.~a. Examples ar:e □ref int. !:~I £!!~!,
retr lint, ref string, ref com_plo and ore-f(jtruct(int n, (]lQQ!
b 1) a.

Thus, agy!!IE~a is an appropriate union of those constants
which we miqht expect to print and oi!!.!..te~a is a union of the
corresponding •variables•.

It is now perhaps convenient, for our discussion, to
suppose that there is a •mode-declaration•

amode Erintt1£e = union(out1I£e, £roc(file)),
readttee = union(intY.ee, eroc(file))o ,

although such a •mode-declaration• does not exist in the
•standard-prelude•. With this in mind, we may now say that the
•parameter• of aprinto is of the mode specified by c(Jeri]!~~E~D
and that of i:ireado is that specified by o[J.!'gad!I~D- This
means, in particular, that the oxa in oprint(x}o will be
subjected syntactically to the coercion of dereferencing to
D!~la, uniting to oe!intt1E~D and then rowing to a[Je£in!!1.Egc,
whereas in aprint((x, y))a, the last coercion is not necessary
since □ (x, y) o is already of mode •row ofe. In aprint (new
page) a, the anew pageo is of a priori 111ode DJ?.!Q£ (f!..!g)o and it
is united to DE!!!!.!!I£ga and rowed to a[]E~in!!Iego. These
particular coercions are of little concern to the programmer
except perhaps that their understanding helps to prevent such
errors as aprint(x, y)o.

11.4 Standard output format

we shall now examine what to expect of the appearance of
•constants• on the standard output file ostand outa as a result
of a •call• of cprinto. For this purpose, the mode specified by

[.

I
I

ln AtGOL 68 Companion 1 39

the bidden •indicant• asi!ElO~!a [R.10.5.0.1.a] is relevant to
our explanation. It is a union of the modes specified by cin!,
!~!!, £Q_apl, HQQ!, £haEO and c§!£i~ga together with prefixed
olQ.n.!JDS, if applicable. we shall be able to understand the
output appearance then, if we c onsider the action of aprinta on
values of each of these modes i n turn.

We shall also need some as sumptions about the environment,
if we are to give illustrative examples. Therefore let us assume
that, in our environment, aint widtha [R. 10.5.1.l.h] is ■ 5 ■,
areal widtha (R.10.5.1.l.i] is ■ 7•, oexp widtho [R.10.5.1.3.j]
is ■ 2• and amax c har(stand out cbannel]a (the line length)
rl1.10.5.1.1.m, 10.5.1.3.e] is ■ 6'h (the same as this text).

With these assumptions then, the result of the •call•
aprint((newline, !ru~, .!21E~• 1, O, -1, 1 . 2,

0.0, -.0034, "a", 11 abc 11 , 1i2))a
is
1 0 +1 +O -1 +1.20000 0E +O +O.OOOOOOE +O
=3:400000E -3 A ABC +1.000000E +0 I +2.000000E +O
The value -3 .400000E -3 was prin ted on a new line because there
was not enough room on the first line. Note that an integral
value occupies 6 (aint width + 1o) print positions, a r e al
constant 13 (areal width + exp width + 4a). print positions, a
complex value 28 and a boolean or a character value 1 each. Also
each of these is separated from the previous one by a space,
unless we are at the beginning of a line.

Multiple values are also included in the united mode
specified b:y D.QJ!!!IE~D and there fore multiple va 1 ues may be
printed. For example, in the reach of (1:3]!!!!: u1 = (1, 2, 3)o,
the result of aprint((u1, 4))o is

+1 + 2 +3 +4
Uso, in the reach of or1:2, 1:2 U!!.! n2 = ((5, 6), (7, 8))0, the
result of aprint(n2)a is

+5 +6 +7 +8
Actually, the description of cprinta [R.10.5.2.1.a,b) indicates
that each of the •units• of a •row-display• a(:1, b, c, a)c in
aprint((a, b, c, d))a is first 11straightened 11 (unravelled)
[R.10.5.0.2.c) to a value of mode specified by o[).§ime_Jou_!c and
each of the elements of each of these straightened rows is then
printed with the standard format discussed above. This means,
for example, that the an2o in aprint(o2)a, given above, is,
within the •procedure• aprinta, straightened from aQutl.}'.~o to
c[]§.i!.e.!Q.uta ra.10.5.2.1.b, 10.5.0.2.aJ. Thus, all multiple
values and all structures (except for agQfilE~D and a2 ~ringa,
which are already in D§!.!!L.IUQUta) are straightened to
a(l§!!tl~uto before prihting.

The exceptions for a2 ttiEgo and D£Q!£!o are that, although
o2trj,rrga has the mode •row of character•, the result of
aprint(11 abcd")a is ABCD and not ABC D, which would be the case
if it were treated like other multiple values, and aprint(1.2 !
3.4) c gives

+1.200000E +O J+3.400000E +O
rather than

140 An ALGOL 68 Companion

+1.200000P. +0 +3.400000E +O
which would be the case if it were treated in the same way as
the other structured values.

One final point is that the appearance of the result of
aprint(x} ; print(y)a is exactly the same as that of aprint ((x,
y))a. In particular, each •call• of aprinta does not start the
output on a new line. A new line is started only when there is
not enough room on the old line or when one of the layout
procedures anew linea or anew pagea is called.

11.5 conversion to strings

For those who find that t his st ndard format does net meet
their needs, there are a few •procedures• which allow for some
form of simple control over the appearance of the output,
without resorting to the use of formats. These procedures
convert integer or real val ues and their long variants to
strinqs. They are aint string, redl string, dee string □ and the
same preceded by alongas, i f applicable [R.10.5. 1.J.c,d,e).
Thus, if it is desired to print the integral V3lue ■25 ■ using a
width of three print positions, this can be done hy

cprint(int string(25, 3, 10))0
The second •parameter• of ciot stringo is the string length and
the third is the radix. The • call•

aprin t (int string (25, 3, 8)) o
would yield +31, because 25 = 3 • 8 + 1. Fer real values the
value of areal string(3.14, 10, 1, 2)o is ••3.140E-t00 ■ and the
v:tlue of odec strinq().14, 10, 3) □ is •+00001.140 ■• In both
•procenures•, the second •par me er• is the length, the third is
the number of di1its to the right of the fOiot, and for areal
stringa, the fourth •paramP-ter• is the length of the exponent.

Notice that the value of
■ +0000025 ■, so that those who
either accept what they get from
output. Another possibility is to
by defining a •procedure• like
supp zeroa fR.10.5.2.1.q].

11.6 Standard input

aiot str:iny (25, 8, 10) o is
require zero suppression must

aprint(x}c or use formatted
do the zero suppresion cneself
the hidden •procedure• o1 sign

The philosophy for unformatted input is that any reasonable
representation of the value to be read is acceptable, that it
may appear anywhere on the line and ~ay be cf ¾DY width. What is
expected for each value depends upon the mode of the •variable•
to which it is to be assigned. Remember that the mode cf the
•parameter• of oreado is o[]!~2£!Ie~a, where ar~~~!1E~D is
c1111ion (intt_y_2e, ,2r-oc (file)) c. Thus, in aread ((¼, b, c)) c, the
□ :ta is eith~L ct layout •frocedure•, like anew linec, or: a
•variable• (or perhaps a •clause• which delivers a name of the
appropriate mode).

The modes we ne~d to consider are those in the union
specified by □!!mE!Q!!□, each preceded by •reference to•, i.e., I
a~~! !!!.!, ref real, ref com.El, r:ef bool, ref char, ref strin_ga ·

An ALGOL 68 Companion 1 41

and their long versions like DI~{ !ong t~!!D and so on. For
conyenience let us suppose that this union is specified by
D§!!~!!~a. we shall need to consider each of these modes in
turn. ·

In the reach of ci~i i, !2B~ int lie, the •call• aread((i,
li))o would be satisfied by two •integral-d~notations• like

3 -2
or

+ 304 0000005
The •procedure• oread □ looks for the first non blank character
from the current position on the input file and interprets what
it finds as a value of the required mode. It allows for the
possibility that, in the case just cited, there will be two
•integral-denotations• with zero or more blanks between the sign
and the first digit, if a sign appears at all, but that no
blanks may appear between the d igits. Mote that the same set of
characters may be presented for □in!□ as for c!Q~~ i~!c (a
•long-symbol• is not used).

In the reach of areal x·, .!Q!!g !:~!.! lxc,
cread((lx, x))c would be satisfied by

2 3.45
or by

6.789 e + 2 .0000J
or by

123-4. 56

the •call•

Note that the values on the input file need not necessarily be
separated bJ blanks or commas, although most pe6ple would
naturally do this.

In the reach of D£Q~E.! z, Q..QQ! ha, the •Call• aread ((z,
b)) □ would be . satisfied by

3.456 e -3 i + 7.69 J
or by

.000345i60
Observe -that although areado will widen from o!~!a to □£~!! □,
when necessary, there is here no widening from ciB!D or orealo
to D£Q.!!!£J□• If the •variable• to be assigned t o is of mode-~ref
£Q!E.!o, then it expects tvo values acceptable as D~!lD and
separated by a •plus-i-times-symbol•.

In the reach of □ ch!£ ca, aread(c)a merely reads the next
character from the input file and assigns it to cc □ even if that
character is a blank. In the reach of o[1:10Jgbar clo,
cread(c1) o will read exactly 10 characters, including blanks,
and assign these to ac1a. If however, ve have o[1:3 fle!]£E~£
cf1o, then aread(cf1) □ reads characters until it finds the end
of line or one of the characters which belcngs to the string
oterm Q~ stand in□ [R.10.5.1.mm), whereupon the preceding
characters are taken to be those to be assigned to ccf1 o.
Whichever bound is flexible is then adjusted suitably. If both
of them are flexible, e.g., in the reach of a[O fl~.!= 0
!le!]ch~!: sillyc, the •call• cread (silly) o will result in a
lower bound of.,. for osillyo. The programmer may specify the
terminators as for example in oterm ~f stand in := 11 ?! 11 0, wh·ch

142 An ALGOL 68 Companion

changes the set of t erminators to"?" or"!".

For multiple and structured •variables• in the union
ain!I~ga, the first step is to straighten to a[]§!!£line, where
D§!!E!irra is the union of modes discussed dbove. Thus, in the
reach of a[1:3, 1:2]real x2, struct(int a, bool b) cc, the
•call• aread((x2,=))a would be satisfied by

3.1 .6 4 .2 .7 SQ.

11.7 String to numeric conversion

The •procedure• areada must of necessity convert character
strings to integral or real values, and in doing so it makes use
of three standard •procedures•, □ string int, string deco and
astrinq realc [R.10.~2.2.c,d,e]. These •procedures• are not
hidden. The programmer may use them himself. The first
•procedure•, □string into, converts a given string to an
integral value. It assumes that the first character of the
string is a sign. Any character which is not a (hexadecimal)
digit, e.g., a space, is treated as a O. Thus the value of
cstring int (11 +.!...?..23 11 , 10) c is • 23 ■ (the second parameter is the
radix). The •procedure• □ string deco converts a •variable-point­
numeral•, e.g., a 11 +2.J450"a, to a real va lue and astring reala
converts a •floating-point-numeral•, e.g., a11 +2.345e-2" □ to a
real value. The val ue of astring dee ("+2. 345 11) a is ■ 2. 345 ■ and
that of astring real(11 +2. 450 e- 1 11)a is ■ .2345 ■• These
•proc~dures•, although available, ace not likely to be useful
for input since aread a itself has all the flexibility needed.
However, thay may well be used for internal manipulation of
strings.

Another •pro=edure• which may be menti oned here is achar in
stringo [R. 10.5.1.2.n]. It has three •parameters•: the first is
of mode •character•, the second of mode •r eference to integral•
and the third of mode •row of character•. The •procedure• I
delivers a boolean value which is ■ true ■ if the character, which I"
is the first •parame ter•, is found in the string, which is the I

third •parameter•, in which case its position is assigned to the
•integer-variable•; otherwise, the value delivered is ■ false■
and no assignment is made. rhe result of ■ char in string~•", i,
"x~•.?..Y")a is therefore ■ true■ and the value ■ 3 ■ is assigned to
aia.

11.8 Simple file enquiries

For any file, it is possible to make simple enquiries
concerning the current position in the f ile. There are three
•procedures•, achar number, line numbera and opage numbera
rR.10.5.1.2.v,v,x], each yielding an integral value, the three
coordinates of the obooko. In the case of the standard input
file, the •calls• □char number(stand in), line number{stand in)o
and opage number(stand in)a should each yield the value •1•
after the •call• aread ((c, back space))o, if this is the first
call of areada and is in the reach of cchar co. Notice that
these •procedures• deliver integral values and- not names, so

An ALGOL 68 Co ■panion 143

that they are for enquiry only and cannot be used to alter the
position in the file.

There are also three •procedures• aline ended. page endeda
and ofile endedn [R.10.5. 1.2.h,i,j], each of which delivers an
appropriate boolean value, but a careful distinction ~ust be
made between afile endeda, which tests whether the maximum
capacity has been exceeded, and alogical file endedc
fR.10.5.1.2.k], which tests whether the usable information in
the file has been exhausted. In the case of the file astand inc,
if it is a card reader, then afile ended (stand in) o is likely
always to be ■ false ■, but ological file ended(stand in) a may
become ■ true■ each time we reach the end of the data for a
particular job. The •call• □logical file ended (stand out)c will
always yield ■ false ■, because aget possible(stand out channel Jo
[R.10.5.1.1.j, 10.5.1.3.b] is likely to be ■ false ■, i.e., cstd.n::I
outa is not an input file. But cfile ended(stand out)o may well
become true when the page limit for a pacticular 'ob is reached,
or when the box of paper is exha usted.

11.9 Other files

It is worthwhile noticing now that aprint(x) o is the same
as cput(stand out, x)a and cread(x)a is the same as aget(stand
in, x)o; in fact, this is the way that cprinta and areaaa are
defined [R.10.5.2.1.a, 10.5.2.2.a]. This me,1ns that if another
file is available, say in the reach of the •declaration• afb!g
fa, then what we have said about unformatted tr:ansput on the
standard files applies also to t he file cfo by using, e.g.,
cput(f, x)a and aget~, x)a. Such files must be opened (and
closed) by the programmer, but t his is the subject matter of
another chapter.

Another standard file which is always a vailable, i.e., is
opened automatically, is astand backo. This file may be used for
saving intermediate results during the elaboration of a
•program•. When the elaboration is completed, this information
will be lost, since the file is locked (R.10.5.1.ii, 10.5.1.2.t)
by the •standard-postlude•. The two relevant •procedures• here
are cwrite bina and oread bino. The mode of the •parameter• of
owrite bina is a[)Q~tt1£~D, and that of aread bina is
o[Ji!!.t1.e.ga. For example, in the reach of c[1: D]fg_al xlo, if we
want temporarily to save the values of a rather large array,
this could be accomplished by the •call• awrite b"n(x1)c. T he
array can then be recalled by cread bin (x1)o. If another file,
say afa, is available. the same could be done hy aput bin (f,
x1)a and cget bin(f, xl)o, and if the file cfo is not locked
then these two •calls• might ap pear in different •programs•.

Review questions

11.2 Print and read

a) Is aprint (new page, new line) o a •call•?

144 An ALGOL 68 Co mpanion

b) Is aprint (!!!.!) c a •call•?
c) What is the result of aprint(get possible[stand in

channel))a?
d} In the reach of aref real xx:=.!~ !:!§1 := 3.14a, what is

the result of cprint(xx)a?
e) In the reach of a~! .£.!§1 xx := J.2£ E.!!1 := J.14a, vhat is

the result of aprint(!:!! !:~!!: xx)a?

11.3 Transput types

a) What is til e result of cpri nt (.!QE i l!I 2 !.Q 10 !!.Q 3)a?
b) Can c nilc be coerced to a[]I?!.!Il!.!Il?~D?
C) In thereach of Df.!f !:!!.! xxc, can cxxc be coerced to

a [l !:!~fu.E~ a 7
d) In the reach of astruct (ref £ next, i.!!i n) s := <nil, 2) c,

what is the result of aprint (s) c?
e} In the reach of cf.Qf..!!!1!! fc, is aread (f) c a •call•?

11.4 Standard output format

In the following, assume the same environment as given in
section 11.4.

a) What is the result of aprint(("?", int vidth))c?
b) What is the result of apr~nt(("?", space, "abc"))?
c) In the ceach of are£ real xx := loc t'eal := 3. 14c, what

coercions OCCUt' to axio i~print ((11 ?••:--xx))o and what is
printed?

d) How ■ any real values can be printed on a line?
e} How many integral values can be px:-inted on a line?
f) Is the result of aprint (("a", "b", "c")) c &BC or A B C?

In ALGOL 68 co■panion 145

References

[BJ I.Brown, The cross-referencing of a van Wijngaarden gra mmar,
Doiversity of Calgary, 1969.

[G] G.Goos, Soa e problems in coapiling ALGOL 68, lLGOL 68
Iaple■entation, l orth-Holland, 19 71, pp. 179-196.

£HJ J.B.Hopcroft and J.D.Ullaan, For ■al Languages and their
Relation to Automata, Addison Wesley, 1969.

[Kn] D.B.Knoth, The Art of Co■puter Progra■■ ing, Vol. 1,
Pondaaental Algorithms, Addison Wesley, 1968.

[Ko] c.H.A.Koster, On infinite ■odes, Algol Bulletin, No. 30,
Peb. 1969, pp. 86-89 (AB.30.3.3).

[!] L.Beertens, on the generation of ALGOL 68 prograas involving
infinite ■odes, ALGOL Bulletin, Bo .30, Peb. 1969, pp. 90-92
(1830.3.4).

[I] P.Naur, Revised Report on the Algorithmic Language ALGOL 60,
Co•• • Assoc. coaputing Machinery, 6(1963) pp. 1-77.

[Pa] C.Pair, concerning the syntax of ALGOL 68, Algol Bulletin,
AB 31.3.2, ftarcb 1970.

[P] PL/I Language Reference ftanual, IBM Form C28-8201-2.

(BJ A. van lfijngaarden, B.J. ltailloux, J.!.L. Peck and C.H.A.
Koster, Report on the Algorithmic Language ALGOL 68, Numeriscbe
Mathe■ atilt, 14 (1969) pp. 79-218.

[SW] ft.Schorr and i.M.iaite, ln efficient machine independent
procedure for garbage collection in various list structures,
Co■m. Assoc. Co■ puting flachinery, Vol. 10 (1967), pp. 501-506.

[I] e. wnssner, on identification of operators in ALGOL 68,
ALGOL 68 Imple■entation, Horth Holland, 1971, pp. 111-118.

[Zl Rary Zosel, !ode classification, Univ. of Washington. 1970.

146 An ALGOL 68 coapanion

Answers to review questions

1.1 a) It ends with •symbol•. b) Three, •label-symbol•,
•cast-of-symbol• and •up-to-symbol•, unless one observes that
the •label-symbol• is in italic, and the other two in normal
type. c) Yes, e.g., a.a, which represents a •point-symbol• and a
•completion-symbol•. d) It is a representation of the •open­
symbol•, but, by extension 9.2.g, it may be used in place of
cf c.

1.2 a) An internal object which is a real value. b) l
•real-denotation• (amongst other things). c) It is an e.xternal
object. d) a!£Y~D possesses ■true ■ •

1.3 a) No. b) Yes. c) Ho, it is an internal object. d) No,
i.e., not at the same time, but in the course of time - yes. e)
No.

1.4 a) No. b) Yes, a •collateral-declaration• [R.6.2.1.a].

1.5 a) There are four classes: integral
values, truth values and characters. b) Yes, the
c) The mode.

1. 6
and

a) The mark ":" is read as "may be a",
11 , 11 as "followed by a". b) Yes.

values, real
truth values.

" ; II as "or a II

1.7 a) Yes, e.g., a12Ja and 00001230. b) !lo, but it is a
•formula•. c) Yes. d) No, not if this value would e~ceed cmax
int □ [R.10. 1.b].

1.8 a) Yes, e.g., possibly 02.340 and c23.4e-1o. b) No. Oh,
please no. c) No. d) Yes. e) No, hut it is a •formula• [R.8.4).

1.9 a) Mo. b) Yes.

1.10 a) Infinitely many. b) As many as he likes, but always
a finite number.

1.11 a) Mo, it is a •character-denotation•. b) Yes. c) •row
of character•.

1.12 a) Mo (R.2.2.3.1.b]. b) •structured with ro w of boolean
field letter aleph•. c) •format•.

1. 1 3 a) •rov of character•. b) •reference to real•,
•reference to integral • c) No. d) Six. e) No.

2.1 a) No. b) Yes. c) cf~! .;-~! []£hin:_c. d) Yes. e) Yes. f)
No. g) No, except for ■nil ■• h) No, a •declarer• specifies a
mode. l

An ALGOL 68 Co■panion 147

2.3 a) Hone. b) al2£ £hara. c) a!2£: ~.Q.Q!a. d) Ho. e) Ro. f)
No.

2.4 a) No, but it possesses a name referring to a real
value. b) Yes. c) tlo. d) Hq. e) Ho. f} No, i.e., not at the same
tiae, but in the course of tiae - yes.

2.5 a) Yes, but not the sa me instance [R.2.2.1]. b) Ho. c)
Ho, but the value referred to by the name possessed by cxc may
be changed. d) cloc(1:3]Rroc reala.

2.6 a) No. b) Yes, in the extended language. c) • reference-
to-reference-to-integral•. d) a[1:3]1?!:2£ r~!! pc.

2. 7 a) Yes. b) Yes. c) 110. d) 110.

2.8 a) a ref ref real xx= loc ref realc. b) aref real x =
loc real, ref real y = loc realc. c) aref real x = loc real, ref
real y := loc real := 3.14a. d) It is not possible; moreover, if
a+a has its usua l meaning, then this is not a •declaration•.

2.9 a) No. b) Yes. c) No. d) Yes, but a rather foolish one.

2. 10 a) Yes. b) Yes. c) Ho. d) ay + 2c. e) •reference-to-
reference-to-real•. f) No.

2.12 a) The aya is dereferenced and the a3.14a is not. b)
No.

2.13 a) the ana is an •integral-mode-identifier• but the ama
is a •reference-to-integral-mode-identifier; i.e., anc is a
•constant• and cma is a •variable•. c) Ho.

2.14 a) Four. b) Both aapa and ampa are dereferenced. c) It
is equivalent to aj := j + 1c. d) Yes. amic. It's mode is •long­
real•. e) •reference-to-long-real•.

3.1 a) No. b) Yes. c) a(a + (b 2! (c[d]))) - ea. d) An
•expression• may possess a value but a statement cannot. e) Yes.

3.2 a) Ho. b) Five, •mode-identifier, denotation,
call• and •void-cast-pack•. c) aa[i], a, i, c, sin(x),
cos(x + pi/2), cos, x, pi, 2a. d) Ho. e) It could be
depending on the mode of caa [R.9.2.g).

slice,
sin, x,
either,

3. 3 a) cl, ca, fa. b) •reference-to-real•. c) •ro v-of-rov-
of-integral•. d) Yes. e) Bo.

3.4 a) Yes. b) Yes, its mode is •reference-to-row-of-real•.
c) Yes. d) Yes. e) a35, item~! a, i + n • 2, i +:= 2c.

3.5

3.6
value

a) No. b) res. c) Ho. d) Yes. e) Yes.

a) The same as that of a(2,3)a. b) It possesses the
. t.rue ■ only when ax2[3, 1] = x2[2, 1 Jc. c) ■2 ■• d) ■ 2 • . e)

148 An ALGOL 68 Companion

No, because ai := la is not a •tertiary• and therefore not a
• lover-hound• .

3. 7 a) Yes. b) No, i t is a •deprocedured-coercend•
[R.8.2.2.1.a]. c) Mo, but ocos((x > 0 Ix I pi/2))o is a •call•.
d) When the mode of can is •procedure vith M1 parameter
reference to M2• where • M1• and •M2• are terminal productions of
MODE. e) When the mode. of cao is •p1:ocedure-with-l'l1-parameter­
procednre-with-M2-parameter-M3•, i.e., aao is a •procedure• with
one •parameter• vhich delivers a •procedure• vitb one
•parameter•, and the mod.es of obo and oco are •M1• and •!12•
re spec ti vel y.

3.8 a) Yes. b) So, o (: x) a has no mode . c) Yes, provided
that the mode, after soft coercion, of oxa is •reference-to­
procedure-void•. d) Yes. e) No [R.8.2.3.1], but DE!:Q£ p := (: x
:: 3.14)0 is a •declaration•.

3.9 a) No. b) Yes. c) HO. d) Yes. e) When the mode of aba
is structured, has a field selected by aaa vhose mode is
•reference-to-Ml• where •Ml• is the a posteriori mode of ace, or
when abo is a •variable• and will refer to structured values
that have a field selected by aaa whose mode is M1.

3.10 a) No. b) No, it is a • field-selector• [R.7.1 . 1.i]. c)
aa Qf (b[c)), e Q!(g(x))o. d) No, a(a .Q! b)a is not a •field­
selector•. e) Yes, it could be.

3.11 a) Yes. b) ■false ■
■ 3 ■). c) ■-4•. d) No,
a+:=a, as declared in the
name. e) ■false • .

(if the value of obits widthc is
the left •operand• of the •operator•
•standard-prelude•, must possess a

3. 12 a)
d) No, □E.£.QC

No. b) No, ai := i + 1a is not a •tertiary•. c) No.
(:random)a is. e) It is an • assignation•.

3.13 a) ■ false ■• b) ■ true■• c) ■ true ■• d) No, 03.140 does
not possess a name. e) Yes.

3.14 a) No. b) It looks like one, but a3.14a cannot be
strongly coerced to an integral value. c) An • identity­
rela tion•. d) Ho, because c(1: 1]!:~~1□ is not a • virtual­
declarer•. e) Mo, a!ef in!: ii □ is not a •tertiary•.

3. 15
None.

a) Mone. b) Eleven. c) A •constant • . d) •real• . e)

4.1 a) The same as that of a3 i Oa. b) lfo. c) No. d) Yes.
e) Yes. f) Yes.

4.2 a) • 5 • . b) Some undefined integral value. c) ■ 11 ■ •

ai! p then a elsf q !h~! r !h~n b ~!§~ c !i □- e) a(a I (b
I (d I e-1-§!!~-))I ~!!E)a.

4.3 a) No. b) □if, £~~~a and a(a. c) • 4• . d) •2 • . e) No.

d)
I C 1·

I
I·

An ALGOL 68 companion 149

4.4 a) llo. b) Ito. c) Yes, cec is elaborated infinitely
often, or until a jump occurs to a •label-identifier• outside of
it. d) Yes, zero times. e) Yes, zero times. f) The second and
third occurrences of cia identify the first, but ai := 2 ~ i +
1a is not an •assignation• since aia does not possess a name. g)
The last three occurrences of aia identifJ the second
occurrence, but the third and fou rth occurrences identify the
first occurrence.

4.5 a) Yes. b) No. c) Yes. d) No. e) No. f) No.

lf.6 a) No. b) Bo. c) No. d) The same as that of n"abcde"a.
e) Yes, e.g., if the order of elaboration happens to be aj +:= i
: i +:: ja.

4.7 a) Yes. b) Yes. c) No. d) Yes. e) c(x Q! JI l) n
: = 2 i s • l: n : = 1 ; re.

4.8 a) Seven. b) •reference-to...:row-of-integral•. c)
•reference-to-integral • . d) Four. e) None.

5.1 a) No, D!~!l £!2£D is not a •declarer•. b) No, D(f~~i
a)!~!!D is not a •virtual-plan• [R.7.1.1.x]. c) D2!:~£ t!~! r2 -
2 * rando ■a. d) DE!Q£ max= (~~! a, b) !:~~!: (a> h I a
b) a. e) apro£ recip :: (!:~! !:~!! a) : a := 1 / ac.

5.2 a) No, unless n*o has been redeclared and possesses an
operation which delivers a name. b) D!tl[]!:~l x1a. c) a (E!!! a
= x + 1, ~! b = y ; a* b)a. d) a (r~!l a= ~!Je ; £~!.!:a•
a) a. e) • (!!!!. n = §!:!£, !!!!: m = §!!e ; !.!!![1: n)!~~.! a 1 = ~!!!! i
~~~!: ( n < m I a1[n] I a1(m) )) ■• 

5.3 a) The value is voided. b) ■4.6 ■, in the sense of 
numerical analysis. c) That of cya. d) The object ap(x, y)c is 
not a call, since D!~f !:!.! ~!a= xa is not an •identity­
declaration•. e) ■ 2.2 ■, in the sense of numerical analysis. 

5.4 a) DR!Q~ p = (!!!~ a, 2£2£ ~~{ i!!! b) : b •:= 2 • aa, 
but in most a pplications a~~~£ p = (!~!a,!~! !n! b) : b •:= 2 
• ac would b e su fficient. Note that s ince obo is passed by name 
in ALGOL 60, the side effects of ob := b * 2 * ao occur twice 
but in ab•:= 2 • aa they occur only once. 

5 .6 a) A •constant•. b) Because 
asc. c) Because ago is a •constant• 
•variable• in its last •parameter•. d) 
for it is used only in the •formula• at 
that of alll.Q.Q00.Qa. 

no assignment is made to 
and agrowo requires a 
It • s va 1 u e is ir r e 1 ev ant 
Q£ ~ta. e) The same as 

6.1 a) A priori mode, a posteriori mode and syntactic 
Yes. d) No. e) position. b) strong, firm, weak and soft. c) 

Widening. 

6.2 a) Eight. b) Dereferencing and widening. c) 



150 An ALGOL 68 Co mpanion 

Dereferencing and deproceduring. d) Roving. e) Eipping. 

6. 3 a) Dereferencing (four times). h) Dereferencing (twice) 
c) Dereferencing, dereferencing and deproceduring. d) 
Dereferencing, deproceduring and dereferencing. e) 834a, 71b,c, 
61e, 81a,b,c,d, 820d, 822a, 860a, 41b,c, 302b. 

6.4 a) Deproceduring and uniting. b) No. c) A routine. d) 
No. e) No, crandoao is of a priori mode •procedure-real•, it 
cannot be procedured to •procedure-void• [R.B.2.3.1). 

6.5 a) No. b) Hipping. c) Widening of c5o. d) Deproceduring 
and rowing. e) None, this is not a •cast• since rowing cannot be 
followed by uniting [R.8.2.4.1.h). 

6.6 a) Dereferencing and deprocedu~ing. b) Firm. c) Weak. 
d) Dereferencing of crr1xc twice (not thrice). e) Soft. 

6.7 a) •Base, cohesion, formula, confrontation•. b) cb, a 
Q f b , x, 2, x : = 2 , x, y, 3 , y + 3 , x := y + 3 o. c) Yes, but its 
elaboration is undefined since the dereferencing of a •nihil• is 
undefined [R.8.2.1.2 Step 2). d) Yes, assuming the •declaration• 
D!;~! !:~J: X'l(c. e) No, hipping cannot occur in a soft position. 

6.9 
821a, 
74a, 
830a, 
8 20g, 
511a, 
302b. 

a) 834a, 71b, 421b,c, 61e, 81a,b,c,d, 820d, 825b,a, 
860a, 41b, 302b. b) No, there is no deuniting coet'cion. c) 
54e, 71b,w,aa,z; 41b, 302b; 74b, 61e, 81a, 820d, 823a, 
831Ja, 71-z; 61e, 81a, 820d, 828a, 830a, 831a,b, 81b,c,d, 

860a, 41b, 302b; 831c, 61e, 81a,b,c,d, 820d, 825a, 860a, 
303c,d. d) 61e, 81a,b,c,d, 820d, 828b, 822a, 860a, 41b,c 
e) No, hipping cannot occur in a firm position. 

6 .10 a) No. b) Yes. c) • real•. d) •real• or •procedure real• 
or •union of integral and real• or • union of integral and real 
and boolean• etc. e) No. 

6.11 a) No. b) cpxa is softly deprocedured and a:xxc is 
strongly dereferenced. c) opxc is softly deprocedured and cgg_!Q 
kc is strongly hipped to •reference-to-real•. d) Yes. e) No. 

6.12 a) axle is we akl y coerced, a2a is strongly widened and. 
then rowed to •row-of-real •. b) Yes, strongly-weakly to •real•. 
c) Yes. d) Yes. e) arando11c is strongly deprocedured and widened 
and oO ! 2a is weakly c oer ced. 

6.13 a) Ho. b) No. c) Yes, firmly-strongly. d) Yes. e) No. 

6.15 a) Yes. b) Yes, the balanced mode is •reference-to­
real•. c) No, it cannot be balanced. d) a4 ! 5.6a is firm, the 
others strong. e) No. 

6.16 a ) The object am+:= 1c is interpreted as cm :== m + 1a 
so ama is dereferenced once, cm+:= 1c is dereferenced as the 
left operand of a>o. h) This is equivalent to Cf~f !~! c1 = !2~ 
int :=am:= ~Q~ amo. First came is dereferenced to •integral• 
and the absolute value of this integer is found. It is assigned 



An ALGOL 68 Companion 151 

to oaaa. Then a name is created by a12£ lB1D, the •assignation• 
cam := ~bs ama is dereferenced and the integral value (referrea 
to by aamc) is assigned to this name. Finally ac1o is made to 
possess the name. c) The identifier oaia is made to possess the 
same name as that possessed by oa[i]a. This happens for each 
repetition of t he repetitive statement , in which there are five 
occurrences of aaia, thus savi ng time on s ubscript calculation. 
d) This is the position of t he statement number 3 0 in the 
FORTRAN program. It is redundant i n ALGOL 68 , but 0 130: ~~~c is 
not permitted for t here is no em pty statement. e) 1 

7.1 a) Yes, its value is ■ false ■ [R.7.1.2.c Step 8). b) 
Yes, but rather useless. c) ■true ■ • d) Yes • . e) Yes. 

7.2 a) Ho, •integral• mode canno t be united to •union of 
character and boolean•. b) Bo, in 8.8.2.4.1.a , •strong• goes to 
firm, so the a1o cannot be widened. c ) Bither •real• or 
•boolean•. d) Yes, and its va lue is ■false■• e ) Ye s, provided 
that it is in the reach of a s uitable declaration of the 
•operator• a+a. 

7. 3 a) ■true■• b) ■false■• c) ■ true ■ • d) Yes. e) Ho, ex : : = 
xa is not a •tertiary• [R.8.3.2.1.aJ. 

7.4 a) Yes, its value is ■ false ■• b) Yes, its value is 
■ true ■• c) Yes [R.4.4.3.c,d]. d) Ito. e) t1,2,rgf sqirt = <in! 
i)union(int, real) (real x = sgrt(i) i.!!! j = .f2J!!!.!! :xi ( j • 
j = i I j I X ) ) D. 

7. 5 a) ■ 4 ■• b) Either ■7• or ■ 8• or ■ 9 ■ [ R. 10. 4. 2 ]. c ) No , 
it should be asema p = /1o. d) Yes, surprisingly, and if the 
value of aua--Is of •boolean• mode , tben the value of the 
expression is that of aha. e) No, because a •skip• can only be 
hipped and must therefore be in a strong position. The right 
•tertiary• of a •conformity-relatio n• is of no sort 
(R.8.3.2.1.a). f) Ho, a •jump• can only be hipped (see the 
answer toe). 

8.1 a) Ho, it is a •confrontation•. b) Yes. c) a (x + (-y)) 
( ( - ( - (~I!! i))) over 2) c. d) Nine. e) Ho, it is a 

•confrontation•. f) ■ 2 • • 

8.2 a ) No, c: = :o is not a •dyadic..:.indication•. It is a 
•identity-relator•. b) No, the • token• on the right must be> o. 
c ) Ho, the token must be < 10. cl) Yes, if the implementation 
permits a?o as a •dyadic-indicant•. e) lo, perhaps the intention 
was D£E!Qritj? = 6, ! = 60. 

8.3 a) No, a:=:a is not an •operator•. It is an • identity­
relator•. b) No, the •actual-parameter• must possess a routine 
with one or two •parameters•. c) No, a•a is not a •monadic­
operator• [R.3.0 .. 4.a, 4.2.1.f, 4.3.1.c]. Think about ax•*2c. d) 
Yes. e) ao~ (ref file, int) c~eate = createa. 

8.4 a) ■ (!:~.!! .! = ski,2; int: round a) ■ • b) No, crandoma 



152 An ALGOL 68 Coa panion 

possesses a routine which has no •parameters•. c) ■ 83 ■• d) Yes. 
e) No, c+o is not an cactual-para•~terc. 

8.5 a) One. b) 16 times a sufficient number [R.10.b Step 3, 
10.2.3.i.j, 10.2.4.i,j, 10.2.5.a,b, 10.2.6.b, 
10.2.7.j,k,p,q,r,s, 10.2.10.j ',k,l]. c) 30, [R.10.5.2.2.b, 
10.5.3.2.f, · 10.2.0]. d) There is none since this is a •monadic­
operator•. e) No, it is a •conformity-relator• [R.8.3.2.1.b]. 

8.6 a) Yes, but it cannot be contained in a proper program. 
b) Yes, because the second occurrence of oabsa is that of a 
•monadic-indication • . and does not identify tbe--first. c) In 
order to reinstate the •dyadic-indications• and •operators• of 
the •standard-prelude•. They ma y have been re-declared. d) Yes 
[R.6.1.2.a, 6.0.2.d Step 1]. e) Yes [R.6.1.2.a, 6.0.2.d Step 2). 

8.7 a) R.10.2.s.a. b) 
R.10.2.8.d. e) R.1D.2.10.i. 

a) o(f~~! a= ski£ 
a> O)o. 

R.11.11.k. C) R.11.11.i d) 

8.9 a) ■-1 • . b) No, it is an •identity-relation • . c) No, a 
•cast• is not an •operand•. d) Yes. e) ■false■• 

8.10 a) No. b) No. c) Yes, try coercing from oi~!o or from 
D,l?,!;Q£ J:n!o. d) Yes. e) No, there is a multiple definition of 
D-D. 

8.11 a) It draws a straight line of length ode in the 
direction s. b) Try, on, s, e, wo. c) 

8.12 a) Remove 2, remove 1. b) Remove 1, remove 3, replace 
1, remove 2, remove 1. c) The •formula• requires that oao should 
be a •variable•. d) Remove 2, remove 1, remove 4, replace 1, 
replace 2, remove 1, remove 3, r eplace 1, remove 2, remove 1. e) 
Try ce.EQ.f upc and DE£OC dovno. 

9.1 a) No. b) Yes. c) No [R.8.3.4.1.a]. d) No. e) Yes 
[R.5.1.0.1.b]. 

9.2 a) Infinitely many. b) Six. c) Two. d) Two. e) 
•virtual, actual• and •formal•. 

9.3 a) No [R.3.0.2.b]. b) Three. c) tto, it is a metarule. 
d) Yes. e) No. 

9.4 
say. d) 
•real•. 

a) No [R. 1.2.1. mJ. b) No. c) Yes, •row-of-character•, 
•real-field--letter-r-letter-e-and• [ R. 8. 5. 2. 1. a]. e) 

9.5 a) (I) L : x ; y ; z. (II) N : ; Np. (i) s : Nx, yNy, I 
NNz. (ii) NpL : !IL, L. b} (I) L: x; y; z. (II) H: p; lip. 
(i) s : Hx, Ny, Nz. (ii) lipL : NL, l. (iii) pL : • c) (I) L : X 

; y ; z. (II) N : ; p!I. (i) s : letter x symbol Ii, letter y · 
symbol N, letter z symbol N. (ii) letter L symbol pN : letter L 



An ALGOL 68 Companion 153 

symbol~ letter L symbol N. 

9. 6 a) No. b) Yes. c) No. d) No. e) Yes, • NONPROC• excludes 
only •procedure-MOID• or the same preceded by •reference-to• or 
•row-of•. 

9.7 a) •void-cohesion• or •void-confrontation• [R.8.5.0.1]. 
b) •virtual NONSTOWED declarer•. c) •firmly dereferenced to MODE 
FORl1• d) •strongly rowed to REFETY row of MODE FORM•. e) •STIRM 
ly united to MOID FORM•. 

10.1 a) No, Df:~~1c is not a •mode-indication• [R.4.2.1.b, 
1.1.5.b]. b) No, ca□ is an •identifier•, not an •indicant•. c) 
No, [ ]£~al is not an •actual-declarer•. d) Perhaps, if ob □ 
alrea:ly specifies a united modec [R.7. 1. 1.cc, 9.2.b]. e ► Yes 
[R.9.2.b]. · 

10.2 a) cstruct(ref b a, ,Eroc b d)a b) This is undefined. In 
□ref~ vc or □!~! f~t ~ v = !££ fg! 2□, the •generator• cl££ f~t 
~c contains o~c which is virtual and is therefore not developed 
ra.7 .• 1.2.c]. c) ounion(ref ccnst , ref var, ref tri2le, ref 
call ) □ • d) ostruct (union (ref c on st, ref var, ref tri,Ele, ref 
£~!!) left operand,!~! operato r , ~QJQQ(.£~! £2~§!, E~f ~~E, I~! 
!fiE!~, £.gf £~!1) right operand ) □• e) D§!fgf!ffl :O fle1] £hgf 
title, .£!!! .!H?Q~ next) a. 

10.3 a) The first is its defining occurrence as a 
indication• and the second is an applied occurrence 
•virtual-declarer•. b) The first is a •declarer• and the 
two are •global-generators•. c) Yes. d) o!i!!! a:= (1, 
next Qf a:= !in~:= (2, .nil) ; next Qf next 2! a := Jin~ 
n,Ua. e) No [R.6.2.1.f]. 

10. 4 a) No. b) Yes. c) No. d) Yes. e) Yes. 

•mo<le­
as a 

other 
.nUJ 
: = ( 3, 

10.5 a) If c~c is a •dyadic-indication•, then it is a 
•formula• and ab uc is a •cast•; if c~c is a •mode­
indication•, then-it is a •declaration• and □h :uc is a • row-of­
rower•. 

10.6 a) Yes. b) No. c) D§,!!gf! ~ = (i.!!1 u, £gf ~ v)a. d) No. 
e) Yes. 

10.7 a)Yes. b) □ n.2!!~ tree:= n2!!~ .- (!!!l, "bob", ni!.l, 
11 jim", !!QQ~ := (.!!!!, 11 sam", ·n!l)) a. 

10.8 a) cleft of right 
ni!)c. b) BOB. c) ■ f;lse ■• d) 

gf tree 
■ true ■• e) 

:= n2gg := (!!i.!, 
■ false ■, ■ true ■• 

10.9 a) In line 2, insert 0!?22.! b .- i!:ygo; lines 7 and 8 
become afi; b := !~lse ; done: ba. 

10.11 a) □E!:2£ p1 = (£g! .!l.Q£g root) (print("("); (root :I: 
n!! I p1 (left 2! root) ; print (val Qf root) ; p1 (right 2! root)) 
; print(")") )a. b) DE!:Qf p2 = (_~~!. !!,Qgg root) : (root :f: !!.il. 
I: left Q.!: root :=: (!:gf B2Qg : !!!]J ~!!1 right Qf root : =: (fg! 



:j 
I 
! 

154 An ALGOL 68 Companion 

!!Q~~ : 1!!.!) I print(val Q! root) I print("(") ; p2 (left g.f: root) 
; print(",") ; print(val .Q! root) ; print(",") ; print(right 2!. 
root) print(")")) a. 

10.12 a) Remove caction(p)a from line 12 and insert it in 
line 8. 

11.2 a) No, cprinta has only one parameter. b) No, a.ni!c can 
only be hipped, but since it must also be united, it is 
therefore in a firm position [R.8.2.4.1.b]. c) 1 [R.10.5.1.1.f, 
10.5.D.2 Table 1 ]. d) +J. 1110000E +O. e) +3.140000E +O. 

11.3 a) Undefined, since the repeti tive s tate ment is void 
and therefore cannot he coerced to DE~i!!!ll2~a. b ) No 
[R.8.2.4.1.b]. c) ~es, der eference to a£!l! rea!a, unite to 
ain!I£~c and then row i t . d) Undefi ned , s i nc e osa cannot be 
coerced to c~~iii~~a. e) No, cfQf!~!a cann o t be coerced to 
a ( ]readty£ec. 

11. 4 a) '? +5. b) '? ABC. c) Twice dereferenced and then 
united to DE£ini!YE~a, ? +3.400000E +O. d) Four and 9 spaces 
iett over. e) Nine and 2 spaces left over. f) AB c. 



An ALGOL 68 Coa panion 

An 

ALGOL 68 COMPANION 

J • E. L • P ec k · 

Revised Preliminary Edition 

March 1972 

This document may be ordered from 

The Bookstore, 
University of British Columbia, 
Vancouver 8, e.c., 
Canada. 

The price is $2.00 plus handling charges. 

Please send me •••••• copies of An ALGOL 68 C~MPANION, 
and bill me. 

Name 

Address 

155 




