An

ALGOL 68 COMPANION

J.E.L. Pec k
Department of Computer Science University of British Columbia
Vancouver
Revised Preliminary Edition March 1972

CONTENTS

Introduction
1 Denotations.
1.1 Languaqe levels. 1.2 objects. 1.3 Names. 1.4 Variables. 1.5 Denotations. 1.6 Boolean denotations. 1.7 Integral denotations. 1.8 Real denotations. 1.9 Character denotations. 1.10 Modes. 1.11 String denotations. 1.12 other denotations. 1.13 Program example.

2 Some fundamental concepts.
2.1 Declarers. 2.2 Generators. 2.3 Local generators. 2.4 The elaboration of a generator. 2.5 Identity declarations. 2.6 The syntax of identity declarations. 2.7 Formal parameters. 2.8 an extension. 2.9 an assignation. 2.10 The syntax of assignations. 2.11 References. 2.12 Dereferencing. 2.13 Initialized declarations. 2.14 Program example.

3 Unitary clauses.
3.1 Introduction. 3.2 Eases. 3.3 Identifiers. 3.4 Slices. 3.5 Multiple values. 3.6 Trimmers. 3.7 Calls. 3.8 Void cast packs. 3.9 Cohesions. 3.10 Selections. 3.11 Formulas. 3.12 Confrontations. 3.13 Identity relations. 3.14 Casts. 3.15 program example.

4 Clauses.
4.1 Conditional clauses. 4.2 Simple extensions of the conditional clause. 4.3 Case clauses. 4.4 Repetitive statements. 4.5 Closed clauses. 4.6 Collateral phrases. 4.7 Serial clauses. 4.8 proqram example.

5 Routine denotations and calls.
5.1 The parameter mechanism. 5.2 Routine denotations. 5.3 More on parameters. 5.4 The syntax of routine denotations. 5.5 What happened to the old call ky name?. 5.6 Program example.

6 Coercion.
6.1 Pundamentals. 6.2 Classification of coercions. 6.3 Fitting. 6.4 Adjusting. 6.5 Adapting. 6.6 Syntactic position. 6.7 Coercends. 6.8 A significant example. 6.9 The syntactic machine.
6.10 Balancing. 6.11 Soft balancing. 6. 12 Weak balancing. 6.13 Firm balancing. 6.14 Strong balancing. 5.15 positions of balancing. 6. 16 program example.

7 United modes.
7.1 United declarers. 7.2 Assignations with united destination. 7.3 Conformity relations. 7.4 Conformity and unions. 7.5 Conformity extensions.

8 Formulas and operators.
8.1 Formulas. 8.2 Priority declarations. 8.3 operation declarations. 8.4 Elaboration of operation declarations. 8.5 Dyadic indications and operators. 8.6 Identification of dyadic indications. 8.7 Identification of operators. 8.8 Elaboration of formulas. 8.9 Monadic operators. 8.10 Related modes. 8. 11 Peano curves. 8. 12 Chinese rings.

9 The grammar.
9.1 The syntactic elements. 9.2 Two levels. 9.3 The metarules. 9.4 The hyper-rules. 9.5 A simple language. 9.6 How to read the grammar. 9.7 The indicators.

10 Mode declarations
10.1 Syntax. 10.2 Development. 10.3 Infinite modes. 10.4 Shielding and showing. 10.5 Identification. 10.6 Equivalence of mode indications. 10.7 Binary trees. 10.8 Insertion in a binary tree. 10.9 Tree searching. 10.10 Searching and inserting. 10.11 Tree walkinq. 10.12 A non recursive approach.

11 Easy transput
11.1 General remarks. 11.2 Print and read. 11.3 Transput types. 11.4 Standard output format. 11.5 Conversion to strings. 11.6 Standard input. 11.7 String to numeric conversion. 11.8 Simple file anquiries. 11.9 other files.

References.
Answers to Review Questions.

Introduction

This book is not intended as a complete description of the language AlGol 68. That description already exists in the form of the "Report on the Algorithmic Lanquage ALGOL 68", hereinafter referred to as the "Report" and referenced by [R] (see the references). The Report is, of course, a reference document and it must, of necessity, strive for the utmost precision in meaning. Certain sections, therefore, may yield their proper intent only after what the reader may think is an excessive amount of close scrutiny. But then, like any legal statute, the Report should be read carefully, for the authors were determined that, when the reader eventually gropas his way to a meaning in a carefully worded passage, it should yield, beyond all possible doubt, the meaning which was intended, and not some other meaning which the reader may have had in mind. A student of law does not learn the law by first studying the statutes. Likewise, the best approach to a new programming language may not be through its defining document. The law student must be taught how to find his way among the statutes and the student of programming needs to be shown how to get the information he needs from the defining document of a programming language.

Dur intention is therefore to introduce the reader, in easy stages, to the ideas and the terminolcgy contained in the Report. Since it is assumed that the Report is always at hand (this book should not be read without it), we absolve ourselves of the necessity for describing every detail of the language. Our purpose will have been fulfilled, if the reader can, after studying this book, put it aside, and from that point onward use the Report alone.

This approach means that it will not be in the interests of the reader to try to explain ALGOL 68 in terms of the concepts used in, say algol 60, or those used in any other programming language. ALGOL 68 has its own new terminology because many of the concepts are new, and though there are similarities with the concepts in other languages, usually the exact counterpart is not available. We shall therefore try to be meticulous about using only the terminology which is employed in the Report; in this way the transition from the Companion to the Report will be easier.

We adopt the same typographical devices as in the Report, whereby examples of the algol 68 representation language are given in italic, e.g., nbegin print("algol. 68 ") endr, and notions (i.e., metasyntactic variables, in the sense of ALGOL 60 , or nonterminals in the sense of formal grammars) are in a type font which is larger than normal, e.g., serial-clausee, and usually hyphenated. Experience shows that this practice does not unduly disturb the eye on first reading. It has the
advantage that closer examination can reveal whether a word is used in the ordinary sense of the English language or whether it is used in a technical sense. For example, if the reader wishes to know the meaning of "formula", he will look it up in his favourite dictionary; however, to find out about "oformulae" he must look at the rule 8.4.1.a of the report. This practice will enable us to use words with a precision which would otherwise be difficult to achieve. As with the Report, there are also other words, like "name" or "mode" which are not part of the syntax, but each is given a technical meaning. We shall use quotes, when introducinq the reader to these words, to alert him to the fact that he is meeting a new word with a special meaning.

At the end of each chapter is a set of review questions, the answers to which are provided in the final pages. Many of these questions test the material as presented in this text, but others require a deeper study of some parts of the Report. We have tried to provide references to the Report wherever these may be needed.

Some of the earlier chapters of this text were read and corrected by Daniel Berry, Wendy Black, Hellmut Golde, Lambert Meertens, Tad Pinkerton, Helge Scheidiq, Aad van Wijngaarden and many others who may forgive the lack of mention here. Their assistance is gratefully acknowledged. Naturally the author is responsible for any remaining imperfections in this preliminary edition. He hopes that readers will commuicate with him, thereby helping to eliminate as many errors as possible from the final edition.

The preliminary edition

This preliminary edition is produced by a text formatting program written by W. Webb at the University of British columbia for use with the TN print chain. This print chain introduces certain restrictions, some of which are exasperating (e.g., there is no genuine multiplication sign). To simulate the effect of different type fonts, a bracketing scheme is used. ALGOL 68 external objects (program fragments) are represented thus

므릐in real $x ; x:=3.14$ enda
algol 68 internal objects (values) are represented thus -true:
and paranotions and modes (syntactic parts) are represented thus -strong-unitary-real-clause.
This means that, e.g., a collection of three •identifiers• used for illustration, should be written

but it will be easier on the eqe if we assume that ㅁ, ㅁ
may be replaced by
so we shall generally use the more pleasing and less cluttered form

The revised preliminary edition

This edition is a reprint of the preliminary edition after correction of some errors and misprints. Another edition is planned for the end of 1972 and may contain additional chapters. The author is grateful to those who sent corrections to the preliminary edition and would appreciate further correction of errors and suggestions for improvement.

1 Denotations

1.1 Language levels

our purpose is to learn how to read and write algol 68 - proqrams*. One might suppose that nbegin real x; $x:=3.1$ ' enda
is an ALGOL 68 •programe, because it is a valid alGol 60 - programe and, in a sense, this is the case. However, the similarities between ALGOL 60 and ALGOL 68 begin and end just about here, since
amyprogram: (print(((real lengths > 1 | "multiple" | "single"). ".precisiongenvironment"))) a
is also, in the same sense, an ALGOL 68 •proyrame. ALGOL 68 is not an extension of ALGOL 60, though the lessons learned in the design and use of ALGOL 60 have contributed to the final shape of the new language. It has, in relation to its contemporaries, a powerful syntactic structure, which enables the defining document of the language to be kept to a minimum. This Companion is an introduction to the language, which should be read only with the defining document, the Report [R], readily at hand. For example, the reader should now turn to the Introduction in the Report [R.O], to get some flavour of the new language.

In ALGOL 68 we may speak of eprograms in the "strict language" and in the "extended language" [R.1.1.1.a]. The strict language is that which agrees with the syntax of the defining document. In a natural language, like English, certain abbreviations, such as "e.g.", are commonly accepted. We usually write "e.g." rather than the longer words "for example", rut the meaning is the same. The abbreviations of ALGOL 68, are known as "extensions" [R.9]. The application of these extensions to the strict language yields the extended language. This means that, though eprogramse may be written in the extended language, their meaning will be explained in terms of the strict language.

Related to both of these is the "representation language". The first example given above, is a representation [R.3.1.1] of a eparticular-programe [R.2.1.d] of ALGOL 68. We say that it is a representation because qbeging is a representation of the \bullet begin-symbol•, \quad reala $i s$ a representation of the •real-symbol• and even the point within 03.14 a is a representation of the - point-symhol•. Thus, the example abegin real x; $x:=3.14$ enda
(which happens to be written in the extended language), is a representation of the following sequence of symbols
-begin-symbol, real-symbol, letter-x-symbol, go-on-symbol, letter-x-symbol, becomes-symbol, digit-three-symbol, pointsymbol, digit-one-symbol, digit-four-symbol, end-symbol•. We sea at once, that it would be too tedious to write eprogramse or parts of eprogramse without using the representations. Nevertheless, the presence of the strict language, in which all the terminals end in the word -symbol•, will make it easier for us to formulate syntactic rules and to describe and to use the syntax.

1.2 objects

ALGOL 68 is described in terms of an hypothetical computer which deals with two kinds of "objects"[R.2.2.1]. These are "internal" objects and "external" objects. Boughly speaking, an external object is the sequence of symbols represented by the marks which the programmer makes on his paper when creating a - proqrame[R.2.1] and an internal object is an arrangement of bits within the computer. For example, when the programmer writes a3. 14 a , he makes, from four symbols, an external object, which is a denotation•[R.S]. Within the computer this may be reflected in a certain arrangement of bits, known as a real value, the particular arrangement chosen depending on the kind of computer and the implementer's whim. Thus, 口3.14r, which is a sequence of symbols[R.3.1], is an external object and the arrangements of bits is the internal object.

There is an important relationship between external objects and internal objects. One says that an external object may "possess" [R.2.2.2.d] an internal object. Thus, the external object, the denotation• a3. 14n, possesses an internal object which is a collection of bits within the computer. We shall speak of the internal object as a "real value" [R.2.2.3.aj. The form which the internal object takes is of no particular concern to the programmer. It is decided for him by the manufacturer of the computer and by the implementer of the language, i.e., by the compiler writer. In this text we shall represent this by means of a diagram as in figure 1.2, where the internal object

Fig. 1.2
is suggested by a rectangle as at 1 and the relationship of possession by the dotted line at 2.

The reader should note that we have introduced, by means of quotes, some standard terminology from the Report[R]. Wherever possible, references to the Report will be given and every effort will be made, in what follows, to remain as close to the Report as possible in the use of this terminology. In this manner the reader may be encouraged to obtain more information about the language by reading the Report itself.

The use of a different type font, such as in odenotatione, indicates that we are talking about an object in algol 68 which is described by the syntax of the language (see paranotions [R.1.1.6.c]). If the same word occurs in normal type font, then an English dictionary should be consulted for its meaning.

1.3 Names

Computers have a storage structure in which the memory is regarded as consisting of small pieces, each usually called a word or byte, with each piece being given a unique address, i,e., a means by which the computer can locate that word or byte. In our hypothetical computer, this situation is modelled by saying that the computer has "names" [R.2.2.3.5], each name(1) referring to some value. When we say that a name "refers" [R.2.2.2.1] to a real value, we are modelling the situation where the real value is an arrangement of bits which is stored at a certain storage place or address. The name is thus the address of the place where the value is stored and the value is the content of that storage place. We have now isolated another kind of internal object, i.e., a "name", and we note that there is a relationship between two internal objects, viz., a name may "refer" to a value. In the diagrams a name will be represented as in figure 1.3 at 1 and the relationship of

Fiq. 1.3
referring by a directed line as at 2 . In passing, we mention that a name is also a value [R.2.2.3] and another name may refer to it, but we shall return to this point later.

1.4 Variables

Most programmers do not wish to work only with - denotations such as n3.14a, but also with •variablese「R.6.0.1.e〕 such as axa. In ALGOL 68, as in many other languages, if a programmer wishes to consider axn as a variable, he writes a declaration [R.7.4.1], e.g., oreal xa. The effect of this •declaration is to allocate a storage place, i. $\epsilon .$, to create a name which may refer to a real value, this name being possessed by axa. In figure 1.4 the relationship of possession

Fig. 1.4
is indicated by the dotted line at 1. It is important that this name may not refer to a value of another mode (i.e., to a member of another class of values), such as boolean or ©character•, for reasons of security in the elaboration [R.1.1.6] of -r---
－programs•．In this chapter we are concerned with •denotations•， so we leave the subject of edeclarations• and evariablese for the next chapter．

1．5 Denotations

There are four mutually exclusive classes of＂plain＂values ［R．2．2．3．1］．These are，＂boolean＂，＂integral＂，＂real＂and ＂character＂values．The property of belonging to one of these classes is known as the＂mode＂［R．2．2．4．1］of the value．A real value is thus said to be of mode real．For each of these four classes，i．e．，for each of the modes boolean，integral，real． and echaracter we have edenotationse．which are certain sequences of symbols possessing values of that mode．Examples
 －denotations• in turn．

1．6 Boolean denotations

This is the simplest of the oplain－denotations•．There are two values（internal objects）of mode boolean•，viz．．otrue． and afalsea．Consequently we need two external objects to possess them．These are the otrue－symbol•，qtruen and the －false－symbol•，听alsen．At the risk of tedious repetition，but for further emphasis，we observe that the external object otruen possesses an internal object，which is the boolean value otrue．，

Fig． 1.6
a value of mode boolean•（see figure 1．6）．Of course，a similar statement applies to qfalser．

The syntax of boolean－denotationse is very simple，and supplies a starting point for a study of the syntactia description of the language．This is embodied in the rule ［R．5．1．3．1．a］
－boolean denotation ：true symbol ；false symbol．。
which may be read as＂a boolean－denotation may be a etrue－ symbol• or a •false－symbol•＂．

1．7 Integral denotations

An eintegral－denotatione，for example，$\quad 344$ or $n 0$ or n000123a，is a sequence of edigit－tokens•．This means that an －integral－denotatione is easy to recognise and to describe．Its syntax rule［R．5．1．1．1．a］is
－integral denotation ：digit token sequence．。
which means the same as the rule
integral denotation ：digit token ；
integral denotation，digit token．
The full explanation of how to use this syntactic method of description will be found in Chapter 1 of the Report．It is important that the reader should，at some time，master this syntactic description method．For the moment we may be content to know that this rule describes an ointegral－denotatione as a sequence of •digit－tokens•，a •digit－token• being represented by a0，1， $2,3,4,5,6,7,8$ a or \quad an．The language makes no restriction on the length of the sequence of odigit－tokens•， although，in a particular implementation，such a restriction may well exist．

An •inteqral－denotation•，of course，possesses an integral value，as one might expect．Not surprisingly，the value possessed by 0000123 is 123 ．，which is equal to that possessed by a 123 a ．

1．8 Real denotations

There are two kinds of ereal－denotation［R．5．1．2］．Some examples are：n3．14，． 000123 ，123．45e6，5e－16，4．7591012n（1）．We classify the first two as variable－point－numerals• and the remaining three as ofloating－point－numerals＊，the latter being the kind of ereal－denotation likely to be used by the physicist or engineer．This classification is stated［R．5．1．2．1．a］in the rule
－real denotation ：variable point numeral ；
floating point numeral．
－Variable－point－numeralse have an optional •integral－part•，like口123a，followed by a mandatory fractional－part• like a． 14 or or a． 000123 a．This is expressed［R．5．1．2．1．b］in the rule
－variable point numeral ：
integral part option，fractional part．。
Examples of variable－point－numerals are therefore 0123.0 ， 3．456，．12335a and a．00023n but not n3．a．The •integral－part－ option means that the •integral－part• may be present or absent． An explanation of the syntactic device involving the word －option is to be found in the rule［R．3．0．1．b］
－NOTION option ：NOTION ；EMPTY．•
and the fact that any notion may replace the metanotion －NOTION•，but the casual reader need not concern himself yet with these mysteries．

We complete the description of evariable－point－numerals• by the two rules［R．5．1．2．1．$c, d]$
－integral part ：integral denotation．
fractional part ：point symbol，integral denotation．．
Because we have already seen the rule for •integral－denotation and can guess that the representation of the efoint－symbol．is a．口，this syntax should now be clear．
（1）A superscript 10 is used here in place of a subscript 10 which is not available on the $T N$ printer chain．

A ©floating－point－numeral• consists of a stagnant－parte， like a123n or a123．45n，followed by an exponent－parte，like ae +23 ，$e 2$ ，e－16a or a^{105} a．Its syntax is in the rule
－floating－point－numeral ：stagnant part，exponent part．。
Examples of efloating－point－numeralse are therefore，a1e1， 2．3e－4a and a .3 e 26 a but not $\mathrm{a} 3 . \mathrm{e} 14 \mathrm{a}$ ．The denotation a .3 e 26 a ， for example，possesses a real value，usually associated with the number written in physics textbooks as ．3＊1026．It could not be so written for computer input because of the inability of most input hardware to accept superscripts．The rule for estagnant－ parte［R．5．1．2．1．f］is
－stagnant part ：integral denotation ；
variable point numeral．。
Thus both $\quad 123 n$ and $\quad 123.45 \square$ are acceptable estagnant－parts•． The exponent－parte is described in the rules ［R．5．1．2．1．g．h，i，3．0．4．c］
e exponent part ：times ten to the power choice，power of ten．
times ten to the power choice ：
times ten to the power symbol ；letter e．
power of ten ：plusminus option，integral denotation．
plusminus ：plus symbol ；minus symbol．
The otimes－ten－to－the－power－symbole is represented by the subscripted ten $a^{10} \mathrm{a}$ ，but since this is not commonly available， the eletter－ee is also permitted．The eplusminus－option means that the oplusminus may be omitted．Examples of eexponent－ partse are ae－5，e4，e＋56n and a^{102} 口．

To review the above，we give some more examples of oreal－ denotationse：口123．4，．56789，464．64e－53n and 09871021 ．Note that a123．n is not a real－denotation and there is good reason that it should not be．The explanation is to be found in the representation of the completion－symbol•［R．3．1．1．f］，which is the same as that of the point－symbole，so that，were a123．a permitted，ambiguities would arise．Also，ae15n，for example，is not a oreal－denotation because it might be confused with an －identifier•．

1．9 Character denotations

Some character－denotations• are［R．5．1．4］a＂a＂，＂c＂，＂\＄＂，
 understand，according to the rule［R．5．1．4．1．a］
－character denotation ：
quote symbol，string item，quote symbol．•
provided one can guess the meaning of estring－iteme ［R．5．1．4．1．b］．However，the odenotation a＂l＂＂口 possesses the value which is possessed ly the equote－imagee．This value is the character＂na［R．5．1．4．2．a］．When we come to estring－ denotations•，in section 1．11，we shall see that the device whereby the \bullet quote－symbol within a character－denotation is doubled is a convenience which enables every member of the available character set to be in a string．

1. 10 Modes

Values within the computer, considered up to now, have been of four kinds, viz., truth values, integers, real numbers and characters. Each member of one of these classes is of the same "mode" [R.2.2.4.1] as any other member of the same class. These modes are boolean, integral, real• and echaracter•, respectively. If computing were restricted to these four modes, it would be dull indeed. A useful computer lanyuage needs to consider values of other modes. For example, the symbol manipulator often considers values of mode orow of character•, which he thinks of as character strings, and the numerical analyst considers values of mode erow of row of reale, which he thinks of as matrices of real values.

In ALGOL 68, a row of values of one same mode, known as a multiple value [R.2.2.3.3], is also a value of an acceptable mode. Thus, we may have values which are of the mode orow of boolean, row of integral, row of reale or \bullet row of sharacter•. In the diagrams such a multiple value will be represented as in

Fig. 1.10
figure 1.10. Many more modes may be considered; in fact, the number of different modes is infinite. We shall not concern ourselves here with this interesting point, nor shall we discuss some of the other modes. Our purpose is tc point out that erow of character is a mode. There are •denotations for values of this mode and we shall now consider them.

1.11 String denotations

The syntactic rule for estring-denotation [R.5.3.1.b] is - row of character denotation : quote symbol, string item sequence proper option, quote symbol.
From what has gone before, the reader will surmise that the following are examples of estrinq-denotations*: a"abc", "a+b",
 language, the representation of the espace-symbol* is ana [R.3.1.1.b]. The only feature in the above syntax, which we have

Fig. 1.11
not yet encountered，is the use of the word •proper•．The exact explanation is to be found in the rule
－NOTION LIST proper ：NOTION，LIST separator，NOTION LIST．＊ ［R．3．0．1．g］．It means that the sequence must contain at least two members．The use of the combination oproper option•，means then，that the sequence may contain either zero or two or more members．This implies that ＂＂a＂a is not a estring－denotatione，$^{\text {a }}$ ， but that a＂＂口is．Since we have already seen that a＂a＂口 is a －character－denotation•，we can understand the reason for such an unusual choice of syntax．A string－denotation possesses a value which is of mode orow of character．．our diagrams may represent it as in figure 1．11．The value possessed by ${ }^{\prime \prime \prime \prime}$ 口 is a row of characters with no elements．

1．12 Other denotations

This discussion does not exhaust the denotationse of algol 68，but it is sufficient for us to go on to other elementary parts of the language．We shall return later to elong－integral－ denotations \quad iike \quad long 0 a［R．5．1．0．1．b］， $10 n g-r e a l-$
 ［R．5．2．1］，\quad routine－denotations• like a （（ㄷeal a，b）real ：（a＞b I a（ b ））a［R．5．4］and format－denotations• like \quad（\＄16x3zd\＄a ［R．5．5］．

1．13 Program example

Though we are not yet ready to write eprograms•，it is helpful to inspect one and perhaps therefrom to glean some ideas．The following will read some number of values from the standard input file and then print a count of the number，the arithmetic mean of the values and their standard deviation． Comments are enclosed by the symbol \＆or the symbol \＃．

```
nbeqin real \(s:=0\) ffor the sum of the valuest,
        ss := 0 for the sum of squarest.
        \(x\) the current valuex;
int \(n:=0\) \&for a count of the number of values\&;
while \(\sim\) logical file ended (standin) do
    ( get(standin, x) \&R. 10.5.2.2.br;
    \(s+:=x ; s s+:=x * * 2 ; n+:=1 \mathbb{R}\). 10.2.11. \(\mathrm{d}, \mathrm{e} \mathbb{Z})\);
put(standout, \&R.10.5.2.1.br ("count。=』", \(\mathrm{n}_{\boldsymbol{\circ}}\)
```



```
            "ㅇ. \(\operatorname{standardedeviationg=".~}\)
                sqrt((ss - s ** 2 /n) / n) \&R.10.3.b\&))
```

end \quad a
points of relevance to this chapter are that there are four －variablese as，ss，x and onn，some of which are initialized with the value zero．Also，the integral－denotation a0r occurs three times and the integral－denotatione ala，once．There are three \quad roy－of－character－denotations•．References to the Report are provided as explanation of other points to be covered in later chapters．

Heview questions

1.1 Language levels

a) How does one recognize a terminal [R.1.1.2.f] in the syntax of ALGOL 68?
b) Are there two or three symbols of which the colon, a: a, is a representation[R.3.1.1]?
c) Are there any other representations which represent more than one esymbol•:R.3.1.1]?
d) Is the mark " (" a representation of a esub-symbole or of an -open-symbole or of both [R.3.1.1. 9.2.9]?

1.2 objects

a) What kind of object is possessed by the edenotatione a3.14a [R.2.2.2.d]?
b) What object may possess a real value?
c) Is a3. 14 a an internal object or an external object?
d) Does atruen possess true. or does otruea possess atruea?
1.3 Names
a) Can a real value refer to a name [8.2.2.3.5]?
b) Can a name refer to a name?
c) Is a name an external object?
d) Can an external object possess more than one name?
e) Does an external object always possess a name?
1.4 Variables
a) In the reach [R.4.4.2.a] of rreal x a, can the name possessed by axa refer to an integral value?
b) May \quad r_eal $x, y, z a$ be a declaration• [R.9.2.c]?
1.5 Denotations
a) How many classes of plain values are there [R.2.2.3.1]?
b) Is there a class of plain values with finitely many members?
c) What distinguishes classes of values [R.2.2.4.1.a]?
1.6 Boolean denotations
a) In the syntax, how should the syntactic marks ":", ";" and "," be interpreted [R.1.1.4]?
b) Is true an internal object?
1.7 Integral denotations
a) Can two integral-denotationse possess equal values?
b) Is a-123口 an integral-denotation $\cdot[R .5 .1 .1 .1] ?$
c) Can a sequence of one thousand digits be an integraldenotatione?
d) Does every •integral-denotation possess a value [R.5.1.0.2.b]?

1．8 Real denotations
a）Can two different ereal－denotationse possess equal values？
b）Is a1．a a •real－denotation•？
c）Is a12口 a ereal－denotatione？
d）Is a12e－4n a •real－denotatione？
e）Is a－12e4n a •real－denotation？
1．9 Character denotations
a）Is an＂＂a a echaracter－denotation•？
b）Does every estring－itea• possess a character［R．5．1．4．2］？
1.10 Modes
a）How many different modes are there？
b）How many different modes can a programmer specify？
1．11 String denotations
a）Is an＂＂＂口 a estring－denotatione？
b）Is a＂＂口 a estring－denotatione？
c）What is the mode of the value possessed by a estring－ denotatione？

1． 12 Other denotations
a）Are the values possessed by \quad long $0 n$ and rlong long 0 a the same？
b）What is the mode of the value possessed by a1010［R．5．2］？
c）What is the mode of the value possessed by $\quad \mathbf{\$ 1 6 x 3 z d} \$ \mathrm{a}$ ？
1．13 Program example
a）What is the mode of the value possessed by＂counte＝，
b）What are the modes of asa and nna？
c）Does the example in 1.13 contain a $\cdot r e a l-d e n o t a t i o n \cdot ?$
d）How many integral－denotationse are there in the example？
e）Does the example contain a echaracter－denotation•？

2 Some fundamental concepts

2．1 Declarers

In chapter 1 we found that each value within the computer is of a certain mode．There is an exception，viz．，the value －nil．「r．2．2．3．5．a］，but we shall discuss this exception later．） Thus，there are values of •integral mode，real mode， －character mode，row－of－character mode，and so on．The programmer needs to have some way of specifying modes，because when creating •variables•［R．6．0．1．e］he must help the computer to decide how much storage to allocate．The programmer specifies the modes by using－declarers•［R．7．1］．

There are five primitive［R．1．2．2．a］－declarerse．These are ainta，which specifies the mode integrale；qreala，which specifies the mode real•；口bogla，which specifies the mode \bullet boolean•；口chara，which specifies the mode echaracter• and听ormata，which specifies the mode formate（of which we shall hear more later）．The mode of a oreal－variable＊，however，is －reference to real• and not real•．This mode is specified by the ©declarer• oref reala．A © declarer specifying the mode －row－of－real．is ［ ］reala，or if actual bounds are required， then say，口［ 1： 10 ］realo．The mode of a real vector variakle is －reference to row of real and this mode is specified by a declarer like oref［ ］realn or oref［ $1: n] \underline{x} \underline{a} \underline{a}$ ．We see，therefore， that other edeclarerso may be built from the frimitives by using the symbols arefa for oreference－to and $n\left[\right.$ ］for orow－of ${ }^{\circ}$ ． Other possible prefixes are \quad groc，structa and quniona but these may also involve the use of the symbols $a(\square$ and \square ）r ．

This is not a full description of edeclarers•，but enough for our present purpose．As a taste of what other edeclarers• are possible，we list a few examples：
 proc，struct（real re，$i \pi$ ），union（real，int，booll） ．

2．2 Generators

At the heart of ALGOL 68 is the notion egeneratore ［R．8．5．1］．There are two kinds of egenerators•，blocil－ yenerator• and •global－generatore［R．8．5．1．1．a］．Syntactically， a •local－generator• is a •local－symbol•，blogr，followed by a －declarer•，e．g．，口loc inta．A eglobal－generator＊is an optional －heap－symbol•，口heapra，followed by a edeclarere，e．g．，theap realn or aredin．The difference in semantics concerns the methof of storage allocation and particularly of storage retrieval．The inexperienced programmer is unlikely to make explicit use of －generatorse，but •local－yenerators• appear implicitly in some frequently used •declarations•，so we shall introduce them now．

2．3 Local qenerators．

The syntactic rule for \cdot local－generatore might be written informally as：
local yenerator ：local symbol，actual declarer．
but the strict syntactic rule [R.8.5.1.1.b], in common with many other rules, contains a feature which the reader'should now observe. The rule is

- reference to MODE local generator :
local symbol, actual MODE declarer.
The feature to be noticed is the occurrence of the "metanotion" - MODB•, both to the left and to the right of the colon in the rule. A full description of this two-level syntax is contained in the Report [R.1.1]. For the moment we may be content with the explanation that the use of this metanotion is a device whereby several rules of the language may be combined into one. If we replace, consistently throughout the rule, the metanotion •MODE• by a mode (one of the terminal productions [R.1.1.3.f] of $\cdot M O D E \cdot$ like ©integral or \bullet reale), then we obtain a rule of the strict language. For example, if we replace $\bullet M O D E \cdot b y \bullet r e a l \bullet$, we obtain the production rule
- reference to real local generator :
local symbol, actual real declarer. ${ }^{\text {. }}$
If we replace it by boolean•, we obtain the rule
-reference to boolean local generator :
local symbol, actual boolean declarer..
This device, in this rule, enables the syntax to tell us something about the relationship between the mode of a - generator• and the mode of its edeclarer•. Specifically, the mode of a egeneratore is always ereference to followed by the mode of its edeclarer. In the example of the •local-generatore口loc reala, its declarer, \quad 들aln, specifies the mode •real•, but the generator, after its elaboration, possesses a value (a name) of mode oreference to real•; but this is the subject matter of the next section.
2.4 The elaboration of a generator

The "elaboration" of a eprograme consists of a sequence of actions performed by the hypothetical computer. These actions are explained in the sections, headed Semantics, in the Report. We shall now examine the effect of the elaboration of a \bullet generator• [8.8.5.1.2]. A •generatore creates a name, i.e., it allocates computer storage. This name then refers to some value. This process is so fundamental to the understanding of the

Fig.2.4.a
language, that we will attempt to make it clear by means of a diagram. We may picture the elaboration of the egeneratore oloz reala, as in figure 2.4.a. In this figure, the name is at 1, the
value to which it refers at 2 ，the relationship of reference at 3，the relationship of possession at 4 and the external object at 5．The broken line then separates the external object from the two internal objects．The elaboration of the elocal－ qeneratore，미으 reala，thus creates a name which refers to some real value．The external object，oloc realo，is then made to possess the name．This last action is thus pictured at 4．The value referred to is some undefined real value．We shall see later that this value may be changed（＂superseded＂ ［R．8．3．1．2．a］）by＂assignment＂．

2.5 Identity declarations

－Generatorse may occur in more than one context，but the most important context is the •identity－declaration•［R．7．4．1］． We give first an example of an easy eidentity－declaration containing no－generatore，

$$
\mathrm{nint} m=4096 \mathrm{n}
$$

The effect of the elaboration of an identity－declaration is to make two different external objects possess the same internal object．In the example at hand，we have an ointegral－mode－ identifier॰，ama，and an •integral－denotation＊，a4096a．We have seen in chapter 1，that $\quad 4096 \mathrm{n}$ possesses an internal object， which is an integral value．This situation may be pictured，

Fiq． $2.5 . \mathrm{a}$
Fig．2．5．b
before the elaboration of the identity－declaratione，as in figure 2．5．a．After the elaboration of the declaration， nint $^{2} m=$ 4096ロ，the situation is as in figure 2．5．b，where oma now possesses a new instance of the same integral value as that possessed by 04096 ．It is important to note that ama does not possess a name and，as a result，omo may not appear as t he －destination• of an •assignation＊，as for example in $\mathrm{n} ⿴ 囗 十 \boldsymbol{0}:=0$ ． In fact， $\mathrm{am}:=0$ a would be just as improper as $\quad \mathrm{a} 4096:=0 \mathrm{n}$ ．The －identifier• amo is thus a econstante［8．6．0．1．d］．
of greater interest is the declaration of a variable•，of which

$$
\text { 몬f real } x=\text { loc reala }
$$

is an example．As we have seen already in section 6．4，the programmer is permitted to write this in the extended form 모eal x 口
［R．9．2．a］．The first step in the elaboration of this oidentity－ declaration is the elaboration of its actual－farametere，which
 realn possess a name which refers to some（undefined）roal value．This stage is pictured in figure 2．5．c．After the
elaboration of the edeclaration•, the oreference-to-realidentifier. axa possesses the same value as that possessed by nloc realn. The result, in pictorial form, is shown in figure 2.5.d. Here, because axa now possesses a name, it may be used as the odestinatione of an eassignation•, i.e., the value to which the name refers may be superseded [R.8.3.1.2.a] by another value

Fig.2.5.c
(provided that it is of mode real•). When examining diagrams, such as the one in figure 2.5.c and d, we should keep in mind the fact that the name possessed by an oidentifiere, which is a - variable॰, is unlikely to be a piece of storage set aside in the data area. It is rather the value to which this name refers which may be in the data area. The name itself is more likely to be part of a machine code instruction. Since programs are not usually permitted to alter their own coded instructions, it is essential that the relationship of possession should not be violated. Thus the name possessed is never changed. If we want to reach down to the data area, then we must make use of the name in order to find that part of the data area to which it refers and which can be changed (superseded).

The possession of a name confers a special privilege. It is as though the name is the key to a storage cell without which it may not be unlocked. When it is unlocked, the content may be changed, but without this key, i.e., without the name, the content of that cell may not be changed, though it may be examined, as if through a window.

To recapitulate then, the elaboration of an identitydeclaratione makes its identifiere possess the same value as that possessed by its eactual-parameter•. This is what occurred in both of the examples aint $m=4096$ and \quad ref real $x=10 \underline{q}$ real口.

2.6 The syntax of identity declarations

We are perhaps getting a little ahead of ourselves, since we have not yet examined the syntax of eidentity-declarations•. This might be described informally by
identity declaration :
formal parameter, equals symbol, actual parameter.
but the rule in the Report [R.7.4.1.a] is
-identity declaration : formal MODE parameter, equals symbol, actual MODE parameter.
We see here again the use of the metanotion \bullet MODE•, which
enables one to condense many rules into one. The metanoticn must be replaced consistently by one of its terminal productions [R.1.1.5.a], e.g., by integral• or •reference to real॰. Using the latter replacement, we obtain the production rule [R.1.1.2.c〕

- identity declaration : formal reference to real parameter, equals symbol, actual reference to real parameter.。 Two of the notions in this rule envelop [R.1.1.6.j] the mode Q reference to real•. In the odeclaraticn oref real $x=102$ realn, the mode of the eqenerator oloc reala is oreference to real and that of the $\cdot f o r m a l-p a r a m e t e r$ • nref real x is also - reference to real. It follows from the rule on eformalparameters• [R.5.4.1.e], that axa is then a ereference-to-real-mode-identifier•

2.7 Formal parameters

We must follow this a little further by examining the rule for formal-parameters• [R.5.4.1.e] which is
-formal MODE paraineter :
formal MODE declarer, MODE mode identifier.
and in which the metanotion $\triangle M O D E$ appears three times. By substitution we obtain the rule applicable to the formal-

-formal reference to real parameter :
formal reference to real declarer,
reference to real mode identifier. \cdot
The formal-reference-to-real-declarer is uref realuand the - reference-to-real-mode-identifiere is axa [R.4.2.2].

2,8 An extension

The object
nref real $x=1$ oc realn
is a representation of declaration in the strict language. Although, as we have seen above, it enables one to explain the meaning of the eidentity-declaration clearly, it is rather much to write and would certainly not be popular with programmers. A similar situation exists with the elisions of a natural lanquaqe. It is well known that the sentence "Who's that?", stands for the sentence "Who is that?", and that the former is used more often than the latter. Moreover, in explaining the meaning of the first sentence, we always use the second, strict form. Similarly in algol 68 we may write

nreal $\times \square$

to stand for
with the assurance that the meaning is the same [R.9.2.a]. The

Fig. 2.8
effect of this extension［R．1．1．7］（one must resist the temptation to call it a contraction）is that one may omit those parts which are underlined with X＇s in figure 2．8．and then move the－identifier in the manner indicated（provided that the following symbol is $\quad, \quad a, \quad a ; 口$ or $a:=a)$ ．It is important to note that in the extended edeclaration areal $x n_{\text {，the of thal－}}$ declarer• aref reala（see figure 2.8 at 1）is omitted，but the －actual－declarer \quad raeala（see figure at 2）from the egenerator• remains．This is of significance when the declarerse are for multiple values．

Another extension，which we mention in passing，is that，

In the examples which follow，the declarationse areal x ， y．int i，j，n ，$[1: 10]$ real $x 1$ ， 71 a will always be assumed．Thus， unless contradicted by another edeclaration•，axa and ay口 will have the mode •reference to real»，ai，jn and ana the mode $\bullet r e f e r e n c e ~ t o ~ i n t e g r a l e ~ a n d ~ a x 1 a ~ a n d ~ a y 1 a ~ t h e ~ m o d e ~ e r e f e r e n c e ~ t o ~$ row of real•．

2．9 An assiqnation

We have seen before that a name is，as it were，a key with which to unlock the value to which it refers．This key is needed when an assignment is made．An external object of the form

$$
a x:=3.14 n
$$

（in the reach of the odeclaration oreal x ），is an －assignation［R．8．3．1］and its elaboration involves an assignment［8．8．3．1．2．b］．It consists of a destinatione，which is \quad xa，a source•，which is \quad a．14a，and between the two a \bullet becomes－symbol•， $\mathrm{a}:=\mathrm{a}$ ．First，both the esource• and the －destinatione are elaborated in unspecified order，or ＂collaterally＂［R．6．2．2．a］（see figure 2.9 at 1），i．e．，we obtain the values possessed by them．The effect of the

Pig． 2.9
－assignation is the assignment of the value possessed by \quad a．14n to the name possessed by \quad x口（see figure 2.9 at 2）．More precisely，the name possessed by axa is made to refer to a copy （new instance）of the value possessed by a3．14a［R．8．3．1．2．c，d］． an •assignation•，after its elaboration，possesses a value and
the value possessed is that of its odestination \bullet, which is a name (see figure at 3).

2.10 The syntax of assignations

We should now examine the syntax of assignationse, in particular, the rule

- reference to MODE assignation :
reference to MODE destination, becomes symbol, MODE source.• [R.8.3.1.1.a]. Remembering that the metanotion $\bullet M O D E$ e should be replaced consistently by some mode, we replace it by oreale and obtain the rule
-reference to real assignation :
reference to real destination, becomes symbol, real source.
The important point to notice about this rule, which is the rule governing the object $\quad \mathrm{x}:=3.14 \mathrm{a}$, is the fact that the mode enveloped by the odestination is oreference to reale, while the mode enveloped by the source is creal•. We see therefore, the requirement that the edestination must fossess a name, while the source need not. Moreover the mode of the edestination is always •reference-to followed by the wode of the esource. Pinally, we note that the mode of the eassignation itself, is the same as that of the odestination 0 , as might be expected from the discussion in the last paragraph.

We may now examine the construction
and decide that $u m:=4095 n$ cannot be an eassignation \quad, because ama does not possess a name, i.e., its mode does not begin with - reference-to•. In fact, the mode of \quad man is •integral•. We are therefore justified in using the term © constant• [R.6.0.1.d] for the •identifier• amo.

2.11 References

These subtle distinctions between econstantse and - variables•, the insistence on the difference in mode provided by -reference-to and the distinction between those values which are names and those which are not, may seem a high price to pay for the understanding of a programming language. Nevertheless, it is at the very heart of ALGOL 68 and should be understood well before proceeding further. Moreover, we shall find later that it pays a handsome dividend in chapter 5 when explaining the parameter mechanism in ocalls. [R.8.6.2.2] of routines. Some readers may be a little baffled and impatient for the reason that many well known programming languages(1) appear either not to make this distinction or to consider it of no importance. Even mathematicians (but perhaps not logicians) are guilty of slurring over the differences in meaning between n2. $3+4.5$ and $a x+y$. Ingrained habits of thought are difficult to dislodge and it is not easy for us to suppress our ire while acknowledging that we have not properly understood something
(1) Except for the lanquages LISP, SNOBOL and TRAC.
elementary．We pursue this point a little further in our next paragraph．

2．12 Dereferencing

If $a x:=3.14 \square$ is an eassignation 0 ，then surely $\quad \mathrm{x} \quad:=y \mathrm{y}$ （in the reach of the declaration raxeal y（）must be also． However，the mode of \quad xa and that of ay口 is ereference to real•， while an oassiqnation requires that the mode of the －destinatione should be oreference to followed by the mode of the source• This means that the mode of ay口 should be real•． It would seem then，that this object does not fit immediately into the syntax of eassignations• However，it is an －assignation•．Diaqrammatically，the situation is shown in figure 2．12．The first step is the elaboration of the esourcee and the odestination collaterally［R．6．2．2．a］（figure 2．12 at 1，2，3 and 4）．However，the esource•，in this object，requires an extra step in its elaboration．Since ay口 possesses a name （figure 2． 12 at 2）referring to a real value，this name is ＂dereferenced＂（figure 2． 12 at 3），i．e．，the value to which it

Fig． 2.12
refers is yielded（fiqure 2.12 at 4）．The act of dereferencing is known as a＂coercion＂，of which we shall hear much more later ［R．8．2］．There is thus an intermediate step during which ay口 ， as a source•，possesses a real number．This moment is pictured in figure 2.12 at 4．From this intermediate situation we are now ready to make the assiqnment（figure 2．12 at 5）．The value of the assignation is a name of mode •reference to real．（see the fiqure at 6）．

The syntactic analysis of the eassignation \bullet ，$x:=y 口$ ，is not trivial and we are not ready to do it，though we have sketched it roughly in figure 2．12．The main point is to determine how ay口，which is of a priori mode oreference to real•，can be considered，a fosteriori，of mode real．（see the figure at 3）．The crucial step is contained in the production rule

Abstract

－strongly dereferenced to real base ：reference to real base．。 which is obtained from 8．2．1．1．a of the Report by suitable replacements of the metanotions．We do not intend to go into further detail here，for coercion is the topic of chapter 6．Our purpose is to affirm that $\quad \mathrm{x}:=\mathrm{ya}$ is indeed an assignation• even though the a priori mode of 口yo is not oreal•．

The reader may wish to persuade himself，from what has gone before，that $\mathrm{ax}:=\mathrm{y}:=3.14 \mathrm{n}$ is also an •assignation•，and has a different meaning from that of the，rather foolish， －assignation \quad（ $x:=Y$ ）$:=3.14 \square$.

2．13 Initialized declarations

The eactual－parameter of an identity－declaratione may also be an eassignation•．The pertinent rules are，in simplified £っrm，
actual parameter ：unit ；．．．．R．7．4．1．b
unit ：unitary clause ．R．6．1．1．e
unitary clause ：．．．；confrontation ；
R．8．1．1．a，8．2．0．d
confrontation ：assiqnation ：．．．．R．8．3．0．1．a
Since \quad loc $\underline{\text { ceal }}:=3.14 a$ is an assiqnation＊，this means that
 But we have seen that the object aref real $x=10 c$ realn may be written areal x［［R．9．2．a］．This means that nreal $x:=3.14 \mathrm{a}$ is also an identity－declaration with the same meaning as that of 모ef 드르 $x=1$ oc real $:=3.14$ a．This meaning should now be evident once it is realized that the assignatione，being the －actual－parameter•，is elaborated before the final step of the elaboration of the eidentity－declaratione．AlGOL 68 may thus be consilered as a language which contains initialized －declarations•，although the defining report does not mention them．

2． 14 Program example
The following •particular－program• computes the components （principal and interest）of the monthly repayments of a loan．It first reads the principal，\quad pa，the interest rate per unit per year，ara，the number of times per year that the interest is converted，ata，the constant monthly payment，ampa and the number of years，ay口．It then prints an echo of the input， followed by a table of four column consisting of the month number，the principal outstanding at the end of the month，the component of the monthly payment which is principal and that which is interest．A separate computation is made for the final monthly payment．Critical computations are made using values of mode •long－real•．

```
口obegin long real p the principalq，
r \(\not \subset\) the interest rate per unit per year\＆． mp the constant monthly paymenta，
```

int t the number of times per year that the interest is
converted $\neq y \notin t h e$ number of years \notin ；
start here ：read（ $\mathrm{P}, \mathrm{r}, \mathrm{t}, \mathrm{mp}, \mathrm{y})$ ）；

```
outf(siandout,
```



```
        1"interest.rate, per/.unit."d.4d.
            "。converted."2zd"。times_per_year",
```



```
        (p, r, t, mp, y) ;
    if \(r>\) long 1.0
    then print ((newline, "interest rate is too high"))
    else long real mi \(=\notin m o n t h 1 \%\) increment multiplier
```



```
    long real ap faccumulated principal at the end of the monthx ;
    if (mi - long 1.0) * \(p>m p\)
    then print ((newline, "payment does not cover interest"))
    else int \(j:=0 \not \subset\) the month number\&,
    long real interest ; \(y\) *: = 12 ;
    outf (standout, \(\$ 12 \times 8 \mathrm{a}, 3(12 \mathrm{a}) \$\),
        ("month", "amount", "principal", "interest")) ;
    format (standout, \$1 4zd, 3(7zd.2d) \$)
    \& this associates a format with the standard output filed ;
    again : \&return to this point for each monthly calculation
    \(j+:=1\); \(a p:=p\) * mi ; interest := ap-p ;
        if \(j \geq y\) \& number of years is satisfied
            or \(a p \leq m p\) the last payment is dueq
    then out (standout, (j, 0.0, p, interest))
    else \&regular monthly paymenta ; \(p:=a p-m p\);
    out (standout, (j, p, mp-interest, interest)) ;
        qo to again
        fi
    fig
    fig
endr
```

The output from a run of the above program should be
REPAYMENT SCHEDULE OF A LOAN OF
1000.00

Review questions

2.1 Declarers

a) Is oreal refo a declarer \bullet ?
b) Is \quad 틀f $]$ ref reala a odeclarer•?
c) Write down a declarer specifying the mode \bullet reference to raference to row of character:.
d) Is af 1 formatn a odeclarere?
e) Is uref formata a edeclarer*?
f) Is oreal proca a edeclarer•?
g) Can a value be of more than one mode?
h) Does a mode specify a declarere?

2.3 Local qenerators

a) How many ereal-generatorse are there [R.8.5.1.1]?
b) Write down a elocal-generatore which possesses a value of mode \quad reference to character*.
c) Write down a - reference-to-boolean-local-generator \bullet.
d) Is there an integral-local-generator•?
e) Is the following a production rule of the strict language [R.1.1.5.a]?
-reference to row of character local generator :
local symbol, actual format declarer.
f) Is •real-procedure-with-hoolean• a mode [R.1.2.1]?
2.4 Evaluation of a qenerator
a) Does the •generator• 밍 reala, after elaboration, possess a real value?
b) Does the egenerator - nloc reala, after elaboration, possess a value?
c) Can a real value refer to a egenerator•?
d) Can a real value refer to a name?
e) Can a name refer to more than one value [R.2.2.3.5.a]?
f) Can a name refer to more than one instance of a value [R.2.2.3.5.d]?

2.5 Identity declarations

a) Can two different external objects possess the same internal object?
b) In the reach of oint $m=2 a$, can the value possessed by ama be changed?
c) In the reach of refef real $x=$ loc reala, can the value possessed by axa be changed?
d) Write down a local-generatore which, after elaboration, possesses a value of mode ereference to row of procedure real•.
2.6 Syntax of identity declarations

b) Is oref real x a a declaration•?
c) In the - declaration aref int nna, what is the mode of onna?
d) Write a declaration of apa as a •reference-to-row-of-procedure-real-wode-identifier•.

2.7 Formal parameters

a) Is areal no a formal-parametere?
b) Is $\mathrm{b}[\mathrm{]proc}$ real pqra a formal-parametere?
c) Is oloc realna formal-parametere?
d) Is nint 1 口 a \bullet formal-parameter•?
2. 8 An extension
a) Write the edeclaration aref real $x \times n$ in the strict language.
b) Write the edeclaration \quad rreal x, Y a in the strict language.
c) Write the edeclaration \quad raeal $x, y:=3.140$ in the strict language.
d) Write \quad refef ref real $x x=$ loc ref real +3.14 n in the extended language [R.9.2.a].
2.9 An assignation
a) Is a2.3 := 3.4n an eassiqnation•?
b) Does an •assignation•, after elaboration, possess a value?
c) Can an assignation•, after elaboration, possess a real value?
d) Is $n(x:=3.14):=3.15 a$ an assignation*?
2.10 Syntax of assignations
a) Is uloc real := 2.3 a an eassignatione?
b) Is uloc ref real := xn an eassignation•?
c) Is uloc ref real := 3.14a an assignatione?
d) What is the source in the assignation ax := $y+2 a$?
e) What is the mode of the assignation $\quad a x x:=x a$ (in the reach of \quad rref real xx , real xa) ?
f) In thereach of rbool $t=$ truer, is ot $:=$ falser an -assignatione?
2. 12 Dereferencing
a) What is the essential difference hetween the elaboration of ax := y a and $\mathrm{ax}:=3.14 \square$?
b) Is any dereferencing necessary in the eassignation \quad oxx $:=$ xa , in the reach of \quad ref real xx , real xa ?
2.13 Initialized declarations
a) What are the modes of amn and un口 in the odeclarationse aint $n=2 \mathrm{a}$ and $\mathrm{n} \underline{\mathrm{n}} \mathrm{t} \mathrm{m}:=2 \mathrm{n}$?
b) Make a diagram illustrating the eassignation \quad nn $:=n:=1 n$, in the reach of \quad ref $i n \underline{n} \mathrm{n}$, int n .
c) Is it possible to apply an extension[R.9.2.a] to rafef real x $=$ real $:=3.14 \square$?
2. 14 Program example
a) How many occurrences of an assignaticne are there in this - particular-programe?
b) What coercions are involved in the elaboration of ap :=ap mpa?
c) What is the effect of $\quad \mathrm{rj}+\boldsymbol{q}=1 \mathrm{a}$ [R.10,2.11,d]?
d) Are there any oidentifiers which are constantsp?
e) What is the mode of apa?

3 Onitary clauses

3.1 In troduction

The unitary-clause [R. 8] is one of the basic building blocks of the language. It corresponds roughly to what is known as the statement or the expression in ALGOL 60. Some examples of -unitary-clausese are, $\mathrm{ax}:=\mathrm{y}, \mathrm{X}+\mathrm{y}$, re of z , 123 n and $\mathrm{a}(\mathrm{x}:=$ 1 ; $Y:=2$) n. © Unitary-clausese are classified further into - confrontations, formulas, cohesions, basese and other objects like •closed-clauses*. Thus, $\quad \mathrm{x}:=\mathrm{ya}$ is a •confrontation•, $\mathrm{ax}+$ $y \mathrm{y}$ is a formula•, ore of za is a cohesion•, o123n is a base• and $口(x:=1$; $y:=2)$ n is a closed-clause.

We now give a simplified syntax of unitary-clausese, using the ordinary typefont, to remind the reader that this is only an approximation to the syntax. The exact rules are in the Report [R.8.1.1], but a simplified syntactic tree is in figure 3.1. unitary clause : tertiary ; confrontation. tertiary : secondary ; formula. secondary : primary ; cohesion. primary : base ; closed clause ;
conditional clause ; collateral clause.

base closed-clause conditional-clause collateral-clause
Fig. 3.1
The purpose of this chapter is to study some of the simpler aspects of onitary-clausese and to observe the usefulness of the classification introduced by the syntax just given. This classification will help us to decide, for example, the order of elaboration in a eclause - like
na 으 $b:=c$ of d of $e[f]-g^{(1)}$
where the modes of $\quad a, b, c, d, e, f a$ and $n g$ are unknown. In fact the order is as if we wrote
(1) Note that the operator nor may be declared in such a way that it delivers a name.

$$
a(a \text { or } b):=((c \text { of }(d \text { of }(e[f])))-g) \square
$$

The purpose of this syntactic classification, then, is to relieve the programmer of the necessity for supplying these parentheses himself. In addition, it aids the compiler by excluding certain mode dependent parsings.

- Unitary-clausese which deliver no value are known as - statements• [R.6.0.1.c], while other *unitary-clausese are known as expressions• [R.6.0.1.b]. This distinction is largely historical and is of no significance in ALGOL 68.

3.2 Bases

- Bases• are the most elementary •unitary-clauses•, so we begin with them. Some examples of •rases \bullet are opi, 123, a[i], $\sin (x)$ n and \quad (: random) n. A simplified syntax for base is
base : mode identifier ; denotation ;
slice ; call ; void cast pack.
but the strict syntax of the report should be studied [8.8.6.0.1]. OIdentifiers. are as in other programming languages, e.g., arandoma and rj14283ca. - Denotations. we have met before in section 1.5, e.q., $\quad 7758$ is an eintegraldenotation•, $\quad 3.1$ is a real-denotation•, qfalsen is a -boolean-denotation•, $\mathrm{n}^{\prime \prime} \mathrm{q"}$ " is a character-denotation and " ${ }^{\prime a b c " n}$ is a estring-denotation•. Thus we are already familiar with several objects which are obases•. The objects ox [ijuand $\mathrm{n} \times 2$ [d:e, j$] \mathrm{a}$ are eslicese, $\mathrm{nsin}(\mathrm{x}) \mathrm{a}$ is a ecalle and $\mathrm{a}(: \mathrm{random})$ 口 is an example of a void-cast-pack•. The classification of these objects as basese tells us where they stand in the order of elaboration, and we shall see later, also, that d base• is one kind of ecoercende [R.8.2], i.e., an object upon which all coercions must be expended. But coercion is a subject for chapter 6.

3.3 Identifiers

A $\bullet m o d e-i d e n t i f i e r \cdot[R .4 .1 .1 . b]$ is so called in order to distinguish it from a \bullet label-identifier•, which is not a base•. Both of these •identifiers• might be described by the following simplified syntax rule
identifier : letter ; identifier, letter ; identifier, digit. which means that an oidentifier is what one expects it to be from the use of that terw in other programming languages, i.e., a letter followed, perhaps, by any number of letters or digits. The strict syntax, in the Report [R.4.1.1.b,c,d], looks more complex, for a reason which will appear in later discussions concerning •field-selectors• [R.7.1.1.i]. Some examples of -identifiers• are, nalgol 68, a, a3b7d9, random, st pierre de chartreusen (note that spaces are of nc significance within - identifiers•).

A -node-identifier usually possesses a value. This value is the same as that possessed by the same -identifiere at its defining occurrence. In the oassignation $\quad \mathrm{x}:=\mathrm{y}+3 \mathrm{n}$, the - mode-identifier axn, supposedly in the reach of the - declaration rereal x, possesses a name which refers to some
real value．The value（name，see figure 3.3 at 1）which it possesses is，in fact，a copy［B．8．6．0．2．a］of the value（see figure at 2）possessed by \quad and at its defining occurrence，i．e．， its occurrence as the eidentifiere of an eidentity－declaration•． The effect of the elaboration of the second occurrence of ax口 in口real $x ; x:=y+3 n$ is shown pictorially in the figure 3．3，

Fig． 3.3
where the identity of the two instances of the same name is indicated at 3．In this figure one should note that the second occurrence of axa possesses a copy of the name possessed by the first occurrence of axa．Consequently both names refer to the same instance of a real value［R．2．2．2．1］．The reader should consult the Report［R．4．1．2］which contains a careful description of the method by which this identification of \bullet identifierse is made．

3．4 Slices

He continue our discussion of basese；the next are －denotationse，but we have seen these before in chapter 1，so we go on to eslices．In the reach of the declarationse $\mathrm{a}[1: \mathrm{n}]$ real x 1 ，$[1: m, 1: n]$ real $\times 2 \mathrm{a}$ ，the following are examples of oslices．
$\mathrm{ux} 1[\mathrm{i}], \mathrm{x} 2[i, j], x 2[, j], x 1[2: n], x 2[i, 20], x 2[i] \mathrm{a}$
A simplified syntax of eslicee is slice ：primary，sub symbol，indexer，bus symbol． indexer ：trimscript ；indexer，comma symbol，trimscript． trimscript ：trimmer ；subscript．
but the strict syntax of the Report［R．8．6．1．1］contains much more than the skeleton shown above．

The most important point to notice about a eslice is that its first constituent notion，e．g．，the \quad x10 in $\quad \mathrm{x} 1[\mathrm{i}] \mathrm{n}$ ，is a －primary॰．Also notice that a ${ }^{\circ}$ slice॰，being a •base॰，is itself a oprimarye．Following the eprimary of a eslice is a esub－ symbol॰，represented by $\quad[\mathrm{n}$ ，then an oindexere and finally a －bus－symbol•，represented by 口］a．Thus all of the following，in the above examples，are indexerso：ain，ai，j口，$\quad, j 口, ~ b 2: n a$, ai， 20 a．An eindexere is one or more etrimscriptse，separated by \bullet comma－symbols॰．A etrimscripte is a etrimmer॰ or a esubscript•．
 －trimmerse．A esubscripte is an •integral－tertiary•．

In order to accommodate those users whose computers have a limited character set，a slice like ax1［i］r may also be written axi（i）a［R．9．2．g］．However，we shall not use this
possibility in this text since it then becomes difficult to distinguish between a •slice• and a ©call•，like osin（x）a．

3.5 Multiple values

A multiple value，as we have seen in chapter 1 ，is a row of values［r．2．2．3．3．a］．We may represent it diagrammatically as in

Fig．3．5．a
figure 3．5．a，though we shall see later that this picture is not complate．Sometimes a name may refar to a multiple value，in which case we may think of it as a multiple ovariable•．The difference between the effect of slicinq a multiple variable and that of slicing a multiple constante is important and we shall now investigate it ty example．Suppose we have the two －declarationse $口[1: 3]$ int $n 1:=(1,2,3)$ and $n[1: 3]$ int $u 1=(1$ ， 2，3）a．The object a（1，2，3）a looks and acts like a －denotation of a row of integers，but it is actually a

Fig．3．5．b
－collateral－clause［R．6．2］．The effect of the elaboration of these declarations is shown diagrammatically in figure 3．5．b， from which we see clearly that oula is a multiple oconstante and on1口 is multiple ovariable॰．The＂D＂in the figure，at 1， indicates that a＂descriptor＂［8．2．2．3．3．b］，which descrites the elements，is also part of a multiple value．For the moment we shall ignore the presence of a descriptor．If we subscript a multiple econstante we would expect to obtain a constante， e．g．，au1［2］a but if we subscript a multiple ovariablee，we obtain a variable•［R．2．2．3．5．c］，e．g．，an1［2］口．Thus an1［2］：＝ $4 \square$ is an eassignation but \quad ul $[2]:=4 \pi$ is not．This is shown diaqramatically in fiqure 3．5．c，where the name possessed by on 1［ 2］a（at 1）is constructed from the name possessed by on 1a and the esubscripte $\quad 2 \mathrm{a}$［R．2．2．3．5．c］．The effect is obtained syntactically by the fact that the oprimary of a eslice is in a weak position．It involves the concept of weak coercion ［R．8．2］，which we will discuss more fully in chapter 6.

Fig.3.5.c
Observe now the use of the word eweake in the rule 8.6.1.1.a of the Report.

3.6 Trimmers

A programmer who is manipulating multiple values may wish to choose certain subsets of a multiple value and to allow an external object to possess that subset or a name to refer to it. Por example, one may wish to choose a row or a column of a matrix or even a submatrix of a given matrix. This may be done by using a otrimmere, although, if that subset is to consist of a single element, then esubscriptse are sufficient. To illustrate the use of otrimmerse, consider the odeclaratione
 referring, at the moment, to $\mathbf{a 7 m}$, but the oslicee un1[2:3]口 is a - variable referring to a row of two integral values a7n and -9a; moreover, being a eprimaryo itself, it may be subscripted (if one insists on being foolish), so that on 1[2:3][1]n is a - variable referring to the same integral value 7 . and the - formulae an1[2:3][1] = n1[2]n possesses the value otruea. In fact, it will always be otrue no matter what assignaents are made to an1r. Another way of saying this is that the oidentityrelation• an1[2:3][1] :=: $n 1[2] \square$ possesses the value etrue..

The effect of the otrimmere al:un is then to restrict the range of values of the subscript to run from the value of aln to the value of qua and to renumber, starting from $\quad 1 \mathrm{a}$. If the renumbering from alm is not desired, then the otrimmere should be written al:uaba, where the value of abn is to be taken as the new lower bound. This means that, e.g., an1[2:3a0][0]:=: n1[2]n possesses the value otruen. We may think of this in the sense that if a \quad bu is omitted, then the default value of aba is $\mathbf{m} 1 \mathrm{a}$, but the fact that the onew-lower-bound-parte may be empty is actually built into the syntax [R.8.6.1.1.f]. A further examination of the syntactic rule for otrimmerse reveals that the \quad la, the \quad un and the a@bn may be omitted, i.e., the olowerbounde or the oupper-bounde or the onew-lower-bound-parte may be empty [R.8.6.1.1.f]. If the \bullet lower-bounde of a otrimmere is empty, then the lower bound of the eslice*, in that subscript position, is the same as that of the oprimaryo which is being sliced; if the eupper-bound is empty, then the corresponding upper bound of the eslice is the same as that of the oprimary*; if the onew-lower-bound-parto is empty, then the subscripts of
the •slice•, in that subscript position, will start from ala. It is even possible for all three to be empty at the same time. Thus an1[:] $:=: \quad n 1[1: 3] \mathrm{n}$ will possess the value otrue. Extension 9.2.f, in the Report, allows the up-to-symbole to be elided, under certain circuinstances, so that the above -identity-relation• might be written on1[] :=: n1[$1: 3$] .

If the declaration \quad [$1: m, 1: n]$ real $\times 2 a$ is used as that of an in by n matrix, then $a x 2[i] 口$ refers to the $i-t h$ row of the matrix, ax2f:,j]a, or even $\quad \mathrm{x} 2[, \mathrm{j}] \mathrm{n}$ [R.9.2.f], to the $j-\mathrm{th}$ column and $\quad x 2\lceil a: b, c: d] a$ may refer to a certain submatrix, if the values of aa, b, cn and odn are appropriate. The rules for -trimers• [R.8.6.1.1.f,q,h] should be examined to see that bl , un and $n b n$ in \quad l: $u \geqslant b b_{0}$ are all integral-tertiaries॰. In particular, a formula• is a \bullet tertiary but an eassignaticne is not, so that $\quad \mathrm{x} 2[\mathrm{i}+:=1$, j of r$] \mathrm{a}$ is an acceptable eslicee but ax $2\lceil i:=i+1, j$ of $r]$ is not. The latter, to be acceptable, should appear as ax2[(i:= $\mathbf{i}+1)$, jof r]a.

3.7 Calls

A simplified syntax of a call• is
call : primary, open symbol, actual parameters, close symbol. actual parameters : actual parameter :
actual parameters, qomma, actual parameter.
gomma : go on symbol ; comma symbol.
but the strict syntax is to be found in the Report [R.8.6.2.1.a, 5.4.1.c, 5.4.1.d]. Examples of ©calls. are asin(x), char in string ("a", i, $s)$ a and $\mathrm{af}(\mathrm{n}$; a , b) a . These are familiar features from other programing languages, except perhaps the possibility of usinq a eqo-on-symbole, represented by \quad; n, to separate the oastual-parameters• of a ecall• This possibility is prasent so that the proqrammer may, if he so wishes, match a similar use of a yo-on-symbol in the corresponding orcutinedenotatione [8.5.4.11, where its use will fcrce the elaboration of the eactual-parameters. serially rather than collaterally. Thus, in the calle \quad (n; a, b) n, the nno might be used as a bound for the arrays aan and obn, provided that a ego-on-symbol. was used in a similar position in the eroutine-denotation possessed by afa. Note that the go-on-symbol• in a call has a decorative effect only. It is the presence of a ego-on-symbol• in the formal-parameters-pack of a croutine-denotation which has the controlling effect.
-Routine-denotations are important and must be understood befora we examine the semantics of ecalls•; however, oroutinedenotationse will be discussed in chapter 5, so we will postpone our explanation of these semantics until that time.

The most important point to notice about t he syntax of a -call. is that its first constituent nction, e.g., osing in asin (x) a, must be a •primary•. Also notice that a ©call• itself is a •primary• so that \quad (b) (c) (d) a might well be a •call• in which the order of elaboration is that suggested by a((a(b)) (c)) (d) a. As we have already remarked, in section 3.4, in soma proqrams it may not be possible tc determine whether
pa(b) a is a slice or a call•, without knowing the mode of qar, but since the parsing tree is similar for these two, this is of no great hardship for the compiler. We shall see later that the object \quad iff $x<p i / 2$ then \cos else \sin fin is a - primarye and therefore $n \underline{i f} x<p i / 2$ then \cos else \sin fi (x) n is a call॰. It so happens that nbegin $r:=s+2 ; \sin$ end (x) a is also a calle, and perhaps some programmer will find it useful.

3.8 Void cast packs

$$
\begin{aligned}
& \text { An example of a void-cast-packe is } \\
& \qquad \quad \mathrm{q}(\underline{\text { yoid }}: x:=2 * x+1) \text { n }
\end{aligned}
$$

Its purpose is to void the mode of the unit. contained therein in those situations where this is not done implicitly, such as in $n ; x:=2 * x+1 ; \square$, where the eassignatione is turned into a estatemente by the fact that it is preceded and followed by - go-on-symbols•. An example where a void-cast-packe is needed is

where upa is made to possess a routine, which contains an -assignatione but the eassignation should not itself be elaborated until apa is called. The object aproc ryoider $p=(x$ $:=2 * x+1) n$ is not an eidentity-declaratione (the programmer might find it confusing anyway). A full explanation of the above -declaration involves the concept of coercion which we shall take up in chapter 6. Beaders whose curiosity is aroused may wish to follow the syntactic analysis suggested by $74 \mathrm{a}, \mathrm{b}$, 61 e , $81 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, 820d, 823a, 860b, 834a, 61e, 81a, 820d, 828a, an3 those who could have found it for themselves need not be reading this book!

A simplified syntax of evoid-cast-pack• is
void cast pack :
open symbol, cast of symbol, unitary clause, close symbol. but the strict syntax is found in more than one place in the Report [R.8.3.4.1.a. 3.0.1.h, 7.1.1.z].

The void-cast-packe may appear to play the role of a - routine-denotation in the case of those routines which deliver no value and have no eparameterse. An examination of the Report [R.5.4.1] will reveal that there are indeed no such oroutinedenotationse. There is however, a proceduring coercion and this, together with the void-cast-packe fills the need. But more about this later.

3.9 Cohesions

A cohesion is either a egenerator•, e.g., qrealo, or a -selection*, e.g., are of $z 口$. The strict syntax is:

- MODE cohesion : MODE generator ; MODE selection.•
[R.8.5.0.1.a]. A cohesion•, like a base•, is also a class of -coercende upon which all coercion must be expended, but we shall discuss coercion later. We have already examined - generators•, so we now turn to eselections•.

3．10 Selections

An example of a eselection is are of $z=$ in the reach of the ©declaration \quad sstruct（real re，im）za．A simplified syntax of eselection is
selection ：field selector，of symbol，secondary． but in the strict syntax of the Report［R．8．5．2．1．a］several metanotions are used with penetrating effect．In order to understand the meaninq of a selection＊，we need to know that some values，unlike multiple values，may be built from several values whose modes may be different．Thus we may huild a ＂structured＂value consisting of one or more＂fields＂「R．2．2．3．2 \rceil in which the value of each field has，possibly，a different mode．The fields of a structured value are then selected by •field－selectors•，which look like •identifierse but which，syntactically，are not eidentifiers•．For example，in the \bullet selection• are of $z a$ ，the •field－selector• is orea．

An example of a •declarere which specifies a structured mode is astruct（real value，string name）a．Values of such a mode then consist of two fields，one whose mode is •real• and another whose mode is erow of character•．If one wishes to obtain，or assign to，the •reale field of a •variable ara referring to a value of such a mode，this is done by using the eselection avalue of ra；the string field is obtained by the eselection aname of ra．Note the similarity with the eslice axi［i］a，where an element is selected from the value of the eprimary according to the value of the esubscript• aia．In the selection avalue of ra，an element is selected from the value of the esecondary＊ ara，using the－field－selectore avaluen．There is，however，one essential difference in that the value of the subscript，$\quad \mathrm{i} 口$ ， may vary dynamically，whereas the ofield－selectore，uvaluen， cannot．This makes field selection an inherently efficient process．

As with a eslice•，the value of a eselection from a －secondary＊which is a •variable•，is also a •variable•，but the value of a selection from a esecondary ${ }^{\circ}$ which is a constante， is a constant•．Thus with the edeclaraticns＊astruct（int i ，

 acceptable •assignation•；however，oc of rcn is a econstante and口c of rc：$=$＂ \mathbb{m}^{n} a is not permitted．The reader may wish to note that these effects are obtained，syntactically，through the use of the metanotion REFETY and the word oweak in the rule 8．5．1．1．a of the Report．The same remark applies to the rule 8．6．2．1．a for eslice•，

It is important to observe that a eselection is always made from a esecondary and in this way it differs from a －slice•，since only a •primary• can be sliced．This means that the order of elaboration of the object a of $b[c] 口$ must be the same as that of a of（b［c］）a，for aa of ba is not a oprimary•． Also，a eselection is itself a esecondary so that na of b of c of dn may be a selection whose order of elaboration is suggested by an of（b of（ c of d ））a．observe that if adr is a

- variable• then \quad of b of c of $d n$ is also a variable•.

3.11 Formulas

A simplified syntax of - formula• is
formula : operand, dyadic operator, operand ;
monadic operator , operand.
operand : tertiary.
but the strict syntax contains much more information [R.8.4.1]. - Formulase with two ooperands• are known as edyadic-formulas• and those with one -operand are emonadic-formulas•. Since the same symbol may be used both as a edyadic-operatore and as a -monadic-operator•, as for example in o(- a - b) a, one must rely upon some context to determine the full extent of a - formula•

A major new feature of ALGOL 68 is the fact that operations may be declared. This means that any operator•, e.g., \quad + n, may not mean what we think it means unless we have examined the - ranges. in which it occurs. An example of an eoperationdeclaratione is
 but since this involves •routine-denotationse, which we have not yet discussed, we shall postpone a full examination of -operation-declarations•.

The syntax given above shows that an ©operande must be a -tertiary. Also, the syntax given in section 3.1 [8.8.1.1.b] shows that a formula is itself a etertiary•. Prom this we may deduce that the elaboration of the formula• a of b[i] + ca is in the order suggested by \quad (a of (b[i])) + c口. The reader may find the following summary useful:
a •primary* may be sliced and a eslice• is a eprimary•,
a esecondary may be selected from and a eselection is a -secondarye,

- operands• are \bullet tertiaries• and a \bullet formula• is a etertiary•, [R.8.6.1.1.a, 8.6.0.1.a, 8.5.2.1.a, 8.5.0.1.a, 8.4.1.f, 8.1.1.b, $c, ~ d]$.

A set of standard operations, which the programmer might

DYADIC

MONADIC

1	2	3	4	5	6	7	8	9	(10)	
ロ-: $=$		ε	=	<	-	*	up	$\underline{\text { i }}$	$\rightarrow-+1$	down up
+: $=$			*	\leq	+	*	1 $w \underline{b}$		abs bin	repr
*:				\geq		*:	upb		$\underline{\underline{l} \underline{b} \text { b }} \underline{\underline{L}} \underline{b}$	$\underline{1} \underline{s}$ S $\underline{1}$
1:=				>		1	1ws		1eng	Short
+: $=$						elee․	UpS		odd siqu	5ound
+: $:=$										conj
+=:									\underline{b} tb	ct ${ }^{\text {b }}$

Fig. 3.11
expect of any programing language，is provided［R．10．2］and standard priorities（from 1 to 9）are given［R．10．2．0］．This standard set is to be found，in sumary，in 8.4 .2 of the report and is reproduced here for convenience．There are nine priorities（from 1 to 9）for the odyadic－operators＊．The －monadic－operatorse all have the same priority（effectively 10） and when used consecutively，are elaborated from right to left． A typical epriority－declaratione is

$$
\text { qpriority }+=60
$$

and in fact，this is to be found in the estandard－prelude ［R．10．2．0．a］．operations whose－operatorse have the highest priority are elaborated first．This means，e．g．，that the －formula \quad a $\langle b=c\rangle$ dr is elaborated in the order suggested by $a(a<b)=(c>d) a$ ．Also，the value of $\square(-1 \underline{y} 2+3)$ a and口（ 3－1 up 2）o are 4 and an respectively，a fact which may come as a surprise to users of some other languages（1）．In justification of this choice one must observe that，when －operators and their priorities may be declared，a simple rule for the priority of $m o n a d i c-o p e r a t o r s * ~ i s ~ e s s e n t i a l . ~ C o n s i d e r, ~$ for example，the formula

$$
\pi x a b c y d e z z a
$$

We know immediately that the order of elaboration is that suggested by

since the monadic operations are performed first，while the priorities of the edyadic－operatorse nan and ndo will settle any doubt which may remain．

It would take too long to describe all the operations which are provided in the estandard－prelude•，and indeed this would be a waste of time，for their precise definition is given in Chapter 10 of the keport．We shall be content with mentioning some of the less familiar operators•，beginning with those of the hiqhest priority．i．e．，the monadic－operators•．The －operator \quad llengn operates cn an integral，a real or a complex value delivering a value whose length（precision）is increased， while ashorta has the opposite effect．In some installations this may mean the change from single precision to double precision and the reverse［R．10．2．3．T，10．2．4．n，10．2．7．n］．One shoula be careful to distinguish between meleng 1.0 a which is a －formula• and blong 1．0口，which is a edenotation• ［R．5．1．0．1．b］．The value of rodd 4 a is falsea［R．10．2．3．S］．The value of abin 5 is that of \quad 101ロ，i．e．，\quad binu operates on inteqral values and delivers bits［R．10．2．$\overline{8} . \overline{1}$ ］．The value of agbs＂a＂a is some inteyral value，which is implementation dependent，and that of nrepr abs＂a＂口 is man，i．e．，qrepr absu is the identity operation on any character［R．10．1．j．k］．Also，
 ［ $\bar{R} \cdot 10 . \overline{2} \cdot \overline{8} . i]$ ，all have the value etrue：；in fact，ubin absu is the identity operation on certain bits values．The operator abtba converts •row of booleane to bits，e．g．，ubtb（true，false，
 to bytes $\int R \cdot 10.2 .9 . d$ ．The inverses of \quad bbtbra and actba are not
necessary since that job is done by coercion［R．8．2．5．1．c，d］． The •monadic－operators aup，downa and a / n operate on semaphores and are concerned with synchronization（parallel processing）．We shall not discuss them further here［R．10．4］．The operators qupb，lub，upsa and nlwsa are concerned with arrays．We may best illustrate them by considering the odeclaration of $2: 5$ flex $]$ int n1口，so that an1口 is a evariable referring to a row of integral values whose index has a lower bound of 2 a ，which is fixed and
 $\mathrm{n} 1=2$ ，ups $\mathrm{n} 1=$ false，$\underline{\underline{n}}$ 酐 $\mathrm{n} 1=$ truen（1）．These－operatorse are also dyadic and $\mathrm{a} 1 \underline{\mathrm{u}} \underline{\mathrm{b}} \mathrm{n} 1=\underline{u} p \mathrm{~b}$ n1口，for all arrays an10，while
 in the second subscript position of the array an2a．

There is one standard edyadic－operatore ain or a！of priority 9 （the programmer may create more if he wishes）．The value of $\quad \mathrm{x}$ i y a is a complex number with real part ax口and imaginary part \quad y口［R．10．2．5．f］．In the standard edeclarationse the result of the edyadic－operator• n / \square ，•divided－by•，is real （or complex）and that of $\square \div \square$ is integral（integral division of two integral operands）．The operator aelema delivers an element from bits or bytes，e．g．，$u 2$ elem 1010 delivers afalses．Note that \quad 2 elem $b \quad:=$ truen is not an eassignatione［R．10．2．8．k ， 10．2．9．c］．Manipulation of bits can be achieved with the
 of $n \mathrm{n}+$ ：ma is ana modulo ama，i．e．，the remainder obtained on dividing ana by \quad ma［R．10．2．3．n］．Apart from the fact that rabsu is an operator on real，integral and complex values，rather than a calle，i．e．，it is not nabs (x) ，the remainder of the －operators are probably familiar to most programmers with the exception of a set of eoperatorse of lowest priority 1．．A typical example is $\mathrm{a}+:=\mathrm{n}$ ，which we can explain by saying that the formula $\quad \mathrm{x}$＋：＝ 1 n has the same effect as $\quad \mathrm{x}:=\mathrm{x}+1 \mathrm{r}$ ．
 be used with two soperandse of mode orow of character． ［R．10．2．11．r，t］．After elaboration of the formulae as t＝：ta， in the reach of astring $s:=$＂abc＂，$t:=$＂def＂r，we have \quad s $=$ ＂abc＂a and ot＝＂abcdef＂r．On the other hand，after the elaboration of the formula \quad as $+:=$＂g＂a，we have as＝＂abcg＂a．

The reader should be careful to note that several －operatorse have more than one representaticn，e．g．，the plus－ i－times－symbol has three representations and the eup－symbole four［R．3．1．1．c］（morevoer，many representations are not available in this preliminary edition due to the limitations of the $T N$ print chain）．

3．12 Confrontations

There are four kinds of econfrontation according to the strict rule
（1）Here it is more convenient to say $\square 2 * 2=4$ rather than the longer but correct statement $\quad 2 * 2=4 \square$ possesses the value －true．．

－MODE confrontation ：MODE assignation ；
 MODE conformity relation ；
 MODE identity relation ；MODE cast．

［R．8．3．0．1．a］．The object $\mathrm{ax}:=y+2 \mathrm{a}$ is an＊assignatione，ar $::=$ in is a conformity－relation•，\quad a $:=:$ bo is an oidentity－ relation and rreal ：in is a coste．Enough has been said about －assignations＊already in sections 2．9 and 2．10．＊Conformity－ relationse have to do with united modes，which we have not yet introduced，so it is as well to postpone this discussion to chapter 7．We shall therefore confine our attention here to －identity－relationse and ecasts•．Before passing to these，we should see that since a confrontatione is not a etertiary॰，and therefore not an •operande，the elaboration of the eassignatione axx or y y $:=x$ is done in the order suggested by $口(x x$ or $y y):=$ xa．Such an assignation might well be possible if the －operator \quad orgr has been declared in such a way that it will deliver a name．

3．13 Identity relations

There are two •identity－relators॰，the •is－symbol•， represented by $a:=: a$ and the •is－not－symbol•，represented by口：\＃：व．A simplified syntax of the oidentity－relatione is
identity relation ：tertiary，identity relator，tertiary．
but the strict syntax of the Report contains more detail to account for the balancing［R．6．4．1］of modes．

The elaboration of the eidentity－relation is normally quite simple．We ask the question whether two names，of the same mode，are the same．This means，in most implementations，asking whether two storage addresses are the same rather than whether they have the same content．As an example，suppose the －declaration regal x ，y a has been made．The •identity－relation
 that we may have elaborated the eassignationse nx $:=3.14, y \quad:=$ 3．14n．This is because the odeclaration oreal xa（strictly oref real $\mathrm{x}=$ loc reala）involves the elaboration of the vgeneratore，口loc reala，which creates a name different from all other names ［R．7．1．2．d Step 8］．The same applies to 므릐 y y．Hence，the name possessed by axu is not the same as the name possessed by口y口．After the edeclaratione rgef real $a=x a_{\text {，the name }}$ possessed by aan is the same as the name possessed by ax口，but a different instance of that name．Consequently，the value of the －identity－relatione $\quad \mathrm{x}$ ：＝：an will be otruea and will remain atruea no matter what assignments are made to ana or to axa． Notice that an assignment to ana is at the same time an assignment to axa．

Now suppose that the edeclaration \quad uref int ii，jj，int in is elaborated followed by the eassignationse nii ：＝i，jj ：＝in． The •identity－relation• aii ：＝：jja possesses the value nfalse， for a similar reason to that explained above，but the identity－ relation \quad ajj $:=:$ in then possesses the value otrue．That this is so can be seen by a close examination．We present this in figure 3．13．We see in the figure at 1 and 2 that the a priori modes of the •identifierse on each side of the eis－symbole are
not the same. Since an identity-relation must have - tertiaries. of the same mode [R.8.3.3.1.a] (each of which begins with oreference-to॰), there is a coercion, known as "dereferencing" [R.8.2.1.1], of the base•, ajjn (see the figure at 3), whereupon the eidentity-relation delivers the value etruen (see the figure at 4). Observe that there is, strictly speaking, a coercion on the right also, but since the a priori mode and the a posteriori mode are the same its semantic effect is therefore absent. Since the dereferencing may occur either on the left or on the right, but not on both sides, there are two alternatives in the strict syntax of \quad identity-relations• [R.8.3.1.1.a]. The reader should notice that in this syntax, one of the etertiariese is "soft" and the other is "strong".

Fig. 3.13
In the case of ajf $:=: i n$, the \quad in is soft and the \quad ajju is strong. This is a matter concerned with coercion and the balancing of modes which will be discussed in chapter 6.
3.14 Casts

The object
"real : 2口
is a trivial example of a cast• [R.8.3.4.1.a], but it is good enough to illustrate that a caste consists of a edeclarere followed by a cast-of-symbole followed by a ounitary-clause•. The purpose of a casto is to coerce the value of its ounitaryclause into a value of mode specified by its edeclarer•. The example given is trivial because its value could be obtained more easily from the oreal-denotation - a2.0n.
－Casts• play an important role in routine－denotations•， which are discussed in chapter 5．We shall see also that they are used instead of \quad routine－denotations．for those routines which lack eparameters•．Otherwise，a ecast• is occasionally useful to effect a coercion which is not implied by the context． For example，\quad sstring ：＂a＂r is a multiple value，i．e．，a row of characters with one element，and objects like o（tef cell ：next of cell）$:=: \underline{n} \underline{\underline{l}} \mathrm{n}$ are essential to list processing（see R．11．12）．A cast may have a void－declarer•，in which case it is a void－cast•，e．g．，$\quad \mathrm{t}: \mathrm{x}:=\mathrm{y}$ ．A •vcid－cast• yields no value．An examination of the syntax will reveal that a void－ cast• occurs only as a void－cast－pack•［R．8．6．0．1．b］，e．g．，口（： $x:=y) \mathrm{n}$ ，or as part of a coutine－denotatione［8．5．4．1．b］， e．g．，\quad ：get bin（stand back，$x)$ n in $口(\{j$ intype $x)$ ：get bin（standback，x）a［R．10．5．4．2．a］．A void－cast－pack．is a －basee，as we have already seen in section 3．8．©asts．which are not void－casts．＂envelop＂［R．1．1．6．j］a mode and are －confrontations• One reason for the exclusion of evoid－casts• from confrontations is the ambiguity which might otherwise lurk in the object $\mathrm{ax}:=: \mathrm{y}_{\mathrm{g}}$ or $\mathrm{ax}:=$ ：ya．

Por those •castse which envelop a mode，a simplified syntax is
cast ：virtual declarer，cast of symbol，unitary clause．
「R．8．3．4．1．a］．A virtual－declarer•［R．7．1．1］is a edeclarere in which all eindexerse contain boundse which are empty．To find typical examples of ecasts• we need only examine edeclarations• involving routines，of which there are a large number in Chapter 10 of the Report．One of them is

「R．10．2．2．f in which the caste is rint ：if a then 1 else 0 £iㅁ．

The elaboration of a cast• is that of its •unitary－clause ［R．8．3．4．2］，always remembering that the mode of the value delivered，if any，is that specified by the edeclarere of the －cast•．Since the a priori mode of its •unitary－clause is often not the same as that specified by its odeclarer•，the final steps in the elaboration of a cast often involve some kind of coercion．For this reason it will appear frequently in our discussion of coercion in chapter 6.

Because a ecaste is a econfrontatione and therefore also a
 but its value is the same as that of nreal ：xu．Note that a －cast．which envelops a mode is not a eprimary or even a －tertiary•；consequently，aref real $: x x:=3.14 a$ is not an －assignation•．The effect perhaps intended could be obtained by writinq $口$（ref real $: x x$ ）$:=3.14 \square$ ．

3． 15 eroqram example
（1）The ALGOL 60 version of this procedure is due to G．F．Schrack．

The following is a procedure－denotationo（1）．The routine which is possessed by opa calculates the real coefficients of a polynomial whose zeros are the elements of a given complex vector azn．These zeros may be real or complex，but if complex must appear consecutively as conjugate pairs．For example，if the given vector is $口(1,0 \underset{i}{i} 1,0 \underset{i}{i}-1)$ a，then the polynomial will be $\quad z^{* *} 3$－$z^{* * 2}+z^{*}$－1口．Thus，in the orange of ［ $[1: 3]$ compl $w:=(1,0$ í $1,0 \underline{i}-1)$ a，the value of the call．口p（ $(\|)$ a will be that of $\mathrm{a}([\mathrm{lc}$ eal ：（ $1.0,-1.0,1.0,-1.0)$ ）［ 00 ］口． The existence of a non－local eproceduce॰，nerrorn，is assumed， for use upon encountering invalid data．


```
\&calculates the coefficients of the real polynomial whose zeros
are the elements of the vector \(2 \mathbb{L}\)
    begin \([0: u \underline{p} \underline{b} \quad z] \underline{\underline{c}} \underline{a} \underline{1}\) a \(: a[0]:=1\); int \(i:=1\);
    the coefficients are calculated into the vector aq
    thile \(i \leq \underline{u} p b \quad z\) do
        begin compl \(2 i^{-}=\mathrm{z}[\mathrm{i}] ; \mathrm{a}[\mathrm{i}]:=0\);
        if im \(\mathrm{zi}=0\)
        then a real zeroq
            for \(k\) from \(i\) by -1 to 1 do
            \(a[k]-:=\operatorname{rezi} * a[k-1]\)
    else ta pair of complex zerosq
            if \(i=\underline{u p b} z\) then error \(\underline{f i}\);
            if \(z i \neq\) conj \(z[i+:=1]\) then error \(\underline{f i}\);
            real \(s=\) re zi ** \(2+\) in zi ** 2 , \(\mathrm{t}=2\) * 工e zi ;
            a[i] := 0 ;
            for \(k\) frog i by -1 to 2 do
            \(a[k]-:=t * a[k-1]-s * a[k-2]\);
            \(\mathrm{a}[1]-:=\mathrm{t}\)
        fi fand now for the next oneq \(i+:=1\)
    end ethe iteration on is ;
    athe coefficients are now ready in the vector a\&
    a enda
```

From \quad［ ］real $:$ ，on the first line，to the final qendr is the caste of a oroutine－denotation［R．5．4．1．b］．It begins with口［ ］real ：\quad to ensure that the value delivered by the routine is of mode row of reale．Note the use of the ooperatore nupbr in
 －variable with index running from 0 ．to the upper bound of aza．The edeclaration acompl $z i=z[i] a$［R．10．2．7．a］indicates that，for each value of nin in the iterative statement，ozin is a constant．This avoids repeated calculation of $\quad \mathrm{zz}[\mathrm{i}] \mathrm{a}$ later． observe that，in the formula azi ${ }^{\text {c }}$ conj $z[i+:=1] a$ ，the －formulae \quad it：＝$=1$ a is elaborated first．The value of the －variable ain is thus incremented by 1．The value of this －formula is the name possessed by \quad i＋：$=1$ ，which is the same as the name possessed by ain．It is then dereferenced．The object $\square \mathrm{z}[\mathrm{i}+:=1$ ］ a a oslice whose value is the next zero of the
 zi＊＊ 2 a declares a real－constante osn whose value is the square of the modulus of one of the conjugate pairs．The value delivered by the routine is that of ana consequently aa口 appears as an expressione preceding the final renda．

Review questions

3．1 Introduction

a）Is a © cohesion• a eprimary•？
b）Is a •closed－clause also a etertiary•？
c）Indicate by parentheses the order of elaboration of aa $+b$ of c［d］－en．
d）What is the difference between a ostatemente and an －expression•？
e）Is a base also a unitary－clause •？

3．2 Bases

a）Is $\mathrm{ax}+\mathrm{ya}$ a \bullet base \bullet ？
b）How many kinds of ebases can be distinguished？
c）List all the basese in the object
口（ $a[i]>b$ of $c|\sin (x)| \cos (x+p i / 2))$ ． ．
d）Is a3．a a base•？
e）Is $\mathrm{a} a(\mathrm{~b})$ 口 a •call• or a •slice•？

3．3 Identifiers

a）List the •identifiers• in the object al：ca ：＝char of file of f＋＂a5＂a．
b）What is the mode of $n x$ in areal $x:=3.14 \square$ ？
c）What is the mode of an 2 a in $\square[1: 3,1: 4]$ int $n 2=m 2[3: 5$ ， 3：6］？
d）Do qua and ava have the same mode in the odeclaration• ［ $1: 10$ ］char $u,[1: 10$ flex $] \underline{c} h a \underline{\underline{r}} \mathrm{va}$ ？
e）Is u\＄linen an •identifier•？

3．4 Slices

a）is ax2［1］［1］口 a eslice•？
b）is ax2［ 1 ］a a slice and if so what is the mode of its value？
c）is abeging $x 2$ end［ 1,1 ］a a oslice \bullet ？
d）is 口if $i>0$ then $x 2$ else 72 fi［1， 1 ］n a \bullet slice•？
e）Which of the following can be subscripts？

3．5 Multiple values

In the reach of the edeclaration \quad［ $1: m, 1: n]$ real $\times 2$ ，［ $1: 3]$ int
u1 $=(1,2,3)$ 口 ：
a）is quín a variable•？
b）is ax2［1，2］a a variable＊？
c）is \quad u1［2］：＝ 2 an assignation•？
d）is $\quad \mathrm{x} 2[2][1]:=3.14 a$ an eassignation•？
e）is \quad x $2[1,1]:=3.14 \square$ an assignation•？

Using the edeclaratione given in 3.5 above：
a）what is the value of au1［2：］a？
b）what can be said about the formula• ax2［2：3］［2，1］＝$\times 2[2,1] \square$ ？
c）what is the value of \quad ul［ $: 2 \pi 0][1] \square ?$
d）what is the value of oul［ 22$][3] \square ?$
e）is $\quad \mathrm{x} 2[\mathrm{i}:=1: \mathrm{j}+:=1,3] \mathrm{n}$ a eslice•？
3．7 Ca11s
a）Is $n \cos (x:=p i / 4)$ a a call•？
b）Is arandomn in ox ：＝randomn a ©call•？
c）Is acos（ $\mathrm{x}>0|\mathrm{x}| \mathrm{pi} / 2$ ）口a acall•？
d）Under what conditions is a（b） a in a （b）$:=c a$ a \bullet call•？
e）Under what conditions is na（b）（c）a a © call•？
3．8 Void cast packs
a）Is a •void－cast－packe a •primary•？
b）Is $\mathrm{a}(: \mathrm{x}):=\mathrm{y}$（ an assignatione？
c）Is ax ：＝（：y）a an eassignatione？
d）Is $口(:(x))$ 口 a void－cast－pack•？
e）Is aproc $p:=x:=3.14 a$ a declaratione？

3．9 Cohesions

a）Is a cohesion• a •primary＊？
b）Is a © cohesion• a •tertiary•？
c）Is $\mathrm{a}(\mathrm{x}+\mathrm{y}) \mathrm{a}$ a ©cohesion•？

e）Under what conditions is na of $b:=c n$ an eassignatione？
3．10 Selections
a）Is a eselection a eprimarye？
b）Is the aar in aa of bo an •identifier•？
c）Indicate by parentheses the order of elaboration of aa of $b[c] \square$ and of ae of $g(x)$ ． ．
d）Is $u(a$ of $b)$ of ca a eselection•？
e）Is aa of（bof c）a a selection•？

3.11 Formulas

a）Is a formula• a tertiarye？
b）What is the value of $n 2$ elem bin $5 \square$ ？
c）What is the value of $n \underline{1 w b}-3.14 \square$ ？
d）Is $\mathrm{a}^{4}+:=2 \mathrm{a}$ a formula and if so what is its value？
e）What is the value of $\quad \square \neg(1<2 \underline{a}$ nd $3>4$ or $5=6 \neq 7>8$ or true a？

3．12 Confrontations

a）Is a esecondary a econfrontation•？
b）Is ax1［i：＝i＋1］a slice•？
c）Is arealn a econfrontatione？
d）Is nproc ：randoma a confrontatione？

3. 13 Identity relations

In the reach of the edeclaratione qint i. j; ref int ii $:=$ i, jj := in :
a) what is the value of aii :=: jju?
b) what is the value of $\mathrm{a} i:=: j j \mathrm{j}$?
c) what is the value of ai : \neq : j ?
d) Is $a x:=: 3.14$ a an oidentity-relation*?
e) Is ax :=: $x 1[2] u$ an eidentity-relatione?
3.14 Casts
a) Is a ecaste a •primary•?
b) Is nint : 3.140 a caste?
c) Is ax:=:y口 an eassignation• or an eidentity-relation•?
d) Is ㅁ[1:1]real : 3.14a a cast•?
e) Is aref int : ii := 2 a an eassignation•?
3.15 Program example
a) How many occurrences of a cohesion a are in this eparticularprograme?
b) How many occurrences of a slicee are there?
c) Is ata a constante or a variable•?
d) What is the mode of nsu?
e) How many occurrences of an •identity-relation• are there?

4 Clauses
4．1 Conditional clauses
The © conditional－clause［R．6．4］is a fundamental programming concept or primitive pertaining to flow of control． It is present in some form or other in most languages and allows for a choice in the elaboration of one out of two eserial－ clauses•，depending on the value of a condition•．An example of a conditional－clause－is

$$
\text { qif } a>b \text { then } a \text { else } b \text { fin }
$$

or，using another representation

$$
\mathrm{a}(\mathrm{a}>\mathrm{b}|\mathrm{a}| \mathrm{b}) \mathrm{a}
$$

which therefore has the same meaning．A simplified parse is shown in figure 4．1．a．

Fig．4．1．a
There are two features of the conditional－clause which are noteworthy．The first is that such a cclause• is closed，in the sense that it begins with an •if－symbol•，represented by aifa or \quad（ a ，and ends with a fi－symbole，represented by \quad fifin or口）\square ．As a consequence of this，a conditional－clause can be， and is，a eprimary and is therefore found in syntactic positions which might otherwise be considered unusual in some programming languages．The second is that no essential distinction is made between conditional－expressions and －conditional－statements．The only difference is that，if a －conditional－clause is used as a estatemente［R．6．0．1．c］，then its value is voided；otherwise，it may be an expression• ［R．6．0．1．b］（i）and may deliver a value．There is only one genuine syntactic rule［R．6．4．1］．This merging of concepts permits econditional－clausese like

口if $a>0$ then sqrt（a）else qo which may be used in a situation like口a1 $:=$ if $a>0$ then sqrt（a）else go＿to error figa
（1）Note that rules in the Report marked with an asterisk are present only for the convenience of the semantic description of the language．The notions involved never appear in the parse of a eprograme．

Some uses of a conditional－clause which might be considered unusual，but which stem from the fact that it is a －primary are：\quad（ $p|x| y):=2.3$ ，（ $\mathrm{f}|\cos | \sin)(x)$ ，（ $r|x| y)+(s|u \quad| v) n$ ，in which we have used，for preference，the shorter representations．

A simplified syntax of the econditional－clause－is conditional clause ：
if symbol，condition，then clause，else clause，fi symbol． condition ：serial clause．
then clause ：then symbol，serial clause．
else clause ：else symbol，serial clause．
but the strict syntax in the Report［R．6．4．1］should be studied also．One should observe that a conditional－clause contains three eserial－clausese（see figure 4．1．a）．Any one such eserial－ clause may contain edeclarationse and forms a range•「k．4．1．1．el．Since a serial－clause may contain more than one －unitary－clause•，this means that frequent use of rbegin enda pairs（•packages•），as in ALGOL 60，is not necessary．an example of a conditional－clause containing a non－trivial conditione miqht be：
nif string s ；read $(s) ; s=p a s s w o r d$
then go－to requiar
else go to irregular
where the value of the condition is that of its last ounit＊， as＝passwordr．

A conditional－clause is elaborated by first elaborating the econdition•．If the value of the condition is etruea，then the \bullet then－clause is elaborated；otherwise，the eelse－clause• is

Fig．4．1．b
elaborated（see figure 4．1．b）．In the first instance，the value， if any，of the conditional－clause is that of the eserial－ clause of the ethen－clause•；otherwise，it is that of the －else－clause•．For example，the－clause•口（ $x \geq 0|x|-x)$ 口
has as its value the absolute value of ax口．
4.2 Simple extensions of the conditional clause

> A conditional-clause like
> nif a then k else if c then d else
may occur frequently in programming situations．For this reason an extension［R．9．4．b］is available whereby the same eclause•
may also be written
口if a then b elsf c then d elsf e then f else g fin
The essence of this extension is that relse ifn may be written nelsfa，if the corresponding 和in is elided．Using the other representations，the strict language is

```
听 a | b | (c | d | ( e | f | g )))a
```

which may be written

in the extended language．This saves the programmer the bother of counting afing so that they match the number of aifos．A schematic flow of control for this cclause is shown in figure 4.2 in the case where \quad an possesses the value afalse and aca

Fig．4． 2
possesses the value atrue．Note that in this case the －condition• aen is not elaborated．

A similar extension［R．9．4．b］exists，whereby the symbols othen ifn may be replaced by othefa if the corresponding ofin is elided，but this extension may not be so useful．Because of it，口if a thef b then c else d fin
has the same meaning as
＂if a then if b then c else d fig fin
In other representations we have that

$$
\text { ㅁ(a } 1: b|c| d) 口
$$

means the same as
ㅁ(a l (b|c|c)) a
where the symbol \square al is used as a representation of the ethen－ if－symbol•．It is also a representation of the eelse－if－symbol• but no confusion can arise．It is worth noting that，provided the elaboration of aan and abr involves no side effects，the
 c）$r_{\text {，}}$ but the former may be faster．

In the strict language the conditional－clause always contains an •else－clause•；however，another extension［R．9．4．a］
口if p then go＿to 1 else skip fio may be written
－if p then go to 1 fin
In the eassignation• $\mathrm{ax}:=(\mathrm{a}>0$｜sqrt（a）） a therefore，some undefined real value will be assigned to $⿰ 丿 ㇄$ ，if the value of口an is not positive．This occurs because the uskipa will be made to possess some undefined real value［R．8．2．7．2．a］．

4．3 Case clauses

A case clause is also an extension of a conditional－ clause• intended to allow for efficient implementation of a
certain kind of econditional－clause which may appear frequently．The ©clause口íf $i=1$ then x elsf $i=2$ then Y elsf $i=3$ then z else a fin may be written
ncase i in x, y, z out a esacu
or in another representation，

$$
\text { ㅁ(i }|x, y, z| \text { a) }
$$

「H．9．4．c．d7．The flow of control in such a eclause is indicated

Fig． 4.3
in fiyure 4．3．Observe that $口(i|x| a) n i s$ not a case clause for case clauses contain at least two unitary－clausese between the rina and the routa．

If the reader is now confused over the use of certain symbols，the difficulties can be cleared away by observing that each of the symbols，eif－symbol，then－symbol，else－symbol and －fi－symbol has more than one representation．The representations are［R．3．1．1．a］：

This means that the case clause given above might be written ncase i then $x, y, z l a f i n$
and，thouyh most humans would find this difficult to read，the computer should not．

Because 밈 is a representation of the eelse－symbole and ㅁ）a a representation of the •fi－symbol⿻，the case clause \quad（ i
 extension［R．9．4．a］already mentioned above．Note then，that in the eassiqnatione \quad ax $:=(i \operatorname{l}, 2,3.4)$ n，some undefincd real value will be assigned to ax口 if ain is not la or $2 \boldsymbol{m}$ ，but in the eassiznation \quad（ $i \quad \mid x, y$ ）$:=3.4 a$ ，there may be no detectable effect［R．8．3．1．2．c］if the value of nia is not $\quad 1=$ or ma ．

There are further extensions of the case clause involving －conformity－relationse［R．9．4．e，f，g］，but we shall delay discussion of these until conformity－relationse themselves have been explained．

4．4 Repetitive statements
Repetitive statements，such as
＂for i to n do su
are not mentioned in the syntax of the language．Such statements are in the extended language［R．9．3．a．b］and can stand in the syntactic position of eunitary－statements•［R．6．0．1．c］．A simple example of a repetitive statement is

口to 10 do randoma
It is defined to be the equivalent of the ounitary－statement． nbegin int $j:=1$ ；
$m: i \underline{f} \leq 10$ then random ；$j+:=1$ ； go to il fi
endr ；
however，the reader who consults the Report［R．9．3．a］will find that the above is a gross simplification and that there are many details，such as increments other than－10，which must also be considered．

A more illustrative example is

$$
\text { nfor } i \text { from } a \text { by b to c do } x[i]:=\operatorname{sqrt}(i) \text { a }
$$

This is defined to be the equivalent of

$$
\begin{aligned}
& \text { 口begin int } j:=a \text {, int } k=b, l=c ; \\
& \text { m: iff }(k>0|j \leq 11: k<0| j \geq 11 \text { true }) \\
& \text { then int } i=j ; x[i]:=\operatorname{sqrt}(i) ; j+:=k \text {; } \\
& \text { go_to mifis } \\
& \text { endr }
\end{aligned}
$$

however，this is still not the complete story and may give the wrong effect if it is considered to be the equivalent of the above repetitive statement in a eserial－clause in which operations have been redeclared．With this remark in mind the reader should now examine the extensions，as given in the Report「R．9．3．a，b］，to notice how all eventualities have been covered．

There are essentially two repetitive statements．They are：

and
口for i from a by b whille d do ea
These differ in that the first form contains a rion and the second does not．In both forms nfrom 1a or u b 1 in or nwhile truen may be elided［R．9．3．c（the statement of this extension is more precise in the Report）］and if the eidentifiere nin does not appear in the onitary－clause nen，or the oserial－clause• adn，then \quad ffor in may be elided．Notice that the control －variable（ aj g in the above example）of a repetitive statement is hidden from the programmer，so that he may make no assignment to it．Also notice that the use of qfor in means that nin is， for each elaboration of $u d r$ and nen，an ointegral－constant． declared within a range which contains both ada and nea． Consequently no assignment may be made to nin．This fact was used in the examples given above．

Before leaving repetitive statements，we should observe that the ounitary－clauses．\quad a，ba and aca are elakorated collaterally［R．6．2．2．a］and once only，which means，in particular，that a change in the step size obo or in the upper bound \quad ca，after the initial elaboration，will not affect the further elaboration of the repetitive statement．

4．5 Closed clauses

Some examples of \bullet closed－clausese are $n(x+y) n, \quad \square(()(a))$ 口 and \quad begin real x, y ；read $((x, y))$ ；print $(x+y)$ endr．Note
 （－packaqes＊）may be used，but that $\mathrm{a}(\mathrm{x}+\mathrm{y}$ enda is not a －closed－clause•［R．6．3．1．a，1．2．5．i，3．0．1．h．i．］．A simplified syntax of the eclosed－clause is
closed clause ：open symbol，serial clause，close symbol ；
begin symbol，serial clause，end symbol．
but the strict syntax of the Report，involving the use of epacke and \bullet package॰，should be consulted［R．6．3．1．a］．A simple parse of the cclosed－clause•，$\quad \mathrm{c}(\mathrm{x}+\mathrm{y}) \mathrm{a}$ ，is shown in fiqure 4．5．Since

Fig． 4.5
the elaboration of a eclosed－clause is that of its eserial－ clause•，there is little else to be said about ©closed－clauses•， except perhaps，that a closed－clause• is a eprimary•（as is a －conditional－clause•）and that the eserial－clause of a closed－ clause is a range•［R．4．1．1．e］and therefcre plays a role in the identification of identifierse［R．4．1，2，3］．The former means that，for example，aa ${ }^{*}$ begin $b+c$ enda is an acceptable －formula• though most programmers would prefer to write it as aa＊（b＋c） ．

4．6 Collateral phrases

Abstract

A collateral－clause［［R．6．2．1．b，c，d，f］consists of two or more eunitary－clausese（eunitse［R．6．1．1．e］）separated by －comma－symbols• and enclosed between a（）（）pair（•packe）or a bbegin enda pair（•package•）．An example of a collateral－ clause• is a（ $1.2,3.4$ ）a．It may be used in the situations ㅁ［ 1：2］real $\times 1=(1.2,3.4)$ n or 므을 $\quad z=(1.2,3.4)$ n．In the first situation the value of the collateral－clause is a row of values，whereas in the second it is a structure．Thus， the semantic interpretation of a ecollateral－clause may be determined by its context．Notice that \quad（ a ）a is not a collateral－clausee，for，othervise，there would be an ambiguity in that $口$（ a ）口 is already a closed－clause．

[^0]```
A simplified syntax of the collateral-clause is collateral clause :
open symbol, unit list proper, close symbol : begin symbol, unit list proper, end symbol.
unit list proper :
unitary clause, comma symbol, unitary clause ;
unit list proper, comma symbol, unitary clause,
```

but the strict syntax is rather more complicated [R.6.2.1] since it must take care of the two situations hinted at above together with the balancing of modes [R.6.1.1.g, 6.2.1.e, 6.4.1.d], an interesting topic in itself, which should be postponed. A simple parse of a collateral-clause is shown in figure 4.6. If a -collateral-clausee is used as a statemente, then it may be preceded by a oparallel-symbol॰, represented by npara, if parallel processing is intended [R.10.4].


Fig. 4.6
The important feature of a collateral-clause is that the order of elaboration of the ounitary-clausese of the eunit-listpropere is undefined[R.6.2.2.a]. This means, for example, that the value of $\mathrm{a}(\mathrm{int} i \quad:=0, j:=0, k:=0$; $(i:=j+1, j:=k+1$, $k:=i+1$ )) a could be that of any one of several rows of three inteqral values, such as that of a(1, 1, 1) o or $\quad$ ( $2,1,3$ ) a , etc.

In like manner, a collateral-declaration consists of two or more unitary-declarationse separated by ecomma-symbolse. with the order of elaboration undefined. This means, for example, that the ocollateral-declaration pint $n:=10$, [1:n]real x1a may, or may not, have the effect perhaps intended by the programmer. The object qint $n:=10$; [1:n]real $\times 10$ would make more sense. Observe that a collateral-declaratione is not enclosed by an ©open-symbol, close-symbole pair or obeginsymbol, end-symbole pair, i.e., neither a epacke nor a - package•.

## 4．7 Serial clauses

－Serial－clauses• are put together from •unitary－clausese with the aid of ego－on－symbols，labels，completion－symbolse and －declarationse［r．6．1．1］．He shall examine this construction by starting from the simplest constituents．It is expedient，as in the Report［r．6．1．1．e］，to speak of a ounitary－clause as a －unite．For the convenience of our explanation，we introduce the notion eparaunite（not in the Report），for a ounite which may be preceded by zero or more •labels＊．Thus

$$
\begin{aligned}
& a x:=3 a \\
& a x:=3 a
\end{aligned}
$$

is a unit•，but for us，
and

$$
\text { ㅁ12: } x:=3 n
$$

are both oparaunits•．The simplified syntax is then：
unit ：unitary clause．
paraunit ：unit ；label，paraunit．
label ：label identifier，label symbol．
and although this is a slight deviation from the strict syntax of the Report，we shall have no essential difference when we are through．

A © clause－train•［R．6．1．1．h］is one or more •paraunits• separated by © go－on－syabols•．The following are therefore examples of eclause－trains•：

$$
\begin{gathered}
\text { 口x := 3口 } \\
\text { 口12: x:=3口 } \\
\text { al1: } y:=2 ; x:=3 口
\end{gathered}
$$

nopen（myfile，＂abc＂，tape8）；restart ：get（myfile，name）n ［R．10．5．1．2．b， $10.5 .2 .2 . b]$ ．We may now add another simplified syntactic rule，viz．．
clause train ：paraunit ；
clause train，go on symbol，paraunit．
（cf．，［R．6．1．1．h］）．The semantics of a clause－traine is simple． The elaboration of the eunitse proceeds from left to right， i．e．，in the normal sequential order，as in most programming languages．

## A osuite－of－clause－trainse［R．6．1．1．f．g］consists of one or more eclause－trains separated by ecompleters•，where a $\bullet$ completer is a completion－symbol•，represented by $\quad$ ．$\quad$ ． followed by a label•．The following are therefore examples of a

 －suite－of－clause－trains＊：$$
\square x:=3 \square
$$

$$
\text { 口11: } y:=2 \text {; } x:=3 \text { 口 }
$$

n（i＞0｜ 11 ｜$x:=1$ ）．11：$y:=2$ ；$x:=3 口$
A simplified syntax of a esuite－of－clause－trainse is suite of clause trains ：clause train ；
suite of clause trains，completer，clause train． completer ：completion symbol，label．
［R．6．1．1．f，g］．The semantics of a suite－of－clause－trainse is dramatically different．The effect of the completer•，as opposed to the－go－on－symbole，is to force the completion of the elaboration of the serial－clause containing it and to yield， as the value of that eserial－clause＊the value of the ounit＊
most recently elaborated．In the last example above，if the value of ain is $\quad-1$ ，then the value of the eserial－clause is the value of $\mathrm{ax}:=1 \mathrm{n}$ and the eclause－traine $\mathrm{ay}:=2$ ； $\mathrm{x}:=3 \mathrm{a}$ is not elaborated；otherwise，it is the value of ax $:=3 n$ ．In fact，the effect is the same as that of a （ i＞ 0 ｜ $\mathrm{y}:=2$ ； $\mathrm{x}:=$ 3 ｜$x$ ： 1 ）a．One might think that any esuite－of－clause－trainse may be re－written as a conditional－clause（suggesting redundancy in the language）and though this may be true in theory，the example
afor $k$ to upb $s$ do（ $c=s[k] \mid i:=k ; 1)$ ；false．1：truea ［R．10．5．1．2．n］，shows that the completero is indeed a useful tool in practical programming．It plays a similar role to that of the return statement in PL／I or FORTRAN，though in these languages the return statement applies only to procedures （subroutines，functions）．

A serial－clause•［R．6．1．1．a］is，roughly speaking，a －suite－of－clause－trains• preceded by zero or more •declarations• and／or estatementse but these estatementse may not be labelled． Examples of eserial－clausese are

$$
\square x:=3 \square
$$

$$
\text { 口11: } y:=2: x:=3 \square
$$

口r ：＝random ；real $x, y$ ；

$$
(r<.5|11| x:=1) \cdot 11: y:=2: x:=3 \square
$$

and

$$
\text { 口real } r \text {; } r:=\text { random ; real } x, y \text {; }
$$

$(\mathrm{r}<.5|11| \mathrm{x}:=1)$ ． $11: \mathrm{y}:=2$ ； $\mathrm{x}:=3 \mathrm{a}$
A simplified syntax of eserial－clause is：
serial clause ：suite of clause trains ；
declaration prelude sequence，suite of clause trains．
declaration prelude sequence ：declaration prelude ；
declaration prelude sequence，go on symbol，
declaration prelude．
declaration prelude ：single declaration，go on symbol ；
statement prelude，single declaration，go on symbol． single declaration ：
unitary declaration ；collateral declaration．
statement prelude ：unit，go on symbol ； statement prelude，unit，go on symbol．
The rules just given are close to those in the report ［R．6．1．1．$a, b, c, d$ ］．The reader should now examine the rules of the Report to observe how the metanotions $\bullet$ MODE and $\bullet$ SORT• have been carried through the syntax and that balancing of modes may be necessary when completerse are present［R．6．1．1．g］．

The elaboration of a serial－clause begins with the protection［R．6．0．2．d］of all •identifiers• and •indications• declared within it．The protection is done to ensure that，for example，all •identifierse declared within a eserial－clause•， cannot be confused with similar eidentifierse outside it．Users of ALGOL 60 or PL／I will recognize this as the matter of scope， but the reader is warned that the word＂scope＂has a wider meaning in algol 68 ［R．2．2．4．2］．

### 4.8 Program example

The $\bullet$ procedure-denotation which follows possesses a routine which expects a row of integral values which are the coefficients of the polynomial

पa[0]*x**n+a[1]*x*(n-1)+...+a[n]r
It then finds all the rational linear factors (those of the form $p * x-q$, where $p$ and $q$ are integral). It delivers an integral result, which is the degree of the residual pclynomial, whose coefficients remain in ran. The number of linear factors is in ara, any constant factor is in ac口 and the factors nu[i]*x-v[i]o are found in the row of integral values aun and rvn (1).

```
aproc factors \(=\) (ref[\(0: 1 \underline{i n t}\) a \(\notin t h e\) coefficients of the given
 polynomialk, ref int \(r\) for the number of rational linear
```



```
 the linear factors (u[i]*x-v[i]), \(1 \leq i \leq r \&)\) int :
 begin int \(n:=\) upb a the degree of the given polynomiald;
 \(\mathrm{r}:=0 ; c:=1 ; \mathbb{R}\) initialization\&
 While \(a[n]=0\) do \(\mathbb{n}\) remove the common power of \(x \neq\)
 begin \(u[r+:=1]:=1\); \(v[r]:=0 ; n-:=1\) end ;
 for \(p\) to abs \(a[0]\) do
 if \(a[0] \div: p=0\)
 then \(\& p\) divides a[0]z
 int \(q:=0 ; \underline{w h i l} \underline{\underline{e}} \underline{0}(q:=\underline{a b} s q+1) \leq \underline{a b} \underline{s} a[n] \underline{d} \underline{o}\)
 if \(a[n]+: q=0\)
 then \&q divides a[n]d
 int \(f, g\) for temporary storage later \(\mathbb{f}\);
 if \(\varphi * 1\) and \(p=1\)
 then \&look for a constant factor\&
 MORE : for \(j\) from 0 to n do
 if \(a[j]+: q * 0\)
 then \(\& q\) does not divide \(a[j] \neq\)
 qo to NOCONSTANT fi ;
 \&remove the constant factor qq
 for \(j\) from 0 to \(n\) do \(a[j]+:=q ; c *:=q\);
 \&q may be a multiple factor sor qo_to MORE
 fi qend the search for a constant factore ;
 NOCONSTANT : \&try \((p * x-q)\) as a linear factor\&
 \(\mathrm{g}:=1\); \(\mathrm{f}:=\mathrm{a}[0]\); \&try \(\mathrm{x}=\mathrm{q} / \mathrm{p} \&\)
 for i to \(n\) do \(f:=f * q+a[i] *\left(q^{*}:=f\right)\);
 if \(\mathrm{f}=0\)
 then \(\&(p * x-q)\) is a factor\&
 \(\mathrm{u}[\mathrm{r}+:=1]:=\mathrm{p} ; \mathrm{v}[\mathrm{r}]:=\mathrm{q}\); \(\mathrm{n}-:=1\);
 for \(i\) from 0 to \(n\) do \(\&\) compute the residual\&
 begin ref int ai \(=a[i]\);
 ai \(:=f:=(a i+f * q)+p\) end \(;\)
 (\(\mathrm{n}=0\) । REDUCED \(\mid\) NOCONSTANT)
 else tif we are here, then (\(p * x-q\)) is nct a factor
 so \(\operatorname{try}\left(p^{*} x+q\right) \mathbb{d}((q:=-q)<0 \mid\) NOCONSTANT \()\)
```

(1) This procedure is derived from algorithm number 75 in the Communications of the Assoc. for Computing Machinery, Vol 5(1962) 48, revised by J.S.Hillmore Vol 5(1962) 392 and further revised for the version given above.

## fi \＆end else parta

fi $\mathbb{f}$ end iteration on $q \not$
fi cend iteration on ps ：
REDUCED ：$(\mathrm{n}=0$｜ $\mathrm{c} *:=\mathrm{a}[0]$ ； $\mathrm{a}[0]:=1$ ）；
\＆the degree of the residual polynomial ist $n$ end

In the range of the edeclaration• $\quad$［ $0: 3] i n t$ a1 $:=$（［ ］int ： $(1,-1,2,-2))[ब 0]$ ，int $k$ ，number，constant，［1：3］int m1，$n 1$ ， a call．of the above eprocedure might be
ak ：＝factors（a1，number，constant，m1，n1）口
whereupon we should have $a k=2, \mathrm{a} 1=$（［］int $:(1,0,2,0))[\Delta 0]$ ， number $=1$ ，constant $=1, m 1=(1), n 1=(1) n$ ，corresponding to the factoring

$$
\square x * * 3-x * * 2+2 * x-2=(x * * 2+2)(x-1) \square
$$

observe that in the $\cdot \mathrm{clause}$ obegin ref $\underline{i n t} \mathrm{ai}=a[i] ; a i:=f$ $:=(a i+f * q)+p$ endu，the programmer may optimize his subscript calculation，rather than leave this delicate matter to the whim of the compiler writer．On a non－optimizing compiler， of which there may be many，this possibility has clear dividends．Note also the eassignation＊$\quad$ f $=\mathrm{f} * \mathrm{q}$＊a［i］＊（g ＊：＝p）a，which replaces two statements in the original algol 60 version．

## Review questions

## 4．1 Conditional clauses


b）Is aif $x<0$ then go to errora a conditional－clause •？
c）Is $\mathrm{a}(\mathrm{x}>0$｜a｜b）of cn a eselection•？
d）Is oa of $(x>0$｜b｜c $)$ a a selectione？
e）Is a（ $\mathrm{I}|\mathrm{m}| \mathrm{n})<(\mathrm{s}|\mathrm{i}| \mathrm{j}) \mathrm{a}$ a $\bullet$ formula•？
f）Is aif $x>0$ then $x$ else $y$ fi $:=3.14 \square$ an eassignation•？
4．2 Simple extensions of conditional clauses
a）What is the value of $\square(1<2$｜： $3<4$｜ 5 ｜ 6 ？
b）What is the value of $\square(1>2$ 1： $3<4$｜ 5 ｜ 6 ）a？
c）What is the value of $\square$（true 1514 ）＋（ false 1316 ）a？
d）Simplify the following using the extensicns：
oif $p$ then a else if $q$ then if $r$ then $b$ else $c$ fig else skip fífin．

4．3 Case clauses
a）Is a（ 1 ｜ 2 ｜ 3 ）a case clause？
b）What are all the representations of the •if－symbol•？
c）What is the value of $口(2 \mid 3,4,5$｜ 6 ）a？
d）What is the value of $\mathrm{a}(0) 3,2,1$ 1 2 口？
e）Is a（ 2 （ $a, b, c$ ）of da a selection•？
4．4 Repetitive statements

In each of the following，is the object a repetitive statement，and if so，how many times is the－unitary－clause• aen elaborated？
a） afor $i$ do e while（i＜9）a
b） 며읃 i to 10 by 2 do ea
c） ado ea

e） tto 0 do $e \square$
Comment on the scopes of ria in the following：


4．5 Closed clauses
a）Is a（ $x / y)$ a a closed－clause•？
b）Is $\mathrm{a}(\mathrm{p} \mid 1$ ）ㅁ a closed－clause•？
c）Is $\mathrm{a}(\mathrm{x}:=1 ; \mathrm{y}:=2 ; \mathrm{z}):=3 \mathrm{a}$ an •assignation•？
d）Is rif $x:=y: z:=2$ fin a closed－clause ？
e）Is nbegin $x:=1$ ；$y:=\frac{-1}{2}$ ）a a eclosed－clause•？
f）Is 口（ a ；b ，c ）a a •closed－clause•？
4． 6 Collateral phrases
a）Is $\square(x)$ a a collateral－clause？
b）Is 口（1 ； 2,3 ）口 a collateral－clause •？
c）Is $\mathrm{a}(1 \mathrm{\mid} 2,3)$ a a collateral－clausee？
d）What is the value of a（＂a＂，＂b＂，＂c＂）＋（＂d＂，＂e＂）ם？
e）Is it possible that the value of

$$
\square(\underline{i n t} i:=2, j:=3 ;(i+:=j, j+:=i)) \square
$$ might be the same as that of $\quad(7,5)$ a？

4．7 Serial clauses
a）Is axa a eserial－clause $\bullet$ ？
b）Is a（ $\mathrm{p}|\mathrm{x}| \mathrm{l})$ ．1：hn a eserial－clause•？
c）Is 口3．en a serial－clause•？
d）Is $\square(x:=1$ ；$y:=2)$ a a clause－traine？
e）Rewrite the following conditional－clause as a eserial－ clause containing a completer•．

$$
\text { 口( } \mathrm{x} \text { ory } \mathrm{y} \mathrm{n}:=1 ; \mathrm{r} \mid \mathrm{n}:=2 \text {; } \mathrm{s}) \text { 口 }
$$

4．8 Program example
a）How many occurrences of a conditional－clause are there in this •particular－programe？
b）What is the mode of aan？
c）What is the mode of aain？
d）How many occurrences of a closed－clause are there following the •label• aNOCONSTANT： n ？
e）How many occurrences of a collateral－clause are there？

## 5 Routine denotations and calls

## 5．1 The parameter mechanisin

We begin this chapter with a simple illustrative example of the edeclaration and use of a nonsense eprocedure aupa which has two parameters man and $\quad$ ba，and whose effect is to increment the •real－variable ana by the oreal－constante obr．In ALGOL 68 the defining occurrence of such a eprocedure is in the －identity－declaration。

$$
\text { oproc up }=(\text { ref real } a, \text { real } b): a+:=b a
$$

and its ecallo might be nup $(x, 2)$ n or aup（xi［i］，y）口．In aLGOL 60，a procedure with similar effect would be declared by口procedure up（a，b）；value b ；real a，b ；a ：＝a＋ba and its procedure call might also be rup（x，2）o or rup（xi［i］， y）口．In PL／I the same procedure might be written UP ：PROC（ $\mathrm{A}, \mathrm{B}) ; \mathrm{A}=\mathrm{A}+\mathrm{B}$ ；END ；
and its call，CALL UP（X，2E0）or CALL $0 P(X 1(I)$ ，（Y））．In fortran it would be

SUBROUTINE UP（A，B）
$A=A+B$
RETURN
END
with call．Call UP（X，2．0）or CALL UP（X1（I），Y）．
We have described this procedure in more than one language in order that its intended effect should be clear to all．The reader will notice that we are concerned with that which，in ALGOL 60 terminology，is known as a＂call by name＂and a＂call by value＂．This has become the accepted way of describing the fact that in the ocalle aup $(x, 2) a$ ，axa is passed by name to aan and a 2 a is passed by value to oba．The manner in which values are passed at the time of a calle is generally known as the ＂parameter mechanism＂．

We shall not describe here the various parameter mechanisms in other lanquages，except to say that the student is likely to find this to be the most confusing and perplexing sutject area in the study of programming languages．Each language has its own philosophy and usage，with treacherous traps for the unwary．We hope to show，in this chapter，that the parameter mechanism of ALGOL 68 is exceptional in its clarity，encouraging the programmer to state precisely the mechanism he wishes to use， rather than to rely upon the conventions of a given language or the whim of an implementer．There are essentially no new ideas involved beyond those which we have encountered in earlier chapters．A thorough understanding of the eidentity－declaration． is all that is needed．The reader may soon wish to forgive us for spending so much time on the explanation of it in chapter 2. The algol 68 parameter mechanism is defined in terms of a logical application of the identity－declaration to that internal object，known as a＂routine＂，which is the value possessed by a eroutine－denotation•．
5.2 Routine denotations

The object

$$
\square((\underline{r e f} \text { real } a, \text { real b) }: a+:=\text { b) } \square
$$

is an example of a oroutine-denotatione [R.5.4.1.a] and is essentially what stands on the right of the eequals-symbole in the edeclaratione of aupa given in section 5.1 above. one may notice that the enclosing symbols $\quad \mathrm{a}(\mathrm{a}$ and $\quad$ ) a have been omitted in section 5.1, but this is only because of an extension [R.9.1.d] which allows such omission in this situation. A -routine-denotation•, like any other odenotatione, possesses a value, a routine, which is an internal object. This internal object is a certain sequence of symbols, easily derived [R.5.4.2] from the edenotation•. For example, the routine possessed by

$$
\square((\underline{r e f} \text { real } a, \text { real } 1 \text { b) }: a+:=b) \square
$$

is

- (ㄷef real $a=$ skip, real $b=$ skip ; $a+:=b$ ) and it is important to notice that it has the shape of a - closed-clause•, in which each of the parameterse aan and aba forms part of an eidentity-declaration•.

As we have seen in section 2.5, an •identity-declaration• causes the value of its actual-parameter. (the part to the right of the eequals-symbol ${ }^{\bullet}$ ) to be possessed ky the -identifier of its 0 formal-parametere (the •identifiere to the left of the equals-symbole). This means that in the eidentitp-declaration-
 the •identifier aupa is made to possess the routine

Figure 5. 2 shows a simple parse of this •identity-declaration•. The coutine-denotation is shown at 1 and the routine which it possesses at 2. After the elaboration of the identitydeclaration•, the •identifier• $\quad$ upa, possesses the same routine


Fig. 5.2
（see figure at 3）．The elaboration of the ecall• aup（x，2）a is now easy to describe．Its effect is to replace the two nskipas， in a copy of the routine，by oxa and a2a respectively and then to elaborate the resulting external object

口（ref real $a=x$ ，real $b=2$ ；$a+:=b$ ）$口$
as if it were a closed－clause standing in the place of the －call• aup $(x, 2)$ ．

It is perhafs now clear why the left part of an identity－ declaration is known as its formal－parametere and the right part as its oactual－parameter•，for these are precisely the roles which they play in the parameter mechanism．Not only does the eidentity－declaration play a central role in such a mechanism，but its power，which the implementer of any language must of necessity provide，is placed in the hands of the programmer to use as he sees fit．Thus，uref real $\times 1 i=x 1[i] n$ might usefully be used to optimize address calculation while working with the vector axin．An example might be

$$
\mathrm{n} \times 1 \mathrm{i}:=3 * \times 1 i+2 * \times 1 i \text { ** } 2 \mathrm{a}
$$

rather than

$$
\mathrm{ax} 1[i]:=3 * \times 1[i]+2 * \times 1[i] * * 2 \square
$$

## 5．3 More on parameters

It is perhaps worth dwelling on the name－value relationship created by the parameter mechanism for the example in section 5．1．The eclosed－clause which is elaborated as a result of the －call• aup（x，2）a is

$$
\mathrm{a}(\underline{\text { cef }} \text { real } \mathrm{a}=\mathrm{x}, \text { real } \mathrm{b}=2 ; \mathrm{a}+:=\mathrm{b}) \mathrm{a}
$$

and the elaboration of the collateral－declaration which follows its $\cdot$ open－symbole results in the relationships depicted


Fig．5．3．a
in figure 5．3．a．During the elaboration of the ecall．vup（x， 2）$n$ ，aan possesses the same name as that possessed by axu（see figure 5．3．a at 1），and $\quad$ ban possesses the same value as that possessed by u2口（see the figure at 2）．This means that the －formula $\quad$ a $+:=$ bu has the same effect as if it were written $u x$ $+:=2$ ．Both aan and $\quad$ ．$\quad$ ．have a mode which begins with －reference－to＊，a requirement of the left ooperande of the －operatore $\quad+:=\square \quad[\mathrm{R}, 10.2 .11 . \mathrm{e}]$ ．Note also that if the ocall． were aup $(x, y) a$ ，then the eclosed－clause would contain the －declaration $\quad$ rreal $b=y a$ and this would invclve $a$ dereferencing of $\bar{y}$ 口，depicted in figure 5．3．b at 1．observe，in
this figure，that ay口，considered as an $\bullet i d e n t i f i e r \bullet$ ，possesses a name of mode－reference－to－real．（see 2）but considered as an －actual－parameter•，it possesses a value of mode $\cdot$ real•（see 3）． The coercion occurs at 1．We may say，in general，that if a －parameter• $\quad$ an is considered as a variable referring to a value of mode specified by ama，e．g．，if an assignment is to be made to aan，then the formal－parametere should be rref $m a n$ ，


Fig．5．3．b
but if abr is used only as a constante of mode amo，then the －formal－parameter may be nm bo．

5．4 The syntax of routine－denotations
A •routine－denotation• consists of a formal－parameters－ pack• followed by a cast•，both together enclosed between the symbols $\quad$（ $口$ and $口$ ）$口$ ．Thus in

口（（ref real $a$, real $b): a+:=b)$ $\quad$ b
the object $\square$（ref real $a$ ，real $b$ ）$口$ is the formal－parameters－ pack• and $\quad \mathrm{a}$ • $\mathrm{a}+:=\mathrm{bn}$ is the ©cast•．A simplified syntax of $a$ －routine－denotation－is
routine denotation ：
open symbol，formal parameters pack，cast，close symbol．
formal parameters pack ：
open symbol，formal parameter list，close symbol．
formal parameter list ：formal parameter ；
formal parameter list，gomma，formal parameter．
gomma ：qo on symbol，comma symbol．
but the strict syntax［R．5．4．1］contains metanotions which ensure that the number and the modes of oparameterse in ecalls＊ match those in the oroutine－denotation．Figure 5.4 shows a simple parse of a croutine－denotation ${ }^{\circ}$ ．We have already alluded， in section 3．7，to the fact that eactual－parameters• in a call。 may be separated by either a go－on－symbole or by a ecomma－ symbol•．Now that we have seen that the elaboration of a call• amounts to the elaboration of a eclosed－clause in which the

- formal-parameterse of the $r o u t i n e-d e n o t a t i o n \cdot ~ b e c o m e ~$ transformed into -identity-declarations•, it is at once apparent that a comma-symbole separating oformal-parameters becomes a -comma-symbole of a collateral-declaration. This means that the oparameters are elaborated collaterally. The ego-onsymbol•, on the other hand, would result in edeclarationse which are elaborated serially. To take a specific example, the


Fig. 5.4

- formal-parameters-pack

口(int $n,[1: n]$ real $u)$ ㅁ
may be transformed into

$$
\text { qint } n=10,[1: n] \text { real } u=x 1 ; \text { 口 }
$$

but the -formal-parameters-pack.

$$
\text { ㅁ(int } n ;[1: n] \text { real } u) \text { ㅁ }
$$

may be transformed into
qint $n=10 ;[1: n]$ real $u=x 1 ; 0$
which is more useful since its elaboration is well defintd. The particular choice of the -goma• which separates •formalparameterse is therefore of significance but that which separates the eactual-parameters• of a ecall• has no semantiz significance.

The semantics of a routine-denotatione [R.5.4.2] tells us how the routine which it possesses is obtained. The essential points are, that an equals-symbole followed by a eskip-symbole is inserted after each ©formal-parameter•, that the •opensymbole which begins the •formal-parameters-packe is deleted and that its close-symbol• is changed into a go-on-symbol•. The more precise statement in the Report [R.5.4.2] should be studied.

> A further example of a -routine-denotation is

$$
\text { ㅁ ( }(\text { real } x) \text { ceal : random } * x) \text { }
$$

where the second occurrence of rabealn (part of the •cast ${ }^{\circ}$ )
indicates that the routine is to deliver a value of mode $\mathrm{m}_{\mathrm{r}} \mathrm{r} \mathrm{l}^{\circ}$ ． The example in section 5.1 delivers no value and therefore uses a evoid－caste（whose evirtual－declarere is empty）．Note that口real ：random＊100a
is not a oroutine－denotation despite the fact that it may appear in the edeclaration．
nproc real r100＝real ：random＊100ם ； however，the coercion known as＂proceduring＂［R．8．2．3．1．a］ enables the identifier ar 100 n to possess the routine
－（ $\underline{\text { ced }}$ l ：real ：random r ＊100）
Actually，it is only necessary to write
口proc real r100＝random＊100口 and then the routine possessed by ar100n will be －（real ：random＊100）．

5．5 What happened to the old call by name？
In explaining the parameter mechanism of ALGOL 60，it is customary to consider an example something like oprocedure upa（a，b）；value b；real a，b ； begin $i:=i+1 ; a:=a+b$ end $n$
and to explain that，in the scope of the fragments areal arcay x1［1：10］；integer i ；i ：＝10，the procedure call rupa（xi［i］， 2）a will，to the astonishment of most，increment the value of ux1［2］rather than that of nx1［1］$\quad$ ．This is a result of the semantic description of procedure calls in ALGOL 60 ［N．4．7．3．2］ involving what is usually referred to as the＂copy rule＂．In ALGOL 68 a routine which achieves a similar effect，for simple －variables•（not eslices•）passed to nan，is

口贝roc upa $=($ ref real $a$, real $b):(i+:=1: a+:=b)$ a
but the call．rupa（xi［i］，2）nin the range of $\mathrm{a}[1: 10]$ real $\times 1$ ； int $i:=10$ ，will increment the value referced to by uxi［1］nand not axif 2 ］r．Thus the passing of the eparametere axi［i］o by name，as it was known in ALGOL 60，is not achieved，in ALGOL 68， by using the eformal－parameter oref real an．The resulting －identity－declaration oref real $a=x[i][$ is elaborated at the time of entry to the routine and the old copy rule of ALGOL 60 does not apply．

In the case of expressicns and subscripted variables，this copy rule of ALGOL 60 amounted to the passing of a procedure body to the formal parameter and was used by a generation of instructors to impress students with the idea that algol 60 is a nice lanquaqe in which nice things can be done in a nice way． However，the nizeties of it were often too subtle for the beginner，who thus fell into the trap of using a powerful device when it was not necessary for him to do so．We may now perhaps look back upon it as a design imperfection in alGOL 60．There should have been a＜name part＞rather than a＜value part＞「N．5．4．1］．A language should be such that the least effort by the programer calls up the simplest implementation schemes．If he wishes to use a more powerful scheme，then he should be made aware of it by the necessity for writing a little more in his source proqram．

ALGOL 60，the example mentioned above should appear as
 for then the first odeclaration arising from the call． nupb（x1［i］，2）a is ngroc ref real $a=x 1[i]$ ．In this case the elaboration of $\quad \mathrm{x} 1[\mathrm{i}] \mathrm{o}$ occurs at the time of $t h e$ deproceduring ［R．8．2．2］of na口 in $\quad$ a $+:=b a$ ，and not at the time of parameter transfer．Thus ax1［2］a is incremented and not axi［1］a．
 another example of a eprocedured－coercend for rxi［i］n is not a －routine－denotation•．Nevertheless，the •identifier• 口an is made to possess the routine（（ref real ：x1［i］）m by a coercion known as proceduring［R．8．2．3］．

## 5．6 Program example

The following algorithm finds all trees which span a non－ directed qraph ogn（1）．The edges radiating from node ai．in the graph are represented by bits in the i－th bits structure of the row－of－bits g ga．A set of nodes is also represented by bits of a bits structure，the $j$－th node being represented by the j－th bit， which is mtruen if that node is present．

The set of nodes in the growing trees（saplings）is osa． The edges in a family of saplings are recorded in aar，which， like aga，is of mode orow－of－bits•．The boundary of asa is the set aba of nodes neightouring the nodes cf asa．Initially asa contains only node $=1$ and aboits neighbours，i．e．．ag［1］口．The recursive routine agrown iterates over the nodes in abr．For each node wia in abn it finds all possible edges（new growth） from asa to node ai．．This new growth is recorded in aan and removed from aga．The node min is removed from the boundary aba． The procedure agrown is then called recursively with the nodes of the saplings augmented by node mand the boundary augmented by neighbours of node ai．．

Since the standard atits widtho（or alcng bits widthr）may be larger than the number of nodes，a maskn is necessary to mask out the redundant bits when testing bit patterns．

If the number of nodes exceeds abits widtha，then the －mode－declaration for abo，in the first line，should be changel accordingly．If sufficient precision is then not available，one may use the mode orow－of－toolean•，with suitable declaration of the operations involved．

As an example，for the graph

$$
1(2,3,4), 2(1,3), 3(1,2,4), 4(1,3)
$$

the algorithm generates eight trees in four families

$$
\begin{array}{llll}
1(), & 2(1), & 3(1,2), & 4(1,3) \\
1(), & 2(1), & 3(4), & 4(1)
\end{array}
$$

（1）Translated from Algorithm 354 by M．Douglas McIlroy．Comm． Assoc．Computing Machinery．Vol 12（1969）p． 511.
$\begin{array}{ll}1(), & 2(3), \quad 3(1) \\ 1(1) & 3(3),\end{array}$
$4(1,3)$
$4(1)$
(2 trees)
1(), $2(3), \quad 3(4)$
(1 tree)
nbegin mode $\underline{b}=\underline{b} \underline{i t s}$ tor long bits, if necessaryt ;
proc trees $=$ ([1:] b g athe given graphe,
proc ([ ]b) f $x$ the action for each family $\neq$ ):
begin int $n=\underline{u} p \underline{g}$ g the number of nodes in the graph
[1:n $1 \underline{b}$ a the growing family, saplingst;
$\underline{\mathrm{h}} \mathrm{t}: \underline{\mathrm{b}}$ flips $=\mathrm{t}$ or $\sim \mathrm{t}$ \&all flipst ;
$\underline{\underline{b}}$ unit $=\neg(f l i p s \underline{\underline{u}} \underline{p}-1)$ ta flip followed by flopst,
mask $=\neg(f l i p s \underline{u} p-n) \not \subset o r$ masking redundant bitst;
prog grow = (ref[ $1: n] \underline{b}$ g the residual graph $x$,
$\underline{b}$ s the nodes of the saplingst,
ref $b$ b \& boundary of the saplings $\mathcal{L}$ ):
if $s \geq$ mask
then the family is complete, sod $f(a)$
else for $i$ to $n$ do
if i elem b
then $\bar{x}$ examine each node of the boundaryt
$\underline{b}$ uniti $=$ unit up(1-i) conly the i-th bit is flipe;


g[i] $:=q[i]$ and $\neg$ s \&remove the new growtha;
grow (loc $[1: n] \underline{b}:=g$ pass a copy of the residue $\varnothing$. s or uniti $\subset$ the family now includes node i\&, loc $\underline{b}:=b$ or $g[i] \not t h e$ boundary is augmented by the neighbours of node if ) ;
( $\rightarrow \mathrm{g}[\mathrm{i}] \geq$ mask I Rwe cannot move $\not \subset$ out )
fí ;
out : skip
$\underline{\mathrm{f}} \underline{\mathrm{i}}$;
( $n \geq 1$ | a[1] : = flips ) ;
grow (loc $[1: n] \underline{b}:=q \notin s t a r t$ with a copy $\mathbb{q}^{\prime}$, unit $\&$ start with node $1 \neq$, loc $\underline{b}:=g[1]$ the neighbours of node $1 \&)$

## end <br> en ${ }^{\frac{1}{d}}{ }^{-}$

In the above, the procedure aqrowa has two ecallse. The -call. preceding the final rendr, which starts the whole process, and another recursive $\bullet$ call within the oroutinedenotation•. In both of these calls•, notice that the first and third •parameters• must be •variables•. Moreover, new copies of these variablese must be passed. A convenient way to do this is to use elocal-generators*. The second efarametere is a -constant•, and no assignment is made to it.

Review questions

### 5.1 The parameter mechanism

a) Is the following an eidentity-declaratione?
b）Is the following an identity－declaratione？
모으（드릐 $a$ ）real $p=a{ }^{*} a 口$ ？
c）Give a •declaration for a eprocedure or 2 c which has no －parameters and delivers a random real value between 00 and $=2$ 。
d）Give a •declaration• for a •procedure $\quad$ amaxn with two •red 1－ parameters．which delivers the larger of the two．
e）Give a edeclaration of a eprocedure －orecipo which accepts a －real－variable and replaces it by its reciprocal．

5．2 Routine denotations
a）Is 口ref real $x y=x$＊$y n$ an eidentity－declaration ？
b）What is the $\cdot$ formal－parameter of $[1: 3]$ real $\times 1:=(1,2,3) \mathrm{n}$ ？
c）If opa possesses the routine（real $a=$ skip，real $b=$ skip ；
口p $(x+1, y)$ ㅁ？
d）What is the value possessed by the oilenotation $u\left(\begin{array}{l}(\underline{e} \underline{a} \underline{l} \text { a）}) ~\end{array}\right.$ real ：a＊a）व？
e）What is the value possessed by the odenotation $\quad$（int $n, m$ ； reff $1: n]$ real a 1 ）real ：$(n<m|a 1[n]| a 1[m]) n$ ？

## 5．3 More on parameters

In the reach of areal $x:=1.2, y:=3.4 a$ ，what is the value of $\quad$ p $(x, y)$ ㅁ
a）in the reach of aproc $p=(\underline{\text { real }} a, b): 1.1 口$ ？
b）in the reach of

c）in the reach of

d）in the reach of $\quad$ proc $p=(\underline{r} e f$ ref real $a$ ，ref real b）real ： $\mathfrak{a}$ ：＝ba？

5.4 syntax of routine denotations
a）Translate the following into ALGOL 68：

5．6 Proqram example
a）Is aunita a econstante or a evariable•？
b）Why is a 口refn not necessary in the oformal－farametere ah sa？
c）Why is an eactual－parameter aloc ：＝g［i］口 used in the last call•？
d）Why was ata not initialized？
e）If ana is $\quad$ an and abits widtho is $88 *$ ，what is the value of amaskn？

6 Coercion

## 6．1 Fundamentals

Coercion is a process whereby，from a value of one mode，is derived the equivalent value of another mode，e．g．，the real value possessed by $\quad$ 2．0n is equivalent to［8．2．2．3．1．d］the integral value possessed by a 2 ．Derivation of an equivalent value is usually accomplished automatically，i．e．，by no conscious effort of the programmer．An example is
n들 $x$ ：＝ 2 口
where the value possessed by $\quad 2 \mathrm{n}$ is of mode ointegrale，but the value which is assigned must be of mode •real•．Such coercions are well known in other languages and are usually described semantically．In PL／I there are extensive tables［P．Part II， Section $F$ ］in which the programmer may find what action to expect given the attributes of a source and those of its target． Coercion in alGOL 68 is described by means of the syntax，most of which is in section 8.2 of the Report．

The particular coercions which are elaborated are generally determined by three things，viz．，1）the a priori mode，2）the a posteriori mode and 3）the syntactic position，or＂sort＂．A －cast＊，which was discussed in section 4．13，is a useful object in which to illustrate coercion，for that is usually its main purpose．We recall that a caste consists of a edeclarere followed by a cast－of－symbole followed by a cunitary－clause•， which is in a strong position．For example，in the ecaste
nceal ：2口
the a priori mode of a 2 a is ©integral•，the a posteriori mode of its eunitary－clause $\quad$ is that specified by its edeclarer•，viz．， －real•，and the＂sort＂of its •unitary－clause• is＂strong＂．The particular coersion called into play is＂widening＂from －integral to ereal and is governed by a syntactic rule ［r．8．2．5．1．a］，whose details we will not now unravel．

## 6．2 Classification of coercions

There are eight different coercions．They are ＂dereferencing＂，as in
＂तерroceduring＂，as in
모를 ： xa
nreal ：randoma
＂proceduring＂，as in
모응 real ：x1［i］口
므느음（int，bool）：truep

| nreal | $: 2 口$ |
| ---: | :--- |
| nstring | $:$＂a＂口 |

모를 $: ~ s k i p a$
and＂voiding＂，as in the •void－cast－pack• ㅁ（：p）$\quad$ ㅁ
These coercions are classified into subsets as follows：
dereferencing and deproceduring are together known as "fitting"; these two together with proceduring and uniting are known as "adjusting"; and all eight are together known as "adapting". The reader will find that this terminology is used in the metanotions [R.1.2.3.k.1, m]. A diagrammatic scheme is shown in figure 6.2. Some of the above examples would not normally appear in useful programs. They are chosen for illustrative purposes.

COERCION TREE


$$
\text { Fig.6. } 2
$$

### 6.3 Fitting

The result of dereferencing a name is to yield the value to which it refers. This has been touched upon already in section


Fig.6.3
2.12 and elsewhere. Figure 6.3 shows the parse of rxa as a -strong-real-unit• At 1 , in the figure, axa, as an -identifier•, possesses a name and envelops the mode oreference-to-real• and at 2, as a eunite, axn possesses a real value and envelops the mode ereal•. The coercion is shown at 3.

The result of deproceduring is the elaboration of a routine (without parameters), e.g., the ecasto nreal : randoma forces the elaboration of the routine possessed by urandoma and delivers the next random real value as the value of the casto. Both dereferencing and deproceduring are classified together as "fitting" [R.1.2.3.m], and are the two coercions which occur most frequently.
6.4 adjusting

Both proceduring and uniting, together with fitting (dereferencing and deproceduring) are known as "adjusting" and are so grouped because they can all occur in certain syntactic positions.

The result of proceduring is a routine. For example, the value possessed by the caste pproc real : $x$ [ $[i]$ is the routine " (real : $x$ [i] $)=$. It way be recalled, from section 5.2, that a routine is syntactically similar to a closed-clause and that, in the case where there are no oparameters*, there are no - routine-denotationse. The proceduring coercion makes them unnecessary.

Uniting has only a syntactic effect. In the terms of the Report, the elaboration of a united ecoercendo is the same as that of its pre-elaboration [R.1.1.6.i]. This means that no change of value is involved. Actually, an implementation will find it necessary, upon uniting, to attach to the value some record of its mode, so that this may be tested later, especially if a conformity-relation is involved, but the particular details of the implementation mechanism is not of concern to the programmer. He should, however, be aware that it probakly occurs and thus not make use of united modes unnecessarily. The subject of unions is an advanced topic which we shall postpone to chapter 7. Uniting occurs, for example, in qunion(int, bool) : truea.

### 6.5 Adapting

The coercions known as widening, rowing, hipping and voiding, together with adjusting are collectively known as "adapting" and form the set of all possible coercions in the language. These are so grouped because they can all occur in certain syntactic positions.

The effect of widening is to deliver a value of one mode which corresponds to a given value of another mode. one may widen from eintegral to $\quad$ reale [R.8.2.5.1.a] and from •reale to complex [ibid. b]. Consequently, each of the following possesses the value mtruen:
$\square(\underline{\text { neal }}: 2)=2.0 \square$
$\square($ cogmp $)=2.0$ i $0.0 \square$

One may also widen from bits to row of boolean [ [ibid. c] and from bytes to •row of charactere [ibid. d]. If obits widtho is』4., then $\quad$ ([ ]bool : 101) a has a value which is that of $口$ (false, true, false, true) a. Similarly, if abytes widtho is a4e, then

口（string ：ctb＂abc＂）＝＂abcg＂a possesses the value otruea （assuming that the onull charactera［R．10．1．1］is＂．＂）．More than one coercion may be involved in one cast•，e．g．，ncompl ： in requires first a dereferencing of ain to yield an integral value，a widening of the value to ereale and ancther widening to complex．

The effect of rowing is to deliver a multiple value which is a row of zero or one elements．It occurs，for example，in口［ ］real ：a and in $\mathrm{n}[$ ］int ：2口．The value in the first case is a row of zero elements，each of mode real＊．In the second case one obtains a row of one element of mode •integral•．Note that口［，］int ：［ ］int ： $2 \pi$ involves two consecutive rowings which result in a one by one matrix．The same effect can be obtained by $n[] i n t:, 2 a$ ，since rowing is recursive［ 8．8．2．6．1．a］．The －caste $\quad[$ ，$]$ bool ：$:$ will deliver a boolean matrix with one row Which has no columns．Note that when a constant is rowed，the result is a constante multiple value，but if a variable• is rowed the result is a multiple variablee．This effect is achieved syntactically by the metanotion $\bullet$ REFETY in the rule for rowing［R．8．2．6．1．a］．Thus， greff ］real ：xa will have the effect of creating a new multiple value whose only element is口xa and the identity－relation $\quad$（reff ］real $: x)[1]:=: x \square$ possesses the value atrue no mattet what value is referred to by axa．Of course，it is arranged［R．8．2．6．1．b］that an empty cannot be rowed to a variable•，i．e．．口（ref ］real ：）a is syntactically，invalid．

The coercion known as hipping takes care of the oskip॰，口Skipa，the •nihil• nniln，and－jumps like qgo＿to novosibirska． This coercion is somewhat different from the others in that，if it occurs，then no other coercions may take place．Both the －skipe and the ejrmpe may be coerced to any mode，but the －nihil．may be coerced only to a mode which begins with －reference－to• The elaboration of a eskip• delivers some （undefined）value of the required mode，e．g．，the value of oreal ：skipa is some real value．The value of a $\quad$ nihil॰，represented by $\underline{n}_{\mathrm{i}} \mathrm{l} \mathrm{a}_{\text {，}}$ is a unique name which refers to no value．This means that $\quad$（ref real ：nil）$:=:$（ref real ：nil） n is atruen，although口（ref real ：skip）$:=:$（ref real ：skip）$n$ is unlikely to be（1）． observe that $\quad$（ref int ：nịl $:=:$（ref real ：nillu is not an －identity－relatione because the modes of its otertiariese do not agree．Also，口（ref real ：ref ref real ：nil）a cannot be elaborated，since no dereferencing can be done on a nihile ［R．8．2．1．2 Step 2］．The elaboration of a ccerced ejumpe is a
 value delivered is a routine and the jump itself is not performed［R．8．2．7．2．b］．Note however that $\quad$（ref proc quoide ： go＿to 1）a does not deliver a routine．

There remains one other coercion，viz．，voiding．The effect of voiding is to discard whatever value is involved．Thus
（1）It will be interesting to try out some of the compilers on this point．

ㅁ（：2）a will not deliver the value $\mathbf{n} 2 \boldsymbol{\text { a }}$ ．The $\bullet$ void－cast－pack．口（：random）a delivers neither a routine nor a real value，but causes arandoma to be elaborated（deprocedured）once，whereupon the real value delivered is discarded（see •NONPROC． ［R．8．2．8．1．b］）．This may indeed be just what the programmer desires．In the reach of aproc real $p:=$ randomp，the opa in $\quad$（： p）a is dereferenced，deprocedured and then voided．The －declaratione aproc quoide $q=(: p) a$ ，however，delays these coercions until aqu is elaborated．He who can correctly perform the syntactic and semantic analysis of qpecc real $p$ ：＝random ； proc quoidq $q=(: p) ;(: q)$ ；skipa，has no need of further advice concerning coercion．

## 6．6 Syntactic position

The coercions which may occur depend apon the syntactic position of an object in the oprograme．There are four sorts of syntactic position，viz．，stronq，firm，weak and soft．In what has gone before，we have concentrated our attention on the －cast because its unitary－clause is stronq and inthis position all coercions can occur；moreover，strony coercion is the main purpose of the ecast•．In firm positions only those coercions collectively known as adjusting are relevant．In weak positions fitting is relevant．A soft position permits only deproceduring（see figure 6．2）．

Some examples of strong positions are actual－parameterse， e．g．，$\quad 2 \mathrm{a}$ in n geal $\mathrm{x}=2 \mathrm{a}$ ， $\operatorname{sources} \circ$ ，e．g．， a 2 a in $\mathrm{ax}:=2 \mathrm{a}$ ， －conditions•，e．g．，$\quad \mathrm{x}=\mathrm{yn}$ in $\mathrm{n}(\mathrm{x}=\mathrm{y}$（ 1）a and esubscripts•， e．q．，$\quad$ in in $\quad$ x $1[i] 口$ ．In these positions the a posteriori mode （i．e．，the mode after coercion），is dictated by the context． Examples of firm positions are－operands•，e．g．，oxa in nabs $x a$ ， and eprimariese of callse，e．g．，ncosa in $\cos (x)$ a．Examples of weak positions are eprimaries of eslices＊，e．g．，$\quad \mathrm{x} 1 \mathrm{n}$ in axi［i］n and esecondariese of eselectionse，e．g．，acella in onext of celln．Examples of soft positions are •destinations•，e．g．， пx口 in $\quad x:=y 口$ and $\bullet$ tertiaries• of oidentity－relations•，e．g．， ax口 in $\quad x:=: x x a$ ．Figure 6．6．a shows an eassignatione in which many of these positions occur．


It is clear that •operandse cannot be strong，for otherwise one could not determine which operation is to be performed in
a1 + 2a. Since both operands• could be widened, is it addition of real values or addition of integral values? Because of this uncertainty, the coercions involved in coperandse must be restricted to those classed as adjusting. This is achieved by making eoperands firm [R.8.4.1.d.f]. The only coercions permitted for operandse are therefore dereferencing, deproceduring, proceduring and uniting. In particular, since a - skipe can only be hipped and hipping can only occur in strong positions, we conclude that the object nskip + skipa is not a - formula•。

We may recall that if a variable॰, say $\quad$ x 10 , is sliced, then the result, say $\quad$ x1[i] $n$, is a variable*. Similarly the - selectione $\quad$ next of celln from the evariable ucella is also a $\bullet$ variable•. This means that we need a position in which both deproceduring and dereferencing are permitted, but that dereferencing, in this position, must stop short of removing a final oreference-to from the a priori mode. Remember that we may wish to write $\mathrm{ax} 1[\mathrm{i}]:=3.14 \mathrm{a}$ or anext of cell := cellin and that the mode of a destination must begin with oreference-too. Such a position is known as weak. It involves only those coercions known as fitting, with the special proviso concerning dereferencing.

Finally, in the •destination of an assignation•, e.g., axa in ax:=y口, only deproceduring can be permitted and such a position is known as soft.

Note that the word "strong" is used in the sense of strongly coerced, so that a strong position indicates strength from outside and not strength from insides

In the above we have considered the syntactic positions arising from the strict language only. The programer, however, is generally more concerned with the extended language, for that is what he uses. It is therefore appropriate to examine the syntactic positions for constructs in the extended language. In particular, the repetitive statement [R.9.2], shown in figure 6.6.b, contains the objects na, b, $c$, da and nen, all of which are in a strong position. Note that uin is the oidentifier of an eidentity-declaratione and is therefore not coerced. Its mode is ointegrale (not oreference-to-integral*) and therefore


Fig.6.6.b
no assignment may be made to it. Moreover, the value of this ain
is unavailable outside of the eclausese ada and nea, no matter how the elaboration of the repetitive statement is completed. Also observe that the repetitive statement itself is strongly voided and therefore cannot deliver a value. This is traditional for several programing languages, so will be understood easily.

### 6.7 Coercends

Coercions are introduced at certain syntactic positions but are not carried out except upon coercends॰. For example, in nproc ref real $p=(i<9|x 1[i]| y 1[i])$, , the conditionalclause• $\quad(i<9$ | $x$ [i] | $y$ [i] $)$ o is strong and the mode required is that specified by uproc ref reala. However, a - conditional-clause is not a coercend itself. In fact, if the value of ain is $\mathbf{w a}$, then the routine possessed by apa is a (ref real : x[[i]) a. It is therefore the base uxi[i]n which is coerced and not the oconditional-clause because a base is a - coercend ${ }^{\circ}$.
-Coercendse are easily distinguished and we have met them all before, although we have not, as yet, classified them as such. A © coercende is either a base॰, e.g., axi[i]r, a -cohesion•, e.g., pnext of cella, a formula•, e. g., uabs xa or a econfrontation•, e.g.. $\quad \mathrm{xx}:=\mathrm{y}$ [R.8.2.0.1.a, 1.2.4.a]. $\AA$ certain set of coercions may be implied by the syntactic position (sort) of the object, but none of these coercions will be elaborated on that object unless it is a coercende. The sort is therefore passed to the coercendse within the object. When a -coercend• is met, then all coercions implied by that syntactic position must be completely expended.

### 6.8 A significant example

Perhaps we should now look closely into the reason why aproc $\mathbb{E}$ voide $p=$ randomn
is not an identity-declaration• The intention was, perhaps, nproc $x$ voide $p=(:$ random) or oproc real $p=$ randoma. First we must observe that no extension could have been applied since arandoma is not a oroutine-denotation• [R.9.2.d], so this must be parsed as an eidentity-declaration in the strict language. An attempt to parse pproc $q$ void $p=$ randomn must begin with the facts that opr is a oprocedure-void-mode-identifiere and - random. is a - procedure-real-mode-identifier*. Since arandoma is a base॰, we must therefore attempt to find production rules in the hope of showing that a oprocedure-real-base is a production of estrong-procedure-void-base. The production rule for any given notion can be obtained from only one rule of the Report. If we take that rule [R.8.2.0.1.d] and replace the metanotion corrcende appropriately, we have
-strong procedure void base : procedure void base ; strongly ADAPTED to procedure void base..
Since arandoma is not a oprocedure-void-base॰, we must now see whether it can be produced from the second alternative. This means replacing eADAPTED• by each one of its eight terminal productions, i.e.. by edereferenced, deprocedured, procedured, united, widened, rowed, hipped• and •voided•. 日e look at each of
these in turn. In the rules for dereferencing [R.8.2.1.1.a], we have
estrongly dereferenced to procedure void base :
strongly FITTRD to reference to procedure void base . Thus the mode enveloped has become longer, i.e., from - procedure-voide to oreference-to-procedure-voide. The same will apply to deproceduring [R.8.2.2.1.a]. Because these two rules feed into each other, we can only lengthen the mode (in the sense used above) by using them. Thus we cannot reach our goal through this route.

The rules for proceduring [R.8.2.3.1.a] yield
estrongly procedured to procedure void base :
void base ;
strongly dereferenced to void base ;
strongly procedured to void base ;
strongly united to void base ;
stronqly widened to void base ;
strongly rowed to void base. -
Each of these must now be examined. In the first place, arandoma is not a void base•, so we dismiss the first alternative. For the others the words (protonotions) edereferenced-to-void•, -procedured-to-void•, •united-to-voide, •widened-to-voide and -rowed-to-voide lead us nowhere in the appropriate sections [R.8.2.1.1, 8.2.3.1, 8.2.4.1, 8.2.5.1, 8.2.6.1].

By examining the left hand sides of the rules for widening [R.8.2.5.1], rowing [R.8.2.6.1.] and voiding [R.8.2.8.1], we can see that productions for estrongly ADAPTED to procedure void base through any of these routes cannot be found. Finally, the rules for hipping [R.8.2.7.1] cannot be used since they apply only to eskips•, nihils• and •jumps• and arandoma is not one of these. This completes our deduction that aproc quide $p=$ randoma is not an •identity-relation•.

Note that for $u$ proc $x$ void $p=(: r a n d o m) n$, the significant production is

- strongly procedured to procedure void base :
void base.
[R.8.2.3.1.a]. Also, for aproc real $p=r a n d o m a$ only the empty coercion is required for arandoma is already of a priori mode - procedure-real•.


### 6.9 The syntactic machine

The coercions are, with the exception of balancing of modes, all contained in the syntactic rules in section 8.2 of the Report. A thorough understanding of coercion therefore requires a knowledqe of these rules and a certain dexterity in their use. The reader is encouraged to try some syntactic analysis (parsing) for himself, but to helphim on the road we give below a complete analysis, as a estrong-real-unite, of ain in the caste oreal : in, where ain is in the reach of the - declaration $\quad$ int in. The -identifiere nin is thus a - reference-to-integral-mode-identifier• and its a priori mode is - reference-to-integral•. The nreala in the ecast• indicates that
the a posteriori mode is oreal•．The references within braces are to the particular rules of the Report which are used．
－stronq real unit． ..... 1
－strong unitary real clause•\｛6．1．1．e\} ..... 2
－strong real tertiarye \｛8．1．1．a\} ..... 3
－strong real secondary• \｛8．1．1．b\} ..... 4
－strong real primary• \｛8．1．1．c\} ..... 5
－strong real base• \｛8．1．1．d\} ..... 6
－strongly widened to real base（8．2．0．d\} ***************** 7
－strongly dereferenced to integral base• \｛8．2．5．1．a\} ..... 8
－reference to integral tase• \｛8．2．1．1．a\} ..... 9
－reference to integral mode identifiere \｛8．6．0．1．a\} ..... 10
－1etter i• \｛4．1．1．b\} ..... 11
－letter i symbol• \｛3．0．2．b\} ..... 12

In the above analysis the two coercions occur in lines 7 and 8．In lines 1 to 6 ，the sort，i．e．，estrong•，is carried through the parse until it meets with the ecoercende（in this example a base•）in line 6．In lines 9 to 12 all the coercions implied by the estronge in line 1 have been expended．The elaboration naturally follows the parse in the reverse order．At line 10 the identifier ain is identified with its defining occurrence and the a priori mode，reference－to－integrale，is established．（This is usually accomplished by an early pass of the compiler．）In line 8 the dereferencing occurs and this is followed by widening in line 7．No further semantics is involved in lines 6 down to 1 ．

6． 10 Balancing
Balancing is the word used to describe the process of finding one mode（the balanced mode）to which each one of a qiven set of modes may be coerced（1）．The process of finding the balanced mode will be determined by the sort of syntactic position involved．Balancing in a strong position is a simple process（some may even claim that it is not really balancing）， whereas the programmer may need to exercise care in the balancing of modes in firm positions，for the final balanced mode may not be immediately clear．

In the reach of the edeclaration abool $p$ ，real $x$ ，$y$ ，ref real $x \times$ ，［ ］real $x 1$ ，ref $[$ real $x \times 1 a$ ，an example of soft balancing is

$$
\text { ㅁ( } \mathrm{p} \mid \times x \text { ! } \mathrm{x}):=3.14 \mathrm{a}
$$

an example of weak balancing is

$$
\text { ㅁ(p) } \times \times 1 \text { | } \times 1 \text { ) [i] }
$$

an example of firm balancing is

$$
\text { 口2.3 + ( p | } 3.14 \text { | x }) \text { 口 }
$$

and an example of strong balancing is

$$
\text { 口y }:=\text { if } p \text { then } 3.14 \text { else } x \text { fin }
$$

（1）Strictly speaking，only ecoercendse are coerced．We shall find it convenient to speak of coercion of modes，by which is meant the mode enveloped by a coercend＊．

In general, given a set of modes, a balanced mode must be found which is such that each one of the given modes may be coerced to it. In achieving this, at least one of the given modes must be coerceable usinq the given sort, whereas the others may be strongly coerced, i.e., the limitations of the syntactic position must be accepted by at least one of the given modes, otherwise the balancing is not possible. An example in Which a balance is not possible is $\quad 2.3+1 \mathrm{p} \mid$ skip $\mid$ gonto $k$ ) $n$, which is therefore not a formula•.

### 6.11 Soft balancing

A simple example of soft balancing is

$$
\text { 口 ( } \mathrm{p}|\times \mathrm{x}| \mathrm{x}):=3.14 \mathrm{a}
$$

Examination of this object suggests an eassignatione in which the mode of the edestinatione, $\quad$ ( $p$ I $x x$ I $x$ ) a, should be - reference-to-real॰. A successful parse is thus assured if the balanced mode of the conditional-clause is oreference-toreal. However, the mode of axxa is •reference-to-reference-toreal•, whereas that of axa is ereference-to-real•. The mode of axxa may be coerced to the balanced mode by dereferencing (once) and that of axa by the empty coercion. If we recall that the only coercion which is relevant in soft positions is deproceduring, then it is clear that oxxacannot be softly coerced to the balanced mode. One must therefore allow axa to be softly coerced and axxa may then be strongly coerced (dereferenced). A sketch of the parse of the odestination. reference-to-real-destination



Fig.6. 11
is shown in figure 6.11. The rule which is relevant in this parse is

- FEAT choice Clause : strong then Clades, feat else Clause.[R.6.4.1.d], in which oPEAT• is replaced by osofte and ©CLAUSE• by oference-to-real-clause. This same rule has an alternate production. The complete rule is
- FEAT choice CLAUSE : strong then CLAUSE, FEAT else CLAUSE;
feat then Clause, strong else cladose. -

The second alternate is clearly necessary for parsing the -assignation•

$$
a(p|x| x x) a:=3.140
$$

for in this case axxa must be strongly coerced.
Now consider the eassignation

$$
\square(\mathrm{p} \mid \mathrm{x} \mathrm{\mid} \mathrm{Y}):=3.14 \square
$$

Here aither axa or ay口 may be chosen to be soft. It follows that ㅁ( $p$ ( $x$ $y$ ) n may be parsed as a oreference-to-realdestination in two distinct ways, i.e., either the axa or the ay口 may be chosen as soft with the other strong. This is one of the rare examples of syntactic ambiguity in algol 68. The ambiguity might have been avoided, but at the cost of considerable complexity in the grammar. Since no semantic ambiquity is involved, greater clarity in the grammar is achieved by allowing a harmless syntactic ambiguity.

## 6. 12 Weak balancing

A simple example of weak balancing is
 -selection and is therefore $i \bar{n}$ a weak position [R.8.5.2.1.a]. The mode of n 1 i $\underline{i}$ a is complexo(1), but that of n 3 a is -integrale. It is clear that the object n 3 n must be widened (twice) to ecomplex•, but widening cannot occur in a weak position. Thus al $\underset{i}{ } 2 \square$ must be weakly coerced (the coercion is empty) and a3n may then be strongly coerced (widened twice). The balanced mode of a ( p | $1 \underline{i} 2$ | 3) n is therefore ecomplex.. A sketch of the parse of this esecondary is shown in figure 6.12.


Fig.6. 12
The rule used in this parse is the same as that given in paragraph 6.11 above, but this time $\bullet$ FEAT• is replaced by •weak•
(1) Here ©complex• stands for estructured-with-real-field-letter-r-letter-e-and-real-field-letter-i-letter-w..
and ©CLAUSE• by •complex－clause•．
A weak balance which involves a harmless syntactiz ambiguity is
are of（ F｜z1｜z2 ）口
 the balanced mode is oreference－to－complex since weak coercion does not remove the last reference－to［R．8．2．1．1．b］．The coercion of both az1a and az2a is thus empty and either one of them may be chosen as weak．

6．13 Firm balancing
A simple example of firm balancing is
$\square 2.3+(\mathrm{p} \mid 4.5$｜6）口
In this example the conditional－clausee，$\quad$（ $p$｜ 4.5 ｜ 6 ）a，is an coperande of a formula and is therefore in a firm position ［R．8．4．1．d］．The operator $\quad \square+\square$ is that declared in the －standard－prelude•［R．10．2．4．i］．It requires a right •operand• of mode reale．Thus a 4.5 n is of the required mode while a6a must be widened．Since wideniny may not occur in a firm position，we must choose 14.5 a as firm and then allow a6a to be strong．A sketch of the parse of this •operand（esecondary＊）is


Fig．6． 13
shown in figure 6．13．The relevant rule is again the same as that qiven in paragraph 6.11 above，but $\cdot F E A T$ is replaced by －firm• and •CLAOSE• by •real－clause•．

An example of a firg balance in which there is a harmless syntactic ambiguity is

$$
\text { 口2. } 3+(\mathrm{F} \mid \mathrm{xx} \text { | } \mathrm{x}) \mathrm{n}
$$

for dereferencing is peraitted in a firm position and both $\quad \mathrm{xxa}$ and axa may be firmly coerced to ereal• by dereferencing．

6．14 Strong balancing

> A simple example of a strong balance is $\square y:=(p|x| 1) a$

Here the conditional－clause•，$\quad(\mathrm{p}|\mathrm{x}| 1) \mathrm{n}$ ，is a esource• and is therefore in a strong position［R．8．3．1．1．c］．Both axa and ala must therefore be strongly coerced to the balanced mode which is •real．．This means that axa is dereferenced and a1口 is widened．

Observe that strong balancing is a trivial process for one is not faced with the necessity of deciding which of the given modes should retain the sort of the syntactic position．They all retain strong．In the example above，as in most cases of strong balancing，the balanced mode is determined by the context． Balancinq in firm，weak and soft positions，however，is different．In these positions the balanced mode is not given by the context but must be decided by examining the given modes alone．

## 6．15 Positions of balancing

In the example above we have considered balancing only in a －conditional－clause• This is a typical situation and is sufficient to illustrate the principles involved．However， balancing may occur in other situations and we shall list each of $t$ hem here．

```
-choice-clause• in a conditional-clause* [R.6.4.1.c,d]
 e.g., \(\quad\) abbs(p | 1 - 2.3) .
-balance• in a collateral-clause• [R.6.2.1.e]
 e.g., 啲b(1, 2.3, x) п.
- suite-of-clause-trainse in a serial-clause• [R.6.1.1.g]
 e.g.. 口((p | 1) ; 3.14. 1 : 1) ㅁ.
-identity-relation• [R.8.3.3.1.a]
 e.g., axx :=: xa.
```

Although these are the only balancing positions in the strict language，the programmer should be aware of their inplications in the extended language．For example

$$
\text { ㅁ(p) i |: q | x } 1: \mathrm{r}|3.14| 5)+2.35 \mathrm{a}
$$

requires a firmly balanced mode of ereale for the left •operande of the ©operator $\quad$＋+ ．This is achieved by dereferencing and then widening aia，by dereferencing axa，by the empty coercion upon a3．14a and by widening a5a．Since an ooperand must be firm，either axa or a3． 14 a could be chosen to be firm，and the others could then be strong．Note that since widening cannot be done in a firm position，both uin and mon must be strong． Another example of firm balancing in the extended language is
 in which either a3．14n or axa or nrandoma or rxxa may be firm but the others including the •jumpe must be strong．

Notice that a collateral－clause may be only firmly or strongly balanced［R．6．2．1．c，d］．Examples，in the reach of ㅁ［ $1: 3$ ］real $\times 1$ a are
for firm kalancing and
पupb（x，i，1）व
for strong balancing．

$$
\text { ax } 1:=(x, i, 1) \square
$$

Balancing may occur in a serial－clause which contains a －completer•．A trivial example is

口（ $(\mathrm{p} \mid 1)$ ； $3.14 .1: 1)+2 \mathrm{a}$
Here，if opa is otruea，the 口1口 is widened to oreale before the addition is performed（despite the fact that the right ooperand is ©integral•），for the firmly balanced mode of the left －operand• must be decided without reference to the context．

The balancing of an identity－relatione is soft．An example is

$$
\mathrm{nxx}:=: \mathrm{xa}
$$

Here the left etertiary must be dereferenced once and therefore cannot be soft．The right etertiaryo is therefore chosen to be soft and the coercion upon it is empty．In the identity－ relation•
ㅁx :=: xx口
the choice must be made in the opposite order．The identity－ relation•

$$
\square x:=: y 口
$$

is syntactically ambiguous since either the left or the right －tertiary may be soft；however，as in the other case mentioned above，no semantic ambiquity exists．A typical oidentity－ relation ${ }^{\text {e which might arise in list processing is }}$
口(든 cell : next of cell):=: nilla
in which the unila can only be strongly coerced．This forces the left etertiarye to be soft．

6．16 Program example
The following program calculates the greatest common divisor of a set of integers（1）．The original algorithm is in FORTRAN．The ALGOL 68 version given here retains the labels as used in the fORTRAN program（preceded by the letter 1）in order to help in the comparison of the two．It is interesting to note that all the jumps of the original naturally disappear except for aqo to 110 a in the innermost conditional－clause．This could perhaps be eliminated by using a callo of a recursive $\bullet$ procedure at the •label• al10：口．

```
q口\underline{goc gcdn = (ref [1:] int a &the given set of integers& ;}
 ref[1:upb a] int z qthe resulting multipliers&)
Rthe gcd result& int :
 begin int n = upb a &the number of integers& ;
 int m := 0, k, sgn ;
 q
 for i to n whille a[i] = 0 do (l1: z[i]:=0,m := i) ;
 q
 if (m +:= 1) > n &now it is in position m&
 then &all are zero, so exit with resultz 0
 els-f 13:m m n
 then conly the last one is non-zerot z[m]:= 1 ; a[n]
 else} 14: &check the sign of a[m]
```

[^1]```
    ref int \(a m=a[m] ; \quad \operatorname{sqn}:=\) sign \(a m\);
    int c1 \(:=a m:=a b s a m ; k:=m+1\);
    15: \&calculate via \(n\)-m iterations of the ged algorithm\&
    for i from \(m+1\) to \(n\) while \(c 1 \neq 1\) do
        beqin ref int ai \(=\) a[i] ;
        int \(q, y 1:=1\), y2 \(:=0, c 2:=\) abs ai ; \(k:=i ;\)
            17: \(\underline{i f}\) ai \(=0\)
            then ai := \(1 ; z[i]:=0\)
            else 110:
                if \(q:=c 2+c 1 ;(c 2+::=c 1) \neq 0\)
                thef y2 -: \(=\mathrm{q}\) * y 1 ; \(\mathrm{q}:=\mathrm{c} 1+\mathrm{c} 2\); ( c 1 t:: \(=\mathrm{c} 2) \neq 0\)
                then y1 -:= q * 72 ; go_to 110 \&eliminate the jump?
                else 115: (c1 := c2, y1 := y2)
                fi :
            120: \(\mathrm{z}[\mathrm{i}]:=(\mathrm{c} 1-\mathrm{y} 1 * \mathrm{am})+\mathrm{ai}\);
            ai : \(=\mathrm{y} 1\); am := c1 fí ;
        130: skip end ;
        \(\not \subset\) if \(k=n\), then the following iteration is emptyd
        125: 160: for \(j\) from \(k+1\) to \(n\) do (165: \(z[j]:=0\) ) ;
        140: for f from \(k-m\) by -1 to 2 do
        (z[j] *:=a[j+1] ; \(150: a[j] *:=a[j+1])\);
    \(z[\mathrm{~m}]:=a[\mathrm{~m}+1]\) * sg n ;
    1100: am
    fi
endra
```

Review questions

6．1 Fundamentals

a）What three things determine the particular coercions？
b）What are the four sorts of syntactic position？
c）Is nreal ：inta a cast＊？
d）Is oreal ：booln a •caste？
e）What coercion occurs in $口[$ bool ：101a？

6．2 Classification of coercions

a）How many different coercions are there？
b）What coercions occur in areal ：inta？
c）What coercions are classified as $\bar{f} \bar{i} t t i n g$ ？
d）What coercion occurs in $⿰[$［ $]$ real $: 3.14$ ？
e）What coercion occurs in dint ：go to ka ？

6． 3 Fittinq

a）What coercions occur in rreal ：ref ref ref reala？
b）In the reach of rref ref real $x x x$ ，what coercions occur in uref real ： $\mathrm{xxx口}$ ？
c）In the reach of qref proc int rpia，what coercions occur in口int ：rpin？
d）In the reach of aproc ref bool prb，what coercions occur in abool ：prba？
e）What rules are used in the parse of rreal ：randoma as a －real－caste？

6．4 Adjusting
a）What coercions occur in uunion（real，bool）：randoma？
b）Is uniting a fitting coercion？
c）What kind of value results from a proceduring？
d）Is \quad proc $\notin \underline{y}$ oide ：sinn a caste？
e）Is aproc croide ：randoma a ecast•？
6．5 Adapting
a）Is hipping an adjusting coercion？
b）What coercion occurs in abool ：go to ka ？
c）What coercions occur in ax ：＝（ $1>2$｜ 3.4 ｜5）口？
d）What coercions occur in \quad［ ］real ：randoma？
e）What coercions occur in $\underline{\underline{u}} \underline{\underline{n} i o n}$（［ ］real，bool）：randoma？

6．6 Syntactic position

a）What coercions may occur in weak positions？
b）Of what sort is ain in $\quad x 1[i+1]$ ？
c）Of what sort is an1a in axi［n1［i］］r？
d）In the range of 口ref ref［ ］real rrixa，what coercions occur in arr1x［2］：＝2．3n？
e）Of what sort is axa in $a x:=y 口$ ？

6．7 Coercends

a）What are the four kinds of ecoercende？
b）List all the ecoercendse in dif a of b then $x:=2$ else $x:=$ $y+3$ fír．
c）Is $\quad \mathrm{x}:=$ nily an eassignatione？
d）Is $\quad \mathrm{xx}:=$ nila an \bullet assignation•？
e）Is anil ：＝ 1 a an eassignation•？
6．9 The syntactic machine
a）What rules are used in parsing acompl ：in？
b）Is \quad ㄷogmp $: ~ \underline{u n}$ ion（int，booll）a a cast•？
c）What rules are used in the parse of aproc \mathbb{x} oid $\notin p=(: x:=$ 1）\square ？
d）What rules are used in the parse of arandoma as a estrong－ void－unite？
e）Is $a x+\underline{n i} \underline{l} a$ a formula \bullet ？

6．10 Balancing

a）Can the modes •real• •integral• and \bullet format• be strongly balanced to real？
b）Can the modes •real• and •integral• be strongly balanced？
c）What is the softly balanced mode from the two modes －reference－to－real• and eprocedure－real•？
d）What is a firmly balanced mode from the set of modes ereal•， －integral• •procedure－integral• and \quad reference－to－ inteqral•？
e）Can the modes •reale and boolean• be balanced？
6．11 Soft balancing
a）Is the parsing of $口(\mathrm{p}|\mathrm{xx}| \mathrm{y}):=3.14 \mathrm{a}$ ambiguous？
b）In the reach of \quad proc ref real $p x a$ ，how is o（ $p|p x \quad| \quad x x)$ $:=3.14 a$ balanced？
c）In the reach of aproc ref real pxa，how is of p \mid px \mid gonto k ）：＝2a balanced？
d）Can the pair of modes •procedure－row－of－real• and oreference－ to－real be softly balanced？
e）Can the modes ereference－to－procedure－reference－to－bcolean• and •reference－to－reference－to－boolean• be softly balanced？

6． 12 Heak balancing
a）In the reach of \quad［ ］real $x 10$ ，how is \quad（ $p \mid x 112)[i] 0$ balanced？
b）Can the modes ereference－to－real and eunion－of－real－and－ integral－mode＊be weakly balanced？
c）Is $\quad 1+\mathrm{re}$ of（ $\mathrm{p} \mid 1.2$｜ 3.4 i 5 ）a a formula•？

e）How is mim of（ p j random $\mid 0 \underline{i} 2$ ）a balanced？

6． 13 Firm balancing

a）Is \quad skip／skipa a \bullet formula•？
b）Can union－of－reference－to－real－and－reference－to－integral－ mode and •real be firmly balanced？
c）Can eprocedure－reale and reference－to－reale be firmly balanced to eprocedure－real•？
d）Is $\mathrm{n} 2+(\mathrm{p}|\mathrm{x}| 3.14)$ a syntactically ambiguous？
e）Is aabs（ p｜trie \mid＂a＂）a a formula•？
6． 15 positions of balancing
a）Can the set of modes •reference－to－reference－to－procedure－ reference－to－real。，$r e f e r e n c e-t o-p r o c e d u r e-r e f e r e n c e-t o-~$ real•，reference－to－reference－to－real and oreference－to－ real be weakly balanced？
b）Is a（ i $\mid x x$ ，nil ，skip \mid go＿to error ）：＝：x an oidentity－ relation＊？
c）Is \quad（（ p｜ 11 ）；true． 11 ：（ i＞ 0 ｜12）：false． 12 ： 1 ）a a closed－clause•？
d）How is nupb（ $1,2.3,4$ í $5.6, x, x x$ ，i ）a balanced？
e）Is $口$（ p｜nil \mid skip ）$:=3.14 \mathrm{a}$ an eassignatione？
6．16 Progran example
a）Describe the coercions involved in the elaboration of $\mathrm{n}(\mathrm{m}+:=$ 1）$>\mathrm{na}$ ．
b）Describe the elaboration of \quad int $c 1:=a \|:=a \underline{a} \underline{s}$ ana．
c）What is the purpose of the odeclaration aref $\underline{\underline{i} \underline{n} t} a i=a[i] 口$ ？
d) Why does a oskip occur on line al10: skip enda?
e) Can you eliminate the qgo to 130 a by using a recursive procedure at the position $\mathrm{al} 10: \square$?

7 United modes

7. 1 United declarers

Although internal objects are always of one non-united mode, external objects such as expressionse [R.6.0.1, a, b] may be of united mode, indicating that the mode of the value possessed is not known until elaboration (run time). To allow for this, it is necessary for the lanquage to provide •declarerse uhich specify united modes. Examples of such odeclarers are nunion(int, bool), union([]real, []char), union (ref[]int, ref[]real), union ($\underline{a}, \underline{u} \underline{n i}$ 으 ($\underline{b}, \underline{\text { c }}$), d) .

The syntax of eunited declarerse is not trivial but we may simplify it to the following:
united declarer : union of symbol,
open symbol, declarer list proper, close symbol.
declarer list proper : declarer, comma symbol, declarer ;
declarer list proper, comma symbol, declarer.
The syntax of the Report [R.7.1.1.cc,....jf], however, is an intricate exercise in the use of metanotions. Its effect is to allow, syntactically, that unions may be both commutative and associative, and that the modes of the union may be treated in the sense of mathematical set theory. This means that the same united mode is specified by the declarerse qunion ($\underline{a}^{(\underline{b}, ~} \underline{c}$),
 union ($\underline{c}, \underline{b}$)) $口$.

7.2 Assignations with united destination

Bacause edeclarerse specifying united modes exist, the declaration of •variables• using such edeclarerse is possible. Such a edeclaration• might be qunion (int, bool)iba, whereupon the mode of aiba is •reference to union of integral and bcolean mode•. An assignment way be made to such a variable•,

Fig 7.2
but the eassignation \quad ib $:=$ truen is syntactically possible only because of the uniting coercion to which the basee, otruen, resulting from its strong position as a source•, is subjected (see figure 7.2 at 1). The •assignation \quad aib $:=1 \mathrm{a}$ is also valid. In both these assignments the internal object assigned does not change under coercion, and the object atruen possesses the same value whether it is considered, a priori, as a ebase•, or, a posteriori, as a source• (see the figure at 2). Note that aibr possesses a name (see figure at 3), whose mode is - reference to union of integral and boolean mode•, but that this name may refer to a value which is either of mode integrale or of mode boolean•, since values are not of united mode (i.e., a mode which begins with eunion of \bullet). Also, the mode of the value referred to by such a variable as aiba, can be determined, in general, only at the time of elaboration of the eprograme (not at "compile time"). These considerations lead one to suspert that the use of united modes implies storage allocation or cun time orqanization methods which must be more elaborate than those required when such modes are not used (see the figure at 4). A certain price must therefore be paid for the use of united modes, but in some situations they are essential (see[r.11.11]); moreover, algol 68 is designed to minimize those places in a - programe where a run time check of the mode of a value is necessary. Such a check is unnecessary for the eassignations• nib $:=$ truea and $u i b:=10$. These checks are known as - conformity-relations•. Before passing to these we examine two further •assignations•.

In the range of the declaration aint n, bool po one might be tempted to consider the objects on := iba and $口$ p $:=i b n$ in the hope that the assignment would take place, if possible. However neither of these two is an oassignationo, for in both cases, though the mode of the destination begins with - reference-to•, it is not followed by the mode of the esource•. In particular, there is no deuniting coercion. Thus we must rule them out as not belonging to algol 68.

7.3 Conformity relations

-Conformity-relations•, like •assignations•, •identityrelations• and ©casts•, are confrontations•. Examples of -conformity-relationso are: di : := ir, real : : x of qu and ad and $b::=1+2 * x$. The syntax of conformity-relations• might be written
conformity relation : tertiary, conformity relator, tertiary. conformity relator :
conforms to and becomes symbol ; conforms to symbol.
This syntax makes the conformity-relation appear to be symmetrical, but this is not the case as an examination of the strict syntax of the Report 「R.8.3.2.1] will reveal. There one may see that the otertiaryo on the left is soft, whilst that on the right is not of any sort and therefore cannot be coerced. Moreover, the mode of the left otertiary must begin with - reference-to. We may recall that the edestination of an -assignation*, i.e., the $\quad \mathrm{xa}$ in $\mathrm{ax}:=3.14 \mathrm{a}$, is soft, so that there is some similarity between assignations* and conformity-
relations•．rhis is intentional，for the elaboration of a －conformity－relation often results in an assignment．The right －unite of an eassignatione，e．g．，\quad a．14口 in $\quad \mathrm{ax}:=3.14 \mathrm{a}$ ， however，is strong．Thus the right ounit of an assignation is stronqly coerced but the right etertiarye of a conformity－ relation．is not coerced．

We may now ask what the difference is between $a x:=3.14 n$ and $\quad \mathrm{x}::=3.14 \mathrm{n}$ ．In the case of $\mathrm{ax}:=3.14 \mathrm{n}$ ，an assignment is made．In the case of $u x:=3.14 n$ ，an assignment is also made but not before checking that such an assignment is possible． Anothar difference is that the value of $\mathrm{ax}:=3.14 a$ ，after its elaboration，is the name possessed by axa，but the value of $\quad \mathrm{x}$ $::=3.14 a$ is a truth value，viz．，etruem．

Now consider $u x:=1 \square$ and $u x::=1 \square$ ．In the case of $n x:=$ 10 an assignment of the real value， 1.04 ，is made to axn after the widening of a 1 n to a value of mode orealo，but $\mathrm{ax}::=1 \mathrm{a}$ delivers the value afalse and no assignment takes place．Note that the $\quad 010$ in $u x::=1 口$ is not coerced and in particular cannot be widened to •real．The reader may now protest that any simple minded compiler could determine，at compile time，that the value of $\mathrm{ax}::=3.14 \mathrm{a}$ is truen and that the value of $\mathrm{ax}::=$ 1口 is false，thus the information yielded is trivial．We agree．However，the possibility of using united modes makes the －conformity－relation an essential tool，as we shall soon discover．

We have mentioned that the right otertiaryo，e．g．，the ala in $\quad \mathrm{x}$ ：：＝ 1 n is not coerced．Therefore we may ask what will happen with $\mathrm{ax}::=\mathrm{ya}$ and $\mathrm{ax}::=$ in．The semantics of the －conformity－relation•［R．8．3．2．2］now comes to the rescue．It tells us that，instead of returning the value false immediately，the right otertiary＊，e．g．，the $\quad y \quad$ in $u x::=y 口$ is dereferenced as often as is necessary or possible．Thus $\mathrm{ax}::=$ y口 will deliver mtruea and \quad ax ：$=$ in will deliver \quad falsem and in arriving at this，both the ay口 and the oin are dereferenced once．

Fig．7． 3

The only difference between the conformity-relationse ax :: = 3.14a and $\quad \mathrm{x}:=3.14 \mathrm{a}$ is that no assignment occurs in $\mathrm{ax}:$: 3.14 a despite the fact that the value gielded by ax : : 3.14n is øtruea. A skeletal parse of the conformity-relation $\mathrm{cx}::=$ 3. 14a is shown in figure 7.3, where the only coercion involved (it does nothing) is shown at 1 and the value possessed by the -conformity-relation• at 2.

We see therefore that the conformity-relation is a way of finding out whether an assignment is or is not possible. Without united modes, this would be of no value, since this information is known at compile time. It is only when united modes are used that the conformity-relation is useful. Thus the examples given above are merely for the purpose of illustrating the fundamentals of the conformity-relatione and have no value in practical programming.

7.4 Conformity and unions

Suppose now that we are in the reach of the edeclaration nunion (int, chars) icn. Then the value of the cclause a (int i; ic:="a"; i :: ic) a is false and the value of the eclause•口(int i i ic $:=1$; i : : ic) n is metrue. Note that, without following the logic of the program•, these values cannot be determined at compile time. How can one use these things? The reader who is irked by trivialities is advised to turn to the Report [R.11.1, 10.5.2.1.b, 10.5.2.2.a, 10.5.3.1.b, 10.5.3.2.b, 10.5.4.2.b] where there are many examples of conformityrelationse in action. For those not so brave, consider the following problem.

We wish to write a eprocedure•, say otranslaten, which will accept either an integer or a character as its only parameter and will deliver either a character or an integer which is the environmental equivalent [R.10.1.j.k]. Thus suppose that in a qiven enviromment the integral equivalent of aa is -193., the -call• atranslate("a") a should then possess an integral value -193a and the call. otranslate(193)n should possess the character value aan. Its declaration then might be

口proc translate $=$ (union (int, char) a) union (int, char) :
begin ing i, chas c;
if i $::=$ a then repr i \# R. 10.1.k
else c : : = a ; abs c \# R. 10.1.j \# fi enda
In the body of this procedure the conditione, $\quad \mathrm{i} i:=a \mathrm{a}$, determines whether the value delivered is arepr in or nabs $c a$. The value of the conformity-relation \quad ac $::=\quad$ a \quad is voided, since one knows that, if control reaches it, the value will be struea; however, its presence is essential because the - operator - nabsa is not defined for operands of united mode.

7.5 Conformity extensions

-Conformity-relations* occur in certain extensions, both for the convenience of the programmer and for the purpose of allowing more efficient implementation of certain constructions. Examples of these extensions occur in the Report [R.11.11.q,ah].

We begin by explaining them in a simple way．

> The econditional-clause
> a $a::=u|1|: b::=u|2|: c::=u|: 3| 0) a$
can be written
ㅁ＊$a, b, c::=u *] a$
Its effect then is to test several conformities in succession， delivering as an integral value the index of the one which succeeds．If all of them fail then the result 00 is delivered． This，in itself，is useful，but its main purpose is for use as the－unitary－clause which follows the ccasen in a case clause「R．9．4．b，c］．In this particular situation the two enclosing symbols \quad［ $\# \mathrm{n}$ and $\square *]$ may be omitted．A case clause might therefore be
口case $a, b, c::=u$ in $f(a), g(b), h(c)$ out error exit esacu and its interpretation is the following：if ran conforms．to and becomes qua，then the value is of（a）a；otherwise，if aba conforms to and becomes aun，then the value is ng （b）a； otherwise，if aca conforms to and becomes aun，then the value is ah（c）a；otherwise the value is that of aerror exita．Note that
 it is undefined whether the value is of（a）or ag（b）a．Examples of the use of this extension are in the Report［R．11．11．q，ah］． We could perhaps write the procedure of section 7.4 as follows：

口proc translate $=$（union（int，char）a）union（int，char）： beqin int i，char c ；
case i，c ：：＝a in repr i，abs c esaç endr
though little would be gained in this simple example．
The description of the extensions［R．9．4．e．f］，however，is forbidding and it is perhaps worth while taking a little time to discover why it must appear in this way．Suppose we have the conformity case clause \quad（ $\mathrm{x}, \mathrm{x}: \mathbf{: =} \mathbf{u} \mid 9,8$｜error） q ．It is clear that if it is interpreted as the equivalent of $\mathrm{a}(\mathrm{x}::=\mathrm{u}$ ｜ 9 ｜： $\mathrm{x}::=\mathrm{u} \mid 8$｜error） n ，then the value 8 ．can never be delivered．This is unfortunate，for the implementer of the language may find it convenient and more efficient to make the conformity test in an order different from that given．It therefore should be made impossible for the programmer to determine from the Report the order in which the conformity tests are made．This can be done by describing the extension by means of parallel processing．It is worth our while to examine this more closely．

According to the Repart［R．9．4．e］，the ©clause \quad［ $\mathrm{F}_{\mathrm{x}} \mathrm{x}, \mathrm{x}$ $::=u *] a_{\text {，}}$ in the reach of oreal x ，union（int，real）un，is equivalent to the following

$$
\text { 口 (int i, sema } s=11 ; \underline{\underline{n}} \mathrm{n} \text { ion (int, real) } k=u ;
$$

$$
\operatorname{par}((x::=k \text { down } ;
$$

$$
(x:=k \mid \text { downs } s i:=2 ; m) j ; 0 \text { m: i)n }
$$

 elaboration of aun occurs once only；its value is then held in aka．The •declaratione osema $s=11$ ，declares a semaphore osa ［R．10．4］which will be used to control the elaboration of the two clauses．in parallel．The semaphore is initialized to the
value a1m. The two clauses beginning with $\mathrm{ax}::=\mathrm{ka}$, are, if this conformity is successful, followed by the formula adown sa which drops the value of the semaphore to 00 and thus forms a barrier in the elaboration of whichever eclause did not reach this action first. From this it is therefore not possible to predict whether the value -1a or 2 a will be delivered. To the programmer, this is an unimportantmatter, but the meticulous implementer will be pleased that there is no way in which he can be caught if he decides on one method of implementation rather than another.

The reader should now examine the description of the extensions in the Report [R.9.4.e,f,g] where he will see that it is necessary in this description to have $口(S / 1)$ a rather than ㅁ/1ם because the operator• \quad /n as a ©onadic-operatore with an integral right © operand could be redefined by the programmer. The letter \quad aso stands for the estandard-prelude and therefore returns to the original meaning of $\quad \mathrm{p} / \mathrm{a}$ as a monadic-operator• which accepts an integer as right •operand and delivers an equivalent semaphore.

Review questions

7.1 United declarers

 relation?
b) Is \quad union (int, bool) $:=$ booln an $\cdot a s s i g n a t i o n \cdot ?$
c) What is the value of gunion (int, union (bool, charl) : : union (bool, char, int) a?

e) Is $\quad \underline{u n}$ ion (int, struct (int a)) a a declarere?
7.2 Assignations with united declarers
a) In the reach of \quad ungion ($\underline{\text { chang }}$, bool) cba , is $\mathrm{acb}:=1 \mathrm{a}$ an -assignation•?
b) In the reach of gunion(real, bool) rba, is arb:=10 an -assignatione?
c) In the reach of \quad union ((e al, bool) $r b$, what is the mode of the value referred to by the name possessed by arba?
d) Is aunion (bits, bytes) :=: nila an identity-relatione?
e) In the reach of runion(int, char) ica, is oic := ic + in an -assignation•?

7.3 Conformity relations

 arc : : rca?
b) What is the value of $\mathrm{ax}::=$ truen?
 ibr, br bra, what is the value of aibr $::=b r a ?$
d) In the reach of qunion (bool, int) bia, is abi $:=1::=10$ an -assignation•?
e) Is ax : := $x::=x$ a \cdot conformity-relation?

7.4 Conformity and unions

a) In the reach of \quad ungion (chang, bool) $c b a, ~ i s ~ a x::=c b a a$ - conformity-relation-?
b) In the reach of aunion ([]real, real) r1ra, is arir : : = 3.14a a econformity-relation•?
c) Can \quad union ([]int, []ref int) a be contained in a proper -programe?
d) In the reach of qunion (int, real) ira, can n ir := 1a possess a name referring to a real value?
e) Declare a procedure which will accept an integer and deliver its square root, as an integer if it is integral and, otherwise, as a real value.
7. 5 Conformity extensions
a) What is the value of $a(x, i, b::=1 \quad 3,4,5,16) 口$?
b) What is the value of $口$ (real, real, real $:=3.14$ 7, 8,9 । 10) ㅁ?
c) Is asema $p=1$ a a edeclaration•?
d) Is racase $x, i, b:: u$ in $f(x), g(i)$ out h esacu a valid al gol 68 object?
e) In the reach of \quad union (char, int, bool) ciba is acib $::=$ skipa a econformity-relation ?
f) IS \quad x $::=$ go_to $k n a$ conformity-relation•?

8 Formulas and operators

8.1 Formulas

In section 3.11 formulase were discussed and the following simplified syntax was presented:
formula : operand, dyadic operator, operand ;
monadic operator, operand.
This is good enough as a first approximation but it does not help to explain that a formulae such as

$$
\square x+y * z a
$$

is elaborated in the order suggested by $\mathrm{ax}+(\mathrm{y} * \mathrm{z}$) n . The question then is how the priority of the operators may be used to determine the order of elaboration. A closer approximation to the syntax of formula (still ignoring modes and coercion) is

PRIORITY formula : PRIORITY operand,
PRIORITY operator, PRIORITY plus one operand.
PRIORITY operand :
PRIORITY formula ; PRIORITY plus one operand.
priority NINE plus one operand : monadic operand.
monadic operand : monadic formula : secondary.
monadic formula : monadic operator, monadic operand.
[simplified from R.8.4.1.b,, e,f,g]. Here the terminal productions of •PRIORITY• are [R.1.2.4.a,....n] •priority-one•, - priority-one-plus-one•, •priority-one-plus-one-plus-one•, etc. Thus, \bullet priority-NINE• has the meaning that one might expect. It is evident that the metanotion, \bullet PRIORITY•, is being used here as a counter to ensure that the left •operand must have priority not less than that of its associated edyadic-operatore and the right ©operand must have priority greater than that of its associated edyadic-operatore. We shall find it convenient to shorten the terminal productions of \bullet PRIORITY॰, in an obvious

Fig.8.1.a
way, to •p1, p2, p3, Using this shorthand notation, we obtain, from the first three rules above, the following in neteen rules:
p1 formula : p1 operand, p1 operator, p2 operand.
p1 operand : p1 formula ; p2 operand.
p2 formula : p2 operand, p2 operator, p3 operand.
p2 operand : p2 formula ; p3 operand.
formula : p9 operand, p9 operator, p10 operand.
p9 operand ：p9 formula ；p10 operand．
p10 operand ：monadic operand．
We may now present，in figure 8．1．a，a simplified parse of the －formula＊$\quad x+Y^{*}$ za，remembering that \quad＋\quad is a \quad p6－operator• and \quad＊＊is a •p7－operator＊．

Because a edyadic－operator requires that its left －operand be of the same priority（or higher）and that its right －operand• should be of higher priority，the •formula•

$$
a x+y+z a
$$

is elaborated as if it were $口(x+y)+2 \square$ ，for the only possible parse is that sketched in figure 8．1．b．

Fig．8．1．b
It is important to observe that，in a formula＊containing several－operators•，the operandse of each •operatore are determined solely by the priorities of the eoperatorse and do not depend in any way upon the modes of the eoperands•．Thus，
 priority $2=$ and so on，we know that the oformula．
nh d 3 i $\underline{d} 2$ j $d \underline{5} k$ d 41 d 7 m d 9 no
must be elaborated in the order suggested by

$$
\text { 口(h d3 i) } \frac{d 2}{d}\left((j d 5 k) d 4 \left(1 \frac{d 7}{6}(m d 9 \text { n)))) 口 }\right.\right.
$$

without any knowledge of the modes of oh， $\bar{i}, j, k, 1$ ，ma and onn．The compiler writer appreciates the necessity for this mode independence and the programmer gains because of the resulting clarity in the meaning of oformulas．

8．2 Priority declarations

－Priority－declarations were mentioned，in passing，in section 3．11．An example of a epriority－declaration is npriority $+=6 \square$
which is indeed one of the edeclarationse in the estandard－ prelude ［R．10．2．0．a］．A parse of this particular edeclaration is shown in figure 8．2，where \bullet－token is used here as shorthand for © one－plus－one－plus－one－plus－one－plus－one－plus－one－ token•．

The syntax of epriority－declaratione is
－priority－declaration ：priority symbol，
priority NUMBER indication，equals symbol，NUMBER token．•， ［R．7．3．1．a］，where we may observe that the metanotion－NUMBER• ［R．1．2．4．f］is used as a counter to ensure that the value of the

Fiq． 8.2
－token• on the right is the priority of the edyadic－indication＊ on the left．

The first two edyadic－indications•［R．4．2．1．d］used in section 8． 1 above might have been declared in口priority $d \underline{1}=1$ ，priority $\underline{d} \underline{2}=2 口$
but all of them might be declared more compactly by using an extension［R．9．2．c］which allows elision of apriorityas，as in upriority d $1=1, \underline{d} \underline{2}=2, \underline{d} \underline{3}=3, \underline{d} \underline{4}=4$ ， $\underline{d} \underline{5}=5, \underline{d} \underline{6}=6, \underline{d} \underline{7}=7, \underline{d} \underline{8}=8, \underline{d} \underline{9}=9 口$
Observe that the programmer may choose his own odyadic－ indications•，like \quad din and $\quad \underline{d} 2 \mathrm{a}$ and is not constrained to use only those which appear in the Report．The particular representations permitted will be determined by the implementation，but it is expected that most implementations will permit representations like \quad din and \quad didn together with such characters as $\square ? \square$ and $\square!口, ~ i \bar{f}$ available，and which are not already used as representations of some symbols［R．1．1．5．b］．

8．3 Operation declarations

Among the well known programming languages opriority－ declarationse may be unique to ALGOL 68．Certainly operation－ declarations are rare．The latter exist，perhaps in a more primitive form，in APL where all priorities are the same．

A simplified syntax of－operation－declaration is
operation declaration ：
caption，equals symbol，actual parameter．
caption ：operation symbol，virtual plan，operator．
［R．7．5．1．a，b］，but the strict syntax uses the metanotion •PRAM• to convey information about the number of and the modes of the －parameters and the metanotion eADIC• to convey information about the priority of the operator and whether it is monadic or dyadic．

An example of an eoperation－declaration•（in the strict language）is

（（real a ，real b）real ：（ $a>b$ $|a| b$ ））a and a simple parse is shown in figure 8．3．In the extended language it may be written

믈 max $=(\underline{r e a l} a, b)$ real $:(a>b|a| b) a$
for if the eactual-parametere is a oroutine-dentation•, then the - plan may be elided and the oroutine-denctation may be

Fig. 8.3
unpacked [h.9.2.e,d]. Before going further we should remember that this edeclaratione can only occur in the reach of a

In the reach of the odeclarationse given above, we may have a formula like \quad x max $y+3.14 \square$. Since the priority of the standard eoperatore $n+\square$ is six, we should expect this oformula \cdot to be elatorated in the order suggested by $n(x$ max $y)+3.14 a$. If the opriority-declaration had been npriority max $=50$ instead, then the formula would be elaborated as if it were fx 쁘즈 ($Y+3.14$) $\begin{array}{r}\text {. }\end{array}$

The eactual-parameter need not necessarily be a eroutinedenotation•. For example,
nop (string, int) int sị $=$ string inta
is an eoperation-declaration in which the eactual-parametere is an •ilentifier• The -operator usio is then made to possess the same routine as that possessed by ustring into [R.10.5.2.2.c]. In the reach of this edeclaratione the oformula* a" $+123^{\prime \prime}$ si 10 a will possess the same value as that possessed by the ©call. astrinq int ("+123", 10) a. Observe that

$$
\text { qop } \underline{\text { si }}=\text { string inta }
$$

is not an eoperation-declaratione because astring intr is not a - routine-denotation so the - plan• a(string, int) inta cannot be elided.

It is not necessary that an ooperation should deliver a value, but if it does not, then a formula containing such an -operatore cannot be used as an •operand•. Thus one loses some of the advantages of operators*, except perhaps for the benefit of compactness of expression.

```
An example is
```

$$
\begin{aligned}
& \text { nop interchange }=(\underline{\text { ref }} \text { real } a, b): \\
& \text { (} \mathrm{a}: \neq \mathrm{b} \mid \text { real } \mathrm{t}=\mathrm{a} ; \mathrm{a}:=\mathrm{b} ; \mathrm{b}:=\mathrm{t}) \mathrm{a}
\end{aligned}
$$

whose \bullet operator•, ointerchangen, could be used in the \bullet formula. ax interchange ya. The same effect would be obtained by weans of the -identity-declaration•

```
            qproc interchange = (ref real a, b) :
                ( a :#: b | real t = a ; a := b : b := t) a
whose \bulletidentifier could then be used in the \bulletcalí. ainterchange( \(x, y\) ) a. one might observe that the eactualparameter is the same -routine-denotation in both
``` -declarations• above.
- Operation-declarations• may therefore allow a compactness of algorithms since formulas• using •operators of several priorities may be built to do any job we may require. A - formula• like
is sometimes a more pleasing expression of thought than a nesting of ©calls• like \(r \max (\max (x, y), 0.1)\) 口
although LISP lovers may not agree.
8.4 Elaboration of operation declarations

An •operation-declaration• causes its •operator• to possess that routine which is possessed by its eactual-parameter• [R.7.5.2]. In the elaboration of

- (real \(\mathrm{a}=\) skip, real \(\mathrm{b}=\) skip ; real : (a>b|a|b)). This is, of course, already the value possessed by the routinedenotatione which is the actual-parametere on the right. The elaboration of an eoperation-declaration is thus similar to that of the eidentity-declaration•, particularly that in which the actual-parameter possesses a routine with one cr two - parameters•.

\subsection*{8.5 Dyadic indications and operators}

Although the same occurrence of an external object may be a representation of both a dyadic-indication• and an coperator•, the identification of the object, as it plays each role, is a distinct process. An example may help to illustrate this. In the -closed-clause•
\[
\begin{aligned}
& \text { ㅁ(priority } \frac{\max }{\alpha} \frac{1}{\mathbb{d}}=7 \text {; } \\
& \text { op } \underline{m a x}_{\underline{x}}=(\underline{r} e \underline{a} \underline{1} \mathrm{a}, \mathrm{~b}) \text { regal }:(\mathrm{a}>\mathrm{b}|\mathrm{a}| \mathrm{b}) \text {; } \\
& \text { <2x } \\
& x:=x \frac{\max }{2} y+3.14 \text {) }
\end{aligned}
\]
there are three occurrences of the object omaxa. The first occurrence is the defining occurrence of a edyadic-indicatione [R.4.2.1.e, 4.2.2.a]; the second occurrence is an applied occurrence of ngaxg as a •dyadic-indication and its defining occurrence as an operator. [R.4.3.1.b, 4.3.2.a]; the third occurrence of gmaxa is an applied occurrence of a edyadicindication• and an applied occurrence of an operator•. Thus, in each of the last two occurrences, the object amaxa represents two notions, both of which are involved in the identification process. Since an applied occurence must always identify a defining occurrence [R.4.4.1.b], the last occurrence of nmax
identifies two defining occurences，i．e．，the first as a －dyadic－indication• and the second as an ©operator•．In figure 8.5 we sketch the parse of each of the three occurrences of口Maxa and indicate by＂く＝＝＝＂how the identification occurs．

Fig．8．5
It is thus helpful to remember that an object like amaxa， except in a priority－declaration•，must be considered first as a edyadic－indication－（carrying the information about priority） and second as an operator（possessing an operation－a routine）．As a edyadic－indication it may identify only one defining occurrence［R．4．2．2，4．4．2．b］，but as an eoperatore it may，at different applied occurrences，identify more than one defining occurrence［R．4．3．2］．One need only consider the －formulase a3． \(14+4.25\) and \(n 123+456\) to realise that the standard ©operator• \(\quad+a_{0}\) ，in the first \(\bullet\) formula•，must be that which adds two real values［R．10．2．3．i］and in the second it is that which adds two integral values［R．10．2．4．i］．This ＂overloading＂of •operators•（i．e．，allowing them to have more than one meaning）has been traditional both in mathematics and in programming languages，so that it should not be difficult for us to remember that in ALGOL 68 any •operator．may have a meaning which depends upon the modes of its •operands•． Moreover，the programmer now has the power to overload operators at will．

\section*{8．6 Ifentification of dyadic indications}

The identification of •dyadic－indications•，like that of －identifiers•，is a simple process．For each applied occurrence one must search in the current range for a defining occurrence．If it is not found，then one searches in the next outer orange•［R．4．2．2．b］．The process is then repeated．If a －particular－programe contains no epriority－declarations＊，then the defining occurrence of any edyadic－indications will be found in the estandard－prelude（or perhaps a •library－ prelule•）．Since •dyadic－indications॰，again like oidentifiers॰， are subject to protection［R．6．0．2．d，6．1．2．a］，i．e．．to systematic replacement in a closed－clause in order to avoid confusion with the same object used elsewhere，it follows that the occurrence of，say
in some range• will mean that all operations possessed by the －operator• \(\quad+\square\) ，in the next outer •range•，will become inaccessible．A small example may help to make this point clear． In the object
\[
\begin{aligned}
& \text { ㅁ (priority } \frac{\max }{\alpha} \frac{x}{\alpha}=7 \text { : } \\
& \text { op } \frac{\max }{d} \frac{\underline{x}}{d}=(\underline{\text { real }} \mathrm{a}, \mathrm{~b}) \text { real }:(\mathrm{a}>\mathrm{b}|\mathrm{a}| \mathrm{b}) \text {; } \\
& x:=1.23 \text { max } y \text {; } \\
& \text { (priority } \frac{\max }{\mathbb{C}} \frac{x}{\not x}=5 \text {; } \\
& x:=2.34 \text { max } y \text {) } \\
& \text {) ロ }
\end{aligned}
\]
the fifth occurrence of nmaxa identifies the fourth occurrence． Moreover，due to protection of the inner eclosed－clause•，both of these occurrences are systematically changed into some other －indicant• which is not used elsewhere．Consequently，the last occurrence of \(\quad\) gmax is that of an operatore with no defining occurrence．Because of a context condition［8．4．4．1．b］，this could not be contained in a proper oprogramo．This means that the changing of priorities of the standard－operators．cannot be undertaken lightly．Perhaps it is just as well．

\section*{8．7 Identification of operators}

The identification of operators is not as simple．It is not sufficient for the esymbol to match that which occurs in an －operation－declaration since，as we have said before，one same －dyadic－indication•，when considered as an－operator may，at different occurrences，identify more than one defining occurrence．The additional requirements to be satisfied are as follows．The mode of the left－operand must be firmly coerceable to the mode of the first eformal－parametere in the －operation－declaration• and the mode of the right •operand must be firmly coerceable to the mode of the second eformal－ parameter：otherwise，the search for a defining occurrence proceads to the other operation－declarationse in the same －range•，or，as before，in successive outer •ranges•．We shall illustrate this with a simple example．
```

a\&1\& ( priority o = 8 ;
\&2q op o = (real a, b) real : 3.14 ;
\&3\& ( op o = (real a, int b)real : 3.15 ;
\&4\& ( Op o = (bogl a, b) ceqle : 3.16 ;
2.3 o x)))口

```

The question to be answered here is，which defining occurrence is identified by the •operatore non in the formula• \(\quad 2.3\) o xa in line 5．One first searches the orange in which that －formula• occurs．There is an operation－declaration•，on line 4 in this •range•，using the same edyadic－indication onor．This is the first requirement．However，since the mode of the－operand－口2．3n cannot be firmly coerced to \(\bullet\) boolean•，this attempted identification of eoperatorse fails and we must search in the next outer \(\quad\) range．This next outer •range also contains an －operation－declaration•，in line 3 ，but again the identification
fails since the mode of axa cannot be firmly coerced to －integral•．（Note that it is sufficient to have the failure occur in only one ooperand．．）We must now search in the next outer orange• which contains yet another operation－ declaration•，in line 2，using the same •dyadic－indication•． This time the identification succeeds since the mode of both口2．3n and \(u x a\) can be firmly coerced to oreal•．The value yielded by the oformula is therefore \(\mathbf{m . 1 4 m .}\)

\section*{8．8 Elaboration of formulas}

In section 5.1 we discussed the elaboration of a call•． The elaboration of a formula is similar．As an example， consider the ©clause•

Here the ©operator \(\quad\) maxa，in line 2 ，possesses the routine
 The elaboration of the oformula，in line 4，then has the following effect．In a copy of the routine possessed by ngaxa， the two askipas are replaced by the eoperands• of the eformula•． The rasulting object

口（드al \(\mathrm{a}=3.14\) ，real \(\mathrm{b}=y\) ；real ：（ \(\mathrm{a}>\mathrm{b}|\mathrm{a}| \mathrm{b})) \mathrm{a}\) ． which is a closed－clause ，replaces the formula and is elaborated．Its value is then the value of the eformula•．There is tharefore nothing new to tell about the elaboration of －formulas•。

Since it seems that each operation in a formula involves a sequence of actions like those in the elaboration of a calle， it may be thought that the execution of ALGOL 68 programs will be necessarily slow．This need not be the case，for the implementer will undoubtedly produce in－line code for the translation of a formula like \(u x+y\) y（perhaps only one machine instruction）．Provided that the effect is the same，he is free to produce any machine instructions for doing the job （see the note after 10．b Step 12 in the Report）．

\section*{8．9 Monadic operators}

The most significant fact concerning •monadic－operatorse is that they are always of priority ten．There are no epriority－ declarations• for－monadic－operators＊．Because of this，monadic operations are always performed first．This is a simple rule and is easy to remember．It means that the value of \(n-1\)＊＊ 2 a is a 1 n and not－1．，contrary to its meaning in ALGOL 60 and in FORTRAN．The reason for making this choice has been explained earlier in section 3．11．

Because of the syntax
monadic formula ：monadic operator ；monadic operand．
monadic operand ：monadic formula ：secondary．
［R．8．4．1．f，g］，the elaboration of \(a\) formula containing a sequence of monadic－operators proceeds from right to left．

Thus the of ormula．
nbin round－\(x\) a
is elaborated in the order sugqested by abin（ round（ -x ））a． A sketch of the parse of this •formula• is shown in figure 8．9．

Fig． 8.9
The identification of monadic－operatorse proceeds as for the odyadic－operators॰，the only difference being that there is only one－operande which must be checked against the only －formal－parameter• in the monadic－operation－declaration•．As for •dyadic－operators•，the mode of the •operand• must be firmly coerceable to that of the eformal－parameter•．An example is a\＆1\＆（ op \(\underline{\underline{L}}=\)（bool a）int：\((\mathrm{a}|100| 0)\) ；
 834
m true ））
in which the •operator \(\quad\) 鲐 ，in line 3，identifies the －operator• in line 1，since the value possessed by rituer cannot be firmly coerced to a value of mode •integral．The value of the－formula• am truen is therefore \(\quad 100\) ．

8． 10 Related modes
Two modes are＂related＂if each of them can be firmly coerced from one same mode［R4．4．3．b］．An example is the pair of modes specified by aref realn and oproc realo．These are related because both can be firmly coerced from the mode specified by口ref realo．（We shall find it convenient here to shorten the phrase＂the mode specified by 唯口＂to＂the mode ama＂，or even to
 empty coercion，and to nproc reala，by dereferencing and then proceduring．One reason for defining this relationship between modes is to exclude some dubious unions from proper oproyrams• ［R．4．4．3．d］．Consider，for example，the •declaration． qunion（proc real，ref real）pr ：＝xa Since axa is in a strong position it may be subjected to dereferencing，proceduring and then uniting，whereupon the assignment can occur．On the other hand the assignment can also occur with an immediate uniting of axa．There is thus an ambiguity．For this reason，unions of related modes are excluded from proper eprogramse．

Another reason，which has to do with •operators•，may
become clear by examining the following：
\[
\begin{aligned}
& \text { op } \underline{m}=(\text { ref red } \text { red int : } 1 \text {; } \\
& x:=3.14 \text {; } i:=m \mathrm{x} \text {) } \mathrm{a}
\end{aligned}
\]

What is the value assigned to ain？Is it \(a 0\) or ala？Since axa may be firmly coerced both to the mode aref realn and to the mode \(\quad\) proc reala，it is clear that there are two defining occurrences of the operator amn in the same range．This possibility must also be excluded from proper oprogramse「R．4．4．3．d］．

A first attempt to achieve this exclusion might be by forbidding the occurrence of two－operation－declarationse，in the same orangee，if their corresponding •operandse are of related modes．However，this is not enough as the following example shows：
\[
\begin{aligned}
& \text { 口 (op }+=([\text {]ref real } a, b) \text { real }: 0.0 \text {; } \\
& \underline{o p}+=([] \underline{r} e \underline{d} \underline{a}, b) \text { real : } 1.0 \text {; } \\
& \mathrm{x} 1:=(\mathrm{x}, \mathrm{y})+(\mathrm{y}, \mathrm{x}) \text {) 口 }
\end{aligned}
\]

In this example the modes \(口[\) ］realn and \(\mathrm{n}[\) ］ref realn are not related，nevertheless we have two defining occurrances of the same operator \(\quad \mathrm{a}\) a，as used in the oformula in the last line．It is for this reason that the concept of＂loosely related＂is developed in the Report．For most programmers and most implementers，this concept is sufficient to exclude multiple definitions of＊operators＊．It has been shown that there are certain pathological cases which can still slip through into proper •programs•．For a discussion of these the reader is referred to a paper by wossner and the discussion following it ［W7．A new wording of the context condition［R．4．4．3．b］is thus likely to appear in the revised Report．

\section*{8．11 Peano curves}

In the following example we assume that there is a plotting device and a •library－prelude（for plotting）containing －declarationse of the eidentifiers ax，y，plota and amover． Both axa and ay口 are oreal－variables॰，the two coordinates of the plot pen．The oprocedure uplota first lowers the pen and then plots a straight line from its current position to the position whose coordinates are \(\quad\)（ \(x, y\) ）口．The oproceduree amoven first raises the pen and then moves it to the position \(\mathrm{a}(\mathrm{x}, \mathrm{y}) \mathrm{n}\) ．

In mathematics it is known that a uniformly convergent sequence of continuous curves（e．g．，polygonal lines）will converge to a continuous curve．The particular example we have in mind is a sequence which defines a continuous curve passing through every point of a square．It helps in proving that the points of a square are in one－to－one correspondence with the points of d line interval．These are known as the Peano curves． The plotting of the approximants is an interesting exercise （provided that one has plenty of computing money）and the resulting fiqures are aesthetically pleasing．

Suppose that one begins with a square of side odr．The first approximant \((n=0)\) is a single point at the centre of the
square. To obtain the second approximant (\(n=1\)), one divides the original square into four squares each of side ad / 20. The solution for the case \(n=0\) is then applied to each of the four small squares. The four plots so obtained are then joinei

Fig.8.11.a
by three lines of length nd / 2 ** 10 in the directions first E , then \(N\) and then W. The resulting plot is shown in figure 8.11.a. The process is recursive, but perhaps we should follow it one more step. The next approximant \((\mathrm{n}=2)\) is shown in figure 8.11.b, in which the method is to apply the solution for the

Fig.8.11.b
case \(n=1\) to the four quarters, but scaled down and reoriented. These four plots are again joined by straight lines of length ud / 2 ** 2 a and in the same directions as before, i.e., first \(E\), then \(N\) and then \(W\).

To plot these approximants we consider some orientations of the case \(n=1\). A moment of thought will convince us that ue need only four orientations and these are shown in figure 8.11.c, together with a pair of truth values (the first related to rotation about the NE diagonal and the second related to rotation about the NW diagonal) and the direction of the second

Fig.8.11.c
of the three straight lines, either of which will determine one of the four orientations. In the reach of nbool \(p\), \(q n\), the - formula 0 op \({ }^{*}\) ga plots an approximant with the orientation \(n(p\), g) \(n\). and the eformula \(u p\) + gu plots a straight line of the required length and with orientation \(口(p, q)\).

The program(2) to plot an approximant follows. It first reads the length adn of the side of the square and the degree onn of the approximant. The first step is to calculate the length of the line segments reguired and then to move the pen to the starting position. The plot is then driven by the eformula*听rue * truen.
```

nbeqin $\& P e a n o$ curve approximante
op $+=$ (bool $p, q):$ ethis plots a straight line of length dq
( ( p = q | y | x ) +:= ( q | d | -d ) i plot ) ;
op * = (bool $p, q$ ) : ca recursive operationt

```

```

        \(p+\neg q ; p * \neg q ; n+:=1\)
    ) ;
    real $d$ the side of the squaret,
int $n$ the degree of the approximants ;
start here : read ( $(d, n))$;
$\mathrm{d} /:=2 * * \mathrm{n} \neq 1 \mathrm{eng} \mathrm{th}$ of connecting segmentst ;
$x:=y:=d / 2$; move \&to the starting pointa ;
\&now plot it\& (true * true)
enda

```

\subsection*{8.12 Chinese rings}

The next example is a solution to the puzzle of the Chinese rings. The puzzle may be stated as follows. There are ana rings with an elongated \(D\) shaped rod passing through them; the rings are attached, by wires through the \(D\) shaped rod, to a plate; this is done in such a manner that, if the first am - 2 arings have been removed, then the amath ring may be removed (or replaced) but not the am -1ath ring. The problem is to remove all the rings. The solution is by induction (1). Removal of rings 1 and 2 is done in the order "remove 2, remove 1 ". Assuming that we know how to remove (and therefore to replace) less than ama rings, then all ama rings are removed as follows: "remove \(m-2\) rings, remove ring \(m\), replace \(m-2\) rings, remove \(m-1\) rings".

In the following program(2) the formula ak down in removes ak - in rings. The formula• ak up iareplaces ak - ia rings. The formula* on down 0 a then drives the algorithm by removing all the onn rings.
qbegin
```

op down $=(\underline{i n t}$ a $1, b):$
( int $a:=a 1$;
$((\mathrm{a}-:=\mathrm{b})>0$
1 a down 2 ; print(("remove", a)) : a up 2 ; a down 1)) ;
op $\underline{p}=(\underline{i n t}$ a 1 , b) :
$\left(\frac{\operatorname{int}}{(1)} \mathrm{a}-:=\mathrm{a} 1\right) ;(>0$
( a up 1 ; a down 2 ; print(("replace", a)) ; a up 2 )) ;
int n ;
start here : read (n) ; $n$ down 0
enda

```
 Review questions

\section*{8. 1 Formulas}
a) Is ax := y口a \(\quad\) formula•?
b) Is ax +:= ya a formula•
c) What is the order of elaboration of ax + - y - - abs i over 2a?
d) How many priority levels are there for dyadic-operatorse?
e) Is \(\mathrm{ax}:=: \mathrm{y}\) (a formula•?
f) What is the value of \(\square 7-3-2\) ?
8.2 Priority declarations
(1) D.O. Shklarsky, N. N. Chentzov, I. M. Yaglom, The USSR olympiad Problem Book, Freeman \& Co. 1962, pp 80-84.
(2) This algorithm is due to Sharon Dyck and in its final form to W.L. van der Poel.
a）Is ppriority \(:=:=1 \mathrm{a}\) a epriority－declaratione？
b）Is upriority \(+:==0\) a a priority－declaratione？
c）Is p priority \(\underline{t}=10\) a a priority－declaratione？
d）Is apriority ？＝5n a epriority－declaration＊？
e）Is apriority ？， \(1=60\) a priority－declaration？
8．3 Operation declarations
a）Is oop \(:=:=(\underline{\text { ref }}\) real \(a, b): a=b a\) an operation－ declaratione？
b）Is rop \(t=(:\) true）a an operation－declaratione？
c）Is \(\square \underline{p}\)＊\(=\)（real a）real ：exp（a）a an operation－ declaratione？
 y）\(\quad\) an operation－declaratione？
e）Declare an operator ncreaten so that of create no has the same value as acreate（ \(\mathrm{f}, \mathrm{n}\) ） a ［R．10．5．1．2．C］．

8．4 Elaboration of operation declarations
a）What is the value possessed by non in the reach of nop \(0=\) （real a）int ：round an？
b）Is rop（real）real \(\underline{o}=\) randomn an operation－declaratione？
c）What is the value of the formula• \(\mathbf{a n}^{\prime \prime+123 "}\) si（＂＋1000＂si 2）a using the declaration of 口sin as in 8．3？
 －operation－declaratione？
e）Is nop（real，real）real \(\underline{a}=+\square\) an eoperation－declaration•？ 8．5 Dyadic indications and operators
a）How many defining occurrences may be identified by an applied occurrence of a edyadic－indication•？
b）How many operator defining occurrences of \(n+\square\) are in the －standard－prelude \(\bullet\) ？
c）How many opriority－declarationse are in the estandard－ prelude•？
d）Where is the epriority－declaration• for the •operator• \(\quad\) ？\(口\) in line 3 of \(10.5 .3 . i\) in the Report？
e）Is \(\mathrm{n}::=\mathrm{a}\) a \(\cdot\) dyadic－indication ？
8．6 Identification of dyadic indications
a）Is apriority \(+=8,+=9 口\) a \(\bullet\) priority－declaration•？
b）Can a proper eprograme contain口（priority abs \(=9\) ；\(x:=\) abs \(x\) ）\(a\) ？
c）Why does the \(S\) occur in the description of the repetitive statement［R．9．2．a，b，9．c］？
d）Are •dyadic－indications• subject to protection？
e）Are •operators• subject to protection？

\section*{8．7 Identification of operators}
a）In line 11．11．y of the report，the oformula avalue of ec－ 10 occurs．Where is the defining occurrence of its －operator•？
b) In line 11.11.at of the Report, the formula. of - onen occurs. Where is the defining occurrence of its -operatore?
c) In line 11.11.1 of the Report, the formula• a = zeron occurs. Where is the defining occurrence of its •operatore?
d) Where is the defining occurrence of the operatore nory in the formula \({ }^{1} \underline{10} 1\) or bin 6 ㅁ?
e) Where is the defining occurrence of the eoperatore \(\quad\) < \(n\) in the -formula• a"a" < (String :) \(口\) ?
8.8 Elaboration of formulas
 a > 0a?
b) What closed-zlause is elaborated as a result of the elaboration of the of ormula at \(x\) in in the reach of the -declaratione above?
8.9 Monadic operators
a) What is the value of \(\mathrm{a} 2+-\ldots+-3 n\) ?
b) Is \(\mathrm{ax}:=\) : yn a formula•?
c) Is ax \(+:=\) real : randown a formula•?
d) Is areal + reala a oformula ?
e) What is the value of \(\mathrm{a}-1 \underset{\mathrm{i}}{\mathrm{i}} 2=-1\) i -2 a ?
8. 10 Related modes
a) Are the modes aproc inta and orealn related?
b) Are the modes aref ref inta and rref proc intr related?
c) Are the modes rproc union(int, real) \(\quad\) and qunion (proc int, boogl) r related?
d) Can the declarer \(\quad\) union (froc real, proc) a be contained in a proper eprograme?

 be contained in a proper eprograme?
8.11 Peano curves
a) What would the formula• ofalse + falsen accomplish?
b) Write this algoritha using four mutually recursive procedures.
c) Translate the algoritha into fortran.
8. 12 Chinese rings
a) What is printed by \(\square 2\) down \(0 \square\) ?
b) What is printed by a3 down 0 口?
c) What is the purpose of the odeclaratione aint a \(:=\) aln?
d) What is printed by a6 down 2a?
e) Rewrite this algorithm without using eoperationdeclarations•.

\section*{9 The grammar}

\subsection*{9.1 The syntactic elements}

The grammar of ALGOL 68 is written using both "small-" and "large syntactic marks" (the lower and upper case letters of the alphabet) [R.1.1.2.a]. Thus, base consists of four small syntactic marks and \(\bullet\) MODB• consists of four large syntactic marks. A sequence of zero or more small syntactic marks is a "protonotion" [R.1.1.2.b]. Por example, © base• is a protonotion and so is estreets-that-flow-like-a-tedious-argumente, though the latter will not be found in the ALGOL 68 grammar. (The presence of hyphens within protonotions may be ignored.)

The syntax of ALGOL 68 is a set of "production rules of the strict lanquage" ("production rules", for short). A production rule is a protonotion followed by a colon followed by a list of protonotions separated by commas and followed by a point. A "notion" is a protonotion for which there is a production rule, i.e., it lies to the left of the colon in some production rule. For example, eintegral denotation is a notion because of the existence of the production rule
- integral denotation : digit token sequence.。
[R.5.1.1.1.a], but base is not, for there is no production rule for it [R.8.6.0.1.a].

Any protonotion ending with esymbol•, e.g., •begin-symbol•, is a "symbol".

A "direct production" of a notion is the part between the colon and the point in a production rule for that notion. Thus, -digit-token-sequence (see above) is a direct production of -integral-denotation and •insertion-option, radix, letter-r• is a direct production of radix-mould• [R.5.5.2.b]. The direct production of a notion is therefore a list of protonotions (the "田embers") separated by commas [R.1.1.2.b].

A direct production of a notion is also a "production" of that notion. If in a production of a given notion, some notion ("productive member") is replaced by one of its productions, then the result is also a production of the given notion. This replacement process may be repeated as often as we please and, in parsing, normally continues until all the notions have been replaced and the result is a list of symbols. Then we have a "terminal production" of the given notion. For example,
- digit one symbol, digit two symbol.

9.2 Two levels

The syntax of ALGOL 68 is a set of production rules for notions (the production rules of the strict language) as describedin section 9.1 above. only a few of the actual production rules are explicitly yiven in the Report. The number of production rules is infinite and the rule
- integral denotation : digit token sequence..
［R．5．1．1．1．a］is one of them．The others may be obtained，when required，from a tuo level grammar which we shall now describe． A typical production rule of the strict language is
－reference to real assignation ：
reference to real destination，becomes symbol，real source．． It is obtained from the rule in the Report
－reference to MODE assignation ：
reference to MODE destination，becomes symbol，MODE source．• ［R．8．3．1．1．a］，by replacing the metanotion •MODE consistently by one of its terminal productions，viz．，•real•．The rules of the Report are called simply＂rules＂without further qualification．We shall be speaking of several different sets of rules，so it is perhaps just as well to use the word＂hyper－ rule＂for the rules（such as the one just given）found in Chapters 2 up to 8 of the Report，especially if there ma \(\eta\) be some doubt about which set of rules we are referring to．A hyper－rule thus differs from a production rule of the strict language in that it may contain zero or more metanotions and zero or more semicolons．A production rule of the strict language contains no metanotions and no semicolons．

Another set of rules is the＂metarules＂．These are found in Chapter 1 of the Report．A typical metarule is
－FORESE ：ADIC formula ；cohesion ；base．•
［R．1．2．4．c］．A metarule may be distinguished from other rules by the fact that it has one＂metanotion＂（a sequence of large syntactic marks）to the left of the colon and zero or more semicolons to the right．However this is not sufficient to recognize one，for
－DIGIT ：DIGIT symbol．。
［R．3．0．3．d］is a hyper－rule，not a metarule．From the metarules we may derive the production rules of the metalanguage in a rather simple way．

Thus，in summary，the ALGOL 68 grammar consists of two sets of rules
（i）the metarules（in Chapter 1）and
（ii）the hyper－rules（in Chapters 2 up to 8）．
The production rules for the strict language are derived from both the metarules and the hyper－rules by a process which we shall explain，by example，in section 9.5 ．

\section*{9．3 The metarules}

A typical metarule is
－FORESE ：ADIC formula ；cohesion ；base．．
［R．1．2．4．c］．It provides three production rules for the metalanguage，which are
－PORESE ：ADIC formula．。
\(\bullet\) FORESE ：cohesion．。
and
－FORESE ：base．。
Thus a production rule of the metalanguage contains no semicolons．The two direct productions •cohesion and •base ara terminal（in the metalanguage），but the direct production \(A^{\text {a }}\)（IC formula may be produced further by using the metarule for
-ADIC. [R.1.2.4.d]. The terminal productions of metanoticns are always protonotions.

The words used for the metanotions are usually chosen in such a way that they help to convey a meaning. Coined words, such as •PORESE• are often mnemonic. Thus, •FORESE• is made up from
formula cohesion base
and pEat from
The reader will find many others, similarly coft the mnemonic is glaringly apparent. It is useful to remember that every metanotion ending with ETY © always has © EMPTYe as one of its (not necessarily direct) productions.

The metanotion \(\cdot A L P H A\) e is of interest because it has all the letters of the alphabet (small syntactic marks [R.1.1.2.a]) as direct productions. If more are required (perhaps in lanquages other than English), then it is permitted to add them (see 1.1.4 Step 2 in the Report).

Another metarule of significance is
- EMPTY : .•
[R.1.2.1.i], from which we see that the metanotion ©EMPTY•, if it appears in one of the hyper-rules, or in those derived from them, may be consistently deleted.

Two metarules to watch are
-ClOSED : closed ; collateral ; conditional.。
[R.1.2.3.r] and
- LIST : list ; sequence. .
[R.1.2.5.h], where a distinction must be made between the metanotion, which appears on the left of the rule, and the first production of each, which is a protonotion. In speech this distinction will be lost.

Another interesting metarule is
- NOTION : ALPHA ; NOTION, ALPHA.。
[R.1.2.5.f]. Roughly speaking, anything is a terminal production of •NOTION•. More precisely, any sequence of small syntactiz marks (the letters of the alphabet as used in the syntax) is a terminal production of *NOTION. This is so because the productions of eALPHA are the small syntactic marks. This fact is used heavily in the rules of section 3.0.1 of the Report.
one might also wonder about the metarules
-LMODE : MODE.•
and
- RMODE : MODE.•
[R.1.2.2.j,k]. The mystery may be resolved by examining the rule for eformulase [R.8.4.1.b], where the mode of the left - operande, that of the right -operande and that of the result delivered by the operation all appear in the same hyper-rule. These modes may be different, so it would not do to use the metanotion \(\operatorname{mODE}\) for all three of them. other instances of this same phenomenon are suggested by the metarule
－LOSETY ：LMOODSETY．•
［R．1．2．2．O］，which is used in the hyper－rule for ounited－ declarerse［日．7．1．1．ee，ff］，and by
－ROHMSETY ：ROHSETY．。
［R．1．2．2．d］used in the hyper－rule for eslicese［R．8．6．1．1．a］， where \(\bullet\) ROWHSETY counts the number of \(\bullet\) row－ofes not involved in the \(\bullet\) indexer• and \(\bullet\) ROWSETY• counts the number of etrimscripts• which are etrimmers•．

The two rules
－LFIELDSETY：FIELDS and ：EMPTY．• and
\(\bullet\) RFIELDSETY ：and FIELDS ；EMPTY．•
［R．1．2．2． \(\mathrm{q}, \mathrm{r}\) ］are another pair which play a similar role in the rule for eselectionse［R．8．5．2．1．a］．

There are two metarules in which the only direct production of the metanotion is a protonotion．They are
－COMPLEX ：structured with real field letter r letter e
and real field letter i letter \(m\) ．
［R．1．2．2．s］and
－LENGTH ：letter 1 letter o letter n letter g．•
［R．1．2．2．v］．This means that the presence of one of these metanotions in some hyper－rule is merely for the convenience of shortening the rule and plays no other grammatical role．

9．4 The hyper－rules
A qood introduction to the hyper－rules is to be found in section 3．0．1 of the Report，where are collected together several rules which should be mastered early，for they are used extensively elsewhere．A typical example is
－NOTION Option ：NOTION ；EMPTY．。
［R．3．0．1．b］．The first step in deriving production rules of the strict language，from the hyper－rules，is to make two new rules as follows：
－HOTION option ：NOTION．．
and
－NOTION option ：EMPTY．
As a next step we may replace each metanotion consistently by one of its terminal productions．For example，we might substitute •integral－parte for \(\cdot N O T I O N\)－and nothing at all for －EMPTY•．This will now give us two production rules of the strict language．They are
－integral part option ：integral part．． and
－integral part option ：．•
Note that ointegral－part－option means what the words suggest．i．e．，either the presence or absence of an integral－ parte．This is used with good effect in the rule
－variable point numeral ：
integral part option，fractional part．
［R．5．1．2．1．b］．Examples are a3．45n and r．45n．Many of the notions in algol 68 are similarly chosen so that the words （protonotions）used give some suggestion of the semantiz
elaboration．
The pair of hyper－rules
\(\bullet\) NOTION pack ：open symbol，NOTION，close symbol．• and
－NOTION package ：begin symbol，NOTION，end symbol．• ［R．3．0．1．h，i］are also used in several places elsewhere．Thus， if axa is a certain \(\bullet \bullet\) ，then \(n(x)\) a is an \(\bullet n\)－pack• and abegin \(x\) enda is an •n－package•．

The hyper－rule
－NOTION LIST proper ：NOTION，LIST separator，NOTION LIST．• ［R．3．0．1．g］ensures that at least two－NOTIONes will appear in the production．It is used，for example，in the rule for －collateral－declarations•［R．6．2．1．a］
－collateral declaration ：unitary declaration list proper． meaning that，for example，\(\quad\) real \(x\) ，int in is a collateral－ declaration but ureal xa is not．

\section*{The hyper－rules}
－NOTION LIST ：
chain of NOTIONs separated by LIST separators．
and
－chain of NOTIONS separated by SEPARATORS ：NOTION ；
NOTION，SEPARATOR。
chain of NOTIONS separated by SEPARATORS．
［R．3．0．1．d，c］are used to describe such objects as －123口
which is a echain－of－digit－tokens－separated－by－EMPTYs•，
a1, 2, 3a
which is a chain－of－strong－integral－units－separated－by－comma－ symbols•，and
\[
\text { व1 ; } 2 \text {; 3口 }
\]
which is a echain－of－strong－integral－units－separated－by－go－on－ symbols•．These are used principally in the rules for eserial－ clauses•［R．6．1．1］，but in other places also．

9．5 A simple language
We shall now use this kind of grammar to describe an interasting but trivial lanquage．By this small example we shall be able to see the complete grammar in a few lines．There are only three esymbolse，two hyper－rules and two metarules．Thus it will be easier to get an overall view of how the grammar works．

The language we choose is that in which the only sentences （or proyrams）are

वxyza，\(\quad\) xxyyzza，\(\quad\) xxxyyyzzza．．．
Perhaps we could say that the following would cause an ALGOL 68 computer to print sentences of this language until it runs out of time or memory space．
```

qbeqin stringg a, b, c :
do print((a +:= "x") + (b +:= "Y") + (c +:= "z"))
enda

```

The reason that this language is of interest is that it is known ［H］that it cannot be described by a context－free grammar such
as that used for the syntax of aLGOL 60 ．
The three symbols of the language and their representations are
syabol
－letter x symbol．
－letter \(y\) symbol．
－letter \(z\) symbol•

\section*{representation \\ ロx口 \\ वy口 \\ ロZロ}

This corresponds to the whole of section 3.1 .1 of the report． The three hyper－rules are

\section*{（i）}
－sentence ：
NUMBER letter \(x\) ，NOMBER letter \(y\) ，NUMBER letter z．•，
（ii）－NUMBER plus one LETTER ：NUMBER LETTER，one LETTBR．＊，
（iii）© ne LETTER ：LETTER symbol．。
These three rules correspond to all the hyper－rules found in Chapters 2 up to and including 8 of the report．Rule（i） expresses the requirement that the number of occurrences of each of the different letters should be the same．Rule（ii）uill be used to interpret this number，i．e．，actually to count them out one by one．Rule（iii）is almost the same as the hyper－rules 3．0．2．b and 3．0．3．d of the Report．Rule（ii）might be compared with 7．1．1．q of the Report，where the multiplicity of a orower． is being counted．Rule（iii）is present in order to satisfy the requirement of ALGOL 68 that only protonotions ending in －symbole are terminal productions of the grammar．Without this requirement we could describe the language with two hyper－rules instead of three．

\section*{The two metarules are}
（I）LETTER ：letter \(x\) ；letter \(y\) ；letter z．•
（II）©NUMBER ：one ；NUMBER plus one．
These two metarules correspond to the metarules found in section 1.2 of the Report．The first metarule，（I），is there so that we may be able，with one word，to speak of any one of the letters． It is similar to the metarule 1．2．1．t of the report for the metanotion ALPHA•．We could do without metarule（I），but then we should need seven hyper－rules instead of three．Metarule（II） is essential．In it，NUMBER is used as a counter．The terminal productions of the metanotion ©NUMBRR are © one \(\circ\) ，©one－plus－ onee，one－plus－one－plus－one and so on．The metarule is somewhat similar to the metarule of the Report for the metanotion \(\bullet\) ROWS ［R．1．2．2．b］．

We shall now go through，in detail，the process of finding some of the production rules of the strict language，as defined by the above grammar．This process is described in sections 1.1 .4 and 1.1 .5 of the report．Since there are infinitely many production rules of the strict language（even for the minilanguage above），we cannot give them all here．

If we substitute the first terminal production of \(\operatorname{cNUMBER\bullet \text {，}}\) viz．，©one，for that metanotion，in hyper－rule（i），it yields a new rule
（a）sentence ：one letter \(x\) ，one letter \(y\) ，one letter \(z .{ }^{\circ}\) ． The direct production of sentence in this new rule is not terminal，since it contains a notion which does not end with
- symbol•. To remedy this we use hyper-rule (iii) and, replacing -LETTER - by each one of its terminal productions in tain, we obtain
(b) •one letter \(x\) : letter \(x\) symbol..
(c) •one letter 7 : letter \(\overline{7}\) symbol.• and
(d) -one letter \(z\) : letter \(z\) symbol.。

The rules (a), (b). (c) and (d) are each production rules of the strict language. If now, in the right hand side of (a), we make use of the productions in (b), (c) and (d), then we obtain that - letter \(x\) symbol, letter \(y\) symbol, letter \(z\) symbol.
is a terminal production of the notion sentence. This means that we may speak of axyzu as a sentence• in the representation language.

We now take another terainal production of \(N\) UMBER•, viz.. - one-plus-one•, and substitute that in the hyper-rule (i). It yields
(e) esentence : one plus one letter \(x\),
one plus one letter \(y\), one plus one letter \(z\)..
Also, in (ii), we replace NUMBER• by ©one•. (Note that this is the first use of hyper-rule (ii).) This gives
(f) ©one plus one letter \(x\) : one letter \(x\), one letter \(x\). . .
(\(q\)) - one plus one letter \(y\) : one letter \(\mathcal{Y}\), one letter \(y_{\text {. }}\) •
and
(h) ©one plus one letter \(z\) : one letter \(z\), one letter \(z_{0}\). . Now, combining production rules (e), (f). (g) and (h) with production rules (b), (c) and (d) obtained above, we have that the object
- letter \(x\) symbol, letter \(x\) symbol, letter \(y\) symbol,
letter \(y\) symbol, letter \(z\) symbol, letter \(z\) symbol•
is also a terminal production of esentence•. In the

Fig.9.5
representation language we may therefore now say that axxyyzza
is a sentence of the strict language. A sketch of the parse of this esentence is shown in figure 9.5. Perhaps we have now done enough of this to suggest that it is easy to show that oxxyyyyzzza is a esentence•. A crucial new rule in this process
is - one plus one plus one LETTER :
one plus one LeTTER, one LETTER. moreover, the process for finding more esentencese of the language should be clear.

It will also be obvious that the same language might be described more concisely by the grammar
(I)
: \(x\); \(y\) : \(z\).
(i) \(S: N X, N \quad Y, N\) z.
(ii) \(N \mathrm{p}\) L : \(N \mathrm{~L}\), L.
(iii) L : L symbol.
and if we drop the requirement that every terminal must end with -symbol• by agreeing that •x, \(y^{\circ}\) and \(\boldsymbol{z}^{\circ}\) e are already terminals, then even more concisely by
(I)
\(\mathrm{L}: \mathrm{x}\); y ; z .
(i) \(\quad \mathrm{S}: \mathrm{N} \quad \mathrm{X}, \mathrm{N} Y, \mathrm{~N}\) z.
(II) \(N: \quad\) : N .
(ii) \(N\) p L : \(N\) L, L.

For the student of formal grammars this is more natural, for he is by nature an algebraist who is dedicated to the cult of concise expression. In a description of a practical programming language we can afford to be more verbose so that even those who are not algebraists can read the rules and think that they understand them.

\subsection*{9.6 How to read the grammar}

How do we really use a grammar such as the one we are considering? How do we read it? Is it necessary always to perform, in our minds, the replacement of the metanotions by their terminal productions before we can understand what the hyper-rules say? The answer to this is probably that we should have the experience of making these detailed substitutions at least once. With this experience we may then proceed as does the mathematician who finds that it is unnecessary to prove a theorem every time that he uses its result. His method is normally to check through the proof of the theoreul at least once and then to remember its hypothesis and its conclusion.

Por us, the metalanguage plays the role of a body of theorems and the results we need to remember are the shape of the terminal productions of the metanotions. For example, in the gramar of the minilanguage given in the last section, we need only remember that the terminal productions of LETTER are -letter-x-symbol•, letter-y-symbol• and •letter-z-symbol• and that the terminal productions of \(\bullet\) NUMBER - are ©one \(\bullet\), ©one-plusone•, •one-plus-one-plus-one• and so on. With this information at hand, the complete language may be comprehended merely by reading the three hyper-rules
(i) sentence :

SUMBER letter \(x\), NOMBER letter \(y\), NUMBBR letter \(z\). . ,
(ii) - NUMBER plus one LETTER : NUMBER LETTER, one LETTER.•,
(iii) © \(n e\) LETTER : LETTER symbol.•

The same method of comprehension applies to ALGOL 68. The metarules should be well studied first and the shape of the terminal productions (at least of the commonly used ones) should be known. With this knowledge we can then read the hyper-rules
and comprehend their meaning.
The most important metanotion in ALGOL 68 is •MOLE• FOL this reason its terminal productions should be well known before trying to read the hyper-rules. A chart is sometimes a helpful aid in understanding the metalanquage, though others may prefer to rely upon the alphabetic listing of the metarules which comes as a loose page with the Report. If you have not already done

Fig.9.6
so, it is a good idea to take this loose page and arrange it so that it is attached to your copy as a fold-out page in such a way that it may be in view no matter what page of the report you have open. For those who like charts, we reproduce, in figure 9.6 , an abbreviated syntactic chart for the metanotion \(\bullet\) MODE•, in which eLETTER and © DIGIT are the only metanotions not produced. Whichever method you prefer, ("people who like this sort of thing will find that this is the sort of thing they like") a careful study of the metalanguage is essential to the comprehension of the hyper-rules and thus of the grammar of the language.

\subsection*{9.7 The indicators}

A "hypernotion" [R.1.3] is a sequence of metanotions and/or protonotions, e.g.. •MODE field TAGe. A hyper-rule (in the sense used in section 9.2 above) is therefore a hypernotion followed by a colon, followed by zero or more hypernotions separated by semicolons and/or commas and followed by a point; e.g.,
-strong COERCEND : COERCEND ;
strongly ADAPTED to CORRCEND.-
[R.8.2.0.1.d]. If, in a given hypernotion, one or more of its metanotions is consistently replaced by a production of that

Fig.9.7
metanotion, then we have another hyper-notion, or perhaps a protonotion. Let us call this an "offshoot" of the given hypernotion; e.g., estrongly deprocedured to real base is a terminal offshoot of estrongly ADAPTED to COBRCEND•, and -INTREAL base• is an offshoot of \(\because M O D E\) base•. In order to read the grammar easily, we frequently need to know whether two given hypernotions have a common offshoot. For example, - strongly ADAPTED to COERCEND•
and

> - STIRMly deprocedured to MOIC FORM•
have at least one common offshoot, say
estrongly deprocedured to real base.

That this is so can be seen by examining figure 9.7, where the
steps in obtaining this offshoot are shown. In fact, examination of this same figure shows that there are infinitely many common terminal offshoots of these two hypernotions. They are all offshoots of a "maximal common offshoot", the hypernotion
-strongly deprocedured to MOID FORM.
It is the existenze of some maximal common offshoot, rather than that of any particular common terminal offshoot which becomes the point of focus when looking at two such hypernotions. Note that because of the requirement of consistent replacement, some offshoots may be too restrictive to be useful, e.g., the offshoot eprocedure-with-MODE-parameter-and-MODE-parameter-MODE-PRIORITY-operatore of the hypernotion eprocedure-with-LMODE-parameter-and-RMODE-parameter-MOID-PRIORITY-operatore [R.4.3.1.b].

In the process of parsing, given some hypernotion to the right of the colon in a hyper-rule, we need to know how to find a hyper-rule whose hypernotion to the left of the colon has a common offshoot with the given one. To help us in this search there are "indicators" [R.1.3]. The example considered above will actually occur in reading the Report. zonsider the two hyper-rules [R.8.2.0.1. \({ }^{\text {d }}\)]
-strong COERCEND : COERCEND : strongly ADAPTED to CCERCEND \{822a\}.• and [R.8.2.2.1.a]
- STIRMIy deprocedured to MOID FORM\{820d\}: procedure MOID FORM ; STIRMIy FITTED to procedure MOID FORM. -
We have copied these two hyper-rules from the Report, together with two of the indicators, "822a" and "820d". In order to conserve space within the hyper-rules of the Report, the indicators have been compressed, according to cbvious conventions [R.1.3]. If we expand them again, i.e., 822a becomes 8.2.2.1.a and 820d becomes 8.2.0.1.d, then we see that the hypernotion on the right of the hyper-rule 8.2.0.1.d points to the hyper-rule 8.2.2.1.a and the hypernotion on the left of hyper-rule 8.2.2.1.a points to hyper-rule 8.2.0.1.d. We are thus aided, in both directions, in finding hypernotions with common offshoots.

The indicators are clustered rather thickly in the hyperrules concerning coercion, in section 8.2 of the Report. Perhaps this is evidence that it is in this section that the power of the two-level grammar is being used to its fullest. A similar, or perhaps greater, clustering of indicators might have been found in section 3.0.1 of the Report, dealing with chains, lists, sequences and options, but these have not been included in the Report since their great number would have rendered their presence of little value. Instead, the indicators have bypassed this section, which the reader is therefore advised to become familiar with at an early stage.

Sometimes a hyphen, "-", appears after a set of indicators for a hypernotion. This tells us that there is at least one offshoot of the given hypernotion which is a "dead end", i.e., it is not an offshoot of any hypernotion (on the other side of
the colon) in any hyper-rule. An example of this occurs in the hyper-rule for strong coercion quoted above [R.8.2.0.1.d]. In this case it is there because, e. g., -strongly-widened-to-procedure-real-base
is a dead end. It is not an offshoot of any hypernotion on the left of any hyper-rule [R.8.2.5.1]; in fact, it is not a - notion•。

Review questions
9.1 The syntactic elements
a) Is \(\bullet M O D E\) basee a protonotion?
b) Is •all-mimsy-were-the-borogroves• a protonotion?
c) Is ecast a notion?
d) Is MABEL identifier a notion [R.4.4.1.b]?
e) Is •long-integral-denotatione a notion?
9.2 The metarules
a) How many production rules of the strict language are there for algol 68?
b) How many production rules of the strict language are listed explicitly in section 6.1.1 of the Report?
c) How many production rules of the strict language can be derived from 7.1.1.s?
d) How many production rules of the strict language can be derived from 6.1.1.d?
e) What are the terminal productions of •VICrabe?
9.3 The metarules
a) Is \(\circ\) LETTER : LETTER symbol. a metarule?
b) How many production rules of the metalanguage \(c a n\) be derived from 1.2.1.r of the Report?
c) IS •NONSTOWED : TYPE ; UNITED.• a production rule of the metalanguage?
d) Are the terminal productions of 0 NONPROC also terminal productions of \(\bullet\) MODE•?
e) Is \(\bullet\) FIELD a production of \(\bullet M O D E \cdot\) ?
9.4 The hyper-rules
a) Is •PARAMETER : MODE parameter.• a hyper-rule?
b) Is digit-token a production of edigit-token-sequenceproper•?
c) Is \(\mathrm{n}(\mathrm{)}\)) a estrong-closed-[m]-clause•, where [m] represents some mode?
d) What production of \(\operatorname{LLFIELDSETY}\) - would be used in parsing aim of za ?
e) What production of \(\bullet\) LMODE - is used in parsing \(u x+y 口\) ?
9.5 A simple language
a) Define, by means of a two-level grammar, the language whose sentences are printed by
```

nbegin
do prin

```
 enda.
b) Define, by means of a two-level grammar, the language whose sentences are printed by

口begin string \(a, b, c\);
do (print \((a+b+c)\); (\(\left.a+:=" x ", b+:=" y ", c+:=" z^{\prime \prime}\right)\)) enda.
c) Rewrite the grammar of the language considered in 9.5 using two metarules and two hyper-rules and yet requiring that terminals end in esymbole.
9.6 How to read the grammar
a) Is •real-formate a terminal production of \(\quad\) MODE ?
b) Is oreference-to-procedure-row-of-charactere a terminal production of \(\bullet\) MODE?
c) Is long-structured-with-real-field-letter-1. a terminal production of \(\bullet\) MODE?
d) Is eproceduree a terminal production of \(\bullet M O D E \bullet\) ?
e) Is *procedure-with-real-parameter-reale a terminal production of \(\bullet\) NONPROC• [R.1.2.2.h]?
9.7 The indicators
a) Hhy is there a dead end in 9 MOID FORM• in 8.2.3.1.a of the Report?
b) What is a maximal common offshoot of \(\bullet\) virtual NONSTOMED declarer and •VICTAL MODE declarere [R.7.1.1.a, n]?
c) What is a maximal common offshoot of efirmly adJuSted to CORRCEND and ©STIRMIY dereferenced to MODE FORM• [R.8.2.2.1].?
d) What is a maximal common offshoot of STIRMly rowed to MOID FORM• and estrongly rowed to REPETY row of MODE FORM [R.8.2.6.1]?
e) What is a maximal common offshoot of © SORTly ADAPTED to COERCEND• and ©STIRMIY united to MOIL FORM• [R.8.2.0.1, 8.2.3.1]?

10 Mode declarations

\section*{10．1 Syntax}

A typical－mode－declaration is
口品ode compl \(=\) struct（real re，real \(i m)\) a
which，by virtue of extensions［ \(\mathrm{R} .9 .2 . \mathrm{b}, \mathrm{c}]\) ，may be written more concisely as
\[
\text { ustruct compl }=(\text { real re, } i m) \text { 口 }
\]

This •mode－declaration is，in fact，one of the edeclarations• of the estandard－prelude．［R．10．2．7．a］，which means that the programmer may assume that he is within its reach（unless he has made a similar •declaration himself）．A simplified parse is

Fig． 10.1
shown in fiqure 10．1．The hyper－rule for a mode－declaration is －mode declaration ：mode symbol，MODE mode indication， equals symbol，actual MODE declarer．\(\cdot\)
［R．7．2．1．a］．The two occurrences of \(\triangle M O D E \cdot\) here ensure that the mode of the eactual－declarere on the right is then enveloped by the omode－indication on the left．

It is perhaps worth while to look at the hyper－rule －MODE mode indication ：mode standard ；indicant．．
［R．4．2．1．b］and to realise that the programmer may choose his own indicante more or less at will［R．1．1．5．b］．He is，however， subjected to the restrictions of his installation．It is expected that most implementations will permit such •indicantse as uabga and \(\quad\) m 12 a，i．e．，objects which look like identifiers but are in bold face（or underlined）．Objects which are •mode－ standardse are \(\quad\) sstring，selga，file，compl，bits，bytes，long bytes，long long bits，long long long complo，etc．This means that one may write
or
\[
\text { 므얼 } f \underline{i} l e=\text { inta }
\]

믕de long compl \(=\) compla
each of which is legitimate but unpleasant for the human reader．
10．2 Development
One purpose of the mode－declaration is to introduce a shorthand whereby the programmer may save himself troukle．If he uses some complicated odeclarer॰，then he may avoid writing it out in full each time that he uses it．A simple example might be a numerical analyst，working with vectors and matrices，who may wish to use the convenience of the edeclaration
\[
\begin{gathered}
\text { nome } \underline{v}=[1: n] \text { real, } \\
\text { mode } \underline{m}=[1: n, 1: n] \text { realn }
\end{gathered}
\]

In the reach of this declaration•，he may now use these omode－ indicationse as edeclarerse by declaring a vector variable with
 noted that the value of ona which occurs in the boundse of these multiple variables is that which is possessed by ono at the time of elaboration of the edeclaratione \(\mathrm{qv} \times 1\) ，m x 2 n and not that possessed at the time of elaboration of the omode－ declaration．An example may help to make this clear．In the reach of rint na，the elaboration of
\[
\text { on }:=5 ; \text { mode } v=[1: n] \text { rea } \frac{1}{} \text {; }
\]
\[
\mathrm{n}:=3 ; \underline{\mathrm{v}} \times \mathrm{p} ; \text { print }(\underline{\mathrm{u}} \underline{\mathrm{~b}} \times 1) \mathrm{a}
\]
should print the value \(=3\) and not the value 0 ．\({ }^{-}\)．This means
 replaced by \(口[1: n]\) realn．This process is known as＂developing＂ the declarer［R．7．1．2．c］．An important consequence is that，in the reach of the odeclaration
\[
\begin{aligned}
\text { ngode } & \underline{v} \\
\text { real } & =[1: n] \text { real }, \\
\text { red } & =[1: n] \text { real }
\end{aligned}
\]
 －declarers•，both specify the same mode．The actual esymbol• （•indicant•）chosen therefore has no influence on the mode． observe that the same principle applies to eidentity－ declarations•，for

口ref \(i n t\) name \(1=i\), name \(2=i n\)
means that both oname1r and aname 2 possess（different instances of）the same name．In the reach of the edeclaration amode \(\underline{r}=\)「1：2］real，\(s=[1: 3]\) reala，the •indicantse ura and nsu also specify the same mode，when used as edeclarers• ；however，values of such modes may run into trouble when assigned，for then the bounds are checked［R．8．3．1．2．c Step 3］．

The examples we have given are simple．However，a mode－ declaration may be used for introducing a omode－indication which，when used as a edeclarere，will specify a mode which contains a reference to itself．In fact，this will normelly occur in a list processing application．For such a mode，the compiler must be able to make some checks to determine whether storage space for a value of that mode is indeed possible．It is therefore not surprising that the process of developing a mode should have some rather natural restrictions．

\section*{10．3 Infinite modes}

What we call here＂infinite modes＂are those hinted at in the last paragraph．An infinite mode will arise from the －declaration•
nstruct \(\operatorname{link}=(i n t\) val，ref link next）a
In its reach，the elaboration of
\[
\text { ulink } a:=(1, \underline{i} n k:=(2, \underline{i} n k:=(3, n \underline{i} 1))) \text { व }
\]
will qenerate values linked together as shown in figure 10．3．In such a linked list，the value of the last name is onil．If we try to write the mode specified by olinka，using small syntactic marks，it will be
letter－a－letter－l－and－reference－to－
［link］－letter－n－letter－e－letter－x－letter－t．
where［link］represents the same mode which we are trying to write．Since the mode contains itself，it is not unnatural to

Fig． 10.3
call it an infinite mode（1）．The programmer（and the compiler） however，always works with a finite formulation of that mode，so that this infiniteness need not bother him．

10．4 Shielding and showing
If we consider the mode specified \(k y\) qua，in the reach of 며엘 \(m=\) struct（real \(v\) ，mext）\(口\)
we soon come to the conclusion that，unlike olinka above，the field selected by onexto contains，not a name，but a value of the same mode．of course，this value in turn has such a fiell and so on ad infinitum．This is troublesome，for if we try to visualize how storage might be allocated for such a value，it is clear that it cannot be done in a computer whose storage is of finite size．It is therefore necessary to exclude such emode－ declarationse from proper eprograms•．The exclusion rests upon the fact that，in this emode－declaration•，its eactual－
 which is the emode－indication on the left．It is therefore illeqal．However，in

口甶ode \(\underline{n}=\) struct（real \(v\) ，ref \(n\) next） 口
the actual－declarere nstruct（real \(v\) ，ref \(\bar{n}\) next）a does not show nona，so that this edeclaration may be contained in a proper －program。．Whether an actual－declarer• shows a •mode－ indication rests upon whether that mode－indicatione is not ＂shielded＂［R．4．4．4．a］．We must therefore know what is meant by
（1）Those who are bothered by these infinities should consult the work of C．Pair［Pa］，L．Meertens［M］，and W．Brown［B］．
shielding a mode－indicatione before we can understand how certain－mode－declarations• can be excluded．Roughly speaking，a －mode－indication contained in a given edeclarer• is shielded if its presence in that position does not lead to difficulties in allocating computer storage for a value of the mode which that －declarer• specifies．

For the •mode－indication \(\quad\) ma，examples of edeclarerse in which that \(⿰ 口 口 \underline{m}\) is shielded are
\[
\begin{aligned}
& \text { 口struct (int } k \text {, ref m n) 口 }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 모등 (ㄴ, int } \text {) } \\
& \text { ㅁp등 (real) ma }
\end{aligned}
\]
and
口［1：（mode m \(=\) int \(; \underline{m} k\) ；read \((k) ; k)]\) realn
Examples of declarers in which nmo is not shielded are
鲐口
口ref ma
nproc 뜸
口［1：n］뜨
and
qunion（int，m）
The precise definition of shielding is given in the Report ［R．4．4．4．a］，so we shall only paraphrase it here by saying that咃口 is shielded if there is both a nstructu and a nrefry to its left，or if it is in，or follows，a parameters－packe，or if it is essentially local to one of the bounds of the edeclarer．．

As a first approximation，one may now say that a mode－ indication which is not shielded is shown by the edeclarere containing it．We then exclude from proper eprogramse all emode－ declarationse whose emode－indication• is shown by its eactual－ declarer•．This immediately excludes such undesirable objects as 믕de \(a=\underline{a}\) ，
\[
\begin{aligned}
& \underline{b}=\underline{\underline{r}} \underline{\underline{c}} \underline{b} \text {, } \\
& \frac{c}{c}=\underline{r} \underline{e} \underline{\underline{f}} \underline{c} \text {, } \\
& \underline{\underline{d}}=[1: n] \underline{d}, \\
& \underline{e}=\text { union }(\underline{e}, ~ c h a r) \text { a }
\end{aligned}
\]

However，examination of the edeclaration＊

\(g=\) proc \(\underline{f} \square\)
reveals that we are still in trouble with the first approximation to the concept of showing．For，although oref gr does not explicitly show ofa，the elaboration of ［R．7．1．2 Step 1］involves the development of agn and would give us the edeclarer aref proc fr，which does indeed show af a．It is therefore necessary to insist that we must develop all emode－ indications．which are not shielded in order to find the emode－ indicationse which are shown by an eactual－declarer•．The definition of showing is carefully stated in the Report ［R．4．4．4．b］，so we shall not repeat it here．perhaps the motivation given here for that careful statement is sufficient for its understanding．

\subsection*{10.5 Identification}

Within a serial-clause containing a emode-declaration•, - mode-indicationse are subject to protection [R.6.0.2.d], in the same manner as are •identifierse and edyadic-indications*, in order that they may not become confused with the sane - indication used elsewhere. It is possible therefore to write

print (x))
print(x)) 口
whereupon the values printed should be 1. and 2.0 . The methot of identification of the mode-indications• is shown by "--<--".

Althouqh this identification process is familiar (it works the same way for •identifiers•), there is one small point to be

Fig. 10.5
watched carefully. It is that no •indicant. lay be used both as a \(\cdot m o d e-i n d i c a t i o n \cdot\) and as a monadic-indication [R. 1.1.5.h]. The reason for this is best shown by the following example.
- 118
begin int b, c, e ; \(\neq \ldots \notin\)
\(\nless 2 \not 2\)
438
C4\&
beqin mode \(\frac{a}{}=\) real ;
\((\underline{a}-b): c) \underline{d}\)
\(\not \subset \ldots \downarrow\)

The problem here is whether \(n(a \quad b): b+c n\) is a orow－of－rower． （remember that it is permitted to replace \(n[\) ］a by \(\quad\)（ ）a ［R．9．2．g］）and therefore \(\quad\)（ \((\underline{a}\) b）\(: b+c)\) d en is a －declaration•，or whether \(\quad((\underline{a} b): b+c)\) a is a oroutine－ denotatione and therefore \(\mathrm{n}(\underline{(\underline{a})} \mathrm{b}) \mathrm{b}+\mathrm{c}) \mathrm{d}\) en is a oformula•． These two possibilities are sketched in figure 10.5 ．If it were such that \({ }^{(a g}\) could be used as a mode－indicatione in line 2 ， and again as a •monadic－indication•，in line 6 ，then confusion would reign，for the matter can only be resolved when we meet the eleclaration of ado in line 8．If we now make it illegal to use nag both as a emonadic－indication and as a emode－ indication•，then this unhappy situation does not arise．For those interested in compilation problems，this example shows why it is necessary to identify all \(\bullet m o d e-i n d i c a t i o n s\) before a detailed parse of the eprogram＊is made，for the identification of the second occurrence of aba on line 3 depends upon the information discovered in line 6.

10．6 Equivalence of mode indications

> In the mode-declaratione 口qode \(\frac{a}{b}=\frac{\text { ref }}{\text { real }}\),
it is rather obvious that both ragr and obr，when used as －declarers•，specify the same mode．However，since a mode－ declaration has the possibility of depending on other mode－ declarations•，or on itself，one may make several •mode－ declarationse like
\[
\begin{aligned}
& \text { 口struct } \underline{a}=\text { (ref a left, ref } \underline{\text { a }} \text { right). } \\
& \underline{b}=\text { (ref } \underline{b} \text { left, ref struct } \\
& \text { (} \underline{f} \underline{f} \underline{f} \text { b left, ref b right) right), } \\
& \begin{array}{l}
\underline{c}=(\underline{r e f} \text { d left, ref e right), } \\
\underline{d}=(\underline{r e f} \text { e left, ref c right), }
\end{array} \\
& \underline{e}=(\underline{r e f} \text { c left, ref dright) o }
\end{aligned}
\]
in which it is not immediately clear whether the modes specifief by \(u \underline{a}, \underline{b}\) ，\(\underline{c}\) ，du and nen are all different or perhaps whether some of them are the same．In fact，a close examination reveals that each of them specifies exactly the same mode．Each is merely a different way of thinking about the same kind of data structure．It might be thought that，because the human reader （presumably）has trouble in deciding that the five omode－ indicationse are equivalent，it would also be difficult and expensive for the compiler．But this turns out not to be the case（1）．Thus，in large programs，perhaps written by several persons，each person may describe the basic data structure in his own way．If these are indeed the same，then the compiler will quickly find out about it．
（1）See the papers of Koster［Ko］，Goos［G］and Zosel［Z］．

\subsection*{10.7 Binary trees(1)}

He shall now consider some procedures for manipulating binary trees. These are data structures of the shape shown in figure 10.7.a. in which each "on is called a node" of the tree. at each node there are tuo branches a "left-" and a "right branch". In more detail, the value of each node is, as is shown in figure 10.7.b, a structured value with at least three fields. The first and last fields are references to the left and right branches, respectively, and the widdle field contains some

Fig. 10.7.a

Fig. \(10.7 . \mathrm{b}\)
information, perhaps a string, which is an attribute of that particular node.

The necessary \(\mathrm{m}^{\text {mode-declaratione would be }}\)
nstruct node \(=\) (ref node left, string val, ref node right) a. He may observe that the mode specified by noder is infinite, in the sense described in section 10.3 above.

A binary tree is used for many different purposes. for an illustration, we shall use it to store and retrieve character strings in alphabetic order.
10.8 Insertion in a binary tree

Suppose that we are given three strings "jim", "sam" and "bob", in that order, and that we wish to store these in a binary tree such as that discussed above. Storing the first string would result in the structure shown in figure 10.8.a. After the second and third strings have been stored, the

Fig. \(10.8 . a\)

Fig.10.8.b
(1) For an authoritative discussion of binary trees, see Knuth [Kn] Section 2.3.1.
structure is that shown in figure 10.8 ．b．Note that the shape of the tree will depend upon the order in which the strings are encountered．Whichever string is stored first generates a node which becones the＂root＂of the tree．The succeeding strings are then compared with those already present to determine whether to branch to the left or to the right．

A procedure to insert a given string asa into a tree whose root is referred to by urootr is as follows．
uproc insert \(=\)（string \(s\) ，ref ref node root）：
（ ref ref node n ：＝root ；旦ilie（ref node ：n）：\(\neq\) ：nil do \(\mathrm{n}:=(\mathrm{s}<\mathrm{val}\) of \(\mathrm{n} \mid\) left of n ｜right of n\()\) ； （ ref ref node ：\(n\) ）\(:=\) node \(:=(\underline{n i l}, 5\), nill）
） 1
Suppose that we start with an empty tree，i．e．．the －declaration．
uref node tree ：＝nila
and then elaborate the calle ninsert（＂Jim＂，tree）r．The
\begin{tabular}{|c|c|c|c|}
\hline atreer & 口treen & arootr & － na \\
\hline －－r & －－r & －т－ & T \\
\hline ： & ： & ： & ： \\
\hline 0 & 0 & 0 & 0 \\
\hline 00 & 00 & 00 & 00 \\
\hline 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & I \\
\hline 0 & 1 & 0 & 0 \\
\hline O日O & \multicolumn{3}{|l|}{L－－－＞－O 0 O－－＜－－0} \\
\hline \(\bigcirc\) & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline & \multicolumn{3}{|l|}{\[
\begin{aligned}
& r-0-r \\
& |0 \Theta 0| \text { mime } 1000 \mid \\
& \mathrm{L}-\mathrm{o}, \mathrm{l}
\end{aligned}
\]} \\
\hline
\end{tabular}

Fig． \(10.8 . \mathrm{c}\)
Fig．10．8．d
situation both before and after this calle is shown in figures 10．8．c and \(d\) ．Observe that the modes of both the eformal－ parameter• aroota and the eactual－parametere atreen are the same，viz．，that specified by nref ref noder，so that no coercion occurs when the parameter is passed．

The ©declaration• aref ref node \(n:=\) rootr implies that the mode of ana is that specified by rref ref ref noden．Since aroota is of mode specified by aref ref noder，the initializing assignment to ona invokes no coercion．In the oassignatione

the second occurrence of onodea is a oglobal－generator。 generating a name of mode aref noder，to which is assigned the
 mode of ana is aref ref ref noder，it wust be dereferenced once before the new node is assigned．This is the reason for the －casto qref ref node ：na．This ocaste is necessary．In fact，on \(:=\) noder is not an oassignation \(\bullet\) ，for there is one－reference－ to－e too many on the left．

If now we elaborate the ecalle ainsert("sam", tree) \(n\), we have what is shown in figure 10.8.e. Here we have effectively elaborated the assignation on \(:=\) right of \(n\) n in going from figure 10.8.d to 10.8 .e. In the selectione aright of \(n a, ~ a n a\) has the a priori mode nref ref ref noder, but being in a weak position, it is dereferenced (twice) to aref noder. The a priori mode of aright of na is thus aref ref noder, since the field

Fig. 10.8.e
Fig. 10.8.f
selected by oright of nn is thus a name which refers to a name in a node. Since the mode of and is aref ref ref noder, the assignment now takes place without further coercion. This moves and down the tree by one node. After elaboration of ainsert ("bob", tree) \(n\), we would have what is shown in figure 10.8.f.

\subsection*{10.9 Tree searching}

Another process in tree manipulation is the searching of a tree for a node which contains a given attribute. In the reach of the edeclarationse of section 10.8, and of aref node \(m:=\) niln, this would be accomplished by the following:

마으 search \(=\) (string \(s\), ref ref node root) bool :
(ref ref node \(n:=\) root ;
while (ref node : n) : f: nil do
if \(s=v a l\) of \(n\)
then \(m:=n\); qo to done
else \(n:=(s<v a l\) of \(n\) | left of \(n\) | right of \(n\)) ;
fin false.
done : true
) 1
The value delivered by the eprocedure is atrue if the node with string asa is found otherwise, it is falsen. As a side effect, the node where the string occurs is assigned to the nonlocal ovariable uma; otherwise, uma remains referring to milm. Using the tree constructed in section 10.8 , the result of
elaboration of the ecall• asearch("saゅ", tree) n would result in the situation pictured in figure 10.9 .

The •variable• \(\quad\) ama serves to remember where the node was found. In the eassignation \(\quad\) am \(:=n \mathrm{n}\), \(\mathrm{an}_{\mathrm{n}}\) is dereferenced twice. Note also that in the formulae as = val of no, first onn is

Fig. 10.9
dereferenced twice, then aval of \(n\) a is dereferenced once before the comparison of strings is made.
10.10 Searching and inserting

The two processes just described are often combined into one. Thus we may wish to search a binary tree for a given string, to insert it if it is not there, and, in any case, to return with a knowledge of its position. This would be the kind of action necessary if the tree were being used as a symbol table for a compiler. A procedure to accomplish this might be as follows.
proc searchin \(=\) (string \(s\), ref ref node root) ref ref node : (ref ref node \(n:=\) root ;

if \(s=\) val of root
then go_to done
else \(n:=(s<v a l\) of \(n\) | left of \(n\) | right of \(n\)) fi ;
(ref ref node : \(n\)) \(:=\) node \(:=(\underline{n} i \underline{l}, s, n \underline{n} \underline{1}) ;\)
done : \(n\)
) ロ
All the elements of this procedure have been seen already. It is therefore sufficient to remark that the value delivered ky the procedure is that of the ano which follows the label adone : \(\quad\), after this ana has been dereferenced once.

\subsection*{10.11 Tree walking}

Another fundamental anipulation with binary trees is known as a "tree walk". This is a process of visiting each and every node of the tree. Dsually some action is to be taken at each node, e.g., printing its string, or counting the node. A tree walk is called a "pre walk", "post walk" or "end walk" (see Knuth [Kn]) depending on whether the action is to be taken upon first reaching the node, or between examining its left and right branches, or upon leaving the node for the last time. For

Fig. 10.11
example, for the tree displayed in figure 10.11, a pre walk would perform action on the nodes in the order B A C, a post walk in the order A B C and an end walk in the order A C B.

We shall now write a procedure for printing the strings of the nodes, in alphabetic order, by doing a post walk over a binary tree. This is a typical problem in which recursion provides a neat solution, which is as follows: if the tree is empty, then do nothing; otherwise, using an induction hypothesis that we know how to walk a tree with the number of nodes less one, first walk the left branch, then print the string, then walk the right branch. The procedure is as follows.
aع1\& proc post walk \(=\) (ref node root) :
<2\& (root : \(\#\) : nil
R3\& | post walk(left of root) :
C4\& print(val of root) ;
45\& post walk(right of root)
C6\&) 口
In lines 3 and 5, the eactual-parameterse oleft of rootr and aright of roota are dereferenced once. Note that an end walk is similar - merely interchange lines 4 and 5 (except for \(\quad\); a). For the pre walk we interchange lines 3 and 4 (except for the 밈). For the tree discussed in section 10.8, the calle opost walk(tree) a should print its strings in alphabetic order. Note that the eactual-parametere atreen is dereferenced once.

We may now make this procedure more useful by generalizing it to perform a given action at each node. The action is in the form of a eprocedure which is passed as a parameter.
nproc post walk \(a=\) (ref node root, proc (ref node) action) :
begin proc \(q=(\underline{r e f}\) node \(r):\)
(r : \(\neq\) : nil
| q(left of r) ; action(r) ; q(right of r)) ;
q(root)
enda

\subsection*{10.12 A non recursive approach}

The recursive solution to the tree walk froblem, given in section 10.11 above, is simple to program and easy to understand. When proving the correctness of programs, this is an important consideration. However, by using recursion, a certain price must be paid for this convenience, because the run-time organization may need to build a stack to remember the nested - callse and this stack will require storage the size of which is unknown. In certain situations the programmer may not wish to pay this price. For example, he may be writing a garbage collection routine which must work well just when the amount of free storaqe is at a minimum. For this reason other schemes of walking trees are exploited [SW]. We shall outline such a scheme here.

The basic principle is that the tree is broken apart at one node, some of the names are reversed and three variables are used to keep track of where the break occurs. As we move the break down the tree, the names are reversed to refer to where we came from. As we move up the tree, the names are restored to their former state. Also, when we move from the left branch to the right branch of a node, it is necessary to shift the reversed name from the left to the right. The extra storage required consists of three variables ap, qu and aro of mode specified by aref ref noder, and the existence of a boolean field in each node (or corresponding to each node) which remembers whether we have already moved across that node (i.e., whether the name which refers upward is on the right). The value of this field is initially false.
 to
nstruct node \(=\)
(ref node left, string val, bool flag, ref node right) a . The situation at some moment in moving down the tree is

Fig. \(10.12 . \mathrm{a}\)
pictured in figure 10.12.a.
The steps in the process of moving down are
口(\(\quad\) : \(=\) left of \(q\);
left of
\(q:=p\).
\(\mathrm{p}:=\mathrm{q}\);
\(\mathrm{q}:=\mathrm{r}) \mathrm{n}\)
after which the situation is as shown in figure 10.12.b. We neel

Fig. 10. 12.b
only add some way to stop this process. This is accomplished by the econdition•

口 (드́́ node : q) : \(\neq:\) nily
one should also check that the process starts from the arooto correctly and works properly when \(\quad\) (ref node : q) \(:=:\) nily.

When the walk on the left branch is done we must move across the node. The situation before is as in figure 10.12. 2

Fig. 10. 12.C
and the steps in the process are
right of
\[
\begin{aligned}
\text { qr }: & =\mathrm{q} \\
\mathrm{q}: & =\text { right of } \mathrm{p} \text {; }
\end{aligned}
\]
\[
\begin{aligned}
\text { right of } p:=1 e \\
\text { left of } p:=r a
\end{aligned}
\]

The situation after elaboration of these statements is as in fiqure 10.12.d. Now we perform the action at this node and then remember that we have done so by

> aaction (p) ;
tag of \(p:=\) truen
The process of moving up the tree is the opposite of moving down the tree except that we must check whether we are done,

口(ref node : g) :=: rootn
and whether we should change to moving across
Also, as we move up, the value of the flag field is restored to -false.

Fig. 10. 12.d

The complete algorithm is expressed as follows:
```

aproc walk $=$ (ref node root, proc (ref node) action) :
begin ref node $p:=r o o t, q:=r o o t, r$;
if root $: \neq$ : $\underline{i l}$
then
down : while (ref node : q) : $\#$ : nil do
(tsee figure 10.12 .at
$\mathrm{r}:=1 \mathrm{eft}$ of q ; left of $\mathrm{q}:=\mathrm{p}$; $\mathrm{p}:=\mathrm{q}$;
$\mathrm{q}:=\mathrm{r}$ \&see figure 10.12.b\&) ;
across : $\notin$ see fiqure 10.12.c\&
$r:=q ; q:=r i g h t$ of $p$; right of $p:=$ left of $p$;
left of $\mathrm{F}:=\mathrm{I}$; \&see figure 10.12. d\&
tag of $p:=$ true ; acticn (p) ;

```

```

        up : while (ref node : g) : \(\ddagger\) : root do
            if tag of \(p\)
            then tag of \(p:=\) false ; \(\quad\) : \(=\) riyht of \(p\);
            right of \(p:=q\); \(q:=p: p:=r\)
            else across
            fi
        fi
    end \(\mathbb{C}\) walk\&
    ```

Review questions

\subsection*{10.1 Syntax}
a) Is nqode real = long inta a \(\quad\) mode-declaration•?

c) Is rmode \(\underline{r}=\) []realn a mode-declaratione?
d) Is nunion \(\underline{a}=(\underline{b})\) a a oode-declaratione?
e) Is ustruct \(\underline{u}=(\underline{i n t} q\), real \(s\)) a a mode-declaration \(\bullet\) ?

\subsection*{10.2 Development}
a) In the reach of quode \(\underline{a}=\underline{\text { ref }} \underline{b}\); mode \(\underline{b}=[1: n]\) int, \(\underline{d}=\) proc br, develop the edeclarere nstruct (a a, d d)
 print (upb v) enda?
c) Develop the © declarere (forgu in 11.11.t of the Report.
d) Develop the -declarere \(\quad\) titiplen in 11.11.k or the Report.
e) Develop the edeclarer abookr in 11.12.w of the Report.

\subsection*{10.3 Infinite modes}
a) What are the two occurrences of alinka on line 4 in section 10.3?
b) What are the three occurrences of nlinga on line 6 of section 10.3?
c) Is the mode specified by rang, in the reach of raode \(\underline{a}=\) ref \(\underline{b}, \underline{b}=\) struct (a a) a, an infinite mode?
d) Build the list structure shown in figure 10.3 from top down.
e) Is \(\quad\) link \(a:=(1,(2,(3, \underline{n} \underline{l})))\) a a declaration•?
10.4 Shielding and showing
a) Is ama shielded in \(\quad\) [\(1: n]\) struct (m \(a, ~ i n t ~ b) ~ a ? ~\)
 \(\underline{a}=[1: 10] \underline{\underline{a}}, \underline{b}=\) proc \(\underline{\underline{a}} \mathrm{a}\) ?

 proper •programe?
 b) \(\underline{\underline{3} \underline{3}=p r o c(m 1) a}\) be contained in a proper eprograme?

\subsection*{10.5 Identification}
a) Is \(a(\underline{b}: u)\) a \(\nabla \square a\) •formula• or \(a\) •declaration•?
10.6 Equivalence of mode indications
 specified by uag and nstringr equivalent?
b) Are the modes specified by nan and abr, in the reach of raode \(\underline{a}=\) struct \((\underline{r} e f(\underline{a}), \underline{b}=\underline{\text { ref }}\) struct \((\underline{b} x)\), equivalent?
c) Simplify the mode-declaration ustruct \(a=\) (int \(u\), ref struct (int \(u\), ref a v) v) \(口\).

ref \(a \quad r\)) a, are the modes specified by nan and mba equivalent?
 int b), \(\underline{\underline{t}}=(\underline{\underline{t}} \underline{f} \underline{k} a\), int b) , are the modes specified by ok, la and nga equivalent?
10.7 Binary trees
a) In the reach of qmode nood \(=\) ref struct (nood 1 , string val, nood r) \(a\), does nnoodr specify an infinite mode?
b) usinq at most three statements, in the reach of the modedeclarations for anoder of 10.7 , construct the binary tree of figure 10.8.b.
10.8 Insertion in a binary tree
a) Write, as one •assiqnation•, the equivalent of ainsert ("ron", tree) a , for the situation in figure 10.8.f.
b) For the tree as shown in figure 10.8.f, what is printed by uprint (val of left of tree) a?
c) For fiqure 10.8.f, what is the value of (ref node : root) :=: na?
d) For figure \(10.8 . f\), what is the value of aleft of tree :=: na?
e) For fiqure 10.8.f, what is the value of aleft of \(n:=\) nila and that of aleft of \(\mathrm{n}:=:\) (ref node : nill) n ?
10.9 Tree searching
a) Rewrite the edeclaration of asearcho without using a - completer•.
10.11 Tree walking
a) Define a procedure 0 pla such that ap 1 (tree) a will print the strings of a tree (see figure 10.11) in the form (()A())B(()C())).
b) Define a eprocedure - ap2a such that ap2 (tree) a will print the strings of a tree (see figure 10.11) in the form (\(A, B, C\)).
10. 12 A non recursive approach
a) Alter the algorithm of 10.12 from a post walk to a pre walk.

\section*{11 Easy transput}

\section*{11．1 General remarks}

The transput routines of ALGOL 68 are written in ALGOL 68 itself［R． 10.5 ］．This means，in theory，that it is not necessary to explain any of them here．In order to understand what the transput routines do，we need only to act like a computer and to elaborate the routines of the Report．However，most of us prefer not to emulate a computer．For this reason，extensive pragmatic remarks are included in section 10.5 of the Report and some informal remarks on the simple routines，which would be used by a beqinner，are appropriately the subject of this chapter．

The general philosophy is that no new language tricks are used．This means that what we have already learned about the language should be sufficient for the understanding of the transput routines．The transput does not depend upon exceptions or special cases．

\section*{11．2 print and read}

The two most useful routines for the beginner are口printr
and
areadn
We have met them before in several examples in preceding chapters．The procedure oprinto is used for unformatted output to the standard output file（probably a line printer）and the procedure oreadn is used for unformatted input from the standard input file（probably a card reader）．Examples of their use are
aprint（x）口
aprint（（＂answers＝．＂，i））口
aprint（（new page，title））口
and

> oread \((x)\) 口
> aread((i, J)) 口
> aread \(((x 1\), new line, I1)) 口
> aread \(((a\), space, b, space, \(c))\) a

An important point to notice is that both uprinta and oreado accept only one eactual－parameter॰．Thus pread（ \(x, y\) ）a is incorrect．The mode of the eparameter of uprinta and areada begins with orow－of－• This means that oread（（i，j））n or qprint（（i，j））口 is acceptable since \(\quad\)（ \(i, j)\) n is a orow－display•．
 －closed－clause whose value is axa and axa will be rowed to a multiple value，a row with one element．
observe that，in addition to variables• like axa（and for
 －row－display॰（or the single © parameter•）may be certain layout procedures like ospace，backspace，new linen or onew pagen，to allow for a rudimentary control over the standard input and output files．Thus aprint（（new page，＂page。10＂，new line， ＂name＂，space，＂address＂））a，should result in the following output at the top of a new page．

PAGE 10
NAME ADDRESS

\section*{11．3 Transput types}

In order to understand what values can be printed and read， we should examine the mode－declarations for the hidden －indicantse qouttyper and rintyper［R．10．5．0．1．b，e］．We call these＂hidden＂because，although they appear in the report in the form a\％outtyper and \(0 \%\) intyper，they may not be used directly by the proqrammer．They are present only for the purpose of description of the transput routines．If one is used by a programmer，then it will be regarded as an eindicante with no defining occurrence．

The declaration of qouttppen may be paraphrased as follows：口outtypen specifies a union of the modes nint，real，booln and acharg，together with prefixed olongas where applicable，and all multiple and／or structured modes built from these．Examples are口［ ］int，string，compla and \(\mathrm{f}[\mathrm{jstruct}(\underline{i n t} \mathrm{n}\) ，［ ］bool b1） b ．Note that values of each of these modes are constants．

If we consider a union of the same modes as for routtyper， but each preceded by oreference to \(\%\) then we have the mode specified by aintypea．Examples are ngef int，ref char，
 b1）\(\square\) ．

Thus，qouttyper is an appropriate union of those constants which we might expect to print and nintypen is a union of the corresponding •variables•．

It is now perhaps convenient，for our discussion，to suppose that there is a emode－declaration．

口回ode printtype \(=\) union（outtype，proc（file）），
readtype \(=\) union（intype，proc（file）））口
although such a mode－declaration does not exist in the －standard－prelude•．With this in mind，we may now say that the －parametere of aprinta is of the mode specified by \(\quad\)［ ］printtyper and that of oreadn is that specified by \(\quad\)［ ］readtyper．This means，in particular，that the axa in aprint（x）r will be subjected syntactically to the coercion of dereferencing to口realn，uniting to aprinttyper and then rowing to o［ Jprinttypen， whereas in pprint（ \((x, y)) n\) ，the last coercion is not necessary since \(u(x, y)\) is already of mode orow ofo．In pprint（new page）\(n\) ，the onew pagen is of a priori mode aproc（file）a and it is united to aprinttyper and rowed to \(\quad[\) ］printtyper．These particular coercions are of little concern to the programer except perhaps that their understanding helps to prevent such errors as aprint（ \(x, y\) ）口．

\section*{11．4 Standard output format}

We shall now examine what to expect of the appearance of －constantse on the standard output file astand outa as a result of a ecall．of oprinta．For this purpose，the mode specified by
the hidden eindicante usimplouta［R．10．5．0．1．a］is relevant to our explanation．It is a union of the modes specified by nint， real．compl，bool，chara and ustringa together with prefixed alongrs，if applicable．We shall be able to understand the output appearance then，if we consider the action of aprintr on values of each of these modes in turn．

We shall also need some assumptions about the environment， if we are to give illustrative examples．Therefore let us assume that，in our enviromment，oint widtho［R．10．5．1．3．h］is \(\quad 5 \mathrm{~m}\) ， nreal widtho［R．10．5．1．3．i］is m7a，nexp widthn［R．10．5．1．3．j］ is \(m 2 m\) and amax char［stand out channel］（the line length） ［R．10．5．1．1．m，10．5．1．3．e］is \(\quad 64 \mathrm{a}\)（the same as this text）．

> With these assumptions then, the result of the call. nprint ((newline, true, false, 1, 0, \(-1,1.2\),\(0.0,-.0034\), "a", "abc", 1́ㄹ)) 口
is
\(\underline{1} \underline{0}+1+0 \quad-1+1.200000 \mathrm{E}+0+0.000000 \mathrm{E}+0\)
\(-3.400000 \mathrm{E}-3 \mathrm{~A} \mathrm{ABC}+1.000000 \mathrm{E}+0 \mathrm{I}+2.000000 \mathrm{E}+0\)
The value \(-3.400000 \mathrm{E}-3\) was printed on a new line because there was not enough room on the first line．Note that an integral value occupies 6 （aint width + 1口）print positions，a real constant 13 （oreal width + exp width +4 a）print positions，a complex value 28 and a boolean or a character value 1 each．Also each of these is separated from the previous one by a space， unless we are at the beginning of a line．

Multiple values are also included in the united mode specified by oouttyper and therefore multiple values may be printed．For example，in the reach of \([1: 3]\) int \(u 1=(1,2,3) 口\) ， the result of aprint（ \((41,4))\) a is
\(+1+2+3+4\)
Also，in the reach of \([1: 2,1: 2]\) int \(n 2=((5,6),(7,8)) \square\) ，the result of aprint（ n 2 ）口 is
\(+5 \quad+6 \quad+7 \quad+8\)
Actually，the description of oprinta［R．10．5．2．1．a，b］indicates that each of the ounitse of a row－displayo a（a，b，c，d）a in nprint（（ \(a, b, c, d)) n\) is first＂straightened＂（unravelled） ［R．10．5．0．2．c］to a value of mode specified by \(n\)［ ］simplouta and each of the elements of each of these straightened rows is then printed with the standard format discussed above．This means， for example，that the un2口 in uprint（o2）a，given above，is， within the eprocedure oprintr，straightened from nouttyper to口［ ］simplouta［R．10．5．2．1．b，10．5．0．2．a］．Thus，all multiple values and all structures（except for acomplo and astringa， which are already in osimploutn）are straightened to ＂［ ］simploutn before printing．

The exceptions for astringr and acompla are that，although astringa has the mode orow of charactere，the result of口print（＂abcd＂）n is \(A B C D\) and not \(A\) B C \(D\) ，which would be the case if it were treated like other multiple values，and nprint（1．2 \(\underline{i}\) 3．4）a gives
\[
+1.200000 \mathrm{E}+0 \mathrm{I}+3.400000 \mathrm{E}+0
\]
rather than
which would be the case if it were treated in the same way as the other structured values．

One final point is that the appearance of the result of aprint（ \(x\) ）；print（ \(y\) ）a is exactly the same as that of aprint（ \((x\) ， y））a．In particular，each call of aprinta does not start the output on a new line．A new line is started only when there is not enough room on the old line or when one of the layout procedures anew linea or anew pagen is called．

\section*{11．5 Conversion to strings}

For those who find that this standard format does not meet their needs，there are a few procedures which allow for some form of simple control over the appearance of the output， without resorting to the use of formats．These procedures convert integer or real values and their long variants to strings．They are aint string，real string，dec stringn and the same preceded by alongus，if applicable［R．10．5．1．3．c，d，e］． Thus，if it is desired to print the integral value 250 using a width of three print positions，this can be done by oprint（int string（25，3，10））口
The second oparameter of aint stringa is the string length and the third is the radix．The call．
\[
\text { aprint (int string }(25,3,8)) \text { 口 }
\]
would yield +31 ，because \(25=3^{*} 8+1\) ．Pcr real values the value of areal string（3．14，10，3，2）a is \(a+3.140 \mathrm{E}+00 \mathrm{~m}\) and the value of adec string（3．14，10，3）口 is a＋00003．140．In both －procedures＊，the second •parameter＊is the length，the third is the number of digits to the right of the point，and for areal stringa，the fourth oparameter is the length of the exponent．

Notice that the value of aint striny（25，8，10）is a＋0000025．，so that those who require zero suppression must either accept what they get from aprint（x）n or use formatted output．Another possibility is to do the zero suppresion creself by defining a eprocedure like the hidden eproceduree n\％sign supp zeror［R．10．5．2．1．q］．

\section*{11．6 Standard input}

The philosophy for unformatted input is that any reasonable representation of the value to be read is acceptable，that it may appear anywhere on the line and may be of any width．What is expected for each value depends upon the mode of the variable to which it is to be assigned．Remember that the mode cf the －parameter of areada is ［ ］readtypen，where areadtyper is
口an is either a layout procedure•，like onew linec，or a －variable•（or perhaps a clause• which delivers a name of the appropriate mode）．

The modes we need to consider are those in the union specified by asimplouta，each preceded by reference to．，i．e．，口ref int，ref real，ref compl，ref bool，ref char，ref stringa
and their long versions like aref long reala and so on. For convenience let us suppose that this union is specified by asixplina. We shall need to consider each of these modes in turn.
 1i)) n would be satisfied by two -integral-denotationse like \(3 \quad-2\)
or
\[
+304 \quad-\quad 0000005
\]

The oprocedure areada looks for the first non blank character from the current position on the input file and interprets what it finds as a value of the required mode. It allows for the possibility that, in the case just cited, there will be two -integral-denotationse with zero or more blanks between the sign and the first digit, if a sign appears at all, but that no blanks may appear between the digits. Note that the same set of
 -long-symbole is not used).

In the reach of rreal \(x\), long real \(1 x\), the call. aread ((lx, \(x)\)) n would be satisfied by
or by
6.789 e + 2 . 00003
or by
123-4. 56
Note that the values on the input file need not necessarily be separated by blanks or commas, although most people would naturally do this.

In the reach of acompl \(z\), bool \(b r\), the ecalle aread((\(z\), b)) a would be satisfied by 3.456 e \(-3 \mathrm{i}+7.69 \quad 1\) or by
.000345 i 60
observe that although areadr will widen from ainta to rreala, when necessary, there is here no widening from ointa or racal a to \(\quad\) compla. If the ovariable to be assigned to is of mode rref compla, then it expects two values acceptable as arealn and separated by a eplus-i-times-symbol•.

In the reach of nchar \(c n\), aread (c) a merely reads the next character from the input file and assigns it to ucu even if that character is a blank. In the reach of \(\mathrm{n}[1: 10]\) char \(c 1 \mathrm{a}\), aread (c1) n will read exactly 10 characters, including blanks, and assign these to oc1口. If however, we have \(\quad\) [\(1: 3\) flex \(]\) char cfla, then \(\quad\) read (cfi) r reads characters until it finds the end of line or one of the characters which belcngs to the string oterm of stand ind [R. 10.5.1.mm], whereupon the preceding characters are taken to be those to be assigned to ncf1r. Whichever bound is flexible is then adjusted suitably. If both of them are flexible, e.g., in the reach of \(\quad[0\) flex: 0 flex lchar sillyn, the calle aread (silly) a will result in a lower bound of ala for asillya. The programmer may specify the terminators as for example in oterm of stand in := "?!"口, which
changes the set of terminators to＂？＂or＂！＂．
For wultiple and structured variablese in the union qintypea，the first step is to straighten to \(\quad[\) ］simplina，where asimplinn is the union of modes discussed above．Thus，in the reach of \(\quad[1: 3\) ， \(1: 2\) ］real \(x 2\) ，struct（int \(a, b o o l b) c a, ~ t h e\) －call• aread（ \((\times 2, c))\) a would be satisfied by
\(3.1 \quad .6 \quad 4 \quad .2 \quad .7 \quad 5\) 0

\section*{11．7 String to numeric conversion}

The eprocedure areada must of necessity convert character strings to integral or real values，and in doing so it makes use of three standard eprocedurese，astring int，string deca and astrinq realn［R．10．5．2．2．c．d．e］．These procedurese are not hidden．The programmer may use them himself．The first －proceduree，astring intr，converts a given string to an integral value．It assumes that the first character of the string is a sign．Any character which is not a（hexadecimal） digit，e．g．，a space，is treated as a 0 ．Thus the value of astring int（＂＋．．23＂，10）a is 23 （the second parameter is the radix）．The procedure \(\quad\) ostring deca converts a evariable－point－ numerale，e．g．，\(a^{\prime \prime}+2.3450^{n}\) 口，to a real value and astring reala converts a floating－point－numeral॰，e．g．，\(a^{\prime \prime \prime}+2.345 e-2^{\prime \prime \prime} \mathrm{g} \quad\) to a real value．The value of astring dec（＂\(+2.345^{\prime \prime}\) ）a is \(\mathbf{~ 2 . 3 4 5}\) and that of astring real（＂\(\left.+2.3450 \mathrm{e}-1^{\prime \prime}\right) \mathrm{n}\) is \(\quad .2345\) ．These －procedurese，although available，are not likely to be useful for input since areada itself has all the flexibility needed． However，thay may well be used for internal manipulation of strings．

Another procedure which may be mentioned here is achar in stringa［R．10．5．1．2．n］．It has three oparameters＊；the first is of mode character＊，the second of mode oreference to integral． and the third of mode orow of character．The oproceduree delivers a boolean value which is atrues if the character，which is the first oparameter＊，is found in the string，which is the third oparameter＊，in which case its position is assigned to the －integer－variablee；otherwise，the value delivered is afalsew and no assignment is made．The result of achar in string（＂＋n，\(i\) ， ＂\(x_{\underline{+}+}+y^{\prime \prime}\) ）is therefore atruea and the value 3 as is assigned to ロiロ．

\subsection*{11.8 Simple file enquiries}

For any file，it is possible to make simple enquiries concerning the current position in the file．There are three －procedures•，achar number，line numbera and apage numbera ［R．10．5．1．2．v，w，x］，each yielding an integral value，the three coordinates of the abookn．In the case of the standard input file，the ecallse achar number（stand in），line number（stand in）a and npage number（stand \(i n\) ）a should each yield the value 1 ． after the call• aread（ \((\mathrm{c}\) ，back space）） a ，if this is the first call of oreada and is in the reach of ochar ca．Notice that these •procedurese deliver integral values and not names，so
that they are for enquiry only and cannot be used to alter the position in the file.

There are also three \({ }^{\circ}\) procedurese aline ended, page endeda and ofile endedr [R. 10.5.1.2.h.i, j], each of which delivers an appropriate boolean value, but a careful distinction must be made between ufile endeda, which tests whether the maximum capacity has been exceeded, and alogical file endedr [R.10.5.1.2.k]. which tests whether the usable information in the file has been exhausted. In the case of the file ustand inn, if it is a card reader, then ofile ended (stand in) a is likely always to be afalsea, but nlogical file ended(stand in) may become atruea each time we reach the end of the data for a particular job. The ocalle alogical file ended (stand out) n will always yield afalsew, because oget possible[stand out channel]口 [R.10.5.1.1.j. 10.5.1.3.b] is likely to be salsea, i.e., ustand outn is not an input file. But afile ended (stand out) a may well become true when the page limit for a particular job is reached, or \(w\) hen the box of paper is exhausted.

\subsection*{11.9 Other files}

It is worthwhile noticing now that aprint (x) a is the same as uput(stand out, \(x\)) a and oread (\(x\)) n is the same as nget (stand in, \(x\)) a; in fact, this is the way that uprinta and ureadr are defined [R. 10.5.2.1.a, 10.5.2.2.a]. This means that if another file is available, say in the reach of the edeclaration ofile fr, then what we have said about unformatted transput on the standard files applies also to the file ofn by using, e.g., aput(\(f, x\)) a and aget (\(f\), \(x\)) a. Such files must be opened (and closed) by the programmer, but this is the subject matter of another chapter.

Another standard file which is always available, i.e., is opened automatically, is ustand backr. This file may be used for saving intermediate results during the elaboration of a - programe. When the elaboration is completed, this information will be lost, since the file is locked [R. 10.5.1.ii, 10.5.1.2.t] by the ostandard-postlude॰. The two relevant oprocedures. here are awrite bina and aread bina. The mode of the parameter. of awrite bina is a[]outtypen, and that of aread bina is口[]intypen. For example, in the reach of \(n[1: n] r e a l ~ x i n\), if we want temporarily to save the values of a rather large array, this could be accomplished by the call. awrite bin(x1) a. The array can then be recalled by aread bin (x1) a. If another file, say \(\quad\) fra, is available, the same could be done by oput bin(f, x1) \(n\) and gqet bin(f, x 1\() \mathrm{a}\), and if the file ffa is not locked then these two •calls• might appear in different •programs•.

Review questions
11.2 Print and read
a) Is aprint (new page, new line) a a call•?
b）Is aprint（nill \()\) a a call•？
c）What is the result of aprint（get possible［stand in channel ］） a ？
d）In the reach of rref real \(x x:=1\) 으 real \(:=3.14\) n，what is the result of aprint（xx）a？
e）In the reach of rref real \(x x:=10 c\) real \(:=3.14 \mathrm{n}\) ，what is the result of aprint（ref real ：\(x\)（ ）a？

11．3 Transput types
a）What is the result of aprint（for i by 2 to 10 do 3）a？
b）Can anila be coerced to \(口\)［ ］printtypen？
c）In the reach of rref real \(x \times a\) ，can \(\quad x \times x\) be coerced to口［ ］readtypea？
d）In the reach of \(\quad\) sstruct（ref \(c\) next，int \(n) s:=(\underline{n i} \underline{l}, 2) n\) ， what is the result of aprint（s）a？
e）In the reach of aformat \(f\) ，is aread（f）a a call•？
11．4 Standard output format
In the following，assume the same environment as given in section 11.4 ．
a）What is the result of aprint（（＂？＂，int width））a？
b）What is the result of nprint（（＂？＂，space，＂abc＂））？
c）In the reach of 口ref real \(x x:=1\) of real \(:=3.14 n\) ，what coercions occur to axxa in aprint（（＂？＂，xx））a and what is printed？
d）How many real values can be printed on a line？
e）How many integral values can be printed on a line？
f）Is the result of aprint（ \({ }^{\left.\left({ }^{\prime} a^{\prime \prime}, ~ " b ", ~ " C "\right)\right) 口 ~} \mathrm{ABC}\) or \(\mathrm{A} B C\) ？

\section*{References}
[B] W. Brown, The cross-referencing of a van Wijogaarden grammar, Oniversity of Calgary. 1969.
[G] G.Goos, Some problems in compiling algol 68, aLGOL 68 Implementation, lorth-Holland, 1971. pp. 179-196.
[H] J.B.Hopcroft and J.D. Ullman, Formal Languages and their Relation to Automata, Addison Wesley, 1969.
[Kn] D. B.Knuth, The art of Computer Programaing, Vol. 1, Pundamental Algorithms, Adison Meslep, 1968.
[Ko] C. H. A. Koster, On infinitemodes, Algol Bulletin, No. 30, Feb. 1969. pp. 86-89 (АВ. 30.3.3).
[A] L. Meertens, on the generation of ALGOL 68 programs involving infinite modes, ALGOL Bulletin, Ho 30, Peb. 1969, pp. 90-92 (AB30.3.4).
[H] P.Haur, Revised Report on the Algorithmic Language ALGOL 60, Com. Assoc. Computing Machinery, 6 (1963) pp. 1-77.
[Pa] C. Pair, Concerning the syntax of ALGOL 68, Algol Bulletin, AB 31.3.2. March 1970.
[P] PL/I Language Reference Manual, IBM Form C28-8201-2.
[R] A. van Wijngaarden, B.J. Mailloux, J.B.L. Peck and C.H.A. Koster, Report on the Algorithmic Language ALGOL 68, Numerische Mathematik, 14 (1969) pp. 79-218.
[SM] H.Schorr and H. H. Maite, An efficient machine indefendent procedure for garbage collection in various list structures, Conm. Assoc. Compating Hachinery, Vol. 10 (1967), pp. 501-506.
[日] H. WUssner, on identification of operators in ALGOL 68, ALGOL 68 Impleaentation, North Holland, 1971, pp. 111-118.
\([2]\) Mary Zosel, Mode classification, Univ. of Washington, 1970 .
answers to review questions
1.1 a) It ends with espmbol• b) Three, •label-symbol•, -cast-of-symbol and up-to-symbol•, unless one observes that the \(\cdot l a b e l-s y m b o l\) - is in italic, and the other two in normal type. c) Yes, e.g., 口.ロ, which represents a - point-symbole and a - completion-symbol•. d) It is a representation of the oopensymbole, but, by extension 9.2.g, it may be used in place of ㅁㅁ.
1.2 a) An internal object which is a real value. b) a - real-denotation• (amonqst other things). c) It is an external object. d) atruen possesses itrue..
1.3 a) No. b) Yes. c) No, it is an internal object. d) No, i.e., not at the same time, but in the course of time - yes. e) No.
1.4 a) No. b) Yes, a ecollateral-declaration• [R.6.2.1.a].
1.5 a) There are four classes: integral values, real values, truth values and characters. b) Yes, the truth values. C) The mode.
1.6 a) The mark ":" is read as "may be a", ";" as "or a" and "," as "followed by a". b) Yes.
1.7 a) Yes, e.g., a123a and n000123a. b) No, but it is a -formula•. C) Yes. d) No, not if this value would exceed max inta [R.10.1.b].
1.8 a) Yes, e.g.. possibly a 2.34 a and \(\mathrm{a} 23.4 \mathrm{e}-1 \mathrm{a}\). b) No. 0 h , please no. c) No. d) Yes. e) No, but it is a formula• [R.8.4].
1.9 a) No. b) Yes.
1.10 a) Infinitely many. b) As many as he likes, but always a finite number.
1.11 a) No, it is a echaracter-denotation•. b) Yes. c) rou of character•.
1.12 a) No [R.2.2.3.1.b]. b) estructured with row of boolean field letter aleph•. c) \(\bullet f o r m a t \bullet\).
1.13 a) •row of character• b) •reference to real•, \(\bullet\)-reference to integral. c) No. d) Six. e) No.
2.1 a) No. b) Yes. c) \(\quad\) rref ref []chara. d) Yes. e) Yes. f) No. g) No, except for mile. h) No, a edeclarere specifies a mode.
2.3 a) None. b) \(\quad\) 능 \(\operatorname{chara.~c)~}\) 므으 booln. d) No. e) No. f)

No.
2.4 a) No, but it possesses a name referring to a real value. b) Yes. C) Ho. d) Na. e) No. f) No, i.e., not at the same time, but in the course of time - yes.
2.5 a) Yes, but not the same instance [R.2.2.1]. b) No. c) No, but the value referred to by the name possessed by oxn may

2.6 a) No. b) Yes, in the extended language. c) oreference-to-reference-to-integral*. d) \(口[1: 3] p r o c ~ s e a l ~ p o . ~\)
2.7
a) Yes.
b) Yes.
c) No. d) No.
2.8 a) \(\quad\) ref ref real \(x x=10 c\) ref realn. b) nref real \(x=\) loc real. ref real \(y=\) loc reala.c) \(\quad\) rref real \(x=\) loc real. ref real \(Y:=\) loc real \(:=3.14 \mathrm{n}\). d) It is not possible; moreover, if a+n has its usual meaning, then this is not a edeclaration•.
2.9 a) No. b) Yes. c) No. d) Yes, but a rather foolish one.
2.10 a) Yes. b) Yes. c) No. d) \(\square y+2 n\). e) oreference-to-reference-to-real•. f) No.
2.12 a) The \(\quad \mathrm{ya}\) is dereferenced and the a 3.14 a is not. b) No.
2.13 a) the ana is an eintegral-mode-identifiere but the ama is a rreference-to-integral-mode-identifier; i.e.. uno is a -constante and man is a •variable•. c) No.
2.14 a) Four. b) Both aapr and ampa are dereferenced. c) It is equivalent to \(\quad\) (\(:=j+1 \square\). d) Yes. amin. It's mode is •longreal•. e) •reference-to-long-real•.
3.1 a) No. b) Yes. c) \(\quad\) (a \(+(b\) of (c[d])))-ea. d) An -expression may possess a value but a statement cannot. e) yes.
3.2 a) No. b) Five, -mode-identifier denotation, slice, call. and -void-cast-pack•. c) da[i], \(a_{\text {, }} i, c, \sin (x), \sin , x\), \(\cos (x+p i / 2), \cos , x, p i, 2 n . d) \$ o . e)\) It could be either, depending on the wode of mar [R.9.2.g].
3.3 a) \(\quad\) l. ca, fa. b) •reference-to-real•. c) •row-of-row-of-integral*. d) Yes. e) No.
3.4 a) Yes. b) Yes, its mode is oreference-to-row-of-real . c) Yes. d) Yes. e) a35, item of \(a\), \(i+n * 2\), \(i+:=2 r\).
3.5
a) No.
b) Yes.
c) No. d) Yes. e) Yes.
3.6 a) The same as that of \(\square(2,3)\) a. b) It possesses the

No，because ai \(:=1 \mathrm{n}\) is not a etertiary and therefore not a －lower－bound。．
3.7 a）Yes．b）No，it is a •deprocedured－coercend ［R．8．2．2．1．a］．c）No，but \(\mathrm{acos}((x>0\)｜ x ｜pi／2））a is a call．． d）When the mode of nan is oprocedure with M1 parameter reference to \(M 2\)－where \(\cdot M 1\)－and \(\circ\) H2＊are terminal productions of MODB．e）When the mode of man is oprocedure－with－M1－parameter－ procedure－with－M2－parameter－M3＊，i．e．，uan is a proceduree with one •parameter which delivers a procedure with one －parameter•，and the modes of abo and ocnare \(\bullet\) M1• and \(\bullet M 2\) • respectively．
3.8 a）Yes．b）No，\(\quad\)（ \(: ~ x)\) a has no mode．c）Yes，provided that the mode，after soft coercion，of axa is ereference－to－ procedure－void．．d）Yes．e）No［R．8．2．3．1］，but aproc \(p:=\)（：\(x\) \(:=3.14)\) a is a edeclaration•．
3.9 a）No．b）Yes．c）No．d）Yes．e）When the mode of abn is structured，has a field selected by nan whose mode is －reference－to－M1• where \(\cdot M 1\)－is the a posteriori mode of \(\quad\) ocra，or when aba is a variable and will refer to structured values that have a field selected by nan whose mode is M1．
3.10 a）No．b）No，it is a field－selectore［R．7．1．1．i］．c） na of（b［c］），e of（g（x））r．d）No，\(\quad\)（ a of b）a is not a field－ selector•．e）Yes，it could be．
3.11 a）Yes．b）ofalsem（if the value of obits widtho is －3．）．C）-4 ．d）No，the left •operande of the operatore口＋：＝a，as declared in the estandard－prelude•，wust possess a name．e）wfalsea．

3． 12 a）No．b）No，\(\quad\) i \(:=i+1 n i s\) not a etertiary•．c）No． d）No，\(\quad\) proc ：（：random）a is．e）It is an eassignation•．
3.13 a）falsem．b）„true．．C）』truea．d）No，a3．14n does not possess a name．e）Yes．
3.14 a）No．b）It looks like one，but a3．14a cannot be strongly coerced to an integral value．c）an oidentity－ relation•．d）No，because \(\quad\)［ 1：1］reala is not a virtual－ declarer•．e）No，rref int ：iin is not a etertiary•．
3.15
a）None．
b）Eleven．
c）A constant．．
d）\(\quad\) real．．
e）

None．

4．1 a）The same as that of \(\mathrm{n} 3 \underline{\mathrm{i}}\)（a．b）No．c）No．d）Yes． e）Yes．f）Yes．
4.2 a） \(5=\) ．b）Some undefined integral value．c）＝11．．d）

4.3
a）No．
b）aif，Caser and \(\quad\)（a．c）\(=4 \mathrm{~m}\) ．
d）\(\quad 2\) ．
e）No．

4．4 a）No．b）No．c）Yes，nen is elaborated infinitely often，or until a jump occurs to a label－identifiere outside of it．d）Yes，zero times．e）Yes，zero times．f）The second and third occurrences of ain identify the first，but ai ：＝2＊i＋ 1口 is not an eassignatione since ain does not possess a name．g） The last three occurrences of uin identify the second occurrence，but the third and fourth occurrences identify the first occurrence．
4.5
a）Yes．
C）Yes．
d）No．
e）NO．f）No．
4.6 a）No．b）（Ho．c）No．d）The same as that of anabcdena． e）Yes，e．g．，if the order of elaboration happens to be aj + ：＝i ； \(\mathbf{i}+:=\) j口．

4.8 a）Seven．b）reference－to－row－of－integral•．c） －reference－to－integral॰．d）Four．e）None．
5.1 a）No，areal procn is not a edeclarer•．b）No，n（real a）reala is not a evirtual－plane［R．7．1．1．x］．c）aproc real r2＝
 b ）a．e）\(\quad\) pproc recip \(=(\underline{\text { ref }}\) real \(a): a:=1 / a n\) ．
5.2 a）No，unless \(\quad\) a＊a has been redeclared and possesses an operation which delivers a name．b） 口ref［ ］real x1n．c）\(\quad\)（real \(a\) \(=x+1\) ，real \(b=y\) ；\(a * b\) ）\(\quad\) ．d）\(\quad\)（real \(a=\) skip ；real ：a＊

5.3 a）The value is voided．b） \(4.6 \%\) in the sense of numerical analysis．c）That of ay口．d）The object ap（x，y）is is not a call，since aref ref real \(a=x a\) is not an identity－ declaration•e e） \(\mathbf{2 . 2}\) ． ，in the sense of numerical analysis．
 but in most applications aproc \(p=(\underline{i n t} a\) ，ref int b）：\(b\) ：\(=2\) ＊an vould be sufficient．Note that since obn is passed by name in ALGOL 60，the side effects of \(a b:=b * 2 *\) an occur twice but in ab \(:=2\)＊an they occur only once．
5.6 a）A constant• b）Because no assignment is made to nsa．c）Because agn is a constante and ogrown requires a －variable in its last－parametere．d）It＇s value is irrelevant for it is used only in the formula• at or \(\boldsymbol{\text { atra }}\) ．e）The same as that of a11100000a．

6．1 a）a priori mode，a posteriori mode and syntactic position．b）Strong，firm，weak and soft．c）Yes．d）No．e） Widening．
6.2
a）Eight．
b）Dereferencing
and widening．
c）

Dereferencing and deproceduring. d) Rowing. e) Hipping.
6.3 a) Dereferencing (four times). b) Dereferencing (twice)
c) Dereferencing, dereferencing and deproceduring. d) Dereferencing, deproceduring and dereferencing. e) \(834 \mathrm{a}, 7 \mathrm{pb}, \mathrm{c}\), \(61 \mathrm{e}, 81 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, 820 \mathrm{~d}, 822 \mathrm{a}, 860 \mathrm{a}, 41 \mathrm{~b}, \mathrm{c}, 302 \mathrm{~b}\).
6.4 a) Deproceduring and uniting. b) No. c) A routine. d) No. e) No, rrandoma is of a priori mode eprocedure-real•, it cannot be procedured to \(\bullet\) procedure-voide [R.8.2.3.1].
6.5 a) No. b) Hipping. c) Widening of a 5 a . d) Deproceduring and rowing. e) None, this is not a caste since rowing cannot be followed by uniting [R.8.2.4.1.b].
6.6 a) Dereferencing and deproceduring. b) Firm. c) Weak. d) Dereferencing of arrixa twice (not thrice). e) Soft.
6.7 a) Base, cohesion, formula, confrontation•. b) bb, a of \(b, x, 2, x:=2, x, y, 3, y+3, x:=y+3 n\). c) Yes, but its elaboration is undefined since the dereferencing of a nihile is undefined [R.8.2.1.2 Step 2]. d) Yes, assuming the edeclaratione ragef real \(\times x\). e) No, hipping cannot occur in a soft position.
6.9 a) \(834 \mathrm{a}, 71 \mathrm{~b}, 421 \mathrm{~b}, \mathrm{c}, 61 \mathrm{e}, 81 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, 820 \mathrm{~d}, 825 \mathrm{~b}, \mathrm{a}\), 821a, \(860 \mathrm{a}, 4 \mathrm{~b}, 302 \mathrm{~b}\). b) No, there is no deuniting coercion. c) \(74 \mathrm{a}, 54 \mathrm{e}, 71 \mathrm{~b}, \mathrm{w}, \mathrm{aa}, \mathrm{z} ; 41 \mathrm{~b}, 302 \mathrm{~b} ; 74 \mathrm{~b}, 61 \mathrm{e}, 81 \mathrm{a}, 820 \mathrm{~d}, 823 \mathrm{a}\), \(830 \mathrm{a}, 834 \mathrm{a}, 71 \mathrm{z}\); 61e, 81a, 820d, 828a, 830a, 831a,b, 81b, \(8, \mathrm{~d}\), \(820 \mathrm{~g}, 860 \mathrm{a}, 4 \mathrm{bb}, 302 \mathrm{~b}\); \(831 \mathrm{c}, 61 \mathrm{e}, 81 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, 820 \mathrm{~d}, 825 \mathrm{a}, 860 \mathrm{a}\), 511a, \(303 \mathrm{c}, \mathrm{d}\). d) \(61 \mathrm{e}, 81 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, 820 \mathrm{~d}, 828 \mathrm{~b}, 822 \mathrm{a}, 860 \mathrm{a}, 41 \mathrm{~b}, \mathrm{c}\) 302b. e) No, hipping cannot occur in a firm position.
6.10 a) No. b) Yes. c) •real•. d) \(\begin{aligned} \text { real• or } & \text { procedure real• }\end{aligned}\) or \(u^{\prime}\) union of integral and real• or onion of integral and real and booleane etc. e) No.
6.11 a) No. b) apxa is softly deprocedured and axxa is strongly dereferenced. c) \(\quad\) ppar is softly deprocedured and ago_to ka is strongly hipped to ereference-to-real•. d) Yes. e) No.
6.12 a) \(\quad \mathrm{x} 1 \mathrm{n}\) is weakly coerced, a 2 a is strongly widened and then rowed to •row-of-real•. b) Yes, strongly-weakly to •real•. c) Yes. d) Yes. e) arandown is strongly deprocedured and widened and \(\quad \mathrm{O} 0 \underline{2} \mathbf{2}\) is weakly coerced.
6.13 a) No. b) No. C) Yes, firmly-strongly. d) Yes. e) No.
6.15 a) Yes. b) Yes, the balanced mode is •reference-to-
 others strong. e) No.
6. 16 a) The object \(\mathrm{am}+:=1 \mathrm{a}\) is interpreted as \(\mathrm{am}:=\mathrm{m}+1 \mathrm{n}\) so nma is dereferenced once, \(\quad \mathrm{ml}+:=1 \mathrm{n}\) is dereferenced as the left operand of \(n>\mathrm{a}\). b) This is equivalent to uref int \(\mathrm{c} 1=\underline{\underline{1}} \underline{\underline{g}}\) int \(:=a m:=a b s\) ama. First namn is dereferenced to integral。 and the absolute value of this integer is found. It is assigned
to nama. Then a name is created by nloc inta, the eassignation nam \(:=\) abs \(a m\) is dereferenced and the integral value (referred to by aama) is assigned to this name. Finally acir is made to possess the name. c) The identifier aain is made to possess the same name as that possessed by oa[i]n. This happens for each repetition of the repetitive statement, in which there are five occurrences of aair, thus saving time on subscript calculation. d) This is the position of the statement number 30 in the FORTRAN program. It is redundant in ALGOL 68, but al30: endr is not permitted for there is no empty statement. e) ?
7.1 a) Ies, its value is mfalsem [R.7.1.2.c Step 8]. b) Yes, but rather useless. c) etruew. d) Yes. e) Yes.
7.2 a) No, eintegral mode cannot be united to ounion of character and boolean•. b) Mo, in R.8.2.4.1.a, estronge goes to firm, so the a1a cannot be widened. c) Bither oreale or -boolean•. d) Ies, and its value is ofalsem. e) Yes, provided that it is in the reach of a suitable declaration of the - operator • a+
7.3 a) otrue. b) afalsem. c) otruem. d) Yes. e) No, \(\mathrm{ax}::=\) xa is not a etertiary• [R.8.3.2.1.a].
7.4 a) Yes, its value is false. b) Yes, its value is etrues. c) Yes [R.4.4.3.c.d]. d) No. e) oproc sqirt = (int

 it should be \(\quad\) sema \(p=/ 1\) r. d) Yes, surprisingly, and if the value of aun is of boolean mode, then the value of the expression is that of aha. e) No, because a eskipe can only be hipped and must therefore be in a strong position. The right -tertiary of a conformity-relation is of no sort [R.8.3.2.1.a]. f) No, a jumpe can only be hipped (see the answer to e).
8.1 a) No, it is a confrontation• b) Yes. c) \(\quad\) (\(x+(-y)\)) - (\(\left(-\left(\begin{array}{ll}(\underline{b} \underline{s} & \text { i)) over } 2) \text { a. d) Nine. e) No, it is a }\end{array}\right.\right.\) -confrontation• f) 2 •。
8.2 a) No, \(\mathrm{a}:=:=\mathrm{a}\) is not a dyadic-indicatione. It is a -identity-relatore. b) No, the token on the right must be >0. c) No, the token must be < 10. d) Yes, if the implementation permits \(n\) ?n as a \(\quad\) dyadic-indicante. e) No, perhaps the intention was periority \(?=6,!=6 \mathrm{a}\).
8.3 a) No, \(\quad\) : \(=:=\) is not an operator• It is an eidentityrelator•. b) No, the eactual-parametere must possess a routine with one or two eparameters•. c) No, \(\mathrm{a}^{*} \mathrm{a}\) is not a •monadicoperatore [R.3.0.4.a, 4.2.1.f, 4.3.1.C]. Think about ax**2a. d) Yes. e) \(口\) op (드́f file, int) create \(=\) createn.
8.4 a) (real \(\underline{a}=\) skip int : round a) m. b) No, arandoma
possesses a routine which has no－parameterse．c）e83．．d）Yes． e）No，\(\quad \square+\square\) is not an actual－parametern．
8.5 a）One．b） 16 times a sufficient number［R．10．b Step 3， 10．2．3．i，j，10．2．4．i．j．10．2．5．a．b，10．2．6．b， 10．2．7．j，k，p，q，r，s，10．2．10．j，k，i］．c）30，［R．10．5．2．2．b， 10．5．3．2．f， 10.2 .0\(]\) ．d）There is none since this is a monadic－ operator•．e）No，it is a conforaity－relator•［R．8．3．2．1．b］．
8.6 a）Yes，but it cannot be contained in a proper program． b）Yes，because the second occurrence of nabsa is that of a －monadic－indication．and does not identify the first．c）In order to reinstate the edyadic－indicationse and •operatorse of the estandard－prelude•．They may have been re－declared．d）Yes ［R．6．1．2．a，6．0．2．d Step 1］．e）Yes［R．6．1．2．a，6．0．2．d Step 2］．
8.7
a）R．10．2．5．a．
b）R．11．11．k．
c）R．11．11．i
d）
R．10．2．8．d．e）R． 10.2 ． 10.1 ．
 bool ：a＞0） ．
8.9 a）a－1m．b）No，it is an eidentity－relation。．c）No，a －cast• is not an •operand•．d）Yes．e）valse．．
8.10 a）No．b）No．c）Yes，try coercing from dinta or from aproc inta．d）Yes．e）No，there is a multiple definition of ローロ．

8．11 a）It draws a straight line of length ado in the direction S．b）Try，an，s，e，wa．c）！

8．12 a）Remove 2，remove 1．b）Remove 1，remove 3，replace 1，remove 2，remove 1．c）The formula• requires that man should be a •variable• d）Remove 2，remove 1，remove 4，replace \(1^{1,}\) replace 2，remove 1，remove 3，replace 1 ，remove 2 ，remove 1．e） Try \(\quad\) groc \(u p n\) and aproc downo．
9.1
a）No．
b）Yes．
C） No
［R．8．3．4．1．a］．
d）No．
e）Yes ［R．5．1．0．1．b］．
9.2
a）Infinitely many．
b）Six．
c）Two．
d）Two．
e） \(\bullet\) virtual，actuale and \(\bullet\) formal•．

9．3 a）No［R．3．0．2．b］．b）Three．C）No，it is a metarule． d）Yes．e）No．
9.4 a）No［R．1．2．1．田］．b）No．C）Yes，©row－of－charactere， say．d）•real－field－letter－r－1etter－e－and•［R．8．5．2．1．a］．e） －real•
9.5 a）（I）\(L\) ：\(x\) ；\(Y\) ；z．（II）\(N: \quad N p\). （i）\(s: N x, \quad y N y\) ，
 （i）\(s: N x, N y, N z\) ．（ii）\(N p L: N L\) ，L．（iii）\(p L:\) C）（I）\(L: x\) ；\(y\) ；\(z\) ．（II）\(N: \quad\) ：\(p N\) ．（i）\(s\) ：letter \(x\) symbol \(N\) ，letter \(Y\) symbol \(N\) ，letter \(z\) symbol \(N\) ．（ii）letter \(L\) symbol \(p H\) ：letter \(L\)
symbol; letter L symbol N.
9.6 a) No. b) Yes. c) No. d) No. e) Yes, •NONPROC• excludes only \(\bullet\) procedure-MOID• or the same preceded by •reference-to• or - row-of •.
9.7 a) •void-cohesion• or •void-confrontation• [R.8.5.0.1]. b) •virtual NONSTOWED declarer•. c) •firmly dereferenced to MODE FORM• d) estrongly rowed to REFETY row of MODE FORM•. e) •STIRM ly united to MOID FORM•.
10.1 a) No, arealn is not a mode-indicatione [R.4.2.1.b, 1.1.5.b]. b) No, ana is an •identifier•, not an eindicant•. c) No, []real is not an eactual-declarer• d) Perhaps, if abo already specifies a united moder [R.7.1.1.cc, 9.2.b]. e) Yes [R.9.2.b].
10.2 a) \(\quad\) astruct (ref \(\underline{b}\) a, Eroc \(b\) d) a b) This is undefined. In
 an contains aan which is virtual and is therefore not developed [R.7.1.2.c]. c) \(\quad\) union (ref const, ref var, ref triple, ref
 Ga11) left operand, int operator, union (ref const, ref var, ref triple, ref callefight operand) r. e) rstruct ([1:0 flex] char title, ref book next) r .
10.3 a) The first is its defining occurrence as a modeindication and the second is an applied occurrence as a -virtual-declarer• b) The first is a •declarer• and the other two are •qlobal-generators•. c) Yes. d) nlink a := (1, nill) ; next of \(a:=1 \underline{i n k}:=(2, \underline{n i} 1) ;\) next of next of \(a:=1 i n k:=(3\), nila. e) No [R.6.2.1.f].
10.4 a) No. b) Yes. c) No. d) Yes. e) Yes.
10.5 a) If nár is a edyadic-indication•, then it is a - formula and \(\quad \underline{b}\) b un is a cast•; if rag is a modeindication*, then it is a edeclaration• and ab :un is a orow-ofrower•.
10.6 a) Yes. b) No. c) ustruct \(\underline{a}=(\underline{i} \underline{n t} u\), ref \(\underline{a}\) v) a. d) No. e) Yes.
10.7 a) Yes. b) nnode tree \(:=\) node \(:=\) (niw, "bob", níl), "jim", node \(:=(\underline{n} \underline{i} \underline{l}, \quad\) sam", nill)) \(n\).
10.8 a) aleft of right of tree \(:=\) node \(:=\) (nil, "ron", nill)
10.9 a) In line 2, insert \(\quad\) boool \(b:=\) trueq; lines 7 and 8 become 响i \(: b:=\) false ; done : bo.
10.11 a) \(\quad\) proc \(p 1=\) (ref node root) : (print("("); (root : \(\#\) : nil 1 p1 (left of root) ; print (val of root) ; p1(right of root)) ; print(")")) r. b) \(\quad\) prog \(p 2=(\underline{r e f}\) node root) : (root : \(\neq\) : \(\underline{\underline{i}} \underline{\underline{l}}\) 1: left of root :=: (
node ：nill \(\mid\) print（val of root） \(\mid\) print（＂（＂）；p2（left of root） ；print（＂，＂）；print（val of root）；print（＂，＂）；print（right of root）；print（＂）＂））口．
10.12 a）Remove aaction（p）from line 12 and insert it in line 8.
11.2 a）No．uprinta has only one parameter．b）No，anila can only be hipped，but since it must also be united，it is therefore in a firm position［R．8．2．4．1．b］．C） 1 ［R．10．5．1．1．f， 10.5 .0 .2 Table 1］．d）\(+3.140000 \mathrm{E}+0\). e）\(+3.14000 \overline{0} \mathrm{E}+0\) ．

11．3 a）Undefined，since the repetitive statement is void and therefore cannot be coerced to uprinttyper．b）No ［R．8．2．4．1．b］．C）Yes，dereference to \(\quad\) rief reala，unite to aintyper and then row it．d）undefined，since asa cannot be coerced to oquttyper．e）No，听ormata cannot be coerced to口［ lreadtyper．
11.4 a）？ 4 ．b）？ABC．c）Twice dereferenced and then united to \(\quad\) printtyper，？\(+3.400000 \mathrm{E}+0\) ．d）Faur and 9 spaces left over．e）Nine and 2 spaces left over．f）A B C．

\section*{An}

\section*{ALGOL 68 COMPANION}
J. B.L.Peck Revised Preliminary Edition March 1972

This document may be ordered from
The Bookstore, University of British Columbia, Vancouver 8, B.C., Canada.

The price is \(\$ 2.00\) plus handling charges.

Please send me copies of an ALGOL 68 CJMPANION, and bill we.

Name
Address```

[^0]: （1）Strictly speaking，＂pack＂and＂package＂are protonotions but not paranotions［R．1．1．6］，so you will not find them used in the semantic text of the Report．

[^1]: （1）Translated from algorithm 386 by G．H．Bradley，Communications of the Association for Computing Machinery，Vol 13，No 7， 1970.

