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Introduction 

This book is not intended as a complete description of t he 
language ALGOL 68. That description already exists in the form 
of the "Report on the Algorithmic Language ALGOL 68", 
hereinafter referred to as the "Report" and refere nced by (R] 
(see the references). The Report i~, of course, a reference 
document and it must, of necessity, strive for the utmost 
precision in meaning. certain sections, therefore, may yi e ld 
their proper intent only after what the reader may think is an 
excessive a mount of close scrutin y. But then, like any legal 
statute, the Report should be read carefully, for the authors 
were determined that, when the rea der e ventually gropes bis way 
to a meaning in a carefully worded passage, it should yield, 
beyon:1 all possible doubt, the meaninq wh ich was intended, a n:1 
not some other meaning which the reader may have had in mind. A 
student of law does not learn the law by first studying the 
statutes. Likewise, the best approach to a new progcammlng 
language may not be through it s defining aocume nt. The law 
student must be taught how to find his way among the statutes 
and the student of programming needs to be s hown how to get the 
information he needs from the defining document of a programming 
language. 

Dur intention is therefore to introduce the reader, in easy 
stages, to the ideas and the terminology contained in the 
Report. Since it is assumed that the Report is always at hand 
(this book should not be read without it), we absolve ourselves 
of the necessity for describing every detail of the language. 
our purpose will have be e n fulfilled, if the reader can, af ter 
studying this book, put it aside, and from that point onward use 
the Report alone. 

This approach means that it will not be in the interests of 
the reader to try to explain ALGOL 68 in terms of the concepts 
used in, say ALGOL 60, oc those used in any other programming 
1 nguage . ALGOL 68 has its own new terminology because many of 
the concepts ace new, and though ther . are simila ities with the 
concepts in other languages, usually the e~act counterpart is 
not available. we shall therefore try to be meticulous about 
usinq only the terminology which is employed in the Report; in 
this way the transition from the Companion to the Report will be 
easier. 

We adopt the same typograph ical devices as in the Report, 
whereby examples of the A.LGOL 68 representation language a re 
given in italic, e.g., aQ~.!1!-!! print (11 algol~68") endc, nd 
notions (i.e., metasyntactic variables, in the sense of ALGOL 
60, or nonterminals in the sense of formal grammars) are in a 
type font which is larger than normal, e.g., •serial-clause•, 
and usually hyphenated. Ex~erience s hows that this practice does 
not unduly disturb th e e ye on first reading. It has the 
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advantage th t closer examination can reveal whether a word is 
used in the ordinary sense of the English language or whether it 
is used in a technical sense. Fo~ example, if the reader wishes 
to know the meaning of 11 formula 11 , he w·11 look it up in his 
fdvourite dictionary; however, to find out about 11 •formula• 11 he 
must look at the rul a.q.1.a of the Report. This practice will 
e nabl us to use words with a precision which would o herwi se be 
difficult to achieve. As with t he Report, thei::e are nlso other 
words, like "name" or "mode" which are not part of the syntdX, 
but each is gi ven a technical meaning. We shall use quotes, when 
introducing the reader to these words, to lert him to the b::t 
that be is meeting a new word with a special meaning. 

At the end of each chapter is a set of review questions, 
the answers to which are provi~ed in the fin 1 pages. Many of 
these questions test the material as presented in this text, but 
oth rs require deeper study of some parts of the Report. We 
have tried to provide efere nces to the Report wherever th se 
may b needed. 

Some of the earlier chrlpters of this text were re d :tnd 
corrected by Daniel Berry, Wendy Black, Hellmut Gld, Lamb rt 
Mertens, 'l'ad Pinkerton , Helge scheidiq , Aad van Wijn gaarnen :111:l 

many others who may forgive the lack of mention here. Their 
assistance is gratefully acknowledq a. Naturally the author is 
responsible for any remaining imperfect·ons in this preliminary 
eliitio n. He hopes that readers will com municate with him, 
thereby helping to eliminate as many errors as possible from the 
final edi tiou. 

This preliminary editicn is produced by a ·ext formatting 
progri'lm written by w. Web); at the University of British Colum bia 
for use with the TN p int chain. This print chain introduces 
certain cestrictions, so1n of which are exas ~erating (e.t.J., 
th re is no genuine multipl·cation sign). To sim ul ate the eff ct 
of different type fonts, a bcacketing scheme is used. ALGOL 68 
external objects (proyram frayments) ace represented t hus 

CQ~91Q fg~1 X; x := 3.1~ ~Ege 
ALGOL 68 internal objects (values) are represented thus 

■ true ■ 
and paranotions and modes ~yntactic parts) are represented thus 

•strong-unitary-real-clause• 
This means that, e.g., a collection of three •identifiers• use3 
for illustration, should be written 

axa, aa1b2c3a, aan identifier □ 
but it will be easier on the eye if we assume that 

c, a 
may be replaced by 

so we shall generally use the more pleasing and less cluttered 
form 

ax, a1b2c3, an identifier □, 
unless the context calls for greater clarity. 
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This edition is a reprint of the preliminary edition aft•r 
correction of some errors and misprints. Another edition is 
planned for the end of 1972 and may contain additional chapters. 
The author is grateful to those who sent corrections to the 
preliminary edition and would appreciate further correction of 
errors and suggestions for improvement. 
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1 Denotations 

1.1 Language levels 

~ur purpose is to learn how to read and write ALGOL 68 
•programs • . One might suppose that 

□ Q~9.!!! £~!!! x; x : = 3. n enQ □ 
is an ALGOL 68 •program•, beci:iUSe it is a valid ALGOL 60 
•program• and, in a sense, this is the case. However, the 
similarities between ALGOL 60 and ALGOL 68 begin and end just 
about here, since 
□myprogram: (print ( ( (real lengths > 1 I "multiple" "single" ) , 

"&precision&environment")))a 
is also, in the same sense, an ALGOL 68 •pro<,Jram•. ALGOL 68 is 
not an extension of ALGOL 60, though the lessons learned in the 
design and use of ALGOL 60 hav e contributed to the final sh1pe 
of tha new language. It has, in relation to its contemporaries , 
a powerful syntactic structu re, which enables the defining 
document of the language to be kept to a minimum. This Companion 
is an introduction to the langu ge, which should be read only 
with the defining document, the Report [R ], readily at hand. For 
example, the reader should now turn to the Introduction in the 
Report [R.0], to get some flavour of the new language. 

In ALGOL 68 we may speak of •programs• in the "strict 
language" and in the "extended language" [R.1.1.1.a]. The strict 
language is that which agrees with the syntax of the defining 
document. In a natural language, like English, certain 
abbreviations, su::h as "e.g.", are commonly accepted. We usually 
write "e.g." rather than the longer words "for example", tut the 
meaning is the same. The abbreviations of ALGOL 68, are known as 
"extensions" [ R.9 ). The application of these extensions to the 
strict language yields the extended language. This means th3t, 
though •programs• may be written in the extended language, their 
meaning will be explained in terms of the strict language. 

Related to both.of these is the "representation language". 
The first example given above, is a representation [R.3. 1.1] of 
a •particular-program• [R.2. 1.d] of ALGOL 68. ie say that it is 
a representation because □£gg1~0 is a representation of the 
•begin-symbol•, □f~~1□ is a representation of the •real-symbol• 
and even the point within a3.14a is a representation of the 
•point-symbol•. Thus, the example 

DQ~gig £~~1 X; X := 1.14 ~llQ □ 
(which happens to be written in the extended language), is a 
representation of the following sequence of symbols 

•begin-symbol, real-symbol, letter-x-symbol, go-on-symbol, 
letter-x-symbol, becomes-symbol, digit-three-symbol, point­
symhol, digit-one-symbol, digit-four-symbol, end-symbol•. 

We sea at once, that it would be too tedious to write •programs• 
or parts of •programs• without using the representations. 
Nevertheless, the presence of the strict language, in which ~11 
the terminals end in the word •symbol•, will make it easier for 
us to formulate syntactic rules and to describe and to use the 
syntax. 
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1.2 Objects 

ALGOL 68 is described in terms of an hypothetical computer 
which deals with two kinds of "objects"[R.2.2.1). These 'l r:e 
11 internal11 objects and "external" objects. Roughly speaking, tn 
external object is the sequence of symbols represe n ted by th~ 
marks which the programmer makes on hi s paper: whe h creating ; , a 
•proqram•[R.2.1) and an inter nal object is an a rrangement of 
bits vi thin the computer. For example, wb e n the pro ramm~r: 
writes a3.14a, he makes, from four: symbols, n external objec;t,, 
which is a •denotation•(R.5]. Wit hin the computer: this may ~e 
reflected in a certain a~ran gement of bits, kno wn as a r aal 
value, the particular arrangemen t chosen dependin on t he kind 
of computer and the implementer' s 11him. Thus, a3.14a, which i s a 
seguence of symbols[R.3.1], is an external object and the 
arrangements of bits is the internal object. 

There is an important relationship between external objeats 
and internal obje=ts. One says that an extern~! object may 
"possess" [R.2.2.2.d] an internal object. Thus, the external 
object, the •denotation• a3.14a, possesses an internal object 
which is a collection of bits within the computer. We shdll 
speak of the internal object as a "real value" [R.2.2.3.a]. The 
form which the internal object takes is of no particular concern 
to the programmer. It is decided for him bj the manufacturer of 
the computer and by the implementer: of the language, i.e., by 
the compiler writer. In this text we shall represent this by 
means of a diagram as in figure 1.2, where the internal object 

: (2) 

r--.L---, 
I I ( 1 ) 
L------.J 

Fig. 1.2 

is suggested by a rectangle as at 1 and the relationship of 
possession by the dotted line at 2. 

The reader should note that we have introduced, by means of 
quotes, some standard terminology f r:om tn e Report[ R ]. Wherever 
possible, references to the Report will be given and every 
effort will be made, in what follows, to remain as close to the 
Report as possible in the use of this terminology. In this 
manner the reader may be encouraged to obtain more information 
about the language by reading the Report itself. 

The use of a different type font, such as in •denotation•, 
indicates that we are talking about an object in ALGOL 68 which 
is described by the syntax of the language (see paranotio-ns 
[R.1.1.6.c]). If the same word occurs in normal type font, then 
an English dictionary should be consulted for its meaning. 
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1. 3 Names 

Comp uters have a storage struct ure in which t he memoty is 
regpraea as co nsisting of small pieces, each usually called a 
wQrd or byt e , with each piece being gi ve n a unique address, 
i,e., a mea ns by which the c om puter c~n locate t hat word or 
byt,e. In our hypothetical computer, this situation is mod elled 
by sa ying that the computer bas 11 na mez" [R .2.2 . 3.5 ], each 
na"l e (I > cefei:ring to some val ue . When we sa y that a nii. me 
"ref er-s " rR. 2.2.2.1) to a real value , we are mod elli ng the 
~ituation whee the real val ue is an arrangement of bits which 
is stored at a certain storaqe place or address. The name is 

hu s the ddress of the place where the value is stored and the 
v3lue is t he conte nt of that sto rage place. We have now isolated 
another kind of internal object, i.e.~ a "name", and we note 
that there is a relationship between two internal objects, viz., 
a pame may "refer" to a value. In the diagrams a name will be 
tepresented as .in figure 1.3 at 1 and the relationship of 

( 1 ) o r------, 
o o------>-------~ 

0 ( 2) L _____ J 

Fiq.1.3 

~EJferring by a directed line as at 2. In p3ssing, we mention 
that a name is also a value ( R.2.2.3) and another name may refer 
tQ it, but we shall return to this point later. 

Most pr ogram mers do not wish to work only with 
• enot tio ns• s uch as □ 3.14a , but lso with •variabl e s• 
rR. 6 •• 1. el suc h as ax □• ru ALGOL 68 , dS in many other 
languages, if a programmer wishes to consi~er □ xa as a variable, 
he writes a •declaration• rR.7.4. 1), e .g., □!~!! xa. The effect 
(i)f his •decl cation• is to allocate as o ag1~ place, i.e., to 
cre~te a n me which ma y i:efer to a I:Pal value, this name being 
possessed by nxa. In figure 1.4 t ile relationship of possession 

axe 

: ( 1 ) 

0 r------, 
o o---->------. 

0 

Fiq.1.4 

is indicated by the dotted line at 1. It is important that this 
na~e may not refer to a value of another mode (i.e., to a member 
pf another class of values), such as •boolean• oi: •character•, 
for reasons of security in the e laboration [R.1.1.6] of 
-r----
~1) except for . nil ■ [R.2.2.2.l] 
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•programs•. In this chapter we are concerned with •denotations•, 
so we leave the subject of • declarations• and •variables• for 
the next chapter. 

1. 5 Denotations 

There are four mutually exclusive classes of "plain'' values 
fR.2.2.3.1). These are, "boolean", "integral", 11 r-eal 11 and 
11 character 11 values. The property of belonging to one of these 
classes is known as the 11 mode 11 ( R.2.2.4.1 J of the value. A real 
value is thus said to be of mode •real•. For each of these four 
classes, i.e., foe each of the modes •boolean, integral, real• 
and •character• we have •denotations•, which are certain 
sequences of symbols possessing values of that mode. Examples 
are, atr_yg, 12, 5. 670 and 0 11 w11 c. We consider each of these 
• denotations• in turn. 

1.6 Boolean denotations 

This is the simplest of th e •plain-denotations•. There are 
two values (internal objects) of mode •boolean•, viz., ■ true■ 
and ■ false ■• Consequently we need two external objects to 
possess them. These are the •true-symbol•, a!r.!!~a and the 
•false-symbol•, □li!.!.§go. At the risk of tedious repetition, but 
for further emphasis, we observe that the external object ctrueo 
possesses an internal object, wh ich is the boolean value ■ true;, 

r----L--, 
I ■ true■ I 
L-----J 

Fig.1.6 

(external) 

(intern:1.l) 

a value of mode •boolean• (see figure 1. 6). Of course, a similar 
statement applies to cfAl§!C• 

The syntax of •boolean-denotations• is very simple, and 
supplies a starting point for a study of the syntacti= 
description of the language. This is embodied in the rule 
rR.5.1.3.1.aJ 

•boolean denotation : true symbol ; false symbol.• , 
which may be read as 11 a •boolean-denotation• may be a •true­
symbol• or a •false-symbol•"· 

1.7 Integral denotations 

An •integral-denotation•, for example, 034□ or c0c or 
00001230, is a sequence of • digit-tokens•. This means that an 
•integral-denotation• is easy t o recognise and to describe. Its 
syntax rule (8.5.1.1.1.a] is 

•integral denotation : digit token s equence. • 
which means the same as the rul e 
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integral denotation : digit token ; 
integral denotation, digit token. 

The full explanation of hov to use this syntactic method of 
description will be found in Chapter 1 of the Report. It is 
important that the reader should, at some time, master this 
syntactic description method. For the moment we may be content 
to know that this rule describes an •integral-denotation• as a 
sequence of •digit-tokens•, a • di it-token• being represented by 
□O, 1, 2, 3, 4, 5, 6, 7, 8a or □go_ rhe 1:1nguage makes no 
restriction on the length of the sequence of •digit-tokens•, 
although, in a particular implementation, such a cestricticn may 
well exist. 

An •integral-denotation•, of course, possesses an integral 
value, as one might expect. Not surprisingly, the value 
possessed by a000121u is •123 ■, which is equal to that possessej 
by n123a. 

1.8 Real denotations 

There are two kinds of •real-denotation• (R.5.1.2]. Some 
examples are: n.J.14, .000123, 121.45e6, Se-16, 4.1591012a<n. We 
classify the first two as •variable-point-numerals• and the 
remaining three as •floating-point-numerals•, the latter being 
the kind of •real-denotation• likely to be used by the physicist 
or engineer. This classificdtion is stated [R.5.1.2.1.a] in the 
rule 

•real denotation: variable point numeral ; 
floating point numeral.• 

•Variable-point-numerals• have an optional •integral-part•, like 
□ 123a, followed by a mandatory •fractional-p:irt• like □ .14c or 
□ .000123 □• This is expressed [R.5.1.2.1.b] in the rule 

•variable point numeral: 
integral part option, fractional part.• 

Examples of •variable-point-numerals• are therefore 0123.0, 
3.456, .12335 □ and a.00023a but not al.a. The •integral-part­
option• means that the •integral-part• may be present or absent. 
An explanation of the syntactic device involving the word 
•option• is to be found in the rule [R.3.0.1.b] 

•NOTION option : NOTION ; EMPTY.• 
and the fact that any notion may replace the metanotion 
•NOTIJN•, but the casual reader need not concern himself yet 
with these mysteries. 

We compl ete the description of •variable-point-numerals• by 
the two r u 1 es [ R. 5. 1 • 2. 1 • c, d ] 

•integral pa rt : integral denotation. 
fractional part : point symbol, integral denotation.• 

Because we have already seen the rule for •integral-denotation• 
and can guess that the representation of the •faint-symbol • is 
a.a, this syntax should now be clear. 

<1> A superscript 10 is used here in place of a subscript 10 
which is not available on the TN printer chain. 
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A •floating-point-numeral• consists of ¼ •stagnant-part•, 
like c123c or c123.45c, followed by an •exponent-part•, like 
oe+23, e2, e-16a or 0 1 050. Its syntax is in the rule 

•floating-point-numeral: stagnant part, exponent part.• 
Examples of •floating-point-nu merals• are therefore, a le 1, 
2.3e-4a and a.3e26a but not a .e1 4a. The •denotation• o.3e26o~ 
for example, possesses a real val ue, . usually associated with the 
number written in physics textbooks as .3*1026. It could not be 
so wxitten for computer input because of the inability of most 
input hardware to accept supe rscripts. The rule for • stagnant­
part• [R.5.1.2. 1.f] is 

•stagnant part: integral denotation ; 
variable point numeral.• 

Thus both a123c and □ 123.45 □ are acceptable •stagnant-parts•. 
The •exponent-part• is described in the rules 
f R.5.1.2.1.g,h,i,3.0.4.c) 

•exponent part: times ten to t he power choice, power of ten. 
times ten to the power choice: 

times ten to the power symbol ; letter e. 
power of ten: plusminus option , integral denotation. 
plusminus : plus symbol ; minus symbol.• 

The •times-ten-to-the-power- symb ol• is represented by the 
subscripted ten 0 100, but since this is not commonly available, 
the •letter-e• is also permitted . The •plusminus-option• means 
that the •plusminus• may be omitted. Examples of •expcnent­
parts• are ae-5, e4, e+56a and 0 1020. 

To review the above, we give some more exilmples of • real­
denotations•: 0123.4, .56789, 464.64e-53c and c987 1 021c. Note 
that □ 123.a is not a •real-denotation • and there is good reason 
that it should not be. rhe e xplanation is to be found in the 
representation of the •completion-symbol• [R.3. 1.1.f], which is 
the same as that of the •point-symbol•, so that, were 0123.a 
permitted, ambiguities would ari se. Also, ae15c, for example, is 
not a •real-denotation• because it might be confused with an 
•identifier•. 

1.9 Character denotations 

some •character-denotations• are [R.5.1.4) a"a", "c", "$", 
"+", "3"a and c""""o. All except the last appear easy enough to 
understand, according to the rule [R.5.1.4.1.a] 

• character denotation: 
guote symbol, string item, quote symbol.• , . 

providen one can guess t he meaning of •string-item• 
[R.5.1.4.1.b]. However, the •denotation• □""""a possesses the 
value which is possessed ty the •quote-image•. This value is the 
character •"•· [R.5.1.4.2.a ]. When we come to •string­
denotations•, in section 1. 11, we shall see that the device 
whereby the •quote-symbol• within a •character-denotation• is 
doubled is a convenience which enables every member of the 
available character set to be in a string. 
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1. 10 Modes 

Values within the computer , consideced up to no w, hav e been 
of four kinds, viz., truth values, integers, real number s nd 
characters. Each member of one of these class s is of the s me 
" mod e " (R.2. 2.4. 1] as an y other me mber of the sa me class . These 
mocl->s are •boolean, integral, real• and •character•, 
r spP.cti vel y. If computinq were restricte<l to these f our mod s, 
it would te aull indeed. A useful computer lanyua ge ne eds to 
consider val u es of other moil es. For exa rn ~le , the s ymhol 
ma nipu l ator often c on siders values of mod e •cow of c har acter•, 
whicn he t hink s of as c ha rac t er stri ng s , and t he numeri~ 1 
a n a ly st considers values of made •row of cow of r ea l•, which be 
thinks of as matrices of real va lues. 

In AtGOL 6U, a row of values of one sa me mode, known as a 
mu l tiple val ue [ R. 2. 2. 3. 3 ), is lso a val u e of an acceptable 
mod . . Thus , we may have values whi c h are of the mode • row of 
boolean, row of integral, row of real • or •row of :: haracter•. I n 
th e dia~c ms such a multiple val ue will be cepres nted as in 

r------T------T----r-----T-----,-----T------, 
I I I I I I I I 
L------i------~-----~----___l.----'------~-----J 

Fig.1.10 

figure 1.10. Many more modes may be considered; in fact, the 
number of different modes is infinite. we shall not concern 
ourselves here with this interesting point, nor shall we discuss 
some of the other modes. our purpose is to point out that •row 
of character• is a mode. There are •denotations• foe values of 
this mode and we shall now consider them. 

1.11 String denotations 

The s yntactic ru le f oe •string-nenotati on• [ R. 5. 3. 1. b] is 
•row of c haracter denotation: quo t symbol, 

string item seq ue nce pr oper option, quot e s ymbol.• 
From wha t ha s go ne be fo re, the rea der will surmise that the 
following ce examples of • strinq-de notations•: a 11 abc 11 , 11 a+b 11 , 

"this~is~ a.!... u ote=.sy mbol~'"' ~"r.i. Obser ve t h t in the strict 
language, t h e rep re sentat ion of the •sp:ice-symbol• is □ =. □ 
ra.3.1.1. b ) . The on ly fea tu re in the dbove s ynt ax, which we have 

o11 abc 11 o 

~---r----~-- -, 
I ■ a ■ I ■ h ■ I ■ c ■ I 
L-------1------'-----J 

Fig. 1. 11 
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not yet encountered, is the use of the word •proper•. The exact 
explanation is to be found in the rule 

•MOTION LISr proper : NOTION, LIST separator, NOTION LIST.• 
(B.3.0.1.g). It means that the sequence must contain at least 
two members. The use of the combination •proper option•, means 
then, that the sequence may contain either zero or two or more 
members. This implies that o"a 11 a is not a •string-denotation•, 
but that a 1111 a is. Since we have already seen that a"a"a is a 
•character-denotation•, we can understand the reason for such an 
unusual choice of .syntax. A •string-denotation• possesses a 
value which is of mode •row of character•. our diagrams may 
represent it as in figure 1.11. The value possessed by a 1111 a is a 
row of characters with no elements. 

1.12 Other denotations 

This discussion does not exhaust the • denotations• of ALGOL 
68, but it is sufficient for us to go on to other elementary 
parts of the lang~aqe. ie shall return later to •long-integral­
denotations• like a!g~g Oa [R.5.1.0.1.b], •long-real­
denotations• like a}Q~g .la, •bits-denotations• like cjQJa 
f R.5.2.1 ], •routine-denotations• like a ( (£.!t~! a ,b) !gg,! : (a > b 
I a I b ))a [R.5.4] and •format-denotations• like a$16x37d$a 
[R.5.5]. 

1.13 Program example 

Though we are not yet ready to write •programs•, it is 
helpful to inspect one and perhaps therefrom to glean some 
ideas. The following will read some number of values from the 
standard input file and then print a count of the number, the 
arithmetic mean of the values a nd their standard deviation. 
Comments are enclosed by the symbol¢ or the symbol#. 

ah~gi~ Egg1 s := 0 ¢for the sum of the values¢, 
ss := O ¢for the sum of squarest, 
x tthe current value¢; 

int n := 0 tfor a count of the number of values¢; 
ih}!g ~ logical file ended(standin) ftQ 

( get(stanilin, x) itR.10.5.2.2.bt; 
s +:= x; ss +:= x ** 2; n +:= 1 tR.10.2.11.d,et); 

put(standout, ttR.10.5.2. 1.bt ("countL=.!..11 ,n, 
".!...!..meanL=L",s / n, 
11 •• standard.deviation.=. 11 , 

--sqrt((ss-- s ** 2 / n) / n) itR.10.3.bit)) 

Poin ts of relevance to th is chapter are that there are four 
•variables• as, ss, xa a nd enc, some of which are initialized 
with the value zero. Also, the •integral-denotation• aOa occurs 
three ti mes and the •integra l-denotation• a1a, once. There are 
three •ro ~- o f-character-denota tions•. References to the Report 
are prov ided as explanation of other points to be covered in 
later chapters. 
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f(eview (Juestions 

1.1 Language levels 

a) How does one recognize d terminal (R.1.1.2.f] in the syntax 
of ALGOL 68? 

b) Ara there two or three symbols of which the colon, □: D, is a 
representation[ R.3. 1.1 ]? 

c) Ara there any other representations which rep resent more than 
one •symbol• :a.3.1.1]? 

d) Is the mark " (" a representation of a •sub-symbol• or of an 
•open-symbol • or of both [R.3.1.1, 9.2.g]? 

1.2 Objects 

a) What kind of object is possessed by the •denotation• 03.14 □ 
[R.2.2.2.d]? 

b) What object may poEsess a real value? 
c ) Is □ 3. 14 □ an internal object o .r an external object? 
d ) Does □!£~~ □ possess ■ true ■ or does ■ true ■ possess □ ~[~~a? 

1.3 Names 

a) Can a real value refer to a name (R.2.2.3.5]? 
b) 
c) 
d) 
e) 

~an a name refer to a name? 
Is a name an external object? 
Can an external object possess 
Does an external object always 

1. 4 Variables 

more than one name? 
possess a name? 

a) In the reach ( R.4.4.2.a] of □.!~2! xo, can the name possessed 
by ax □ refer to an integral value? 

b) May □£g2.! x, y, za be a •declaration • [R.9.2.c ]? 

1.5 Denotations 

a) Bow many classes of plain values are there [ R. 2. 2. 3. 1 ]? 
b) Is there a class of plain values with finitely many members? 
c) What distinguishes classes of valm~s (R.2.2.4.1.a]? 

a) 

b) 

1.6 Boolean denotations 

In the syntax, how should the syntactic marks 
", 11 be interpreted [R. 1.1.41? 

Is ■ true ■ an internal object? 

1.7 Integral denotations 

n • n . , 

a) Can two •integral-denotations• possess equal values? 
b) Is a-123 □ an •integral-denotation• fR.5.1.1.1)? 

ti • " 

' 
and 

c) Can a sequence of one thousand ~igits be an •integral­
denotation•? 

d) Does every •integ~al-denotation• possess a value 
fR.5.1.0.2.b]? 
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1.8 Real denotations 

a) can tvo different • real-denotations• possess equal values? 
b) Is a1.D a •real-denotation•? 
C) Is D12D a •real-denotation•? 
d) Is a12e-ija a •real-denotation• ? 
e) Is n-12e4a a • real-denotation•? 

1.9 Character denotations 

a) Is a"""a a •character-denotation•? 
b) Does everJ •string-item• possess a character [R.5.1.4.2]? 

1.10 ~odes 

a) Hov many different modes are there? 
b) Hov many different modes can a programmer specify? 

1.11 string denotations 

a) Is a""'"'a a •string-denotation•? 
b) Is a""a a •string-denotation•? 
c) What is the mode of the value possessed by a •string­

denotation•? 

1.12 Other denotations 

a) Are the values possessed by alQll~ Oa and c!2ng JQng Oc the 
same? 

b) What is the mode of the value possessed by clQla [R.5.2]? 
c) What is the mode of the value possessed by c$16x3zd$c? 

1.13 Program example 

a) What is the mode of the value possessed by "couot!..=!.. 11 ? 
b) What are the modes of cso and cno? 
c) Does the example in 1.13 contain a •real-denotation•? 
d) Rov many •integral-denotations• are t here in the example? 
e) Does the example contain a •character-denotation•? 
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2 Some fundamental concepts 

2.1 Declarers 

In chapter 1 we found that eac h v~lue within the computer 
is of a certain mode. (There is an e xcept ion , viz., the value 
•nil• rR.2.2.3.5.a), but \lie sha ll discuss thi s exception lat L) 
Thus, there are values of •integca l• morle, •real• rno rle, 
•character• mode, •ro\11-of-cha racter• mooe, and so on. 'l'h 
programmer needs to have some way of specifying modes, tecause 
when creating •variables• [R.6.0.l.e) he must help the computer 
to decide how much storage to allocate. rhe programmer specifies 
the modes by using •declarer:s• [ R. 7. 1 ]. 

There are five primitive [R.l.2.2.a) •declar:ers • . These ar:e 
□i!!!: □, which specifies the mo_de •in.t.egral•; □!~~:!a, which 
specifies the mode •real•; □.QQQ.±CI, \llhich Sfec ifies the mode 
•boolean•; cfhl!!:CJ, which specifies the mode •c har acter• dnd 
□ f2!!!!.l!!: □, which specifies the mode •format• (of which we sh1ll 
hear more later). The mode of a •real-v.=iriable•, howeve:r, is 
•reference to real• and not • real•. This mode is specified by 
the •declarer• □I~! !!~Ja. A • declarer• specifyin g the mo e 
•row-of-real• is □[ )!:!l!.1 □, or if actual boonds are requirud, 
then say, r.if 1: 10]f~i::!1□• The mode of r al vector v riat:le is 
•reference to row of real• and this mode is specified by a 
declarer like □Eg![ )!:_~];a or □fgJ[ 1 :n]f:gl!.! □• We see, therefore, 
that other • ee l recs • may be bu ilt from the frimitives bJ using 
the sy mbols a_i;;gf □ for:: •reference-to• and c[ Jc for •row-ot•. 
Other possi bl e prefixes are □~fQ£ , §!E~f!□ and ay~iQg□ but th 2se 
may also involve the use of the symbols □( □ and c)n. 

This is not a full description of •c1eclarets•, but enough 
for our present purpose. As a taste of what other •declarers• 
are possible, we list a few examples: 

□I~f r~! rg~1, [ l:D !.1gl)fh1!, Ef2£(fgl!l)!g!1, [ 1:n]fQ!:~a!, 
,2r:oc, stc:uct (real re, ill), union(real, int, bool) a. 

2.2 Generators 

At the heart of ALGOL 68 is the notion •generator• 
[R.8.5.1]. There are two kinds of •generators•, •loc1.l­
':lenerator::• and •global-generato r• [R. A. 5 .1.1. a] . Sy nt actica lly, 
a •local-generator• is a •local- s ymbol•, alo£ □, followed by a 
•declarer•, e.g., □ 12.~ !.!!!: □, A •global--1enecator• is a.n or.;tional 
•heap-symbol•, chg!!J?. □, follow ed by a •declateL•, e.g. , □!HHE 
real □ oc: □realo. The difference in sema ntics concerns the met hoj 
;1-itorage-iIIocation and particularly of storage retrieval. The 
inexperienced programmer is unlikely to make explicit use of 
•generators•, but •local-generators• appear implicitly in some 
frequently used •declarations•, so we shall intro~uce them now. 

2. 3 Local generators. 

The syntactic rule for:: •local-generator• might he written 
informally as: 

local generator : local symbol, actual declarer. 
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but the strict syntactic rule fR.8.5.1.1.b], in common with many 
other rules, contains a feature which the reader ' should now 
observe. The rule is 

•reference to M)DE local genera tor : 
local symbol , actual ~ODE dec larer.• 

The feature to be noticed is the occurrence of the "metanotion" 
•MODE•, both to the left and t o the right of the colon in the 
rule. A full description of this two-level syntax is contained 
in tha Report (R.1.1]. For the mo ment we may be content with the 
explanation that the use of this metanotion is a device whereby 
several rules of the langu ge may be combined into one. If we 
replace, consistently throughout the rule, the metanotion •MODE• 
by a m:>de (on e of the terminal productions [R.1.1.3.f] of •MODE• 
like •integral• or •real•), the n we obtain a rule of the strict 
language. Por example, if we replace •MODE• by •real•, we obt:1in 
the production rule 

•reference to real local generator: 
local symbol, actual real declarer.• 

If we replace it by •boolean•, we obtain the rule 
•reference to boolean local generator: 

local symhol, actual boolean declarer.• 
This device, in this rule, enables the syntax to tell us 
something about the relationship between the mode of a 
•generator• and the mode of its •declarer•. Specifically, the 
mode of a •generator• is always •reference to• fo llowed by the 
mode of its •declarer•. In the e xample of the •local-generator• 
o!QQ £~~la~ its declarer, □[g~1 □ , specifies the mode •real•, but 
the generator, after its elabora tion, possesses a value (a name) 
of mode •reference to real•; but this is the subject matter of 
the next section. 

2.4 The elaboration of a generator 

The "elaboration" of a •program• consists of a sequence of 
actions performed by the hypothetical comput er. These actions 
are explained in the sections, headed Semantics, in the Report. 
we shall now examine the e ffect of the elaboration of a 
•generator• [8.B.5.1.2). A •generator• creates a name, i.e., it 
allocates computer storage. This name then re£ers to so me value. 
This process is so fundamen tal to the understanrling of the 

(external)a1Q£ !~~!a(S) 

: ( 4) 
(internal) : (possess) 

o ( 1) ( 3) r------, ( 2 ) 
0 0-------->---~ 

o (refer to) L._._ ____ J 

Fig.2.4.a 

language, that we will attempt to make it clear by means of a 
diagram. we may picture the elaboration of the •generator• □!Q~ 
I~~!c, as in figure 2.4.a. In this figure, the name is at 1, the 
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v lue to which it refers at 2, the relationship of reference at 
1, the relationship of possession at 4 nd the external object 
at 5. Th e broken line then separates the external object from 
the two internal object • The elaboration of the •loca.1-
qener tor•, □ lac realc, thus creates a name which refers to some 
real value. The-external object, □,!Q~ ~~la, is then made to 
possess the name. This last action is thus pictured at 4. The 
value referred to is some undefined r~al value. We shall see 
lat r that this valu may be changed ( 11 supersed ed 11 

r R.1:1. ).1. 2.aJ) by "assignrnP.n 11 

2.5 Identity declarations 

•Generators• may occur in more than one con text, but the 
most important context is the •identity-declaration• [R.7.4.1]. 
We give first an example of an easy •identity-declaration• 
containing no •generator•, 

ai nt m = 4096□ 
Th . ffect of the ela boraiI~n of an •id ntity-declaration• is to 
mak. ~ two d'tferent external obj cts pos~ess the same internal 
ob-ject. In th example at hand, we have n •int gral-mone­
iilentitier•, □ mD, and an •intRgral-de notation•, aq09bc. We hdve 
seen in chap er 1, that □40960 possesses ,,n internal object , 
which is an integral value. This situa ion may b~ pictur .d, 

D!,_!!}: m = 4096 □ 

r-.l.----, 
1•4096 • 1 
L------.J 

Fig.2.5.a 

r------~ 
I ■ It 096 • I 
L _____ _.J 

,.l.----, 
1 ■ 4096 • 1 
L_ ____ __. 

Fig. 2. 5. b 

before the elaboration of the •identity-declaration•, as in 
figure 2.5.a. After the ela bor tion of the eclaration, aint m = 
4096a, the situation is as in figure 2.5.b, where iii now 
possesses a new instance of th . same in cgr 1 value as that 
possessed by 04096 □• It i s impoctan to note that ema does not 
possess a name and, as a result, □ me may not appear as the 
•destination• of an •assignation•, as for ex mple in o m:= Oa. 
In fact, am:= 0a would be just as improper as e4096 : = 0 □• The 
•identifier• cma is thus a •constant• [B.b.0.1.d]. 

Of greater interest is the declaration of a •variable•, of 
which 

acef real x = lac reale 
is an example. As we have seen already in section 6.4, the 
proyrammer is permitted to write this in the extended form 

er eal xa 
r R. 1L 2 . 1- 'r h e first step in-the elabor tion of this •identi y-
1laclara ion• i., the elabor tion nf its •actu 1-i:ai:ameter•, 1<1hich 
i s □ loc r la. we h ve seen, in 2. 4, that thi - will make clo::: 
renlo possess a name which C'efers to some (unrlefined) r0dl v-luP. . Thi :5tage is pi tutetl in figuce 2.5.c. After the 
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elaboration of the •declar~tion•, the •reference-to-real­
ideotifier• axe possesses the same value as that possessed by 
c!2£ £~~10. The result, in pictorial form, is shown in figure 
2.5.d. Here, because axa now possesses a name, it may be used as 
the •destination• of an •assignation•, i.e., the value to whi:::l) 
the name re£ers m11y be superseded ( R.8.3.1.2.a] by another value 

0 0 

0 C 
0 

0 0 0 0 

Or-:e-----, 
L~ . I 

0 Or----, 
L--->---~~ I 

L------' L ______ J 

Fig. 2. 5.c Fig.2.5.d 

(provided that it i s of mode •real•). When examining diagrams, 
such as the one in figure 2.5.c and a, we should keep in mind 
the fact that the name possessed by an •identifier•, which is a 
•variable•, is unlikely to be a piece of storage set aside in 
the data area. It is rather the value to which t h is name refers 
which may be in the data area. The name its elf is more likely to 
be part of a machine code instruction. Since programs are not 
usually permitted to alter their own code d instructions, it is 
essential that the relationship 9f possession should not be 
violated. Thus the name possessed is never changed. If we want 
to reach down to the data area, then we mus t make use of the 
name in order to £ind that part of the data area to which it 
refers and which can be changed (supersede d). 

The possession of a name confers a special privilege. It is 
as though the name is the key to a storage cell without which it 
may not be unlocked. When it is unlocked, the content may be 
changed, but withou t this key, i.e., without the name, the 
content of that cell may not be changed, though it may be 
examined, as if through a window. 

To recapitulate then, the elaboration 
declaration• makes its •identifier• possess the 
that possessed by its •actual-parameter•. This 
in both of the examples ci~i m = 4096c and er~! 
~g~!c. . 

2.6 The syntax of identity declarations 

of an • identity­
same value as 

is what occurred 
.,!g~_! X = !Q~ 

We are perhaps getting a l ittle ahead of ourselves, since 
we have not yet examined the syntax of •identity-declarations•~ 
This might be described informal ly by 

identity declaration : 
formal parameter, equals symbol, actual parameter. 

but the rule in the Report [R.7. 4.1.a] is 
•identity declaration: formal MODE parameter, 

equals symbol, actual MODE parameter.• 
We see here again the use of the metanotion •MODE•, which 
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enable~ one to condense many rules into one. The metanoticn must 
be replaced consistently by one of its terminal productions 
r B. 1 .1. 5. ill, e.g., by •integra l• or •reference to real•. Using 
the latt c repl~cement, we obtain the production rule 
fR.1.1.2.cl 

•identity decliirati.on formal cefArence to r al paramet<?r, 
egur1ls symbol, actual reference to real parameter.• 

Two of the notions in this rule envelop [B.1.1.6. j] the mode 
,refer .nee to real•. 1n the •rleclar ticn• □_!gf !:~~1 x = :!,Q~ 
£~~!. □, the mpae of the •qeueriltor • □.!!1£ £.~!!..! □ is •reference to 
rel• and that of the •formal-parameter• □E~! f~!J xo is lso 
•r ference to real•. It follows from the rule on •form:11-
p ramet rs• [R.5.ll.1.e1, that axe is then a •ref cence-to-re 1-
mofle-id e ntifler•. 

2.7 Formal parameters 

We must follow this a little further by examining the rule 
for •formal-parameters• [R.5.4.1.e] which is 

•formal MODE parameter : 
formal MODE declarer, MODE mode identifier.• 

anq. in which the metanotion •MODE• appears three times. By 
substitution we obtain the rule applicable to the •formal­
par~meter• □£!! £~~! xa, viz., 

•formal reference to real paramqter : 
f~rmal reference to real declarer, 
reference to real mode identifier.• 

The •formal-reference-to-real-declarer• is aref realc and the 
•reference-to-real-mode-identifier• is ax □ [R.4:2:21~--

2,8 An extension 

The object 
aref real x = lac real □ 

is a representation of a •declaration• in the strict langudqe. 
A.lthough, as we hav see n ahove, it enables one to exp lain the 
meaniny of th •id ntity-decl ration• clearly, it is rath r much 
to write and would ce tainly not b popular with programmers. A 

imildc situation exis s with the elisions of tl natural 
l~nqudge. It is well known that tbe se ntence "Who's th t?", 
stands fC>c the sentence 11 Who is hat? 11 , and that the former is 
use,1 m re often th II th l<1tt e1:. Moreover, in explaining the 
meanin~ of the first sentence, we always use the s .cond, strict 
form. Similarl y in ALGOL 68 we may wcite 

□!:~~! xn 
to stand for 

D£~f £~~1 x = loc reala 
with the assurance that the meanin~-Is-i~; same [R.9.2.a]. The 

r----->------, 
( 1) I V 

Cf~f £~1! X = !Q£ £~g!a 
XXXXX1!XX XXXXX (2) 

Fig.2.8 
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effect of this extension [R.1.1. 7] (one must resist the 
temptation to call it a contraction) is that one may omit those 
parts which are underlined with X's in figure 2.8. and then move 
the •identifier• in the manner indiGated (provided that the 
following symbol is o,o, o;o or o:=o). It is impoctant to note 
that in the extended •declaration• areal xa, the •formal­
declarer• D£~! !~~!o (see figure 2.8 at 1)is omitted, bu t the 
•actual-declarer• Df~~.!o (see figure at 2 ) fro m the •genera tor• 
remainL This is of. significance when the •declarers• are for 
multiple values. 

Another extension, which we mention in passing, is that, 
e.g., D£~~.! x, !~!! ya may be written of~~! x, ya [R.9.2.c]. 

In the examples wh ich follow, the •declarations• a£~~! x, 
y, !!!.! i, j, n, [1:10]_£eaJ x1, y1o will always be assumed. Thus, 
unless contradicted . by a nother •declaration•, axe and eye will 
have the mode •reference .t o real•, ai, . jo and ona the mode 
•reference to integral• an d cx1o and ay1a the mode •reference to 
row of real•. 

2.9 An assignation 

we have seen before that a name is, as it were, a key with 
which to unlock the value to which it refers. This key is needed 
when an assignment is made. An external object of the form 

DX := 3.1ijc 
(in the reach of the •decla ration• Cf~~! xo), is an 
•assignation• [R.a.3.1 J and its elaboration involves an 
assignment [R.8.3. 1.2. b]. It consists of a •destination • , which 
is axe, a •source•, which is a3. 14n, and between the two a 
•becomes-symbol•, a :=a. First, both the •source• and the 
•destination• are elaborated in u nspecified order, or 
"collaterally" [R.6.2.2.a] (see figure 2.9 at 1) , i.e., we 
obtain the values possessed by them. The effect of the 

•··•·•••··•···•·•·•·•reference-to-real-assignation 
I 

r 
_____ ...i..._r 

I . I 
reference-to~real-destination 

I 
becomes-symbol real-source 

I I I 
DX := J. 14 C 

: (3) 
.: ( 1} : ( 1) 
o r----, r---L--, 

: •••••••••••••• o o->-~ 1==========<==:======1 I 
0 L-----1 ( 2) L-------' 

Fig.2.9 

•assignation• is the assignment of the value possessed by o .14a 
to the name possessed by axe (see figure 2.9 at 2). More 
precisely, the name possessed by axa is made to refer to a copy 
(new instance) of the value possessed by a3.14a [R.8.3.1.2.c,cl ] . 
An •assignation•, after its elaboration, possesses a value and. 
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the value possessed is that of its • destiniltion•, which is a 
name (see figure at 3). 

2.10 The syntax of assignations 

we should now examine the syn~ax of •assignations•, in 
particular, the rule 

•reference to MODE assignation 
reference to MODE destination, becomes symbolr MODE source.• 

[R.8.3.1.1.a]. Remembering that the metanotion •M~D~• should be 
replaced consistently by some mode, we replace it by •real• and 
obtain the rule 

•reference to real assignation : 
reference to real destination, 

b comes symbol, real sou rce. • 
The important point to notice about this rule, which is the rule 
governing the object ax .- 3.140, is the fact that the mode 
enveloped by the •destinatiqn• is •reference to real•, while the 
mode enveloped by the •source• ·s •real•. We see ther fore, the 
r:equir:ement that the •destination• must I=Ossess a name, while 
th •s ur:ce• need not. Moreover the mode of the •destination• is 
always •reference-to• followed by the mode of the •sourc •. 
Finally, we note that the mode of the •a~signation• itself, is 
the same as that of the •destination•, as might be expected fcom 
the di s cussion in the last paragraph. 

We may now examine the ccnstruction 
□ int m = 4096 ; m :• 4095c 

and decide that om :;-40950 cannot be an •assignation•, cecause 
cm □ doe s not possess a name, i. e., its mode does not begin with 
•ref rence-to•. In fact, th mod e of orno is •integral•. We c1re 
there fore ju tified in using the term •constant• [R.6.0.1.d] for 
the •identifier• ama. 

2.11 References 

These subtle distincti ons between •constants• -l nd 
•variables•, the insistence on the difference in mod provided 
by •reference-to• and the disti nction between those values which 
are names and those which are not, may seem a high price to pay 
for the under tanding of proqramming language. Nevertheless, 
it i s at the very heart of ALGOL 68 and should be understood 
w 11 before vcoceeding further. Moreover, we shall find 1 ter 
that it pays a handsome dividen in chapter 5 when explaining 
the parameter mechanism in •calls• [ll.8.6.2.21 of routines. Some 
r:~aners may be a little baffled an<l impatient for the reason 
that many well known pcogr:amminq lanyuagesC 1 > appAar: either not 
to make this distinction or to consider i of no importance. 
Even mathematicians (but perhaps not logici;1ns) ace guilty of 
slurring ave~ the differences in meaniay between n2.3 + q_sc ~nd 
ax + ya. Ingrained habits of thought are difficult to dislodge 
and it is not easy for u s to suppress our ire while 
acknowledging that we have not properly understood something 

Ct> Except for the languages LISP, SNOBOL and TRAC. 
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elementary. 
paragraph. 

We pursue this point a little further in our next 

2.12 Dereferencing 

If ox : = 3.140 is an •assignation•, t h e n surely ox : = yo 
( in the reach of the declacation o!;'._~ft1 ye) must be also. 
However, the mocle of oxo and that of aya is •reference to ceal•, 
while an •assignation• requires that t h e mode of the 
•destination• should be •reference to• followed by the mode of 
the •source•. This means that the mode of eye sho uld be •real•. 
It would seem then, that this object does not fit i mmediat .ly 
into the syntax Of •assignations•. However, it is an 
•assignation•. Diagrammatically, the si tua ti on is shown in 
figure 2.12. The first step is the el bocation of th. •source• 
and the •desti11ation• collaterally [R.6.2.2.a] (figure 2.12 at 
1,2,3 a nd ij). However, the •source•, in this object, requires an 
ext a step in its elaboration. Since aye possesses a name 
(fi gure 2. 12 at 2 ) referring to a real value, this name is 
"dereferenced" (figure 2.12 at 3), i.e., the value to which it 

. •••••••••• reference-to-real-assignation 
t 

,-------"-T-.....J._ 
I I 

reference-to- becomes-
real-destination symbol 

I I 
I I 
I I 

(6) I I 
I I 

ox := 
: ( 1 ) 

, 
I 

real-source 
I 
I 

(4) ••••••••• real-base 
I{)) 

reference-to-real-base 
I 
yo 
: (2) 

o r----, r-----, o 
: •••••••••• o o->--i I===<== I •-<--o o 

0 L-----' ( 5) L-, ___ _. 0 

Fig. 2. 12 

refers is _yielded (fig ure 2.12 at 4). The act of dereferencing 
is known as a "coercion", of whic h we shall hear much more later 
rR.8.2]. There is thus an intermediate step during which cyo , 
as a •source•, possesses a real number. This moment is picturej 
in figure 2. 12 at 4. from this i ntermediate situation we are now 
ready t:> make the assiqn111ent (fi gure 2. 12 at 5). The value of 
the •assignation• is a name of mode •reference to real• (s€e the 
figure at 6). 

The syntactic analysis of the •assignation•. ax: = ye, is 
not trivial and we are not ready to do it , thoug h we h v e 
sketched it roughly in figure 2.12. The main point is to 
determine how aye, which is of a priori mode •reference to 
real•, can be considered, a i:osteriori, of mode • cea l• (see t he 
figure at 3). The crucial step is contained in t he production 
rule 
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•strongly dereferenced to rea l base : reference to real base.• 
which is obtained from 8.2. 1.1.a of the Report hy suitable 
replacements of the metanotions . WR do not intend to go into 
further detail here, for coercion is the topic of chapter 6. Our 
purpose is to affirm that ox : = ya is indeed an •a ss ignation• 
even though the a priori mode of oyo i s not •rea l•. 

The reader may wish to persuade himself, from what 
before, that ax := y := J. Ha is also an •assignation•, 
a different meaning from that of the, rather 
•,issignation• □ (x := y) := 3. 14 □• 

2.11 Initialized declarations 

has gone 
and has 
foolish, 

The •actual-parameter• of an •identity-declaration• may 
also be an •assignation•. The pertinent rules are, in simplified 
form, 

actual parameter: unit; 
unit: unitary clause. 
unitary clause: ••• ; confrontation 

R.7.4.1.b 
R.6.1.1.e 

R.8.1.1.a, 8.2.0.a 
co nfrontati on : assiqnHtion : ••• • R.8.3.0.1.a 

Since oloc real := 3.14a i an •Rssir,nation•, thi s means that 
□ ref re~I-i =-I;~ f!i1 : = • 14n is an •identity-declaration•. 
But we h ve seen that the ohj .ct □ ref real 1< = loc re_la may be 
written □ 1:~~! xa [ a.9.2.a ]. This means thc1t □£~.!!1 x : = 3.14 □ is 
c1lso an •identity -decl ration• with the sa me meaning as that of 
□ ref real x = loc real := 3.14c. This meaning shoula now be 
evid nt once it is realized that the •ds i~nation•, being the 
•actual-parameter•, is laborated before the final step of the 
el bocation of tb •identity-declaration•. A~GOL 68 may thus be 
consi e-red r1s c1 languaqe which contains initialize:l 
•declaratio ns •, alth ugh th~ defining Report does not mention 
th in. 

2.14 Program example 

The following •particular -p rogram• computes the components 
(principal and interest) of the monthly repayments of a loan. It 
first reads the principal, c:pa , the interest rate per unit per 
y~ar , ore, the number of times per year that the interest is 
c nve rted , ata, the constant monttily payment, amp □ and the 
number of years, aya. It then prints an echo of the input, 
followed by a table of four columns consisting of the month 
number, the principal outstanding at the end of the month, the 
componen t of the monthly pay ment which is principal and that 
which is interest. A separate computation is made for the final 
monthly payment. Critical compu tations ace made using values of 
mode •lo ng-real•. 

o~~~i~ lQEg £~~1 p tthe principal¢, 
r ¢the interest rate per unit per year¢, 
mp ¢the constant monthly payment¢, 

i~t t ¢the number of times per year that the interest is 
converted¢, y ¢the number of years¢ 

start here: read((p, r, t, mp, y)) 
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outf (s .. andout, 
$ l " r epa yment,.:.sc heclu le.:. of.:.a..:. loan.:.of.:. 11 9 zd. 2d, 

l 11 ii:iter est.:. ra te.:.per_ uni t..:. 11 d. 4d, 
11.:.converted.!. 11 2zd".:. times.!.per.:.year", 

l 11 monthly.=,payinent.:. 11 7zd. 2d ,".:.for.:."2zd 11 ..:.years. 11 $, 
(p, r, t, mp, Y)) 

J! r > 1QM 1.0 
!hg~ pcint((newline, "interest rate is too high")) 
else lo.!!.fl real mi= ¢monthly i ncrement multiplier¢ 
longexp C!~.!!9 (t / 12) • longln (12.!!.9 1. 0 + r / J,~Qg t)), 
l2ng £~~1 ap ¢accumulated principal at the end of the montht 

jf (mi - lOQE 1.0) • p > mp 

fi 
~!!~; 

_!!!en print((newline, "payment does not cover interest")) 
~l.e~ in!_ j := 0 iz:the month number¢, 
±QllS £~al interest ; y •:= 12 ; 
outf (standout, $1 2x8a, 3(1 2a)$, 

("month", "amoun t 11 , "princ ipal 11 , "interest 11 )) 

format (standout, $1 4-zd, 3 (7 zd. 2d) $) 
¢this associates a format with the standard output file¢ ; 
again : ¢return to this poin t for each monthly calculation¢ 
j +: = 1 ; a p : = p • m i ; in t e re s t : = a p - p 

lf i ~ y ¢number of years is satisfied¢ 
Q£ ap 5 mp ¢the l st payment is duet 

t!:!.~.!! out(standout, (j, 0. 0, p, interest)) 
~12~ ¢regular monthly payment¢ ; p := ap - mp ; 
out (standout, (j, p, mp-interest, interest)) 
!IQ _!:Q aga'in 
fi n,--

The output from a run of the above program should be 

REPAYMENT SCHEDULE OF A LOAN OF 1,600.0~ 
INTEREST RATE PER UNIT 0.0800 CONVERTE ~ ?TIMES PER YEAR 
MONTHLY PAYMENT 100.00 for 1 YEA£i?• 1 

MONTH AMOUNT PRINCIPAL INTEREST 
1 906.62 91.38 6.62 
2 812.63 94.00 6.00 
3 718.01 94.62 5.38 
4 622.76 95.24 4.76 
5 526.89 95.88 4.12 
6 430.38 96.51 3.49 
7 333 .2] 97. 15 2. 85 
8 235.43 97.79 2.21 
9 136.99 98.,rn 1.56 

10 37.90 99. 09 0.91 
11 0.00 37.90 0.25 
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Review questions 

2.1 Declat'ers 

a) rs areal i:ef □ a •declarer•? 
h) ls aref[]ref real □ a •declarer•? 
c) Writ down a •decldr~r• ,-pecif yin g the mode •reference to 

raference to row of ch~racter• . 
d) ls ar 1fO£.!!)~,t.n a •declar1~r•? 
e) I!:i □ t'ef fot'mat □ d •decldrer•? 
f ) ls a£_ a 1 p£.Q£ a •de c la er:- • ? 
q) Can a valu he of more t han o n mod ? 
h ) Doe5 a mod e ~p city •decl rec•? 

2.3 Local qeneratot's 

a) t➔ ow many •real-1;iener tot's• r1re there (R.8.5.1.1]? 
b) Wt'ite down a •loc 1-,Jenerator• which possesses a value of 

moa •reference to ch-acacter •. 
c) Wcite down a •r fecence-to-boo lean-local-qenerator•. 
d ) Is thece a11 •in teqcal-1ocal-q necator•? 
e ) ls th following a production rule of the strict language 

fB.1.1.5.a]? 
•ceference to row of character local generator 

local symbol, actual focmat decl~rer.• 
f) Is •real-procedure-with-boolean• a mode [ R. 1. 2.1 )? 

2.4 Evaluation of a qenerator 

a) Does the •generator• □ 12£ I~~! □, aftet' elaboration, possess a 
real value? 

b) DO2s the •generatoc• aloe!:~!!! □, aftec elaboration, possess a 
value? 

c) Cao a ceal v lae refer to d •generator•? 
d) Can c al v1.lue refer to a name? 
e ) Can name refer to more than one value [R.2.2.J.5.a)? 
f ) C n a name refer to mar than one instance of a value 

f R.2 . 2.3.5.d )? 

2.5 Identity declarations 

a) can two different external objects possess the same internal 
object? 

b) In the reach of □ int rn = 2a, can the value possessed by □ma 

be changed? 
c) I n the r-each of □ ref real x = ]::Qf £.~~! □, can the value 

possessed by □ x □-be changed? 
d) Write down a •locr1l-genec to e• which, :1fter elaboration, 

pos~esse$ d value of mo~e •reference to row of procedure 
r2 l•. 

2.6 Syntax of identity declarations 

<i) Is □ mode a -= real □ an •identity-declac-ation•, 
h) Is □ ref t'eal x □ a •declaration•? 
c) In the-•tleclaration• 0£.ff !!!! nn □, what is the mode of cnn □ ? 
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d) write a •declaration• of , apa as a •reference-to-rcw-of­
procedure-real-mode-identifier•. 

2.7 Formal parameters 

a) Is □ £~~1 na a •formal-parameter•? , 
b) Is of ]E!,.Qf £~!!! pgr□ a •formal-parameter•? 
c) Is □1Qf £~~!□ a •formal-parameter•? 
d) Is □in! 1o a •formal-parameter•? 

2.8 An extension 

a) Write the •declaration• □!~! fg~1 xxa in the strict language. 
b) Write the •declaration• □£~~! x, ya in the strict language. 
c) Write the •declaration• □!~~! x, y := 3.14a in the strict 

language. 
d) Writa aref ref real xx= 1~£ f~! E~~l + 3.14c in the e)tended 

language [ R. 9. 2. a]. 

2.9 An assignation 

a) IS □2.3 := 3.4 □ an •assignation•? 
b) Does an 
c) Can an 

value? 

•assignation•, after elaboration, possess a value? 
•assignation•, after elaboration, possess a real 

d) Is a(x := 3.14) := 3.15 □ an •assignation•? 

2.10 Syntax of assignations 

a) Is a1oc ~al : = 2. Jo an •assignation•? 
b) Is alOf £~! £g~! : = xa a n •assignation•? 
c) Is alof £~! real : = • 14 □ an • assignation•? 
d) What is the ;source• in the •assignation• ax := 
e) What is the mode of the •assignation • □ xx:= 

of aref real xx, real x □ )? 
f) In the reach of □~QQ1 t = !f~~a, is at 

• assignation•? 

2.12 Dereferencing 

xa 
y + 2a? 
(in the rei:lch 

a) What is the essential difference between the elaboration of 
ax := ya and ax := 3. 14a? 

b) Is any dereferencing necessary in the •assignation• oxx := 
xo, in the reach of □I~! f~~! xx, £gg! xc? 

2.13 Initialized declarations 

a) What are the modes of cmc and cna in the •declarations• c!n! 
n = 2o and cint m := 2a? 

b) Make a diagram-illustrating the •assignation• cn n := n := 1c, 
in the reach of □ref int nn, int no. 

c) Is it possible to apply-an e xtension(R.9.2.:1 J to cref I~~.! x 
= £g~1 := 3.14c? 

2.14 Program example 
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a) How many occurrences of dP •assignaticn• are there in this 
•particular-program•? 

b) What coercions are involved in th~ elabQr~tion of ap := ap 
mpo? 

c) What is the effect 9t Qj +J= le [R.10'1--'• 11,d ]? 
d) Are th~re any •id~ntifier~, yhich are ,constant~,? 
e) What is the mode of ape? 
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3.1 Introduction 
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The •unitary- clause• [a.8] is one of the basic building 
blocks of the language. It corresponds roughly to what is known 
as the statement or the expression in ALGOL 60. Some examples of 
•unitary-clauses• are, ax: = y, x + y, re Q! z, 1230 and a( x := 
1 ; y . - 2 ) a. •Unitary-clauses• are classified furthe r into 
•confrontations, formulas, cohesions, bases• and other objects 
like •closed-clauses•. Thus, ax: = ya is a •confrontation•, ax+ 
ya is a •formula•, are Q! za is a •cohesion•, a12Ja is a •base• 
and a ( x := 1 ; y : = 2 ) a is a • closed-clause•. 

ie now give a simplified syntax of •unitary-clauses•, using 
the ordinary typefont, to remind the reader that this is only an 
approximation to the syntax. The exact rules are in the Report 
fR.8.1.1), but a simplified syntactic tree is in figure 3.1. 

unitary clause: tertiary; confrontation. 
tertiary: secondary ; formula . 
secondary : primary ; cohesion. 
primary: base; closed clause ; 

conditional clause ; collateral clause. 

unitary-clause 
I 
1:----- - ------- -, 
I I 

tertiary confrontation 
I 
t--------- ---------, 
I I 

secondary formula 
I 
t------ ----------, 
I I 

primary 
I 

cohesion 

r ~ - -~ , 
I I I I 

base closed-clause conditional-clause collateral-clause 

Fig • .3.1 

The purpose of this chapter is to study some of the simpler 
aspects of •unitary - clauses• and to observe the usefulness of 
the cla~sification i ntroduced by the syntax just given. This 
classification will he lp us to decide, for example, the order of 
elaboration in a •clause• like 

ca Q! b := c ~! d Q! e(f] - ga<1> , 
where the modes of ca, b, c, d, e, fa and age are unknown. In 
fact the order is as if we wrote 

<1> Mote that the operator og~o may be declared in such a way 
that it delivers a name. 
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□ (a Qf b) .- ( (c 2! (d QE (e[ f )) ) ) - g) □ 
The purpose of this syntactic classification, then, is to 
relieve the programmer of the necessity for supplying these 
parentheses himself. In addition, it aids the compiler by 
excluding certain mode dependent parsings. 

•Unitary-clauses• which deliver no value are known as 
•statements• [R.6.0.1.c], while other •unitary-clauses• are 
known as •expressions• [R.6.0.1.b). This distinction is largely 
historical and is of no significance in ALGOL 68. 

3.2 Bases 

•Bases• a.r the most elemen tary •unitary-clriuses•, s o we 
be,Jin with them. Some exam{:lP, s of •r.ases• are opi, 123, a[ i ], 
- in(x) □ anrl a(: random )a. A sim plified syntax for base is 

bds~ : mode icleutifiec ; clenotation ; 
slice ; call ; void c,u; ac k. , 

but the strict s yntax of the Report should be s tu~ied 
r tL8.6.0.11- •Id e ntifier :;; • re as in other prognsmming 
lanyuay s, e.g., □ random□ and nj1428 ca. •Cenotations• we hr1ve 
met before in section 1. "i, e. q., □ 7"iRc is an •i ntegn 1-
enot tion•, o).1 □ is i'\ •real-denotation•, □ false□ is a 

• boo la an-denotation•, n"q" a is a •character-d-noti tion• 1 nd 
0 11 abc 11 0 i!:> d •string-denotaticn•. Thus we are alceady familiar 
with sa ver 1 ohjects which are •bases•. The ohjects ox1[i )c nd 
ox2r d: , j Jo ace •slices•, nsi n (x) □ is a •c 11• and □ (: random ) a 
is an example of •void-cast-pack•. The classification of these 
objects a •bases• tells us wh . ce they stand in he order of 
elahordtion., and we shall ~ee later, also, th t c1 •base• is one 
kind oE •coe cend• [R.8.2], i.e., an object upon which :111 
coercions must b expended. But coercion is a s ubj ct for 
cha tee 6. 

1. 3 Ioentifiers 

A •mode-identifier• [R.4. 1.1.h) is so called 
distinguish it from a •label-identifier•, which is 
Both of these •identifiers• might be described by 
simplified syntax rule · 

in order to 
not a •base•. 
the fallowing 

idf'ntifier : letter ; in ntifier, letter ; identifier, digit. 
which means tha an •identifi er• is what one expects it to be 
from th?. use of that term in other program ming la n g uages, i.e., 
a lett r Eollo1o1ed, perhaps, by any numher of lett r s or digits. 
T lt E> - trict synta.x, in t.he Report (R.LI. 1.1.b,c,d ], looks more 
complex, for a re son which will appear in later discussions 
concerninq •field-sel ctors• [R.7.1.1.i). Some examples of 
•identifies• are, □ algol 68, a , alb7ti9, random, st pierce de 
c h ctce us a (note that spaces are of no significance within 
•ide nt.ifiers•). 

r,. •inode-inentifier• usnitlly po ssesses a value. This value 
is th e 8a me s that possessed by the same •identifier• at its 
defininq occurrenc e . [n the •d si1,1natio11• ox : =- y + 3 □, the 
•mod -inentifier• axn, s up oserlly in th 3 each of the 
• rleclaci\tion• cfg~J, xo, po sessP.s ,, name which refers to som e 
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real value. The value (name, see figure 3.3 at 1) which it 
possesses is, in fact, a copy ( R. 8. 6. O. 2. a J of the value (see 
figure at 2) possessed by 1uo at it's defining occurrence, i.e., 
its occurrence as the •identifier • of an •identity-declaration•. 
The effect of the elaboration of the second occurrence of DID in 
D!~~! x ; x := y + 3a is shown pictorially in the figure 3.3, 

X : = y ♦ 3a 

O (3) O 

(2)o o <-(identity)-> o o(1) 
0 0 

I r-----, I 
'--)--f r--<-J 

-----' 
Fig.3.3 

where the identity of the two instances of the same name is 
indicated at 3. In t~is figure one should note that the second 
occurrence of oxa possesses a copy of the name possessed bJ the 
first occurrence of oxo. Consequently both names refer to the 
same instance of a real value [R.2.2.2.1). The reader should 
consult the Report ra.4.1.21 which contains a careful 
description of the method by which this identification of 
•identifiers• is made. 

3.4 Slices 

We continue our discussion of •bases•; the next are 
•denotations•, but we have seen these before in chapter 1, so we 
go on to •slices•. In the reach of the •declarations• o[ 1:n)!~~! 
x1, f 1:m,1:n)~~! x2~, the following are examples of •slices• 

ox1[i1, x2[i,j], x2[,j], x1[2:n], x2[i,ill0), x2[i]o 
A simplified syntax of •slice• is 

slice : primary, sub symbol, in dexer, bus symbol. 
indexer: trimscript ; indexer, comma symbol, trirnscript. 
trimscript: trimmer : subscri pt. 

but the strict syntax of the Report [R.8 . 6.1.11 contains much 
more than the skeleton shown abov e. 

The most important point to notice about il •slice• is that 
its ficst constituent notion, e.g., the cxlo in ax1[i]c, is a 
•primary•. Also notice that a •slice•, being a •base•, is itself 
a •primary•. ~allowing the •primary• of a •slice• is a •sub­
symbol•, represente-d by o[a, then an •indexer• and finally a 
•bus-symbol•, represented by c]a. Thus all of the following, in 
the above examples, are •indexe,rs•: aio, oi ,ja, a, ja, a2: no, 
ai,illOa. An •indexer• is one or more •trimscripts•, separated by 
•comma-symbols•. A •trimscript• is a •trimmer• or a •subscript•. 
The objects aio and oja are •subscripts• and a2:na and caOa are 
•trimmers•. A •subscript• is an •integral-tertiary•. 

In order to accommodate those users whose computers have a 
limi tea character set, a •slice• like cx1 [ i )a may also be 
written ax1 (i)o [ R.9.2.g ). However, we shall not use this 
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possibility in this text since it then becomes difficult to 
distinJuish between a •slice• and a •call•, like asin(x)a. 

l.5 Multiple values 

A multiple value, as we have seen in chapter 1, is a row of 
values fR.2.2.3.3.a]. We may represent it diagrammatically as in 

r------T------T------,------T-----,------,------, 
I I I I I I I I 
L-------'-------'-------'-------l------'-----~------.l 

Fig.3.5.a 

figur 1.5.a, though we shdll see later that this picture is not 
complete. sometimes a name may refar to a multiple valu e, in 
which Cdse we my think of it as multiple •variable•. 1'h 
~ifference be ween the effect of slici nq a multiple •vari bl • 
anH th t of slicing a roultlple •constant• is important and we 
shall now investigate it ty example. Suppose we have the two 
•clecl .c tions• ar1:3Hn! n1 := (1, 2, 3)c and □(1:]]iB.!: u1 = (1, 
2, 3)a. The object □ 11, 2, ) □ looks :tnd acts like a 
•denotation• of a row of integars, but it is actually a 

□[ 1 : 3 l! . .!!!:. u 1 = ( 1 , 2 , 3) a 

D ( 1 ) 
I 
~-----r------T------1 
I I I I 
L------L------~------J 

Fiq.3.5.b 

□[ 1 : 3 )!.!!!:. n 1 • - ( 1 , 2 , 3 ) a 

0 

r---<---o o 
I o 
D ( 1) 

I 
~-----r-----T------, 
I I I I 
L-----L----~-----J 

•collateral-clause• (R.6.27. ·rhe effect of the elaboration of 
these declarations is shown diagrammatically in figure 3.5.b, 
from which we see clearly that au1 □ is a mu1t·p1e •constant• nd 
on1o is mul tiple •vari · ble•. The 11 D" in the fig\lre, at 1, 
indicat s that a "descriptor" f R. 2.2.1.1. b ], whicb desct'i es the 
elements, is also part of rl multiple v lue. For the moment we 
shall ignot'e the presence of a descriptor. If we subscript a 
multipl •constant• we would xpect to obtai n a •constant•, 
e.g., au1(2]a hut if we subscript a multiple •variable•, we 
obt · in a •variable• [H.2.2.1.5.c], e.g., an1[2]a. 'I'hus on1[2] := 
Llt:1 is n •assignation• but cu1[2] := 4-n is not. This is shown 
nia~rammatically in fiqure 1.5.c, where the name possessed by 
□ n 1r 2 lc (dt 1) is constructed fro m the name possessed b-y an 1 a 

nil the •subscript• o2o fH.2.2.3.5.c]. The effect is obtained 
syntactically by he fact that the •primary• of a •slice• is in 
a we k position. It involves the concept of weak coercion 
f B.H.21, which we will iliscuss more fully in chapter 6. I 

I 
I. 
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au 1( 2) n 1( 2 Jo . . . . . ..... 
: : 
: o ( 1) 

0 0 

: 0 

: 
r -r--:--,- , r -r---t--,- , 

I I I 
L -L-----J- J L _L_ ___ J_ 

.J 

Fig.3.5.c 

Obserye nov the use of the word •weak• in the rule B.6.1.1.a of 
the Report. 

3.6 Triamers 

A programmer who is manipulating multiple values 111a1 wish 
to choose certain subsets of a multiple value and to allow an 
external object to possess that subset or a name to refer to it. 
For example, one may wish to choose a row or a column of a 
matrix or even a submatrix of a given matrix. This May be done 
by using a •trimmer•, although, if that subset is to consist of 
a single element, then •subscripts• are sufficient. To 
illustrate the use of •trimmers•, consider the •declaration• 
a( 1 :3Ji!!.!: n1 :~ (5, 7, 9) a. The •slice• ao1[ 2Jo is a •variable• 
referring, at the moment, to ■7 ■, but the •slice• an1[2:J]a is a 
•variable• referring to a row of two i ntegral values ■7 ■ and 
■ 9 ■; moreover, being a •primary• itself, it may be subscriptei 
(if one insists on being foolish), so that an 1( 2 :3 )[ 1 ]a is a 
•variable• ceferrinq to the same integral value ■ 7 ■ and the 
•formula• an1(2:3)[ 1) = n1[2]a possesses the value ■true ■• In 
fact, it will always be ■true■ no matter what assignments are 
made to anla. Another way of saying this is that the •identity­
relation• an1(2:3][1] :=: n1(2]c possesses the value ■ true ■• 

The effect of the •trimmer• al:ua is then to restrict the 
range of values of the subscript to run from the value of clD to 
the value of aua and to renumber, starting from ■ 1 ■• If the 
renumbering from ■ 1• is not desired, then the •trimmmer• should 
be written cl:uaba, where the value of cba is to be taken as the 
new lower bound. This means that, e.g., an1[2:3i0](0] :=: n1(2]a 
possesses the value ■ true ■• we may think of this in the sense 
that if aiba is omitted, then the default value of aba is ■ 1•, 
but tbe fact that the •new-lower-bound-part• may be empty is 
actually built in to the syn tax ( R. 8. 6. 1. 1. f ]. A further 
exa ■ ination of the syntactic rule for •trimmers• reveals that 
the ala, the cue and the a~bc may be omitted, i.e., the •lower­
bound• or the •upper-bound• or the •new-lower-bound-part• may be 
empty (R.8.6.1.1.fJ. If the •lower-bound• of a •trimmer• is 
empty, then the lower bound of the •slice•, in that subscript 
position, is the same as that of the •primary• which is being 
sliced; if the •upper-bound• is empty, then the corresponding 
upper bound of the •slice• is the same as that of the •primary•; 
if the •new-lover-bound-part• is empty, then the s ubscripts of 
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the •slice•, in that subscript position, will Stdrt from ■ 1 •. It 
is even po sible for all three to be mpty at the same time. 
Thus □ nlf:) .-. n1[1:3]a will possess the value ■ true ■• 
Extcn ion 9.2.f, in th R port, allows the •up-to-symbol• to be 
e lidej, under certain circumsta nces, so that tbe above 
•identity-rel tion• mi rJ ht be written on1[) :=: n1[1 :) )a. 

If the •ileclaration• ar 1:m, 1: n]~~-:± x2 □ is use as th t of 
a11 m hv n 111atrix, then ax2[i Jc cet . cs to the i- h row of the 
md rix, □ x2r:,j)□, or even ox2[,jln [R.CJ.2.fl, to the j-th 
colurun and ox 2ra:b, c :d)a III y refP.r to acer ain s ubmatrix, if 
th Vdlues of o , b, c□ rlnd □ rt □ re dppropriate. 't'he rules for 
•trimm s • [R.8.6.1.1.f,q,hl sho11l b . x mined to se that □l, 
u □ and nb□ in □ l:u1lba are 1 1 •integr· 1-te ctiit ie. •. In 
p~cticular, a •formula• is a •t ert iary• but an •a ss ignaticn• is 
not, so that ox2[ i +:== 1, j ~! t1n is an r1cceptable • s lice• hut 
ax2r i := i + 1, j 2! r 1 □ is not . 'rhP. l tt c, to bP. ccep ;\hle, 
should appear as ax2[ (i :== i + 1), j Q._ c ]a. 

3. 7 Calls 

A simplified syntax of a •call• is 
c a 11 : pr- i ma r y , o p e n s y m ho 1 , a c t u a 1 p a r a m et e c s , c 1 o se s y m h o 1 • 
actual parameters: actual ~acameter ; 

actual pdrameters, qo~ma, actual parametec. 
gommd : ~o on symbol ; comma s ymbol. 

hut th stric syntax. is to be fauna in the Report (R.8.6.2.1. , 
S.4.1.c, S.4.1.d]. Bxdmpl s of •Cdlls• are □ sin (x), char in 
string ("d", i, s)a and □ f(n; a, b)a. rhe se re familiar 
features from other programming langua· es , except p rhaps the 
possibility of usinr, •qo-on- ymbol•, represente by o;o , to 
se parate the •a :.:t ud.l-pacameters• of d •call•. This possibility 
i• pr !5,rnt so th t the 1_.>roqcamrner may, if he so wi s hes, match a 
lmil r us of •yo-on-s ymbol• in the corresponding •routin e-

n notation• rn.5.4.11, wher e its use will force the alabocation 
of thE:! •a ct ual-parameters • secial ly cath ec than collateralJy. 
Thus, in the • cdl l• □f (n; a , b) r1, the nna might be used ,ts a 
bound for th e arrays aaa ann □ ho, providea that a •90 - on-s ymhol• 
w=,.· used i11 a simi lac position in the •routine-de notation• 
pns:,es ed by □ fa. Uote that the • go-on-symbol• in a •call• has a 
decoca ive eff c nly. It is th e presence of a •go-on-symbol• 
in the •formal -paca me ters-p ck• of a •routine-aenotation• which 
has tl1e con trolling effect. 

•Routine-denotations• are import a n t dnd must be understood 
b e fore we examine the semantics of •c a lls•; however, •routine­
denotations• will be discussed in chapte r 5, so we will postpone 
our explanation of these semantics unti l that time. 

The most impoctant point to notic~ about the syntax of a 
•call• is that its first con stituent nction, e.g., asino in 
osin (x) □ , must be a •prim ar y•. Al so notice that a •call• itself 
is i'I •pr imar y• so that □ d (h) (C ) (d)o might well be a •call• in 
whic h the order of elahorat ion is that suggested by 
c((a(b)) (C)) (d )a. As we hav e a lreacly rem c1. rk ed, in section 3.4, 
in s ome proqrdms it may not be possible tc determine whether 

1. ·. 
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oa(b)u is a •slice• or a •call•, without knowing the mode of 
cao, but since th.e parsing tree is similar for these two, this 
is of no great hardship for the compiler. we shall see later 
that the object D!f x < pi/2 !hgn cos ~!§~ sin {ic is a 
•primary• and therefore □ !! x < pi/2 !~fill cos ~1§~ sin!! (x)c 
is a •call•. It so happens that DQ~gin r : = s + 2 ; sin ~ng (x)a 
is also a •call•, and perhaps some programmer will find it 
useful. 

3.8 Void cast packs 

An example of a •void-cast- pack• is 
D(¢voidlt: x : = 2 • x + 1)a 

Its purpose is to void the mode of the •unit• contained therein 
in those situations where this i s not done implicitly, such as 
in a; x := 2 + x + 1 ;a. ~here the •assignation• is turned into 
a •statement• by the fact that i t is preceded and followed by 
•go-on-symbois•. An example where a •void-cast-pack• is needed 
is 

□£!:~ lt!Q,igtt p = (ltyoigrt : x : = 2 * x + 1) a 
where ape is made to possess a routine, which contains an 
•assignation• but the •assignation• should not itself be 
elaborated until cpa is called. The object D.EE.2£ ¢,YQ.!g¢ p = (x 
:= 2 * x + 1) c is not an •identity-declaration• (the programmer 
might find it confusing anyway). A full explanation of the above 
•declaration• involves the concept of coercion which ve shall 
take up in chapter 6. Readers whose curiosity is aroused may 
wish to follow the syntactic analysis suggested by 74a,b, 61e, 
81a,b,c,d, 820d, 823a, 860b, 834a, 61e, 81il, 820d, 828a, an:1 
those who could have found it for themselves need not be reading 
this book! 

A simplified syntax of •void-cast-pack• is 
void cast pack : 

open symbol, cast of symbol, unitary clause, close symbol. 
but the strict syntax is found in more than one place in the 
Report [R.8.3.4.1.a, 3.0.1.h, 7.1.1.z). 

The •void-cast-pack• may appear to play the rol'e of a 
•routine-denotation• in the case of those routines which deliver 
no value and have no •parameters•. An examination of the Report 
(R.5.4.1] will reveal that there are indeed no such •routine­
denotations•. There is however, a proceduring coercion and this, 
together with the •void-cast-pack• fills the nee~. But more 
about this later. 

3. 9 Cohesions 

A •cohesion• is either a • generator•, e.g., D£~glc, or a 
•selection•, e.g., are of za. The strict syntax is: 

•MOOE cohesion: MODE generato r ; MODE selection.• 
rn.8.5.0.1.a). A •cohesion•, like a •base•, is also a class of 
•coercend• upon which all coercion must be expended, but ve 
shall discuss coercion later. We have already examined 
• enerators•, so we now turn to •selections•. 
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3.10 Selections 

An example of a •selection• is are 2! zo in the reach of 
the •declaration• astruct (real re, im) z □• A simplified syntax 
of • selection• is 

selection: field selector, of symbol, secondary. 
but in the strict syntax of the Report [R.B.5.2.1.a] several 
metanotions are used with penetrating effect. In order to 
understand the meaninq of a •selection•, we need to know that 
some values, unlike multiple values, may be built from several 
values whose modes may he different. Thus we may build a 
"structured" value consisting of one or more "fields" 
[R.2.2.3.27 in which the value of each f ield has, possibly, a 
different mode. The fields of a struct ured value are then 
selected by •field-selectors•, which look like • identifiers• but 
which, syntactically, are not •identifiers•. For example, in the 
•selection• ore 2! zo, the •field-selector• is ore □• 

An example of a •declarer• whi cih sp\cifies a structure:l 
mode is astruct (real value, string na111e) a. 'Values of such a mode 
then consist of two fields, one whose mode is •real• and another 
whose mode is •row of character•. If one wishes to obtain, or 
assign to, the •real• field of a •variable• ora referring to a 
value of such a m~de, this is done by using the •selection• 
□value Q.f. ra; the string field is ot:tained by the •selection • 
□name ~f ra. Note the similarity with the •slice • □ xl[i ]a, where 
an element is selected from the value of the •primary• according 
to the value of the •subscript• aia. In the selection avalue of 
ra, an element is selected from the va lue of the •secondary; 
era, using the •field-selector• avaluea. There is, however, one 
essential difference in that the value of the subscript, cio, 
may vary dynamically, whereas the •field-selector•, avalueo, 
cannot. This makes field selection an ' inherently efficient 
process. 

As with a •slice•, the value of a •selection• from a 
•secondary• which is a •variable•, is also a •variable•, but the 
value of a selection from a •secondary• which is a •constant•, 
is a •constant•. Thus with the •declaraticns• astruct(int i, 
QQQ.! b) ib := (1, .H:.!!g)a and o 21EY£!(£g~.! r, ~ll~! c) re= (1.2, 
11 k") o, ai 2! ibo is a •variable• and ai E! ib := 2c is an 
acceptable •assignati,o n•; however, ac Qf rcti is a •constant• an:i 
ac of re:= "m"a is not permitted. The reader may wish to note 
that- these effects are obtained, syntactically, through the use 
of the metanotion REFETY and the word •weak• in the rule 
8.5.1.1.a of the Report. The same remark applies to the rule 
8.6.2.1.a foi: •slice• .. 

It is important to observe that a •selection• is always 
m~de from a •secondary• and in this way it differs from a 
•slic e •, since only a •primary• can be sliced. This means that 
the order of elaboration of the object ca 9! b[c)a must be the 
same as that of aa Qf(b[c])a, for aa Qf be is not a •primary•. 
Also, a •selection• is itself a •secondary• so that ca Q.f b 2! c 
2! da may be a •selection• whose order of elaboration is 
suggested by aa 2! (h 2.!. (c .2.! d)) a. Observe that if ado is a 
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•variable• then ca Q! b 2! cg! dais also a •variable•. 

3 .11 Formulas 

A simplified syntax of •formula• is 
formula: operand, dyadic operator, operand 

monadic operator, operand. 
operand : tertiary. 
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but the strict syntax contains much more information [R.8.4.1). 
•Formulas• with two •operands• are known as •dyadic-formulas• 
and those with one •operand• are •monadic-formulas•. Since the 
same symbol may be used both as a •dyadic-operator• and as a 
•monadic-operator•, as for example in a( - a - b)a, one must 
rely upon some context to determine the full extent of a 
•formula•. 

A major new feature of ALGOL 68 is the fact that operations 
may be declared. This means that any •operator•, e.g., a+a, may 
not mean what we think it means unless we have examined the 
•ranges • in which it occurs. An example of an •operation­
declaration• is 

□QE Q£ = (r~~! a, b)t~~!: !! a> h !h~~ a else b fia 
but since this involves •routine-denotations•, wi1~i we have not 
yet discussed, we shall postpone a full examination of 
•operation-declarations•· 

The syntax given above shows that an •operand• must be a 
•tertiary•. Also, the syntax given in section 3.1 [B.8.1.1.b] 
shows that a •formula• is itself a •tertiary•. From this we may 
deduce that the elaboration of the •formula• aa 2! b[i] + co is 
in the order suggested by o(a gf (b[i])) + ca. The reader may 
find the following summary useful: 

a •primary• may be sliced and a •slice• is a •primary•, 
a •secondary• may be selected from and a •selection• is a 

•secondary•, 
•operands• are •tertiaries• and a •formula• is a •tertiary•, 

[R.8.6.1.1.a, 8.6.0.1.a, 8.5.2.1.a, 8.5.0.1.a, 8.4.1.f, 
8.1.1.b.c,d]. 

A set of standard operations, which the programmer might 

DYADIC 

1 2 3 

a-:= 2!. & 
+:= 
•:= 
1·-.-
+:= 
+· ·= .. 
+=: 

4 

= 
~ 
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------------r------------

5 6 7 8 9 I ( 10) 
--------------- --------1---------

< * QE i I~ - +/do~~ ~E 
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~ +: Q£E I lwb ueb lws UES 
> I 1]§ I !~ng ~~£tl 

~l~!! Q£§ I odd sign ~ound 
I!~ !.!! ~£!!j 
I .!!.!:!? ct b c 
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Fig.3.11 



,; 

38 An ALGOL 68 Companion 

expect of any programming language, i proviae [R. 10.2) and 
standard priorities (from 1 t o 9) ar ~iven (R.10.2.0). This 
standard set is to be found, in summary, in 8.4.2 of the Report 
and is reproduced here fo r convenience. Tbece are nine 
priorities (from 1 to 9) foe the •dyadic-operators•. The 
•monadic-operators• all have the same priority (effectively 10 ) 
and when used consecutively, ace elaborated from right to left. 
A typical •priority-declarati on• is 

a_g£i ori!,1 + = 60 
and in fact, this is to be found in the •standat:d-pcelu e• 
f R.10.2.0.a ). Operations whose •Operators• have the highest 
priority are elaborated ficst. 'T'hi!::i medns, e.g., that the 
•formula• aa < b; c > d □ is elaborated in the order suggested 
by □ (a< b)::: (c > d)a. Also, t he value of o( -1 .!J.E 2 + 1 ) □ i;1,nd 
o( 3 - 1 l1.£ 2 ) □ ace •4• and •2 ■ respectively, a fact which may 
comP as s urprise to users of so me other languages<1>. In 
iustification of this choice one must observ that, wheo 
•operators• and th ir priorities may be declared, a si mple rule 
tor the priority of •monadic-operators• is esse ntidl. Consid er , 
!or eKarnple, the fOrillula 

we know immediately 
su gested by 

ax~~ £ y _ ~ za 
tha · the l)tder of elaboration is that 

ax ~ ( .Q ( f y ) l Q ( g z ) □ , 
since the monadic operations are performed first, \olhile the 
prioritie of the •dyadic-operators• a~□ and o~ □ will settle ~ny 
douht which may remain. 

It would take too long to describe all the operations which 
are provided in the •standard-prelude•, and indeed this would be 
a waste of time, for their precise definition is given in 
Chapter 10 of the Heport. We shall be content with mentioning 
some of the less familiar •operators•, beginning with those of 
the hiqhest priority. i.e., the •monadic-operators•. Tha 
•operator• □ !~n3□ operates en an integral, a real or a complex 
value daliv ec ing a valu whose length (precision) is increased, 
while □ ~~2£! □ has the opposite effect. In some installations 
this may mea n the cha nge from single precision to double 
precision an d the rever se [R,10.2.3.<J, 10.2.4.n, 10.2,7.n]. One 
should be car eful t o dis tinguish between □!fn9 1.0 □ which is a 
•formula•, and □!~M 1.0 □, which is a •denotation• 
rH.5.1,0.1. b) . The value of □.QQ9 4a is • false• (R.10.2.1.s]. Th e 
value of aJ2i.!! So is that of □.!Qlo , i . e., □!!in □ operates on 
inteqral values and delivers bi t s [ R. 10,2.8.1). The value of 
oabs "a"a is some integral value , which is imµlementatio n 
dependent, and that of □ £~.E ,!; !!.Q§ " a" □ i::; •a•, i.P.., □£~.E£ [Q.§□ 
is the identity operation on il.ny c ha rac t er [ R. 10.1. j, k ]. Also , 
□!Q§ !EY~ = 1, !!.Q§ f~1~~ = 0c [ R.10 . 2.2.f] ~na □ ~.Q§ 1Q1 = 5a 
fR.10.2.8.i], all have the va lll ■ t i:: ue ■ ; in fact, □ .!2i!! !!.Q~ □ i s 
the identity operation on certa i n bits vRlues. The operato r 
□Q!.Q □ converts •row of boolean• to bits , e.g., □Qtb(!~g~, !~!§~, 
!rQ~) = l.Q.la [R.10.2.8.1) and □£! Q□ con verts •row of chacacter • 
to bytes rR.10.2.9,dl. The inverses of □ .Q!.Q □ and □£!]□ are not 

c1> Except for users of, e.g., JOVIAL, SNOBOL 3nd APL. 
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necessary since that job i s done by coercion ( R.8.2.5. 1.c,d]. 
The •monadic-operators• oy~, ~g~ no and a/a operate on semaphores 
and are concerned with synchroni zation (parallel processing ) . we 
shall not discuss them further here (R.10.4]. The operators 
c~p~, lwB, YB~o and a1~§o are concerned with arrays. we may best 
illustrate them by considering t he • declaration• o[2:5 Il~~]in! 
nla, so that anl □ is a •variable• referring to a row of integral 
values whose index has a lower bound of ■ 2 ■, which is filed and 
an upper hound of ■ 5 ■, which is flexible. Then □YEh n1 = 5, b~Q 
n1 = 2, y~ n1 = ~~ls~, l~~ n1 = !fY~a< 1 >. These •operators• are 
also dyadic and a1 ~El) n1 = y~Q n1a, for all arrays on1o, while 
the •formula• o2 ~EQ n2a delivers the value of the upper bound 
in the second subscript position of the array an2a. 

There is one standard •dyadic-operator• oia or c!c of 
priority 9 (the programmer may c reate more if he wishes). The 
value of ax i ya is a compl ex number with real part oxo ~nd 
imaginary part aye [R.10.2.5.f]. In the standard •declarations• 
the result of the •dyadic- operator• o/o, •divided - by•, is real 
(or complex) and that of a+o is integral (integral division of 
two integral operands). The ope rator a~!~ma delivers an element 
from bits or bytes, e.g., □ 2 ~le~ lQl□ delivers ■ false ■• Note 
that a2 ele!J! b :-= !!:~~a is not an •assignation• [R. 10. 2.8.k, 
10.2.9.c]. Manipulation of bits can be achieved with the 
operators a£~, ~g~, ~Ra and onQ! □ [R. 10.2.8.d,e,h,m]. The value 
of an+: ma is an□ modulo □ me, i.e., the remainder obtained on 
divid·ng ana by am □ [R. 10.2.3.n]. Apart from the fact that a~Q§□ 
is an operator on real, integral and complex values, rather than 
a •call•, i.e., it is not cabs (x) a, the remainder of the 
•operators• are probably familiar to most program~ers with the 
exception of a set of •operators• of lowest priority ■ 1 ■ • A 
typical example is a+:= a, which we can explain by saying that 
the •formula• ex +:= 1o has the same effect as ax := x + 1a. 
Another •dyadic-operator• with priority ■ 1 ■ is a+=:a, which may 
be used with two •operands• of mode •row of character• 
fR.10.2.11.r,t). After elaboration of the •formula• as +=: to, 
in the reach of □string s : = "abc", t := "def"a, we have os = 
"abc"a and ot = "abcdef"o. On the other hand, after the 
elaboration of the •formula • cs+:= "g"o, we have as= "a bcg"a. 

The reader should be careful to note that several 
•operators • have more than one representaticn, e.g., the •plus­
i-times-symbol• has three representations and the •up-symbol • 
four ( R. 3. 1. 1. c) (morevoer, many representations are not 
available in this preliminary edition due to the limitations of 
the TH print chain). 

3.12 Confrontations 

There are four kinds of •confrontation• ~ccording to the 
strict rule 

<1> Here it is more convenient to say o2*2 = 4a rather than the 
longer but correct statement a2*2 = 4o possesses the value 
■ true ■• 
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•MODE confrontation : MODE assignation 
MODE conformity relation 
MODE identity relation; MO DE cast. • 

r R.8.3.0. ,.a]. The object D.X :== y + 2c is an •assignation•, □ r 
: := i□ is a •conformity-relation•, □a :=: be is an •identity­
relation• and areal: ic is a •cast•. Enough has been said about 
•assignations• - already in sections 2.<} and 2.10. •Confcrmity­
relations• have to do with united modes, which we have not yet 
introiuced, so it is as well to postpone this discussion to 
chapter 7. We shall therefore confine our attention here to 
•identity-relations• and •casts•. Before passing to these, we 
should see that since a •confrontation• is not a •tertiary•, and 
therefore not an •operand•, the elaboration of the •assignation• 
axx Q!: yy :: xc is done in the order suggested by c (xx Q!. yy) := 
xa. Such an •assignation• might well be possible if the 
•operator• core has been declared in such~ way that it will 
deliver a name-:-

3.13 Identity relations 

There are two •identit y-relators•, the •is-symbol•, 
represented by a:==:a and the •is-not-symbol•, represented by 
o:1:a. A simplified syntax of t he •identity-relation• is 

identity relation : tertiary, id~ntity relator, tertiary. 
but the strict syntax of the Report contains more detail to 
account for the balancing [R.6. 4.1] of modes. 

The elaboration of the •identity-relation• is normally 
quite simple. we ask the yuestion whether two names, of the s~me 
mode, are the same. This means, in most implementations, asking 
whether two storage addresses are th e same rather than whether 
they have the same content. As an example, suppose the 
•declaration• areal x, ya has been made. The •inentity-relation• 
ax :=: ya then - has the value ■ false ■, despite the possibility 
that we may have elaborated the •assignations• ax :~ J. 14, y := 
3.14c. This is because the •declaration• □re~! xa (strictly D£~1 
real x = lac realc) involves the elaboration of the •generator•, 
oloc real□, which creates a name different from all other names 
(a-:-1.1-:-2:-d Step 8]. The same applies to af_,g~1 ya. Renee, the 
name possessed by axe is not the same as the name possessed by 
oya. After the •declaration• af~! re~! a ~ x □, the name 
possessed by cao is the same as t he name possessed by axe, but a 
different instance of that name. Consequently, the value of the 
•identity-relation• ex :=: ac wil l be ■true■ and will remain 
■ true ■ no matter ~bat assignments are made to caa or to cxc. 
Notice that an assignment to cac is at the same time an 
assignment to □ xa. 

Now suppose that the •declaration• 0£.§! !!'!.! ii, jj, !.!J~ ia 
is elaborated followed by the •a ssignations• oii : = i, jj := io. 
The •identity-relation• cii ::: jja possesses the value ■ false■, 
for a similar reason to that explained above, but the •identity­
relation• cjj :=: ia then possesses the value ■ true ■• That this 
is so can be seen by a close examination. We present this in 
figure 3.13. We see in the figure at 1 and 2 that the a priori 
modes of the •identifiers• en each side of the •is-symbol• are 
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not the same. Since an •identity-relation• must h;1ve 
•tertiaries• of the same mode (R.8.3.3.1.a] {each of which 
begins with •reference-to• ) , t here is a coercion, known as 
"dereferencing" [R.8.2.1.1), of the •base•, cjjc (see the figure 
at 3), whereupon the •identi ty-relation• delivers the value 
■ true ■ (see t h e figure at 4 ). Ob serve that there is, strictly 
speakiµg, a coercion on the ri ght also, hut since the a priori 
mode and the a posteriori mode a re the same its semantic effect 
is therefore absent. Since the dereferencing may occur either on 
the left or on the right, but not on both sides, there are two 
alternatives in the strict syntax of •identity-relations• 
[R.8.3.1.1.aJ. The reader should notice that in this syntax, one 
of the •tertiaries• is "soft" and the other is "strong". 

boolean-identity-relation •••••••••• ~·•• 
I (4) 

r---------------11-----
I 
I 

I 
strong-reference-to­
integral-tertiary identity-relater 

I 
stronq-reference-to­

integral-base ••••••••• 
I : 

(coercion) (3) 
I (1) 

reference-to-reference : 
to-integral-base 

.J..-

I 
I 
I 
I 
I 
I 
I 
I 

-------, ■true■ 

I 
soft-reference-to­
integral-tertiary 

I 
soft-reference-to­

in tegral-bas e 
I 

(coercion) 
I 

reference-to-(2) 
integral-base 

.J. 

cjj :=: in 

0 0 0 

o o------>-----o o <---(identity)---> o o 
0 0 0 

I I 
I ..-------, I 
L--)----1 1--(---J 

L-----J 

Fig. 3. 13 

In the case of cjj .-. ic, the cic is soft and the 
strong. This is a matter concerned with coercion 
balancing of modes which will be discussed in chapter 6. 

3.14 casts 

The object 
areal : 2c 

ajja is 
and the 

is a trivial example of a •cast• [R.B.3.4. 1.a], but it is good 
enough to illustrate that a •cast• consists of a •declarer• 
followed by a •cast-of-symbol• f ollowed by a • unitary-clause•. 
The purpose of a •cast• is to c oerce the value of its •unitary­
clause• into a value of mode specified by its •declarer•. The 
example given is trivial because its value could be obtained 
more easily from the •rea 1-denota tion• c2. Oc. 
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•Casts• play an important role in •routine-denotations•, 
which are discussed in chapter 5. We shall see also that they 
are used instead of •routine-denotations• for those routines 
which lack •parameters•. Otherwise, a •cast• is occasionally 
useful to effect a coercion which is not implied by the context. 
For example, □§iI!.!!9 : "a"o is multiple value, i.e., a cow of 
characters with one element, a nd objects like o(c E cell : next 
Q! cell) :-=: !!i!a are essenti 1 to li t processing ( ee 
R.11.12). A • cast• may have a •void-~eclrlrer•, in which case it 
is a •void-cast•, e.g., □ :x := ya. A •vcid-cast• yields no 
value. An examination of the syntax will reveal that a •void­
cast• occurs only as a •void-cast-pack• (R.8,b.0.1.b], e.g., a(: 
x := y)a, or as part of a • routine-denot tion• (R.5.4.1.h], 
e.g., a: get bin(stand back, x)n in o([ l!!Ul'..2.~ x) : 9et 
hin(st ndback, x) □ [R.10.5.4.2.a]. A •void-cast-pack• is 
•hase•, as we have already seen in section 3.8. •Casts• which 
a ·ce not •void-casts• 11 envelap11 [R.1.1.6.j] a mode and are 
•confcontations•. One ceason f or th?. P.Xclusion of •void-casts• 
from •confrontations• is the ambiguity which might otherwise 
lurk in the object ax :=: ya or ax := :ya. 

For those •casts• which e nvelop a mode, a simplified syntax 
is 

cast: virtual declarer, cast of symbol, unitary clause. 
rR.B.3.4.1.a]. A •virtual-declarer• [R.7.1.1] is a •declarer• in 
which all •indexers• contain •bounds• which are empty. To find 
typical examples of •casts• we need only examine •declarations• 
involving routines, of which there are a large number in Chapter 
10 of the Report. One of them is 

□QE ~.Q§ = (QQQ]: a) J,nt : .H a then 1 ~!.§~ 0 ti□ 
r R.10. 2. 2.f 1 in which the •cast• is-□1Et i.! a .!!!~!! f!§~ 0 
n,a. 

The elaboration of a •cast• is that of its •unitary-clause• 
r R.8.3.4.2), always remembering that the mode of the value 
delivered, if any, is that specified by the •declacer• of the 
•cast•. Since the a priori mode of its •unitary-clause• is often 
not the same as that specified by its •declarer•, the final 
steps in the elaboration of a •cast• often involve some kind of 
coercion. For this reason it will appear frequently in our 
discussion of coercion in chapte r 6. 

~ecause a •cast• is a •confrontation• and therefore also a 
•unitary-clause•, it follows that □!~~!:£~~!: xa is a •cast•, 
but its value is the same as that of nreal: xa. Note that a 
•cast• which envelops a mode is ;~i- a •primary• or even a 
•tertiary•; consequently, □£~! E!rn1: xx .- 3.14a is not an 
•assignation•. The effect perhaps intended could he obtained by 
writinq c ([_gf £~~! : xx) : = 3. 14a. 

3.15 Proqram example 

<1> ~he ALGOL 60 vecsion of this procedure is 
G.F.Schrack. 

due to 
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The following is a •procedure-denotation•<•>. The routine 
which is possessed by ope calculates the r eal coeffic ie nts of a 
polynomial whose zeros are the elements of a gi ve n complex 
vector aza. These zeros may be real or c omplex, but if complex 
must appear consecutively as conjugate pai rs. For example, if 
the given vector is o(1, 0 ! 1, 0 j -1)c , th en the polynom ial 
will be az••J z••2 + 2 1a. Th us, in the • range• of 
c[1:3]£2!2.± w := (1, 0 i 1, 0 i -1)o, the value of th e •ca l l • 
cp(w)o will be that of o(f]£,g~!.: (1.0, - 1.0 , 1.0, - 1. 0))[iiO ]a . 
The existence of a non-local •procedure• , oer rora, i s assum ed, 
for use upon encountering invalid data. 

DE.!"2~ P -= (U![ 1 : ]£Q!!E.! z) [ ]!:.~~!. : 
tcalculates the coefficients of the real polynomial whose zeros 
are the elements of the vector zt 

h~!!!. [O:y,E!! z]~~~J, a; a[O] := 1 ; .i.!!!:. i := 1 ; 
tthe coefficients are calculated into the vector at 
!hl!~ is y~ z ~2 

!!!!Ii!! £.Q.!!.E.! zi = z[ i ] ; a[ i] : = 0 ; 
if im zi = 0 
then-, a real zero, 
--fo!:_ k !£.!2m i QI - 1 !2 1 ~Q 

a( k] -:= !'~ zi • a[k-1) 
~!2~ t a pair of complex zerost 

i{ i = ~~Q z !~a error fi ; 
it z i I £Qnj z[i+:=1] !:.h~.!! error fi 
real s= ~e zi •• 2 + im zi •• 2, t = 2 • !~ zi 
a(i] := 0-; 
fQ!:. k !£~! i QI -1 1Q 2 ~.Q 

a[k] -:= t • a[ k-1) - s • a[ k-2] ; 
a[ 1 ] - : = t 

fi; tand now for the next onet i +:= 1 
end tthe iteration on it; 

tthe-coefficients are now ready in the vector at 
a !!!!,~D 

From a[]~~!! :a, on the fi rst line, to the final a~~~D is 
the •cast• of a •routine-denotation• [R.5.4.1.b]. It begins with 
o[ ]~~!.! :a to ensure that the val ue delivered by the routine is 
of mode •row of real•. Note the use of the •operator• D~£QD in 
the •declaration• o( O :_ye.!1 z )~~!! ac, which creates a vector 
•variable• with index running from ■ O ■ to the upper bound of 
cza. The •declaration• D£9~.E.! zi = z(i]a [R.10.2.7.a] indicates 
that, for each value of oio in t he iterative statement, c2io is 
a constant. This avoids repeated calculation of nz[i]a later. 
Observe that, in the •formula • ozi I £Qnj z[i+:=1Ja, the 
•formula• oi+:=lo is elaborated first. rhe value of the 
•variable• cio is thus increm ented by 1. The value of this 
•formula• is the name possessed by ci+:=1o, which is the same as 
the name possessed by aio. It is then dereferenced. The object 
czf i+:=1 ]c is a •slice• whose value is the next zero of the 
polynomial sought. The •declaration• ar~al s = f~ zi ** 2 + im 
zi •• 2c declares a •real- constant• oso who se value is the 
sguare of the modulus of one of the conjugate pairs. The value 
delivered by the routine is that of aaa; conseguently aac 
appears as an • expression• preceding the final a~n[o. 
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Review questions 

3. t IntI."oduction 

a) Is a •cohesion• a •primary•? 
b) Is a • closed-clause• also a •tertiary•? 
c) Indicate by parentheses the order of elaboration of oa + b 2! 

c[ d] - eo. 
d) What is the difference between a •statement• and an 

•expression•? 
e) Is a •base• also a •unitary-clause•? 

3.2 Bases 

a) Is ax + ya a •base•? 
b) How many kinds of • bases• can be distinguished 7 
c) List all the •bases• in the object 

a ( a[ i] > b 2! c I sin (x) I cos (x + pi/2) ) a. 
d) Is al. a a •base•? 
e) Is ca (b) a a •call• or a •slice•? 

3. 3 Identifiers 

a) List the •i dent if iel."s • in the object a 1: ca : = char 2f file 2!: 
f + 11 a5 11 a. 

b) What is the mode of axo in areal X := 3. 14 o? 
c) What is the mode of an2a--In a[ t: 3, 1: 4 Un!: n2 = m2[ 3: 5, 

3: 6 la? 
d) Do DUO and ava have the same mode in the •declaration• 

r 1 : 1 o JS:h!!!: u, [ 1 : 1 0 !.1~! ]£.!!~! va? 
e) Is a$linea an • identifier.•? 

3.4 Slices 

In the I."each of the •declaration• a[l:m, 1:n].£~~.! x2, y2o: 
a ) is ax2[ 1 ][ 1 ) □ a •slice•? 
b) is ax2[ 1 )a a •slice• and if so what is the mode of its value? 
c ) is a~~gi~ x2 ~!11f 1,1 ]a a •slice•? 
d ) is aif i > 0 !:!!~!! x2 ~.!§~ y2 !.! [ 1, 1 ]a a •slice•? I_ 

e ) Which of the following can be subscripts? 
a35n, aite111 Qf a □, □ i + n * 2a, ai := 2 □, oi + := 2a. I 

3.5 Multiple values 

In the reach of the •declaration• a[1:m, 1:n).!~!!1 x2, [ t:3J!.!l! ~ 
ul = (1, 2, 3)a: 
a) is au1 a a •variable•? 
b) is ox2[ t, 2 ] □ a • val."iable • ? 
c ) i s a u 1 [ 2 ] : = 2 □ an • ass i g na t ion • ? 
d) is ax2[2][1] .- 3.14a an •assignation•? 
e) is ox2[1, 1) .- 3.14 □ an •assignation•? 

3.6 Trimmers 
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Using the •declaration• given in 3.5 abcve: 
a) what is the value of au 1[ 2: )c? 
b) what can be said about the •formula• 

cx2[ 2: 3 JC 2, 1 ] = x2[ 2, 1 Jc? 
c) what is the value of au1[:2~0)[1)c? 
d) what is the value of au1[i2)[3]c7 
e) is cx2[i:=1:j+:=1, 3]a a •slice•? 

3.7 Calls 

a) Is a cos (x : = pi/4) c a •call•? 
b) Is arandoma in ex := randomo a •call•? 
c) Is ocos( x > 0 t x I pi/2 )a a •call•? 
d) Under what conditions is ca(b)a in ca(b) := ca a •call•? 
e) Under what conditions is ca (b) (c} a a •call•? 

3.8 Void cast packs 

a) I s a •void-cast-pack• a •primary•? 
b) I s a(: x ) : -= yo an •assignation• 7 
c) I s ax : = (: y) a an •assignation•? 
d) I s a(: (X)) a a •void-cast- pack• 7 
e) I s ae.£2.f p := x := 3. 14a a •declaration•? 

3.9 Cohesions 

a) Is a •cohesion• a •pri mar ye? 
b) Is a •cohesion • a •tertiary•? 
c) Is o (x + y) o a •cohesion•? 
d) Is o[l:3 ]£~! §~!Y£!(i~! a,!~~! b)o a •cohesion•? 
e) Under what conditions is ca Q! b := co an •assignation•? 

3.10 Selections 

a) Is a •selection• a •primary•? 
b) Is the cac in ca of be an •identifier•? 
c) Indicate by parentheses the order of elaboration of 

ca Q{ b [c)a and of ae 2! g(x)a. 
d) Is a(a Q! b) Qf cc a •selection•? 
e) Is oa Qf ( b Q± c }a a •selection•? 

3.11 Formulas 

a) Is a •formula• a •t~rtiary•? 
b) What is the value of c2 elem bin 5a? 
c) What is the value of alwb-:-3:1qa1 
d) Is a4 +:= 2c a •formula;-and if so what is its value? 
e} What is the value of c~(1<2~~g3>4Q£5=6#7>8QI !fY~)c? 

3.12 Confrontations 

a) Is a •secondary• a • confrontation•? 
ax1[i:=i+1] a •slice•? b) Is 

c) Is oreala a •confrontation•? 
d) Is 

45 

e) Is 
a~iQ.f randoma a •confrontation•? 
op:= x :=: yo an •identity-relation • or an •assignation•? 
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3. 13 Identity relations 

In the reach of the •declaration • ain! i, j 
i , j j : = ia : 
a ) what is the value of oii :=: ii □ 7 
b ) what is the value of □ i :=: jja? 
c ) what is th value of ai : I: jo? 
d) Is ox : =: 3.14a an •identity-relation•? 
e ) Is □ x : = : x1r 2]o an •identity-relation•? 

3.14 Casts 

·1 a) Is a •cast• a • primary•? 
.-1 b) Is nint : .3. 14 □ a •cast•? 

c) Is □ i-:= :ye an •assignation• or an •identity-relation•? 
d) Is ar1:1]£~i!.!: 3.14a a •cast•? 
e) Is □!:~! !.!!t : ii := 2a an •assiynation•? 

1.15 Program example 

a) How many occurrences of a •cohesion • are in this •particuldr-
program•? 

b) How many occurrences of a • slice• at:e there? 
c) Is ate a •constant• or a •variable•? 
d) What is the mode of as □ ? 
e) How many occurrences of an •identity-relation• are there? 
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4 clauses 

4.1 Conditional clauses 

The •conditional-clause• [ R. 6. 4 ] is a fundamental 
programming concept or primitive pertaining to flow of ccntrol. 
It is present in some form or other in most languages and allows 
for a choice in the elaboration of one out of two • s erial­
clauses•, depending on the value of a •condition•. An example of 
a •conditional-clause• is 

oif a> h then a ~l§~ b !ic 
or, using another representation 

o( a> b I a I b )o , 
which therefore has the same meaning. A simplified parse is 
shown in figure 4.1.a. 

conditional-clause 
I 

r----r----------t--------T--------, 
I I I I I 

if-symbol condition then-clause else-cl¼use fi-symbol 
I I I I I 
I I r-------L-, r , I 
I I I I I I I 
I serial- then- serial- else- serial- I 
I clause symbol clause symbol clause I 

_J._ 

a>b 

Fig. 4. 1. a 

.L 

b 
J.. 

!ia 

There are two features of the • conditional-clause• which 
are noteworthy. The first is that such · a •clause• is closed, in 
the sense that it begins with an •if-symbol•, represented by 
ai!o or a (o, and ends with a •fi-symbol•, represented by c!ic or 
o)o. As a consequence of this, a •conditional-clause• can be, 
and is, a •primary• and is therefore found in syntactic 
positions which might otherwise be considered unusual in some 
programming languages. The second is that no essential 
distinction is made between •conditional-expressions• ~nj 
•conditional-statements•. The only difference is that, if a 
•conditional-clause• is used as a •statement• [R.6.0.1.c], then 
its value is voided; otherwise, it may be an •expression• 
rR.6.0.1.b l < 1 > and may delive r a value. There is only one 
genuine syntactic rule [R.6 .IJ .11. This mergin g of concepts 
permits •conditional-clauses• like 

o!! a > 0 !hen sgct(a ) g1~~ ~Q_!Q ecr or fia 
which may be used in a situation like 

oa1 : = if a> 0 !h~E sqrt (a) gJ§g gQ_tQ error {io 

<•> Note that rules in the Report marked with an asterisk are 
present only for the convenience of the semantic description of 
the language. The notions involved never appear in the parse of 
a •program•. 
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Some uses of a •conditional-clause• which might be 
considered unusual, but which tem from the f ct that it is a 
•primary• are: c( p I x I y ) : = 2.3 , ( g I cos I sin ) (X) , ( 
r I x I y ) + ( s I u I v ) c , in .ihich we have use d, for 
preference, the shorter represe ntations. 

A simplified syntax of the •conditional-clause• is 
conditional clause : 

if symbol, condition, then clause, else clause, fi symbol. 
condition: serial clause. 
t he n clause: then s ymbol, ser ial clause. 
else cla use: else s ymbol, serial clause. 

but the stri s ynt ax in the Heport [R.6.4.1] s hould be studiej 
also. One s houl d observe tha a •conditional-clduse• contains 
three • serial-clauses• (see fiqure 4.1.a ) . Any one such • ser i al ­
cla use• may contain •declarations • and forms a •ran~e • 
rl:{.4.1.1. e l . Since a •serial-clause• may cont in more than one 
•un·tdry-clause•, thi s 1Iteans that fce:iuent use of abe.9.!_] ~n.sJ o 
p:iirs (•packages•), as in ALGOL 60, is not necessary. An e xam pl e 
of a •conditional - clause• conta ining a non-trivial •condition• 
miqht be: 

a1! §!f!ng s; read(s) s = password 
then go_to reqular 
else go_to irregular 
fie 

where the value of the •condition• is that of its last 
as = passwordc. 

A •conditional-clause• is elaborated by first elaborating 
the •condition•. If the value of the •condition• is .true ■, then 
the •then- clause• is elaborated; otherwise, the •else-clause• is 

a ( 

■ true ■-->--, r------>-------, 
I I I 

I V 
X ) 0 X -x 

I 
■ false ■-------->-------J 

Fig.4.1.b 

elaborated (see figure 4.1.b). In the first instance, the value, 
if any, of the •conditional-clause• is that of the •seri~l­
clause• of the •then-clause•; otherwise, it is that of the 
•else-clause•. For example, the •clause• 

a ( x ~ 0 I x I -x ) c 
has as its value the absolute value of cxc. 

4.2 Simple extensions of the conditional clause 

A •conditional-clause• like 
nif a then t else if c then d else 

if e then f else g fi fi fie 
may occur frequently in programming situations. For this reason 
an extension [R.9.4.b] is available whereby the same •clause• 

.1 
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may also be written 
aif a then b elsf c then d elsf e then f else g fie 

The essence of this extension is that aelse iio may be written 
□!lsfa, if the corresponding af1o is elided: Using the other 
representations, the strict language is 

a( a I b I ( c I d I ( e I f 
which may be written 

g )) ) D 

c(aJbl:cJdl:elflg)a , 
in the extended language. This saves the programmer the bother 
of counting □fies so that they match the number of □ifas. A 
schematic flow of control for this •clause• is shown in figure 
4.2 in the case where aaa possesses the value •false ■ and cca 

a ( 

r--->----, • true ■ 

I 
a I b I: c I 

I I 
■ false ■ 

.------->---------, 
I v 

d 1: e f g )a 

Fig.4.2 

possesses the value ■ true ■• Note that in this case the 
•condition• aea is not elaborated. 

A similar extension [R.9.4.b) exists, whereby the symbols 
□tE~Il !fa may be replaced by □!E~!a if the corresponding afia is 
elided, but this extension may not be so useful. Because of-it, 

□i! a !het b !h~n c ~1~~ a !ta 
has the same meaning as 

aif a then if b then c else d ii !la 
In other representations we .have that--

a( a I: b I c I d )a 
means the sam e a s 

a(al(blcld))c , 
where the sy mbol □ I :a is used as a representation of the •th e n­
if-symbol•. I t i s also a representation of the •else-if-symbol• 
but no confusion can arise. It is worth noting that, provided 
the elaborati on of aaa and cha involves no side effects, the 
effect of a ( a I: b J c )a is the same as that of a( a ~ng b I 
c )a, but the fo rmer may be faster. 

In the 
contains an 
allows a~)s~ 

strict language the • conditional-clause• always 
•else-clause•; however, another extension [R.9.4.a) 
§.fi.E f!D to 1:e replaced by afia, so that the clause 

cif p then ~o_to 1 else ski,E fio 
may be written 

aif p then go_to 1 fie 
In the •assignation• ax:= (a> 0 I sqrt(a))a therefore, some 
und efined real value will be assigned to axa, if the value of 
aaa is not positive. This ~ccurs because the a~liED will be made 
to possess some undefined real value [R.8.2.7.2.a]. 

4.3 Case clauses 

A case clause is 
clause•, intended to 

also 
allow 

an extension of a •conditional­
for efficient imflementation of a 
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certain kind of •conditional-clause• 
frequently. The •clause• 
□i! i = 1 th~!! X ~1§f i = 2 ih~~ y ~12f i = 
may be written 

which 

□£~§~ i !.!! x, y, z Q~! a~§~£ □ 
or in another representation, 

a( i Ix, y, z I a )a 

may 

r H.9.4.c,dl. rhe flow of control in such a •chuse• is indicatei 

r---->----,-----,-----, --------, 
I I I I I 
I ■ 1 ■ ■ 2 ■ ■ 3 ■ I 
I I 
i x, y, z Q!!.t a 

I I 

Fig.4.J 

in fiLJUre 4.L Observe that a( i I x I a )a is not a case clause 
for case clauses contain at least two •unitary-clauses• between 
the □!£□ and the □Qy!□-

If the reader is now confused over the use of certain 
symbols, the difficulties can be cleared away by observing that 
~ach of the symbols, •if-symbol, then-symbol, else-symbol• and 
•fi-symbol• has more than one representation. The 
rl'!pre.ent..1tio11s are ra.3.1.1.a): 

•if-symbol• □( if £!§ga 
• tl1en-symhol• a I .!:h,g.!! !!!□ 
•P.lsc-symhol• □ I else Q~,!a 
•fi-symbol• a) II-- !§!£□ 

This mnans th~t th case clr:1us given above 111ight be written 
□£!§~ i !hf~ x, y, z I a !i □ , 

and, thou'::Jh most humans would find this nifficult to read, the 
computer should not. 

necause □lo is a representation of the •else-symbol• dOd 
□)a a representation of the •ti-symbol•, the case clause □ ( i I 
x, y, z I §~.!.P )o may be written □( i I x, y, z ) o, using the 
c xt - nsion fR.9.4.a] already mentioned atove. Note then, that in 
the •assiqnation• ox := ( i I 1.2, 3.4 )a, some undefin€d real 
value will be assiyned to oxo i£ □ in is not ■ 1• or ■ 2 ■, but in 
the •assi1nation• □( i I x:, y ) := J.4 □, there may be no 
detectable effect [R.8.].1.2.c::1 if the value of ni□ is not • 1• 
or • 2 ■• 

Thare are further extensions of the case clause involving 
•conformity-relations• rR.9.4.e,f,g], but we shall delay 
discussion of these until •conformity-rela t ions• themselves have 
been explained. 

4.4 Repetitive statements 

Repetitive statements, such as 
af~~ i ton QQ so 
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are not mentioned in the syntax of the language. such statements 
are in the extended language [ R.9.3.a,b] and can stand in the 
syntactic position of •unitary-statements• [R.6 . 0.1.c]. A simple 
example of a repetitive statement is 

cto 10 do randomc 
It is defined to be the eq uivalent of the •unitary-statement• 

a~~in in! j := 1 i 
m: i! j 5 10 !!!£] random ; j +:= 1; 

gg_!,.Q m !..i 
~od e , 

however, the reader who consults the Report (R.9.3.a] will find 
that the above is a gross simFlification and that there are many 
details, such as increments other than ■ 1 ■, which must also be 
considered. 

A more illustrative example is 
o£Q_ i !fQ~ a Bl b !.2 c do x[i] := sqrt(i)o 

This is defined to be the equivalent of 
abeg~n iQ! j : = a, in!. k = b, l= c; 
m: i! ( k > 0 I j ~ 1 I: k < 0 I j ~ 1 I !EY~ 

!!!~~ i!!! i = j ; x[ i] : = sqrt (i) ; j + :: k 
g.Q_!,,2 Ill £.! 

endc 
however, this is still not the complete story and may give the 
wrong effect if it is considered to be the eguivalent of the 
above repetitive statement in a •serial-clause• in which 
operations have been redeclared. With this remark in mind the 
reader should now examine the extensions,as given in the Report 
rR.9.3.a,bJ, to notice how all eventualities h~ve been covered. 

and 

There are essentially two repetitive statements. They ar e : 
a!Qf if~~ a ~J b !Q c ~hilg d QQ ea 

D!Q! i f£Q! a ~y b ~hi1@ d QE ea 
These differ in that the first form contains a a!QD and the 
second does not. Io both forms o!.!~ la or □!:!..I 1o or cwhi!~ 
ify~o may be elided [R.9.3.c (the statement of this extension is 
more precise in the Report) J and if the •identifier• oic does 
not appear in the •unitary-clause• aeo, or the •serial-clause• 
ado, then a!~f ia may be elided. Notice t hat the control 
•variable• (cjo in the above example) of a repetitive statement 
is hidden from the prograa~er, so that be may make no assignment 
to it. Also notice th.at the use of □for ic means that aia is, 
for each elaboration of ado and aeo,--an •integral-constant• 
declared within a range which contains both ado and a.ea. 
Consequently no assignment may be made to cic. This fact was 
used in the examples given above . 

Before leaving repetitiv e statements, we sho u ld observe 
that the •unitary-clauses• ca, ba and oca are elaborated 
collaterally (8.6.2.2.a] and once only, which means, in 
particuiar, that a change · n the step size obc or in the upper 
bound aca, after the initial elaboration, will not affect the 
further elaboration of the repet itive statement. 
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4.5 Closed clauses 

Som examples of •clo ed-clauses• ace o(x + y) a, a ( ((a))) a 
and o~~tl!! Ht!!! x, y ; .read ( (x, y)) ; print ( X + y) g__!!gc. Note 
that either □ ()a pairs (• packs•)< 1 > or □Q~.9.!!! ~!)_g □ paics 
(•packaqes•) may be used, but that □ (x +- y e nd□ is not a 
•closed-clause• (H.6.3.1.a, 1.2.5.i, 1.0.1.h,i]. ;;--simplific3. 
syntax of the •closed-clause• is 

closed clause: open symbol, s erial clause, close symbol ; 
begin symbol, serial clause, enn symbol. 

but the stcict syntax of the Report, involving the use of •pack• 
and •package•, should be consu lted [R.6.3.1.a]. A simple parse 
of the •closed-clause•, a{x + y) a, is shown in figure 4.5. Since 

closed-clause 
I 

serial-clause-pack 
I 

.------------
1 

open-symbol 
I 

.1. 

a ( 

I 
serial-clause 

I 

X ♦ y 

Fig.4.5 

--, 
I 

close-symbol 
I 

.1. 

) a 

the elaboration of a •closed-clause• is that cf its •secial­
clause•, there is little else t o be said about •closed-clauses•, 
except perhaps, that a •closed-clause• is a •1=rimary• (as is a 
•conditionc1l-clause•) and that the •seci;i.1-clause• of a •closcd­
claus2 • is a •range• [B.4.1.1.e] c:1nd tberefc.ce E,lays a role in 
the identification of •identifiers• [R.4.1,2,3J. The former 
means that, for example, a • ,!?g.9.J,g b + c ~Q □ is an acceptable 
• formula•, though most programmers would prefer to write it as 
aa • ( b + c ) a. 

4.6 Collateral phrases 

A •collateral-clause• fR.6.2.1.b,c,d,f) consists of two or 
more •unitary-clauses• (•units• [R.6.1.1.e)) se1:1arated by 
•comma-symbols• a nd enclosed between a a() a pr1ir (•pack•) or a 
□ Qegin_ ~n~ □ pair (•p ckage•). l'ln example of a •collater:il­
clause• is □( 1.2, 3.4 )a. It may be used in the situations 
af1:2]E~l x1 = ( 1.2, J.4 )a r 0£Q.!lle.! z;:: ( 1.2, 3.4 ) □• In 
the first situation the value of the •collateral-clause• is a 
r:-ow of values, whereas in the second i is a structure. Thus, 
the semantic interpretation of a •collateral-clause• may be 
det~rmined by its context. Notice thdt a( a )a is not a I 
•collate al-clause•, for, otherwise, there would be an ambiguity I: 
in that a ( a ) a is already a •closed-clause•. 

c1> Strictly speaking, "pack" and "package" are protonotions hut 
not para.notions (R.1.1.61, so you will not find them used in the 
semantic text of the Repoct. 

I 
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A simplified syntax of the • collateral-clause• is 
collateral clause : 

open symbol, unit list proper, close symbol 
begin symbol, unit list proper, end symbol. 

unit list proper: 
unitary clause, comma symbol, unitary clause ; 
u n it list proper, comma symbol, unitary clause. 
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but tbe strict syntax is rather more complicated (R.6.2. 1 ] since 
it must take care of the two situations hinted at above together 
with the balancing of modes [R.6.1.1.g, 6.2. 1.e, 6. 4 .1.d ] , an 
interesting topic in itself, which should be postponed. A simple 
parse of a •collateral-clause• is shown in fig ure 4 .6. If a 
•collateral-clause• is useu as a •statement•, then it may be 
preceded by a •parallel-symbol•, represented by a~~E c , if 
parallel processing is intended [ B.10.4]. 

collateral-clause 
I ,----------- +--

' open-symbol 
I 
I 
I 
I 
I 
I 
I 
I 

J. 

D( 

' unit-list-proper 
I 

,---.J.----T------1 

I I I 
unit-list-proper I I 

I I I 
r---+--, I I 
I I I I I 

unit I unit I unit 
.J. 

1.2 
J. 

, 
.J. 

X 

Fig.4.6 

.J. .J. 

"J 

---, 
I 

close-symbol 
I 
I 
I 
I 
I 
I 
I 
I 

.J. 

) n 

The important feature of a •collateral-cla use• is that the 
order of elaboration of the •unitary-clauses• of the •u nit-list­
proper• is undefined[R.6.2.2.a]. This means, for example, that 
the value of a(i!!t i : = O, j := 0, k: = 0 ; ( i : = j+1 , j := k+1, 
k := i+1 ))a could be that of any one of several rovs of t hree 
integral values, such as that of a (1, 1, 1) c or a (2, 1, ) ) c, 
etc. 

In like manner, a •collateral-declaration• consists of two 
or more •unitary-declarations• separated by •c:>mm.a-symbols•, 
with the order of elaboration undefined. This mea ns, for 
example, that the •collateral-declaration• □ int n := 10, 
[ 1: n ]r~~l xla may, or may not, have the effect perhaps i ntended 
by t he progra mmer. The object ct~! n := 10 ; [1:n)!~2! xlc would 
make more sense. Observe that a •collateral-declaration• is not 
enclosed by an •open-symbol, close-symbol• pair or •begin ­
symbol, end-symbol• pair, i.e., neither a •pack• nor a 
•package•• 
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4.7 Serial clauses 

•Serial-clauses• are put together frcm •unitary-clauses• 
with the aid of •go-on-symbols, labels, completion-symbols• and 
•declarations• r R. 6. 1. 11. We shall P-xamine this construction by 
starting from the simplest constituents. It is expedient, as in 
the Report fR.6.1.1.el, to speak of a •unitary-cla use• as a 
•unit•. Foe the convenience of ouc explanation, we introduce the 
notion •paraunit• (not in the Report ) , for a •unit• which may be 
preceded y zero or more •labels•. Thus 

ax : = 3a 
is a •unit•, but for us, 

ax := 3a 
and 

" al2 : x :-= 3 □ 
are both •paraunits•. The si mplified syntax is then: 

unit : unitary clause. 
pd aunit: unit ; label, paraunit. 
label : label identifier, label symbol. 

and although this is a sli ght deviation from the strict syntax 
of the Report, we shall have no essential difference when we are 
tbrouy h. 

A. •clause-train• (R.6.1.1.h] 
separated by •go-on-sy~hols•. 
examples of •clause-trains•: 

is 
The 

a:x : = 3 □ 
□ 12: X := ]a 

one or moi:e 
following are 

la 

•para units• 
therefore 

all : y : = 2 ; X := 
aopen (myfile,"abc 11 , tape8) ; restart 

rtLl0.5.1.2.b, 10.5.2.2.b]. We may now 
syntactic cule, viz., 

: get(myfile,name)c 
add another simflified 

clause train: paraunit ; 
clause train, go on symbol, paraunit. 

(cf., ( R. 6. 1. 1. h ]) . The semantics of a • clause-train• is simple. 
The elaboration of the •u nits• proceeds from left to right, 
i.e., in the normal seguentia l order, as in most programming 
lan uages. 

A •suite-of-clause-trains• [R.6.1.1.f,g] consists of one or 
more •cl use-trains• separated hy •completers•, where a 
•completer• is a •completion- symbol•, represented by c.c, 
followed by a •label•. The follo wing are therefore examples of a 
•suite-of-clause-trains•: 

a :x : = 3c 
ell: y : = 2 ; x := 3 □ 

Cl( i > 0 I 11 Ix: = 1) • 11: y := 2; x := 3 □ 
A simplifi~d synt~x of a •suite-of-clause-trains• is 

suite of clause trains : clause train; 
suite of clause trains, completer, clause train. 

complete : completion symbol, label. 
ru.6.1.1.f,g). The semantics of a •suite-of-clause-trains• is 
dramatically different. The effect of the •completer•, as 
opposed to the •go-on-symbol•, is to force the completion of the 
elahoration of the •serial-clause• containing it and to yield, 
as the value of that •serial-clause•, the value of the •unit• I 

I. 
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most recently elaborated. In the last example above, if the 
value of aio is ■ -1 ■, then the value of the •serial-clause• is 
the value of ax := 1a and the •clause-train• ay := 2 ; x := 3c 
is not elaborated; otherwise, it is the value of ex .- 3c. In 
fact, the effect is the same as that of c( i > 0 I y : = 2 ; x := 
3 I x := 1 )c. One might think that any •suite-of-claus e-trains• 
may be re-written as a •conditional-clause• (s uggesting 
redundancy in the language) and though this may be true in 
theory. the example 
a.fQ! k !.Q y£.!2 s Q2 { c = s[k] Ii:= k; l); .!!.!.§~. 1: tcu e □ 
[R. 10 .5.1.2.n), shows that the •completer• is i ndeed a useful 
tool in practical programming. It plays a similar role to that 
of the return statement in PL/I or FORTRAN, though in these 
languages the return statement applies only to procedures 
{subroutines, functions). 

A • serial-clause• (R.6.1.1.a] is, roughly speaking, a 
•suite-of-clause-trains• preceded by zero or more •declarations• 
and/or •statements• but these •statements• may not be labelled. 
Examples of •serial-clauses• are 

ex : = 3c 
cl1: y := 2 x := 3a 

c( r > .5 I 11 I x := 1) • 11: y := 2; x : = 3o 
cf~! x. y ( r > • 5 I 11 I x : = 1 ) • 11: y : = 2 ; x : = 3 a 

er:= random;~~~! x, y; 
( r < .5 I 11 x := 1 ) • 11: y := 2 x :== Jo 

and 
Df~~1 r r := random ; real x. y 

( r < • 5 I 11 I x : = 1 ) • 11 : y -: = 2 ; x : == 3 c 
A simplified syntax of •serial-clause • i s: 

serial clause: suite of clause trains ; 
declaration prelude sequence, sui te of clause trains. 

declaration prelude sequence: declara tion prelude ; 
declaration prelude sequence, go on symbol, 
declaration prelude. 

declaration prelude : single declaration, go on symbol 
statement prelude, single declaration, go on symbol. 

single declaration : 
unitary declaration ; collateral declaration. 

statement prelude : unit, go on symbol; 
statement prelude, unit, go on symbol. 

The rules just given are close to those in the Report 
(R.6.1.1.a,b,c,dJ. The reader s hould now examine the rules of 
the Report to observe how the metanotions •MODE• and •SORT• have 
been carried through the syntax and that balancing of modes may 
be necessary when •completers• a re present [R.6.1.1.g]. 

The elaboration of a •serial-clause• begins with the 
protection [R.6.0.2.d] of all •identifiers• and •indications• 
declared within it. The protecti on i$ done to ensure that, for 
example, all • identifiers• declared within a • seria 1- clause•, 
cannot be confused with similar •identifiers• outside it. Users 
of ALGOL 60 or PL/I will recogn ize this as the matter of scope, 
but the reader is warned that t he word "scope" has a wider 
meaning in ALGOL 68 (R.2.2.q.2]. 
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ij.8 Program example 

The •procedure-denotation• which follcws possesses a 
routine which expects a row of integral values which are the 
coefficients of the polynomial 

aa[0]•x••n+a(1l*x**(n-1)+ ••• +a[n]c 
It then finds all the rational linear factors (those of the form 
p•x-g, where p nd g ar-e integral}. It delivers an integral 
result, which is the deijree of the residual pclyn omiftl, whose 
coefficients remain in □ a□• The number of linear factors is in 
or □, any constant factor is in aca and the factors ou(i]•x-v[i] □ 
are found in the row of integral values auo and cvo ct>. 

□EIQ~ factors = (f~!(O:l!n! tthe co fficients of t he given 
polynomial¢, ,!! in! r ¢for the number of rational linear 
factors¢, c ¢foe the constant factor«, £~!.J Ji..!!~ u, v ¢for 
the linear factors (ufi]•x-v[i)), 1:Si:Sri) !..!!! : 

Q~~in in~ n : = ~ Q a «the degree of the given polyn omial¢; 
r := 0 ; c := 1; ¢initialization¢ 
~ni1g afn) = 0 gg ¢remove the common power of x~ 

.!l!£i!l u[ r •: = 1 J : = 1 ; v[ r ] : = O ; n - : = 1 !m! 
!2f P· !Q ab§ a[ 0) Q2 

it af o l +: p = o 
thgn tp divides a[Olt 
!~! q := 0 ; whi!~ (q : = ~£2 q + 1) 5 1t2 a[n) gQ 

.U ar n J +: q = o 
!.b_gg fl!q divides a[n]¢ 
1n! f, g «for temporary storage later¢ 

!f y , , ~~g p =, 
then ¢look for constant factor¢ 
MORE: !2£ j ffQfil O 12 n QQ 

if a[j J •: g , o 
the] tq does not divine a[ j]« 
gQ_to NOCONSTANT f! ; 

¢remove the constant factor q¢ 
for j !£2fil O !Q n do a[j] +:= q; c •:= q; 
¢g may be a multipl factor so¢ g2-!2 MORE 
fi tend the search for a constant factor¢ ; 

NOCONSTANT : stti::y (p•x.-q) as a linear factort 
g : = 1; f :=a[Ol «try x = g/p¢ 
!Q!: i !2 n gg f ::: f • q + a[i] * (q •: = i:); 

if f = 0 
.!.h~.!! ¢ (p•x-q) is a factor¢ 
ur r ♦: = , ) : = p ; vf r) : = q n - : = , ; 
fQ£ i f!:2~ 0 !Q n 12 ¢com pute th~ residual¢ 

begin ref int ai = a[i J ; 
ai : = f : = (a i + f • q) + p ~!![ 

( n = 0 I .REDUCED I NOCON STANT ) 
~1~~ ¢if we are here, the n (p•x-q) is net a factor 
so try (p•x.+g) ¢ ( (q := - g) < 0 I NOCONSTANT ) 

c1> This procedure is derived from algorithm number 75 in the 
Communications of the Assoc. for Computing Machinery, Vol 
5 (1962) 48, revised by J.S.Hillmore Vol 5 (1962) 392 and further 
revised for the version given above. 
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!! ¢end else part¢ 
!i ¢end iteration on q¢ 

!! ¢end iteration on pt; 
REDUCED : (n = 0 I c *:= a[O]; a(O] := 1) ; 
¢the degree of the resid ual polynomial is¢ n 
~!!~D , 
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In the range of the •declaration• a[0:3Ji.n! a1 : = ([ ]i.nt: 
(1, -1, 2, -2))[ii0], .!!!..!: k, number,. constant, ( 1:3H!!t m1, n1 □, 

a •call • of the above •procedure• might be 
ck:= factors(a1,nurnber,constant,m1,n1)c , 

whereupon we should have ok = 2, al= ([ )!.!!!. :(1, O, 2, O))[@O], 
number = 1, constant = 1, m 1 = ( 1) , n 1 = ( 1) a, corresponding to 
the factoring 

ax**3 - x**2 + 2*x - 2 = (x**2 + 2) ( :x - 1) a 
observe that in the •clause• obegin ref int ai = a[i] ; ai . - f 
:= (ai + f 11< ',l) + p en!!a, the programmer may optimize his 
subscript calculation, rather than leave this delicate matter to 
the whim of the compiler writer. On a non-optimizing compiler, 
of which there may be many, thi s possibility has clE'!ar 
dividends. Note also tha •assignation• a : = f * q + a(i] • ( 
•:= p) o, which ceplaces two statements in the original ALGOL 60 
version. 

Review questions 

4.1 Conditional clauses 

a) What is the value of o ( 0 < 0 I 1 i 2 I 3 ) a? 
b) Is aJ,f x < 0 _!:.!!~!! 9,.0 tg errora a • conditional-clause•? 
c) Is a( x > 0 I a I b) Q! cc a •selection•? 
d) Is ca 2f. ( x > 0 I b I c )c a •selection•? 
e) Is a ( r I m I n ) < ( s I i I j ) a a •formula• 7 
f) Is □if x > 0 !Dg!! x el§~ y f! := 3.14a an •assignation•? 

4.2 Simpl e extensions of conditional clauses 

a) What is the value of D ( 1 < 2 I : 3 < 4 I 5 I 6 )a? 
b) What is the value of a( 1 > 2 I : 3 < 4 I 5 I 6 ) a? 
c) What is the value of a( lE!!~ I 5 I 4 ) + ( !~!.§~ I 3 I 6 ) a? 
d) Simplify the following using the extensions: 

a_g P !h~n a ~!§~ !!. q thgn .!! r !hQ!! b g!§g C !i g.!!H §~.!£ 
!! !.!a. 

e) Remove the extensions inc( a 1: b I c 1: d I e )c. 

4.3 Case clauses 

a) Is a ( 1 I 2 I 3 ) a a case clause 7 
b) What are all the represent ations of the • if-symbol•? 
c) What is the value of a( 2 I 3, 4, 5 I 6 )a? 
d) Wha t is the value of a( 0 I 3, 2, 1 I 2 ) g? 
e) Is a ( 2 I a, b, c) Qf da a •selection•? 

4.4 Repetitive statements 
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In each of the following, is the object a repetitive 
statement, and if so, how many times is the •unitary-clause• aea 
elaborated? 
a ) a!Qf i 92 e while ( i < 9 )a 
b l afQf i ~Q ,o-~i-2 QQ ea 
c ) ado ea 
d ) awhile !~!2~ .QQ ea 
e) a!Q_O_.Q.Q ea 

Comment on the scopes of cia in the following: 
f) afor i from 1 ~y 1 !Q 10 .QQ i := 2 * i + 1a 
g) a}rr! i :;-s; !Qf i fr2~ 1 Q! i !Qi-:= 1 12 a[iJ .- i * ia. 

4.5 Closed clauses 

a) Is a ( x / y ) a a •closed-clause•? 
b) Is a (p I 1 ) o a •closed-clause•? 
c) Is a ( x := 1 ; y := 2 ; z ) := .la an •assignation•? 
d) Is aif x := y; z := 2 fia a •closed-clause•? 
e) Is aiiii!! x : = 1 ; y :=-~ )o a •closed-clause•? 
f) Is a ( a ; b , c ) c a •closed-clause•? 

4. 6 Collateral phrases 

a) Is c (X) a a •Collateral-clause•? 
b) Is a (1 ; 2 , 3 ) a a •collateral-clause•? 
c) Is a (1 I 2 , 3 ) a a •collateral -clause•? 
d) What is the value of a ("a", 11 h 11 , " c ") + ("d", "e") a? 
e) Is it possible that the value of 

D (!.!!!: i : : 2, j ! = 3 i ( i +: = j , j + ! -= i) ) a 
might be the same as that of o(7,5)a? 

4.7 Serial clauses 

a ) Is axa a •serial-clause•? 
b) Is a ( p I x I 1 ) • 1: ha a •serial-clause•? 
c ) Is u3. ea a •serial-clause•? 
d) Is a(x := 1 ; y := 2)a a •clause-train•? 
e ) Re-.,rite the following •conditional-clause• as a •serial­

clause• containing a •completer•. 
o ( x Qf y I n : = 1 ; r I n : = 2 ; s ) a 

4.8 Program example 

a) How many occurrences of a •conditional-clause• are there in 
this •particular-program•? 

b ) What is the mode of cao? 
c ) What is the mode of aai □? 
d ) How many occurrences of a •closed-clause• are there following 

the •label• aNOCONSTA~T :a? 
e) How many occurrences of a •collateral-clause• are there? 
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5 Routine denotations and calls 

5.1 The parameter mechanism 

59 

we begin this chapter with a simple illustrative example of 
the •declaration• and use of a nonsense •procedure• aupo which 
has two •parameters• oan and □ ba, and whose effect is to 
increment the •real-variable• ca □ by the •real-constant• cbc. Io 
ALGOL 68 the defining occurrence of such a •procedure• is in the 
•identity-declaration• 

oE.£oC up = (£ef r~! a, 1~~! b) : a+:= be 
and its •call• might be oup(x, 2) c or aup (x1[i], y)a. In ALGOL 
60, a procedure with similar effect would be declared by 

D£.£Qf~.Q..!!fg up(a, b) ; yal_g_g b ; £~~1 a, b ; a := a + be 
and its procedure call might a lso be nup(x, 2)a or aup (x1(i], 
v)a. In PL/I the same procedure might be written 

UP : PRO C (A, B) A = A + B ; END ; 
and its call, CALL UP (X,2EO) or CALL UP (X1 (I), (Y)). In FORTRAN 
it would be 

SUBROUTINE UP(A, B) 
A = A + B 
RETURN 
END 

with call, CALL UP(X, 2.0) or CALL UP (X1 (I), Y). 

We have des=ribed this Frocedure in more than one langu ge 
in order that its in tended .ffect should be clear to all. •r he 
reader will notice that we are concernea with that which, in 
ALGOL 60 terminology, is known as a 11call by name" and a "call 
by value". This has become the accepted way of describing the 
f ct that in the •call• aup(x, 2)a, axe ·s passed by name to aa □ 
ana c2 □ is passed by value o obo. The manner in which values 
are passed at the time of •call• is generally known as the 
11 parameter mechanism 11 • 

we shall not describe here the various parameter mechanisms 
in other languages, except to say that the student is likely to 
find this to be the most confusing and perplexin sut:ject area 
in the study of programming languages. Each language has its own 
philosophy and usage, with treacherous traps for the unwary. ie 
hope to show, in this chapter, that the parameter mechanism of 
ALGOL 68 is ex=eptional ~n its clarity, encourayiny the 
programmer to state precisely the mechanism he w·shes to use, 
rather than to rely upon the conventio ns of a given language or 
the whim of an implementer. There are essentially no new irteas 
involved beyond those which we have encountered in earlier 
chapters. A thorough understanding of the •iden ti ty-dec lara tion• 
is all that is oeeded. The read r may soon wish to forgive us 
for spending so much time on the explanation of it in chapter 2. 
The ALGOL 68 parameter mechanism is defined in terms of a 
logical application of the •identity-declaration• to that 
internal object, known as a "routine", which is the val.ue 
possessed by a •routine-denotat ion•. 
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5.2 Routine denotations 

The object 
c (( £~!: £~~1 a , £~!!.! h) : a + : = b) c 

is an example of a •routine-denotation• [ R. 5. 4. 1. a] and is 
essP.ntially what stands on the riyht of the •equals-symbol• in 
the •declaration• of oupo given in secticn 5.1 above. one may 
notice that the enclosing symbols □(□ and c) □ have been omitted 
in saction 5. 1, but this i s only because of an extension 
[R.g.1.d] which allows such omission in this situatio n. A 
•routine-denotation•, like an y other •denotation•, possesses a 
value, a routine, which is an internal object. This internal 
ob;ect is a cP.rtain seguence of symbols, easil y derived 
r R.5.4.2] from the •denotation•. For example, the routine 
possessed by 

is 
• (£~!£~~!a= §!!E, !:~~! b = §!!E; a+:= h) • 

and it is important to notice that it has the shape 
•closed-clause•, in which each of the •parameters• □ ao and 
forms par-t of an •identity-declaration•. 

of a 
ab □ 

As we have seen in section 2.5, an •identity-declar-ation• 
causes the value of its •actual-parameter• (the pact to the 
right of the •equals-symbol•) to be possessed cy the 
•ioentifier• of its •formal-parameter• (the •identifier• to the 
left of the •eguals-symbol•). t his means that in the •identity­
dec 1 a r-a tion• 

0££.Qf up = ( (£~! £~!!! a, !~~.! b) : a + := b) a 
the •identifier• oupa is made to possess the r-outine 

• (£~!£~~!a=§~!£, £~!!1 b = 2!!£; a+:= b) • 
Figure 5.2 shows a simple parse of this •identity-declaration•. 
The •routine-denotation• i s shown at 1 and the routine which it 
possesses at 2. After the elaboration of the •identity­
declaration•, the •identifier• □ upo, possesses the same routine 

dee la r-a tion 
I 

r----------T-------~----------------, 
I I I 

formal-parameter equals-symbol actual-parameter 
I / I 

____ .a..___ I ----------- ___ .J_ _____ ( 1) 

CE!:Qf up = (( £~!!~!!!a, £~~1 b) : a+:= h ) □ 

,----------------
: (2) 

r------------------~----------------------, 
I• ( !~!: £g~1 a= §!lE, E~~1 b = §!!E : a+:= b ) ■ I 
L------------------------------------------~ 

r---.L----------------------------------------, 
I • (£~! !:~!!1 a= §!!E, £~~! b = §!iE ; a +:= b )•I L--------------------------- ___________ J 

Fig.5.2 

t 

I: 
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(see figure at 3). The elaboration of the •call• aup(x, 2)c is 
now easy to describe. Its effect is to replace the two a2~!£as, 
in a copy of the routine, by cxo and c2a respectively and then 
to elaborate the resulting external object 

a(ref real a; x, real b = 2 ; a+:= b)a 
as if it were -a-;closed-cl;use• standing in the place of the 
• call• aup (x, 2) o. 

It is perhaps now clear why the left part of an •identity­
declaration• is known as its •formal-parameter• and the right 
pact as its •actual-parameter•, for these are precisely the 
roles which they play in the parameter mechanism. Not only does 
the •identity-declaration• play a central role in suc h a 
mechanism, but its power, which the implementer of any language 
must of necessity provide, is placed in the hands of the 
programmer to use as he sees fit. Thus, cf~!!~~! x1i = x1(i)a 
might usefull y be used to optimize addr~ s calculation while 
working with the vector oxla. An example might be 

cxli := 3 * x1i + 2 * x1i ** 2a 
rather than 

ox1[i] := 3 * x1(i] + 2 * x1[i] ** 2o 

5.3 ~ore on parameters 

It is perhaps worth dwelling on the name-value relationship 
created by the parametec mechanism for the example in section 
5.1. The •closed-clause• which is elaborated as a result of the 
•call• cup(x, 2)a is 

a(t~! I~~1 a= x, !~alb= 2 ; a+:= b)a 
and the elaboration of the •collateral-declaration• which 
follows its •open-symbol• results in the relationships depicted 

0 0 

o o (1) o o 
0 0 
L-)T(_J 

r--.L--, 

I I L ______ J 

Fig.5.3.a 

( 2) 
r-----L-, 

I • 2• I 
L------J 

r----, 
I • 2 • I 
L_ ____ J 

in figure 5.).a. During the elaboration of the •call• cup(x, 
2)o, cac possesses the same name as that possessed by o~c (see 
figure 5.3.a at 1), an<'I oba possesses the same value as that 
possessed by a2a (see the t· gure at 2). This 1neans that t he 
•formula• ca+: = ba has the same effect as if it were written ax 
+: = 2a. Both aaa and axe have a mode which begins with 
•reference-to•, a requirement of the left •opecand• of the 
•operator• c+:=c [R.10.2.11.e). Note also that if the •call• 
were cup (x, y)a, then the •closed -clause• would contain the 
•declaration• areal b = yo and this would invclve a 
dereferencing of~;~; depicted in figure 5.3.b at 1. Observe, in 
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this figure, that aye , considered as an •identifier•, possesses 
a name of mode •reference-to-real• (see 2) but considered as an 
•actual-parameter•, it possesses a value of mode •real• (see J). 
The coercion occurs at 1. We may say, in general, that if a 
•parameter• aaa is considered as a •variable• referring to a 
value of mode specified by □! □, e.g., if an assignment is to be 
made to aaa, then the •formal-parameter• sbculd be □ E!{ ! aa, 

identity-declaration 
I 

r--------------Ti -----, 
I I 

formal-real - parameter equals-symbol 
I 

actual-real-parameter 
I I 

r----''----

1 
formal-real­

declarer 
I 
I 

, I 
I I 

real-mode- I 
iu.en tifier I 

I I 
I I 
4 

b 

,-i---, 
1 ■ 3.14 ■ 1 
L_ _____ J 

i 

Fig.5.l.b 

(]) : 

I 
strong-real-base 

I 
(coercion) ( 1) 

I 
reference-tc­
real-base 

i 

ya 

r--L--, o 
I ■ 3. 14 ■ 1--<--o o (2) 

0 

but if aba is u~ed only as a •constant• of mode am□, then the 
•formal-parameter• may be n! ba. 

5.4 The syntax of routine-denotations 

A •routine-denotation• consists of a •formal-parameters-
pack• followed by a •cast•, both toyether enclosed between the ~ 
symbols a (a and a) a. Thus in 

a( (ref real a, real h) : a +:= b) a 
the object o(rg! ~!~1 a, Egal b)a is the •formal-parameters­
pack• and a: a +:= ba is the •cast•. A simplified syntax of a 
•routine-denotation• is 

routine denotation : 
open symbol, formal parameters pack, cast, close symbol. 

formal parameters pack : 
open symbol, formal parameter list, close symbol. 

formal parameter list: formal parameter ; 
formal parameter list, gamma, formal parameter. 

qomma : qo on symbol, co mma symbol. 
but the strict syntax rR.5.4.1) contains metanotions which 
ensure that the number nd th modes of •parameters• in •calls• 
m- tc h those in the •ro uti ne-d~nota tion •· Figure 5. 4 shows a 
simple parse of a •coutine-denotation•. We have alceady alluded, 
in section 3.7, to the fact that •actual-parameters• in a •call• 
may be separated by either a •go-on-sjmbol• or by a •comma­
symbol•. Now that we have seen that the elaboration of a •call• 
amounts to the elaboration of a •closed-clause• in which the 
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•formal-parameters• of the •routine-denotation• become 
transformed into •identity-decla rations•, it is at once apparent 
that a •comma-sym bo l• separating •formal-parameters• becomes a 
•comma-sy mbol• of a •collateral-declaration•. This means that 
the •parameters• are eiabora ted collaterally. The •go-on­
symbol•, on the other hand, woul d result in • declarations• which 
are elaborated serially. To take a specific example, the 

routine-denotation 
I 

r----------------r---'------
1 I 

open- formal-parameters-pack 
sy bol I 

I 
r------------r--L---------, 
I I I 

open- formal-parameter- close-
symbol list symbol 

I I I 
I r----r4-----, I 
I I I I I 
I formal- gomma formal- I 
I parameter I parameter I 
I I I I I 

I 
cast 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.L 

a( 

.L ____ .a. ____ _ 
J.. 

.L -----'-----

f~.! f!:H!.! a 

Fig.5.4 

•formal-parameters-pack• 
a(!ni n, [ 1:n]f~~.! u)a 

may be transformed into 

: ~ + := b 

□!!!in= 10, [ 1:n]!~~.! u = x1 ;a 
but the • formal-parameters-pack• 

a(!nt n; [ 1:n)f~~.! u)c 
may be transformed into 

I 
close­
symbol 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.&. 

) D 

□i!!! n = 10 ; [ 1:n]fg~.! u = x1 ;o , 
which is more useful since its elaboration is vell defined. The 
particular choice of the •gamma• vhich separates •form3.l­
parameters• is therefore of significance but that which 
separates the •actual-parameters• of a •call• has no semanti= 
significance. 

The semantic s of a •routi ne -denotation• [R.5.4.2] tells us 
how the routine which it possesse s is obtained. The ess ential 
poin ts are, that an • equals-symb ol • followed by a •skip-s ymbol• 
i s i nserted after each •formal -p arameter•, that th e •open­
s ymb ol• which begins t he •formal- pa rameters-pack• is de let ed and 
t hat its •close- symbol• is c ha nged into a •go-on-symbol•. The 
more precise sta teme nt in t he Beport [B.5.4.2] should be 
studied. 

A further example of a •routine-denotation• is 
c((f~~1 x)t~~±: random• x)a , 

where the second occurrence of cf~~.!a (part of the •cast•) 
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indicates that the routine is to deliver a value of mode •real•. 
The example in section 5.1 delivers no value and therefore uses 
a •void-cast• (whose •virtual-declarer• is empty). Note that 

areal : random• 100a · 
is not a •routine-denotation• despite the fact that it may 
appear in the •declaration• 

DE£Q£ f~gJ r100 = f~~1 : random• 100a 
however, the coercion known as 11 proceduring 11 [R.8.2.3.l.a] 
enables the identifier ar100c to possess the routine 

• (real : real: random r • 100) ■ 
Actually, it is only-necessary to write 

DEfQ£ I2~J r100 = random• 100c 
and then the routine possessed by ar100c will be 

• (I2~1: random* 100) ■ 

5.5 What happened to the old call by name? 

In explaininy the parameter mechanism of ALGOL 60, it is 
customdry to consider an examfl e something like 

aQrOf~QYf~ upa(a, b) ; Y~1]~ b; £~~± a, b ; 
Qg3!~ i := i + 1 ; a := a+ b ~TI~ O 

and to explain that, in he scope of the fragments Cf~~l _ffil 
x1 f1:10]; in!,,gg~f i; i := 1a, the proceduC'e call aupa(x1(i], 
2) a 1o1ill, to the astonishll'ent of most, increment the value of 
ax1[2]□ rather than that of ax1(1Ja. This is a result of the 
semantic descript · oa of procedure calls in ALGOL 60 [N.4.7.3.2] 
involving what is usually r-eferred to as the "copy rule". In 
ALGOL 68 a routine which achieves a similar effect, for simple 
•vacidbles• (not •slices•) passed to oaa, is 

□£rOf upd = (f~E Egal a,£~~~ b) (i +:= 1 ; a +:= b)c 
but the •call• oupa(x1fi], 2)cin the range of cf1:10Jre~! x1; 
i!!.!: i :-= 1 □, will increment the value referred to hy ax1[ 1 Jc ctn:i 
not ox1f2 ]er. rhus the passing of the •parameter• cx1[i ) □ by 
name, as it was known in ALGOL 60, is not achieved, in ALGOL 68, 
by using the •formal-parameter• D£gf r~_! aa. The resulting 
•'d ntity-declaration• ore!£~_! a= x1[i Jc is el borated at the 
tim of entry to the routine and the old copy cul of ALGOL 60 
a oe s not a pp 1 y. 

In the case of expcessicns dUd subscripted varidbles, this 
copy cul of ALGOL 60 amounterl to the passing of a procedure 
body to the formal p~rdmeter and was used by a generation of 
instructors to impress students with the itlea that ALGOL 60 is a 
nice lanq uaqe in w hic.h nice things can be dcne in a nice way. 
How ver, the ni=eties of it wece often too subtle for the 
beginnec, who thus fell into the trap of using a powerful device 
when it was not necessarv for him to do so. We may now perhaps 
look back upon it as a design imperfection in ALGOL 60. Ther-e 
should have been a <name pa.rt> rather than a <value part> 
r N. 5. 4. 1 7. A language should be such that the least effort by 
the programmer calls up the simpl st implementation schemes. If 
be wishes to use a more powerful scheme, then be should be m de 
aware of it by the necessity far writing a little more in his 
source pr:oqram. 

To recapture the strange effect of the call by name of 
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ALGOL 60, the example mentioned above should appear as 
DflfQf upb = (~~Q~ f~! £~~! a, f~al b) (i +:= 1: a+:= b)o, 

for then the ficst •declaration• arising from the •call• 
aupb(x1fi], 2)c is o.E,£2_£ :£~.! I~~1 a = x1[i]a. In this case the 
elaboration of ax1[ila occurs at the time of the deproceduring 
fR.8.2.2] of aao in aa +:-= bo, and not at the time of parameter 
transfer. Thus cx1[2)a is incremented and not cxl[ l]c. 

The occurrence of ax1[i]c in □.eroc ref real a= x1[i Ja is 
another example of a •procedured-coercend• for oxl[i]c is not a 
•routine-denotation•. Nevertheless, the •identifier• oao is made 
to possess the routine ■ (£~! f~~!: xl[i])• by a coercion known 
as proceduring [R.8.2.3]. 

5.6 Program example 

The following algorithm finds all trees which span a non­
directed graph ego < 1 >. The ed ges radiating from node •i• in the 
graph are represented by bits in the i-th bits structure of the 
row-of-bits ago. A set of nodes is also represented by bits of a 
bits structure, the j-th node being represented by the j-th bit, 
whicb is ■ true■ i that node i s present. 

The set of nodes in the growing trees (saplings) is csa. 
The edges in a family of sapl ings are recorded in aaa, which, 
like age, is of mode •row-of-bits•. The boundary of as□ is the 
set aba of nodes neiqhtouring the nodes cf cs □• Initially as□ 
contains only node ■ 1• a nd □bo i ts neighbours, i.e., ag[1Jc. The 
recursive routine aqrowa iterates over the nodes in abo. For 
each node ■ i ■ in aba it finds all possible edges (new growth) 
from asa to node ■ i ■• This new g rowth is recorded in oac and 
removed from ago. The node ■ i ■ i s removed from the boundary ab □• 
The procedure cgrow □ is then c alled recursively with the nodes 
of the sapli nqs augment d by node • i ■ and the boundary a ug mente3. 
by n ighbours of node ■ i•. 

Since the standard □ tits widtha (or olcng bits widtho) may 
be larger than the number of nodes, a □maskc is necessary to 
mask out the redundant bits when testing bit patterns. 

If the number of nodes exceeds obits widtha, then the 
•mode-declaration• for □~a, in the first line, should be changej 
accordingly. If sufficient precision is then not available, one 
may use the mode •row-of-boolean•, with suitable declaration of 
the operations involved. 

As an example, for the graph 
1 (2,3,4), 2 (1,3), 3(1,2,4), 4 (1,3) 

the algorithm generates eight trees in four families 

1 () , 
1 () , 

2 ( 1 l , 
2 ( 1) , 

3(1,2), 
J ( 4) , 

4 ( 1, J) 
4 ( 1) 

(4 trees) 
(1 tree) 

<t> Translated from Algorithm 354 by M.Douglas Mcllroy. Comm. 
Assoc. Computing Machinery, Vol 12(1969) p. 511. 
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1 () , 
1 () , 

2 (3) , 
2 (]) , 
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3 ( 1) , 
J ( 4 ) , 

4 (1,3) 
4 ( 1) 

(2 trees) 
(1 tree) 

abeEin mode b = bits ¢or long bits, if necessary¢ ; 
.Q!:.Qf trees = ([ 1:] .Q g ¢the given graph¢, 

£f.Qf ([)!!)f ¢the action for each fat11ily¢) 
h~9.!!! .in.1 n = ~.EQ g ¢th. nu mber of nodes in the graph¢; 
f1:nlQ a ¢the growing fruil y, saplings¢; 
b t; h flips= t Q!.., t ¢al l flips¢ ; 
Q u n it= -.(flips !rn -1) ¢a flip followed by flops¢, 

mask = .., (flips !!E -n) ¢for masking redundant bitsrt; 
.2!2~ grow= (!:.~.![ 1:nl.!! g ¢the residual graph¢, 

.Q s ¢the nodes of the saplings¢, 
!:.~! .Q b rttoundary of the saplings¢): 

ifs~ mask 
~li~~ ¢the family is complete, so¢ f (a) 
~1§~ for i ton do 

if i-elem-b --
iE~rr ¢examine each node of the boundary¢ 
!! uniti = unit .!!£(1-i) rtonly the i-th bit is flip¢; 
b := t ~]g.., uniti ¢remove node i from the boundary¢ 
af il := g[i] 5!.!!9' s itthis is the new growth¢; 
q[ i l : = q[ i) 5!.!!9' .., s ¢remove the new qrowthit; 
qrow (1.Q.f [ 1: n ]Q := g t. pass a copy of the residue¢, 

s BI uniti ¢the family now includes node i¢, 
JQ.f !! := b 2! gfi] ¢the boun3ary is augmented by 
the neighbours of node i¢ ) 

(.., g[i) ~ mask I ¢we cannot move¢ out) 
!.i: 

out : §.H.E 
!.! : 

( n ~ 1 I a[ 1] : = --. flips ) ; 
grow(lQf [1:n)Q := q ¢start with a copy¢, 

unit ¢start with node 1¢, 
12£ ~ := g[ 1] ¢the neighbours of node 1¢) 

In the above, the procedure aqrowa has two •calls • . rhe 
•call• preceding the final □ endc, which starts the whole 
process, and another recursive--•call• within the •routine­
denotation•. In both of these •calls•, notice that the first and 
third •parameters• must be •variables•. Moreover, new copies of 
these •variables• must be passed. A convenient way to do this is 
to use •local-generator:s• . The second • rarameter• is a 
•constant•, and no assignment is made to i t . 

Review questions 

5.1 The parameter mechanism 

a) Is the f o 11 owing an •id en tit y- d ec 1 a ration • ? 
□!:,g~! Ef.Qf P = (Eg5!! a) !~11: a * ao 
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b) Is the following an •identity-declaration•? 
aEroc(real a)real p = a • aa? 

67 

c) Give a •declaration• for a •procedure• ar2c which has no 
•parameters• and delivers a random real value between •0 ■ 
and ■ 2 ■• 

d) Give a •declaration• for a •procedure• amaxa with two •redl­
parameters• which delivers the larger of the two. 

e) Give a •declaration• of a •procedure• □ recipe which acceptG a 
•real-variable• and replaces it by its reciprocal. 

5.2 Routine denotations 

a) Is argf !:£~! xy = x * yn an •identity-declaration•? 
b) What is the •formal-parameter• of ( 1 :3 )£~~1 x1 :~ (1, 2, 3) o? 
c) If □ pa possesses the routine ■ (f~~l a= §!i~, !'~~! h = §!i~; 

a • b ) ■, what •closed-clause• is elabm:ated by the •call 
ap(x+1, y)a? 

d) What is the value possessed by the •;le notation• u( (!:~~l a) 
real : a * a) a? 

e) What- is the value possessed by the •denotation• D(!ll! n, m; 
f~![ 1 : n 1£.g~! a 1) f~~l : ( n < m I a 1 [ n ) I a 1 ( m l ) a ? 

5.3 More on parameters 

In the reach of D_!~~.± X : == 1. 2, y :~ 3. 4 a, what is the value 
of ap(x, y) D 

a) in the reach cf Dj?_!.Q£ p = (real a, b) 1. 1 a? 
b) in the reach of 

DE!.Q£ p = (£~~! a, fg! !:~~l b ) I£~1 (b +: = a : b) a? 
c) in the reach of 

D.[!fQ£ p = (!:~! !~~1 a, b) E~.! real : ( > 2 I a I b ) a? 
d) in the reach of D_.E_!Q£ p = (£~! firfg~1 a, E~1 !'~~! b)f~~l :i 

: = ba? 
e) in the reach of □1:?!Qf p = Ir )!~~,! a, b) !:~~1 : b[ 1] - a[ 1 ]a? 

5.4 syntax of routine denotations 

a) Translate the following into ALGOL 68: 
a£~g£~gyf~ p(a, b) y~l,yg a iE!f9~E a, b 

b : = b * 2 * aa. 

5.b Proqram example 

a) rs aunita a •constant• or a •variable•? 
b) Why is a o~~!c not necessary in the •formal-rarameter• ab sa? 
c) Why is an •actual-parameter• aJ2£ := g[i]a used in the last 

•call•? 
d) Why was ate not initialized? 
e) If ana is ■ 3 ■ and obits widtho is ■ 8•, what is the value of 

amaskc? 
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6 Coercion 

6.1 Fundamentals 

coercion is a process whereby, from a value of one mode, is 
derived the equivalent value of another mone, e .• , the r al 
value possesse by o2.0o is equivalent to (R. 2.2.1.1.d) the 
integral Vdlue ~assessed y o2c. Derivation of an equi valent 
value is usually accomplished automatically, i.e., by no 
conscious effort of the programmer. An example is 

c r ea 1 x : = 2 o 
where the value possess d by c2c is of mode •integral•, but the 
value which is assigned must be of mode• eal•. Such coercions 
are well known in other languages and are usually describej 
semantically. In PL/.t there are extensive tables [ P. Part rr, 
Section F] in which the programmer may find what action to 
e~pect given the attributes of a source and those of its target. 
Coercion in ALGOL 6H is described by means of the sy ntax, most 
of which is in section 8.2 of the 8eport. 

The particular coercions which are elaborated are generally 
detP.rmined by threl:! things, viz., 1) the a priori mode, 2) thP. a 
posteriori mode and 3) the syntactic position, or "sort". A 
•cast•, which was discussen in section ~.13, is useful object 
i •n which to illustrate coercion, for that is usually its m:iill 
purpose. we recall that a •cast• consists of a •declarer• 
followed by~ •cast-of-symbol• followed by a •unitaty-clause•, 
which is in a strong position. For example, in the •CdSt• 

ot"eal : 2o 
the a priori mode of o2a is-;integral•, the a post . riori mode of 
its •unitary-clause• is thc\t specified hy it •de:::lal"er•, viz., 
•rettl•, and the "sort" of its •unitary-clause• is "strong". The 
p'.ltticular coer:::ion called into play i "w ide ninq" from 
•inte,Jral• to •real• and is governed hy -1 syntactic rule 
r IL8.2.5. 1. a ], whose detail we will not now unravel. 

6.2 Classification of coercions 

There are eight different 
"dereferencing", as in 

"neprocedurinq", as in 

11 proceduring", as in 
a:£~!!1 : random□ 

"uniting", as in 

"widening" , as in 
aunion(int, bool) 

11 rowinq", as in 

11 hippinq", as in 
0£~!!1: .§11:ED 

and "voiding", as in the •void-cast-pack• 
Cl (: p) D 

coercions. 

These coercions are classified into subsets as 

They are 

follows: 
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dereferencing and deproceduring are together known as "fitting"; 
these two together with proceduring and uniting are known as 
"adjusting"; and all eight are together known as 11 adapting". The 
reader will find that this teiminology is used in the 
metanotions [B.1.2.3.k,l,m]. A diagrammatic scheme is shown in 
figure 6.2. some of the above examples would not normally appear 
in u seful programs. They are chosen for illustrative purposes. 

COERCION TREE 

strong •••••• ADAPTED 
t----
1 

,..----T-------, 
I I I 

1 widened rowed hipped voided 
firm •••••••• ADJUSTED 

1------------r-
l I 
I procedured 

, 
I 

united 
weak •••••••• FITTED 

!-------------------, 
I I 
I dereferenced 

soft ••••••• deprocedured 

Fig.6.2 

6. 3 Fitting 

The result of dereferencing a name is to yield the value to 
which it refers. This has been touched upon already in section 

strong-real-unit •••••••••••• 
I (2) 

strong-real-base 
I 

strongly-dereferenced-to-real-base 
I (3) 

reference-to-real-base 
I 

reference-to-real-mode-identifier 
I 

CXC 
: ( 1) 
0 l 

o o->-,4 ~ •••••• : 
0 L-------

Fig.6.3 

2.12 and elsewhere. Figure 6.3 shows the parse of cxc as a 
•strong-real-unit•. At 1, in the figure, axe, as an 
•identifier•, possesses a name and envelops the mode •reference­
to-real• and at 2, as a • unit•, axe possesses a real value an1 
envelops the mode •real•. The coercion is shown at 3. 
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The result of deproceduring is the elabon tion of a routine 
(without parameters). e.g., the •cast• ai;:~~l randoma forces 
the elaboration of the routine possessed hy arandoma and 
delivers the next random real value as the value of the •cast•. 
Both dereferencing and deproceduring are classified together as 
"fitting" fR.1.2.3.m], and are the two coercions which occur 
most f reg uentl y. 

6. 4 Ad justing 

Both proceduring and uniting, together with fitting 
(dereferencing and deproceduring) are known as "adjusting" dnd 
are so grouped because they can all occur in certain syntacti= 
positions. 

The result of proceduring is a rootine. For example, the 
value possessed by the •cast• □E!Q~ r~l: x1(i]a is the routine 
•(!!~1 x1[i]) ■ • It may be recalled, from section 5.2, that a 
routine is syntactically si~ilar to a •closed-clause• and that, 
in the case where there are no •parameters•, there are no 
•routine-denotations•. The proceduring coercion makes them 
unnecessary. 

Uniting has only a syntactic effect. In the terms of the 
Report, the elaboration of a united •coercend• is the same as 
that of its pre-elaboration [ R.1.1.6.i ]. This 11eans that no 
change of value is involved. Actually, an implementation will 
find it necessary, upon uniting, to attach to the value some 
recorj of ito mode, so that this mar b tested later, especially 
if a •conformity-relation• is involved, but the particular 
details of the implementation mechanism is not of concern to the 
programmer. He should, however, be aware that it prohatly occurs 
and thus not make use of united modes unnecessarily. The subject 
of unions is an advanced topic which we shall postFone to 
chapter 7. Uniting occurs, for example, in □union (int, bool) 
!:rn~o. 

6.5 Adapting 

The coercions known as widening, rowing, hipping ind 
voidiny, together with adjusting are collectively known as 
11 at1apting 11 and form the set of all possible coercions in the 
languag e . Thes e are so grouped because they can all occur in 
c rtain syntactic positions. 

The effect of widening i s to deliver a value of one mode 
whidh corresponds to a given val ue of another mode. One may 
widen from •integral• to •real• ( R.8.2.5. 1.a] and from •real• to 
comple x ribid. b]. Consequently, each of the following possesses 
the value ■ true■: 

□ (£~!1: 2) = 2.00 
o (£Q.!l!.! : 2) = 2.0 i O. Oc 

One may also widen from bits to •row of boolean• [ibid. c] and 
from bytes to •row of character• [ ibid. d ]. If ab its width a is 
■ 4 ■, then o([ )~22!: 1Q1)o has a value which is that of o(!!!§g, 
true, false, true)o. Similarly, if abytes widtho is ■4 ■, then 
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c(§!!ing: £!~ "abc") = "abc~"c possesses the value • true ■ 
(assuming that the anull charactera [R.1O.1.1] is"-~"). More 
than one coercion may be involved in one •cast•, e.g., af.Q~£1 : 
in requires first a dereferencing of aia to yield an integral 
V¼lue, a widening of the value to •real• and ancther widening to 
complex. 

The effect of cowing is to deliver a multifle value which 
is a row of zero or on elements. It occurs, for example, in 
ar lf~~.1 :a and in a[ ]int : 2 □• The value in the first case is a 
row of zero eleme nts, each of mode •real•. In the seco nd case 
one obtdins a row of one el ment of mode •integral•. Not e that 
a[, l!!!.! ( ).!!!! 211 involves two consecutive rowings whic h 
result in a one by one matrix. The s ame effect can be ot:taine:i 
by a[, ]in! 2 □, since rowin') is recuC'sive [ R.f:1.2. 6. 1.a ). The 
•ca st• o[, ).Q.QQ1 :a will deliver a boolean matt:'ix with one row 
which has no columns. Note that when a canst nt is I:'owed, the 
result is a •constant• multipl e value, but if a •vaC'iable• is 
rowed the result is a multiple •var · ble•. This effect is 
achieved s ynta ctically by the metanotioo •REF8TY• ih the rule 
for rowing (R.8.2.6.1.a). Thus, D!:~U]!:.!!~:!.: xa will have the 
effect of creating a new multiple value whose only ele ment is 
ox □ and the •identity-relation• □ (£~fl)£~~!. x)[1] :-=: xa 
possesses the value ■ true• no mattet what value is referred to 
by axa. Of course, it is arranged [R.8.2.6.1.b] that an empty 
cannot be rowed to a •variable•, i.e., □ (!~.H ]!~!!1 :)a is 
syntactically-invalid. 

The coercion known as hipping takes care of the •skiµ•, 
□e!1E□, the •nihil• □!!ilc, and •jumps• like □~Q_to novosibirska. 
This coercion is somewhat different from the others in that, if 
it occurs, then no other coercions may take place. Beth the 
•skip• and the •jYlmp• may be coerced to any mode, but the 
•nihil• may be coerced only to a mode which begins with 
•reference-to•. The elat:oration of a •skip• delivers some 
(un defined) value of the required mode, e.g., the value of ofg~!. 

§~!QO is some real value. The value of a •nihil•, represented 
by □g!.! □, is a unique name which C'efers to no value. This means 
that □ (£~!:~!!!: !!.H) :=: {.£g! fg!!..! : .!!i.!)o is .true ■, although 
□ (!~! £!!~1 : ski.I?) :=: (:£_g1 !:~!!1 : §.He)a is unlikely to be< 1 >. 
Observe that □ (Ht! !!U:: nil) :=: (Eg{ £~_J, : !!11)a is not an 
•identity-relation• because the modes of its •tectiat:'ies• do not 
agree. Also, a(f~! fg!!1 £_! f~1 re!!1 n1!) a cannot be 
elaborated, si nc e no de eferencing can be ~one oo a •nihil• 
f R.8.2.1.2 Step 2). The elaboration of ccerced •jump• is a 
iump e xcept in a case like a (prof ¢YQ!~¢ : gg _ _!Q 1) a, wh ere the 
value delivered is a routine and the jump itself i& not 
perfoC'med (R.8.2.7.2.bl. Note how ev r that □ (f~! EfQ£ t12ig¢ 
gQ_.!:Q l)a does not deliver a routine. 

There C'emains one other coercion, viz., voiding. The effect 
of voiding is to discard whatever value is involveo. Thus 

c1> It will be interesting to try out some of the compilers on 
this point. 
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□(: 2) □ will not deliver the value •2 ■• The •void-cast-pack• 
a(: random) □ delivers neither a routine nor a real value, but 
causes ara ndom □ to be ela borated (deproceoured) once, whereupon 
the real value delivered is discarded (see •NONPROC• 
ra.8.2.8.1.b]}. This may inrleed be just what the programmer 
desires. In the reach of □ .E!:.Q£ f~~! p : = randomo, the opo i n a(: 
p) a is deceferenced, deprocedured and then voided. The 
•declaration• a~f2£ ¢1Q!Q¢ q = ( : p)a, however, delays thP.se 
coercions until aqo is elaborated. He who can correctly perform 
the syntactic and semantic a11alysis of OE!:.2£ fg~! E? := random i 
.Ef:2£ rt,Yoigtt y = (: p) (: g ) ; §.!U,.E □, has no need of furt her 
ddvice concerning coercion • . 
6.6 Syntactic position 

The coercions which may occur depend UfOn the syntacti: 
position of an object in the •program•. There are four sorts of 
syntactic position, vi-z., strong, firm, we:1k and soft. In what 
has gone tefore, we have conce ntrated our attention on the 
• cast• because its •unitary-clause• is strong and in this 
position all coercions can occur; moreo ver, stron~ coercion is 
the main purpose of the • cast •. In firm positions only those 
coercions collecti vely known as adjusting are relovant. In weak 
positions fitting is relevant. A soft position permits only 
deproceduring (see figur b.2). 

Some examples of strong FOsitions ijre • ctual-parameters• , 
e .g., c2o in Of~~1 x = 2a, •source s •, e.g., c2a in ox: = ia, 
•conditions• , e .g., ax= yn in o( -,;=y I 1 )c ancl •subscripts •, 
e.q., aio in ox1[ i)o. In these positions the a posteriori m >de 
(i. e. , the mode after coercion). is dictated by the context. 
Exa~ples of firm positions are •opera nds •, e.g., oxo in □!~§ xo, 
and •primaries• of •calls• , e.g., ncosa in ocos(x ) o. Examples of 
weak positions are •primaries• of •slices •, e .g., o)(1c in 
ox,r i l □ and •secondaries• of •selections•, e.g., □cello in cne xt 
of cello. Examples of soft positions are •destinations•, e.y., 
;xo in ax := ye and •tertiaries• of •identity-relations•, e.g., 
axe in ax:-=: xxa. Figure 6.6.a s how s an •assignation• i n which 
many of these positions occur. 

a ( X .- . re .Q! z xx X 1( i] := sin ( x + (.!~!!.! : pi) ) c 

T T T- T- T r-
s w s w s s 

__ T ___ --T--
0 0 

---r----- ----~-----
s s 

---~-----------
0 s 

{S = strong, F = firm, W = weak, o = soft} 

Fig.6.6.a 

It is clear that •operands• cannot be strong, for otherwise 
one could not determine which operation is to be performed in 
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c1 + 2a. Since both •operands• co uld be widened, is it addition 
ot real values or addition of integral values? Because of this 
uncertainty, tbe coercions involved in •operands• must be 
restricted to those classed as adjusting. This is chiev d by 
malting •operands• firm [R.8.4.1.d,f]. The only coercions 
permitted for •operands• are ther-efore dereferencing, 
deproceduring, proceduring and uniting. In particular, since a 
•skip• can only be hipped and hipping can only occur in strong 
positions, we conclude that the object C§.!!..E + skl,J:!c is not a 
•formula•. 

we may recall that if a •variable•, say ox1c, is sliced, 
then the result, say axl[i]c, is a •variable•. Similarly the 
•selection• anext of cell □ from the •variable• □cello is also a 
•variable•. This mea'iis that we need a position in which both 
deprocedurinq and dereferencing are permitted, but that 
dereferencing, in this position, must stop short of removing a 
final •reference-to• from the a priori mode. Remember that we 
may wish to write oxl[ i l := 3.14a or onext of cell := cell 1c and 
that the mode of a •destination• must be~in-;ith •reference-to•. 
such a position is known as weak. It involves only those 
coercions known as fitting, wi th the special proviso concerning 
dereferenci nq. 

Finally, in the •des ti nation• of an • assignation•, e.g., 
cxc in ex:= ye, only deproceduring can be permitted and such a 
position is known as soft. 

Mote that the word "strong" is used in the sense of 
strongly coerced, so that a strong position indicates strength 
from outside and not strength from inside~ 

In the above we have considered the syntactic positions 
arising from the strict language only. The programmer, however, 
is generally more concerned with the extended language, for that 
is what he uses. It is therefore appropriate to examine the 
syntactic positions foe constructs in the extended language. In 
particular, the repetitive statement [R.9.2), shown in figure 
6.6.b, contains the objects ca, b, c, do and oeo, all of which 
are in a strong position. Note that oi□ is the •identifier• of 
an •identity-declaration• and is ther-efore not coerced. Its mode 
is •integral• (not •reference-to-integral•) and therefore 

r 
integral­

mode­
identi tier 

strong-unitary-void-clause 
I 

T T T 
strong-unitary­
integral-clause 

Fig.6.6.b 

T 
strong­
seria 1-
boolean­
clause 

T 
strong­
uni tar y­
void­
clause 

no assignment may be made to it. ~oceover, the value of this oio 
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is unavailable outside of the •clauses• ada and aea, no matter 
how the elaboration of the repetitive statement is completed. 
Also observe that the repetitive statement itself is strongly 
voided and therefore cannot deli ver a value. This is traditional 
for several programmin g languages, so will be understood easily. 

6.7 Coercends 

Coercions are introduced at certain syntactic positions but 
are not carried out except upon •coercends•. For example, in 
o,eroc ref real p = ( i < q I x 1( i] I yl[ i] ) o, the •condition 1-
clause• a( i < 9 I x1[i] I yl[i] )o is strong and the mode 
required is that specified by □2£Q£ ill !~~!□- How ever, a 
•conditional-clause• is not a •coercend• itself. In fact, if the 
value of oio is •2•, then the routine possessed by apa is a (f~.! 
I~~! xl(i])a. It is therefore the •base• axl[i]o which is 
coerced and not the •conditional-clause• because a •base• is a 
•coercend•. 

•Coercends• are easily distinguished and ve have met them 
all before, although we have not, as yet, classified them as 
such. A •coercend• is either a •base•, e.g., ox1[i]c, a 
•cohesion•, e.g., onext 2£ cello, a •formula•, e.g., a~~~ xo or 
a •confrontation•, e.g., ox := yo fR.8.2.0.1.a, 1.2.4.a]. A 
certain set of coercions may be implied by the syntactic 
position (sort) of the object, but none of these coercions will 
be elaborated on that object unle ss it is a •coercend•. The sort 
is therefore passed to the •coercends• within the object. When a 
•coercend• is met, then all coercions implied by that syntactic 
position must be completely expended. 

6.8 A significant example 

Perhaps we should now lcok closely into the reason why 
D££2£ t~oiQt p = randomo 

is not an •identity-declaration•. The intention was, perhaps, 
DEfQf ¢~Q!Q¢ p = (: random)o or OEfQf ~~! p = randomo. First we 
must observe that no extension c ould have been applied since 
crandomc is not a •routine-denotation• [R.9.2.d], so this must 
be parsed as an •identity-declara tion• in the strict language. 
An ttempt to parse aeroc tvoidt p = randomc must begin with the 
facts that cpo is a •procedure-void-mode-identifier• n:i 
•random• is a •procedure-real-mode-identifier•. Since orandomo 
is a •base•, we must therefore attempt to find production rules 
in the hope of showinq that a •procedure-real-base• is a 
production of •strong-proced~re-void-base•. The production rule 
for any given notion can be obtained from only one rule of the 
Report. If we take that rule (R.8.2.0.1.d] and replace the 
metanotion •COBRCEND• appropriately, we have 

•stcong procedure void base: p rocedure void base ; 
strongly ADAPTED to procedu re void base. • 

Since crandoma is not a •procedure-void-base•, we aust new see 
whethar it can be produced from the seccnd alternative. This 
means replacing •lDAPTED• by each one of its eight terminal 
productions, i.e., by •dereferenced, deprocedured, procedured, 
united, widened, rowed, hipped• and •voided•. We look at each of 

I. 
I 
I 
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these in turn. In the rules for dereferencing [R.B.2.1. 1.a], we 
have 

•strongly derefecenced to proce dure void base: 
strongly FITTED to reference to procedure void base• 

Thus the mode enveloped has be come longer, i.e., ftom 
•procedure-void• to •reference-to - procedure-void•. The same will 
apply to deproceduring [R.8.2.2.1.a]. Because these two r ules 
feed into each other, we can only lengthen the mode (in the 
sense used above) by using them. Thus we cannot reach our goal 
through this route. 

The rules for proceduring [R.8.2.3.1.a] yield 
• strongly procedured to procedure void base 

void base ; 
strongly dereferenced to void base; 
stronqly procedured to voi d base 
strongly united to void ba se ; 
strongly widened to void base ; 
strongly rowed to void base.• 

Each of these must now be eKamined. In the firs t place , ~randomo 
is not a •void base•, so ve dismiss-th e first alternative. For 
the others the words (protonotions) •dereferenced-to- void•, 
•procedured-to-void•, •united- to-void•, •w · dened - to - void• and 
•rowei-to-void• lead us nowhere in the a ppropriate sections 
[ R. 8. 2. 1. 1, B. 2 •· 3. 1 , B. 2. II • 1 , B. 2. 5. 1 , 8. 2. 6 • 1 ] • 

By examining the left hand sides of the rules for widening 
[R.8.2.5.1), rowing [R.8.2.6.1.J and voiding (R.8.2.B.1), we can 
see that productions for •strongly ADAPTED to procedure void 
base• through any of these routes cannot be found. Finally, the 
rules for hipping [R.8.2.7. 1] cannot be used since they apply 
only to •skips•, •nihils• and •jumps• and arandoma is not one of 
these. This completes our deduction that DE£Q£ t~gigt p = 
randoma is not an . •identity-relation•. 

Note that for CE!Q~ t_yoi_gt p = (: random) a, the significant 
prod uc tio n is 

•strongly procedured to procedure void base : 
void base.• 

[R.8.2.3.1.a]. Also, for a££g£ !~~! p = randomc only the empty 
coercion is required for arandoma is already of a priori mode 
•procedure-real•. 

6.9 The syntactic machine 

The coercions are, with the exception of balancing of 
modes, all contained in the syntactic rules in sectio n 8.2 of 
the Report. A thorough understanding of coercion therefore 
requires a knowledge of these rules and a certain dexterity in 
their use. The reader is encouraged to try some syntactic 
analysis (parsing) fo[' himself, but to he lp him on the road we 
give below a complete analysis, as a •strong-real - unit•, of cia 
in the •cast• areal i a, where aio is in the reach of the 
•declaration• oint--ia. The • identifier• aic is thus a 
•reference-to-ini~~ral-mode-identifier• and its a priori m~de is 
•reference-to-integral•. The of~~!a in the •cast• indicates that 
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the a posteriori mode is •real•. The references within braces 
are to the particular rules of the Report which are used. 

•stro ng real un it • ••••••••••••••••••••••••••••••••••••••••• 1 
•st ro ng unitary r eal clause•{6.1.1.e} •••••••••••••••••••••• 2 
•st ro ng real tert iary• (8.1.1.a} ••••••••••••••••••••••••••• 3 
•st ro ng real secondary• (8.1.1.b} •••••••••••••••••••••••••• 4 
•st ro ng real pr im ary• ( 8. 1. 1 .c} •••••••••••••••••••••••••••• 5 
•strong real ba se • { 8.1. 1.d) ••.••.•...•.................... 6 
•st ro ngly widened to real base• {8.2.0.d} ••••••••••••••••• 7 
•strongly dereferenced to integral base• {8.2.5.1.a} •••••• 8 
•reference to integral l:ase• {B.2.1.1.a} ••••••••••••••••••• 9 
•reference to integral mode identifier• {8.6.0.1.a} •••••••• 10 
•letter i• {4.1.1.b} ••••••••••••••••••••••••••••••••••••••• 11 
•letter i symbol• {3.0.2.b} •••••••••••••••••••••••••••••••• 12 

In the above analysis the two coercions occur in lines 7 
and 8. In lines 1 to 6, the sort, i.e., •strong•, is carriel 
through the parse until it meets with the •coercend• (in this 
example a •base•) in line 6. In lines 9 to 12 all the coercions 
implied by the •strong• in line 1 have been expended. The 
elaboration naturally follows t be parse in the reverse order. At 
line 10 the •identifier• ci a is identified with its defining 
occurrence and the a priori mode, •reference- to- in tegra h, is 
established. (This is usually accomplished by an early pass of 
the compiler.) In line 8 the dereferencing occurs and this is 
followed by widening in line 7. No further semantics is involved 
in lines 6 down to 1. 

6.10 Balancing 

Balancing is the word used to describe the process of 
finding one mode (the balanced mode) to which each one of a 
qiven set of modes may be coe rced er,. The process of finding 
the balanced mode will be determ ined by the sort of syntactic 
position involved. Balancing in a strong position is a simple 
process (some may even claim tha t it is not really balanciny), 
whereas the programmer may need to exercise care in the 
balancing of modes in firm posit ions, for the final balanced 
mode may not be immediately clear. 

In the reach of the •declaration• abool p, £~~1 x, y, I~! 
I~~.! xx, [ )re~.! xl, f~H )!:~~.! xxla, an example of soft balancing 
is 

a( p I xx I x ) := 3.14a 
an example of weak balancing is 

a ( p I xx 1 I x 1 ) [ i ]a 
an example of firm balancing is 

a2. 3 + ( p I 3.14 I x ) a 
and an example of strong balancing is 

ay := if p !h~E 3.14 ~1§~ x f!D 

< 1 > strictly speaking, only •coercends• are coerced. We shall 
find it convenient to speak of coercion of modes, by which is 
meant the mode en~eloped by a •coercend•. 
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In general, given a set of mode s, a balanced mode must be 
found which is such that each one of th e given modes may be 
coerced to it. In achieving this, at least one of the given 
modes must be coerceable usin q the giv en sor t, whereas the 
others may be strongly coerced, i .e. , the limita tio ns of the 
syntactic position must be accept ed by at least on e of the given 
modes, otherwise the balancing is not possible. An example in 
which a balance is not possible i s o2. 3 + ( p I .§~i:e I gg_tQ 
k ) □, which is therefore not a • formula•. 

6.11 Soft balancing 

A simple example of soft balancing is 
□( p I xx I x ) : = 3. Ho 

Examination of this object su ggests an •assignation• in whic h 
the mode of the •destination•, □ ( p I xx I x ) a, should be 
•reference-to-real•. A success ful pa1;se is thus assured if the 
balanced mode of the •conditional-clause• is •reference-to­
real•. However, the mode of cxx o is •reference-to-reference-to­
real• , whereas that of ax□ is •reference-to-real•. The mode of 
oxx □ may be coerced to the balanced mode by dereferencing (once) 
a nd that of ex □ by the empty coercion. If we recall that the 
only coercion which is relevant in soft positions is 
deproceduring, then it is clear that □ xx □ cannot be softly 
coerced to the balanced mode. on e must therefore allow □ xo to be 
softly coerced and axxa may then be strongly coerced 
(dereferenced). A sketch of the parse of the •destination• 

reference-to-real-destination 
I 

soft-conditional-reference-to-real-clause 
I 

,------T---------- -,------------
1 I 

if-symbol condition 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

a( 

.J. 

p 

1 
soft-choice­

reference-to-real-clause 
I 

r-

1 
strong-then­
reference-to­
real-clause 

I 
-----L---

xx 
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I 
soft-else­

reference-to­
real-cl1l use 

I ____ J.. __ 

X 

I 
f i-s ymbol 

I 
I 
I 
I 
I 
I 
I 
I 

.I. 

) D 

is shown in figure 6.11. The rule which is relevant in this 
parse is 

•FEAT choice CLAUSE : strong t hen CLAUSE, FEAT else CLAUSE.• 
ra.6.q.1.d], in which •FEAr• is replaced by •soft• and •CLAUSE• 
by •reference-to-real-clause•. This same rule has an alternate 
prod uctio n. The complete rule is 

•FEAT choice CLAUSE : strong t hen CLAUSE, FEAT else CLAUSE 
FEAT then CLAUSE, stronq else CLAUSE.• 
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The second alternate is clearly necessary for parsing the 
•assignation• 

a( p Ix I xx )a:= 3.14c 
for in this case axxa must be strongly coerced. 

Nov consider the •assignation• 
a( p I x I Y) := 3.14a 

Here either axe or aye may be chosen to be soft. It follows that 
a ( p I x I y ) a may be parsed as a •reference-to-real­
destination• in two distinct vays, i.e., either the axe or the 
aye may be chosen as soft with the other strong. This is one of 
the rare examples of syntactic ambiguity in ALGOL 68. The 
ambiguity might have been avoided, but at the cost of 
considerable complexity in the grammar. Since no semantic 
ambiguity is involved, greater clarity in the grammar is 
achieved by allowing a harmless syntactic ambiguity. 

6.12 Weak balancing 

A si mple example of weak balancing is 
are of ( p I 1 i 2 I 3 ) c 

Here the •clause• a( p J 1 ! 2 I 3 )n is the •secondary• of a 
•selectio n• and is therefore in a weak position [R.8.5.2.1.a]. 
The mode of cl ! 2a is •complex•<•>, but that of c3c is 
•integral •. It is clear that the object a3c 111ust be widenei 
(twice) t o •complex •, but widening cannot occur in a weak 
position. Th us al ! 2a must he weakly coerced (the coercion is 
empty) an d a3c may then be strongly coerced (widened twice). The 
balanced mode of c ( p I 1 !. 2 I 3 ) a is therefore •complex•. A 
sketch of the parse of this •secondary• is shown in figure 6.12. 
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The rule used in this parse is the same as that given in 
paragraph 6.11 above, but this time •FiAT• is replace~ by •weak• 

<•> Here •complex• stands for •structured-with-real-field­
letter-r-letter-e-and-real-field-letter-i-letter-m•. 

' . 
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and •CLAUSE• by • complex-clause•. 

A weak balance which involves a 
ambiguity is 

harmless syntacti::: 

are Q! ( f I z1 I z2 )a 
in the reach of the •declaration• □fQ~E1 z1, z2n. In this case 
the balanced mode is •reference-to-complex• since weak coercion 
does not remove the last •reference-to• ( R.8.2. 1. 1.h ]. The 
coercion of both □ z1 □ and □ z2a is thus empty and either one of 
them may be chosen as weak. 

6.13 Firm balancing 

A simple example of firm balancing is 
□ 2. J + ( p I 4. 5 I 6 ) a 

In this example the •conditional-clause•, a( p I 4.5 I 6 )a, is 
an •operand• of a •formula• and is therefore in a firm position 
[R.8.4.1.d]. The •operator• a+□ is that declared -in the 
•standard-prelude• (R.10.2.4.i]. It requires a right •operand• 
of mode •real•. Thus a4.5a is of the reguired mode while □ 6 □ 
must be widened. Since widening may not occur in a firm 
position, we must choose □4.5 □ as firm and then allow □6 □ to be 
strong. A sketch of the parse of this •operand• (•secondary•) is 
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I I I I 
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shown in figure 6.13. The relevant rule is again the same as 
that qiven in paragraph 6.11 above, l:ut •FEAT• is replaced by 
•firm• and •CLAUSE• by •real-clause•. 

An example of a firm balance in which there is a harmless 
syntactic ambiguity is 

□2. 3 + ( p I xx I x ) a 
for dereferencing is permit t ed in a firm position and both axxa 
and axa may be firmly coerced to •real• by dereferencing. 

6.14 Strong balancing 

A simple example of a strong balance is 
ay := ( p I x I 1 )a 



80 An ALGOL 68 Companion 

Here the •conditional-clause•, c( p I x I 1 ) c, is a •source• 
and is therefore in a strong position [R.8.3.1.1.c]. Both cxc 
and c1o must therefore be strongly coerced to the balanced mode 
which is •real • . This means that nxc is dereferenced and olo is 
widened. 

Jbserve that strong balanc ing ·s a trivial process for one 
is not faced with the necessi ty of deciding which of the given 
modes should retain the sort of the syntactic position. They all 
retain strong. In the example a bove, as in most cases of strong 
balancing, the balanced mode i s determined by the context. 
Balancing in firm, weak and soft positions, however, is 
different. In these positions the balanced mode is not given by 
the context but must be decided by ex~mining the given modes 
alone. 

6.15 Positions of balancing 

In the example above we have considered balancing only in a 
•conditional-clause•. This is a typical situation and is 
sufficient to illustrate the principles involved. However, 
balancing may occur in other situations and we shall list e~=h 
of them here. 

•choice-clause• in a •conditional-clause• [R.6.4.1.c,d] 
e.g., a~Q§( p I 1 I -2.3 )a. 

•balance• in a •collateral-clause• [R.6.2.1.e] 
e.g., D!!I?Q(1, 2.3, x)a. 

•suite-of-clause-trains• in a •serial-clause• [R.6. 1. 1.gJ 
e.g., c (( p I 1 ) ; 3. 14 • 1 : 1) c. 

•identity-relation• [R.8.3.3.1.a] 
e.g., cxx :=: xa. 

Although these are the only balancing positions in the 
strict language, the programmer should be aware of their 
implications in the extended language. For example 

a ( p I i I : q I x I : r I 3. 14 I 5 ) + 2. 3 Sa 
requires a firmly balanced mode of •real• for t be left •operand• 
of the •operator• a+a. This is achieved by dereferencin g a nd 
then widening aia, by dereferencing a~a, by t he empty coerci on 
upon a3.14c and by widening cSc. Since an • o perand• must be 
firm, either cxa or c3. 14c cou ld be chosen t o be firm, a nd t he 
others could then be strong. Note that since wi dening cann ot be 
done in a firm position, both oia and aS c must be s tron g. 
Another example of firm balancing in li e e xtend ed language is 

c( i I 1, 3.4, x, random, xx , skie I g_g_~,2 error ) + 1c 
in which either c3.14o or axe or arandom□ or axxa may be fi rm 
but the others including the •jump• must be strong. 

Notice that 
strongly balanced 
o[ 1:3]f~~1 x1 □ are 

a •collateral-clause• may be only firmly or 
[R.6.2.1.c,d]. Examples, in the reach of 

for firm balancing and 

for strong ba l ancing. 

a~.QQ (x, i, 1) a 

ax1 := (x, i, l)o 
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Balancing may occur in a •serial-clause• which contains a 
•completer•. A trivial example is 

c ( ( p · I 1 ) ; 3. 14 • 1 : 1 ) + 2D 
Here, if ape is ■ true ■, the a1c is widened to •real• before the 
addition is performed (despite the fact that the right •operand• 
is •integral•), for the firmly balanced mode of the left 
•operand• must be decided without reference to the context. 

The balancing of an •identity-relation• is soft. An example 
is 

axx :=: xa 
Here the left •tertiary• must be dereferenced once and therefore 
cannot be soft. The right •tertiary • is therefore chosen to be 
soft and the coercion upon it is empty. In the •identity­
relation• 

DX : =: XXCI 

the choice must be made in the opposite order. The •identity­
rela tion • 

ax :=: yo 
is syntactically ambiguous since either the left or the right 
•tertiary• may be soft; however, as in the other case mentioned 
above, no semantic ambiguity exists. A tyfical • identity­
relation• which might arise in list processing is 

o(fg! £~11: next 2! cell) :=: ni1o 
in which the c~i1a can only be strongly coerced. This forces the 
left •tertiary• to be soft. 

6.16 Program example 

The following program calculates the greatest common 
divisor of a set of integers< 1 >. The original algorithm is in 
FORTRAN. The ALGOL 68 version given here retains the labels as 
used in the FORTRAN program (preceded by the letter 1) in order 
to help in the comparison of the two. It is interesting to note 
that all the jumps of the original naturally disappear except 
for ogQ_i2 110a in the innermost •conditional-clause•. This 
could perhaps be eliminated by using a • call• of a recursive 
•procedure• at the •label• al10:o. 

DE!Qf gcdn = (!~! [1:] iEi a ttbe given set of integers¢ ; 
!~![1:~E~ a] in~ z ¢the resulting multipliers¢) 

¢the gcd resultt ill! : 
£~lln ini n = YE~ a tthe number of integers¢ ; 
iu! m := 0, k, sgn ; 
¢find the first non-zero integer¢ 
!Qr i i2 n ~~i!~ a[il: 0 gQ (11: z[i] := O, m := i) 
¢the first non-zero integer, if any, is in position m+1¢ 
!! (m +:= 1) > n ¢now it is in position mt 
then tall are zero, so exit with resultt 0 
eisI 13: m = n 
th~n ¢only the last one is non-zero¢ z[m] := 1 a[n) 
~1§~ 14: ¢check the sign of a[m)t 

<1> Translated from algorithm 386 by G.H.Bradley, Communications 
of the Association for Computing Machinery, Vol 13, No 7, 1970. 
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Egf int am = a(m) ; sgn := §19!! am ; 
in t c 1 : = a rn : = ~ bs a rn ; k : = m + 1 ; 
15: ¢calculate via n- m iterations of the gcd algorithm¢ 
for i from m+1 to n while c 1 -; 1 do 
--~~in-£~! 1rr!-ai =-afI1; --

int q, y1 : = 1, y2 := O, c2 .- 2 .Q 2 ai k := i 
17: if ai = 0 
:t.!:!~n- ai := 1 z[i] := 0 
else l 1:): 
--rI q : = c2 + c 1 ; (c 2 -l: := c 1) I 0 

thef y2 -:::; q * -y1 ; q :=cl+ c2; (c1 +::= c2) -IO 
ili;ii y1 -:= q * y2; gQ_!Q 110 ¢eliminate the jump?¢ 
else 115: (cl := c2, yl := y2) 
fi-:--- . 

120: 7[ i] := (cl - y1 * am) + ai 
ai : = y 1 ; am : = c 1 !1 ; 

13 0 : §~i.e g!!f! ; 
¢ if k=n, then the following iteration is empty¢ 
125: 160: .!QE j fro! k+ 1 !_Q n Q.Q (lb5: z[ j) := 0) 
14 0 : f.Qf: i !fQ!! k- m 121 - 1 !2 2 9.Q 

(Z[i J •:= a( j+1 J ; 150 : a[ j) •:= a[ j+ 1 ]) 
z [ rn ) : = a( m + 1 ] • sg n ; 
1100: am 
f i 

~!!_gc 

6.1 Fundamentals 

Review questions 

a) What three things determine the particular coercions? 
b) What are the four sorts of syntactic position? 
c) Is □fg~1: in! □ a •cast•? 
d) Is areal : boola a •cast•? 
e) What-~~~rci~i-;ccurs in a[ ]~22! !QJa? 

6.2 Classification of coercions 

a ) How many different coeccions are tl1ere? 
b ) What coercions occur in areal : inta? 
C ) Wbat coei:cions are classified as-fitting? 
d) What coeccion occucs in a[ J.Eg2.! : 3.Ha? 
e ) What coeccion occurs in ain!: gQ_!Q ko? 

6.3 Fitting 

a ) What coercions occur in areal : fgf ref ref realo? 
b ) In the reach of aref £~!: ~;~! xxxa, what coercions occur in 

aref real: xxx □?--
c) In--the--reach of D£~f £CO£ i!!! rpia, what coercions occur in 

Di!!.!: : r pi o? 
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d) In the reach of a.,eroc ref bool prb, what coercions occur in 
c!;!QQ.! : prba7 

e) What rules are used in the parse of □!g~! : randomc as a 
•real-cast•? 

6.4 Adjusting 

a) What coercions occur in aunion (real, bool) : randoma? 
b) Is uniting a fitting coercion? 
c) What kind of value results from a proceduring? 
d) Is □E£Q£ tygigt sine a •cast•? 
e) Is a£~Q£ ¢!.2!~¢ : randoma a •cast•? 

6.5 Adapting 

a) Is hipping an ad justing coercion? 
b) What coercion occurs in aQ.QQ! : 9.Q_.!;Q k □ ? 
c) What coercions occur in ax := ( 1 > 2 I 3.4 I 5 )a? 
d) What coercions occur in a[ 1£~!!! : randomc? 
e) What coercions occur in aunion ([ ]real, !!.22!) : randomc? 

6.6 Syntactic position 

a) What coercions may occur in weak posi ti ans? 
b) Of what sort is aia in ax1[i+1 ]a? 
c) Of what sort is an1a in ax1[n1[i)]□ ? 
d) In the range of afgf £~! [ ]!gi!! rr1 xc, Wh"lt coercions occ: u r 

in arr1x[2] . - 2. 3a? . -
e) Of what sort is axe in ax := y □ ? 

6.7 Coercends 

a) What are the four kinds of •coercend•? 
b) List all the •coercends• in a.H a Qf b .!:hg!! X := 2 ~.!§g X .-

V ♦ 3 !!□-
c) Is DX := nil a an •assignation• 7 
d) Is DXX := -iil!a an •assignation•? 
e) Is an!.! := la an •assignation•? 

6.9 The syntactic machine 

a) What rules are used in parsing □£QfilE.!: i □ ? 
b) Is acom£l : union (int, .!!.2.2.!) a a •cast•? 
c) What rules are used in the parse of □E[.Qf tygi~t p = (:x := 

1) a? 
d) What rules are used in the parse of arandoma as a •strong­

void-unit•? 
e) Is ax + ni!c a •formula•? 

6.10 Balancing 

a) Can the modes •real•, •integral• and •format• be strongly 
balanced to real? 

b) can the modes •real• and •integral• be strongly balanced? 
c) What is the softly balanced mode from the two modes 

•reference-to-real• and •frocedure-real•? 
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d) What is a firmly balanced mode from the set of modes •real•, 
•integral•, • procedure-integral• and •reference-to-
in teqral•? 

.. , e) Can the modes •real • and •boolean• be balanced? 

6.11 Soft balancing 

a ) Is the parsing of a ( p I xx I y ) := 3. 14a 3.mbiguous? 
b ) In the reach of a2roc ref real pxa, how is a( p t px xx) 

:= 3. 14a balanced? 
c) In the reach of aEroc ref real pxa, how is c( p I px g.Q_!Q 

k ) := 2 c balanced? 
d) Can the pair of modes •procedure-row-of-real• and •reference­

to-real• be softly balanced'? 
e) Can the modes •reference-to-procedure-reference-to-bcolean• 

and •reference-to-reference-to-boolean• be softly balanced? 

6.12 Weak balancing 

a) In the reach 
balanced? 

b) Can the modes 
integral- mode• 

c ) Is a 1 + r e .Q! ( 
d ) Is are 2! (PI 
e ) How is aim 2! ( 

of a[]£~~1 x1a, how is c( p I xl I 2 )[i]a 

•reference-to-real • and •union-of-real-and­
be weakly balanced? 
p I 1.2 I 3.4 .i- 5 )a a •fornula•? 
1 l 2 t 3 ! 4 )a syntactically ambiguous? 
p I random IO i 2 )a balanced? 

6.13 Firm balancing 

a) Is □.21iE / §~.!l?ll a •formula•? 
b) Can •union-of-reference-to-real-and-reference-to-integral-

mode • and •real • be firmly balanced? 
c) Can •procedure-real• and •reference-to-real• be firmly 

balanced to •procedure-real•? 
d) Is □ 2 + ( p I x I 3.14 ) a syntactically ambiguous? 
e) Is aab2 ( p I !!.!!~ I 11 a 11 ) c a •formula•? 

6.15 Positions of balancing 

a) Can the set of modes •reference-to-reference-to-procedure­
reference-to-real • , •reference-to-procedure-reference-to­
real•, •reference-to-reference-to-real• and •reference-to­
real• be weakly balanced? 

b) Is a ( i I xx, nil, skip I 3o_to error :=: xa an • identity­
relation•? 

c) Is c ( ( p I l 1 ) ; !!:.!!~ • 1 1 : i > 0 I 12 ) ; t~.!2~ • 12 : 
1 ) □ a •closed-clause•? 

d) How is C.!!.EE ( 1, 2.3, 4 ! 5.6, x, xx, i )c balanced? 
e) Is a( p I nil I §~.!£) := 3.14a an •assignation•? 

6.1b Program example 

a) Describe the coercions involved in the elaboration of c(m +:= 
1) > na. 

b) Describe the elaboration of cint cl :=am:= abs amo. 
c) What is the purpose of the • declaration• ar~!-1~! ai = a[i]a? 
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d) Why does a • skip• occur on line cl10: e~!E ~ngc? 
e) Can you eliminate the cgQ_!Q 1300 by using a recursive 

procedure at the position cl10:o7 
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7 United modes 

7.1 United declarers 

Although inte nal objects are always of one non-united mode, 
external objects such as •expressions• (R.6.0.1,a,b] ma y be of 
united mode, indicating that the mode of the v3lue possessed is 
not known until elaboration (run time). To allow for this, it is 
necessary for the lanquage to provide •declarers• which specify 
united modes. Examples of s uch •declarers• are a~nign(in!, 
!22Q.! l , .!:!.!!!212 (( ]£~!!.!, [ Jch~f:) , £J1!Q!I. Ct~.![ l!!L!:, £~f[ J~ea_!), 
union(a,union(b, c) , d)a. 

The syntax of •united declarers• is not trivial but we may 
simplify ·t to the following: 

united declarer : union of s ymbol, 
open symbol, declarer list proper, close symbol. 

declarer list proper declarer, comma symbol, declarer ; 
declarer list proper, comma symbol, declarer. 

The syntax of the Report [R.7.1 .1.cc, ••• ,jj], however, is an 
in ricate exercise in the use of metanoticns. Its effect is to 
allow, syntdctically, that union s may be both commutative and 
associative, and that the modes of the union may be treated in 
the sense of mathematical set theory. This means that the same 
unite mode is specified by the •declarers• D]QlQU(~, Q, £), 
~nl2n(~. £, £), ~nl2n(g, yQion(Q , ~))a and agnJ2n(Yll!QB(£, ~), 
~!!.i:~rn (£, ~))a. 

7.2 Assignations with united destination 

Because •declarers• specifying united modes exist, the 
declaration of •variables• using such •declarers• is possible. 
Such a •declaration• might be cunion (int, bool) iba, whereupon 
the mode of aiba is •reference to union of integral and bcoleai 
mode•. An assignment may be made to such a •variable•, 

reference-to-union-of-integral-and-boolean­
mode-assignation 

I 
r--------------'-.----------, 
I I I 

reference-to-union-of- becomes- strong-union-of-
integral-and-boolean- symbol integral-and-boolean-

destination I source 
I I I ( 1 l 
I I boolean-
I I base 

.J._ 

aib 
(4) 

:= 
(2) 

__ .J._ 

J:£]~0 
: ( 2) 

a ( 3) r r------1 : • • • • • • ,--, 
o o-->-~I 1=======<========1 

0 LL-------' 

Fig 7.2 

l-
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but the •assignation• oib : = trueo is syntactically possihle 
only because of the unit"ng--coercion to which the •base•, 
ot!Q~ □, resulti ng from its strong position as a •source•, is 
subjected (see figure 7. 2 at 1). The •assignation• oib := 1 □ is 
also valid. In both these ass ignments the internal object 
assigned does not change under coercion, and the object otrueo 
possesses the same value whether it is considered, a priori;--;s 
a •base•, or, a posteriori, as a •source• (see the figure at 2). 
Note that aiba possesses a name (see figure at 1), whose mode is 
•reference to union of integral and boolean mode•, but that this 
name may refer to a value which is either of mode •integral• or 
of mode •boolean•, since values are not of united mode (i.e., a 
mode which begins with •Uni.on of•). Also, the mode of tht: value 
referr<?d to by uch a • vari bl e• as aiba, can be determined, in 
general, only at the time of el aboration of the •program• (not 
at "compile time" ) . These conside rations lead one to suspe:::t 
that the use of unitP.d modes im plies storage allocation or run 
time organization metboas which must be more elaborate than 
those required when such mod es are not used ( see the figure at 
4). A certain pri=e must therefore he paid for the use of unite~ 
modes, but in some situations they are essential (see( R. 11. 11 )) ; 
moreover, ALGOL 68 is designed to min i miz e those places in a 
•program• where a r un time c heck of the mode of a value is 
necessary. Sucb a check is unnecessary for the •assignations• 
aib . - trueo and aib : = la. These checks are known as 
•conformity=relation s•. Before passing to these we examine two 
further •assignations•. 

tn the range of the •neclaration• □ int n, QQQ.J: pa one miijht 
be t mpted to consider the objects an: = ibo and op:= ihc i n 
the hope that the assignment woulrl take place, if possible. 
Howev er neitbe.r of these two is an •assignation•, for in both 
cases, though the mode of the destination begins with 
•refere nce-to• , it is not follo wed by the mode of the •source•. 
In particular, there is no deuni ting coercion. Thus we must rule 
them out as not belonging to ALGOL 68. 

7.3 Conformity relations 

•Conformity-relations • , like •assignations•, •identity-
relations• and •casts•, are •confrontations•. Examples of 
•conformity-relations• are: ci ::= ir, E~~1 :: x Qf qo and a~ 
and b ::= i + 2 • xo. The syntax of •conformity-relations• might 
tie-written 

conformity relation : tertiary, conformity relator, tertiary. 
conformity relator: 

conforms to and becomes symbol ; conforms to symbol. 
This s yntax makes the •conformity-relation• appear to be 
s ymm etrical, but this is not th e case as an examination of the 
strict syntax of the Report rR.8.3.2.1] will reveal. There o ne 
may see that the •te tiary• on the left is soft, whilst t hat on 
the eight ~s not of an y sort and therefore cannot be coerced. 
Moreover, the mode of the left •tertiary• must begin with 
•reference-to•. We may recall that the •destination• of a n 
•assignation•, i.e. , the □ xo in ox :== 3.14 □, is soft , so tbat 
there is so me similarity between • ssig nations• and •conformity-
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relations•. rhis is intentional, for the eldboration of a 
•conformity-relation• often results in an ssignment. The right 
•unit• of an •:1.ssignation•, e.g., o3.14c in ex := 3.140, 
however, is strong. Thus the right •unit• of n •assignation• is 
strongly coerced but the r·ght •tertiary• of a •conformity­
relation• is not coerced. 

We may now ask what the difference is betwee n ax:= 3.14 □ 
and ex : := J.1qa. In the case o f ex : = 3. 140, an assignment is 
mdde. I.n the case of ax : : = 3.11.i-a, ao assignment is also m de 
but not before checking that such an assignment is possible. 
Another difference is that the value of ex: = 3.14a, after its 
elaboration, is the name possessed by axe, but the value of ax 
:: = 3.14a is a truth value, viz. , a true a. 

Now consider 011. := 1 □ and ex : := 1c. In the case of ax : = 
1a 40 ssignment of the real val ue, ■ 1.0 ■, is made to axe after 
th e widening of a1a to a value of mode •re:l.l • , but ax::= 1a 
delivers the value ■ false• and no assiynment takes place. Note 
that the a1a in ex :: = le is not coerced and in particular 
cannot be widened to •real•. The reader may now protest that dny 
simple minded compiler could determine, at comfile time, that 
the value of ax::= 3.14c is ■ true ■ ana that the value of ex:: = 
1a is ■ false■, thus the information yielded is trivial. We 
agree. However, the possibility of using united modes makes the 
•conformity-relation• an essen tial tool, as we shall soon 
discover. 

we h ave mention ed that the right •tertiary•, e .g., the u1a 
in ax : := 1c is no t coerced. Therefoce we may ask what will 
h ppen wi th ex : : = ye a nd ex. · · = ia. The semantics of the 
•conform i ty-relation • fB.8.3.2.2) now comes to the rescue. It 
tells us that, in stead of returning the value ■ false ■ 
immediate ly, the rig ht •tertiary•, e.g., the aye in ax ::= ye is 
derefere nced as of ten as is necessary or possible. Thus ex::= 
ya will deliver ■ tru e ■ and ex::= ia will deliver ■false ■ and in 
arriving at this, bo th the cya and the oia are dereferenced 
once. 

boolean-conformity-relation •••••••••••••• 
I : 

r--------------------+-----------------, ■ true■ 

I I I 
soft-reference-to- conformity- real 

real-tertiary relator tertiary 
I ( l l I I 

reference-to- I real-
real-base I denotation 

L 

ax 
-L--

3 • 14 C 

O ,-----, r---L--, 
o o--->---i t==<==(assignment)==<==t I 

0 

Fig.7.3 

(2) 
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The only difference between the •conformity-relations• ex 
::: 3.14c and ex:: 3.14c is that no assignment occurs in ex :: 
3.14c despite the fact that the value yielded by ax :: 3. 14c is 
■ true ■ • A skeletal parse of the • conformity-relation• ex ::= 
3.14c is shown in figure 7.3, where the only coercion involved 
(it does nothing) is shown at 1 and the value possessed by the 
•conformity-relation• at 2. 

We see therefore that the •conformity-relation• is a way of 
finding out whether an assignment is or is not possible. Without 
unitei modes, this would be of no value, since this information 
is known at compile time. It is only when united modes are used 
that the •conformity-rel~tion• is useful. Thus the examples 
given above are merely for the purpose of illustrating the 
fundamentals of the •conformity-relation • and have no value in 
practical programming. 

7.4 conformity and unions 

Suppose now that we are in the reach of the •declaration • 
cunion(int, char) ice. Then the value of the •clause• c(int i; 
ic :: "a" ; i :: ic)c is ■ false■ and the value of the •cI;~se• 
c Un! i ; ic := 1 ; i : : ic) c is ■ true■• Note that, withollt 
following the logic of the •program•, these values cannot be 
determined at compile time. How can one use these things? The 
reader who is irked by trivialities is advised to turn to the 
Report [R.11.1, 10.5.2.1.b, 10.5.2.2.a, 10.5.3.1.b, 10.5.3.2.b, 
10.5.4.2.b] where there are many examples of •conformity­
relations• in action. For those not so brave, consider the 
following problem. 

we wish to write a •pcocedure•, say □tcanslate □, which will 
accept either an integer or a character as its only parameter 
and will delivec either a character or an integer which is the 
environmental equivalent [R.10.1.j,k]. Thus suppose that in a 
qiven environment the integral equivalent of ■a• is ■ 193 ■, the 
•call• ntranslate("a")c should then possess an integral value 
■ 193 • and the •call• atranslate(193)c should possess the 
character value ■ a • . Its declaration then might be 

□J:!f:Q.£ translate = (union (int, char) a) union (int, £h~!:) : 
beg~~ in1 i, fhar C; 
1!: · : := a !h_gn !:~.Ef i t a.10. 1. k t 
else c ::= a ; abs ct R.10.1.j t fi endc 

In the body of this procedure the •condition-; , ci : : -= a □, 
determines whether the value delivered is □!:~~! ic or □~~§ ca. 
The value of the • confocmity-relation• cc ::= a □ is voided, 
since one knows that, if control reaches it, the value will be 
■ true ■; however, its pcesence is essential because the 
•operator• c~Q§D is not defined for operands of united mode. 

7.5 Conformity extensions 

•Conformity-relations• occur in certain extensions, both 
for the convenience of the programmer and for the purpose of 
allowing more efficient implementation of certain constructions. 
Examples of these extensions occur in the Report [B.11.11.q,ah). 
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We begin by explaining them in a simple way. 

The •conditional-clause• 
□ (a::= u I 1 1: b ::= u I 2 I: c ::= u 1: 3 1 0 )a 

can be written 
□ [* a, b, c ··= u *]□ 

Its effect then is to test several conformities in succession, 
delivering as an integral value the index of the one which 
succeeds. If all of them fail then the result ■ O ■ is delivered. 
This, in itself, is useful, but its main purpose is for use as 
the •unitary-clause• which follows the □case~ in a case clause 
f R.q.4.b,c]. In this particular situation--the two enclosing 
symbols □[•a and □*l□ may be omitted. ~ case clause might 
therefore be 

a£~§~ a, b, c ::= u 1g f (a), g(b), h(c) 2Y! error exit ~§~£C 
and its interpretation is the f ollowing: if aaa conforms . to ani 
becomes aua, then the value is af (a)a; otherwise, if ab □ 
conforms to and becomes aua, then the value is cg (b) a; 
otherwise, if aca conforms to and becomes cue, then the value is 
ah(c)a; otherwise the value is that of □ error exit□• Note that 
if both a a :: = u a and ab ::= ua possess the value ■ true■, then 
it is un defined whet her the value is af (a)c or aq(b) □• Examples 
of the us e of th is ex tension are in the Report [R.11.11.q,ah]. 
We could perhaps writ th e procedure of section 7.4 as follows: 

□~IQ£ translate= (~ni2n(in!, £h~r)a)Yn!Qil(Jn!, fh~~) : 
begin i nt i, cha r c ; 
~~ i, c ::= a !fl £~EE i, ~~§ c ~~~£ 
end □ 

though little would be gained in this simple example. 

The description of the extensions [R.q.4.e,f], however, is 
forhidding and it is perhaps worth while taking a little time to 
discover why it must appear in this way. Suppose we have the 
conformity case claus a (X, x : := u I 9, 8 I error ) a. It is 
clear that if it is interpreted as the equivalent of □( x ··= u 
I q I: x : : = u I 8 I error ) o, then the value •8 • can never be 
nelivered. This is unfortunate, for the implementer of the 
languag e may find it convenien t and more efficient to make the 
conformity test in an order different from that given. It 
therefore should be made impossible for the programmer to 
determine from the Report the order in which the conformity 
tests are made. This can be done by describing the extension by 
means of parallel processing. It is worth our while to examine 
this more closely. 

According to the Report [ R.9.4.e), the •clause• a[* x, x 
::= u •]a, in the reach of oreal x, union(int, real) uc, is 
equivalent to the following 

□ (inti,§~!~ s = /1 ; YillQTI(int, £~~!) k = u ; 
.E~E ( ( x : : = k 1 gg~n s ; i : = 1 ; m ) , 

( x : : = k I ~Q.!!.Il s ; i : = 2 ; m) ) ; 0 • m : i ) a 
The •declaration• aunion (int, real) k = ua ensures that the 
elaboration of aua occurs once only; its value is then held in 
aka. The •declaration • a§~!~ s = /la, declares a semaphore aso 
rR.10.4] which will be used to control the elaboration of the 
two •clauses• in parallel. The semaphore is initialized to the 
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value ■ 1 ■• The two clauses beginn ing with ax : := ka, are, if 
this conformity is s uccessful, followed by the •formula• adown 
sa which drops the value of the s emaphore to ■ 0 ■ and thus forms 
a barrier in the elaboratio n of whichever •clause• did not reach 
this action first. From this it is therefore not possible to 
predict whether the value ■ 1• or ■ 2 ■ will be delivered. To the 
programmer, this is an unimportant matter, but the meticulous 
implementer will be pleased that there is no w~y in which he can 
be caught if he decides on one method of implementation rather 
than another. 

The r eader s hould now examine the description of the 
extensio ns in the Report [R.9.4.e,f,g] where he will see that it 
is necessar y in thi s description to have a( S / l)o rather than 
a/1a because the • opera tor• c/c as a •monadic-operator• with an 
integral right •ope rand• could be redefined by the programmer. 
The l etter oSc stands for the •standard-prelude• and therefore 
return s to the orig inal meaning of a/a as a •monadic-operator• 
which accepts an integer as right •operand• and delivers an 
equivalent semaphore. 

Review questions 

7.1 United declarers 

a) rs D.Y!!..!2.!! Ci!!~, QQQ,!) : =: union (boo 1, !.!!!) D an 
relation•? 

b) Is aunion(int, .QQQ,!) := .Q.Q.Q!c an •assignation•? 
c) What--Is- the value of cunion(int, union(bool, 

union(bool, char, int)a? 
d) rs a[1:n]union(char, int)D a •declarer•? 
e) Is a union (int, struct (int a)) a a •declarer• 1 

7.2 Assignations with united declarers 

•identity-

a) In the reach of □ union (char, bool) cbo, is acb := 1D an 
•assignation•? 

b) In the reach of D.Y.!!iQl!(fg~J:, QQQ,!) rba, is orb:= 1D an 
•assignation•? 

c) In the reach of a union (real, bool) rbn, what is the mode of 
the value referred to by the name possessed by arba? 

d) Is aunion(bits, bytes) :=: n il □ an •identity-relation•? 
e) In the reach of a un ion (int, char) ica, is Die := ic + 1D an 

•assignation•? 

7.3 conformity relations 

a) In the reach of aunion (real, g!J~f) rca, what is the value of 
arc:: rca? 

b) Wh at is the value of ax::= truea? 
c) In the reac h of amo ne br = union (bool, real) ; union (int, .Qf) 

ibc, br bra, what is the va lu~ of ailJr ::= bra? 
d) In the -reach of a union (bool, int ) bia, is □bi := i : := 1D an 

•assignation•? 
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e) Is □ x ::= x :: = x □ a •conformity-relation•? 

7.4 Conformity and unions 

a) In the reach of aunion (char, .QQQ,!) cha, is □ x : : = cba a 
•conformity-relation•? 

b) In the r:each of □ union([ ]real, real) r1ra, is cr1r ::= 3.14c 
a •conformity-relation•? 

c) Can □ .!!.!!!SL!! ([ l!!!!, [ )t~! !.!!!) c be contained in a proper 
•program•? 

d) In the reach of □ union (int, rea l) ira, can cir := 1a possess 
a name referring to a real val ue? 

e) Declare a • pt'oced ut'e• which will accept an integer and 
aelivet' its square root, as an integer if it is integral 
and, otherwise, as a real value. 

7.5 Conformity extensions 

a ) what is the value of a (x, i, b : := 1 I 3, 4, 5, I 6 ) c? 
b ) What is the value of C (£~!!1, !~~.!. :£~~.! .. 3. 14 I 7, 8, 9 I 

10 ) a? 
c ) Is □ §~.!!!~ p = 1 □ a •declaration•? 
d ) Is Cf~§~ X, i, b .. u !.!! f (X) , g ( i) Q.!!! h ~§~£0 a valid ALGOL 

68 obiect? 
e) In the t'each of □ union (char, .!!!!, !222ll ciba is acib : : ::: 

§!.!.E!.□ a •conformity-t'elation•? 
f) Is ax : : = g:.Q_!Q kc a •conformity-relation•? 
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8 Formulas and operators 

8.1 Formulas 

9 .3 

In section 3.11 •formulas• were discussed and the following 
simplified syntax was presented: 

£ormula: operand, dyadic opera tor, operand; 
monadic operator, operand. 

This is good enough as a fir st approximation but it does not 
help to ex.plain that a •formula• such as 

DX+ y * ZC 
is e laborated in the order suggested by DX + (Y * z) c. The 
qu estion then is how the pr ' orit y of the •operators• may be used 
to determine the order of elaboration. A closer approximation to 
the syntax of •formula• (s till i gnoring modes and coercion) is 

PRIORITY formula : PRIORirY operand, 
PRIORITY operator, PRIORITY plus one operand. 

PRIORITY operan1 : 
PRIORITY formula ; PRIORITY plus one operand. 

priority NINE plus one operand: monadic operand. 
monadic operand: monadic formula; secondary. 
monadic formula: monadic operator, monadic operand. 

[simplified from R.8.4.1.b ,n ,e,f,g]. Here the terminal 
productions of •PRIORITY• are f R.1.2.4.a, ••• ,n] •priority-one•, 
•priority-one-plus-one•, •pri or ity-one-plus-one-plus-one•, etc. 
Thus, •priority-NINE• has the meaning that one might expect. It 
is evident that the metanoti on , •PRIORI?Y•, is being used here 
as a counter to ensure that the left •operand• must have 
priority not less than that of its associated •dyadic-operator• 
and the right •operand• must have priority greater than that of 
its associated •dyadic-operator•. We shall find it convenient to 
shorten the terminal productions of •PRIORITY•, in an obvious 

p6-operand 
I 
I 
I 
I 

secondary 
.J. 

ax 

p6-formula 
I _ "-T _ ______ .J. ______ -, 

p6-operator p7-operand 
I I 
I 
I 
I 
I 

..1. 

+ 

r---- - ---+· - ------ , 
p7-operand p7-operator p8-operand 

I I I 
secondary I secondary 

.J. 

y 

Fig.B.1.a 

.J. 

* 
.J. 

ZD 

way, to •pl, p2, p3, ••• •· Using this shorthand notation, we 
obtain, from the first three rules above, the following nineteen 
rules: 

p1 formula 
pl operand 
p2 formula 
p2 operand 

p1 operand, p1 operator, 
pl formula ; p2 operand. 
p2 operand, p2 operator, 
p2 formula ; p3 operand. 

p2 operand. 

p3 operand. 

p9 formula: p9 operand, p9 operator, p10 operand. 
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p9 operand: p9 formula ; p10 operand. 
p10 operand : monadic operand. 

We may now present, in figure 8.1.a, a simplified parse of the 
•formula • ox+ y • zo, refflembering that o+o is a •p6-operator• 
and o•o is a •p7-operator•. 

Because a •dyadic-operator• requires that 
•operand• be of the same priority (or higher) and that 
•operand• should be of higher priority, the •formula• 

ox + y + zc 
is elaborated as if it were c(x + y) + zo, for the only 
parse is that sketched in figure 8.1.b. 

p6-formu la 
I 

its left 
its ri•Jht 

possible 

r­
p6-operand 

------'------------------, 
p6-opera tor 

I 
p7-operand 

I I 
p6-formula I I 

I I I 
r-----------Lr---------, I I 

p6-operand p6-operator p7-operand I I 
I I I 

secondary I secondary 
.L ~ ~ 

I 
I 

.L 

I 
secondary 

.L 

ox y + zo 

Fig.8.1.b 

It is important to observe that, in a •formula• containing 
several •operato s•, the •operands• of eacb •operator• are 
determined solely by the priorities of the •operators• an<l do 
not depend in any way upon the modes of the •operands•. Tbus, 
assuming that the •Operator• OQjc has priority •l•, □glo has 
priority ■ 2 ■ antl so on, we know that the •formula• 

oh ~1 i gI j .Q2 kg~ 1 g] m g2 no 
must be elaborated in the order suggested by 

o (h d3 i) ~l ( (j d5 k) !'.!.1 (1 .§:Z. (m g2_ n))) o 
without any knowledge of the modes of oh, i, j, k, 
one. The compiler writer appreciat s the necessity for 
independence and the progr mmer gains because of the 
clarity in the meaning of •formulas•. 

8.2 Priority declarations 

l,mo,1n:i 
this mode 
resulting 

•Priority-declarations• were mentioned, in passing, in 
section 3. 11. An example of a •priority-declaration • is 

which is 
prelu.l.e• 
is shown 
shorthand 
token•. 

D£I!Qf!l1 + = 6a , 
indeed one of the •declarations• in the •standard­
[R.10.2.0.a]. A parse of this particular •declaration• 
in figure 8.2, where •6-token• is used here as 
for •one-plus-one-plus-one-plus-one-plus-one-plus-one-

The syntax of •priority-declaration• is 
•priority-declaration : priority symbol, 



An ALGOL 68 Companion 95 

priority NUMBER indication, eguals symbol, NUMBER token.• , 
fR.7.3.1.a], where we may observe that the metanotion •NUMBER• 
[R.1.2.4.f] is used as a counter to ensure that the value of the 

priority-declaration 
I 

r---------------T----------'----,--
1 I I 

priority-symbol p6-indication equals-symbol 
---L--- L L 

DE£!Q1i!1 + = 

Fiq.8.2 

-, 
I 

6-token 
~ 

6c 

•token• on the right is the priority of the •dyadic-indication• 
on the left. 

The first two •dyadic-indications• [R.4.2.1.d] used in 
section 8.1 above might hdve been declared in 

c~riority d1 = 1, ECioritI d2 = 2 □ 
but all of them might b declare d more compactly by using an 
extension fR.q.2.c) which allows elision of Df!i2!i1I□ s, as in 

llE£!.QI!.tY .\!l ~ 1 , gJ = 2, ·~J. = 3, !i.!! = 4, 
as = 5, d6 = 6, d7 = 7, dB= 8, d9 = qi] 

Observe that the -programmer may--choose-his own •dyadic­
indications•, like adla and cd2 □ and is not constrained to use 
only those which-- appear-- in the Report. The particular 
representations permitted will be determined by the 
implementation, but it s expected that most implementations 
will permit representations like □~Jc and □gl □ together with 
such characters as o?□ and ale, if available, and which are not 
alr~any used as representations of some symbols [R.1.1.5.b]. 

8.3 Operation declarations 

Among the well known programming languages 
declarations• may be unique to ALGOL 68. Certainly 
declarations• are rare. The latter exist, perhaps 
primitive form, in APL where all priorities are the 

• priori t Y­
•operat ion­
in a more 

same. 

A simplified syntax of •operation-declaration• is 
operation declaration: 

caption, equals symbol, actua l parameter. 
caption: operation symbol, virtual plan, operator. 

r a.7.5.1. ,b], but the strict s yntax uses the metanotion •PR~M• 
to convey information about the number of and the modes of t he 
•parameters• and the metanotion •ADIC• to convey information 
about the priority of the •operator• and wnether it is monadic 
or dyadic. 

An example of an •operation-declaration• (in the strict 
language) is 

ao,e (real, real) real 
((real a, real b) real: (a> 

and a simpleparse Is-shown--In figure 
language it may be written 

!!!~.! = 
blalb))a 
8.3. In the extende:l 
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DQE. .!!l!!.! = (f!t~1 a, b) !~~!: (a> b I a I b )a , 
for if the •actual-parameter• is a •routine-dentation•, then the 
• plan• may be elided and the •routine-denctation• may be 

operation-declaration 
I 

r------- -,----.1. 
caption equals-

I symbol 
r----------~--r-------, I 

operation- virtual- aper- I 
symbol flan ator I 

I I I I 

, 
actual-

parameter 
I 
I 
I 
I 

i ____ _ -i__ ~ ----------------l-----------
(£~~1, ~~~!)~~!± ~~~ = (!~~1 a,b)£~~1: (a> b I a I b)a 

Fig.8.3 

unpacked [H.9.2.e,d]. Befoce going further we 
that this •declaration• can only · occur in 
•priority-declaration• like cRriority max= 7a. 

should 
the 

relllember 
reach of a 

I n the ceach of the •declarat·ons• given above, we may have 
a •formula• like ox ~2! y + .140. since the priority of the 
standard •operator• c+a is six, we should expect this •formula• 
to be elal:;orated in the order sugyested by o (x .!!!~~ y) + 3.14c. 
If the •priority-declaration• had been DEriority max ~ Sa 
i nstead, then the •formula• would be elaborated as if it were ax 
.!!!!!! ( y + ) • 14) C. 

The •actual-parameter• need not necessarily be a •routine­
dcnotation•. For example, 

aOE (string, int) int si = string into 
is an •operation-declaci\tion• in wh ich the •actual-parameter• is 

n •i~entifier•. The •operator• c§jc is then ma~e to possess the 
s me routine as that possessed by astring intc fB.10.5.2.2.cJ. 
In the reach of this •declaration• the •formul • 0 11 +1 23 11 si 10a 
will possess the same value as that possessed by the-;call• 
cstrinq i nt(" + 123 11 , 10) o. Ohserve that 

□QE. 2! = string int□ 
is not an •operation-declaration• because cstring int□ is not a 
•routine-denotation• so the •plan• a(§!E!ng, !!!!) .iu!: □ cannot be 
elided. 

It is not necessary that an •operation• should deliver a 
v alue, but if it does not, then a •formula• containing such an 
•operator• cannot be used as a n •operand•. Thus one loses some 
of the advantages of •operators• , except perhaps for the benefit 
of compactness of expression. 

An example is 
co_E in terch ange== (ref real a, b) 

( a : 1: b I !:!Ht! t = a ; a :a:: b ; b : = t) o , 
whose •operator•, ainterchangea, could be used in the •formula• 
ex .!!!!:~.tfhan.51~ ya. The sa me effect would be obtained by means of 
the •identity-declaration • 
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□.E!.QS: interchange = (!~!. !:.~~! a, b) : 
( a :I: b I real t = a ; a := b: b := t)a 

whose •identifier• -could then be used in the 
cinterchange(x, y)a. one might observe that the 

, 
•call• 

•actua 1-
in both parameter• is the same •routine-denotation• 

•declarations• above. 

•Operation-declarations• may 
of algorithms since •formulas• 
priorities may be built to do 
•formula • like 

therefore allow a compactness 
using •operators• of several 

any job we may require. A 

ax~~! y ~~! 0.1 □ 
is sometimes a more pleasing expression of thought thau a 
nesting of •calls• like 

a max (max (x, y), O. 1) a 
although LISP lovers may not agree. 

8.4 Elaboration of operation declarations 

An •operation-declaration• causes its •operator• to possess 
that routine which is possessed by its •actual-parameter• 
[R.7 .5.2]. rn the elaboration of 

□22 ~~! = (feal a, b) ~1 : (a> b I a I b )a 
the •operator• o~!~ □ is made to po ssess tho routine 

• (!:~J!l: a -= ski,.E, !;'.~-5!1 b = ~1i.2 ; !~21 : ( a > b I a I b ) ) • • 
This is, of course, already the va lue possessed by the •routine­
deno tation• which is the •actual-parameter• on the right. The 
elaboration of an •operation-decLaration• is thus similar to 
that of the •identity-deciar~tion•, particularly that in which 
the •actual-parameter• possesses a routine with one er two 
•parameters•. 

8.5 Dyadic indications and operators 

Although the same occurrence of an external object may be a 
representation of both a •dya~ic-indication• and an •operator•, 
the identification of the object, as it plays each role, is a 
distinct process. An example may help to illustrate this. In the 
•closed-clause• 

a( EI!2£!!l !~! = 7 ; 
¢1¢ 

2£ .!!!!!! = (real a, b) £~-2.! ( a > b I a I b ) 
t2¢ 

X := X ~2! Y ♦ 3.14) 
¢3¢□ 

there are three occurrences of the object □fil-2! □- The first 
occurrence is the defining occurrence of a •dyadic-indication• 
[R.4.2.1.e, 4.2.2.a]; the second occurrence is an applie:1 
occurrence of DJ!!~! □ as a •dyadic-indication• and its defining 
occurrence as an •operator• [R.4.3.1.b, 4.~.2.a]; the third 
occurrence of □.!!!~! □ is an applied occurrence of a •dyadic­
indication• and an applied occurrence of an •operator•. Thus, in 
each of the last two occurrences, the object □~!!□ represents 
two notions, both of which are involved in the identification 
process. Since an applied occurence must always identify a 
defining occurren=e [R.4.4.1.bl, the last occurrence of □~~! □ 
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identifies two defining occurences, i.e., the first as a 
•dyadic-indication• and the second as an •operator•. In figure 
8.5 we sketch the parse of each of the three occurrences of 
□~~! □ and indicate by"<===" how the identification occurs. 

priority­
declaration 

I 
r-------+------~, 
I I 
I dyadic 
I indication <==== 
I I 

--.L----- -.l.-

□E.f.!Q.Eill .!!!~!C 

operation­
declaration 

I 
r--· 
I 
I 
I 
I 
I 
I 

I 
opera tor 

I 
dyadic 

indication 
I 

.J._ --.L 

□g_p !!!~!tl 

Fig.8.5 

<==== 

<==== 

formula 
I 

,---+---, 
I 

operator 
I 

dyadic 
indication 

I 
_J__ 

ax.!!!~! yo 

It is thus helpful to remember that an object like □!!!O, 
except in a •priority-declaration•, must be considered first as 
a •dyadic-indication• (carrying the information about priority) 
and second as an •operator• (possessing an operation - a 
routine). As a •dyadic-indication• it may identify only one 
defining occurrence [R.4.2.2, 4.4.2.b], but as an •operator• it 
may, at different applied occurrences, identify more than one 
defining occurrence [R.4.3.2]. One need only consider the 
• formulas• a3. 14 + 4.25□ and c123 + 456a to realise that the 
standard • operator • o+a, in the first •formula•, must be that 
which adds two real values fR.10.2.3.i) and in the second it is 
that which adds two integral values [R.10.2.4.i]. This 
"overloading" of •operators• (i.e., allowing them to have wore 
than one meaning) has been traditional both in mathematics and 
in programming languages, so that it should not be difficult for 
us to remember that in ALGOL 68 any •operator • may have a 
meaning which depends upon the modes of its •operands•. 
Moreover, the programmer now has the power to overload operators 
at will. 

8.6 Identification of dyadic indications 

The identification of •dyadic-indications•, like that of 
•identifiers•, is a simple process. For each applied occurreuce 
one must search in the cu rrent •range• for a defining 
occurrence. If it is not found, then one searches in the next 
outer •range• rR.4.2.2.b]. rhe process is then repeated. If a 
•particular-program• contains no •p iority- declarations•, then 
the defininq occurrence of any •dyadic-indications• will be 
found in the •stan ard-prelude• (or perhaps a •library­
P e lu~ e •). Since •dyadic- indications•, again like •identifiers•, 
are s ubj c t to protection [R.6.0.2.d, 6.1.2.a), i.e., to 
systematic replacement in a •closed-clause• in order to avoid 
confu s ion with the same object used elsewhere, it follows that 
the occurrence of, say 
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in some •range• will mean that all operations possessed 
•operator• c+c, in the next outer •r;,nge•, will 
inaccessible. A small example may help to make this point 
In the object 

a ( E!:!2r.!tI .!!!2.! = 7 
¢1¢ 

2.E !H! = 
¢2¢ 

(!:~-5!± a, 

X := 1.23 ~~! J; 
¢3¢ 

) D 

_Eriori ty max = 5 
,:4 ¢ 

X : = 2. 3 4 .!!!2! Y ) 
¢5¢ 

( a > b I a I b ) 

99 

by the 
become 
clear. 

the fifth occurrehce of D!~! □ id entifies the fourth occurrence. 
Moreover, due to protection of the inner •closed-clause•, both 
of these occurrences are systematically changed into some other 
•indicant• which is not used elsewhere. Consequently, the last 
occurrence of amaxc is that of an •opec to• w~th no defining 
occurrence. Because-of a contex t condition [ R.4.4.1.b], tbis 
could not be contained in a proper •program•. This means that 
the changing of priorities of the standar~ •operators• cannot be 
undertaken lightly. Perhaps it is just as well. 

8.7 Identification of operators 

The identifi:;ation of •operators• is not as simple. It is 
not sufficient tor the •s ymbol• to match that which occurs in an 
•op ration-declaration• since, as we have said before, one Sdme 
•dyadic-indication•, when consicl ered as an •operator• may, iJt 
different occurrences, ident ify more than one defining 
occurrence. rhe additional requi rements to be satisfied are as 
follows. The mode of the left •operand• must be firmly 
coerceable to the mode of the fi rst •formal-p,11:ameter• in the 
•operation-declaration• anr1 the mode of the right •operand• must 
be £irmly coecceable to th e mode of the second •formal­
parameter •; otherwLse, the search for a defining occurrence 
proceeds to the other •operation-declarations• in the ssme 
•range •, or, as before, in successive outer •ranges•. We shall 
illustrate this with a simple example. 

□ l!!H ( .E.f!Ori_!y Q = 8 ; 
1!!21!! QE Q = (£~!!!a, b)£~H.!: 3.14; 
¢]¢ ( QE Q = (~~! a, 1~! b)£~!!!: 3.15 
rt4rt ( QE 2 = (~2Q! a, b)£~!.! 3.16 ; 
¢5¢ 2 • J Q X)) ) D 

The question to be answered here is, which r1efining occurren:;e 
is identified by the •operator• □Q□ in the •formula• □ 2.3 2 xu 
in line 5. One first sea.rches the •r,1nge• n which that 
•formula• occurs. There is an • operation-declaration•, on lin . 4 
in this •range• , using the same •dyadic- indication• □ ~a. This is 
the first cequirement. Flowever, since the mode of tbe •ape r 11d • 
o2.J□ cannot be firmly coerced to •boolea n•, this attempted 
identification of •operators• fails and we mu s t search in the 
next outer •range•. Thi s next outer •range• also contains an 
•operation-declarfttion•, in line 3, but agdin the identification 
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fails since the mode of oxa cannot be firmly coerced to 
•integral•. (Note that it is sufficient to have the failure 
occur in only one •operand•.) We must now search in the next 
outer •range•, which conta ins yet another •operation­
declaration•, in line 2, using the same •dyadic-indication•. 
Tbis time the identification succeeds since the mode of both 
□ 2.lo ana axa can be firmly coerced to •real•. The value yielded 
by the ■ formula• is therefore ■ 3 .14 ■• 

8.8 Elaboration of formulas 

In section 5.1 we discussed the elaboration of a •call•. 
The elaboration of a •formula• is similar. As an example, 
consider the •clause• 

a¢1¢ eriority max= 7; 
¢211! 2E ID!1 = (f~2.! a, b) f~~! 
II!]¢ ( d > b I d I b ) 
t411! ~ := 3.1 4 !!~ y )a 

Hece the •operator• □~~a, in line 2, possesses the routine 
• ( !~!.! a = s ki..e, f~.1.! b = 2..!s.i.E ; !~!.! : ( a > b I a I b ) ) ■ • 

The elaboration of the •formula•, in line 4, then has the 
following effect. In a copy of the routine possessed by □!!!D, 
the two □~kines are replaced by the •operands• of the •formula•. 
The rasulting object 

a(£~!.! a= 1.14, r~l b = y 
which is a •closed-clau~e•, 
elabor te • Its value is then 
is therefore nothing new to 
•formulas•. 

· re a 1 : ( a > b I a I b ) ) a , 
~eplaces the •formula• and 1s 
the value of the •formula•. There 
tell about the elaboration of 

Since it seems that each operation in a •formula• involves 
a sequence of actions like hose in the elaboration of a •call•, 
it may be thought that the execution of ALGOL 68 programs will 
be n cessacily slow. This need not be the c ase, for the 
implementec will undoubtedly produce in- line code for the 
translation of a •formula• like ax + yo (pechaps only one 
machine instruction). Provided that the effect is the same, be 
is free to produce any machine instructions for doing the job 
(se the note after 10. b Step 12 in the Report). 

8.9 Monadic operators 

The most significant fact concerning •monadic-operators• is 
that they are always of priorit y ten. There ace no •priority­
declarations• for •monadic-operators•. Because of this, monadic 
operations are always performed first. This is a simple rule an1 
is easy to remember. It means t hat the value of a- 1 •• 2a is ■ 1 ■ !. 
and not ■-1 ■, contrary to its meaning in ~LGOL 60 and in 
FORTRAN. The reason for maki ng this choice has been explained 
earlier in section 3. 11. 

Because of the syntax 
monadic formula : monadic operator ; monadic operand. 
monadic operand: monadic formula ; secondary. 

[R.8.4.1.f,g], the elaboration of a •formula• containing a 
sequence of •monadic-operators• proceeds from right to left. 
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Thus the •formula• 
a bin cound - xa 

is elabocated in the order-suggested by DQ!B ( £2~!!1 ( - x ))a. 
A sketch of the p:trse of this •formula• is shown in figure 8.9. 

formula 
I 

r--------1..---------, 
opecatoc operand 

I I 
I r--------1------, 
I operator operand 
I I I 
I I r-----~-----, 
I I operator Oferand 

~- --~-- .J. .J. 

DQ!!! £Q~!!~ xa 

Fig.8.9 

The identification of •monadic-operators• proceeds as toe 
the •dyaoic-opecators• , t he only difference being that there is 
onl y one •operand• which must be checked aqdinst the only 
•formdl-parameter• in the mona~ic •opecation-declaration•. As 
for •j y die-op rator~•, th e mone of the •opecann• must be firmly 
coerceable to that of the • for mal-parameter•. An example is 

a¢ 1 ¢ ( Q[! ~ = (.Q2.Q1 a ) i!!! : ( a I 100 I O ) 
¢2¢ ( Q.E .!!! = (i!!i a) i!!! : 200 
¢3¢ ~ !E.Y~ ))a 

in which the •operator• a_!!!o , in line ), identifies the 
•operator• in line 1, since the value possessed by a!E~ga cannot 
be firmly coerced to a value of mode •integral•. The value of 
the •formula• a~ l!Y~a is therefore • 100 ■ • 

8.10 Related modes 

Two modes :tre "related" if each of them can be firmly 
coerce fro m one same mode fR 4. 4.3.b]. An example is the pair of 
manes specified by aref real □ a nd aEroc reala. These are related 
because both can be firmly oerc ed from the mode specified by 
oref .real□• (li e shal l fi nd i t convenient here to shorten the 
phrase -"the mode S!)ecified by C!!!_ a" to "the mode 0!!] □ 11 , or even to 
11 a!!,1_a " . ) Thus aE~..f E~~la m.1y be c oerced to D!:~! !~~.!□, by the 
e mpt y coeccion , and to □ pro£ !~~!a, by dereferencing and then 
pcocejuciog . one Leason foe defining this rel¼tionship between 
modes is to exc lude some dubious unions from proper • proyrams• 
r R. 4. 4. 3. d l- consider, for example, the •declaril tion• 

aunion (2roc real, ref real) pr : = xa 
since ax □ is in a strong position it may be subjected to 
dereferencing, pc-oceduriIHJ and then uniting, whereupon the 
assignment can oc~ur. On the other hand the assignment can also 
occur with an immediate unitiny of oxa. There is thus an 
ambiguity. Foe this reason, unions of related modes are exclu~ed 
from proper • programs • . 

Another reason, which has to ~o with •operatocs•, may 
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become clear by examining the following: 
□ (.QE ~ = (EEQ£ £~~.!) !n! : 0 ; 

.QE ~: (£~f £~~1) in!: 1 : 
X := 3.14 ; i := ~ X) □ 

What is the value assignerl to □ ia? Is it aOa or •1•? Since axe 
may be firmly coerced both to the mode oref reala and to the 
mode aero£ £g~!a, it i- clear that-there-are two defining 
occurrences of the •operator • a~□ in the same range. This 
possibility must also be excluded from pro~er •programs• 
rR.ij.4.3.d). 

A first attempt to achieve this exclusion might be by 
forhidding the occurrence o f two •operation-declarations•, in 
the same •range•, if their corresponding •operands• are of 
related modes. However, thi s is not enough as the following 
example shows: 

a( .Q.E + = ([ ]£gf £~~1 a, b) fg~.!: 0.0 
.Q.E + = ([ )I~~.! a, b) !~~.! : 1. 0 
x1 := (x, y) + (y , X) )o 

In this example the modes □[ ]fg~!o and □[ ]£~! f~~l□ are not 
related, nevertheless we have two defining occurrences of the 
sdme tiperator c+ □, as used in the •formula• in the last line. It 
i.s for this reason that the c oncept of "loosely related" is 
developed in the Report. For most programmers and most 
implementers, this concept is suf.ficient to ex:clude multiple 
defini ions of •operators•. It has been shown that there dee 
certain pathological cases which can s till slip through into 
proper •programs•. For a discussion of theso the reader is 
referred to a paper by WGssner and the discussion following it 
rw1. A new wording of the context condition [ R.4.4.3.b) is thus 
likely to appear in the revised Report. 

8.11 Peano curves 

In the following example we assume that there is a plotting 
device and a •library-prelude • (foe plotting} containing 
•declarations• of the •iclentif·~ cs• ax, y, plota and cmo~~o. 
Both axa and aya are •real-variable s•, the two coordinates of 
the plot pen. The •procedure• aplota first lowers the pen and 
then ~lots stTaight line from its current fOSition to the 
position whose coordinates are c(x, y)a. The •procedure• omoveo 
first raises the pen and then moves it to the position □ (x, y) c. 

In mathematics it is know n that a uniformly converg nt 
sequence of continuous curves (e.g., polygonal lines) will 
converge to a continuous curve. The particul r example we have 
in mind is a sequence which defines a continuous curve passing 
through verv point of a square. It helps in proving that the 
points of ~ square are in one-to- one correspondence with the 
po int s of d line interv 1. Th ese are known as the Peano curves. 
The plotting of the approximants is an interesting exercise 
(provided that one has plenty of computing money) and the 
resulting figures are aesthetically pleasing. 

Suppose that one begins with a square of side ado. The 
first approximant (n = 0) is a single point at the centre of the 
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square. To obtain the second approximant (n = 1), one divides 
the original square into four squares each of side cd / 2c. The 
solution for the case n = 0 is then applied to each of the four 
small squar-es. The four- plots so obtained ilre then joinei 

r--------------------------, 
I 
I 
I 

•------~------• I 
I I 
I I 
I I 
f. I 
I I 
I I 
I I 

•------➔------• I 
I 
I 
I 

L-------------------------_J 
< - - - - - a - - - - - - > 

Fiq.8.11.a 

by three li nes of length nd / 2 ** 1o i n 
the n N and then w. The resulting plot is 
The process is re=ursive, but per:haps we 
more step . The next approximant (n 
8 . 11.b , in which the method is to appl y 

r------- ------, 

I 
I • ••••~• •• ------• 
I 
I 
I 
I •------• •------• 
I • 

I • 
I • 
I •------ • •------• 
I 
I 
I 
I • •••• ➔ • ••------• 
I 
L--------------------------

Fig.8.11.b 

N 
I 
I 

W--+--E 
I 
I 
s 

the directions first E, 
shown in figure 8.11.a. 
should follow it one 
= 2) is shown in figure 
the solution for the 

N 
I 
I 

W--t--E 
I 
I 
s 

case n - 1 to the four quarters, but scaled down ano re­
oriented. rhese four plots are again joined by straight lines of 
length ad/ 2 ** 2a and in the same directions as hefor-e, i.e., 
first E, then N and then W. 
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To plot these approxim~nts we consider some orientations of 
the case n = 1. A moment of thought will convince us that we 
need only fou..r: orientations and these ace shown in figure 
8.11.c, together with a pdir of truth values (the first relatei 
to rotation about the NE diagonal and the second related to 
rotation about the NW diagonal) and the direction of the second 

r----------, .-- l .---------, r ---, 
I I I I I I I I 
I •-----. I I •--➔---. I I • • I I •------• I 
I I I I I I I I I I 
I ' I I I I I I V I 
I I I I I I I I I I 
I •-----• I I • • I I · ---<--• I I •------• I 
I I I I I I I I L_ _________ _J L_ _________ .J 

l ---------.J 

(true,true) N (false,true) E (true,false) W (false, false) s 

Fig.8.11.c 

of the three str3ight lines, either of which will determine one 
of the four orientations. In the reach of DQ~Q! p, qc, the 
•formula• op* ~a plots an approximant with the orientation o(p, 
g) a. and the •tormula• op + go plots a straight line of the 
required length and with orientation a(p, q) □• 

The proqram< 1 > to plot an approximant follows. It first 
reads the length ode of the side of the square and the degree 
enc of the approximant. The first step is to calculate the 
length of the line segments regnired and then to move the pen to 
the starting position. Th plot is then driven by the •formula• 
D!;;fgg * _!~D. 

a~~~!rr tPeano curve 
QE + = (,!2QQ! p, q) : 

((p=q1y1:1 
QP * = (!2~! p, q) 

( n > 0 

approximan t¢ 
¢this plots a straight line 
+: = ( q I d I - d ) ; plot 
ta recursive operation¢ 

I n - : = 1 ; -.p * q ; ., P + g ; P * q ; P + q 
p + -.q; p * -.q ; n +:= 1 

) 
real d tthe side of the square¢, 
Int-n ¢the degree of the approximant¢ 
stirt here : read ( (d, n)) ; 
d /:= 2 ** n tlength of connecting segments¢ 
x := y := d / 2 ; move tto the starting point¢ 
¢now plot itt (!!Y~ * ~£Y~) 
~!!Q. Cl 

<1> From an algorithm of A. van Wijnqaarden. 

of length dt 

p • q 

. 

t 
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8.12 Chinese rings 

The next example is a solut ion to the puzzle of the Chinese 
rings. The puzzle may be stated as follows. rhere are e nc rings 
with an elongated D shaped rod passing through them; the ri n gs 
are attached, by wires through t he D shaped rod, to a plate; 
this is done in such a manner that, ~f the first cm - 2c ri n gs 
have been removed, then the cmath ring may be remo v e d ( o.r 
replaced) but not the cm-10th ring. The p-roblem is to remove all 
the rings. The solution is hy induction Ct>. Removal of rings 1 
and 2 is done in the ordec- 11 remove 2, remove 1". Assuming that 
we know how to remove (and therefore to replace ) less than nma 
rinqs, then all ama rings are removed as follows: "remove m-2 
rings, remove r~ng m, replace m- 2 rings, remove m-1 rings". 

In the 
removes ok ..;. 
rings. The 
removing all 

following program< 2 > the •formula• ck Q2!n ic 
ic rings. The •formula• ak !!E ia replaces ak ia 
•formula• an £2!~ Oa then drives the algorithm by 
the on □ rings. 

□!!~9!!1 
QE [QJ!!! = (!D! al, b) 

( in!. a : = a 1 ; 
((a-:-=b)>O 
I a Q.Q.!.D 2 : print ( ("remove 11, a)) 

QE .l!E.-= (int a1, b ) 
( !!!:!: a : = a 1 ; 

(( a -:= b ) > 0 

a !!I? 2 

I a ~E 1 ; a g,Q.!!l 2 ; prin t(("replace", a)) 
.!!t! n ; 
start here : read (n) ; n Q.Q!B 0 
!!~Qa 

Review questions 

8. 1 For mu las 

a) Is ax := ya a •formula•? 
b) Is ox+:= ya a •formula• 
c) What is the order of elaboration of 

ax+ - y - - - ~Q§ i Q!~~ 2a? 

1 ) ) 

d,!!£2)) 

d) How many priority levels are there for • dyadic-operators•? 
e) Is ax :=: ye a •formula•? 
f) What is the value of c7 - 3 - 2a? 

8.2 Priority declarations 

<t> D.O.Shklarsky, N.N.Chentzov, I.M.Yaglom, The USSR Olympiad 
Problem Book, Freeman & Co. 1962, pp 80-84. 

<2> This algorithm is due to Sharon Dyck and in its final form 
to W.L.van der Poel. 
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a) Is □1H.iO£i.D . - . . - . = la a •priority-declaration•? 
b) Is D££iorit.I +:= = O □ a •priority-declaration•? 
c) IS □.1n:ioci~1 !! = 10a a •priority-declaration•? 
d) Is Dl::..£,!Q£!,~j 1 = Sa a •priority-declaration•? 
e) IS o.eriori,ty , . , I = 6a d •priority-declaration•? 

8.3 Operation declarations 

a) Is □ QE. :=: = (£~! ~~1 a, b) a = ba an •operation-
declarati on•? 

b) Is □QE. 1 = (: !!Y~)a an •operation-declaration•? 
c) Is □ QE. * = (£~~1 a) !~!! exp(a)a an •operation­

dec lara ti on•? 
d) Is □QE. Q£ = (!~! £~~1 x, y) Eef E~~1 random> .5 x 

y )a an •operation-declaration •? 
e) Declare an •operator• aff~~tga so that af £!~!!~ na has the 

same value as acreate(f, n) □ [ R.10.5.1.2.c]. 

8.4 Elaboration of operation declarations 

a) What is the value possessed hy □Qa in the reach of □QE Q = 
(reaJ a) int : round aa? 

b) rs oo.e. (real) real o = candoma an •operation-declaration•? 
c) ~hat is the value of the •formula• □"+123" si ( "+1000" §i 

2)a usinq the declaration of □§ia as in 8.3? 
d) Is □QE. Q~ -= (J?!Q£ !;!ooJ a, b) .QQQ]; : ( a I !E.Y~ b ) a an 

•opecation-declaratioD•? 
e) Is ao.e. (r eal, real) real a = +c an •operation-declaration•? 

8.5 Dyadic indications and operators 

a) How many defining occurrences may be identified by an applied 
occurrence of a •dyadic-indication•? 

b) How many operator defining occurrences of □ +a are in the 
•standard-prelude•? 

c) How many • priority-declarations• are in the •standard­
prelude•? 

d) Where is the •priority-declaration• for the •operator• o?a in 
line 3 of 10.5.J.i in the Report? 

e) Is a:: =o a •dyadic-indication•? 

8.6 Identification of dyadic indications 

a ) ls a.e.riori:t_1 + = 8, + = 9a a •priority-declaration•? 
b ) Can a proper •p rogram• contain 

a(e£!Ori:t.Y ~~e = q ; X := ~~§ x)a? 
c) Why does the S occur in the description of the repetitive 

statement [R.9.2.a,b, 9.c]? 
d) Are •dyadic-indications• subject to protection? 
e) Are •operators• subject to protection? 

a) 

8.7 Identification of operators 

In line 11.11.y of the Report, the •formula• ovalue of ec 
1a occurs. Where is the defining occurrence-of its 
•operator • ? 
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b) In line 11.11.at of the Report, the •for11ula• af onec 
occurs. Where is the defining occurrence of its •operator•? 

c) In line 11.11.1 of the Report, the •formula• aa = zeroa 
occurs. Where is the defining occurrence of its •operator•? 

d) Where is the defining occurrence of the •operator• ogre in 
the •formula• a101 or bin 60? 

e) Where is the defining-occurrence of the •operator• a<a in the 
•formula• c"a" < (§1£iDg :)a? 

8.8 Elaboration of formulas 

a) What is the value possessed by a_!c in D.Q_E .t = (f~g.! a) Q.Q.Q± : 
a > Oa? 

b) What •closed-:::lause• is elaborated as :l result of the 
elaboration of the •formula• a_! XD in the reach of the 
•declaration• above? 

8.9 Monadic operators 

a) What is the value of a2 + - - + - 3a? 
b) Is ox : =: ya a •formula•? 
c) Is ax+:= real : randoma a •formula • ? 
d) ls areal +-realc a •formula•? 
e) What-is-the-value of c-1 i 2 = -1 i -2a? 

8.10 Related modes 

a) Are the modes a£!Qf i~!D and □!£~.!a related? 
b) Are the modes aref ref into and aref £CCC inta related? 
c) Are the modes a2roc union(int, real)o and aunion(eroc in!, 

!;!QQl) a related? 
d) Can the •declarer• aunion(froc real, eroc)c be contained in a 

proper •program•? 
e) Can a (oe - = (union(bool, ref char) a) int: 2 

QE - == (J!.!!!2!! (!~f in!, £!!!!!) a) : 3 - (£!!!!! : = "a")) c 
be contained in a proper •program•? 

8.11 Peano curves 

a) What would the •formula• c!~!§~ + falsea accomplish? 
b) Write this algorithm using four- mutually recursive 

procedures. 
c) Translate the algori th II into FORTRAN. 

8.12 Chinese rings 

a) What is printed by c2 Q.Q!~ Oc? 
b) What is printed by a3 Q.Q!.!! Oc? 
c) What is the purpose of the •declaration• Di!!! a : = ale? 
d) What is printed by a6 Q.Q!.!! 2o? 
e) Rewrite this algorithm without using •operation-

declarations•. 
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9 The grammar 

9.1 The syntactic elements 

The gra111mar of ALGOL 68 i s written using both 11 small- 11 an:i 
"large syntactic marks" (the l ower and upper case letters of the 
alphabet) ra.1.1.2.a). Thus, •base• consists of four small 
syntactic marks and •MODE• co nsists of four large syntactic 
m<1.rks. A sequence of zero or more small syntactic marks is a 
11 protonotion" [R.1.1.2.b]. For example, •base• is a protonotion 
and so is •streets-that-flow-like-a-tedious-argument•, though 
the latter will not be found i n the ALGOL 68 grammar. (The 
presence of hyphens within protonotions may be ignored.) 

The syntax of ALGOL 68 is a set of "production rules of the 
strict language" ("production rules", foi: short). A production 
rule is a protonotion followed by a colon followed by a list of 
protonotions separated by commas and followed by a point. A 
11 notion 11 is a protonotion for which there is a pro~uction rule, 
i.e., it lies to the left of t he colon in some production rule. 
For example, •integral denotation• is a notion because of the 
existence of the production rule 

•integral denotation : digit t oken sequence.• 
[R.5.1.1.1.a), but •base• is not, for there is no production 
rule for it [R.8.6.0.1.a). 

Any protonotion ending with •symbol•, e.g., •begin-symbol•, 
is a 11 symbol11 • 

A 11 direct production" of a notion is the part between the 
colon and the point in a prod uction rule for that notion. Thus, 
•digit-token-sequence• (see ab ove) is a direct production of 
•integral-denotation• and • insertion-option, radix, letter-r• is 
a direct production of •radix-mould• [R.5.5.2.h). The direct 
production of a notion is t herefore a list of protonotions (the 
"members") separated by commas [R.1.1.2.b]. 

A direct production of a notion is also a "production" of 
that notion. If in a production of a given notion, some notion 
("productive member") is repl aced by one of its productions, 
then the result is also a production of the given notion. This 
replacement process may be repeated as often as we please and, 
in parsing, normally continues until all the notions have been 
replaced and the result is a list of symbols. Then we have a 
"terminal production" of the given notion. For example, 

•digit one symbol, digit two symbol• 
is a terminal production of the notion •integral-denotation•. 

9.2 Two levels 

The syntax of lLGOL 68 is a set of production rules for 
notions (the production rules of the strict language) as 
described in section 9.1 above. only a few of the actual 
production rules are explicitly qiven in the Report. The number 
of production rules is infinite and the rule 

• integral denotation : digit token sequence.• 
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(8.5.1.1.1.a] is one of them. The others may be obtained, when 
reguired, fro11 a two level gramm ar which we shall now describe. 
A typical production rule of the strict language is 

•reference to real assignation : 
refere_nce to real destination , becomes symbol, real source.• 

It is obtained from the rule in t he Report 
•reference to MJDE assignation : 

reference to MODE destination , becomes symbol, MODE source.• 
fR.8.3.1. 1.a ] , by replacing the metanotion •MJDE• consistently 
by one of its terminal producti ons, viz., •real•. The rules of 
the Report are called simpl y "rules" without further 
qualification. We shall be speaking of several different sets of 
rules, so it is perhaps just as well to use the word "hyper­
rule" for the rules (such as th e one just given) found in 
Chapters 2 up to 8 of the Report, especially if there may be 
some doubt about which set of ru les we are referring to. A 
hyper-cule thus differs from a production rule of the strict 
language in that it may contain zero or more metanotions and 
zero or more semicolons. A production rule of the strict 
languag e contains no metanotions and no semicolons. 

Another set of rules is he "metarules". These are found in 
Chapter 1 of the Report. A tyFical metarule is 

•FOBESE : ADIC formula ; cohes ion ; base.• 
( R. 1.2.4. c). o\ meta.rule may be d istinguished from other rules by 
the fact that it has one 11 meta notion 11 (a sequence of large 
syntactic marks) to the left of the colon and zero or more 
semicolons to the riybt. Howeve r this is not sufficient to 
recognize one, for 

•DIGIT: DIGIT symbol.• 
(R.3.0.3. d] is a hyper-rule, not a metarule. From the metarules 
we may derive the production rules of the metalanguage in a 
rather simple way. 

Thus, in summary, the ALGOL 68 grammar consists of two sets 
of rules 

(i) tbe metarules (in Chapter 1) and 
(ii) the hyper-rules (in Chapters 2 up to 8). 

The production rules for the strict language are derived from 
both the metarules and the hyper-rules by a process which we 
shall explain, by ex ample, in section 9.5. 

9.3 The metarules 

A typical metarule s 
•FORESE : ADIC formula; cohes ion ; base.• 

(R.1.2.4.cl. It provides th ree production rules for the 
metalanguage, which are 

•?ORESE ADIC formula.• 
•FORESE: cohesion. • 

and 
•FORESE base.• 

Thus a production rule of the metalanguage contains no 
semicolons. The two direct pro~u ctions •cohesion• and •base• are 
terminal (in the metalanguag e), but the direct production •ADIC 
formula• may be produced f urthe r by using the matarule for 



110 An ALGOL 68 Companion 

•ADIC• [R. 1.2.4.d]. The terminal productions of metanoticns are 
always protonotions. 

The words used for the metanotions are usually chosen in 
such a way that they help to convey a meaning. Coined words, 
such as •PORESE• are often mnemonic. Thus, •FORESE• is made up 
from 

formula coh~sion ba§~ 
and FEAT from 

firm weak soft 
The reader will find many-others, similarly coined and usually 
the mnemonic is glaringly apparent. It is useful to remember 
that every metanotion ending witb •ETY• always has •EMPTY• as 
one of its (not necessarily direct) productions. 

The metanotion •ALPHA• is of interest because it has all 
the lettei:-s of the alphabet (small syntactic marks [R.1.1.2.a )) 
as direct productions. If more are required (perhaps in 
languages other than English), then it is pei:-mitted to add them 
(see 1.1 . 4 Step 2 in the Report). 

Another metarule of significance is 
•EMPTY : • • 

[R.1.2.1.i], from which we see that the metanotion •E!!PTY•, if 
it appears in one of the hyper-rules, or in those derived from 
them, may be consistently deleted. 

Two metarules to watch are 
•CLOSED: closed ; collateral; conditional.• 

[ R. 1. 2. 3. r] and 
•LIST : list ; sequence.• 

rR.1.2.5.h], where a distinction must be made between the 
metanotion, which appears on the left of the rule, and the fii:-st 
production of each, which is a protonotion. In speech this 
distinction will be lost. 

Another interesting metarule is 
•NOTION : ALPHA ; NOTION, ALPHA. • 

fR.1.2.5.fl. Roughly speaking, anything is a terminal pr:oduction 
of •NOTION•. More precisely, any sequence of small syntacti= 
m r:ks {the letters of the alphabet as usea in the syntax) is a 
terminal production of •NOTION•. This is so because the 
productions of •ALPHA• are the small syntactic marks. This fact 
is used heavily in the rules of section 3.0.1 of the Report. 

Jne might also wonder about the metarules 
•LMODE MODE . • 

and 
• Rl'IODE MODE.• 

r R. 1.2.2. j,k 1- •rhe mystery may be resol ved by examining the rule 
fo •forrnu_las• [ R. 8. 4. 1. bl, where the mode of the lP.ft 
•opera nd•, that of the righ •operand• and that of the result 
delivered by the operation all appear in the same hyper-rule. 
These modes may be different, so it would not do to use the 
metanotion •MODE• for all three of them. Other instances of this 
same phenomenon are suggested by the metarule 

l 
l 
I 
l 
I 
I 

r 

I • 
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•LOS!TI : LftOODSETY. • 
[R.1.2.2.o], which is used in the hyper-rule for •united­
declarers• [B.7.1.1.ee,ff), and by 

•ROWVSETY: ROWSETY.• 
[R.1.2.2.d] used in the hyper-rule for •slices• [R.B.6.1.1.a], 
where •ROWWSETY• counts the number of •row-of•s not involved in 
the •indexer• and •ROWSETY• counts the number of •trimscripts• 
vhich are •trimmers•. 

The two rules 
•LFIELDSETY PIELDS and EMPTY.• 

and 
•RFIELDSETY: and FIELDS EMPTY.• 

[R.1.2.2.g,r] are another pair which play a similar role in the 
rule for •selections• [R.B.5.2.1.a). 

There are two metarules in which the only 
of the metanotion is a protonotion. They are 

•CO~PLEI: structur ed with real field letter 
and real field letter i letter m• 

direct production 

r letter e 

fR.1.2.2.s] and 
1 letter o let ter n letter g.• •LENGTH : letter 

fR,1.2.2.v]. This 
metanotions in some 
shortening the rule 

means that the presence of one of these 
hyper-rule is merely for the convenience of 
and plays no other grammatical role. 

9.4 The hyper-rules 

A qood introduction to the hyper-rules is to be 
section 3.0. 1 of the Report, where are collected 
several rules which should be ma stered early, for they 
extensively elsewhere. A typical example is ~ 

•NOTION option: NOTION ; EMPT Y.• 

found in 
together 
are use:l 

[R.3.0.1.b]. The first step in detiving production rules of the 
strict lang uage, from the hyper-rules, is to make two new rules 
as follows: 

•NOTION option: NOTION. • 
and 

•NOTION option EMPTY •• 
As a next step we may replace each metanotion con sistently by 
one of its terminal produc tions. For example, we might 
substitute •integral-part• for • NOTION• and not hing at all for 
•EMPTY•. This will now qive us two produc tion rules of the 
strict language. They are 

•integral part option : integral part.• 
and 

•integral part option: .• 

Note that •integral-part-option• means what the words 
suggest. i.e., either the presence or absence of an •integral­
part•. This is used with good effect in the rule 

•variable point numeral: 
integral part option, fract ional part.• 

ra.5~1-2.1.b]. Examples are c 3.45c and c.45c. 
notions in ALGOL 68 are similarly chosen so 
(proto notions ) used give som e suggestion of 

!!any of the 
that the words 
the semanti= 
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elaboration. 

The pair of hyper-rules 
•NOTION pack: open symbol, NOTION, close symbol.• 

and 
•NOTION package: begin symbol, MOTION, end symbol.• 

r R.1.0.1.h,i] are also used in several places elsewhere. Thus, 
if axe is a certain •n•, then a(x)a is an •n-pack• and aQ~gln x 
~QQa is an •n-package•. 

The hyper-rule 
•NOT IO N LIST proper: NOTION, LIST separator, NOTION LIST.• 

r R.1.0. l. CJ J e nsures that at least two • NCTION•s will appear in 
the production. It is used, t or example, in the rule for 
•collateral-declarations• [R.6.2 .1.a] 

• collateral declaration: unitary declaration list proper• 
meaning that, for example, Df~~1 x, !:.!!!. ia is a •collaterc1l­
declaration• but □£~~! xa is not . 

The hyper-rules 
•NOTION LIST : 

chain of NOTIONS separated by LIST separators.• 
and 

•chain of NOTIONs separated by SEPARATORs: NOTION 
NOTION, SEPARATOR, 

chain of NOTIONS 
fR.3.0.1.d,c] are used 

separated by SEPARATORS.• 
to describe such objects as 

a123a 
which is a •chain-of-digit-tokens-separated-by-EMPTYs•, 

al, 2, 3o , 
which is 
symbols•, 

a •chain-of-strong-integral- uni ts-se Fara ted- by-comma­
a nd 

a1 ; 2 ; 3a , 
which is a •chain-of-strong-integral-units-separated-by-go-on­
symbols•. These are used principally in the rules for •serial­
clauses• [R.6.l.1], but in other places also. 

9.5 A simple language 

~e shall now use this kind of grammar to describe an 
interestin~ hut trivial language. By this small example we shall 
be able to see the complete grammar in a few lines. There are 
only three •symbols•, two hyper-rules and two metarules. Thus it 
will be easier to get an overall view of how the grammar works. 

The language we choose is that in which the only sentences 
(or programs) are 

□xyza, axxyyzzo, axxxyyyzzza ••• 
Perhaps we could say that the following would cause an ALGOL 68 
computer to print sentences of this language until it runs out f 
of time or memory space. t 

□ begin string a, b, c; 
~Q print ( (a +:= 11 x11 ) + (b +:= "Y") + (c +:= "z")) 
enda 

The reason that this languaqe is of interest is that it is known 
r H] that it cannot be described by a context-free grammar such 
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as that used for the syntax of ALGOL 60. 

The three symbols of the language and their representations 
are 

symbol 
•letter x symbol • 
• letter y symbol • 

representation 

•letter z symbol• 
This corresponds to the whole of section 
The three hyper-rules are 

(i) •sentence : 

DXD 
eye 
CZD 
3. 1 • 1 of .the Report. 

NUMBER letter x, NOMBER letter y, NOMBER letter z.• 
(ii) •NUMBER plus one LB'rTER : NUMBER LETTER, one LETrER.• 
(iii) •one LETT .ER : LETT ER symbol. • 

These three rules correspond to all the hyper-rules found in 
Chapters 2 up to and including 8 0£ the Report. Rule (i) 
expresses the requirement that the number of occurrences of each 
of the different letters should be the same. llule {ii) will be 
used to interpret this number, i.e., actually to count th e m out 
one by one. Rule (iii) is almost the same as the hyper- rules 
3.0.2.b and 3.0.3.d of the Report. Rule (ii) mig ht be compaced 
with 7.1.1.q of the Report, where the multiplicity of a •ro.,er• 
is being counted. Rule (iii) is present in order to satisfy the 
reguirement of ALGOL 68 tbat only protonotions ending in 
•symbol• are terminal production s of the grammar. Without tbis 
require~ent we could describe the language with two hyper-rules 
instead of three. 

The two metarules are 
(I) •LETTER : letter X : lette r y i letter z •• 
{II) •.NUMBER : one ; NOIH!ER plus one •• 

These two metarules correspond to the metarules found in section 
1.2 of the Report. The first metarule, (I), is there so that we 
may be able, with one word, to speak of any one of the letters. 
It is similar to the metarule 1.2.1.t of the Report for the 
metanotion •ALPHA•. We could do without metarule (I), but then 
we should need seven hyper-rules instead of three. Metarule {II) 
is essentLal. In it, •NUMBER• is u~ed a s a counter. The term~n 1 
productions of the metanotion •NUMBER• ace •one•, •one-plus­
one•, •one-plus-one-plus-one• and so 011. The meta.rule is 
somewhat similar to the metarule of the Report for the 
metanotion •ROWS• [R.1.2.2.b]. 

We shall now go through, in detail, the process of finding 
some of the production rules of the strict 1 nguage, as defined 
by the above grammar. This process is described in sections 
1.1.4 and 1.1.5 of the Report. Since there are infinitely many 
production rules of the strict language (even for the 
minilanguage above), we cannot give them all here. 

If we substitute the first terminal production of • NUMBER•, 
viz., •one•, for that metanotion, in hyper-rule (i), it yields a 
new rule 

(a) •sentence: one letter 
The airect production of 
terminal, since it contains 

x, one letter y, one letter z.• 
•sentence• in this new rule is not 

a notion which does not end with 



114 An ALGOL 68 Companion 

•symbol•. To remedy this we use hyper-rule (iii) and, replacing 
• LETTER• by each one of its terminal productions in t'.l~ -n, we 
obtain 

(b) •one letter x 
(c) •one letter y 

and 

letter x symbol.• 
letter y symbol.• 

(d) •one letter z letter z sym bol.• 
The rules (a), (b), (c) and (d) a re ea ch production r ules of the 
strict language. If now, in the right hand side of ( a), we make 
use of the productions in (b), (c ) and (d), then we o btain tbilt 

•letter x symbol, letter y symbo l, letter z sym bol• 
is a terminal production of the notion •sentence•. This means 
that ,l'e may spe k of axyzo as a • sente nce• in the rep res entation 
1 nquaqe. 

We now take another terminal production of •NUKBER•, viz., 
•one-plus-one•, and substitute that in the hyper-rule (i). It 
yields 

(e) •sentence : one plus one letter x, 
one plus one letter y, one plus one letter z.• 

Also, in (ii), we replace •NUf'IBER• by •one•. (Note that this is 
the first use of hyper-rule (ii).) This gives 

(f) •one plus one letter x one letter x, one letter x. • 
(q) •one plus one letter y: one letter y, one letter y.• 

anil 
(h) •one plus one letter z one letter z, one letter z. • 

Now, combining production rules (e), {f), {g) and (h) with 
production rules (b), (c) and (d) obtained above, we have that 
the object 

•letter x symbol, letter x symbol, letter y symbol, 
letter y symbol, letter z symbol, letter 2 symbol• 

is also a terminal production of • sentence•. In the 

sentence 

r-------------------+-------------------, 
one-plus-one- one-plus-one- one-plus-one-

le tter::-x letter-y le tter-2 
I I I 

r----.L.-----, 
one- one-

letter-x letter-x 
I I 

letter-x- letter-x­
symbo 1 symbol 

I I 
ax X 

r----.L.----, 
one- one-

letter-y letter-y 
I I 

letter-y- letter-y-
symbol symbol 

I I 
1 y 

Fig.9.5 

r----~--, 
one- one-

letter-z letter-z 
I I 

letter-z- letter-z-
symbol s1mbol 

I I 
z zc 

representation language we may ther::efore now say that 
axxyyzza 

is a •sentence• of the strict language. A sketch of the parse of 
this •sentence• is shown in figure 9.5. Perhaps we have now done 
enouqh of this to suggest that it is easy to show that 
axxxyyyzzza is a •sentence•. A crucial new rule in this process 
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is 
•one plus one plus one LETTER: 

one plus one LETTER, one LETTER.• • aoreover,. the process for finding more •sentences• 
language should be clear. 

of the 

It vill also be obvious that the same language might be 
described more concisely by the grammar 

(I) L x ; y i z. (i) s N x, N y, N z. 
(II) N : i N p. ( ii) ff p L : N L, 1.. 

(iii) L L symbol. 
and if ve drop the requirement t hat every terminal must end with 
•symbol• by agreeing that •x, y• and •z• are ¼lready terminals, 
then even more concisely by 

(I) L : x ; y ; z. (i) s : N x, N y, N z. 
(II) N : ; N p. (ii) N p L : N L, L. 

For the student of formal grammars this is more natural, for he 
is by nature an algebraist who is dedicated to the cult of 
concise expression. In a description of a practical programming 
language we can afford to be more verbose so that even those who 
are not algebraists can read the rules and think that they 
understand them. 

9.6 How to read the grammar 

How do we really use a grammar such as the one we are 
c onsidering? How do we read it? Is it necessary a l ways to 
perform, in our minds, the replacement of the metanot i ons by 
t heir terminal productions before we can understand what the 
hyper-rules say? The answer to this is probably that we should 
have th.e experience of making these detailed substitut ions at 
l east once. With this experience we ma~ then proceed as does the 
mathematician who finds that it is unnecessary to p rove a 
t heorem every time that he uses its result. Ris me thod is 
normally to check through the proof of the theorem at lea st once 
a nd then to remember its hypothesis and its conclusion. 

For us, the metalanguage plays the role of a body of 
theorems and the results we need to remember are the shape of 
the terminal productions of the metanotions. For example, in the 
gra■ mar of the minilanguage given in the last section, we need 
only remember that the terminal productions of •LETTER• are 
•letter-x-symbol•, •letter-y-symhol• and •letter-z-s ymbol• and 
that the terminal productions of •NUMBER• are •one•, •one- plus­
one•, •one-plus-one-plus-one• a nd so on. ~ith this infor mation 
at hand, the complete language may be comprehended merely by 
reading the three hyper-rules 

(i) •sentence: 
HUMBER letter x, HUMBER letter y, NU~BER letter z.• 

(ii). •NUMBER plus one LETrER : NUMBER LETTER, o.ne LETTER. • 
(iii) •one LETTER : LETTER Sjmbol.. 

The same method -0f comprehension .applies to ALGOL 68. The 
metarules should be well studied first and the shape of the 
terminal productions ·(at least of the commonly used ones) should 
be known. With this knowledge we can then read the hyper-rules 
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• 1 and comprehend their meaning. 

•£he most important meta notion in ALGOL 68 is •MOCE•. Foe 
this reason its terminal productions should be well known before 
trying to rean the hyper-rules. A chart is so~etimes a helpful 
aid in understan1ing the metalanquage, though others may prefer 
to rely upon the alphabetic listing of the metarnles which comes 
as a loose page witb the Report. If you have not already done 

MODE 
I 

,-------------.I----~ 
I 
MOOD 

I 
~ 

I 
UNIT ED 

I 
,-------' 

I 
TYPE 

I 
STOWf.D 

I 
union-of-LMOODS-MOOD-mode 

I I I 
,-------~ 
I I 

,------------L---------, ..._ ___ T _____ 'l 

f ormat I 
I I 
structured-with-FIELDS row-of-MODE 

I I 
,-------T-1.---------------, L---,-------, 
I I I I I 

I I 
LMOODS-LMOOD 

I 
,------.J 

PLAIN reference-to-MODE PROCEDURE FIELDS-and-FIELD 
I 
MOOD-and 

I I 
,---.&.---~. 
I I I 
INTREAL I character 

I I 
,---.--J I r 
I I I 

,----------.J 
I 
procedure-PARAMETY-MOID 

I I 
__J ,---.I--, 

I I 

I 
,.--J 
I 
MODE-field-TAG 

I 
,--------i 

I REAL boolean 
I 
with-PARAMETERS 

I 
EMPTY l'ICDE void 

I I 
LETT ER I 

I I I 
I L---, ,-------'------, 
I I 
INTEGRAL LONGSETY-real 

I I 
PARAMETERS-and-PARAMETER 

I I I 
,-------J L-,------------, r-------J 

I I I 

I 
,.--------~ 
I I 
TAG-LETT ER I 

I 
,--------J 

I I 
LONGSETY-integral long-LONGSETY EMPTY MODE-parameter r AG-DIGIT 

Fig.9.6 

so, it is a good idea to tdke this loose page and arrange it so 
tha it is attached to your copy as a fold-out page in such a 
way that it may be in view no matter what page of the Report you 
have O[l n. For those who like charts, we reproduce, in figure 
9.6, an abhreviated syntactic chart for the metanotion •MOD E•, 
in which •LETTER• and •DIGIT• ace the only metanotions not 
produced. Whichever method you prefer, ("people who like this 
sort of thing will find that this is the sort of thing they 
like") a careful study of the metalanguage is essential to the 
comprehension of the hyper-rules ana thus of the grammar of the 
language. 
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9.7 The indicators 

A 11 hypernotion 11 [ R. 1.3 J is a sequence of metanotions and/or 
protonotions, e.g., •MODE field TAG•. A hyper-rule (in the sense 
used in section 9.2 above) is t herefore a hypernotion followei 
by a colon, followed by zero o r more hypernotions separated by 
semicolons and/or commas and fol lowed by a point; e.g., 

•strong COERCEND : COERCEND; 
strongly ADAPTED to COERCEND .• 

ra.8.2.0. 1.d]. If, in a given hy pernotion, one or more of its 
metanotions is =onsistently r eplaced by a production of that 

strongly-ADAPTED-to-COERCEND 
-~r--- ___ T __ _ 

1 
I 
I 
I 
I 

ADJUSrED 
I 
I 
I 
I 
I 
I 

t---- .. 
l'lOID FORl'l 

I I 
l'IODE I 

I I 
MOOD I 

I I 
TYPE FOHESE 

I I 
PLAIN I 

I I 
INTREAL I 

----'-------- ~--- --'-
strongly-deprocedured-to-real-base 

T---
!NTREAL 

I 
PLAIN 

I 
TYPE 

I 
1'100D 

I 
MODE 

--T-

l 
I 
I 
1 

FOHESE 
I 
1 
I 
I 

--~-- ~-- --'--
STIRMly-deprocedured-to-l'IOID-FOR, 

Fig.9.7 

metanotion, then we have another hyper-notion, or perhaps a 
protonotion. Let us call this an "offshoot" of the given 
hypernotion; e.g., •strongly deprocedured to re,al base• is a 
terminal offshoot of •strongly ADAPTED to COERCEND•, and 
•INTREAL base• is an offshoot of • MODE base•. in order to read 
the grammar easily, we frequently need to know wbether two given 
hypernotions have a common offshoot. For example, 

•strongly ADAPTED to COERCfND• 
and 

•STIRl'lly deprocedured to MOIC FORM • 
have at least one common offshoot, say 

• strongly deprocedured to real base • 
That this is so can be seen by examining figuie 9. 7, where the 
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steps in obtaining this offshoot are sbo wn. In fact, examination 
of this same figure sho ws that there are infinitely many common 
terminal offshoots of these two hy~ernotions. They are all 
offshoots of a "maximal common offshoot", the hypernotion 

•strongly deprocedured to ~OID FO~M• 
It is the existen=e of some maximal common offshoot, rather than 
that of any p rticular common terminal offshoot which becomes 
the point of focus when looking at two such hypernotions. Note 
that because of the reguirement of consistent replacement, some 
offshoots may be too restrictive to be useful, e.g., the 
off shoot •pi:-ocedu re-with- l'IODE- para me tei:--a nd-1100 E-par a meter-MO Dl: ­
PBIOR ITY-opera tor• of the hypernotion •procedure-with-LMOD8-
parameter-and-RMODE-parameter-HOID-PRIORITY-operator• 
rR.1.1 •• 1.b]. 

In the process of parsing, given some hypernotion to the 
right of the colon in a hyper-rule, we need to know how to fin3 
a hyper-rule whose hypernotion to the left of the colon has a 
common offshoot with the given one. To help us in this search 
there are 11 indic tors" [H.1.3]. The example considered above 
will actually occur in reading the Report. :onsider the two 
hype r - rules [ 8 • 8. 2. 0. 1 • r1 ] 

•stronq COEBCENO : COE.RCEND ; 
strongly ADAPTED to COF.RCEND {822a}.• 

auc'l rri.B.2.2.1.a] 
•STIRMly deprocedured to ~OID FORM{820d} 

procedure MOID FORM ; 
STIRMly FITTED to procedure MOID FORM.• 

We have copied these two hyper-r:ules from the Report, together 
with two of the indicators, 11 822a 11 and "820d". In order to 
conserve space within the hyper-rules of the Report, the 
indicators have been compressed, according to cbvious 
conven ions ra.1.3). If we expand them again, i.e., 822a becomes 
8.2.2. 1. a and 820d becomes 8.2.0. 1. a, then we see that the 
hypernotion on the right of the hyper-rule 8.2.0.1.d points to 
the hyper-rul e 8.2.2.1.a and the hypernotion on the left of 
hyper-rule 8.2.2.1.a points to hypec-rule 8.2.0.1.d. We are ·: bus 
aided, in both directions, in finding hypernotions with common 
off shoo ts. 

The indicators are clustered rather thickly in the hyper­
rules concerning coercion, in section 8.2 of the Report. Pechaps 
this is evidence that it is in this section that the power of 
the two-level grammar is being used to its fullest. A simil~r, 
or perhaps greater, clustering of indicators might have been 
found in section 3. O. 1 of the Report, dealing with chains, 
lists, seguences and options, but these have not been incluned 
in the Beport since their great number would have rendered their 
presence of little value. Instead, the indicators have bypassed 
this section, whi=h the redder is therefore advis d to become 
familiar with at an early stage. 

Sometimes a hyphen, "-", appears after a set of indicators 
for a hypernotion. This tells us that there is at least one 
offshoot of the given hyper:notion which is a "dead end", i.e., 
it is not an offshoot of any hypernotion (on the other side of 
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the colon) in any hyper-rule. An example of this occurs in the 
hyper-rule for strong coercion quoted above [ R.8.2.0.1.d]. In 
this case it is there because, e.g., 

• strongly-widened-to-procedure-real-base• 
is a dead end. It is not an o f fshoot of any hypernotion on the 
left of any hyper-rule [R.8.2.5.1); in fact, it is not a 
•notion•· 

Review questions 

9.1 The syntactic elements 

a) Is •MODE base• a protonotion? 
b ) Is •all-mimsy-were-the-borogroves• a protonotion? 
c ) Is • cast• a notion? 
d) Is •MABEL identifier• a notion [R.4.4.1.b]? 
e ) Is •long-integral-denotation• a notion? 

9.2 The metarules 

a) How many production 
for ALGOL 68? 

rules of the strict language are there 

b) Bow many production rules of 
eKplicitly in section 6.1.1 

c) How many production rules 
derived from 7.1.1.s? 

the strict language are listed 
of the Report? 

of the strict language can be 

d) How many production rules of the strict language 
derived from 6.1.1.d? 

e) What are the terminal productions of •VICrAL•7 

9.3 The metarules 

a) Is • LETTER: LETTER symbol.• a metarule? 

can be 

b) How many production rules of the metalanguage can he derived 
from 1.2.1.r of the Report? 

c) Is •HOBSTOWED : TYPE ; UNITED.• a production rule of the 
metalanguage? 

d) Are the terminal productions of • NONPROC • also terminal 
productions of •MODE•? 

e) Is •FIELD• a production of • MODE • ? 

9.4 The hyper-rules 

a) Is •PARAMETER: MODE parameter. • a hyper-rule? 
b) Is • digit-token • a production of •digit-token-seguence­

proper•? 
c) Is o( )o a •strong-closed-(m]-clause•, where [m] represents 

some mode? 
d) What production of •LFIELDSETY • would be used in parsing aim 

of za? 
e) What production of •LMODE• is used in parsing ax+ ya? 

9.5 A simple language 
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a) Define, by means of a two-level grammar, the language whose 
sentences are printed by 

nl:!~.9!..!! ~E!.!:!!9. a, b := "Y", c ; 
g2 print((a +:= "x") + (h +:a: "Y") + (c +:= "zz")) 
endc. 

b) Define,-by means of a two-level grammar, the language whose 
sentences are printed by 

cbegin string a, b, c i 
.Q2 (print(a+b+c) ; (a+:= "x", h +:a: "Y", c +:= "z")) 
endc. 

c) Rewrite--the gi:ammar of the language considered in 9.5 using 
two metarules and two hyper-rules and yet i:equiring that 
terminals end in •symbol•. 

9.6 How to read the grammar 

a) Is •real-format• a terminal production of .,ODE•? 
b) Is •reference-to-procedure-row-of-character• a terminal 

production of •MODE • ? 
c) Is •long-structured-with-real-field-letter-1• a terminal 

production of •MODE•? 
d) Is •procedure• a terminal production of •MODE•'? 
e) Is • procedure- with-real-parameter-real• a terminal production 

of •NONPROC• [R.1.2.2.h)? 

9.7 The indicators 

a) Why is there 
Report? 

a dead end in •MOID FORM• in 8.2.3.1.a of the 

b) ~hat is a maximal common 
declarer• and •VICTAL MODE 

c) What is a maximal common 
CJERCEND• ani •STIRMly 
fR.8.2.2.1].? 

offshoot of •virtual NONSTOWEO 
declarer• [R.7.1.1.a,n]? 

offshoot of •firmly ADJUSTED to 
dereferenced to MODE FORM• 

d) What is a maximal common offshoot of •STIRMly rowed to MOID 
FORM• and •strongly rowed to REFErY row of MODE FORM• 
[ R. 8. 2. 6. 1 ]? 

e) What is a maximal common offshoot of •SORTlf ADAPTE~ to 
COERCEND• and •STIRMly united to MOIC FORM• [R.8.2.0.1, 
8. 2. 3. 1 )? 
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A typical •mode-declaration• is 
cmode com£l = struct(real re, real im)a 

121 

which, by virtue of extensions [R.9.2.b,c], may be written more 
concisely as 

cstruct com~l = (real re, im)a 
This •mode-declaration• is, in fact, one of the •declarations• 
of the •standard-prelude• ( 8. 10. 2. 7. a], which means that the 
programmer may assume that he is within its reach (unless he has 
made a similar •declaration• himself). A simplified parse is 

mode-declaration 
I 

.------------.------J.--.--------------, 
I I I I 

mode-symbol mode-indication equals-symbol actual-declarer 
I I I I __ J. __ 

.J. 

fQJ!!.e.! struct(real re, £~.! im)a 

Fig.10.1 

shown in figure 10.1. The hyper-rule for a •mode-declaration• is 
•mode declaration : mode symbol, HOOE mode indication, 

equals symbol, actual MODE declarer.• 
[R.7.2.1.a]. The two occurrences of •MODE• here ensure that 
mode of the •actual-declarer• on the right is then enveloFed 
the •mode-indication• on the left. 

It is perhaps worth while t o look at the hyper-rule 
•MOOE mode indi=ation : mode s tandard ; indicant.• 

the 
by 

f ll.Q.2.1.b] and to realise that the programmer may choose his 
own •indicant• more or less at will [R. 1. 1.5.b]. He is, however, 
subjected to the restrictions of his installation. It is 
expected that most implementations will permit such •indicants• 
as o~Q£a and □!!!11 □, i.e., object s which look like identifiers 
but are in bold face (or underlined). Objects which are •mode­
standards• are astring, sema, fi le, com~l, bits, bytes, long 
.QY.!:~§, long 1,.Q.1}9 !t!.!2, J&.!!9 .!Q!!g .!Q!El .f.Q!!!.EJ:.c, etc. This means 
t ha t one mil y write 

or 
amode long comEl = com£1 □ , 

each of which is legitimate but unpleasant for the human reader. 

10. 2 Development 

one purpose of the •mode- declaration• is to introduce a 
shorthand whereby the programmer may save himself trouble. If he 
uses some complicated •declarer•, then he may avoid writing it 
oot in full each time that he uses it. A simple example might be 
a nu merical analyst, worki11q with vectors and mat.rices, who may 
wish to use the convenienc of the •declaration• 
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□~Qi!~ y = [ 1:n) £~~1, 
~ode!= [ 1:n, l:n) £~~!a 

1TI the reach of this •declaration•, he may now use these •mode­
indications• as •declarers• by declaring a vector variable with 
ay xla or a matrix variable w·th D! x2n. It should be carefully 
noted that the value of ana which occurs in th •bounds• of 
these multiple variables is that which is possessed by enc at 
the time of elaboration of the •declaration• av xl, m -x2c and 
not that possessed at the time of elaboration of-the •mone­
declaration•. An example may help to make this clear. In the 
reach of aint na, the elaboration of 

--- an : = 5 ; J!!.Q.Q~ y = ( 1 : n ) £~!!! ; 
n : = 3 ; .:t. x 1 ; pr in t ( ..Ye~ x 1 ) a 

should print the value ■ 3• and not the value ■ 5 ■• This means 
that the •declaration• □i xla acts as though the aye were 
replaced by □( 1: n] £:~21□- This proce s is known as 11 developin IJ" 
the •declarer• fR.7.1. 2.c]. An important consequence is that, in 
the redch of the •declaration• 

□ !.Q9~ ! = [ 1:n] £~~!, 
realvec = [ 1:n] t~~!a , 

the •mode-indications• -~!~--and arealveco, when used as 
•declarers•, both specify the sai~-i;~i. The actual •symbol• 
(•indicant•) chosen therefore has no influence on the mode. 
Observe that the same principle applies to •identity­
declarations•, for 

oref int namel = i, name2 = i □ 
m~ans that both □ndiiie,;-and aname2a possess (different instances 
of) the same ndme. In the reach of the •decl ration• □ mode f = 
r1:21!::~~1, ~ -= [1:3]~~.!a, the •indicants• □fa and~ic also 
specify the same mode, when used as •declarers•; however, values 
of such modes may run iato trouble when assigned, for then the 
bounds are checked (R.8.3.1.2.c Step 3). 

The examples we have given are simple. Bowevec, a •mode­
declaration• may be usea for introducing a •mo e-indication• 
wh.ich, when used as a •declarer•, will specify a mode which 
contains a reference to itself. In fact, this will norm~lly 
occur in a list processing application. For such a mode, the 
compiler must be able to make some checks to determine whether 
storage space for a value of that inode is indeed possible. It is 
therefore not surprising that the process of developiTig a mode 
~houla have some rather natural restrictions. 

10.3 Infinite modes 

What we call here "infinite modes" are those hinted at in 
the last paragraph. An infinite mode will arise from the 
•declaration• 

□struct link= (int val, I~!. li.!l! next)c 
In its reach, the elaboration of 

oli.!}~ a := (1, liuk := (2, lin! := (3, n11))) □ 
will qe necate values linked togethe r as shown in figure 10.3. In 
such a linked list, the value of the las t name is •nil ■• If we 
try to write the mode specified by □1~n!a, using small syntactic 
m cks, it vill he 

•structured-with-real-field-letter-v-



where 
write. 
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letter-a-letter-1-and-reference-to-
[ link ]-let ter-n- let ter-e-le t ter- x-let ter-t • , 

[link] represents the same mode which we are trying to 
Since the mode contains itself, it is not unnatural to 

cac 

0 

0 0----)----T------,-o-, 
o I ■ h 1001 

L------.L-o-J 

r--<----J 
I 
.. ------T-o-, 
I . • 2■ Io o I 
L-----.L-o-J 

r--<---J 
I 
.. -----,-o-, 
I ■ 3 • 10001 
L------..1.-Q-J 

Fig.10.3 

call it an infinite modeC1>. The programmer (and the compiler) 
however, always works with a finite formulation of that mode, so 
that this infiniteness need not bother him. 

10.4 Shielding and showing 

If we consider the mode specified ty □~ □, in the reach of 
□ mode m = stcuct ( r eal v, m next) c , 

we soon come to the conclusion that, unlike clink□ above, the 
field selected by □ next□ contains , not a name, but--a value of 
the sa me mode. Of course, this value in turn has such a fiell 
and so on ad infinitum. This is troublesome, for if we try to 
visualize how storage might be llocated for such a value, it is 
cle r that it canno be rlone i n a computer whose storage is of 
finite size. It is therefore necessary to exclude such •mode­
declarations• from proper •programs•. rhe exclusion rests upon 
the fact that, in this •mode-declaration•, its •actu~l­
declarer•, □2!:f!!~!:(~~~J: v, !!! next) □, "shows" [R.4.4.4.t] □!!!_ □, 
which is the •mode-indication• on the left. It is therefore 
illegal. However, in 

cmode n = struct(real v, r~f n next) □ 
the •actual-declarer• cstruct (r eal v, ref n next) □ does net show 
□no, so that this •declarat ion• may be contained in a proper 
• program•. Whether an •actual-declarer• shows a •mode­
indication• rests upon whethe r that •mode-indication• is not 
" shielded" [R.11.4.4.a]. We must therefore know what is meant by 

c1> Those who ~re bothered by these infinities should consult 
the work of C.Pair [Pa], L.Meertens (M], and W.Brown [BJ. 
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shielding a • mode-indication• before we can understand how 
ce rtain •mode-declarations• can be excluded. Roughly speaking, a 
•mode-indication• contained in a given •declaret• is shielded if 
its p resence in that position does not lead to difficulties in 
alloc ating computer storage for a value of the mode which that 
•declarer• specifies. 

For the •mode-indication• cma, examples of •declarers• 
which that amc is shielded are 

astruct(int k, ref m n)a 
are£ struct(m n, char a)a 
a_er.Q£ (!!!, 1:!!_!) D 

□E!:.Qf (!!!!1) .!!JC 
and 

a[ 1: (!!!.Q~!! !!!. = !!!~ ; !!! k ; read (k) ; k) ] £~~1,a 
Examples of •declarers• in which DJ! □ is not shielded are 

C.!!JC 

□£~! J!!D 
D_E£.Q£ J!!D 
a[1:n] !! □ 

and 
Dj!l!i 0!! (!!!__!:, J!!) 

in 

The precise d~finition of shielding is given in the Report 
[R.4.4.4.a], so we shall only paraphrase it here by saying that 
cma is shielded if there is both a astructa and a arefa to its 
left, or if it is in, or follows, a •pirameters-pack•;-or if it 
is essentially local to one of the hounds of the •declarer•. 

As a first approximation, one may now say that a •mode­
indication• which is not shielded is shown by the •declarer• 
containing it. We then exclude from proper •programs• all •mode­
declarations• whose •mode-indication• is shown by its •actual­
declarer•. This immediately excludes such undesirable objects as 

c,m9g~ ~ = ~. 
!! = E!:~ ~, 
£ = £~{ £, 
Q. = [1:n] g, 
~ = YB!On(~, Ch!!) □ 

However, examination of the •declaration• 
c_!g~~ ! = .!'~! g_, 

.9 = .E~Q£ fa 
reveals that we are still in trouble with the first 
approximation to the concept of showing. For, although erg! go 
does not explicitly show □! □, the elaboration of or~! go 
[R.7.1.2 Step 1) involves the development of c.9a and would give 
us the •declarer• a;~t ££~£ ta, which does indeed show etc. It 
is therefore necessary to insist that we must develop all •mode­
indications• which are not shielded in order to find the •mode­
indications • which are shown by an •actual-declarer•. The 
definition of showing is carefully stated in the Report 
[ B.4.4.4. b], so we shall not repeat it here. Perhaps the 
motivation given here for that careful statement is sufficient 
for its understanding. 
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10.5 Identification 

Within a •serial-clau.·e• contili0inq a • mode-declari\tion•, 
•moue-indica tions• are s ubject to protection (R.6.0 . 2.d] , in the 
same ma n ner as are • i de u ifiers• and •cly dic-in:lications • , in 
ord r thdt th e y may not becom confused with th e same 
•indi=a tion• used e l se wher e . It is possible th P. r efore to write 

□ ( mode I= rg~! ; ! x : = 2; 
(t t. ---- <-----.1 ¢. 

(~QQQ I= i~! : £ x .- 1 
¢ L----<----J ¢. 

print(x)) 
print(x))a 

whereupon the values pcinted should be ■ 1 ■ and ■ 2.0 ■• The metho1 
of identification of the •mode-indications• is shown by"--<--". 

Although this identification process is familiar (it works 
the same way for •identifieC"s•), there is one small point to be 

declaration 
I r--------------,--.J.__ __________ T---,------, 

sub- rower bus- I I 
symbol symbol I I 

I r---------+-----, I I I 
I unitary-clause I unitary-clause! I identifier 
I I I I I I I 
I r-----+-----, I I l declarer I 
I I formula I up-to- formula I l I 
I I I I symbol I I I I 
J.. J.. __ .,L __ J. J.. 

____ .J. ____ 
J. ..L J. 

□ ( ~ b b + C g ea 
T T --T-- T r 

____ T ____ 
T "T T 

I L-----t-----J I I I I I 
I formal- cast-of- unitary- I I I 
I parameters- symbol clause I I I 

open- pack I I close- I I 
symbol I I I symbol I ope rand 

L---------.l.-------TJ. _____ _..,L _______ J I I 
I I I 

routine-denotation cpera tor I 
I I I 

operand I I L _________ T _ ____ __..L ______ J 

w:itched carefully. 
a •mode-indication• 
The reason for this 

a!t1!t 
¢.2 ¢. 

¢3 (t 

(tl.j ¢ 

I 
formula 

Pig. 10. 5 

It is that no • i n~ ica nt• m y b . used both as 
and , s •m o narlic- incl.ication• (R. 1. 1.5.h]. 
i s best s hown hy the followinq example. 

1:1~9.!~ :!:.Q! h , c , - ; rt ¢ 

begin mode a = real 
( (£! b) : h + c ) Q. e 

¢. • • • ¢ 
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¢5¢ ~]Q; 
¢6¢ QE ·~ = <in! X) in! 1 + x 
fl¢ ,. ••• ¢ 

¢8¢ ~2g~ 1 = QQ21 
¢9¢ ft ••• ¢ 

t10rt endo 
The problem here is whether o(a b) b + co is a •row-of-rower• 
(remember that it is permitted to replace o[ Jo by o( )o 
fR.9.2.g]) and therefore □ ((!! b) b + c) g_ eo is a 
•decl ration•, or whether a ( (~ b) b + c) a is a •routiue­
denotation• dnd therefoc-e o ( (~ b) : b + c) g eo is a •formula•· 
These two possibilities are sketched in figure 10.5. If it were 
such that D!! □ =ould be used as a •mode-indication• in line 2, 
and again as a •monadic-indication•, in line 6, then confusion 
would reign, foe- the mattec- can only be resolved when we meet 
the •ieclaration• of odo in line 8. If we new make it illegal to 
use o~o both as a •monadic-indication• nd as a •moae­
indicatioo•, then this unhappy situ tion does not arise. For: 
those interested in compilation problews, this example shows why 
it is necessary to identify 11 •mane-indications• before a 
detailed parse of the •program• is made, for the identification 
of the second occurrence of obo on line depends upon the 
information discovered in line 6 . 

10.6 P.quivalence of mode indications 

In the • mode-declaration• 
amode a= ref real, 

~ = Egi !:~~la 
it is rather obvious that both 010 and oba, when used as 
•decl r e cs•, specify the same mode. However, iince a •mode­
d~claration• has the possibil ity of depending on other •mode­
declarations•, or on itself, one may make several •mode­
d clarations• like 

□ 2t£!!£1 ~ = (r:ef ~ left, f~! A right) , 
Q ;:: (rel !2 left, ref struct 

(ref b left, ref b right) right), 
c = (ref Q left: £gf ~ right): 
Q = (ref~ left, f~f £right), 
~ = (f.S! £ left, E~t g right) o , 

in which it is not immediately cled.r whether the modes specifie1 
by 01, ~. f, ~a and a~a are all different or perhaps whether: 
some of them are the same. In fact, a close examin tion reveals 
that each of them spec"fies exactly the same mode. Each is 
merely a different way of thinking about the sa.me kind of ddta 
structure. It might be thought that, because the human reader 
(presumably) has trouble in deciding that the five •mode­
indications• are equivalent, it would also be difficult nj 
expensive for the compiler. But this turns out not to be the 
c:iseO>. Thus, in large programs, perhaps wr·tten by several 
pe on s , each person may describe the basic data structure in 
his wn way. If these are indeed the same, then the compiler 
will quickly find out about ·t. 

ct> See the papers of Koster [ Ko], Goos [G] and Zosel [Z ]. 
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10.7 Binary trees<t> 

We shall now consider some procedures for manipulating 
binary trees. These are data structures of the shape shown in 
figure 10.7.a. in which each "o" is called a "node" of the tree. 
lt each node there are tvo branches a "left-" and a "right 
branch". In more detail, the value of each node is, as is shown 
in figure 10.7.b, a structured value with at least three fields. 
The first and last fields are references to the left and right 
branches, respectively, and t be middle field contains some 

----o----, 
r---o---, 
I I 
o r--o 

I 
0 

I 
.--o--, 
I I 

r--o--, o--, 
I I I 
0 0 0 

Pig.10.7.a 

r-0-,.-------·- -----r-O-, 
,to 01 ■ attribute ■ 10 o+-, 

L-o_J__--------L-o-~ I 
I 

Pig.10.7.b 

information, perhaps a string, vhich is an attribute of that 
particular node. 

The necessary •mode-declaration• would be 
ostruct node= (ref node left, string val, ref nod~ right)c . 

We may observe that the mode specified by c~~2~c is infinite, in 
the sense described in section 10.3 above. · 

A binary tree is used for many different purposes. For an 
illustration, we shall use it to store and retrieve character 
strings in alphabetic order. 

10.8 Insertion in a binary tree 

Suppose that we are gi ve n t hree strings "jim", "sam" ani 
11 bob" , in that order , a nd t hat we wish to store these in a 
b i nary tree such as t hat discussed above. Storing the first 
stri n g vould result in t he s tructure sbovn in figure 10.8.a. 
After t he second and third s trings have been stored, the 

r-o-r--~--r-o-, 
1oeo1 • jim ■ 10001 
L-o--------~-oJ 

Fiq.10.8.a 

r -0-,----1- -r-o-, 
r+o 01 ■ ji■ ■ 10 o+, 
I L-o-L-----~oJ I 
I I 

, 0- i I 0-'I r-0~-~--r-o-, 
lo&ol ■bob ■ 1000110001 ■sam ■ 10001 
L- 0 - - ------0-.J 1-O-----...._o-~ 

Fig. 10. 8. h 

<t> For an authoritative discussion of binary trees, see Knuth 
[Kn] section 2.3.1. 
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structure is that shovn in figu re 10.8.b. Note that the shape of 
the tree will depend upon t he order in which the strings are 
encountered. Whichever string i s stored first generates a node 
which becomes the "root" of the tree. The succeeding strings are 
then compared with those already present to determine whether to 
branch to the left or to the right. 

A procedure to insert a given 
root is referred to by arootc is as 

□E!~ insert= (§1ring s, f~! !~! 
~J ~! n2Q~ o :=root; 
while (re! QQde : n) :#: ~i! 

n := ( s < val Qin I left 
( ref f~! TI2~~ : n) := ngg~ 

) a 
Suppose that we start vith an 
•declaration• 

string csa into a tree whose 
follows. 
!!QQ.~ root) 

do 
2! n I right Q! n 
: = t.!!i.! , s , .!!.il > 

empty tree, i.e., the 

aref node tree := nila 
and then elaborate--ihi--;call• aiiiirt("jim", tree)c. The 

atreec 
--r-

0 

0 0 
0 

0 

oeo 
0 

Fig.10.8.c 

ctreea crootc DOil 

T -~- --r--

0 

: 
0 

0 0 

0 

. . 
0 

0 

I 

0 

0 

0 0 
0 

0 0 

L-->--o o--<--o o 
0 0 

I 
,-o~--L-~-o-, 
1oao1 ■ jim ■ 10001 
L-o-.L--.---~-o-J 

Fig.10.8.d 

situation both before and after this •call• is shovn in figures 
10.8.c and d. Observe that the modes of both the •formal­
parameter• aroota and the •actual-parameter• atreea are the 
same, viz., that specified by af~; ref rrgg~a, so that no 
coercion occurs v hen the parameter is passed. 

The •declaration• or~!~~! nQ~~ n := roota imp lies that the 
mode of ana is that specified by aref r ef re f nodec . Since 
aroota is of mode specified by aref r ef nodea, the initializing 
assignment to Dna invokes no coercion. In the •a ssignati on• 

a(r~! I!! ~2g!: n) := n~~~ : = (Q!!, s, ~iJ)o , 
the second occurrence of DQQ~~a i s a •glob al-generator• 
generating a name of mode er~! QQ£~a , to wh"ch is assigned the 
value of the •structure-display• a(~!1, s, ~il) o. Beca use the 
mode of ana is cref ref ref nodec, it must be dereferenced once 
befor~ the new node is assigned. This is the reason for the 
•cast• oref ref node : nc. This • cast• is necessary. In fact, an 
:= Q~~~a is not an •assignation •, for there is one •reference­
to-• too many on the left. 
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If nov ve elabora te t he •cal l• ainsert ("sam", tree)c, we 
have what is s hown in f i gure 10. 8.e. Here we have ef~ectively 
elaborated the assigna ion en:= r ight of no in goi ng f rom 
figu re 10.8.d t o 10.8.e. In the •selection• crigh t Qt nc, one 
has the a priori mode aref ref re f nodea, but being in a veak 
position, it is derefe rence d (tvice) to aref nod~a. The a priori 
mode of aright 2f na i s thus D!~f ~t ~~g~a, sinc e t he fi eld 

atreea aroota ana 
-~- -r- T . : . . . 

0 0 0 

0 0 0 0 0 0 

0 0 0 

I I I 
I 0 0 

L-->--O 0 0 0 

0 0 

I r--1 
r-0 r -r-0-, 
to8of ■ jim ■ 1O ot>, 
L-o-L-----~-o-J I 

ana atreea aroot c 
T ~- ~ 

0 

0 0 
0 

I 
0 

0 

: 
0 

0 

I 
0 

0 

0 0 

0 

I 
I 

0 0 0 o----<---' 
0 0 

L-, I 
r-o~-~--~o-, 

r<to ot ■ jim■ IO ot>, 
I L-o-'------~-o-J I 
I I 

0 

r 
r-D-T-~-~o-, 
1oeo1 ■ sam ■ 1oeo1 
L-o._J._-----~-o-J 

,-o--r-•-...___---r-o-, ,-o---.T-----r-o-, 
10001 ■ bob ■ fo8ol 10&01 ■sa ■ • 10001 
L-0,-------0--' L-o -& o-J 

Fig.10.8.e Fig.10.8.f 

selected by aright of na is thus a name which refers to a name 
in a node. Since the mode of ana is aref ref ref nodec, the 
assignment now takes place withou t further coercion. This moves 
ona down the tree by one node. After elaboratio~ of 
oinsert("bob", tree)a, ve would have what is shown in figure 
10.8.f. 

10.9 Tree searching 

Another process in tree an ipulation is the searching of a 
tree for a node which contains a given attribute. In the reach 
of the •declarations• of sect ion 10.8, and of aref node m := 
nilc, this would be accomplished by the following: --- ---­
-~.E!:Q£ search = (~!Iing s, ~~! ~!!~~~root) ~22!: 

( ref ref ~E~! n :=root; 
vhile (~! ~Qde : n) :#: nil ~2 

ifs= val Q.f n 
then m := o ; .!l!L12 done 
else n := ( s <val~! n left Q.{ n I right Q.{ n) i 
ti; fil!~ 

done: U!!! 
) a 

The value delivered by the •procedure• is etrue■ if the node 
with string asc is found; otherwise, it is •false ■• As a side 
effect, the node where the string occurs is assigned to the non­
local •variable• omc; otherwise, cmc remains referring to ■ nil ■• 
Using the tree constructed in section. 10.8, the result of 
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elaboration of the •call• csearch("sam", tree) c would result in 
the situation pictured in figure 10.9. 

The •variable• ama serves to remember where the node was 
found. In the •assignation• cm:= nc, ana is dereferenced twice. 
Note also that in the •formula• as= val .Qf na, first enc is 

c tree a arootc ana cmc 
--T- ~-

0 

: 
0 0 

0 0 0 
0 0 

0 

L---)--0 0 
0 

T . . 
0 

0 

0 

0 
0 

0 
I ,---J 

T 
: 
0 

0 0 

0 

0 

,--o~--~-~o-, o 

0 

,--<to ol • jim • lo ot>-T<-o o 
I L-o-.l.------1-o-' I 0 
I I 

,-o-T---L---.-o-, 
10001 ■ bob ■ 10001 
L-Q-~-------L-Q-J 

,o-~--L---~o-, 
10001 ■sam■ 1000 1 
~o--L---.- o-J 

Fig.10.9 

dereferenced twice, then oval of no is dereferenced once before 
the comparison of strings is made. 

10.10 Searching and inserting 

The two processes just describerl are often combined into 
one. Thus we may wish to search a binary tree for a given 
string, to insert it if it is not there, and, in any case, to 
return with a knowledge of its position. This would be the kin1 
of action necessary if the tree were being used as a symbol 
table for- a compiler. A procedure to accomplish this might be as 
follows. 

E!Q£ searchin = (§!£illil s, £~! !~! ~gg~ root) ref ref node 
( ref ref node n := r oot ; 

) D 

while (ref ref node : n) :#: ~i! QQ 
ifs= val Qt roo t 
i!!~.!! g.Q_!Q done 
~ls~ n := ( s < val 2! n left .Qt n I right Q£ n) 
ti i 

(ref ref node n) := n~Q~ := (nil, s, n1!) 
done: n 

All the elements of this pi:-ocedure have been seen already. It is 
therefore sufficient to remark that the value delivered ty the 
procedure is that of the anc which follows the label adone :a, 
after this ana has been dereferenced once. l 

j· 

I 
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10.11 Tree walking 

Another fundamental ■anipulation with binary trees is known 
as a "tree walk". This is a process of visiting each and everJ 
node of the tree. DsuallJ some action is to be taken at each 
node, e.g., printing its string, or counting the node. A tree 
walk is called a "pre walk", "post walk" or "end walk" (see 
Knuth [Kn]) depending on whether the action is to be taken upon 
first reaching the node, or between examining its left and right 
branches, or upon leaving the node for the last ti ■ e. For 

r~-, 
r-, B P--, 
I L---' I 

r~ ,.-J-, 
I A I I C I 

Fig .10.11 

example, for the tree displayed in figure 10.11, a pre walk 
would perform action on the nodes in the order BA C, a post 
walk in the order l B c and an end walk in the order Ac B. 

We shall no v write a procedure for printing the strings of 
the nodes, in alphabetic order, bf doing a post walk over a 
binary tree. This is a typical problem in which recursion 
provides a neat solution, which is as follows: if the tree is 
empty, then do nothing; otherwise, using an induction hypothesis 
that ve know how to walk a tree with the number of nodes less 
one, first walk the left branch, then print the string, then 
walk the right branch. The procedure is as follo ws. 
atlt ~~QE post walk= (£~! B2Q2 root) 
i2i (root :#: B!! 
t3t t post walk (left .Qf root) ; 
t4t print ( val .Q! root) 
t5i post walk(right 2{ root) 
t6t )o 

In lines 3 and 5, the •actual-parameters• cleft of rootc and 
aright 2t roota are dereferenced once. Note that an end walk is 
similar - merely interchange lines 4 and 5 (except for a;c). For 
the pre walk we interchange lines 3 and 4 (except for the cl a). 
For the tree discussed in section 10.8, the •call• cpost 
walk(tree)o should print its strings in alphabetic order. Note 
that the •actual-parameter• atreeo is dereferenced once. 

we may no w make this procedure ■ore useful bf generalizing 
it t o perform a given action at each node. The action is in the 
form of a •procedure• which is passed as a parameter. 

DE!~£ post walk a= (~! ~.Q~~ root, J?!'..Q£(!~f B.Qg~) action) : 
~tl!~ pro£ q = (£~! n2Q~ r) : 

( r : tt: ni! 
I g (left .Q! r) ; action (r) ; q (right .2! r)) 

g (root) 
!!!~a 
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10.12 A non recursive approach 

The recursive solution t o the tree walk ttoble m, given in 
section 10.11 above, is sim ple to program and easy to 
understand. When proving the correctness of programs, this is an 
important consideration. However, by using recursion, a certain 
price must be paid for this convenience, because the run-time 
organization may need to build a stack to remember the nested 
•calls• and this stack will require storage the size of which is 
unknown. In certain situations the programmer may not wish to 
pa.y this price. For example, he may be writing a garb,lge 
collection routine which must work well just when the amount of 
free storage is at a minimum. For this reason other schemes of 
walking trees are exploited [SW]. We shall outline such a scheme 
here. 

The basic principle is that the tree is broken apart at one 
node, some of the names are reversed and three variables a.re 
used to keep track of where the break occurs. As we move the 
break down the tree, the names are reversed to refer to where we 
came from. As we move up the tree, the names are restored to 
their former state. Also, when we move from the left branch to 
the riyht branch of a node, it is necessary to shift the 
reversed name from the lef t to tbe right. The extra storage 
required consists of three var iables ap, qa and ar □ of mode 
specified by aref ref n-Ode c, and the existence of a boolean 
field in each node (or cor responding to each node) which 
remembers whether we have already moved across that node (i.e., 
whether the name which refers upward is on the right). The value 
of this field is initially ■ false ■• 

to 
The •mode-declaration• given above is thus amended slightly 

(£~! 

'l'he 

astruct node = 
n2g~ left, §.!E.i!lg-vaI: ~921 flag, E~! !!2Q~ right)a 

situation at some moment in moving down the tree 

age 

0 

0 0 

0 

0 

apn 

I o o 
I ,---<---o o--o o 
I r-o-~--i---r-o-, o o 
L(to 01 10 ot->-, 

L-o-~-----L-o-J I 
o o---->----, I 

o r-o-r---L---r-o-1 

r<+o 01 lo a+>, 
I L-o-~ ___ ......._ o-J I 
I 

r-o-~-~---T-o-, 
r<to 01 lo ot>, 
I L-o-1--------'--o-J I 

r-0-r---L---r-o-, 
r<to o I I o ot>, 
I L-o.J.. _______ i_o_J I 

fig.10.12.a 

is 
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pictured in figure 10.12.a. 

The steps in the process of moving down are 
a( r := left Qf q; 
left .2! g := p 

p : = g ; 
q := r ) D 

133 

after which the situation is as shown in figure 10.12.b. We neef 

aqo ope 

0 0 
0 0 

0 

f 

0 0 
0 f 

f r- 0 -T-----r-o-, 
0 o L(fo of I a at->-, 

o a 
0 

o o---->---, L-o~--~--J.-o_J 
0 ,----+-->------J 

f 
f 
f 
L--)--, 

r-o--r--~---.-o-, 
Io o I I c ot>, 
L-o_.....__ __ _J__o-J f 

r-o-T---~---T-o-, 
r<to of toot>, 
I L-o-'-------'--o.J I 

r-0-...--........ - -T-o-, 
r<+a a I I o o+>, 
f L-o.J.. ~-o-J f 

Fig.10.12.b 

only add some way to stop this process. This is accomplished by 
the •condition• 

D (,Egf .!]_2Q_g ! g) :#: .!!!J.c 
one should also check that the process starts from the crooto 
correctly and works properly when c (!'.~f !!Q.9~ : g) :=: ni.J::c. 

When the walk on the left branch is done we must move 
across the node. The situation before is as in figure 10.12.= 

oqc cpa 

0 

0 0 

0 

0 0 

,--<----o o--o o 
I r-o-r---..L--r--r-o-, o o 

0 

L-o o>, 
o I 

L(to o f I F I O at->-, 
L-o-'-----A--..L...o-J f 

I 
r-0-T---..l.--T-T-o-, 

r<to o I IF Io ot>, 
f L-o-..L...-----..L-..L-o-J I 

r-0 -T---..L...--,-T-o-, 
r<+o of IFfo at>, 
f L-o-l--------~-..L-o-J I 

Fig.10.12.c 

and the steps in the process are 
er : : q 

g := right Qf p ; 
right Qf p := left Q! p ; 
let t Q! p : = re 
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The situation 
fiqur~ 10.12.d. 
remember that we 
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after elaboration of these statements is as in 
Now we perform the action at this node and then 

have done so by 
caction(p) ; 

tag .Q! p := !fQ~D 
The process of moving up the tree is the opposite of moving down 
the tree except that we must check wh~ther we are done, 

a(fgf. !!2£~: g) :=: rootc 
and whether we should change to moving across 

a-. tag 2! po 
Also, as we move up, the value of the flag field is restored to 
■ false ■• 

ape 

0 0 

o o--o o-->---, 
o o r-O-r---i--,-,-o-, I 

ego 

0 

0 0 
0 

r-<-+o o I I Tl o ot>J 
I L-o-~------~-~-o-J 
I 

0 

r<o o-J 
I o 

r-0-r----~--T-r-0-1 
r<+o o I IP Io o+>, 
I L-o-~------.J.-~-o-J I 

r-o-T---~--.-.-o-, 
r<to o I IF Io ot>, 
I L-o--'------'--'--o-J I 

Fig. 10. 12. d 

The complete algorithm is expressed as follows: 

□£fQ£ walk= (!~! !!.Q1g root, E~.Q£(fgf .!!2Q~) 
begin ref node p := root, g := root, r; 

.H. root :1: !!.H 
then 
d;wn : while (ref node : q) :1: .!!i! Q.Q 

(¢see figure 10.12.art 

3.ction) 

r := left Qf q ; left .Q! g := p 
q := r ¢see figure 10.12.b¢) 

p : = q 

across : ¢see figure 10.12.c¢ 
r : = q ; q : = right Qf p ; right Qf p . -
left Qf p := r ; rtsee figure 10.12.dt 
tag 2! p := ~-rn~ ; acticn(p) ; 

if (£g! !!QQg: g) :I: ni! !]g!! down l! 
up : whil~ (Egf nod~: g) :I: root QQ 

if tag .Q! p 

left Qf p 

!hen tag Q_ p : = !2!~~ 
right 2! p := q; g : = p 
~1§~ across 

r := riyht Q! p 
P := r 

fi 
fi--

~!l.~- ¢ walkrt 

,. 
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Review questions 

10.1 Syntax 

a) Is D.J!!Qde £~1 = !Q!Lll i!t~o a •mode-declaration•? 
b) Is amode a= [ 1:n]reala a •mode-declaration•? 
c) rs D,!!!Q.Q~ !: = [ J!:galo a •mode-declaration•? 
d) I s aunion a = (b) a a •mode-declaration • ? 
e) Is astruct - u = (int q, real s)o a •mode-declaration • ? 

10.2 Development 

= a) In the reach of D!Qg~ 
EEQf Ea, develop the 

b) What is printed by 

~ = f~! !! ; .!!!Q.Qg E = [ 1:nJ !!!!, g 
•declarer• astruct (a a, a d)a. 

O~~g!.!! !!!Q~~-i-;-[ 1:2] JU!;[~!~ V 
print(y£~ v) ~Q~o? 

c) Develop the •declarer• 
d) Develop the •declarer• 
e) Develop the •declarer• 

Df~E~c in 11.11.t of the Report. 
o~£iE!~a in 11. 11.k or the Report. 
o!!~Q!D in 11.12.w of the Report. 

10.3 Infinite modes 

a) What are the two occurrences of 01_!.!!~0 on line 4 in section 
10.3? 

b) What are the three occurrences of o.H.!!.!D on line 6 of section 
10. 3? 

c) Is the mode specified by O!O, in the reach of DfilQQ.g ~ = fgt 
!!, b = 2 .t_ruf.t_ (~ a) a, an infinite mode? 

d) Build the list structure shown in figure 10. 3 from top down. 
e) Is a.U . .!!! a : == ( 1 , (2, (3 , .!!!!) )) a a •declaration•? 

10.4 Shielding and showing 

a) Is oma shielded in o[ 1: n ]st rue t (m a, int b) o? 
b) Is aio shown in ostruct ~ef a a, b b)o, in the reach of om2~~ 

~ = [1:10].!!!, ~ = EEQS: ~a? 
c) Can D.!!QQ~ ! = £~! EEQS: ~a be contained in a proper •program•? 
d) can amode m1 = ref m2, m2 = struct(m1 f)c be contained in a 

proper •program•? 
e) Can amode ml = union(m2, m3), mJ= ~!rYf!(!~f ml a, [ 1:n]~1 

b), ~J = E~Qf(!l)o be contained in a proper •program•? 

10.5 Identification 

a) Is a ( _Q : u ) ~ va a •formula• or a •declaration•? 

10.6 Equivalence of mode indications 

a) In the reach of Dfil2~g ~ = r 1:10] fh~£a, are the modes 
spec"fied by o~a and a~tringa equivalent? 

b) Are the modes specified by c~a and DE□, in the reach of DIDQ~~ 
a = st~uct(ref ax), t = ref struct(b x)o, eguivalent? 

c) Simplify the •mode-declaration• D§!EYf! ~ = (!n! u, fgf 
struct (in t u, ref a v) v) o. 

d) ln the re ch of astruct a = ( r ef b r, bool s), Q = (bool s, 
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ref a r)a, are the modes specified by a~a and age 
equivalent? 

e) In the c-each of □.2!!:.!!£.! ls : (!~! 1 a, i.!!!. b) , ! = (E~! !!! a, 
1~! b), ! = (E~! ! a, i.!!!. b)c, are the modes specified by 
c!s, la and a]!!a equivalent? 

10.7 Binary trees 

a) In the reach of amode nood = ref struct (nood 1, !!.EiEg val, 
IlQQ~ r)a, does agggga specify dn infinite mode? 

b) Using dt most three statements, in the reach of the •mode­
declaration• for □non~a of 10. 7, construct the binary tree 
of figure 10.8.b. 

10. 8 Insertion in a binary tree 

a) Write, as one •assiqnation•, the equivalent of □ insert("ron", 
tree)c, for the situation in figure 10.8.f. 

b) For the tree as shown in figure 10.8.f, what is printed by 
cprint(val 2! left Qf tree)c? 

c) For figure 10.8.f, what is the value of a (fg.! !!Q~~ root) 
: = : nc? 

d) For figure 10.8.f, what is the value of □left Qf tree :=: na? 
e) For fiqure 10.8.f, what is the value of cleft 2f n : =: .!!!.! □ 

and that of □left Qf n · =· (!~! !!21!! : Bi!) c? 

10.9 Tc-ee searching 

a) Rewrite the •declaration• of asearchc without using a 
•completer•. 

10.11 Tree walking 

a) Define a •procedure• apla such that ap1 (tree) □ will print the 
strings of a tree (see figure 10. 11) in the form 
((() A())B(()C())). 

b) Define a •procedure• ap2 □ such that ap2(tree)a will print the 
strings of a tree (see figure 10.11) in the form (A,B,C). 

13.12 A non recursive approach 

a) Alter the algorithm of 10.12 from a post walk to a pre walk. 



11 Easy transput 

11.1 General remarks 
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The transput routines of ALGOL 68 are written in ALGOL 68 
itself [B.10.5]. This means, in t heory, that it is not necessary 
to explain any of them here. In order to understand what the 
transput routines do, we need onl y to act like a computer and to 
elaborate the routines of the Report. However, most of us prefer 
not to emulate a computer. For th is reason, extensive pragmatic 
remarks are included in sect ion 10.5 of the Report and some 
informal remarks on the simple r outines, which would be used by 
a beqinner, are appropriately the subject of this chapter. 

The general philosophy is that no new language tricks are 
used. This means that what we have already learned about the 
language should be sufficient for the understanding of the 
transput routines. The transput does not depend upon exceptions 
or special cases. 

11.2 Print and read 

and 

The two most useful routines for the beginner are 
cprin to 

cread c 
We have met them before in several examples in preceding 
chapters. The procedure oprintc i s used for unformatted output 
to ~he standard output file (p robab ly a line printer) and the 
procedure areada is used for unfo rmatted input from the standard 
input file (probably a card reade r). Examples of their use are 

cprint ( X) a 
aprint ( ("answe r.!.=!.. '' , i)) a 

aprint((new page, title))c 
and 

oread(x) a 
cread ( (i, j)) a 

aread ((xl, new line, fl))c 
aread((a, space, b, space, c))c 

An important point to notice is that both □ print□ and creadc 
accept only one •actual-parameter•. Thus oread(x, y)c is 
incorrect. The mode of the •parameter• of cprintc and creada 
begins with •row-of-•. This means that aread((i, j) ) o or 
aprint ((i, j ))c is acceptable since o (i, j)c is a •row-display•. 
Note tbat cprint((x )) a is as good as aprint(x) □, for a(x)c is a 
•closed-clause• whose value is cxa and cxo will be rowed to a 
multiple value, a row with one e lement. 

observe that, in addition to •variables• like ax □ (and for 
oprinta, •constants• li.ke c"answer!..=!.."a ) , the •uni.ts• of the 
•row-display• (or the single •para1nete r•) may be certain layout 
procedures like aspace, backspace, new linec or anew pagec, to 
allow for a rudimentary control over th e standard input nd 
output files. Thus oprint((new page, "page..!.10 11

, new line, 
11 name", space, "address")) a, s hould result in the following 
output at the top of a new page. 
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PAGE 10 
NAME ADDRESS 

11.J Transput types 

In order to understand wha t values can be printed and read, 
we should examine the •mode-declarations• for the hidden 
•indicants• DQY!!IE~D and o!.!!!IE~a [R.10.5.0.1.b,e]. We call 
these "hidden• because, although they appear in the Report in 
the form a% ~Y!!iE~a and al ! U!I£ga, they may not be used 
directly by the programmer. They are present only for the 
purpose of description of the t ransput routines. If one is used 
by a programmer, then it will be regarded as an •indicant• vitb 
no defining occurrence. 

The declaration of DQY!!l.P~D may be paraphrased as follows: 
DQY!!Ie~o specifies a union of the modes oin!, !~~!, bogla nd 
a£~~!□, together with prefixed a!gngas where applicable, and all 
multiple and/or structured modes built from these. l!lxamples are 
a[ Ji!l!, ~!ti.!!.9, f2!!E!o and a[ ].2!!Y£.! (i,nt n, [ ]ho~?.! b1) c. Note 
that values of each of these modes are constants. 

If we consider a union of the same modes as for agyttnga, 
but each preceded by •reference to•, then we have the mode 
specified by D!!!..!:f.~a. Examples ar:e □ref int. !:~I £!!~!, 
retr lint, ref string, ref com_plo and ore-f( jtruct(int n, ( ]lQQ! 
b 1) a. 

Thus, agy!!IE~a is an appropriate union of those constants 
which we miqht expect to print and oi!!.!..te~a is a union of the 
corresponding •variables•. 

It is now perhaps convenient, for our discussion, to 
suppose that there is a •mode-declaration• 

amode Erintt1£e = union(out1I£e, £roc(file)), 
readttee = union(intY.ee, eroc(file))o , 

although such a •mode-declaration• does not exist in the 
•standard-prelude•. With this in mind, we may now say that the 
•parameter• of aprinto is of the mode specified by c( Jeri]!~~E~D 
and that of i:ireado is that specified by o[ J.!'gad!I~D- This 
means, in particular, that the oxa in oprint(x}o will be 
subjected syntactically to the coercion of dereferencing to 
D!~la, uniting to oe!intt1E~D and then rowing to a[ Je£in!!1.Egc, 
whereas in aprint((x, y))a, the last coercion is not necessary 
since □ (x, y) o is already of mode •row ofe. In aprint (new 
page) a, the anew pageo is of a priori 111ode DJ?.!Q£ (f!..!g)o and it 
is united to DE!!!!.!!I£ga and rowed to a[ ]E~in!!Iego. These 
particular coercions are of little concern to the programmer 
except perhaps that their understanding helps to prevent such 
errors as aprint(x, y)o. 

11.4 Standard output format 

we shall now examine what to expect of the appearance of 
•constants• on the standard output file ostand outa as a result 
of a •call• of cprinto. For this purpose, the mode specified by 

[. 

I 
I 
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the bidden •indicant• asi!ElO~!a [R.10.5.0.1.a] is relevant to 
our explanation. It is a union of the modes specified by cin!, 
!~!!, £Q_apl, HQQ!, £haEO and c§!£i~ga together with prefixed 
olQ.n.!JDS, if applicable. we shall be able to understand the 
output appearance then, if we c onsider the action of aprinta on 
values of each of these modes i n turn. 

We shall also need some as sumptions about the environment, 
if we are to give illustrative examples. Therefore let us assume 
that, in our environment, aint widtha [R. 10.5.1.l.h] is ■ 5 ■, 
areal widtha (R.10.5.1.l.i] is ■ 7•, oexp widtho [R.10.5.1.3.j] 
is ■ 2• and amax c har(stand out cbannel]a (the line length) 
rl1.10.5.1.1.m, 10.5.1.3.e] is ■ 6'h (the same as this text ). 

With these assumptions then, the result of the •call• 
aprint((newline, !ru~, .!21E~• 1, O, -1, 1 . 2, 

0.0, -.0034, "a", 11 abc 11 , 1i2))a 
is 
1 0 +1 +O -1 +1.20000 0E +O +O.OOOOOOE +O 
=3:400000E -3 A ABC +1.000000E +0 I +2.000000E +O 
The value -3 .400000E -3 was prin ted on a new line because there 
was not enough room on the first line. Note that an integral 
value occupies 6 (aint width + 1o) print positions, a r e al 
constant 13 (areal width + exp width + 4a). print positions, a 
complex value 28 and a boolean or a character value 1 each. Also 
each of these is separated from the previous one by a space, 
unless we are at the beginning of a line. 

Multiple values are also included in the united mode 
specified b:y D.QJ!!!IE~D and there fore multiple va 1 ues may be 
printed. For example, in the reach of (1:3]!!!!: u1 = (1, 2, 3)o, 
the result of aprint((u1, 4))o is 

+1 + 2 +3 +4 
Uso, in the reach of or1:2, 1:2 U!!.! n2 = ((5, 6), (7, 8))0, the 
result of aprint(n2)a is 

+5 +6 +7 +8 
Actually, the description of cprinta [R.10.5.2.1.a,b) indicates 
that each of the •units• of a •row-display• a(:1, b, c, a)c in 
aprint((a, b, c, d))a is first 11straightened 11 (unravelled) 
[ R.10.5.0.2.c) to a value of mode specified by o[ ).§ime_Jou_!c and 
each of the elements of each of these straightened rows is then 
printed with the standard format discussed above. This means, 
for example, that the an2o in aprint(o2)a, given above, is, 
within the •procedure• aprinta, straightened from aQutl.}'.~o to 
c[]§.i!.e.!Q.uta ra.10.5.2.1.b, 10.5.0.2.aJ. Thus, all multiple 
values and all structures (except for agQfilE~D and a2 ~ringa, 
which are already in D§!.!!L.IUQUta) are straightened to 
a( l§!!tl~uto before prihting. 

The exceptions for a2 ttiEgo and D£Q!£!o are that, although 
o2trj,rrga has the mode •row of character•, the result of 
aprint( 11 abcd")a is ABCD and not ABC D, which would be the case 
if it were treated like other multiple values, and aprint(1.2 ! 
3.4) c gives 

+1.200000E +O J+3.400000E +O 
rather than 
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+1.200000P. +0 +3.400000E +O 
which would be the case if it were treated in the same way as 
the other structured values. 

One final point is that the appearance of the result of 
aprint(x} ; print(y)a is exactly the same as that of aprint ((x, 
y))a. In particular, each •call• of aprinta does not start the 
output on a new line. A new line is started only when there is 
not enough room on the old line or when one of the layout 
procedures anew linea or anew pagea is called. 

11.5 conversion to strings 

For those who find that t his st ndard format does net meet 
their needs, there are a few •procedures• which allow for some 
form of simple control over the appearance of the output, 
without resorting to the use of formats. These procedures 
convert integer or real val ues and their long variants to 
strinqs. They are aint string, redl string, dee string □ and the 
same preceded by alongas, i f applicable [R.10.5. 1.J.c,d,e). 
Thus, if it is desired to print the integral V3lue ■25 ■ using a 
width of three print positions, this can be done hy 

cprint(int string(25, 3, 10 ) )0 
The second •parameter• of ciot stringo is the string length and 
the third is the radix. The • call• 

aprin t (int string (25, 3, 8)) o 
would yield +31, because 25 = 3 • 8 + 1. Fer real values the 
value of areal string(3.14, 10, 1, 2)o is ••3.140E-t00 ■ and the 
v:tlue of odec strinq().14, 10, 3) □ is •+00001.140 ■• In both 
•procenures•, the second •par me er• is the length, the third is 
the number of di1its to the right of the fOiot, and for areal 
stringa, the fourth •paramP-ter• is the length of the exponent. 

Notice that the value of 
■ +0000025 ■, so that those who 
either accept what they get from 
output. Another possibility is to 
by defining a •procedure• like 
supp zeroa fR.10.5.2.1.q]. 

11.6 Standard input 

aiot str:iny (25, 8, 10) o is 
require zero suppression must 

aprint(x}c or use formatted 
do the zero suppresion cneself 
the hidden •procedure• o1 sign 

The philosophy for unformatted input is that any reasonable 
representation of the value to be read is acceptable, that it 
may appear anywhere on the line and ~ay be cf ¾DY width. What is 
expected for each value depends upon the mode of the •variable• 
to which it is to be assigned. Remember that the mode cf the 
•parameter• of oreado is o[ ]!~2£!Ie~a, where ar~~~!1E~D is 
c1111ion (intt_y_2e, ,2r-oc (file)) c. Thus, in aread ( (¼, b, c)) c, the 
□ :ta is eith~L ct layout •frocedure•, like anew linec, or: a 
•variable• (or perhaps a •clause• which delivers a name of the 
appropriate mode). 

The modes we ne~d to consider are those in the union 
specified by □!!mE!Q!!□, each preceded by •reference to•, i.e., I 
a~~! !!!.!, ref real, ref com.El, r:ef bool, ref char, ref strin_ga · 
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and their long versions like DI~{ !ong t~!!D and so on. For 
conyenience let us suppose that this union is specified by 
D§!!~!!~a. we shall need to consider each of these modes in 
turn. · 

In the reach of ci~i i, !2B~ int lie, the •call• aread((i, 
li))o would be satisfied by two •integral-d~notations• like 

3 -2 
or 

+ 304 0000005 
The •procedure• oread □ looks for the first non blank character 
from the current position on the input file and interprets what 
it finds as a value of the required mode. It allows for the 
possibility that, in the case just cited, there will be two 
•integral-denotations• with zero or more blanks between the sign 
and the first digit, if a sign appears at all, but that no 
blanks may appear between the d igits. Mote that the same set of 
characters may be presented for □in!□ as for c!Q~~ i~!c (a 
•long-symbol• is not used). 

In the reach of areal x·, .!Q!!g !:~!.! lxc, 
cread((lx, x))c would be satisfied by 

2 3.45 
or by 

6.789 e + 2 .0000J 
or by 

123-4. 56 

the •call• 

Note that the values on the input file need not necessarily be 
separated bJ blanks or commas, although most pe6ple would 
naturally do this. 

In the reach of D£Q~E.! z, Q..QQ! ha, the •Call• aread ( (z, 
b ) ) □ would be . satisfied by 

3.456 e -3 i + 7.69 J 
or by 

.000345i60 
Observe -that although areado will widen from o!~!a to □£~!! □, 
when necessary, there is here no widening from ciB!D or orealo 
to D£Q.!!!£J□• If the •variable• to be assigned t o is of mode-~ref 
£Q!E.!o, then it expects tvo values acceptable as D~!lD and 
separated by a •plus-i-times-symbol•. 

In the reach of □ ch!£ ca, aread(c)a merely reads the next 
character from the input file and assigns it to cc □ even if that 
character is a blank. In the reach of o[1:10Jgbar clo, 
cread(c1 ) o will read exactly 10 characters, including blanks, 
and assign these to ac1a. If however, ve have o[ 1:3 fle!]£E~£ 
cf1o, then aread(cf1) □ reads characters until it finds the end 
of line or one of the characters which belcngs to the string 
oterm Q~ stand in□ [R.10.5.1.mm), whereupon the preceding 
characters are taken to be those to be assigned to ccf1 o. 
Whichever bound is flexible is then adjusted suitably. If both 
of them are flexible, e.g., in the reach of a[O fl~.!= 0 
!le!]ch~!: sillyc, the •call• cread (silly) o will result in a 
lower bound of.,. for osillyo. The programmer may specify the 
terminators as for example in oterm ~f stand in := 11 ?! 11 0, wh·ch 
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changes the set of t erminators to"?" or"!". 

For multiple and structured •variables• in the union 
ain!I~ga, the first step is to straighten to a[ ]§!!£line, where 
D§!!E!irra is the union of modes discussed dbove. Thus, in the 
reach of a[1:3, 1:2]real x2, struct(int a, bool b) cc, the 
•call• aread((x2,=))a would be satisfied by 

3.1 .6 4 .2 .7 SQ. 

11.7 String to numeric conversion 

The •procedure• areada must of necessity convert character 
strings to integral or real values, and in doing so it makes use 
of three standard •procedures•, □ string int, string deco and 
astrinq realc [R.10.~2.2.c,d,e]. These •procedures• are not 
hidden. The programmer may use them himself. The first 
•procedure•, □string into, converts a given string to an 
integral value. It assumes that the first character of the 
string is a sign. Any character which is not a (hexadecimal) 
digit, e.g., a space, is treated as a O. Thus the value of 
cstring int (11 +.!...?..23 11 , 10) c is • 23 ■ (the second parameter is the 
radix). The •procedure• □ string deco converts a •variable-point­
numeral•, e.g., a 11 +2.J450"a, to a real va lue and astring reala 
converts a •floating-point-numeral•, e.g., a11 +2.345e-2" □ to a 
real value. The val ue of astring dee ("+2. 345 11 ) a is ■ 2. 345 ■ and 
that of astring real( 11 +2. 450 e- 1 11 )a is ■ .2345 ■• These 
•proc~dures•, although available, ace not likely to be useful 
for input since aread a itself has all the flexibility needed. 
However, thay may well be used for internal manipulation of 
strings. 

Another •pro=edure• which may be menti oned here is achar in 
stringo [R. 10.5.1.2.n ]. It has three •parameters•: the first is 
of mode •character•, the second of mode •r eference to integral• 
and the third of mode •row of character•. The •procedure• I 
delivers a boolean value which is ■ true ■ if the character, which I" 
is the first •parame ter•, is found in the string, which is the I 

third •parameter•, in which case its position is assigned to the 
•integer-variable•; otherwise, the value delivered is ■ false■ 
and no assignment is made. rhe result of ■ char in string~•", i, 
"x~•.?..Y")a is therefore ■ true■ and the value ■ 3 ■ is assigned to 
aia. 

11.8 Simple file enquiries 

For any file, it is possible to make simple enquiries 
concerning the current position in the f ile. There are three 
•procedures•, achar number, line numbera and opage numbera 
rR.10.5.1.2.v,v,x], each yielding an integral value, the three 
coordinates of the obooko. In the case of the standard input 
file, the •calls• □char number(stand in), line number{stand in)o 
and opage number(stand in)a should each yield the value •1• 
after the •call• aread ((c, back space))o, if this is the first 
call of areada and is in the reach of cchar co. Notice that 
these •procedures• deliver integral values and- not names, so 
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that they are for enquiry only and cannot be used to alter the 
position in the file. 

There are also three •procedures• aline ended. page endeda 
and ofile endedn [R.10.5. 1.2.h,i,j], each of which delivers an 
appropriate boolean value, but a careful distinction ~ust be 
made between afile endeda, which tests whether the maximum 
capacity has been exceeded, and alogical file endedc 
fR.10.5.1.2.k], which tests whether the usable information in 
the file has been exhausted. In the case of the file astand inc, 
if it is a card reader, then afile ended (stand in) o is likely 
always to be ■ false ■, but ological file ended(stand in ) a may 
become ■ true■ each time we reach the end of the data for a 
particular job. The •call• □logical file ended (stand out)c will 
always yield ■ false ■, because aget possible(stand out channel Jo 
[R.10.5.1.1.j, 10.5.1.3.b] is likely to be ■ false ■, i.e., cstd.n::I 
outa is not an input file. But cfile ended(stand out)o may well 
become true when the page limit for a pacticular 'ob is reached, 
or when the box of paper is exha usted. 

11.9 Other files 

It is worthwhile noticing now that aprint(x) o is the same 
as cput(stand out, x)a and cread(x)a is the same as aget(stand 
in, x)o; in fact, this is the way that cprinta and areaaa are 
defined [R.10.5.2.1.a, 10.5.2.2.a]. This me,1ns that if another 
file is available, say in the reach of the •declaration• afb!g 
fa, then what we have said about unformatted tr:ansput on the 
standard files applies also to t he file cfo by using, e.g., 
cput(f, x)a and aget~, x)a. Such files must be opened (and 
closed) by the programmer, but t his is the subject matter of 
another chapter. 

Another standard file which is always a vailable, i.e., is 
opened automatically, is astand backo. This file may be used for 
saving intermediate results during the elaboration of a 
•program•. When the elaboration is completed, this information 
will be lost, since the file is locked (R.10.5.1.ii, 10.5.1.2.t) 
by the •standard-postlude•. The two relevant •procedures• here 
are cwrite bina and oread bino. The mode of the •parameter• of 
owrite bina is a[ )Q~tt1£~D, and that of aread bina is 
o[ Ji!!.t1.e.ga. For example, in the reach of c[ 1: D]fg_al xlo, if we 
want temporarily to save the values of a rather large array, 
this could be accomplished by the •call• awrite b"n(x1)c. T he 
array can then be recalled by cread bin (x1)o. If another file, 
say afa, is available. the same could be done hy aput bin ( f, 
x1)a and cget bin(f, xl)o, and if the file cfo is not locked 
then these two •calls• might ap pear in different •programs•. 

Review questions 

11.2 Print and read 

a) Is aprint (new page, new line) o a •call•? 



144 An ALGOL 68 Co mpanion 

b) Is aprint (!!!.!) c a •call•? 
c) What is the result of aprint(get possible[stand in 

channel))a? 
d} In the reach of aref real xx:=.!~ !:!§1 := 3.14a, what is 

the result of cprint(xx)a? 
e) In the reach of a~! .£.!§1 xx := J.2£ E.!!1 := J.14a, vhat is 

the result of aprint(!:!! !:~!!: xx)a? 

11.3 Transput types 

a ) What is til e result of cpri nt (.!QE i l!I 2 !.Q 10 !!.Q 3)a? 
b ) Can c nilc be coerced to a[ ]I?!.!Il!.!Il?~D? 
C) In thereach of Df.!f !:!!.! xxc, can cxxc be coerced to 

a [ l !:!~fu.E~ a 7 
d) In the reach of astruct (ref £ next, i.!!i n) s := <nil, 2) c, 

what is the result of aprint (s) c? 
e} In the reach of cf.Qf..!!!1!! fc, is aread (f) c a •call•? 

11.4 Standard output format 

In the following, assume the same environment as given in 
section 11.4. 

a) What is the result of aprint(("?", int vidth))c? 
b) What is the result of apr~nt(("?", space, "abc"))? 
c) In the ceach of are£ real xx := loc t'eal := 3. 14c, what 

coercions OCCUt' to axio i~print ( (11 ?••:--xx))o and what is 
printed? 

d) How ■ any real values can be printed on a line? 
e} How many integral values can be px:-inted on a line? 
f) Is the result of aprint (("a", "b", "c")) c &BC or A B C? 
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Answers to review questions 

1.1 a) It ends with •symbol•. b) Three, •label-symbol•, 
•cast-of-symbol• and •up-to-symbol•, unless one observes that 
the •label-symbol• is in italic, and the other two in normal 
type. c) Yes, e.g., a.a, which represents a •point-symbol• and a 
•completion-symbol•. d) It is a representation of the •open­
symbol•, but, by extension 9.2.g, it may be used in place of 
cf c. 

1.2 a) An internal object which is a real value. b) l 
•real-denotation• (amongst other things). c) It is an e.xternal 
object. d) a!£Y~D possesses ■true ■ • 

1.3 a) No. b) Yes. c) Ho, it is an internal object. d) No, 
i.e., not at the same time, but in the course of time - yes. e) 
No. 

1.4 a) No. b) Yes, a •collateral-declaration• [R.6.2.1.a]. 

1.5 a) There are four classes: integral 
values, truth values and characters. b) Yes, the 
c) The mode. 

1. 6 
and 

a) The mark ":" is read as "may be a", 
11 , 11 as "followed by a". b) Yes. 

values, real 
truth values. 

" ; II as "or a II 

1.7 a) Yes, e.g., a12Ja and 00001230. b) !lo, but it is a 
•formula•. c) Yes. d) No, not if this value would e~ceed cmax 
int □ [R.10. 1.b]. 

1.8 a) Yes, e.g., possibly 02.340 and c23.4e-1o. b) No. Oh, 
please no. c) No. d) Yes. e) No, hut it is a •formula• [R.8.4). 

1.9 a) Mo. b) Yes. 

1.10 a) Infinitely many. b) As many as he likes, but always 
a finite number. 

1.11 a) Mo, it is a •character-denotation•. b) Yes. c) •row 
of character•. 

1.12 a) Mo ( R.2.2.3.1.b]. b) •structured with ro w of boolean 
field letter aleph•. c) •format•. 

1. 1 3 a) •rov of character•. b) •reference to real•, 
•reference to integral • c) No. d) Six. e) No. 

2.1 a) No. b) Yes. c) cf~! .;-~! [ ]£hin:_c. d) Yes. e) Yes. f) 
No. g) No, except for ■nil ■• h) No, a •declarer• specifies a 
mode. l 
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2.3 a) Hone. b) al2£ £hara. c) a!2£: ~.Q.Q!a. d) Ho. e) Ro. f) 
No. 

2.4 a) No, but it possesses a name referring to a real 
value. b) Yes. c) tlo. d) Hq. e) Ho. f} No, i.e., not at the same 
tiae, but in the course of tiae - yes. 

2.5 a) Yes, but not the sa me instance [ R.2.2.1 ]. b) Ho. c) 
Ho, but the value referred to by the name possessed by cxc may 
be changed. d) cloc(1:3]Rroc reala. 

2.6 a) No. b) Yes, in the extended language. c) • reference-
to-reference-to-integral•. d) a[1:3]1?!:2£ r~!! pc. 

2. 7 a) Yes. b) Yes. c) 110. d) 110. 

2.8 a) a ref ref real xx= loc ref realc. b) aref real x = 
loc real, ref real y = loc realc. c) aref real x = loc real, ref 
real y := loc real := 3.14a. d) It is not possible; moreover, if 
a+a has its usua l meaning, then this is not a •declaration•. 

2.9 a) No. b) Yes. c) No. d) Yes, but a rather foolish one. 

2. 10 a) Yes. b) Yes. c) Ho. d) ay + 2c. e) •reference-to-
reference-to-real•. f) No. 

2.12 a) The aya is dereferenced and the a3.14a is not. b) 
No. 

2.13 a) the ana is an •integral-mode-identifier• but the ama 
is a •reference-to-integral-mode-identifier; i.e., anc is a 
•constant• and cma is a •variable•. c) Ho. 

2.14 a) Four. b) Both aapa and ampa are dereferenced. c) It 
is equivalent to aj := j + 1c. d) Yes. amic. It's mode is •long­
real•. e) •reference-to-long-real•. 

3.1 a) No. b) Yes. c) a(a + (b 2! (c[d]))) - ea. d) An 
•expression• may possess a value but a statement cannot. e) Yes. 

3.2 a) Ho. b) Five, •mode-identifier, denotation, 
call• and •void-cast-pack•. c) aa[i], a, i, c, sin(x), 
cos(x + pi/2), cos, x, pi, 2a. d) Ho. e) It could be 
depending on the mode of caa [R.9.2.g). 

slice, 
sin, x, 
either, 

3. 3 a) cl, ca, fa. b) •reference-to-real•. c) •ro v-of-rov-
of-integral•. d) Yes. e) Bo. 

3.4 a) Yes. b) Yes, its mode is •reference-to-row-of-real•. 
c) Yes. d) Yes. e) a35, item~! a, i + n • 2, i +:= 2c. 

3.5 

3.6 
value 

a) No. b) res. c) Ho. d) Yes. e) Yes. 

a) The same as that of a(2,3)a. b) It possesses the 
. t.rue ■ only when ax2[ 3, 1] = x2[2, 1 Jc. c) ■2 ■• d) ■ 2 • . e) 
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No, because ai := la is not a •tertiary• and therefore not a 
• lover-hound• . 

3. 7 a) Yes. b) No, i t is a •deprocedured-coercend• 
[R.8.2.2.1.a]. c) Mo, but ocos( (x > 0 Ix I pi/2))o is a •call•. 
d) When the mode of can is •procedure vith M1 parameter 
reference to M2• where • M1• and •M2• are terminal productions of 
MODE. e) When the mode. of cao is •p1:ocedure-with-l'l1-parameter­
procednre-with-M2-parameter-M3•, i.e., aao is a •procedure• with 
one •parameter• vhich delivers a •procedure• vitb one 
•parameter•, and the mod.es of obo and oco are •M1• and •!12• 
re spec ti vel y. 

3.8 a) Yes. b) So, o (: x) a has no mode . c) Yes, provided 
that the mode, after soft coercion, of oxa is •reference-to­
procedure-void•. d) Yes. e) No [ R.8.2.3.1 ], but DE!:Q£ p := (: x 
:: 3.14)0 is a •declaration•. 

3.9 a) No. b) Yes. c) HO. d) Yes. e) When the mode of aba 
is structured, has a field selected by aaa vhose mode is 
•reference-to-Ml• where •Ml• is the a posteriori mode of ace, or 
when abo is a •variable• and will refer to structured values 
that have a field selected by aaa whose mode is M1. 

3.10 a) No. b) No, it is a • field-selector• [R.7.1 . 1.i]. c) 
aa Qf (b[c)), e Q!(g(x))o. d) No, a( a .Q! b )a is not a •field­
selector•. e) Yes, it could be. 

3.11 a) Yes. b) ■false ■ 
■ 3 ■). c) ■-4•. d) No, 
a+:=a, as declared in the 
name. e) ■false • . 

(if the value of obits widthc is 
the left •operand• of the •operator• 
•standard-prelude•, must possess a 

3. 12 a) 
d) No, □E.£.QC 

No. b) No, ai := i + 1a is not a •tertiary•. c) No. 
(:random)a is. e ) It is an • assignation•. 

3.13 a) ■ false ■• b) ■ true■• c) ■ true ■• d) No, 03.140 does 
not possess a name. e) Yes. 

3.14 a) No. b) It looks like one, but a3.14a cannot be 
strongly coerced to an integral value. c) An • identity­
rela tion•. d) Ho, because c( 1: 1 ]!:~~1□ is not a • virtual­
declarer•. e) Mo, a!ef in!: ii □ is not a •tertiary•. 

3. 15 
None. 

a) Mone. b) Eleven. c) A •constant • . d) •real• . e) 

4.1 a) The same as that of a3 i Oa. b) lfo. c) No. d) Yes. 
e) Yes. f) Yes. 

4.2 a) • 5 • . b) Some undefined integral value. c) ■ 11 ■ • 

ai! p then a elsf q !h~! r !h~n b ~!§~ c !i □- e) a( a I ( b 
I ( d I e-1-§!!~-))I ~!!E )a. 

4.3 a) No. b) □if, £~~~a and a(a. c) • 4• . d) •2 • . e) No. 

d) 
I C 1· 

I 
I· 
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4.4 a) llo. b) Ito. c) Yes, cec is elaborated infinitely 
often, or until a jump occurs to a •label-identifier• outside of 
it. d) Yes, zero times. e) Yes, zero times. f) The second and 
third occurrences of cia identify the first, but ai := 2 ~ i + 
1a is not an •assignation• since aia does not possess a name. g) 
The last three occurrences of aia identifJ the second 
occurrence, but the third and fou rth occurrences identify the 
first occurrence. 

4.5 a) Yes. b) No. c) Yes. d) No. e) No. f) No. 

lf.6 a) No. b) Bo. c) No. d) The same as that of n"abcde"a. 
e) Yes, e.g., if the order of elaboration happens to be aj +:= i 
: i +:: ja. 

4.7 a) Yes. b) Yes. c) No. d) Yes. e) c( x Q! JI l) n 
: = 2 i s • l: n : = 1 ; re. 

4.8 a) Seven. b) •reference-to...:row-of-integral•. c) 
•reference-to-integral • . d) Four. e) None. 

5.1 a) No, D!~!l £!2£D is not a •declarer•. b) No, D(f~~i 
a)!~!!D is not a •virtual-plan• [R.7.1.1.x]. c) D2!:~£ t!~! r2 -
2 * rando ■a. d) DE!Q£ max= (~~! a, b) !:~~!: (a> h I a 
b ) a. e) apro£ recip :: (!:~! !:~!! a) : a := 1 / ac. 

5.2 a ) No, unless n*o has been redeclared and possesses an 
operation which delivers a name. b) D!tl[ ]!:~l x1a. c) a (E!!! a 
= x + 1, ~! b = y ; a* b )a. d) a (r~!l a= ~!Je ; £~!.!:a• 
a ) a. e) • (!!!!. n = §!:!£, !!!!: m = §!!e ; !.!!![ 1: n )!~~.! a 1 = ~!!!! i 
~~~!: ( n < m I a1[n] I a1(m) )) ■• 

5.3 a) The value is voided. b) ■4.6 ■, in the sense of 
numerical analysis. c) That of cya. d) The object ap(x, y)c is 
not a call, since D!~f !:!.! ~!a= xa is not an •identity­
declaration•. e) ■ 2.2 ■, in the sense of numerical analysis. 

5.4 a) DR!Q~ p = (!!!~ a, 2£2£ ~~{ i!!! b) : b •:= 2 • aa, 
but in most a pplications a~~~£ p = (!~!a,!~! !n! b) : b •:= 2 
• ac would b e su fficient. Note that s ince obo is passed by name 
in ALGOL 60, the side effects of ob := b * 2 * ao occur twice 
but in ab•:= 2 • aa they occur only once. 

5 .6 a) A •constant•. b) Because 
asc. c) Because ago is a •constant• 
•variable• in its last •parameter•. d) 
for it is used only in the •formula• at 
that of alll.Q.Q00.Qa. 

no assignment is made to 
and agrowo requires a 
It • s va 1 u e is ir r e 1 ev ant 
Q£ ~ta. e) The same as 

6.1 a) A priori mode, a posteriori mode and syntactic 
Yes. d) No. e) position. b) strong, firm, weak and soft. c) 

Widening. 

6.2 a) Eight. b) Dereferencing and widening. c) 
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Dereferencing and deproceduring. d) Roving. e) Eipping. 

6. 3 a) Dereferencing (four times). h) Dereferencing (twice) 
c) Dereferencing, dereferencing and deproceduring. d) 
Dereferencing, deproceduring and dereferencing. e) 834a, 71b,c, 
61e, 81a,b,c,d, 820d, 822a, 860a, 41b,c, 302b. 

6.4 a) Deproceduring and uniting. b) No. c) A routine. d) 
No. e) No, crandoao is of a priori mode •procedure-real•, it 
cannot be procedured to •procedure-void• [R.B.2.3.1). 

6.5 a) No. b) Hipping. c) Widening of c5o. d) Deproceduring 
and rowing. e) None, this is not a •cast• since rowing cannot be 
followed by uniting [R.8.2.4.1.h). 

6.6 a) Dereferencing and deprocedu~ing. b) Firm. c) Weak. 
d) Dereferencing of crr1xc twice (not thrice). e) Soft. 

6.7 a) •Base, cohesion, formula, confrontation•. b) cb, a 
Q f b , x, 2, x : = 2 , x, y, 3 , y + 3 , x := y + 3 o. c) Yes, but its 
elaboration is undefined since the dereferencing of a •nihil• is 
undefined [R.8.2.1.2 Step 2). d) Yes, assuming the •declaration• 
D!;~! !:~J: X'l(c. e) No, hipping cannot occur in a soft position. 

6.9 
821a, 
74a, 
830a, 
8 20g, 
511a, 
302b. 

a) 834a, 71b, 421b,c, 61e, 81a,b,c,d, 820d, 825b,a, 
860a, 41b, 302b. b) No, there is no deuniting coet'cion. c) 
54e, 71b,w,aa,z; 41b, 302b; 74b, 61e, 81a, 820d, 823a, 
831Ja, 71-z; 61e, 81a, 820d, 828a, 830a, 831a,b, 81b,c,d, 

860a, 41b, 302b; 831c, 61e, 81a,b,c,d, 820d, 825a, 860a, 
303c,d. d) 61e, 81a,b,c,d, 820d, 828b, 822a, 860a, 41b,c 
e) No, hipping cannot occur in a firm position. 

6 .10 a) No. b) Yes. c) • real•. d) •real• or •procedure real• 
or •union of integral and real• or • union of integral and real 
and boolean• etc. e) No. 

6.11 a) No. b) cpxa is softly deprocedured and a:xxc is 
strongly dereferenced. c) opxc is softly deprocedured and cgg_!Q 
kc is strongly hipped to •reference-to-real•. d) Yes. e) No. 

6.12 a) axle is we akl y coerced, a2a is strongly widened and. 
then rowed to •row-of-real •. b) Yes, strongly-weakly to •real•. 
c) Yes. d) Yes. e) arando11c is strongly deprocedured and widened 
and oO ! 2a is weakly c oer ced. 

6.13 a) Ho. b) No. c) Yes, firmly-strongly. d) Yes. e) No. 

6.15 a) Yes. b) Yes, the balanced mode is •reference-to­
real•. c) No, it cannot be balanced. d) a4 ! 5.6a is firm, the 
others strong. e) No. 

6.16 a ) The object am+:= 1c is interpreted as cm :== m + 1a 
so ama is dereferenced once, cm+:= 1c is dereferenced as the 
left operand of a>o. h) This is equivalent to Cf~f !~! c1 = !2~ 
int :=am:= ~Q~ amo. First came is dereferenced to •integral• 
and the absolute value of this integer is found. It is assigned 
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to oaaa. Then a name is created by a12£ lB1D, the •assignation• 
cam := ~bs ama is dereferenced and the integral value (referrea 
to by aamc) is assigned to this name. Finally ac1o is made to 
possess the name. c) The identifier oaia is made to possess the 
same name as that possessed by oa[i]a. This happens for each 
repetition of t he repetitive statement , in which there are five 
occurrences of aaia, thus savi ng time on s ubscript calculation. 
d) This is the position of t he statement number 3 0 in the 
FORTRAN program. It is redundant i n ALGOL 68 , but 0 130: ~~~c is 
not permitted for t here is no em pty statement. e) 1 

7.1 a) Yes, its value is ■ false ■ [R.7.1.2.c Step 8). b) 
Yes, but rather useless. c) ■true ■ • d) Yes • . e) Yes. 

7.2 a) Ho, •integral• mode canno t be united to •union of 
character and boolean•. b) Bo, in 8.8.2.4.1.a , •strong• goes to 
firm, so the a1o cannot be widened. c ) Bither •real• or 
•boolean•. d) Yes, and its va lue is ■false■• e ) Ye s, provided 
that it is in the reach of a s uitable declaration of the 
•operator• a+a. 

7. 3 a) ■true■• b) ■false■• c) ■ true ■ • d) Yes. e) Ho, ex : : = 
xa is not a •tertiary• [R.8.3.2.1.aJ. 

7.4 a) Yes, its value is ■ false ■• b) Yes, its value is 
■ true ■• c) Yes [R.4.4.3.c,d]. d) Ito. e) t1,2,rgf sqirt = <in! 
i)union(int, real) (real x = sgrt(i) i.!!! j = .f2J!!!.!! :xi ( j • 
j = i I j I X ) ) D. 

7. 5 a) ■ 4 ■• b) Either ■7• or ■ 8• or ■ 9 ■ [ R. 10. 4. 2 ]. c ) No , 
it should be asema p = /1o. d) Yes, surprisingly, and if the 
value of aua--Is of •boolean• mode , tben the value of the 
expression is that of aha. e) No, because a •skip• can only be 
hipped and must therefore be in a strong position. The right 
•tertiary• of a •conformity-relatio n• is of no sort 
(R.8.3.2.1.a). f) Ho, a •jump• can only be hipped (see the 
answer toe). 

8.1 a) Ho, it is a •confrontation•. b) Yes. c) a (x + (-y)) 
( ( - ( - (~I!! i))) over 2) c. d) Nine. e) Ho, it is a 

•confrontation•. f) ■ 2 • • 

8.2 a ) No, c: = :o is not a •dyadic..:.indication•. It is a 
•identity-relator•. b) No, the • token• on the right must be> o. 
c ) Ho, the token must be < 10. cl) Yes, if the implementation 
permits a?o as a •dyadic-indicant•. e) lo, perhaps the intention 
was D£E!Qritj? = 6, ! = 60. 

8.3 a) No, a:=:a is not an •operator•. It is an • identity­
relator•. b) No, the •actual-parameter• must possess a routine 
with one or two •parameters•. c) No, a•a is not a •monadic­
operator• [R.3.0 .. 4.a, 4.2.1.f, 4.3.1.c]. Think about ax•*2c. d) 
Yes. e) ao~ (ref file, int) c~eate = createa. 

8.4 a) ■ (!:~.!! .! = ski,2; int: round a) ■ • b) No, crandoma 
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possesses a routine which has no •parameters•. c) ■ 83 ■• d) Yes. 
e) No, c+o is not an cactual-para•~terc. 

8.5 a) One. b) 16 times a sufficient number [R.10.b Step 3, 
10.2.3.i.j, 10.2.4.i,j, 10.2.5.a,b, 10.2.6.b, 
10.2.7.j,k,p,q,r,s, 10.2.10.j ',k,l]. c) 30, [R.10.5.2.2.b, 
10.5.3.2.f, · 10.2.0]. d) There is none since this is a •monadic­
operator•. e) No, it is a •conformity-relator• [R.8.3.2.1.b]. 

8.6 a) Yes, but it cannot be contained in a proper program. 
b) Yes, because the second occurrence of oabsa is that of a 
•monadic-indication • . and does not identify tbe--first. c) In 
order to reinstate the •dyadic-indications• and •operators• of 
the •standard-prelude•. They ma y have been re-declared. d) Yes 
[R.6.1.2.a, 6.0.2.d Step 1]. e) Yes [R.6.1.2.a, 6.0.2.d Step 2). 

8.7 a) R.10.2.s.a. b) 
R.10.2.8.d. e) R.1D.2.10.i. 

a) o(f~~! a= ski£ 
a> O)o. 

R.11.11.k. C) R.11.11.i d) 

8.9 a) ■-1 • . b) No, it is an •identity-relation • . c) No, a 
•cast• is not an •operand•. d) Yes. e) ■false■• 

8.10 a) No. b) No. c) Yes, try coercing from oi~!o or from 
D,l?,!;Q£ J:n!o. d) Yes. e) No, there is a multiple definition of 
D-D. 

8.11 a) It draws a straight line of length ode in the 
direction s. b) Try, on, s, e, wo. c) 

8.12 a) Remove 2, remove 1. b) Remove 1, remove 3, replace 
1, remove 2, remove 1. c) The •formula• requires that oao should 
be a •variable•. d) Remove 2, remove 1, remove 4, replace 1, 
replace 2, remove 1, remove 3, r eplace 1, remove 2, remove 1. e) 
Try ce.EQ.f upc and DE£OC dovno. 

9.1 a) No. b) Yes. c) No [R.8.3.4.1.a]. d) No. e) Yes 
[R.5.1.0.1.b]. 

9.2 a) Infinitely many. b) Six. c) Two. d) Two. e) 
•virtual, actual• and •formal•. 

9.3 a) No [R.3.0.2.b]. b) Three. c) tto, it is a metarule. 
d) Yes. e) No. 

9.4 
say. d) 
•real•. 

a) No [R. 1.2.1. mJ. b) No. c) Yes, •row-of-character•, 
•real-field--letter-r-letter-e-and• [ R. 8. 5. 2. 1. a]. e) 

9.5 a) (I) L : x ; y ; z. (II) N : ; Np. (i) s : Nx, yNy, I 
NNz. (ii) NpL : !IL, L. b} (I) L: x; y; z. (II) H: p; lip. 
(i) s : Hx, Ny, Nz. (ii) lipL : NL, l. (iii) pL : • c) (I) L : X 

; y ; z. (II) N : ; p!I. (i) s : letter x symbol Ii, letter y · 
symbol N, letter z symbol N. (ii) letter L symbol pN : letter L 
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symbol~ letter L symbol N. 

9. 6 a) No. b) Yes. c) No. d) No. e) Yes, • NONPROC• excludes 
only •procedure-MOID• or the same preceded by •reference-to• or 
•row-of•. 

9.7 a) •void-cohesion• or •void-confrontation• [R.8.5.0.1]. 
b) •virtual NONSTOWED declarer•. c) •firmly dereferenced to MODE 
FORl1• d) •strongly rowed to REFETY row of MODE FORM•. e) •STIRM 
ly united to MOID FORM•. 

10.1 a) No, Df:~~1c is not a •mode-indication• [R.4.2.1.b, 
1.1.5.b]. b) No, ca□ is an •identifier•, not an •indicant•. c) 
No, [ ]£~al is not an •actual-declarer•. d) Perhaps, if ob □ 
alrea:ly specifies a united modec [R.7. 1. 1.cc, 9.2.b]. e ► Yes 
[R.9.2.b]. · 

10.2 a) cstruct(ref b a, ,Eroc b d)a b) This is undefined. In 
□ref~ vc or □!~! f~t ~ v = !££ fg! 2□, the •generator• cl££ f~t 
~c contains o~c which is virtual and is therefore not developed 
ra.7 .• 1.2.c]. c) ounion(ref ccnst , ref var, ref tri2le, ref 
call ) □ • d) ostruct (union (ref c on st, ref var, ref tri,Ele, ref 
£~!!) left operand,!~! operato r , ~QJQQ(.£~! £2~§!, E~f ~~E, I~! 
!fiE!~, £.gf £~!1) right operand ) □• e) D§!fgf!ffl :O fle1] £hgf 
title, .£!!! .!H?Q~ next) a. 

10.3 a) The first is its defining occurrence as a 
indication• and the second is an applied occurrence 
•virtual-declarer•. b) The first is a •declarer• and the 
two are •global-generators•. c) Yes. d) o!i!!! a:= (1, 
next Qf a:= !in~:= (2, .nil) ; next Qf next 2! a := Jin~ 
n,Ua. e) No [R.6.2.1.f]. 

10. 4 a) No. b) Yes. c) No. d) Yes. e) Yes. 

•mo<le­
as a 

other 
.nUJ 
: = ( 3, 

10.5 a) If c~c is a •dyadic-indication•, then it is a 
•formula• and ab uc is a •cast•; if c~c is a •mode­
indication•, then-it is a •declaration• and □h :uc is a • row-of­
rower•. 

10.6 a) Yes. b) No. c) D§,!!gf! ~ = (i.!!1 u, £gf ~ v)a. d) No. 
e) Yes. 

10.7 a)Yes. b) □ n.2!!~ tree:= n2!!~ .- (!!!l, "bob", ni!.l, 
11 jim", !!QQ~ := (.!!!!, 11 sam", ·n!l)) a. 

10.8 a) cleft of right 
ni!)c. b) BOB. c) ■ f;lse ■• d) 

gf tree 
■ true ■• e) 

:= n2gg := (!!i.!, 
■ false ■, ■ true ■• 

10.9 a) In line 2, insert 0!?22.! b .- i!:ygo; lines 7 and 8 
become afi; b := !~lse ; done: ba. 

10.11 a) □E!:2£ p1 = (£g! .!l.Q£g root) (print("("); (root :I: 
n!! I p1 (left 2! root) ; print (val Qf root) ; p1 (right 2! root)) 
; print(")") )a. b) DE!:Qf p2 = (_~~!. !!,Qgg root) : (root :f: !!.il. 
I: left Q.!: root :=: (!:gf B2Qg : !!!]J ~!!1 right Qf root : =: (fg! 
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!!Q~~ : 1!!.!) I print(val Q! root) I print("(") ; p2 (left g.f: root) 
; print(",") ; print(val .Q! root) ; print(",") ; print(right 2!. 
root) print(")")) a. 

10.12 a) Remove caction(p)a from line 12 and insert it in 
line 8. 

11.2 a) No, cprinta has only one parameter. b) No, a.ni!c can 
only be hipped, but since it must also be united, it is 
therefore in a firm position [R.8.2.4.1.b]. c) 1 [R.10.5.1.1.f, 
10.5.D.2 Table 1 ]. d) +J. 1110000E +O. e) +3.140000E +O. 

11.3 a) Undefined, since the repeti tive s tate ment is void 
and therefore cannot he coerced to DE~i!!!ll2~a. b ) No 
[R.8.2.4.1.b]. c) ~es, der eference to a£!l! rea!a, unite to 
ain!I£~c and then row i t . d) Undefi ned , s i nc e osa cannot be 
coerced to c~~iii~~a. e) No, cfQf!~!a cann o t be coerced to 
a ( ]readty£ec. 

11. 4 a) '? +5. b) '? ABC. c) Twice dereferenced and then 
united to DE£ini!YE~a, ? +3.400000E +O. d) Four and 9 spaces 
iett over. e) Nine and 2 spaces left over. f) AB c. 
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