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1. Introduction 

Consider the set of linear equations 

Ax= b 

where A is an nxn real nonsingular dense stored matrix. 

Such a system is commonly solved by Gaussian elimination 

with pivoting, and it is well-known that the accuracy of the 

computed solution depends primarily on the condition of the 

matrix. A convenient measure of the condition is in terms 

(1.1) 
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of the singular values cr 1 .2: a 2 .2: • • • • .2: cr n > 0 • These are the 

nonnegative square roots of the eigenvalues of AT A. If the computed 
,.. 

solution x = x + ox , then 

(A+ 6A) (x +6x) = b , II oAII z ~ K0 (n)r, 1 

and (1. 2) 

II oxll 2 ( a 1 ) 
--- < K 1(n - 'YI llxllz - an •,l 

llxll~ where r, 1 is the machine roundoff level, 
T 

= X X, and 

K 0 (n), K 1 (n) depend on the pivotal growth. (See for example 

Wilkinson [ 23, Chapter 4] or [24, pg. 106].) We assume A is scaled so that 

a 1 = 1 so the error depends on the smallest singular value cr • 
n 

We emphasize that this bound is independent of b, and in fact is 

realistic regardless of the right-hand side. 

However, when A is ill-conditioned (i. e. a small), we 
n 

may have prior knowledge that the exact right-hand side and 

solution depend primarily on the largest few eigenvectors of 

A (assume A is symmetric for the moment). In this case, 

the solution will be insensitive to the condition of the full matrix 

A and if we solve the system by some kind of eigenvector 

decomposition, much more accuracy can be obtained. The extreme 

example of this is when b is an eigenvector corresponding to the 

eigenvalue X. 1 = a 1 = 1 ; x=b is a solution no matter how ill-c ondi ti one d 

A is. In what follows, we will develop this idea using as our 

means of solution the singular value decomposition, and then 

apply the technique to the solution of some classical ill-posed 

linear problems, specifically harmonic continuation, inversion 

of Laplace transforms, and the backwards heat equation. 
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2. The Singular Value Decomposition 

Now we return to the general real matrix A of (1.1). Any 

such matrix can be expressed as 

T where U is the orthogonal matrix of eigenvectors of AA , V is 

T 
the same for A A, and D = diag (a.). For A symmetric 

1 

positive definite, this is simply the eigenvector decomposition 

T 
A= QA Q • For a discussion and further references, see 

Golub and Kahan [ 12]. More recently, constructive algorithms 

forming this singular value decomposition have been given 

(Businger and Golub [ 4], Golub and Reinsch [ 13] ). 

Using this decomposition the linear equation Ax = b becomes 

D(VTx} = UTb 

or 

Dy= 13, 

that is, the system is transformed into diagonal form by 

rotations of the domain and image space. Put another way, 

we make a decomposition of b into the basis given by the 

columns { u.} of U, i.e. 
1 n 

b == I /\ui 

1 

and form 

and finally x = Vy. 

-1 
e -1· = D B a. 

1 

Here' {e.} denote the Cartesian unit vectors. 
1 

( 2. I) 

(2.2) 
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We will be interested in cases where the S. decreases as i 
i 

increases faster than do the oi (i.e., Si/oi decreases). In this 

case both the data and solution have small components in the high-

order ui, so we can expect an accurate approximation to the 

solution using only the low-order ui. We assume in what follows 

that I !xi 12 = I jyj 12 = 1 without loss of generality. 

Notice that we must be careful in defining the right-hand 

side b, because the actual bused in the computation will have some 

data error associated with it. We stipulate that the bused in 

the analysis is the exact b without any rounding errors, usually 

obtained from the corresponding continuous problem by 
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exact discretization. Thus we must consider the right-hand side 
.., 
b used in the computation as having some data error associated 

with it, say !lob!lz = [[b-bllz S d77 1 • Since the rounding errors 

-are essentially random, b will always have components of order 

77 1 :j.n all u .• so case (iii) would never hold if we were considering 
1 

-b as our given right-hand side. 

We could also interpret this another way: given the computational 

problem Ax= 1, we choose our b from within [[b - b[I z S d77 1 so 

that its decomposition in the { u.} basis has components j3. which 
1 1 

decrease as fast as possible. Then we solve the problem by our 

technique (which follows) and if the j3. decrease faster than the a. , 
1 1 

our solution will be close to the exact solution of Ax = b (but not 

-n~ces sarily to Ax = b ). 

The technique we 'l;lse is a common one: let D(k)= diag ( CJ 1 , ••• , O'k,Q,, ••• , O). 

Then form 

and solve 

by the singular value decomposition, i. e. 

k 
(k) _ 1· j3i 

y - - e. • 
1 

(J. 
1 1 

(2.3) 

(2.4) 

This idea of replacing the smaller singular values by zero is used 

in solving linear least squares problems (Golub [ 11] and Bjorck [ 3] ). 

It is one of many strategies for replacing the n equations given 

by k (fewer) equations which are better conditioned; the underlying 

problem of finding the effective rank of a system arises frequently see 

Peters and Wilkinson [ 19] for a good discussion of this. 
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To decide which k to use, we must examine the error involved. 

This consists of two parts: 

(a) the truncation error x(k) - x 

(b) the roundoff error in computing 
(k) 

X • 

The error in (a) is easily obtained from the singular value decomposition: 

Now consider the error in computing x(k). Since in (2.4) we 

ignore cr. for i > k , the exact solution y(k) is the same as that 
1 

(k) (k) (k) (k) . 
for D0 y = (3 , where D0 = diag (cr 1 , ••• , cr k' 1, ••• , 1). 

Thus x(k)is the exact solution of 

The computed solution is found as follows: 

- - -T 
let the computed singular value decomposition be U D V 

with U - U = 6 U, V - V = 6 V , D - D = 6 D, and assume 

- . ,., ,., ,., (k) . - ,., 
Also let D = diag (cr 1 , ••• , crn)' D0 = d1ag (a 1 , ••• , ak, 1, ••• , l). 

(2.7) 

Then we form (k) (k) 

= [(1:l+E,)(b+Ob)] 

,., (k) ,., ,., (k) ,., ,., (k) 
x = H (V y ) = (V + E 3 ) y 

where l!Eillz ~ ri 1Ji• The ri are small positive numbers and depend 

(2.5) 
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on the machine arithmetic used (see Wilkinson [ 22, Chapter l]). 

Combining we have 

(D~k) +Ez)(V +E3r1;(k) = ~(k) = (3(k) +s(k). 

Then if we set (V + E3 r 1 = VT + R , we have 

or 

(UD~k)VT+F) ;(k) = b(k) +e(k). 

Now we proceed to bound IIFII 2 and II e(k)II 2 • First, 

and thus for any k 

Then 

and 

gives 

llovll2+1lE3ll2 (c + r3)1]1 
IIRll2 <----- < --- - P1]1 

- 1 - ( II o VII 2 ~IE 311 2 )- 1 - ( c+r 3)171 

Now the standard perturbation results (see for example 

Wilkinson [ 23, page 189]) give, assuming II (Ao(krl Fil 2 < 1, 

-<k> ll<A~k>r1 ll2 ( (k) <k> ) llx -xll2~ (k,-1 lie 1l2+IIFll2llx Ila• 
1- II (Ao FIi 2 

(2.9) 
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Here, llx{k)llz = IIY{k)llz ,5 IIYllz = 1 and from its construction 

so that assuming k is chosen so that 

crk > 2 r 5 17 1 , we have 

11
-(k) {k)II < 2 ( + ) 171 = K 2 17 1 
x -x z r 4 r 5 ---

- ak ak 

For computations in sin~le precision arithmetic, K
2 

= 10n is a 

reasonable estimate. We combine (2.5) and (2.10) as follows. 

THEOREM: 

Let the solution to (1.1) be approximated by (2.3). Then for 

k chosen so that crk > 2r
5
n

1
, the computed solution ~(k) to 

(2.3) satisfies 

Since the first term is increasing in k and the second 

decreasing., there will be some optimum value of k to choose 

which will minimize the error bound. For a given problem, 

it would be of theoretical interest to compute analytically this 

optimum value; computationally however, the { 13.} and { a.} 
1 1 

are produced in the course of the computation and the optimal 

number of equations to use can be explicitly calculated. 

Before proceeding to the applications, it is of interest to 

regard the technique from a different point of view. We can 

consider the eigenvectors { u.}, for a fixed n and A as a 
1 

discrete orthogonal basis for the solution space, and the 

solution X 
{k) as the truncated discrete Fourier expansion 

(2.10) 

( 2.11) 
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in this basis. Moreover, if A is totally positive (see 

Gantmacher [ 9 • page 98]) these eigenvectors also have the 

oscillation property: u 1 has constant sign, u 2 has one sign 

change, etc., thus replicating the desirable property of 

continuous bases formed from solutions of Sturm-Liouville 

problems (Courant and Hilbert [ 6, page 451££] ). 

3. Application I - Harmonic Continuation 

All of the applications considered are to classical 

ill-.posed problems, and in fact each example reduces to the 

solution of a linear integral equation of the first ldnd: 

b 

g(s) = S K(s, t)f(t)dt. 

a 

As is well-known, small changes in g(s) cause arbitrarily large 

changes in the high-order Fourier modes of f(t). Problems of 

this type have been considered numerically by many different 

people: for example Phillips [ 20], Bellman et al [l], and 

Tihonov [ 21]. More recently, Hanson [ 15] has also used the 

singular value decomposition to solve these problems. 

The first application is to harmonic continuation; given a 

harmonic function u(r, 0) in the unit circle with known values 

for some r < 1 1 u(r, 0) = g(0) , to find its values f (0) for r = 1 • 

Now f(0) and g(0) are related by the Poisson integral: 

211" 1-rZ 

I s 21r l- 2 r cos (0-q,) + r 2 f(q,)dq, = g(S) 

0 

(3.1) 
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and their Fourier series are also intimately connected: if 

00 

then 

f(0) = f 0 + 2 (fk cos k0 + fk sin k0) , 

k= l 

00 

g(0) = £0 + 2 k 
r (fk cos k0 + fk sin k0) • 

k=l 

Thus a small absolute change in a high-order Fourier 

coefficient of g(0) causes a large change in £(0) • Clearly the 

problem is not well-posed unless we consider only small relative 

perturbations in g(0). 

This classical problem has been considered analytically 

by many people, and recently Franklin [ 8] has considered the 

numerical solution by solving a stochastic extension of the 

problem. Since the integrand in (3.1) is periodic, the obvious 

discretization is via the trapezoidal rule, using points 

21r· 
cp n - ~ J. - 1 n, giving Ax = b with j'uj-n' - , •.• , 

A .. 
lJ 

1 ( 1- rZ 
= n 21ri-· 

l+r 2 -2rcos ~ J) ) 
In this case, the eigenvector decomposition is immediate from 

the Poisson summation formula: 

n r P+ i·n- p 
(i) for O < P_:::[ 2], >-.. = n is an eigenvalue with 

1- r 

. ( 21rjp . ) eigenvector cos -n-, J= 1,, .. , n 
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(ii) for [ 
n- l] 

O<p~ ~ 'X.= 
rP+rn-p 

is an eigenvalue with 

eigenvector (•in 
2
;jp , j= !, ••• , n ) 

Thus for n large, the singular values er 2 p+ 1 = er zp ;;;- rP, p::; 0, 1, 2, ••• 

Moreover, the { '3k} are multiples of the trapezoidal rule approx

imations to the Fourier coefficients of g: 

- 211j sin 
n ( ) 

'3k = .I g 7 cos 
J=l 

So if thE;! Fourier coefficients of g(0) decrease faster than k 
r ' 

we can get better accuracy using the singular value decomposition 

as is expected from the continuous problem. 

Suppose for example that the analytic function 

00 

(g + ih) (z) = l (fk - ifk ) zk 

k=o 

formed from g(e) has radius of convergenc e 1/ p ( p < r) so the 

k 
Fourier coefficients of g(0) decrease like p ; then the total 

error in solving the first (2k+l) equations using the singular value 

decomposition is from (2.11) 

1 
k 

r 

k 
(K2 T] 1 + P ) • 

From this, the optimal value for k can be found explicitly. 

The technique was tried on the example treated by 

Franklip. [ 8]: (g+ih)(z)= z 3-z +sin z, with r = 1/2, n= 50. The 

~ ~ -3 best numerical solution occurred for k = 10, er = 10 and 
z-k 
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gave at least four correct significant figures in all components, 

comparing favourably with the best results of [8]. Actually for 

4:,;; k:,;; 10, the results were nearly the same, and the optimal k from 

(2.11) using the computed cri and Si was k=5. (Computations were made on 

-7 the IBM 360/75 at Caltech and the 360/67 at UBC; we used n1=10 and K2=10n.) 

4. Application II - Inversion cf the Laplace Transform 

This well-known ill-posed problem has been attacked 

numerically by many people (see Bellman et al [ 2] and references 

the rein). We have 

with g(s) 

00 

S -st 
g(s) = e f(t)dt 

0 

given, either analytically or at given points {s.} 
l 

If we allow arbitrarily high-order harmonics in f(t) , then 

infinitesimal changes in g(s) (like rounding errors) can cause 

large changes in f(t) • Essentially, our method discretizes the 

integration and takes f(t) as that linear combination of the 

first m harmonics which most closely gives g(s) as its 

transform. And m is chosen so the error in the transform 

is less than a prescribed tolerance. 

The obvious discretization is using Gauss--Laguerre 

quadrature (we assume f is not periodic): 

and so at any 

00 s e -t h(t)dt ;' 

0 

set of points {s.} , we get 
1 

oo t n 

g(si) = Se -si f(t)dt ;' l 
0 k=l 

( 4.1) 
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or in matrix form, Ai = g, with 

Solving this using the singular value decomposition, we will 

obtain values for f(t) at the zeros { tk} ~ of the n-th degree 

J;..,aguerre polynomial. We could then use some kind of 

interpolation to give f(t) everywhere. Notice that A is totally 

positive (see Gantmacher and Krein [ 10, page 89] ), so AT A 

and AA T are also, and thus the basis vectors { ui} :n over which 

we take our solution have the oscillation property mentioned 

previoµsly. 

The abscissas and weights are most easily obtained 

from the eigensystem of the tridiagonal matrix derived from the 

three-term recurrence relation for the Laguerre polynomials. 

(See Golub and Welsch [ 14] for a general discussion of this.) 

If 
... 

°"1 ~1 
\ 

I 

T ~1 ~z 
I 

= °"z . . 
' . . • ~n-1 ' . ) 

. ~x: 1 Q' 
n 

with ai = 2i- 1, ~i = -i , then the abscissas {tk} are the 

eigenvalues of T and if the corresponding eigenvectors are 

lq(k) j z , normalized so llq(k)llz = I, then wk= ( q1 (k)) 

2 

(4. 2) 

(4.3) 
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The choice of the sample points { s.} is an interesting 
1 

They should be chosen so the points g(s.) adequately 
1 

represent the function g(s) and so that the expansion of g in 

n 

the basis { u.} , \ /3. u. , has the { f3.} dee reasing rapidly 
1 L 1 1 1 

1 

relative to the singular values of {a.} • This seems to be a 
1 

difficult problem in general. Another factor here is that the 

tk 
weights { wk} decrease rapidly in size (so wke is always 

~ -30 of moderate size) and even for n = 20, w = 10 • If n 

these weights are found as described above, the eigenvalue 

program cannot be expected to find these small wk to high 

relative accuracy, and this affects the choice of the { s.} • 
1 

In particular, the {s.} 
1 

should all be positive so the effect of 

the inaccurate wk for large k is not felt. This may be a 

rather severe restriction and shows why other means of 

calculating the { wk} may be preferred in some cases, 

so the products l wketkl have high relative accuracy, 

Notice also that with little extra effort, we can put in 

more points { s.} say m > n giving an overdetermined linear 
1 

system in (4. 2). This can be solved in exactly the same manner 

using the singular value decomposition. 

The method was tried on the simple example 

1 
g(s) = --

(s+1)2 

-t 
f(t)=te 
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Using Gauss-Laguerre integration on 10 points, the best results 

( iri the sense of least absolute error) were obtained using 

10 equally spa~ed points { s) in (0, 2) for which the maximum 

-3 -3 
function error was 1..10 , neglecting cr. below 3. 10 

1 

(solving 6 equations). Using a 20-point integration scheme, 

best results were obtained for 20 points equally spaced in (0, 5); 

maximum error was 
-4 -3 

5.10 neglecting cr. below 5.10 
1 

(solving 6 equations). Using more data points and solving the 

overdetermined system did not improve the results. It seemed 

only a function of the s-interval used. The predicted optimal k from 

(2.11) was also k = 6. 

5. Application III· - lfhe Backwards Heat Equation 

Again, this is a well-known ill-posed problem, 

which has been considered by many people. We will consider 

only the inverse Cauchy problem on -oo < x < oo (no boundaries). 

Then we can again represent the problem as an integral equation 

of the first kind: 

S
ao e-(x-s) 2 /4(t-r) 

u(x, t) = 

-oo ~ 41r(t-r ) 

u(s, r )ds • 

Of course even if u(s, r) is discontinuous, the solution for 

t > r is analytic; thus for the backwards problem we have the 

additional problem of deciding how far back in time we can solve. 

( 5.1) 

In a very revealing paper, John [ 16] gives a way of doing 

this. Suppose our time scale is such that t = 0 is the final 

time, let u(x, 0) = g(x) , and define for O < a < T , 
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N (a) = s<uP < lu(x, -a)I 
U -oo X 00 

Mg(a) = -oo~?<oo e-yz/4alg(x+iy)! • 

-oo<y <oo 

These are both monotone nondecreasing in a, Mg(a) < N (a) , and 
- u 

from the inversion .formula 

00 -sz /4t 
u(x, -t) = S _e _ _ _ 

-00 ✓ 41rt 

g(x+is)ds , we 

get 

N ( ) < inf 
u a - a<b<T 

Thus u(x, -t) exists and is finite for O .::: t < T if and 

only if M (a) is finite for O < a < T • So 
g -

g(z) must be an 

entire function of order _:o 2 and if of order 2, of type ( la ) for the 

solution to exist back to -a • Thus a well-posed version of the 

problem is assured if we let the final data g vary from g so 

that M- (a) remains bounded. 
g -g 

For the numerical solution, John uses a high-order 

accurate differenc:e scheme, maldng one giant step backwards: 

m 

u(x, -t) = l cj(t) g(x + jh) 

j = -m 

( 5. 2) 
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where h is to be chosen. The coefficients can easily be generated 

by solving a Vandermonde system and the method works quite well. 

It is not clear how best to choose h , although John gives some 

error estimates. 

We propose to solve the integral equation (5.1) directly 

using the singular value decomposition. If we use the trapezoidal 

rule with large h (which is accurate for this kind of integrand-see 

Davis and Rabinowitz [ 7, page 92] ), we obtain Ax= b with A a 

symmetric Toeplitz matrix: 

h 
a .. =-----

lJ 
✓ 41r{t-'T) 

{• ') z 
a l-J = a . . 

1-J 

with o: = We can obtain estimates of the rate of 

decrease of the singular values CJ !n)= >-.!n) using the results of 
1 1 

Kac, Murdoch, and Szego [ 17] (extended by Parter [ 18] ), i.e. for 

fixed v 

n 

where p{e) = I' 
-n 

ike . th . t d t . t . ake 1s e assoc1a e ngonome nc 

polynomial, p (0 0 ) = m = min p(S) , 
1 

c = 2 f" (8 0 ) • Also note that 

p(S) is a theta function: 

p(0) = 
h 

However the numerical results using this scheme were 

poor; instead we approximate ( 5.1) using Gauss-Hermite quadrature 



18 

(as for the Laplace transform problem, this is only appropriate 

if the solution is non-periodic). This gives at any set of data 

points { s.} 
1 

n 

u(s. t) ~ \ 
i, L 

k= 1 

or g = Af • Here the {xk} are the zeros of the n-th degree 

Hermite polynomial which, together with the weights { wk} , 

can be found from the eigensystem of (4.3), now with a. = 0 , 
1 

The matrix A is totally positive so the 

singular vectors { u.} have the oscillation property, and again 
1 

there is the interesting question of how to choose the data 

( 5. 3) 

::::: s ~:: ~o J::e ::l::i :e a6

c :::a::oi:l•, :: ?rrurf:: !::~: if 

any data points si are very large in modulus. For I sil > 3 or so, 

constant functions won 1 t be integrated closely; however if the 

solution decays fairly quickly this will not cause problems. 

The numerical example given is that of Cannon [ 5] who 

used linear programming methods to solve tl:ie heat equation 

backwards. The example consists of two delta function heat 

sources at t = -r : 

5 u(x, t +r) = -_-_ -_-_-_-_-
"-' 1r (t +r) 

2 

( 
_(x +o. 5} 

4 (t +r) 
\e 

2 
(x- 0. 5) 

+ e - 4(t + r) ) . 
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The singular value decomposition was used with 20 point 

Gauss -Hermite quadrature. For t = T = 0. 5, a maximum 

error of • 0008 was obtained for 20 points equally spaced in 

(-1, 1), neglecting singular values below • 003 (solving 

5 equations). This compares favourably with Cannon's results; 

the best results obtained from John's method (see equation (5.2) ) 

were for m = 9, h = 0. 7 5, and gave a maximum error of • 004 • 

For t = T ::: 0.1 , best results were obtained for 20 equally spaced 

points in (-2.5, 2.5); a maximum error of .027 was obtained when 

the singular values below .03 were neglected (12 equations solved) • 

.Again this is roughly the accuracy obtained by Cannon; however 

John's method with m= 9, h = 0.34 gave a maximum error of 

• 0024. As in the case of the Laplace transform, no improvement 

in the results occurred when more data points were used and the 

overdetermined system solved. In both cases, the predicted optimal 

k from (2.11) was the same. 
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