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Introduction 

This paper will show that the stationary probabilities of Markov Chains 

can be simply related by a certain graph theoretic concept. In addition to 

its theoretical elegance, this result will be shown to be useful for (a) hand 

computations on systems with relatively few numbers of states, and (b) in 

algorithms that develop stationary probabilities for certain queuing formu­

lations. In addition, if certain open problems could be solved, this grap~ 

theoretic approach would open a powerful alternative method in the analysis 

of queues. 

The associated graph of the transition probability matrix of a finite 

Markov Chain is a useful means of representing its structure and classifying 
. [ 1] 

its states as demonstrated in De GHELLINCK • Call it a Markov graph. The 

[2] 
latter reference uses the matrix-tree theorem of BOTT and MAYBERRY , useful 

in Leontief economic systems, to relate the spanning tree structure of .the 

Markov graphs of irreducible, discrete parameter chains to their stationary 

probabilities. 
. [3] 

This has also ~een pointed out by MEDVEDEV • 

An analogous result is presented in this paper, and proven in appendix A 

(see also SEELEY[ 4J), for the stationary probabilities of continuous parameter 

Markov Chains. Also call the associated graph of the transition rate matrix 

a Markov graph. Then these probabilities are proportional to a simple function 

of the directed spanning trees at each state (node). The function is the sum 

of the products of the transition intensities taken over each distinct spanning 

tree. This result can be applied to various queuing formulations by developing 

these trees in a recursive manner. Since this process depends only on the 

structure of the Markov Chain, arbitrary transition intensities may be utilized 

that can incorporate many different assumptions regarding the nature of queue in­

volved. The developmental nature of the algorithm automatically provides a means 
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of doing sensitivity analysis on certain system parameters, typically queue 

capacity. In order to make this result precise it will be useful to discuss 

some graph theoretic and related definitions. 

Definitions 

Let the states of a finite, irreducible, homogeneous Markov chain M, 

be denoted by the set S = {s1 , s 2, ••• , sn}. Let the differential rate 

matrix of such a chain in continuous time be A= [aij] and the state 

probability vector be p(t). Also, let ~i' associated with si, be the 

stationary probability of being in that state (i=l, ••• n). Define the 

Markov graph of M to be G = (S,U) where S represents both the set of nodes 

of the graph and the states of M for simplicity, and U represents the set 

of arcs of the directed graph where uij £ U iff a~j is nonzero. That is, an 

arc leads from si to sj only if this state transition can take place. 

Further definitions from graph theory are necessary. For the arc uij' 

s. ands. are called the initial and terminal nodes respectively. A sequence 
l. J 

of arcs (u12 , u23 , ••• , umn) such that the terminal node of each arc is the 

initial node of the next is called a~. A graph is strongly connected if 

there exists a path between any pair of its nodes. 

A subgraph H = (T,V) of G • (S,U) is a graph where either T and/or V 

are proper subsets of s.and U. H will be said to spa~ G if Tis identical to 

s. A finite path such that the initial node of the first arc is identical 

to the terminal node of the last arc is called a circuit. 

The spanning tree structure of Markov graphs is central to this paper. 

Trees containing directed arcs will be referred to either as "a tree to s 

~", or as "a tree rooted at a node" (the latter are sometimes known as 

arborescences, BERGE[SJ). These two types are distinguished by the direction 

that the arcs take in relation to the distineuished node. In particular, we 



will deal with trees to any node, s • 
0 

These may be defined by a directed 

graph Gm (S,u) wherein (a) every node, excluding s , is the initial node 
0 

of only a single arc, (b) no arcs lead froms , and (c) the graph G contains 
0 

3. 

no circuits. Such a graph contains n-1 arcs if n • Isl ; an example is illus-

trated in figure 1. A co~sequence of the definition is that there is a path 

from every node to s. 
0 

Figure 1: 

Focus • n aih 

all aih of arcs 

within tree 

A Tree (S,U) at Nodes and its Focus 
0 

The following definitions are derived from tree to a node, and are the 

key quantities in the stationary probability computations. In graphs wherein 

each arc uij has a coefficient aij associated with it, (the aij correspond 
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both to the transition intensities of the differential rate matrix for queues 

and to the transition probabilities in discrete time Markov Chains) define a 

focus at nodes of a particular spanning tree to that mode, to be the product 
0 

of the coefficients on the arcs of the tree. This is illustrated in figure 1. 

Note that there may be many distinct spanning trees to a particular node, as 

subgraphs of any arbitrary directed graph. Define the total focus at a node to 

be the sum of all distinct foci at that node (i.e. each tree will have at least 

one arc different from each of the others). 

The Total Focus Theorem 

It is well-known that the associated graph of a finite irreducible Markov 

Chain is strongly connected. That is, it is possible to reach any state from 

any other state after at most n-1 transitions. Within such a graph it will be 

always possible to find at least one spanning tree to each node. 

The matrix-tree theorem of BOTT and MAYBERRY[ 2] expresses the determinant 

of an arbitrary matrix by using the spanning trees of a modified associated 

graph. In fact, the determinant is equal to the sum of all of the foci of this 

graph. De GHELLINCK[l] has demonstrated the utility of this result to matrices 

that have the special property that the diagonal elements are equal to the sum 

of the off-diagonal row elements. He then applied the theorem to the solution 

of the stationary probabilities of discrete time Markov Chains (although he 

used arborescences and the transpose of the transition matrix). 

For simplicity, call the above matrices Kirchhoff matrices (i.e. when the 

diagonal elements are equal to the sum of the off-diagonal row elements) since 

similar results were first proven to apply to current flow in electrical circuits. 

These matrices reflect physical systems wherein there is a kind of flow 

conservation law operating. The sum of flow entering a node must equal 

the sum of the flows leaving that node. In such systems Bott's matrix tree 

I' 
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theorem may be applied in order to determine the steady-state flows through 

the nodes; since in addition to the determinant, the principal minors are 

given by a function of the spanning trees to each node (i.e. their total foci). 

In Markov Chains, the steady-state equations for the state probabilities 

yield systems of homogeneous equations whose matrix of coefficients is Kirchhoff. 

In discrete time, if Pis the one-step transition matrix and w the stationary 

state probability vector, then the system is: 

1r • (I-P) • 0 (1) 

In continuous time, with differential rate matrix A, the corresponding system is: 

(2) 

It is evident that (I-P) satisfies the Kirchhoff property since the row 

transition probabilities of P sum to unity. The differential rate matrix A 

however, is derived from an approximating discrete time Markov Chain whose 

transition matrix Tis stochastic like P. The diagonal of T however, always 

has a term of the form, unity minus the transition probabilities possible 

from that state. In formulating the system of differential equations from 

which equation (2) is derived, the unity on the diagonal is removed in order 

to form the differential, leaving: 

d p(t) = p(t) • (T-I) 
dt 

(3) 

The limit of the derivative of the state probability vector p(t) as t tends 

to infinity is taken to be the constant zero vector, leaving equation (2) in 

which A= (T-I). The vector 1r is determined from the homogeneous systems 
n 

(1) and (2) by also satisfying i~l 1T i . = 1. In applying the matrix tree 

theorem, the coefficients of the arcs of the spanning trees associated with 

discrete time Markov Chains are the transition probabilities, whereas in 

continuous time they are the transition intensities. Hence, the following 

theorem may be stated for finite, irreducible, homogeneous Markov Chains. 
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Theorem: The stationary probability of state j of a Markov Chain is 

equal to the total foci of node j in the associated graph, normalized by 

the . sum of all total foci. 

This result is proven in appendix A by applying Mason's loop rule 

for determinants in a flowgraph version of the system of equations (3). 

An Example 

Consider a service system consisting of two channels in series but with 

no queue allowed before either channel. Assume a Poisson arrival rate of >.. 

items to the system, some of which will be lost if the 1st channel is busy. 

Both service channels have exponentially distributed service times, with 

meansl/µ and 1/µ respectively. Wha,t are the steady-state probabilities? 
1 2 

First draw the Markov graph corresponding to this system, ignoring 

self-loop transitions since these cannot enter into any spanning trees. The 

states of the system are indicated by characters describing the status of 

each channel; 0 for empty, 1 for occupied, and b for channel 1 blocked after 

a service completion. Note that self-loops cannot enter into any trees, there­

fore they will be omitted in all Markov graphs. 

Figure 2: Markov Graph of a Tandem 
Service System with No Queues 



In order to solve this system using the above theorem,(1) enumerate 

the spanning trees at each state j and compute its total focus T(j) (2) 

sum all of the total foci in some convenient fashion, and normalize the 

T(j) yielding the stationary probabilities Tij. 

at S there are 2 spanning trees 
00 

Hence: 

s 
00 

s 
00 

510 

:. T(lO) .. ).2µ~ 

3 2 
+ Aµ2 + AlJll.12 

7. 
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Figure 3 

Suppose in this instance that µ
1 

= µ
2 

~µ,and that ')../µ = p. If one 

divides each of the total foci by 4 this will yield the following: µ 

T' (00) = 2 
I 

T' (01) - 2p 

T' (10) 2P + p 2 -
T' (11) 2 = p 

T' (bl) 2 
= p 

Total 2 
= 2+ 4p+ 3p = K 

With the constant K, many system quantities can quickly be computed: e.g.: 

prob (idle system)= 1r = 2/K 
00 

2 prob (item is lost) =1r 10 +1r 11 + 7Tbl .. (3p + 2p)/K. 

Example 2A: Birth and Death Model 

The stationary probabilities of states in birth and death continuous Markov 

Chains are well known [6]. However, using the Markov graph and the total focus 

theorem, evaluation becomes exceedingly simple • to do by hand. This is due to 

the fact that nodes in such models have only one focus apiece, and each with a 

simple structure, as witness the following specific application. 

Suppose a system contains a group of 4 machines each subject to an ex­

ponential breakdown rate').., and also that 2 repairmen are available, each 

with exponential service rateµ. Let state of the system, j,represent j 

machines not working, and let p • ')../µ • 1/4. Suppose that the probability that 

in the long run at least 2 machines are down is desired, (i.e., a machine just 



(a) 

(b) 

(c) 

9. 

breaking down must wait for service), i.e. the sum of ~
3 

and ~
4

• 

2µ 2µ 

4 8 8 8 

8 8 

Figure 4: Markov Graph and Foci in a Machine Repair Problem 

In figure 4(a) the transition intensities (ignoring self-loops) of the 

continuous Markov Chain corresponding to the problem, have heen marked using 

relative magnitudes based on p. Figures 4 (b) and 4 (c) show the arcs of two of 

these foci, and values of T(j) proportional to the stationary probabilities are 

obtained as follows: T(0) • 4*8*8*8 = 4*512 

T(l) = 4*8*8*8 = 4*512 

T(2) • 4*3*8*8 = 4*192 

T(3) a 4*3*2*8 = 4*48 

T(4) = 4*3*2*1 = 4*6 

Total 

From these figures the probability we are looking for is, 

Other quantities of interest may be computed as easily. 

48+6 _ 
1250 - •04 
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Recursive Use of the Total Foci Theorem 

The method of using spanning trees for computing stationary probabilities 

of arbitrary Markov Chains is useful only for problems small enough to be hand­

solvable, such as in the previous examples. Since the number of spanning trees 

in strongly connected graphs of some complexity grows very rapidly as the number 

of arcs and nodes increases (see for example the enumerations in Harary[SJ), 

computing total foci by enumerating spanning trees will be clearly inefficient. 

However, for regularly connected graphs such as those Markov graphs arising 

from queuing theory, the total foci may be computed recursively in a very 

efficient and useful manner. A general discussion and an example provide 

evidence for this assertion. 

First, consider the new spanning trees that are formed when a single new 

node Xis added to a strongly connected graph, as illustrated by figure S(a). 

In this example, there are only 2 arcs that connect X to the original graph. 

It is clear that any spanning tree at X must make use of the arc leading from 

Y to X. Now since any old spanning trees to Y may be validly augmented this 

way, the total focus at Xis: 

T(X) = a•T'(Y) (5) 

A similar argwnent for the new total focus at Y prevails, involving the 

inclusion of the arc from X to Z to all of the original spanning trees at Y; 

therefore: 

T(Y) ~ b•T'(Y) (6) 

An analogous argument applies partially to the new total focus at z. 

However, there may now be spanning trees at Z which include both the 'a' and 

'b' arcs. In order to compute this factor, consider that any arcs from Yin 

the construction of the spanning trees of T'(Z) must be removed. In fact, what 

has just been described is a graph theoretic concept known as a forest. 
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Figure 5 (a), Adding a New Node to a Strongly Connected Graph 

O< O< 
xl 

0 
x2 

X3 

Ftgure 5 (b), A Forest of Foci at x1, x2 ••• , Xf 

Figure 6: Models for the Description of Growing Total Foci 
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Formally, a spanning forest at nodes x1, x2, ••• xf of a graph G is a 

subgraph that contains no circuits and all nodes of G other than x
1

,x
2

, ••• xf 

are the initial nodes of exactly one arc, while the latter are not initial 

nodes of any arc. A typical forest is illustrated in figure S(b). Similarily 

to the notion of a total focus, call the sum of the products of arc weights for 

each distinct forest at a set of nodes as a total forest, denoted by T(x1,x2 ••• 

xf). 

Therefore, the quantity described above is T'(Y,Z), and the new total 

focus at Z is: 

T(Z) • b•T' (Z) + a•b•T' (Y,Z) (7) 

Now consider, the new total focus at node W. Arguments analogous to those 

for T(Z) prevail for T(W), except that there is a further complication with the 

term a•b•T'(W,Y). If there were spanning forests included in T'(W,Y) that had 

a path from Z to Y (and necessarily not to W), then the addition of arcs 'a' 

and 'b' to such a forest would produce a circuit through nodes X, Y, and z. 

Such terms could not be included in any new spanning tree at w. 

Hence, there is need to define a new term T(W*Z,Y), which is the sum of 

the arc products from all distinct spanning forests at Wand Y, such that W 

is a descendant (on a path from) z. There may arise situations where it is 

easier to compute the equivalent quantity T(W,Y) - T(W,Y*Z). In any case, the 

new total focus at W may be exptressed as: 

(8) 

For any particular queuing formulation the equations for determining the 

stationary probabilities by means of recursive spanning trees may be developed 

in this manner. The general procedure is to consider four classes of equations 

(a) those for the new states, such as equation (5), (b) those for states 

neighbouring to these, such as equations (6) and (7), (c) equations for 

backgrou~d states such as for W above, and (d) equations that compute ~s 
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intermediate quantities, the various total forests. 

This method becomes very difficult when considerations such as those above 

in defining T'(~Z,Y) become necessary for many background states. This 

possibility increases when more than one state is added at each iteration as 

may be required for multi-parameter queuing models. This will be illustrated 

in a subsequent paper which aolvea th• general k•phase 11rvice eyatem (see for 
[4] 

instance ). Now consider an example that is easily handled by this ,approach. 

A 2-Phase Service Model 

The method of phases has been extensively used to model queuing processes 

involving the Erlang Distribution [7]. Consider a 2-phase system allowing a 

maximum of n entries, in which the service facility may be occupied by only 

one item at a time, as described by figure 6. Notice that aj and bj are the 

exponential rates of arrival and of phase service respectively, when there a 

j items in the system. Hence, this model will allow for arbitrary state­

dependent behaviour. The states jl and j
2 

denote j items in the system, 

with the subscript indicating the current phase of service. Of course, an 

empty stste e is required. 

In figure 6(b) is illustrated the process whereby the stationary 

probabilities are computed recursively. The method proceeds by growing the 

Markov graph in stages, each subsequent stage yielding the total focus 

of each state when the queue capacity is allowed to increase by one. It 

starts with the initial total foci of a system with no queue. For nota~ 

tional convenience denote the total focus of j 1 for example, as Tj ,1'" 



(a) 

(b) 
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2-phase service 

aj j in system bj 1~ l 
bj 

0 ) 0 0 0 0 ► 

a2 8

n-1~ - n 1 

I 
I 

b 
n-1 

ib 
\ n /bn 

\ I 
\ I 
\ I 

b n-1 \ I 
a n-1 ~ 

Figure 6: Markov Graph for 2-Phase Service System by Recursion 

The initial total foci for the above system (no queue allowed) is simply: 

(9) 

since there is only one spanning tree at each state. 

Next consider the inductive process of increasing the system capacity to 

n from n-1, as shown by the dotted arcs in figure S(b). If one assumes that 

total the previous foci of states e and j 1 , j 2 for j • 1,2, ••• n-l are known 

and represented by T' 8, T'j,l and T'j, 2 , then the total foci of states n1 

and n2 can be easily computed. 

Spanning trees can be formed at n1 by only 2 ways: (1) using T'n-l,l 
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and the arcs leading from n2 to (n-1) 1 and from (n-1) 1 to n1 , and (2) using 

the previous total forest at nodes (n~1) 1 , (n-1)
2

, and the arcs along the path 

passing through the nodes (n-1) 2, n2, (n-1) 1 , and n
1

• Where the sum of the 

arc products of the previous total forest is denoted by Forest'. Hence: 

2 T = a • b • T' 1 + a 
1 

• b • Forest' (10) n,l n-1 n n-1, n- n 

At n
2 

however, there are 3 ways of forming spanning trees, each utilizing 

the previous total foci at either of (n-1) 1 or (n-1)
2

, or the aforementioned 

total forest. Hence: 

Forest' (11) 

Now, examine the remaining neighbourhood and background states. Adding 2 

nodes to the graph necessitates that they each contribute arcs to any new 

spanning trees formed at these states. In addition to the two b arcs there 

are two new a 1 arcs available. Recall however, that circuits cannot n-

appear in a tree. This would necessarily happen, if for instance the upper 

a arc were used. n-1 

tree at node (n-1) 1 • 

The lower an-l ar~ can only be used in forming a spanning 

This is done by removing from consideration the b 1 arc 
n-

between the nodes (n-1)1 and (n-1) 2, leaving the total forest referred to 

above. Hence: 

T • b2 • (T' + a 1 • Forest') n-1,1 n n-1,1 n-
(12) 

Neither of the an-l arcs may enter into a spanning tree at (n-1) 2, and 

all remaining states must be reached by means of a path from states (n-1) 1 to 

(n-1) 2 to (n-2)
1

• Therefore, if "e" represent~ any state not formulated 

above, the remaining total foci to be recomputed can be found from: 

T 
e 

2 
• b • T' n e 

(13) 

All that remains to be determined is the recurrence relationship for 

the new total forest at nodes n1 and n2• New spanning forests may be formed 
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by (a) the old forest and the two a 1 arcs, (b) using the upper a 
1 

arc 
n- n-

and the previous total focus at (n-1) 1 which isolates the node n
2

, and (c) 

in an analogous fashion, isolating node n
1

• Hence: 

Forest • a 2 
1 • Forest' + a 1 • (T' + T' ) (14) 

n- n- n-1,1 n-1,2 

Using the above equations therefore, allows one to compute the stationary 

probabilities of the 2-phase service system for increasing system capacities 

and using transition intensities that may depend upon system state (or phase 

if desired). This just requires normalizing the total foci at each staee. 

To show that this is an efficient method the following experiment was carried 

out. Programs were written in Algol W to solve this queuing system by both 

(a) the equations (9) - (14), and (b) Gaussian elimination for the corresponding 

system of linear equations. (This is also a useful method of verification 

of the formulae). 

The following is the execution time in milliseconds for each method. 

The recursive spanning tree method has times that are necessarily cumulative 

including normalizations at intermediate stages. The number of states reflect 

the maximum capacities of n • 2,4,8,16 ••• 

Number of Recursive Gaussian 
States Spanning Trees Elimination 

5 21 ·msec. 35 TllS ec. 
9 83 II 159 II 

17 284 II 1,133 II 

33 1021 II 11,727 II 

Quite clearly, the recursive method is much faster, apparently of a time 

complexity of somewhat less than n2• Also, an advantage of the recursive 

method over any closed analytic solution is its ability to use arbitrary values 

for the transition intensities. The author has found the approach utilized in 

the previous example applicable in several other cases, including bulk queues, 

and k-phase service and arrival queues. 
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Several questions raise themselves at this point. How complex can the 

Markov graph be, before this approach becomes computationally inferior to 

solving linear equations? Recall that one of the virtues of spanning trees 

is the arbitrary manner by which transition intensities may be defined. Does 

there exist an algorithm for recursively computing the spanning trees for the 

complete graphs (or will orthodox determinant computations always be faster)? 

Does there exist a notation that can describe the structure of Markov graphs 

(of queuing models) in such a way that it may be combined with the total 

focus theorem in order to automatically yield the required recursive equations? 

Conclusions 

Described in this paper is a theorem that relates the stationary probabili­

ties of Markov Chains to the spanning tree structure of their associated graphs 

in a simple fashion. So simple in fact, that an intuitive explanation• of the 

role that spanning trees play in equilibrium flow is desirable. In addition 

to its elegance and its utility for hand calculations of small systems, it has 

been shown that the theorem may be usefully applied to the highly regular graphs 

of some queuing formulations in a recursive manner. This fact and some of 

the unsolved questions its use raises, make the recursive spanning tree method 

of solving queuing formulations an attractive alternative to traditional 

approaches. 
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Appendix A: Proof of the Total Focus Theorem 

Preamble 

Consider the differential rate matrix A of a continuous parameter Markov 

chain. The derivative of the state probability vector is: 

dp(t) • p(t)•A 
dt 

(15) 

Taking the Laplace transfonn of this equation and denoting L{p(t)} 

as P(s), yields: 

P(s) • l • (P(s).A + initial 1conditions) 
s 

(16) 

In the theorem, this set of equations (16) will be represented by a 

flowgraph. A flowgraph represents linear equations relating variables in a 

directed graph form, wherein the nodes represent variables and the coefficients 

of the arcs represent the transmittance between variables. The dependency 

of a variable Xj upon another Xi in such a graph is given by Mason's loop 

rule. 

(17) 
D 

where: Dis the determinant of the flowgraph, 

Lij.(k) is the transmittance of the k-th path of all paths from Xi to Xj 

dij(k) is the k-th path factor, found by eliminating the loops touching 

the nodes along the k-th path, from the expression for the determinant. 

The determinant is given by: 

D • 1 - (sum of all loop transmittances) 

+ (sum of the products of all disjoint pairs of loops) 

- ( ••• disjoint triple products ••• ) 

(-l)n (sum of all disjoint n-products of loops) (18) 

where disjoint implies that loops have no nodes in common. Note that loop 

corresponds to a circuit in graph theory. Circuits of only one arc will be 

referred to as self-loops. 



20. 

In order to get the stationary solution, the final value theorem will be 

applied to the flowgraph dependencies of (16). It is at this stage that the 

form of the solution switches to a graph theoretic representation. Note that 

the differential rate matrix A has the special Kirchhoff property that the 

diagonal elements are equal to the negative of the sum of the remaining terms 

in each respective row, Alao (transition) intensity will be used synonomously 

with flowgraph transmittance in this context. Consider figure 7 as illustrative 

of (16), the flowgraph of which shall be referred to as a Markov flowgraph. 

Start 

Figure 7: Illustrative Markov Flowgraph 



Note the following characteristics of the graph: (i) The initial 

condition is at state 1 for convenience and without loss of generality; 

(ii) The self-loops at each node, are the negative of the sum of the inten­

sities leaving that node. In the proof, the different coefficients in the 

self-loop term will be considered separately; (iii) The dependency of the 

state probabilities upon the initial condition as time advances to infinity 

will be formulated. 

Denote as system focus the sum of the total foci at each node in a 

21. 

Markov graph of an irreducible system. The theorem may now be stated formally. 

The Total Focus Theorem 

Theorem: The stationary probability of any state j, in a finite, homo­

geneous, continuous time, irreducible Markov Chain is the total focus of 

the Markov graph at node j divided by the system focus. 

Proof: The following lemmas which describe the characteristic terms 

in a Markov flowgraph determinant will be utilized. 

Lemma 1: In the expansion of the determinant, there do not exist terms 

that include intensities whose corresponding arcs form a circuit of length 

greater than one arc (self-loop). 

Proof: First note that any number of other intensities may be present 

in such terms, and that for every intensity there exists a component of a 

self-loop which is opposite in sign. Also, note that in the expansion of 

the determinant, the sign of a product which consists of k disjoint loops, 

of which pare self-loops, is (-l)k•(-l)P. 

Most important is the fact that there exists a 1-1 correspondence 

between each term that involves a circuit, and the term involving components of 

self-loops of the nodes of that circuit, those components which have the 

opposite. sign of the arcs of the circuit. For example in figure 7, consider 
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the circuit (loop) (a24 , a43 , a32 ). For every term involving its intensities 

a24 /s, a43/s, a32/s, there is a corresponding term using -a
24

/s, -a
43

/s, -a
32

/s 

from the product of the three self-loops -(a
24

+a
21

)/s, -a
43

/s, and -a
32

/s. 

Each term utilizes the nodes 2, 3 and 4. Therefore, any set of loops that 

is disjoint to one of these terms is necessarily disjoint to the other. 

Now the contribution to the sign of any term from a circuit (not 

self-loop) is always -1, since the intensities of its arcs are positive and 

kal. However, the contribution to the sign of the corresponding term using 

the self-loop components are always negative. Therefore, for every term 

developed from a circuit (any number of circuits, for that matter) there must 

exist a term of the same magnitude, but opposite in sign. Therefore all such 

terms are cancelled out in the determinant expansion. Q.E.D. 

Corollary: The only terms that will remain in the expansion will be 

positive. 

This follows from the fact that only terms composed of self-loops and 

the 1 are left in the loop rule expansion. 

Lemma 2: No terms composed of nor greater intensities can appear, where 

n is the number of states in the chain. 

Proof: A circuit would be formed by nor more intensities (or arcs). 

Since only self-loops can be involved, only one component corresponding to 

an arc from each self-loop can contribute to a product that would be disjoint. 

Now examine the graph formed by the corresponding arcs to these components. 

Using a theorem of BERGE, if n edges (ignoring the direction of arcs) were 

used then a cycle (non-directed) would necessarily form. In our case, that 

this cycle would correspond to a circuit follows from the fact that each node 

can be the initial node of one arc only. A cycle that has arcs going in 

different directions necessitates at least one node that is initial for at 

least 2 arcs. Therefore the only ter~s including n intensities correspond 
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to circuits and must be cancelled by lemma 1. 

Consequently, the only terms, in addition to 1, that will appear in the 

determinant are products of all possible disjoint, self-loop components, whose 

intensities do not embed any corresponding circuits, i.e.: 

2 n-1 det • 1 + v1/s + v2/s + ••• Vn_1/s (19) 

where the V are the sums of all non-circuital k-products of intensities that 
k 

do not have the same initial node '(state). Equation (4) may be 

1 
det .. --­n-1 

s 
(sn-1 + sn-2.__

1 
+ n-3 + + V ) 

-V s V • • • 1 2 n-

rewritten as: 

(20) 

Now consider the i-th path from the startipg node to the state of interest 

j (there must be at least one since the graph is strongly connected). Assume 

it is· of length l(i), lsl(i)~n, i.e., it passes through l(i)+l nodes including 

the start and j. According to the rule by which the path factor is formed, 

the contribution of this path to the dependence of sj upon the start will be: 

• 1 

n-1 s · 
( n-1 + sn-2V

1
* + l(i)-L_* ) 

s • • • s -vn-l(i) (21) 

where di/sl(i) is the path transmittance (a product of intensities), and v: 
denotes the removal of any terms that possess an intensity of a node along 

the path. No product~ containing more than n-l(i) components will appear 

since that would necessarily require an intensity from a path node, recalling 

that only one intensity from each node may appear in such products. 

In accordance with the loop rule, . (21) is now sUIIDlled over all 

possible paths in order to find the overall dependence of pj(s) on the initial 

state. If the final value theorem is applied to determine the long:run 

state probability, this yields 

r 
'IT • lim Pj(s) • i 

j s~ n-1 
8 

di
• (sn-l(i)+

8
n-l(i)-l.v*l * 

+. • · vn-.l(i)) 

n-1 n-2 n-1 (s +s v1+ ••• V )/s n-1 
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( n-l(i)+ n-l(i)-lv* + +v* ) 
lim I d • 

s s 1 ••• n-l(i) -s~o i i n-1 n-2 
(s +s vi+ ••• +vn_1) 

I * 
di•V n-l{i) - (j-1, ••• n) (22) i V n-1 

Vn-l consists of all possible products of intensities such that there is 

only one intensity associated with any node and no associated circuits are 

formed. Therefore, V 1 consists of all foci in the graph (excluding the n-

initial arc) and is identical to the definition of a system focus. Now 

* consider a term di•Vn-l(i)" Since the path associated with di contributes 

l(i)-1 intensities a (a+l only, being associated with the initial arc), there 

are again n-1 intensities from every node excluding sj in this term. It 

follows that it is a focus at node sj. It also follows that the summation 

over i represents the total focus at,sj because in every focus at sj there is 

a path from any other node to sj, so that all foci at sj are represented in 

the summation. This would be the case no matter where the initial state 

occurred or indeed if all states had an initial probability. Therefore, it 

follows that 

total focus at state j 
~ -~~;.;;_;._.......;.......;_.c--C...;;;..c..a......_L 

j system focus (23) 

Q.E.D. 
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