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Abstract—We present a skin tracking and reconstruction
method that uses a monocular camera and a depth sensor to
recover skin sliding motions on the surface of a deforming object.
Such depth cameras are widely available. Our key idea is to
use a reduced coordinate framework that implicitly constrains
skin to conform to the shape of the underlying object when
it slides. The skin configuration in 3D can then be efficiently
reconstructed by tracking two dimensional skin features in video.
This representation is well suited for tracking subtle skin move-
ments in the upper face and on the hand. The reconstructed skin
motions have many uses, including synthesizing and retargeting
animations, recognizing facial expressions, and for learning data-
driven models of skin movement. In our face tracking examples,
we recover subtle but important details of skin movement around
the eyes. We validated the algorithm using a hand gesture
sequence with known skin motion, recovering skin sliding motion
with a low reconstruction error.

I. INTRODUCTION

Technology for reconstructing and tracking 3D shapes is

now widely available, especially due to the availability of

inexpensive sensors such as Microsoft’s Kinect and Intel’s Re-

alSense cameras. In conjunction with template-based motion

tracking [1], [2], [3], [4], one can generate a sequence of 3D

meshes that represent the shape of the body. However, these

mesh animations do not accurately capture the motion of skin,

since skin can slide over the body without changing the body’s

shape. For example the skin on the face and hands can stretch,

wrinkle, and slide during natural movements without being

detected by a depth sensor. Here we propose a new method

for capturing the sliding motion of skin over a body using the

color video information that is usually available in addition to

depth.

The key observation is that the skin and muscles of the

face, especially around the eyes [5], and on the back of the

hand, are very thin and sheet-like. In such regions, skin can

be well approximated as a thin sheet sliding on the surface

of an underlying rigid or articulated rigid body structure,

which we call body [6]. This approximation allows to represent

skin in a low dimensional space and implicitly constrain it

to always slide on the surface of the body. This is the core

idea of our proposed method, which allows it to efficiently

reconstruct subtle skin sliding motions. Such motions are

small but highly noticeable, especially in the face. Capturing

such skin movements from human subjects can enable the

construction of data driven models of the face [7].

Facial expressions are one of the key components of ef-

fective communication. Emotions such as anger, happiness,

or sadness are accompanied by characteristic facial tissue

deformations. Eye movements are particularly important for

non-verbal communication; in addition to changes in gaze, the

configuration of the skin around the eyes convey significant

information about our mental and physical states that can be

recognized even from single images [8]. For example, we

widen our eyes when we are surprised or droop the eyelids

when we are fatigued. Similarly, when we observe a scene or

a painting our eyelids produce a wide range of deformations

which are highly correlated to gaze.

Surprisingly, there is very little research that focuses on

tracking and reconstructing skin in the eye region. Recent

work by Bermano, et al. [9] tracked eyelid motions and skin

deformation around the eyes using a complex multiple camera

setup, but reconstructed only simple motions such as blinking.

On the other hand, in some other work eyelid margins are

tracked but detailed skin deformation around the eyes are

ignored [10], [11], [12]. Garrido, et al. [13] estimated 3D

structure of face and refine the shape using photometric and

optical flow constraints using a monocular setup, but ignore

the fine reconstruction of eyelid motions. Currently, to our

knowledge, no method exists to track and reconstruct skin

sliding deformation around the eyes using a simple monocular

camera setup.

Recovering 3D shape from monocular capture is an ill-

posed problem and several constraints are imposed to limit

the possible range of solutions. Two widely known techniques

to tackle this problem are non-rigid structure from motion

[14], [15] and shape from template [13], [16]. The Non-rigid

Structure from Motion techniques (NRSfM) [14], [17], [18]

are used to recover non-rigid structures from a sequence of

images that captures motion of the object. The NRSfM offers a

model-free formulation but it usually requires correspondences

in a long image sequence. On the other hand, shape from

template techniques use the constraints imposed by isometric

or conformal deformations to reconstruct 3D shape [13], [16],

[19], [20].

Our work is closer to shape from template techniques such

as the work of Garrido, et al. [13]. Our proposed reduced

coordinate representation of skin allows recovery of skin

sliding motion in the eye region using a monocular image

sequence. This framework is general and not limited to

reconstructing facial skin sliding around the eyes. It can be

used to reconstruct skin sliding motions on any deforming

body, as long as skin shares the shape of the body when it

slides. For example, we can model skin deformation on hands

when we perform hand gestures. By simply flexing our fingers

we can observe how skin slides on the dorsal sides of hand. It

requires a lot of manual effort to produce such sliding motions

using traditional skinning techniques. On the other hand,
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any wearables [21], [2], [3] can reconstruct hand geometries

during hand gestures in real-time but they lack detail skin

sliding motions. Our proposed method complements, rather

than to compete with these techniques, and generate detail

skin sliding motions from already available data from these

tracking systems.

Contributions. Our main contribution is the use of a

reduced coordinate representation of skin to track and re-

construct skin sliding during facial expressions and hand

gestures. This representation makes our system efficient and

robust. Our method complements existing face and gesture

tracking techniques by recovering characteristic skin sliding

motions from a sequence of images. The reduced coordinate

representation automatically constrains skin to slide on the

tracked surface. Furthermore, it is easy to use, with minimal

setup. It can utilize widely available RGB-D cameras and can

use any optical flow technique. Our algorithm can correct two

types of errors: first, tracking drift generated by the optical

flow technique, and second, 3D reconstruction error due to

error in the mappings of reduced coordinate representation to

3D. Although our system uses some existing techniques as a

part of its pipeline, they are customizable and users can choose

their own favorites.

The remainder of the paper is organized as follows. We

describe the reduced coordinate representation in Sec. II-A

and tracking details in Sec. II-B. The results are presented in

Sec. III, while the limitations of our method are mentioned in

Sec. III-C. Finally we conclude our paper in Sec. IV.

II. METHODS

A. Representing Skin Motion in Reduced Coordinates

To represent the sliding motion of skin over a deforming

surface and its measurement by a video camera, we use the

reduced coordinate representation of skin introduced by Li, et

al. [6]; however, we discretize the skin instead of the body.

See Fig.1. Our reduced coordinate system has several benefits

that makes it efficient and robust: First, by representing three

dimensional skin in a two-dimensional space we can effi-

ciently compute skin configuration. Second, by constraining

the synthesized skin movement to always slide tangentially

on underlying body, our skin reconstruction is robust against

bulging and shrinking and other interpolation artifacts.

Since skin is a thin structure that slides on an underlying

body, we need to represent the skin and body separately. We

will assume that the character is discretized into a triangular

mesh in a reference pose in 3D. The skin and body meshes

are aligned in the reference pose (top row, Fig.1). The skin

is parameterized by a map π, using an atlas of rectangular

coordinate charts.

Following the notation of Li, et al. [6], skin points are

denoted in 3D and in 2D chart coordinates. By a small

but common abuse of notation, we will use the same symbols

to denote the set of points corresponding to vertices of the

skin mesh, represented as stacked vectors.

Skin reference pose 
Skin on 

body reference pose
Skin on body

 at frame t

Skin atlas Camera coordinates

Fig. 1. Overview of spaces related to skin tracking.

They are related as:

= π( ). (1)

Each chart may be associated with a texture image . Such

meshes, parameterization, and textures can all be obtained

from standard RGDB scanning and mesh registration tech-

niques (in our examples we used FaceShift [1]).

As the person moves in 3D, we assume they are imaged

with some RGB-D system which produces a body mesh x̃t

at frame t. They are usually produced by some variant of the

ICP algorithm with point cloud data. However, the key point

is that these meshes capture the body shape but not the sliding

of the skin over the body. The true skin mesh, xt, is no longer

aligned with the body mesh x̃t. Our goal is to reconstruct xt.

To this end, the skin is imaged by a camera, with associated

projection matrix P , to produce a color image It. The image

coordinate of the skin vertex xt is denoted ut. Therefore, we

can write:

ut = P (xt). (2)

Note that since we have depth information from the body

mesh x̃t, P is essentially a 3D projective transformation (and

not a projection) and therefore invertible. This inverse is called

the body map Mt, and it maps a skin point in the camera

coordinates on to the body surface.

Finally, note that once we know the locations u of mesh

vertices in an image, we can define a function f in the visible

regions of skin, from the atlas to image, by interpolating the

values between vertices. This function can be used to warp or

transfer pixels from the texture atlas images to the camera

image.

B. Reduced Coordinate Tracking

Our reduced coordinate skin tracking and reconstruction

algorithm is summarized in Algorithm 1. Here we describe

different components of this algorithm in greater detail.



Algorithm 1: Skin Tracking in Reduced Coordinates

Input : Reference mesh ❳, with a set of reference

texture images ■; projection matrix P ; for

t = 1 : T , a sequence of body meshes x̃t and

camera images It
Output: Sequence of skin configuration, xt

1 Initialization: Set u0 and I0, using ❳ and ■

2 for t = 1 to T do

3 Generate: body map Mt

4 Compute: dense optical flow wp from It−1 to It
5 Using correspondences between u0 and u∗t , where

u∗t = ut−1 +wp, warp ■ with f to generate I∗t
6 Compute: corrective dense optical flow wc from It to

I∗t to remove drift in flow

7 Update flow: w = wp + wc // Eq. 3

8 Advect: ut = ut−1 + w // Eq. 4

9 Optimize: to improve 3D reconstruction // Eq. 5

xt = argminx(‖Px− ut‖
2
+ λ ‖x−Mt(ut)‖

2
)

10 end

11 return xt

1) Inputs: Our system requires a sequence of 3D meshes

registered to the motion of a object. We call this sequence

a ‘body sequence’ (or x̃t, t = 1 : T ). The body sequence

can be obtained by any mesh tracking technique (e.g., [2],

[3]). For our face tracking example (Sec. III-A), we used

FaceShift [1] to generate the body sequence. Any calibrated

monocular camera can used to produce the image sequence.
2) Initialization: To bootstrap the flow computations, we

need u0 and I0. We first estimate the initial body mesh x̃0.

In many cases, it is the same as the reference mesh ❳; if not,

a registration step is performed to align the two. Then we

project x̃0 using P to obtain u0 in image coordinates. Since

the vertex coordinates for each mesh triangle are known in

both image coordinates and in the texture images ■, we can

synthesize I0 by warping each triangle’s pixels from ■ to I0.
3) Flow Computation and Correction: We use a dense

tracker proposed by Brox and Malik [22] to estimate the flow

wp between It−1 and It. We advect the tracked point locations

ut−1 as: u∗t = ut−1+wp. The error in optical flow produces

drift in the location of the tracked points with time. For longer

sequences, the error quickly grows over frames. Therefore, to

correct this drift we warp the texture images ■ to the frame It
using Barycentric interpolation based on the locations of the

tracked points (i.e., the function f in Fig.1) to produce I∗t . We

compute a new dense flow wc from It to I∗t . Then we correct

the flow to obtain the final flow w as follows:

w = wp +wc. (3)

Using w we get the final locations of the tracked points by

advecting ut−1:

ut = ut−1 +w. (4)

Our algorithm can accommodate both feature-based or dense

optical flow techniques. We used Large Displacement Optical

Flow in our examples which is a dense flow technique and

produces considerably accurate optical flow although computa-

tionally expensive. This in turn produces very low reconstruc-

tion errors. On the other hand, we also experimented with fast

but less accurate Kanade-Lucas-Tomasi (KLT) feature tracker,

a sparse optical flow technique. The results are documented

in Sec. III.

4) Generating Body Map: As we discussed earlier, we use

a body map Mt to reconstruct 3D skin in the physical space.

To generate this map at t, we project the body mesh x̃t on

the image It to obtain ũt. This provides the inverse at mesh

points. We use Matlab’s implementation of natural neighbor

interpolation [23] to generate Mt using this points. Using this

mapping, we can estimate 3D location corresponding to other

query points ũ. Instead of using natural neighbor interpolation

we can also use linear interpolation, which is faster but results

in high interpolation error.

5) 3D Reconstruction.: Now, using Mt we could, in theory,

reconstruct the 3D skin position as xt = Mt(ut). However

this did not give the best results. Recall that the real skin mesh

is not aligned with the body mesh. So the reconstructed skin

point may not lie exactly on the body surface. To correct this,

we also reproject reconstructed skin points onto the image and

try to keep their locations in image coordinates close to that

of the corresponding tracked skin points. This is implemented

as an optimization that weights the two terms:

xt = argmin
x

(‖Px− ut‖
2
+ λ ‖x−Mt(ut)‖

2
). (5)

The first term corresponds to minimizing the reprojection

error, while the second term keeps the 3D reconstructed

point close to the approximated body surface. We solve the

optimization problem using a nonlinear Quasi-Newton solver

in Matlab. For a given tracking system, we estimated λ by

cross validating across a few set of examples. This value

of λ is subsequently used for other data obtained from the

same tracking system, and we obtained similar high quality

results. For both face tracking and hand tracking examples we

estimated λ = 0.1.

III. RESULTS

We tested the results using two examples: first, we track

and reconstruct characteristic skin sliding around the eyes, and

second, we reconstruct sliding motions of skin on the hand in

synthetic hand gesture sequences. The second example also

contains ground truth data of skin sliding and we use that

to validate our method. The code is written in Matlab 2015b

(MathWorks, Inc.) and C++ on a desktop with an Intel Core

i7 processor and 64GB of RAM. See our supplementary video

at https://youtu.be/TqO6eAtmqH8.

A. Face Tracking

The face tracking example shows how using a simple

monocular camera setup we can recover detail motions of skin

around the eyes. Here we briefly describe the experimental

setup. The setup is shown in Fig. 2(a). We used a single



Fig. 2. We use a monocular capture setup (a) to capture subjects. Using a body (b) and skin tracked in an image sequence (c:top). These information along
with the input image, we can reconstruct 3D skin (c:bottom). The whole sequence assumes a fixed body. See the video for the complete sequence.

Grasshopper31 camera, that can capture up to 120 fps with

image resolution of 1960×1200 pixels. The actor sits on a

chair and faces the camera with the head rested on a chin

rest. The scene was lit by a DC powered LED light source2

to overcome the flickering due to aliasing effects of an AC

light source on a high frame rate capture. We used polarizing

filters with the cameras to reduce specularity. We calibrated the

camera using Matlab’s Computer Vision System Toolbox. We

used FaceShift [1] technology with a Kinect RGB-D camera to

obtain the body mesh. This process took less than 15 minutes

per actor.

For faces, a single chart and texture image is sufficient, and

matches the common practice. In our algorithm we use dense

flow to track skin features in image but tracking the eyelid

margins is challenging because of occlusions that occur due

to eyelashes and eyelid folds. Therefore, we tracked eyelid

margins separately using an artificial neural network (ANN).

We use a feed forward network (using Matlab fitnet) with

5 neurons in the hidden layer. To generate the features, we

crop the eyelid region from the input RGB images and reduce

it to 110 dimensions using PCA. The output of the model is

the locations of 20 control points (manually annotated) that

represent the shapes of the eyelid margins. For training we

used 98 frames from a video of 2335 frames. Eyelid margins

are manually annotated. We cross-validated the model output

with the manually annotated data set, and obtained an error

(RMSE) of 1.2 pixels per eyelid marker on average per image

frame.

The results of skin reconstruction around the eyes for a

sequence where the subject looks around is shown in Fig. 2(c).

In this example, the eyelid margin produces complex shapes

and eyelid skin slides over the skull and globe surface. This

makes it a perfect example to demonstrate the applicability

of our reduced coordinate representation of skin as discussed

in Sec. II-A. Our result shows recovering the characteristic

deformation of eyelids can greatly enhance the expressiveness;

as humans are very sensitive to even subtle skin motions

in the eye region. We approximate skull and globe as one

1Point Grey Research, Vancouver, Canada
2https://www.superbrightleds.com

rigid structure on which eyelid skin slides. Therefore, we

combined the face reconstructed by FaceShift with a globe

model to generate a body mesh that approximates the body

mesh on which skin slides. See Fig. 2(b). We also show skin

reconstruction of a blink sequence in Fig. 3. In this example

our reconstruction can also recover medial motion of lower

eyelid skin, which is normally observed in human blinks.

Fig. 3. Skin motion reconstruction in a blink sequence. Top row shows
tracking points (red mesh) on input images. Bottom row shows 3D skin
reconstructions.

B. Hand Tracking

To validate our algorithm with ground truth data for which

the true skin movement was known, we used a hand tracking

example with two artist generated animations of body motion.

In the first animation the little finger is flexed, and in the

second animation all the fingers are flexed to produce a

hand grasping gesture. To the generate ground truth data we

simulated skin sliding on the body using the skin simulation

framework of Li, et al. [6]. The skin was then rendered using

Autodesk’s Maya software to generate an image sequence (1k

× 1k resolution). The original animation and rendered image

sequences are used as input to our algorithm.

We tracked and reconstructed 3D skin using our algorithm

and compared against the ground truth skin movement to

evaluate reconstruction error. The results of tracking are shown

in Fig. 6. As expected, the projection of the body meshes

shows large error from the ground truth as skin sliding motions

are missing, whereas the error of our motion tracking remains

low. In Fig. 6(b), the root mean squared error (RMSE) is

plotted against the frame number, and the result of our tracking

without motion refinement (shown in black) is also included.

Without motion refinement the error gradually increases due to



Fig. 4. Hand Tracking: Reconstruction of 3D skin for three frames in a hand movement sequence. The sliding motion of skin is produced by the flexion of
the small finger. In the top row, the input body and image sequence is shown. In the bottom row, we show the 3D reconstruction of skin along with a zoomed
in version to illustrate skin sliding. The red arrow in the last frame shows an approximate direction of skin sliding. See supplementary video to visualize the
motion.

Fig. 5. Skin Reconstruction in a hand grasping gesture.

Fig. 6. Skin tracking error in image coordinates for hand tracking experiment.
in (a) the errors are measured as ∞-norm between the tracked points and
corresponding ground truth, in pixels. The body mesh is expected to produce
high error (red) as it does not include skin sliding. In (b) we show that our
algorithm produces low RMSE error with drift correction (blue: with drift
correction, black: without drift correction).

drift in optical flow (shown in black), but the refinement step

reduces the drift (in blue) which shows 52.57% reduction in

error in the last frame of the hand tracking sequence. Note that

the accuracy of tracking would vary depending on the tracking

algorithm used. For example, in the last frame of the finger

Fig. 7. Reconstruction error (in cm) of body sequence (top) and reconstructed
skin (middle) from ground truth is shown in heatmaps on a rest pose. In bottom
row, the errors (in ∞-norm) are plotted for all 25 frames in the hand tracking
experiment.

flexing example, dense LDOF algorithm performs better with

RMSE tracking error of 0.44 ± 0.12 pixels than feature-based

KLT algorithm with RMSE error of 1.01 ± 0.29 pixels.

As discussed in Sec. II-B, we reconstruct 3D skin meshes

sliding on the hand in physical space. The reconstructed skin

meshes are very similar to the ground truth as we can see

quantitatively in Fig. 7. The heatmaps depict the errors of

each mesh vertex is measured as a distance (in cm) from the

ground truth mesh for three frames (with interpolation), while

the plot shows the ∞-norm of the overall mesh vertices for



Fig. 8. Comparison of reconstructed 3D skin (blue) and ground truth (red)
in hand tracking experiment.

TABLE I
SKIN RECONSTRUCTION ERROR IN HAND TRACKING EXPERIMENT

Type Error(mm) Frame 5 Frame 15 Frame 25
Finger ∞-norm 1.02 1.56 1.41
Flexing RMSE 0.3 ± 0.16 0.33 ± 0.19 0.41 ± 0.2
Hand ∞-norm 1.29 1.54 2.63

Grasping RMSE 0.51 ± 0.25 0.79 ± 0.33 0.81 ± 0.42

all the frames. A qualitative comparison is shown in Fig. 8. In

our unoptimized Matlab implementation, on average, it takes

185s to compute the flow (with motion refinement) between

two images (of size 1k square), 0.0078s to generate body map,

and 7.54s to correct 3D skin reconstruction. We listed the

reconstruction errors in mm in Table. I. The table includes

result of both finger flexing and hand grasping sequences. See

Fig. 5. In this case theThe hand grasping example has slightly

high error as the motion is more extreme. Finally in Fig. 4, we

show our reconstructed skin with texturing. The motion of the

tattoo in the bottom row of Fig. 4 emphasizes the sliding of

skin. Here skin can be thought of as the texture sliding on the

body surface. To see the complete reconstruction sequence,

please refer to our supplementary video.

C. Limitations

Our system has a few limitations. It requires the tracked

skin features to be visible in all the image sequence to make

sure that the skin points are not lost during tracking due to

occlusions. Another situation where reconstruction error is

high is when tracked points reaches the border of the visible

skin region. There are two reasons for this: first, in the border

body maps could be generated by extrapolation (which is only

nearest neighbor interpolation in our case), and second, when

the normal of the visible regions are in wide angle from the

camera axis 3D reconstruction is very sensitive to small error

in tracking. Another limitation is our reduced representation

of skin cannot model out-of-plane deformations of skin, such

as wrinkles. But fortunately, in our pipeline, these effects can

be easily added by using normal or displacement maps.

IV. CONCLUSION

We proposed an efficient skin tracking and reconstruction

algorithm that uses a reduced coordinate representation of skin.

Using this representation, our method efficiently recovers 3D

skin sliding motion by tracking 2D skin features in an image

sequence. Most of the current face and gesture tracking and

reconstruction methods ignore skin sliding, but our examples

show that by recovering skin sliding we can add realism to an

existing animation. Although we only showed applications of

our method in facial expression and hand gesture examples,

our method is very general and can be easily applied to other

deforming objects with sliding surfaces. In future, we would

like to eliminate some of the our limitations mentioned in

Sec. III-C. In particular, we could reconstruct skin occluded

from the camera by modeling elasticity of skin and solving a

deformation energy minimization problem with the estimated

tracked points of skin as constraints.
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