
Biomechanical Simulation and Control of Hands and Tendinous Systems

Prashant Sachdeva1* Shinjiro Sueda2⇤ Susanne Bradley1 Mikhail Fain1 Dinesh K. Pai1
1University of British Columbia 2California Polytechnic State University

Figure 1: Our biomechanical simulation and control framework can model the human hand performing tasks such as writing (a-b), and typing
on a keyboard (c). We can also simulate clinical conditions such as boutonniére deformity (d) by cutting a tendon insertion.

Abstract

The tendons of the hand and other biomechanical systems form
a complex network of sheaths, pulleys, and branches. By mod-
eling these anatomical structures, we obtain realistic simulations
of coordination and dynamics that were previously not possible.
First, we introduce Eulerian-on-Lagrangian discretization of tendon
strands, with a new selective quasistatic formulation that eliminates
unnecessary degrees of freedom in the longitudinal direction, while
maintaining the dynamic behavior in transverse directions. This
formulation also allows us to take larger time steps. Second, we
introduce two control methods for biomechanical systems: first,
a general-purpose learning-based approach requiring no previous
system knowledge, and a second approach using data extracted from
the simulator. We use various examples to compare the performance
of these controllers.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Combined

Keywords: muscles, tendons, hands, physically based simulation,
constrained strands, Lagrangian mechanics

1 Introduction

Although simulations of hands and grasp have consistently received
attention in the graphics community, modeling and simulating the
dynamics of the complex tendon network of the hand has remained
relatively unexplored. Much of the previous simulation techniques
for the hand have been based on rigid links with either joint torques
[Pollard and Zordan 2005; Kry and Pai 2006; Liu 2009] or line-
of-force muscles [Albrecht et al. 2003; Tsang et al. 2005; Johnson
et al. 2009]. In the real hand, however, the motion of the digital

⇤Equal contributions.

phalanges are driven by muscles originating in the forearm acting
through tendons passing through a complex network of sheaths and
pulleys [Valero-Cuevas et al. 2007]. This design has an important
effect on the compliance and coupling of the fingers.

In our approach, we model each tendon as a physical primitive rather
than using joint torques or moment arms. This is advantageous be-
cause it allows us to properly model the complexity of the tendon
network, which we believe is important for obtaining realistic mo-
tions. As an added bonus, the biomechanical modeling of tendons
and ligaments can give us proper joint coupling for free. As a simple
example, let us consider the coordinated motion of the joints, shown
in Fig. 7. The two distal joints of the finger (PIP and DIP) flex and
extend in a coordinated fashion not because of the synchronized
activation signals computed by the brain, but because of the arrange-
ment of tendons and ligaments in the finger. In our simulator, pulling
on a single tendon (flexor digitorum profundus) achieves this result,
whereas with a torque-based approach, we would need to manu-
ally coordinate the torques at these two joints. Another example
is in the coupling between the extensor tendons in the back of the
hand. Although this lack of complete independence between the
fingers is partly due to the neural control, mechanical coupling has
been hypothesized as having a significant role [Lang and Schieber
2004]. We are also able to simulate hand deformities, which have
applications not only in surgical planning and medicine, but also in
computer graphics (Figs. 1(d) and 8). Some virtual character designs
are based on deformities or injuries, and the ability to procedurally
produce anatomically-based abnormal characters may prove useful,
since obtaining real-world data of such characters can be a challenge.

We also introduce two methods for control of biomechanical systems.
The first is a general-purpose learning method requiring no previous
knowledge of the inner workings of the system and is suitable for
control of any “black box” simulator. The second controller extracts
controller parameters from the internals of the simulator.

Contributions We address three main issues that are especially
important for biomechanical simulation. First, by applying the
Eulerian-on-Lagrangian discretization of the tendon strand [Sueda
et al. 2011], we greatly simplify the contact handling between ten-
dons and bones. Second, we develop a new formulation to deal with
highly stiff strands, by assuming that strain and stress propagate
instantaneously through the strand, allowing us to use large time
steps even for stiff tendons (§3.2). Third, we introduce and assess
two methods for control of these systems (§4.2, §4.3).

2 Related Work

Our method is most closely related to the biomechanical strand
model introduced by Sueda et al. [2008]. We extend the constrained
strand framework of Sueda et al. [2011] to model tendons, which
gives us more robust handling of constraints between tendons and
bones. Without the constrained strand framework, even relatively
simple scenarios, such as the flexor pulleys shown in Fig. 3b, are dif-
ficult to model, since the discretization of the tendon strand cannot
always match the discretization of the pulley constraints. As far as
we know, all previous models of tendon elastodynamics, including
[Sueda et al. 2008], suffer from this difficulty. The regions between
the pulleys in Fig. 3b are also difficult to model, since constraining
the degrees of freedom (DoFs) in these areas may rigidify the strand
around the surrounding constraints. With the new extensions dis-
cussed in this paper, we are able to efficiently model the tendons of
the hand including branching and contact with the bones at speeds
comparable to previous approaches for tendon elastodynamics.

2.1 Musculotendon Simulator

Previous works on the hand in computer graphics have focused on
geometry acquisition and retargeting of the whole hand [Kurihara
and Miyata 2004; Li et al. 2007; Huang et al. 2011], musculotendon
simulation based on kinematic muscle paths and moment arms [Al-
brecht et al. 2003; Tsang et al. 2005], and grasping and interaction
with the environment [ElKoura and Singh 2003; Kry and Pai 2006;
Pollard and Zordan 2005; Liu 2008; Liu 2009; Zhao et al. 2013;
Wang et al. 2013]. In our work, we focus on the movement of the
fingers and not of the hand and the forearm. Since the bones are rep-
resented as rigid bodies in our simulator, it should not be difficult to
append the tendinous hand from our simulator to an arm composed
of rigid body links, or to apply the control strategies for grasping
presented in these previous works.

Biomechanical simulators have been used successfully in computer
graphics on many other parts of the body, such as the face [Sifakis
et al. 2005], the neck [Lee and Terzopoulos 2006], the upper body
[Lee et al. 2009], and the lower body [Lee et al. 2014]. These,
and other simulators from the field of biomechanics, cannot fully
handle the complex routing constraints present in the hand, and the
dynamic coupling of musculotendons and bones. In line-of-force
models [Garner and Pandy 2000; Delp et al. 2007; Damsgaard et al.
2006; Valero-Cuevas et al. 2007; Johnson et al. 2009], muscles
and tendons are simulated quasistatically as kinematic paths, with
no mass and inertia, and do not fully account for the shape of the
biomechanical structures. More importantly for hand simulation,
handling of routing constraints, including branching and kinematic
loops, is difficult with these methods. Simulators based on solid
mechanics models, such as spline volumes [Ng-Thow-Hing 2001],
finite volume method [Teran et al. 2003; Teran et al. 2005], finite
element method, [Chen and Zeltzer 1992; Zhu et al. 1998; Sifakis
et al. 2005; Blemker and Delp 2005; Kaufman et al. 2010], or even
Eulerian solids [Fan et al. 2014] are also not ideal for hand simula-
tion, since the musculotendons of the hand are thin and anisotropic,
and would require many disproportionately small elements. Vari-
ous dynamic models [Spillmann and Teschner 2008; Bergou et al.
2008; Bergou et al. 2010] from the computer graphics community
could potentially be used for musculotendon simulation, but these
models were designed for use in free-floating configurations, and
do not work well in the highly-constraining situations present in the
hand. A hybrid approach has also been used, where the muscles
are abstracted as piecewise linear actuators that drive the volumetric
muscle based on solid-mechanics [Teran et al. 2005; Lee et al. 2009].
Our method could be used to replace the underlying linear muscle
model of these approaches.

2.2 Musculotendon Controller

Our work on the controller focuses on the trajectory tracking prob-
lem: finding input ut such that the plant trajectory is as close as
possible to the desired trajectory. An important special case is the
reaching problem, where the desired trajectory is constant. Trajec-
tory tracking is crucial for learning complex motions, such as grasp-
ing or obstacle avoidance. The optimization algorithms in this area
include Policy Improvement with Path Integrals (PI2) [Rombokas
et al. 2012], Covariance Matrix Adaptation (CMA) [Geijtenbeek
et al. 2013; Wang et al. 2012], and others [Mordatch et al. 2012;
Andrews and Kry 2013].

Trajectory tracking of linear systems is a well-studied problem with
an analytical solution, but the methods for controlling non-linear
systems are applicable only in restricted settings. For controlling
complex non-linear plants which do not conform to those settings,
the hierarchical control approach is typically used [Zhang et al. 2011;
Liu 2009; Hou et al. 2007; Fortney and Tweed 2012; Geijtenbeek
et al. 2013]. This approach involves solving a simpler control prob-
lem on a kinematic level first, and then using a low-level controller
to compute the motor controls from the kinematic-level controls.

Previous work on trajectory tracking of anatomically correct tendon-
driven human hand models includes controlling the Anatomically
Correct Testbed (ACT) hand [Malhotra et al. 2012; Deshpande
et al. 2013] and a hand modeled with Lagrangian strands [Sueda
et al. 2008]. The motor controls were computed by solving a linear
constrained least-squares problem, with the linearization derived
directly from the simulator [Sueda et al. 2008] or learned from
experience [Malhotra et al. 2012].

3 Simulation Framework

One of the main challenges in building a musculotendon simulator is
constraint handling. A tendon moves freely in the axial direction but
is constrained throughout its length by a series of sheaths and pulleys.
Fig. 2 shows the complexity of the tendon network of the finger. To
handle this complexity, we use the Eulerian-on-Lagrangian strands
approach of Sueda et al. [2011].

3.1 Eulerian-on-Lagrangian Strands

A strand is represented as a series of nodes, each of which con-
tains both Lagrangian and Eulerian coordinates: (xi, si). The
Lagrangian coordinates of a node, xi, are the world position of the
node, and the Eulerian coordinate, si, is the material coordinate
of the strand at that node. See Fig. 3a for an illustration. The La-
grangian coordinates encode the geometric path of the strand, and
the Eulerian coordinate encodes the actual strand material at the
nodes.

This separation of the geometric path and the strand material is
critical for a musculotendon simulation because it decouples the
routing constraints from the dynamics. Consider, for example, the
pulleys holding the flexor tendons in place (A-1 through A-5 in
Fig. 3b). With a purely Lagrangian approach, constraining the
tendon to go through these pulleys would require the tendon to be
discretized very finely near the start and end of each of the pulleys.
With the Eulerian-on-Lagrangian approach, we require just the right
number of nodes, since we can place the nodes exactly at the start
and end of the pulleys.

We take advantage of the fact that tendons are always in close con-
tact with other anatomical structures, and we know a-priori where
the routing constraints on the tendons are going to be. We therefore
do not need a general formulation of contact and its associated cost

DIP PIP MCP
Distal

Middle Proximal
Metacarpal

FDP
FDS

EDC
DI/PI

LUM

OL

ExtLat
IntMed Sagittal View

Dorsal View
EDC

DI
LUM OL

IntMed ExtLat

PI

Figure 2: Anatomy of the finger (of the right hand) showing
the components modeled. From proximal to distal, the four
bones of the finger are metacarpal, proximal, middle, and distal.
They are connected by the metacarpophalangeal (MCP), proximal-
interphalangeal (PIP), and distal-interphalangeal (DIP) joints.
The three long tendons are extensor digitorum communis (EDC),
flexor digitorum superficialis (FDS), and flexor digitorum profundus
(FDP). These tendons originate from outside the hand, and are hence
called “extrinsic.” The three “intrinsic” musculotendons are the
lumbrical (LUM), dorsal interosseus (DI) and palmar interosseus
(PI). Each finger has a slightly different insertion arrangement of
these three intrinsic musculotendons. We simplified the model by
using the arrangement in the index finger for all fingers and omitting
the symmetric components on the ulnar side. The oblique ligament
(OL), which spans the PIP and DIP joints, helps synchronize these
two joints when the FDP is pulled. The two crossing tendons, extrin-
sic lateral (ExtLat) and intrinsic medial (IntMed) transfer tension
from extrinsic extensors and intrinsic extensors to the PIP and DIP.
(Not present in all the examples.)

in simulation and modeling time. Collisions need to be handled
only by the Lagrangian part of the discretization, which determines
the kinematic path of the strand; the Eulerian part is oblivious to
collision detection and resolution. This is a major advantage for
tendon simulation, since most of the movement is in the axial di-
rection, which means that the Lagrangian part does not move in
space too much, and is often completely stationary with respect to
the skeleton.

3.2 Selective Quasistatics

Tendons are very stiff, making them challenging to simulate nu-
merically. One approach for incorporating such stiff forces is to
approximate them by hard constraints. Ideally, unilateral constraints
are preferred, since tendons should not be able to push—i.e., the
tendon strand should prevent stretch but allow compression. How-
ever, unilateral constraints are more costly to maintain than bilateral
constraints, and so should be avoided as much as possible.

There are two problems with modeling a stiff tendon as a bilaterally
constrained strand. First, as we stated earlier, bilateral constraints
prevent strand compression, which means that they can push as well
as pull. However, because of the design of our muscle model de-
scribed in §3.3, muscles never push back on the tendons, and so this
is not a serious drawback in all cases. Second, and more importantly,
bilateral constraints can cause locking in some situations that are
prevalent in hand simulation because of the complexity of the tendon
network of the finger, which contains several branching and merging
tendons. Modeling tendons as inextensible strands can cause this
tendon network to turn into a reduced degrees-of-freedom (DoF)
system. With our formulation, we can easily model these loops, as
shown in Fig. 7.

(a)

A1
A2 A3

A4

A5 FDP

(b)

Figure 3: (a) Illustration of Eulerian coordinates with a stretched
elastic band. (top) In a purely Lagrangian simulator, the strand
material, which can be visualized as the texture, is fixed to the nodes.
(middle) If we move the middle node to the left, then the material is
compressed in the left segment and stretched in the right segment
with respect to the previous configuration. (bottom) If we relax the
assumption that the material is fixed to the nodes (i.e., Eulerian
node), then the material will start to flow from left to right. (b)
Pulleys to hold the tendon in place.

Our solution is to use bilateral constraints only when the origin of
the strand is free. The high stiffness of these strands that do not form
loops can be safely approximated by bilateral constraints. For those
special cases where the strand forms a loop, we use a novel selective
quasistatic discretization of the strand. The basic assumption of
the selective quasistatic discretization is that the strain propagates
instantaneously along the strand. This is similar to the idea proposed
for discrete elastic rods by Bergou et al. [2008], where the twist of
the strand was assumed to propagate instantaneously. Similarly, we
propose to enforce all neighboring segments to have the same strain,
eliminating the Eulerian coordinates from the equations of motion.
Note the selective nature of the elimination—even if we eliminate
the Eulerian DoFs from the equations of motion, the strand is still
dynamic since its Lagrangian DoFs are still present.

Static condensation techniques, e.g., [DiMaio and Salcudean 2002],
remove all internal degrees of freedom using a quasistatic assump-
tion. With our selective quasistatic formulation, on the other hand,
we gain the ability to insert Lagrangian DoFs without increasing
the number of Eulerian DoFs—a flexibility that is useful for routing
tendons around bones.

Another advantage of using selective quasistatics is improved condi-
tioning, allowing larger time steps. As an illustration, imagine two
consecutive nodes coming very close to each other at some finger
posture (e.g., the small spacing between the A2 and A3 pulleys in
Fig. 3b). Intuitively, without the quasistatic assumption, this would
cause the Eulerian DoF of a node to affect only a small amount of
the mass of the strand located around these nodes. With selective
quasistatics, these small inertias are distributed to their surrounding
Lagrangian DoFs, improving the condition number of the system
matrix, thus allowing us to take larger time steps. The comparison of
the largest time steps allowed as a function of the number of nodes
is shown in Fig. 4. With quasistatic nodes, the maximum time step
remains constant, whereas without the quasistatic assumption, the
time step decreases rapidly with the number of nodes.

Consider a strand consisting of n+ 1 segments as shown in Fig. 5.
Let node 0 denote the first node, and n + 1 denote the last node.
Using the quasistatic strain assumption, we want to eliminate s1
through sn by expressing them as a function of the Lagrangian DoFs
(x0, · · · ,xn+1) and the first and last Eulerian DoFs (s0, sn+1).
The derivation starts1 with the computation of the strain of segment
i between nodes i and i+1: "i = li

�si
�1, where �si = si+1�si,

1See the supplemental document for a detailed derivation.

Number of Nodes
100 101N

or
m

al
iz

ed
 T

im
e

St
ep

10-1

100

Eulerian
Quasistatic

Figure 4: An elastic strand stretching and sliding on a plank. The
left end of the strand is fixed, and the right end is attached to the
hanging box. The left-most node is a standard Lagrangian node;
the remaining are Eulerian nodes that allow the strand material to
slide through them. The Lagrangian coordinates of all the nodes
are fixed to the plank. The plot shows a log-log comparison of
maximum time steps (�t) vs. the number of Eulerian nodes with
and without selective quasistatics. With selective quasistatics (red),
the maximum �t remains constant (normalized to 1.0). Without
selective quasistatics (blue), the maximum �t decreases rapidly.

�xi = xi+1�xi, and li = k�xik. These quantities are computed
from the coordinates of the two nodes of the ith segment. The
quasistatic strain constraint implies that the strain values of all the
segments are equal; i.e., "0 = · · · = "i = "i+1 = · · · = "n. Using
the expression for strain given above and rearranging, we can rewrite
"i = "i+1 as

�li+1si + (li + li+1)si+1 � lisi+2 = 0. (1)

This holds for all neighboring segments i = 0, · · · , n � 1. As-
sembling these into a linear system, we obtain a tridiagonal matrix
equation Ls = b, where

L =

0

BBBB@

l0 + l1 �l0
�l2 l1 + l2 �l1

. . .
�ln�1 ln�2 + ln�1 �ln�2

�ln ln�1 + ln

1

CCCCA

s =

0

BBBB@

s1
s2
...

sn�1

sn

1

CCCCA
, b =

0

BBBB@

l1s0
0
...
0

ln�1sn+1

1

CCCCA
.

(2)

L is (n⇥ n), s is (n⇥ 1), and b is (n⇥ 1). Solving this equation
gives the Eulerian DoFs (s1, . . . , sn) that make the strain the same
throughout the strand given the Lagrangian DoFs (x0, · · · ,xn+1)
and the first and last Eulerian DoFs (s0, sn+1). In order to eliminate
these DoFs, we also need the Jacobian matrix, which maps the
velocities of the remaining DoFs to the velocities of the eliminated
DoFs. Taking the time derivative of s = L�1b and using the identity
for the derivative of the inverse, we arrive at

0

B@
ṡ1
...
ṡn

1

CA = �L�1�S�X| {z }
J

0

B@
ẋ0

...
ẋn+1

1

CA . (3)

(We assumed here that s0 and sn+1 are fixed. It is also possible to
relax this assumption.) The resulting (n⇥ 3(n+ 2)) matrix, J , is
the Jacobian for the eliminated Eulerian coordinates. The blocks of

Figure 5: If we assume that the strain is the same throughout the
strand, we can eliminate the Eulerian coordinates s1 through sn
given x0, . . . ,xn+1, s0, and sn+1.

J are composed of:

�S =

0

B@
��s1 �s0

. . .
��sn �sn�1

1

CA ,

�X =

0

B@
��x̄

T
0 �x̄

T
0

. . .
��x̄

T
n �x̄

T
n

1

CA ,

(4)

where �x̄ = �x/k�xk. �S is (n⇥ (n+ 1)), and �X is
((n+ 1)⇥ 3(n+ 2)). J is of size (n⇥ 3(n+ 2)) and is the Jaco-
bian for the eliminated Eulerian coordinates. Although J is dense, it
is relatively small, and since all of the matrices involved are banded,
it is cheap to form.

This Jacobian matrix can then be used to eliminate the internal
Eulerian DoFs from equations of motion (i.e., reduced coordinate
approach), or it can be used to define the equality constraint matrix
between the internal Eulerian DoFs and the remaining DoFs (i.e.,
maximal coordinate approach). In our implementation, we take the
reduced approach to obtain a smaller but denser system matrix.

3.3 Muscle Model

Muscles are complex active materials with significant volumetric
effects; practical volumetric muscle models have been recently de-
veloped (e.g., [Fan et al. 2014]). In the present context we propose
a simpler lumped muscle model, which relates the force at the ori-
gin of the tendon to the tendon excursion (i.e., displacement of the
tendon origin).

Such lumped models are widely used in biomechanics, but our model
differs significantly from the standard Hill-Zajac model [Zajac 1989],
and may be more useful in applications. In the standard model, the
force exerted by a muscle is modeled as the sum of passive and
active forces: f = fP + fA, usually depicted as the muscle’s
passive and active force-length (FL) curves. The passive FL curve
is a monotonically increasing function, and the active FL curve is a
concave function obtained from physiological experiments, starting
with the classic experiments of A. V. Hill a century ago. When the
muscle is activated, the active FL curve is scaled by the activation
level of the muscle. The resulting total force, shown in Fig. 6(left),
contains a region of negative stiffness, which means that as an active
muscle is stretched, its force output decreases. Numerically, the
negative slope manifests itself as instabilities in simulations, since
any perturbation away from equilibrium is magnified by the negative
force.

We therefore use a simple piecewise linear model that does not
suffer from these difficulties; more detailed, non-linear constitutive
models can also be used, depending on the application. We model
the total muscle force as a piecewise linear function that is shifted
to the left when activated. Fig. 6(middle & right) shows our muscle
model. The passive FL curve is simply the unshifted curve. When
the muscle is activated, it pulls on the tendon even at zero excursion

aFL

0$!$

FL$

0$!0

FL$

!$
a$

Figure 6: (left) A typical FL curve of an activated muscle, depicting
force as a function of tendon excursion. (middle) Piece-wise linear
muscle model. The muscle exerts no force if the excursion is non-
positive. The force increases linearly otherwise. (right) When the
muscle is activated, the functions are shifted to the left.

(i.e., in the isometric condition). Finally, because the function is
always positive, the muscle never pushes back on the tendon.

Even though this model is simple and robust, it is also potentially
more realistic than the standard model as a constitutive model of
controlled muscles. The problem with the direct application of Hill’s
widely misunderstood FL curve is that it is not a constitutive model
of active muscle; rather, it is a depiction of maximum force when
isometrically activated at different lengths. It is now well known
that muscle activation and stretch do not commute. Unlike the
predictions of the standard model, it has been shown experimentally
that if a muscle is activated first and then stretched, the resulting
force does not decrease [Epstein and Herzog 1998]. Moreover, the
behavior of entire muscles during stretch is mediated by a complex
neural signal based on feedback from muscle proprioceptors and
changes in fiber recruitment. There are very few studies of how
muscles behave in vivo, especially in humans. A striking exception
is the classic paper of Robinson, et al. [1969] which measured FL
curves of active human eye muscles in vivo. Figure 2 in that paper is
closer to ours than to the standard model. Our model needs further
investigation, but there is physiological support for using it.

4 Control

In this section, we present our controller framework and discuss two
methods used to learn the necessary control parameters. §4.2 de-
scribes a general learning method, to which we will refer henceforth
as “black box control,” that uses no prior system knowledge and is
suitable for control of a “black box” simulator. We then present in
§4.3 a method – denoted as “white box control” – for extracting the
relevant parameters for control of a biomechanical system directly
from the simulator. We compare these methods to explore how much
we benefit from exploiting the inner workings of the system we are
attempting to control, and to assess how a general-purpose learning
method performs compared to a method with detailed prior system
knowledge.

4.1 Controller Algorithm

Since our plant is non-linear and input-constrained, we employed
a hierarchical control approach, modeling the plant as a simple
unconstrained system on a higher (kinematic) level, and an input-
constrained locally-linear system at the lower (muscle activation)
level. For concreteness, we consider the index finger, but the method
is more general.

At the high level, we model the fingertip motion as simple controlled
dynamical system:

q̇t+1 = q̇t + vt (5)

where qt is a 3⇥ 1 task descriptor variable (in this case, the fingertip
location) at time t, and vt are the kinematic controls.

The kinematic controls vt are defined by:

vt := vp + vb. (6)

Here vp = vp(qt, t) is the 3 ⇥ 1 passive dynamics term, the com-
putation of which is described in §4.2; for a complete derivation of
the equations of motion, we refer the reader to our supplementary
material. vp captures the significant nonlinearities in dynamics, and
allows the high level controller to assume the simpler form of Eq. (5).
vb = vb(qt, t) is the 3 ⇥ 1 feedback control term for tracking the
reference trajectory. It is computed by:

vb = KP (qr � qt) +KD(q̇r � q̇t). (7)

KP and KD are scalar gains, and qr is the target configuration at a
given timestep.

In turn, the low-level activation controller transforms kinematic
controls vt computed by the high-level controller to activations ut

at each timestep t using the formulation of Sueda et al. [2008]:

ut = argmin
u

↵||R(qt)u� vt||
2 + �||u||2

+ �||u� ut�1||
2

s.t. 0 u 1

(8)

where ↵,�, and � are blending weights, and R(qt) is the activation-
velocity matrix (AVM) described below. The first term imple-
ments the kinematic controls, the second term penalizes large activa-
tions, and the third penalizes large changes in activations between
timesteps. We scale the parameters such that ↵+�+� = 1. Setting
↵ = 1 and � = � = 0 corresponds to no smoothing. Thus, the
parameters of the controller are the gains KP and KD , R(qt), the
passive dynamics term vp(qt, t), and the smoothing terms ↵,�, and
�.

This model is similar to those used by Matsuoka and co-workers;
it extends the model of Malhotra et al. [2012] by including passive
dynamics compensation and by making the matrix R configuration-
dependent. We used the fingertip location as a choice of the con-
figuration variable as in [Sueda et al. 2008]. Unlike joint angles
[Deshpande et al. 2013] or tendon excursions [Malhotra et al. 2012],
fingertip position does not fully describe the finger configuration.
There is, however, some physiological basis for this choice of con-
figuration variable as evidence exists that humans do use fingertip
position directly for reaching movements [Bédard and Sanes 2009].

4.2 Estimating Black Box Controller Parameters

PD gains and smoothing The PD gains were empirically se-
lected to be KP = 0.23 2

�t , KD = 0.95. The factor 2
�t is used

for bringing the position and velocity terms in Eq. (7) to a common
scale, and is derived from the observation that the absolute value
of the velocity is �t

2 times larger than the absolute value of the
change in position if the body is constantly accelerated for time �t.
The smoothing parameters are also chosen empirically, though we
find that the unsmoothed controllers work nearly as well as the best
smoothed controllers (see §5). Both the gains and smoothing pa-
rameters are chosen from a user-specified set of possible parameter
values via automatic selection of the parameters which give the best
performance on a trial task.

Activation-Velocity Matrix The matrix R(qt) is estimated at
N = 60 configurations q and approximated at a new point by a
distance-weighted average. Because of this choice of approximation
method, our controller can be seen as a linearly blended composi-
tion of controllers with different matrices R, which are valid in the

neighborhood of the corresponding configurations q [Burridge et al.
1999].

The data were collected with an extension of the self-identification
method [Malhotra et al. 2012]. At each of the N stable configura-
tions q (chosen by applying a constant, random activation for long
enough to let the system stabilize), the passive dynamics are com-
puted by applying zero activations for one timestep, and recording
the resulting velocity q̇0. The ith column of R(q) is estimated by
fully activating the corresponding muscle ui for one timestep at the
configuration q, and subtracting q̇0 from the resulting velocity q̇i.

Passive dynamics term Our passive dynamics compensation
term is related to equilibrium point control (reviewed in [Shadmehr
1998]). We define an equilibrium point as a pair of state and control
{qeq, ueq} such that qeq = f(qeq, ueq). That is, the system with
dynamics qt+1 = f(qt, u(qt, t)) does not move. Unlike traditional
equilibrium point control we use an equilibrium point to record the
configuration-dependent part of the passive dynamics term; we ig-
nore the velocity-dependent terms in the black box controller since
these are harder to estimate.

We gathered training data by sampling n ⇡ 39000 points on a
uniform grid in the activation space. Each sampled point became
an activation that we applied to the plant until it reached a stable
configuration. The resulting configuration was then an equilibrium
point q(i) corresponding to the applied activation u(i), where the
notation u(i), q(i) represents the ith training data point. To estimate
the equilibrium activation ueq corresponding to some target position
qr , we performed an approximate m-nearest-neighbor search of
the points q in the training data. Then, at a state qt when we are
attempting to reach a target qr , we set the passive dynamics term to
vp = R(qt)ueq .

To improve the efficiency of the m-nearest-neighbor search, we used
a locality-sensitive hashing (LSH) algorithm [Indyk and Motwani
1998]. The advantage of this approach is that its space and query
time are both linear in the number of points to search, compared to
other current nearest-neighbor algorithms which have either space or
query time that is exponential in the dimension of the data [Andoni
and Indyk 2008]. These algorithms are based on the existence of
locality-sensitive hashing functions, which possess the properties
that, for any two points p, r 2 Rd:

1. If ||p� r|| D then Pr[h(r) = h(p)] P1

2. If ||p� r|| � cD then Pr[h(r) = h(p)] � P2

where P1 > P2 and c � 1.

We can concatenate several LSH functions to amplify the gap be-
tween P1 and P2. Specifically, for parameters k and L, we choose
L functions gj(r) = (h1,j(r), ..., hk,j(r)) where the hash func-
tions hl,j(1 l k, 1 j L) are chosen at random from
a family of LSH functions. We then construct a hash table struc-
ture by placing each point qi from the input set into the bucket
gj(p), j = 1, ..., L. To process a query point q, we scan through the
buckets g1(q), ..., gL(q) and retrieve the points stored in them. For
each retrieved point, we compute the distance between it and q and
report the m closest points.

For our purposes, the hash functions used consist of projecting a
point onto a random 1-dimensional line in Rd, which is then parti-
tioned into uniform segments. The bucket into which a particular
point is hashed corresponds to the index of the segment containing
it. For Euclidean distances, these functions are locality-sensitive;
for proof of this, we refer the reader to [Andoni and Indyk 2008].
We set the algorithm parameters to k = 20, L = 30 and m = 1,
as we found that these parameters were most effective in predicting

activations leading to a given target. In particular, experiments using
local polynomial regression models with different values of m did
not yield improved accuracy over m = 1. We speculate that this
is due to sparsity in the training data, and the non-linearity of the
mapping between activation and position space.

4.3 Extracting White Box Controller Parameters

The Activation Velocity Matrix, R(qt), can be extracted directly
from the simulator as in [Sueda et al. 2008]. The forward simulator
solves the velocity-level Karush-Kuhn-Tucker (KKT) system:

✓
M GT

G 0

◆✓
q̇t+1

�

◆
=

✓
f(q̇t, qt) + fA(qt)

0

◆
, (9)

where � is the vector of Lagrange multipliers and fA(qt) is the
active impulse. Note that qt in Eq. (9) need not be the same as in
Eq. (5), but for simplicity of exposition we will use the same notation
in this section. The impulse on the right hand side is separated into
two parts: impulse due to muscle activations (2nd term) and impulse
due to all other forces (1st term). We can rewrite Eq. (9) as

M̃ ˜̇qt+1 = f̃(q̇t, qt) + f̃A(qt), (10)

where each quantity represents the corresponding block ma-
trix/vector. In particular, ˜̇qt+1 is the concatenation of the next veloc-
ities and the Lagrange multipliers (constraint force magnitudes).

f̃A(qt) can be further decomposed into a matrix vector product,
f̃A(qt) = Ã(qt)ut, where ut is the vector of muscle activations,
and Ã(qt) is the matrix that maps muscle activations to impulses.
Here, we assumed that the impulses are linear in muscle activations,
a common assumption for many muscle models [Zajac 1989]. This
allows us to write

˜̇qt+1 = M̃�1f̃(q̇t, qt) + M̃�1Ã(qt)ut. (11)

This gives us an affine map from muscle activations to resulting
system velocities.

For most tasks, we are interested in just some of the velocities rather
than the whole system velocity. We therefore apply an extractor
matrix �: q̇t+1 = �˜̇qt+1. Applying this matrix to both sides and
adding and subtracting q̇t from the right side, we obtain an equation
in the form of Eq. (5):

q̇t+1 = q̇t + (vp +R(qt)ut), (12)

where vp = �M̃�1f̃(q̇t, qt)� q̇t is the passive part of the kinematic
controls and R(qt) = �M̃�1Ã(qt) is the AVM.

4.4 Comparison of White Box and Black Box Methods

Because the black box control method requires no prior knowledge
of the system we want to control, it is well-suited for problems in
which we lack access to the system’s internal workings. When the
system’s inner workings are known – as is the case with the index
finger simulator – we can generally achieve better results with some
variant of the white box control method, as this will yield a much
better approximation of the system dynamics. The disadvantage of
white box methods – apart from their inapplicability in the absence
of significant prior knowledge – is in development time: as there is
no ‘one-size-fits-all’ method, this approach must be tailor-made for
the system we wish to control. This can require significantly more
work than general-purpose black box methods.

In this paper, we compare the white box and black box methods for
control of the index finger. The black box method suffers from the

(a) (b)

(c) (d)

Figure 7: Synchronized joint motion with the oblique retinacular
ligament, shown in red. (a-b) Without the ligament, pulling on the
tendon flexes the DIP fully, before the PIP. (c-d) With the ligament,
the same tendon flexes the finger in a much more natural, synchro-
nized fashion.

sparsity of the training data; it estimates the AVM based on values
observed at discrete points in the configuration space, in contrast to
the white box method, which extracts the AVM from the simulator at
each timestep. The principal disadvantage of our white box method
is the failure of the extracted AVMs to take joint limits into account.
Our simulator deals with joint limit constraints separately from the
AVM calculations; thus, the AVM values extracted near joint limits
tend to imply that applying certain activations will lead to unreach-
able configurations. This can lead to some unexpected behavior near
the joint limits. The black box controller does not suffer from this
particular difficulty, as all AVM estimates are obtained empirically
and thus take positional constraints into account.

5 Results

We implemented our system in C++. Simulations were run on a
commodity PC with an Intel Core i5 3570 processor and 16GB of
memory. The bone geometry was obtained from a CT scan and
reconstructed using custom software. The joint axes were obtained
from motion-capture data, and the tendon paths were created man-
ually with a 3D modeling software, based on standard textbook
models in the literature [Kapandji 2007]. We did not render the skin,
but it should be relatively easy to augment existing work on skinning
to add both cutaneous and subcutaneous motion [Sueda et al. 2008;
McAdams et al. 2011; Li et al. 2013] for rendering.

For the index finger plant, the computation time for a simulation
with a 3 ms time step is approximately 10 seconds per second of con-
trolled simulation. This breaks down into 8 seconds for simulating
the plant and 2 seconds for computing the controls.

Joint coupling With a tendon-based simulator, we obtain natural
joint coupling for free. Fig. 7 demonstrates how pulling on a single
tendon produces synchronized flexion in two joints. A single tendon
(FDP), with no other tendons and ligaments present, pulls on the
distal phalanx of the index finger. The joints flex by “rolling”: first,
the distal joint (DIP) fully flexes, and then the proximal joint (PIP)
starts to flex. With the oblique ligament (OL) added, which spans
both the DIP and the PIP, pulling on the FDP causes both joints to
flex in a natural, synchronized fashion.

Coupling also occurs between joints from different fingers. In
Fig. 1d, each finger is used to press down on the keyboard, which
is simulated together with the hand. Because the extrinsic muscles

Figure 8: Swan neck deformity.

Tracking Error
Unsmoothed Smoothed

Average Max Average Max
Black Box 0.021 0.12 0.017 0.10
White Box 0.0045 0.087 0.0045 0.085

Table 1: Table of trajectory tracking errors (in cm) for the circle
tracking experiment. We report both the average distance between
the target fingertip position and the actual fingertip position over
the task, as well as the maximum distance between the target and
actual positions.

(FDP, FDS, EDC) are coupled across the fingers by inter-tendinous
bands [Leijnse et al. 1992], moving one finger causes the other fin-
gers to move as well, even though the activation controller was given
only the target trajectory of a single finger.

Deformities By changing some of the tendon parameters, we can
simulate clinical deformities of the hand. We simulated two common
deformities: boutonniére and swan-neck [Zancolli 1979].

In the boutonniére deformity, the DIP hyper-extends, and the PIP
remains locked in a flexed position (Fig. 1(d)). We simulate this
injury by cutting the insertion of the EDC into the middle phalanx.
Once the lateral bands (intrinsic and extrinsic lateral) fall below the
rotation axis of the PIP, no muscle can extend the joint, causing the
joint to remain flexed unless fixed externally.

The swan-neck deformity has the opposite joint configuration: hyper-
extension of the PIP and flexion of the DIP (Fig. 8). There are many
causes of this deformity, and among them is the elongation of the
oblique ligament (OL). In the simulator, we first lengthen the OL
and then pull on the EDC to extend the PIP. Once the OL rises above
the axis of rotation of the PIP, pulling on the FDP causes the DIP to
flex and PIP to hyper-extend.

Trajectory tracking To test the control algorithms described in
Section 4, we experimented with tracing a circle of radius 0.6 cm.
In this and the next experiment, we constrain the fingertip to lie
on a plane to simulate drawing on a touchscreen. Fig. 9 shows the
trajectories tracked for both the black and white box controllers, with
and without smoothing, with the corresponding activation patterns
shown in Fig. 10. Table 1 shows the average per-timestep tracking
error for each run, measured as the average Euclidean distance
between the target fingertip position qr and actual fingertip position
qt at each timestep, as well as the maximum positional error at any
timestep.

As expected, the white box controller outperforms the black box
controller in both smooth and unsmoothed control. Both the acti-
vations and the movements generated by the white box controller

−0.5 0 0.5
−0.6

−0.4

−0.2

0

0.2

0.4

q2

q 1

(a)

−0.5 0 0.5
−0.6

−0.4

−0.2

0

0.2

0.4

q2

q 1
(b)

−0.5 0 0.5
−0.6

−0.4

−0.2

0

0.2

0.4

q2

q 1

(c)

−0.5 0 0.5
−0.6

−0.4

−0.2

0

0.2

0.4

q2

q 1

(d)

Figure 9: Results of tracking a circle trajectory with the fingertip
(target trajectory is shown by a dotted line, actual trajectory by a
solid line). (a-b) Black box controller, without smoothing (left) and
with smoothing parameters ↵ = 0.971,� = 0.0145, � = 0.0145
(right). (c-d) White box controller, without smoothing (left) and with
smoothing parameters ↵ = 0.999,� = 0.0, � = 0.001 (right)

are smoother than for the black box, likely as a result of the relative
sparsity of the black box’s training data. For the smoothed examples,
we use a script to automatically select the best smoothing parameters
from a set of 1500 different values. The black box controller’s per-
formance is visibly improved by the use of appropriate smoothing
parameters, while we find that it makes almost no difference for the
white box controller.

Lastly, we have included a 3-dimensional tracking example in
Fig. 11. Performing the circle tracing task in 3 dimensions is, under-
standably, more difficult than tracing a circle constrained to a plane,
but in this case we achieve good results using the unsmoothed white
box controller. The average error for this run was 0.012 cm and the
maximum error was 0.19 cm.

Writing Here we performed a variation on our trajectory tracking
task in which the controller imitated a human writing on a tablet
screen. We obtained the trajectory by having a human subject write
the word “SIGG” on a touchscreen. The subject’s writing was cap-
tured and converted to a sequence of numerical coordinates suitable
for use by the controller; this can be done on any touchscreen plat-
form. As before, we constrained the fingertip location to lie on a
plane. As our model only allows for control of the index finger and
does not incorporate wrist movement, we manually translated the
wrist after each letter is written to allow the controller to write the
entire word. We performed this task using the white box controller
without smoothing.

Fig. 1(a-b) shows side-by-side shots of the controller and a human
subject attempting this task. See our accompanying video for a
more detailed comparison. The average tracking error for this task –
measured in the same way as for the circle tracking task – was 0.013
cm, while the maximum error observed was 0.18 cm.

DI EDC FDP

FDS LUM PI

(a)

DI EDC FDP

FDS LUM PI

(b)

DI EDC FDP

FDS LUM PI

(c)

DI EDC FDP

FDS LUM PI

(d)

Figure 10: Graph of muscle activations (ranging from 0 to 1) gen-
erated over the duration of the circle tracking task (time range from
0 to 1 second). Each figure shows the activation of the muscles
(clockwise from left): distal interosseus (DI), extensor digitorum
communis (EDC), flexor digitorum profundus (FDP), flexor digi-
torum superficialis (FDS), lumbrical, and palmar interosseus (PI).
(a-b) Black box controller, without smoothing (left) and with smooth-
ing parameters ↵ = 0.971,� = 0.0145, � = 0.0145 (right). (c-d)
White box controller, without smoothing (left) and with smoothing
parameters ↵ = 0.999,� = 0.0, � = 0.001 (right)

6 Conclusion

We presented a framework for biomechanical simulation with ten-
dons that can handle the complex routing constraints of the hand,
such as pulleys and sheaths. By extending the constrained strands
framework of Sueda et al. [2011], we were able to efficiently handle
contact between bones and tendons, and to take large time steps
despite the stiffness of the tendons. We showed that modeling the
tendon network gives us coupled motion of the digits, as well as
energy storage in tendons. We also simulated deformities of the hand
by changing some of the tendon parameters. Finally, we developed
two methods for control of a human index finger model, which we
were able to use successfully in trajectory tracking.

Although we were able to simulate a highly complex system of
tendons and ligaments, there are still many more approximations
that remain. For example, the system is sensitive to values of the
biomechanical parameters; it would be useful to learn these from
measurements of human hands. We still approximate biomechanical
joints as simple mechanical joints; an interesting avenue of future
work would be to extend this framework for handling joint limits
using ligaments. Our technique should work very well with the
thumb, and its inclusion is in progress.

Acknowledgments

This work was supported in part by NSERC, CFI, ICICS and the
Canada Research Chairs Program. We thank Duo Li and Crawford
Doran for their early contributions to the software, Mitsunori Tada
for the CT images, and Benjamin Gilles for the segmentation help;
we are grateful to Ye Fan and Darcy Harrison for their timely rescue

(a)

DI EDC FDP

FDS LUM PI

(b)

Figure 11: Results of tracking a circle trajectory in 3 dimensions,
using the white box controller without smoothing. (a) Screenshot of
the task and (b) (b) the resulting muscle activations (ranging from 0
to 1) generated over the duration of the task (0 to 1 second).

of the video.

References

ALBRECHT, I., HABER, J., AND SEIDEL, H.-P. 2003. Construction
and animation of anatomically based human hand models. In
ACM SIGGRAPH/Eurographics symp. comput. anim., 98–109.

ANDONI, A., AND INDYK, P. 2008. Near-optimal hashing al-
gorithms for approximate nearest neighbor in high dimensions.
Communications of the ACM 51 (Jan), 117–122.

ANDREWS, S., AND KRY, P. G. 2013. Goal directed multi-finger
manipulation: Control policies and analysis. Computers & Graph-
ics 37, 7, 830–839.

BÉDARD, P., AND SANES, J. 2009. Gaze and hand position
effects on finger-movement-related human brain activation. J.
Neurophysiol. 101, 2 (Feb), 834–842.

BERGOU, M., WARDETZKY, M., ROBINSON, S., AUDOLY, B.,
AND GRINSPUN, E. 2008. Discrete elastic rods. ACM Trans.
Graph. 27, 3 (Aug), 63:1–63:12.

BERGOU, M., AUDOLY, B., VOUGA, E., WARDETZKY, M., AND
GRINSPUN, E. 2010. Discrete viscous threads. ACM Trans.
Graph. 29, 4 (Jul), 116:1–116:10.

BLEMKER, S. S., AND DELP, S. L. 2005. Three-dimensional
representation of complex muscle architectures and geometries.
ANN BIOMED ENG 33, 5 (May), 661–673.

BURRIDGE, R. R., RIZZI, A. A., AND KODITSCHEK, D. E. 1999.
Sequential Composition of Dynamically Dexterous Robot Behav-
iors. Int J Robot Res 18, 6 (June), 534–555.

CHEN, D. T., AND ZELTZER, D. 1992. Pump it up: computer
animation of a biomechanically based model of muscle using the
finite element method. In Computer Graphics (Proc. SIGGRAPH
92), vol. 26, ACM, 89–98.

DAMSGAARD, M., RASMUSSEN, J., CHRISTENSEN, S., SURMA,
E., AND DEZEE, M. 2006. Analysis of musculoskeletal systems
in the AnyBody Modeling System. SIMUL MODEL PRACT TH
14, 8 (Nov.), 1100–1111.

DELP, S. L., ANDERSON, F. C., ARNOLD, A. S., LOAN, P.,
HABIB, A., JOHN, C. T., GUENDELMAN, E., AND THELEN,
D. G. 2007. OpenSim: open-source software to create and
analyze dynamic simulations of movement. IEEE Trans. Biomed.
Eng. 54, 11, 1940–1950.

DESHPANDE, A. D., KO, J., FOX, D., AND MATSUOKA, Y. 2013.
Control strategies for the index finger of a tendon-driven hand.
Int J Robot Res 32, 1 (Jan.), 115–128.

DIMAIO, S., AND SALCUDEAN, S. 2002. Needle insertion mod-
elling and simulation. In ICRA, vol. 2, 2098 – 2105 vol.2.

ELKOURA, G., AND SINGH, K. 2003. Handrix: animating the
human hand. In ACM SIGGRAPH/Eurographics symp. comput.
anim., 110–119.

EPSTEIN, M., AND HERZOG, W. 1998. Theoretical Models of
Skeletal Muscle. John Wiley and Sibs.

FAN, Y., LITVEN, J., AND PAI, D. K. 2014. Active volumetric
musculoskeletal systems. ACM Trans. Graph. 33, 4 (July), 152:1–
152:9.

FORTNEY, K., AND TWEED, D. B. 2012. Computational advan-
tages of reverberating loops for sensorimotor learning. Neural
computation 24, 3 (Mar.), 611–34.

GARNER, B., AND PANDY, M. 2000. The obstacle-set method for
representing muscle paths in musculoskeletal models. Comput
Methods Biomech Biomed Engin 3, 1, 1–30.

GEIJTENBEEK, T., VAN DE PANNE, M., AND VAN DER STAPPEN,
A. F. 2013. Flexible Muscle-Based Locomotion for Bipedal
Creatures. ACM Transactions on Graphics 32, 6.

HOU, Z.-G., GUPTA, M. M., NIKIFORUK, P. N., TAN, M., AND
CHENG, L. 2007. A Recurrent Neural Network for Hierarchical
Control of Interconnected Dynamic Systems. IEEE Transactions
on Neural Networks 18, 2 (Mar.), 466–481.

HUANG, H., ZHAO, L., YIN, K., QI, Y., YU, Y., AND TONG, X.
2011. Controllable hand deformation from sparse examples with
rich details. In ACM SIGGRAPH/Eurographics symp. comput.
anim., 73–82.

INDYK, P., AND MOTWANI, R. 1998. Approximate nearest neigh-
bor: Towards removing the curse of dimensionality. In Proc.
STOC, 604–613.

JOHNSON, E., MORRIS, K., AND MURPHEY, T. 2009. A varia-
tional approach to strand-based modeling of the human hand. In
Algorithmic Foundation of Robotics VIII, G. Chirikjian, H. Choset,
M. Morales, and T. Murphey, Eds., vol. 57 of Springer Tracts in
Advanced Robotics. Springer, 151–166.

KAPANDJI, I. A. 2007. The Physiology of the Joints, Volume 1:
Upper Limb, 6 ed. Churchill Livingstone.

KAUFMAN, K. R., MORROW, D. A., ODEGARD, G. M., DON-
AHUE, T. L. H., COTTLER, P. J., WARD, S., AND LIEBER,
R. 2010. 3d model of skeletal muscle to predict intramuscular
pressure. In ASB Annual Conference.

KRY, P. G., AND PAI, D. K. 2006. Interaction capture and synthesis.
ACM Trans. Graph. 25, 3 (Jul), 872–880.

KURIHARA, T., AND MIYATA, N. 2004. Modeling de-
formable human hands from medical images. In ACM SIG-
GRAPH/Eurographics symp. comput. anim., 355–363.

LANG, C. E., AND SCHIEBER, M. H. 2004. Human finger inde-
pendence: limitations due to passive mechanical coupling versus
active neuromuscular control. J. Neurophysiol. 92, 5 (Nov.),
2802–2810.

LEE, S.-H., AND TERZOPOULOS, D. 2006. Heads up!: biome-
chanical modeling and neuromuscular control of the neck. ACM
Trans. Graph. 25, 3 (Jul), 1188–1198.

LEE, S.-H., SIFAKIS, E., AND TERZOPOULOS, D. 2009. Com-
prehensive biomechanical modeling and simulation of the upper
body. ACM Trans. Graph. 28, 4 (Sep), 99:1–99:17.

LEE, Y., PARK, M. S., KWON, T., AND LEE, J. 2014. Locomotion
control for many-muscle humanoids. ACM Trans. Graph. 33, 6
(Nov.), 218:1–218:11.

LEIJNSE, J. N., BONTE, J. E., LANDSMEER, J. M., KALKER,
J. J., VAN DER MEULEN, J. C., AND SNIJDERS, C. J. 1992.
Biomechanics of the finger with anatomical restrictions–the sig-
nificance for the exercising hand of the musician. J. Biomech. 25,
11, 1253–1264.

LI, Y., FU, J. L., AND POLLARD, N. S. 2007. Data-driven grasp
synthesis using shape matching and task-based pruning. IEEE
Trans. Vis. Comput. Graphics 13 (July), 732–747.

LI, D., SUEDA, S., NEOG, D. R., AND PAI, D. K. 2013. Thin skin
elastodynamics. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4
(July), 49:1–49:9.

LIU, C. K. 2008. Synthesis of interactive hand manipulation. In
ACM SIGGRAPH/Eurographics symp. comput. anim., 163–171.

LIU, C. K. 2009. Dextrous manipulation from a grasping pose.
ACM Trans. Graph. 28 (Jul), 59:1–59:6.

MALHOTRA, M., ROMBOKAS, E., THEODOROU, E., TODOROV,
E., AND MATSUOKA, Y. 2012. Reduced Dimensionality Control
for the ACT Hand. In ICRA, IEEE, 5117–5122.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF,
R., TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity
for character skinning with contact and collisions. ACM Trans.
Graph. 30, 4 (Jul), 37:1–37:12.

MORDATCH, I., POPOVIĆ, Z., AND TODOROV, E. 2012. Contact-
invariant optimization for hand manipulation. In Proceedings of
the ACM SIGGRAPH/Eurographics symp. comput. anim., Euro-
graphics Association, 137–144.

NG-THOW-HING, V. 2001. Anatomically-based models for physical
and geometric reconstruction of humans and other animals. PhD
thesis, The University of Toronto.

POLLARD, N. S., AND ZORDAN, V. B. 2005. Physi-
cally based grasping control from example. In ACM SIG-
GRAPH/Eurographics symp. comput. anim., 311–318.

ROBINSON, D., O’MEARA, D., SCOTT, A., AND COLLINS, C.
1969. Mechanical components of human eye movements. Journal
of Applied Physiology 26, 5, 548–553.

ROMBOKAS, E., MALHOTRA, M., THEODOROU, E., TODOROV,
E., AND MATSUOKA, Y. 2012. Tendon-Driven Variable
Impedance Control Using Reinforcement Learning. In RSS.

SHADMEHR, R. 1998. Equilibrium point hypothesis. In The
handbook of brain theory and neural networks, MIT Press, 370–
372.

SIFAKIS, E., NEVEROV, I., AND FEDKIW, R. 2005. Automatic
determination of facial muscle activations from sparse motion
capture marker data. ACM Trans. Graph. 24, 3 (Jul), 417–425.

SPILLMANN, J., AND TESCHNER, M. 2008. An adaptive contact
model for the robust simulation of knots. Computer Graphics
Forum 27, 2, 497–506.

SUEDA, S., KAUFMAN, A., AND PAI, D. K. 2008. Musculotendon
simulation for hand animation. ACM Trans. Graph. 27, 3 (Aug),
83:1–83:8.

SUEDA, S., JONES, G. L., LEVIN, D. I. W., AND PAI, D. K. 2011.
Large-scale dynamic simulation of highly constrained strands.
ACM Trans. Graph. 30, 4 (Jul), 39:1–39:9.

TERAN, J., BLEMKER, S., HING, V. N. T., AND FEDKIW, R. 2003.
Finite volume methods for the simulation of skeletal muscle. In
ACM SIGGRAPH/Eurographics symp. comput. anim., 68–74.

TERAN, J., SIFAKIS, E., BLEMKER, S. S., NG-THOW-HING, V.,
LAU, C., AND FEDKIW, R. 2005. Creating and simulating skele-
tal muscle from the visible human data set. IEEE Transactions
on Visualization and Computer Graphics 11, 3, 317–328.

TSANG, W., SINGH, K., AND FIUME, E. 2005. Helping hand:
an anatomically accurate inverse dynamics solution for uncon-
strained hand motion. In ACM SIGGRAPH/Eurographics symp.
comput. anim., 319–328.

VALERO-CUEVAS, F., YI, J.-W., BROWN, D., MCNAMARA, R.,
PAUL, C., AND LIPSON, H. 2007. The tendon network of the
fingers performs anatomical computation at a macroscopic scale.
IEEE Trans. Biomed. Eng. 54, 6, 1161–1166.

WANG, J. M., HAMNER, S. R., DELP, S. L., AND KOLTUN,
V. 2012. Optimizing locomotion controllers using biologically-
based actuators and objectives. ACM Trans. Graph. 31, 4 (July),
25:1–25:11.

WANG, Y., MIN, J., ZHANG, J., LIU, Y., XU, F., DAI, Q., AND
CHAI, J. 2013. Video-based hand manipulation capture through
composite motion control. ACM Trans. Graph. 32, 4 (July),
43:1–43:14.

ZAJAC, F. 1989. Muscle and tendon: properties, models, scaling,
and application to biomechanics and motor control. Crit Rev
Biomed Eng. 17, 4, 359–411.

ZANCOLLI, E. 1979. Structural and Dynamic Bases of Hand
Surgery. Lippincott.

ZHANG, A., MALHOTRA, M., AND MATSUOKA, Y. 2011. Musical
piano performance by the ACT Hand. In IEEE International
Conference on Robotics and Automation, IEEE, Shanghai, 3536–
3541.

ZHAO, W., ZHANG, J., MIN, J., AND CHAI, J. 2013. Robust
realtime physics-based motion control for human grasping. ACM
Trans. Graph. 32, 6 (Nov.), 207:1–207:12.

ZHU, Q.-H., CHEN, Y., AND KAUFMAN, A. 1998. Real-time
biomechanically-based muscle volume deformation using FEM.
Computer Graphics Forum 17, 3, 275–284.

