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Figure 1: Our framework spans the entire pipeline for simulating volumetric musculoskeletal systems, starting from data on the active
shapes of muscles to physically based simulation of muscles and soft tissues coupled to the skeletal system. (a) MRI1 of the eye can reveal
both passive and active muscle shapes. (b) Reconstructed muscle shapes. (c) Physically based simulation of an individual’s eye movement
using our system. (d) Upper arm with six muscles and a bone in close sliding contact with each other. Volume preservation produces realistic
lateral bulging. (e) Dynamic simulation of arm with soft tissues, a soft glove, and contact with the environment.

Abstract

We introduce a new framework for simulating the dynamics of mus-
culoskeletal systems, with volumetric muscles in close contact and
a novel data-driven muscle activation model. Muscles are simulated
using an Eulerian-on-Lagrangian discretization that handles vol-
ume preservation, large deformation, and close contact between ad-
jacent tissues. Volume preservation is crucial for accurately captur-
ing the dynamics of muscles and other biological tissues. We show
how to couple the dynamics of soft tissues with Lagrangian multi-
body dynamics simulators, which are widely available. Our physi-
ologically based muscle activation model utilizes knowledge of the
active shapes of muscles, which can be easily obtained from medi-
cal imaging data or designed to meet artistic needs. We demonstrate
results with models derived from MRI data and models designed for
artistic effect.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: Musculoskeleton, Deformation, Eulerian simulation,
Muscle, Activation, Soft Tissues

1 Introduction

Our goal is to simulate biomechanically plausible movement of hu-
man “digital doubles” and fictional creatures. Such simulations are
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of central importance to computer animation. Skilled artists and
motion capture techniques can generate high levels of realism, but
such animations are very labor intensive to produce and reuse. For
this reason, there has been a growing emphasis on physically based
musculoskeletal simulation in computer graphics; see Sec. 2 for a
review.

However, musculoskeletal simulations are extremely challenging,
due to the sheer complexity of such systems. Here are some of the
challenges: (1) Most tissues are highly deformable and volumet-
ric solids that need 3D discretizations to fully capture significant
effects. Some effects, such as the bulging of active muscles, also
depend on the fact that these tissues are essentially incompress-
ible. In all previous work, volumetric soft tissues are either ignored
or simulated using Lagrangian finite element methods (FEM). (2)
Even more challenging is the fact that muscles slide relative to each
other, in close contact. Detecting and responding to close inter-
nal contact between 3D meshes can be expensive using standard
collision processing methods. Perhaps for this reason, most mus-
culoskeletal simulations in graphics during the last decade have
avoided handling such internal sliding contact. It is also impor-
tant to handle external contact with the environment. (3) Muscles
are controlled by neural activation, but representing the behavior of
active muscles remains challenging, despite a century of progress
in muscle biomechanics. For example, the widely used “Hill-type”
models [Zajac 1989] can have have large errors (about 50%), even
in highly controlled laboratory settings [Herzog 2004]. The be-
havior of active muscles in vivo is even less understood, due to
motor unit diversity within muscle, and other issues such as mo-
tor unit recruitment, cycling, bistability of firing rates, etc. (4) Fi-
nally, bones are connected to muscles through tendons, and to other
bones through ligamentous joints. Simulation of multi-rigid body
systems with bones and low dimensional joint constraints is well
understood. The challenge is in simulating the dynamics of the cou-
pled musculoskeletal system to move the character, and to model
important non-local effects such as how the impact on a boxer’s
glove affects the motion of the entire body.

We propose a new framework for musculoskeletal simulation in
computer animation that addresses all of the above challenges. A
key to our approach is Eulerian (and Eulerian-on-Lagrangian) dis-
cretization of solids; this allows efficient handling of large deforma-
tions, collision detection, and simulation of many contacting mus-



cles on a single, uniform grid. We introduce new methods for vol-
ume preserving deformation and for efficiently handling close inter-
nal contact. We propose a practical solution to the problem of mus-
cle activation, using a data-driven approach. Using our approach,
active shapes of muscles can be estimated from non-invasive med-
ical imaging data, such as MRI scans, or provided by an artist if
needed. The shapes are used directly to activate muscles, in a physi-
cally based musculoskeletal simulation. We demonstrate the results
with a prototype implementation and several test examples. We be-
lieve this is the only existing simulation framework that has all the
features highlighted in bold font above.

2 Related Work

Simulating musculoskeletal systems, with or without 3D volumet-
ric muscles, has been an active research area in a multitude of disci-
plines, from biomechanics to computer graphics. Please see Lee, et
al. [2012] for a recent survey of this area from a computer graphics
perspective. We mention only some examples here. Other articles,
related to specific technical aspects of our work such as volume
preservation and muscle activation, are described in later sections
which provide the appropriate context.

Early work included that of Chen and Zeltzer [1992], who first in-
troduced muscle simulation to character animation. In more re-
cent work, Ng-Thow-Hing and Fiume [2002] introduced B-Spline
solids with anisotropic properties and volume preservation. Teran et
al. [2003; 2005] built skeletal muscles from the Visible Human Data
Set and simulated them using the finite element method (FEM);
Lee et al. [2009] simulated the entire human upper body using qua-
sistatic FEM and line-based muscles; Sueda et al. [2008] simulated
the dynamics of thin musculotendons in an anatomy-based hand.
In addition to the work cited above that used anatomical data bases,
there has been work on creating subject specific anatomical mod-
els [Schmid et al. 2009; Gilles et al. 2010]. Anatomical data have
been used to infer tissue material properties (e.g., [Teran et al. 2005;
Lee et al. 2009]) but no previous work, to our knowledge, has used
anatomical data of active shapes to activate muscles as we do.

There is a large body of work in musculoskeletal simulation in
biomechanics (e.g., [Blemker and Delp 2005]). Zajac [1989] pro-
vides an extensive review of muscle and tendon models that are
commonly used in biomechanics. High quality open source soft-
ware is available (e.g., [Delp et al. 2007]). Most of these models use
non-volumetric muscles, and do not fully account for muscle mass
[Pai 2010]. Such models have been used for controlling computer
animations; [Geijtenbeek et al. 2013] is a notable recent example.

All work on volumetric muscle simulation builds upon the broad
foundations of computational methods for solid mechanics. The
seminal work of Terzopoulos et al. [1987] introduced this field
to computer graphics. See [Nealen et al. 2006] for a survey and
[Sifakis and Barbic 2012] for a tutorial introduction. All this work
is based on Lagrangian discretization of solids. The Eulerian dis-
cretizations that we use have been introduced to graphics for sim-
ulating solids in 3D [Levin et al. 2011a; Fan et al. 2013], 2D [Li
et al. 2013], and 1D [Sueda et al. 2011]. However, none of this
work enforced volume preservation, close contact without the use
of reduced coordinates, and muscle activation; these features are
essential for simulating musculoskeletal systems.

3 Eulerian Tissue Simulation

We use an Eulerian-on-Lagrangian discretization [Fan et al. 2013]
of soft tissues in each limb segment, which has many benefits for
musculoskeletal simulation. We briefly summarize the Eulerian ap-

proach here for completeness; full details can be found in the orig-
inal articles [Levin et al. 2011a; Fan et al. 2013].

A deformation is map, φ : X 7→ x, from material space to phys-
ical space. Following a common abuse of terminology (or synec-
doche), we use X , etc., to refer to both a space and a point in that
space. The Lagrangian methods almost universally used in solid
mechanics discretize material space. In contrast, Eulerian methods
discretize physical space, and are widely used in fluids simulation.
For Eulerian solids, material coordinates X are advected to keep
track of material deformation. That is, motion is tracked using a
discrete representation of the inverse mapping φ−1 (see Figure 3).
The map is then used to compute the deformation gradient F and,
ultimately, the elastic forces within the solid [Levin et al. 2011a].
One benefit of Eulerian discretization of solids is the ease of han-
dling large deformations, similar to the fluids case.

(a) Passive (b) Both heads active

(c) Blue head active (d) Brown head active

Figure 2: Eulerian muscle simulation. A simplified example is
shown of the biceps muscle, with two heads in close contact. The
grid shown has half the resolution of the simulation grid, for clarity.

Another major benefit of this approach is the simplicity of colli-
sion detection and resolution on the spatial grid (see Fig. 2). All
objects are simulated on the same grid, and each object defines an
indicator function I(φ−1(x)) on the grid, which records whether
x is occupied by the object. This is used to estimate the contact
constraint normals g, that are then assembled into the constraint
Jacobian matrix G. In the general case of objects in intermittent
contact described in [Levin et al. 2011a], after time discretization
of the accelerations at the velocity level and using Gauss’s princi-
ple of least constraint, the dynamics of a deformable object system
subject to contact constraints reduces to the solution of a convex
quadratic program (QP):

vt+1 = arg min
v

1

2
vTMv − vT f∗

s.t. Gv ≤ b,
(1)

where v is the velocity on the grid, M is a generalized mass matrix,
and f∗ is a generalized impulse. The velocities and material coor-
dinates X are then advected on the grid using the velocity field to
obtain the new deformed state of the solid.

4 Muscle Activation

When an active muscle contracts, there is an internal reorganiza-
tion of its mass mediated by molecular motors which cause my-



ofilaments to slide relative to each other. As mentioned in Sec. 1,
the actual dynamics of active muscle is complex and not very well
understood. Worse, there are significant differences between the
properties of different muscles and between individuals. Rather
than attempt to model these details, we seek a practical but real-
istic activation model for use in graphics.

Figure 3: The mapping between active space, passive space and
physical space. Eulerian methods discretize physical space.

The essential idea of our activation model is to represent the change
in material configuration directly. See Figure 3. Suppose the refer-
ence activation (normalized to 1) changes the material configuration
from X to X̃ . The material space without any activation is called
the passive space; the space after active contraction is called the
active space. We further define the mapping ψ which transforms
points in X to X̃ . The chain of mappings from physical space to
active space is

X̃ = ψ(φ−1(x)). (2)

The deformation gradient F = ∂x
∂X is the local measure of object

deformation. When the muscle is activated, its new elastic defor-
mation gradient F̃ is

F̃ =
∂x

∂X̃
=

∂x

∂ψ(φ−1(x))
=

(
∂ψ(φ−1(x))

∂x

)−1

. (3)

Note that X and X̃ do not need to have the same discretization as
the simulation mesh in x, as long as the mappings are well defined.
Specifically, for a particular point x, the method only requires its
corresponding position in X̃ be found through the mappings. This
allows high resolution discretization for the active configuration
space regardless of the simulation mesh.

To partially activate a muscle we interpolate X̃ using a one-
dimensional generalized activation function G, with the partially
activated configuration X + G(t, X̃,X). Since the muscles in
our examples are are shortened with very little rotation, we use lin-
ear interpolation in our current implementation, i.e., G(t, X̃,X) =

G(t)(X̃ −X). G(t) is a continuous, preferably smooth, function
of time that avoids sudden discontinuities. If there is significant
rotation during activation, this could be handled by the standard
approach of factoring out rotation and interpolating the remainder,
similar to the approach used in co-rotational elasticity.

Applying the chain rule to Equation 3 reveals another interesting
interpretation of the method.

F̃ =
∂x

∂X̃
=

∂x

∂X

∂X

∂X̃
(4)

Equation 4 resembles the multiplicative decomposition law that is
widely used in elasto-plastic simulation, and has roots in both com-
puter graphics and muscle biomechanics. In graphics, ∂x

∂X is the

total deformation gradient and ∂X
∂X̃

is known as the inverse plas-

tic deformation gradient, which evolves over time. Changing the

reference shapes for plasticity simulation has been introduced to
computer graphics [Bargteil et al. 2007; Wicke et al. 2010; Fan
et al. 2013]. Several authors have also used target poses or rest
shapes for animating and controlling arbitrary soft bodies [Coros
et al. 2012; Schumacher et al. 2012; Liu et al. 2013]. In muscle
biomechanics, multiplicative plasticity laws have been used to sim-
ulate deformation of active muscle [Nardinocchi and Teresi 2007],
which provides some biological support for our model.

The activation model is a gross simplification of how muscles ac-
tually work, but has one significant advantage: we can exploit
biomedical imaging data (or an artist’s knowledge) of real muscle
behavior. This advantage is similar to the use of image based ren-
dering, motion capture, and other data-driven methods, in that the
realism is baked into the data, even if the model is simple. Muscle
shapes can be reconstructed from MRI in some circumstances, such
as the presence of surrounding fat or with the use of contrast agents.
Ultrasound is also useful for muscle imaging. We have successfully
simulated human extraocular muscles and its activation using mus-
cle shapes reconstructed from MRI data [Wei and Pai 2008] (see
Figure 10). Modelers are not restricted to biomedical data, and have
the option of freely designing desired active shapes. One example,
designed by us (not real artists), is shown in Figure 4.

(a) Passive Shape of Muscle (b) Active Shape of Muscle

(c) Isometric, before activation (d) Isometric, after activation

Figure 4: Muscle activation using user specfied shapes. (a) and
(b) show user input data on the passive and active shapes of a mus-
cle. Both ends of the muscle were fixed (c) and activated (d). Even
when isometrically activated, muscle mass moves realistically to-
wards the origin of the muscle (the upper end), while elastically
stretching to match the endpoint constraints.

5 Volume Preservation

Muscles, like most biological tissues, are mostly composed of water
and are nearly incompressible. Volume preservation in muscles is
important for capturing visual effects such as bulging and the clas-
sical “squash and stretch”. In solid simulation, resistance to volume
change is typically approximated by tuning constitutive properties
(specifically, Poisson’s ratio). This is effective for some virtual soft
objects, but as Poisson’s ratio approaches 0.5, it produces a numer-
ical difficulty known as the “locking phenomenon”. The classical
solution is to use a mixed formulation [Hughes 2000] with care-
fully chosen elements or with a stabilization term [Hughes 2000;
Misztal et al. 2012]. Earlier work [Ng-Thow-Hing et al. 2001] sim-
ulated muscles by approximating this volume-preserving constraint
using spring-like forces based on volume change. Others follow



the quasi-incompressibility method [Simo and Taylor 1991], with
finite element methods for muscle simulation [Weiss et al. 1996;
Teran et al. 2005; Patterson et al. 2012].

In contrast, we treat volume preservation directly, as a constraint to
be satisfied along with the dynamics. This is similar to the treat-
ment in fluid mechanics and to the approach of Irving, et al.[2007]
for solids and the strain-limiting methods used for cloth simulation
(e.g., [Goldenthal et al. 2007]). Our formulation adds a stabilization
term that reduces drift from the constant volume constraint.

The determinant J of the deformation gradient F defines the vol-
ume change as

dv = JdV (5)

For volume-preservation we require that volume in the (active)
material domain is equal to the volume in the spatial domain,
dV = dv. By the definition of J , we require J = 1. This looks
simple, but is non-linear constraint. In order to simulate the mus-
cles that have large deformations, we can take the time derivative
of both sides of J = 1, and enforce the constraint J̇ = 0. The
physical interpretation is that the volume change rate at every time
step is zero. That is,

J̇ = J ∇·v = 0 (6)

If J 6= 0 (i.e., the element is not flattened), the constraint J̇ = 0
is equivalent to enforcing a divergence-free velocity field. The con-
strain ∇·v = 0 is commonly solved by a pressure projection step
in fluid animation. Unfortunately this constraint doesn’t track po-
sitional variables, and accumulated numerical drift may cause sig-
nificant volume change. To combat drift, we can use a stabilization
technique that enforces the time integral of J̇ be zero:

0 =

∫ tn+1

0

J̇ =

∫ tn

0

J̇+

∫ tn+1

tn

J̇ = Jn−1+

∫ tn+1

tn

J ∇·v (7)

where tn denotes the current time, and we assume J0 = 1. It is
straightforward to compute Jn based on X . To numerically inte-
grate J∇·v over time, from tn to tn+1, we use a first order method
that is explicit in the position variable J and implicit in velocity v∫ tn+1

tn

J∇·v = dtJn∇·vn+1 (8)

Substituting Equation 8 back to Equation 7, and we get

∇·vn+1 =
1

dt
1− Jn
Jn

(9)

This constraint can be interpreted as a Newton-like step that at-
tempts to zero the error in J in one step. This may be more aggres-
sive than necessary, and lead to large velocity changes when using
small time steps. As with Newton’s method, we can take a damped
volume preservation step,

∇·vn+1 =
γ

dt
1− Jn
Jn

(10)

with a damping factor γ ∈ (0, 1] that controls how rapidly the vol-
ume error is reduced. As can be seen in Sec. 8, our system enforces
volume-preservation well, while resolving other constraints simul-
taneously.

6 Close Contact

A significant challenge is to efficiently represent the interactions
between adjacent muscles. Biological tissues are packed closely

together in the body, held together by collageneous connective tis-
sues. However, even though most work in computer graphics (e.g.,
[Lee et al. 2009; Faure et al. 2011]) models the body as soft tis-
sues with complex anisotropic material properties, connective tis-
sues allow muscles to slide relative to each other. There is some
force transmission between adjacent synergistic muscles along their
lengths, this is small in the physiological range [Maas and Sander-
cock 2010]. Indeed, many muscles that are thought of as single
muscles, such as the biceps and triceps muscles of the arm, should
be modeled as multiple muscles in close contact, with relative slid-
ing. Their heads (“-ceps”) have different origins and their mechan-
ical actions vary based on joint angles. However, detecting and
responding to such close contact over large surface areas is a ma-
jor challenge using standard contact processing methods originally
developed for sparse and intermittent contact between rigid bod-
ies. We address both the challenges of appropriate modeling and

Figure 5: Two muscles A and B in close contact. Four close contact
constraints are formulated in the four shaded cells.

efficient computation by handling close internal contact differently
from intermittent external contacts.

Our contact formulation is similar to that of Levin, et al. [2011a],
summarized in Equation 1. Unknowns X and Ẋ are defined on
grid nodes and each close contact constraint is formulated on one
grid cell. First, before simulation, we tag pairs of objects as be-
ing in close contact. For biological tissues, this prior knowledge is
available from anatomy (e.g, the long and short heads of biceps are
always in contact, so this pair is a good candidate for close contact).
For Eulerian simulation, voxel based collision detection is straight-
forward (Sec. 3); to get subgrid precision, we subsample every cell
to find the ones that both objects occupy. For those cells, one close
contact constraint is formulated per cell. In Figure 5, four cells are
detected and four constraints are formulated between objects A and
B. Specifically, the constraint is written as

vrel · g = 0 (11)

where vrel = vA
Γ − vB

Γ , Γ is the contact area, and g is the contact
normal. The physical meaning of Equation 11 is that the projection
of the two objects’ velocities at Γ onto the surface normal direction
is the same. The main difference with Eq. 1 is replacing inequali-
ties with equality constraints. In other words, we assume that the
objects’ relative motion can only be fixed or sliding. In this sense,
our method is in the same spirit as [Sueda et al. 2011], where they
have assumed that contact always happens at Eulerian nodes, but
in our case the constrained nodes are computed dynamically. This
assumption brings two big advantages. First, it significantly im-
proves the efficiency of the solver. By assuming all internal contact
constraints are active, the contact LCP reduces to solving a linear
system. Note that solving a LCP is still necessary for external (in-
termittent) contact resolution. Second, close contact eliminates the
need for connective tissue simulation, and prevents muscles from
separating. We use ΓC to denote the contact surface inside of a cell



ΩC ; ΓC = Γ ∩ ΩC . For one constraint, the discretized version of
Equation 11 is∫

ΓC

(
ΣiN iv

A
i − ΣiN iv

B
i

)
· g dΓC = 0 (12)

where N denotes trilinear shape functions in our implementation.
Recall that two objects share the same discretization and the con-
tact surface as well. If their shape functions are on the same order,
these functions are identical. Therefore, we use N i for both ob-
jects A and B in Equation 12. For the normal g, there are multiple
ways to evaluate it. One approach follows the method proposed in
[Levin et al. 2011a]. Normals are evaluated by taking the gradi-
ent of the indicator function. This approach, which is used in our
implementation, avoids using any mesh information. Alternatively,
the method proposed in [Fan et al. 2013] is also applicable here.
After the surface mesh is reconstructed, averaged normal in a cell
can be taken as weighted averages of normals computed on surface
triangles. These triangles can either be from one of the objects, or
both. Although a triangular mesh is needed for normal evaluation,
no mesh mesh collision detection is employed here. Fast collision
detection is still performed by indicator function comparison.

7 Musculoskeletal System

Figure 6: Muscle, tendon and bone structure with Eulerian simu-
lation grid associated with the skeleton

We use a modular architecture which separates the musculoskele-
tal system into a skeleton-tendon subsystem and a soft tissue sub-
system. This allows the use of existing multibody simulators with
our soft tissue simulator. We enforce weak coupling between the
subsystems to achieve this modularization. We detail the systems
below.

7.1 Skeletons and Tendons

The skeleton is well approximated as a system of rigid bodies
(bones) connected by joints. The dynamics of such systems has
been thoroughly studied and understood, in robotics, computer
graphics, and biomechanics. Therefore our description is brief. In
biomechanical systems, muscles may be connected to distant bones
via long stiff tendons that span multiple joints. We follow the stan-
dard practice in biomechanics (e.g., [Delp et al. 2007]) of assuming
tendons are inextensible, and that their kinematics can be repre-
sented using their “moment arms” at each joint. Tendon excursions
e are therefore kinematically coupled to the skeleton configuration
q.

Any existing multibody simulator with the above features could be
used in our framework. In our implementation, we use unreduced
coordinates for bones, and explicit joint constraints. Using a deriva-
tion based on Gauss’s principle, as in Sec. 3, we formulate the dy-
namics as another QP (Eq. 16). We currently use revolute and ball-
and-socket joints, though more general joints [Lee and Terzopoulos
2008] could be included easily. Data such as moment arms of each
tendon are taken from [Holzbaur et al. 2005].

7.2 Attaching Soft Tissues to Skeleton

We first consider the constraints on the Eulerian soft tissue simula-
tion due to attachments. Typically, the proximal (origin) end of a
muscle attaches over a broad area of a bone, and the distal (inser-
tion) end has a more prominent tendon. The brachialis muscle, for
example, has a large area of origin on the humerus, and the distal
end connects to the forearm via a tendon. For a muscle with attach-
ment boundary Γ either at the origin or at the insertion, we enforce
the Eulerian velocity on Γ to be the same as the tendon velocity ė
relative to the reference bone used to model the muscle.

vn+1(x) = ė x ∈ S, (13)

where S ⊆ Γ is the attachment area. Its position in physical space is
determined by excursion e and rigid body transformation. Writing
v in terms of shape functionsN i and integrating Equation 13 over
a grid cell Ωc yields∫

Γ∩Ωc

∑
i

N iv
n+1
i ∂Γ = ė

∫
Γ∩Ωc

∂Γ, (14)

Note that in the case of muscle-bone attachments, ė on the attach-
ment area is zero throughout the simulation as the bones are fixed
with respect to the simulation grid. A muscle normally has two at-
tachments, one for origin and the other for insertion. We globally
assemble these constraints, giving

GAv = a, (15)

whereGA is the attachment constraint matrix and a represents the
right hand side.

Attachment constraints produce a coupling impulse pA on bone and
tendon. With this impulse included, the skeleton-tendon system’s
dynamics is described by the QP

q̇n+1 =argmin
q̇

1

2
q̇TMS q̇ − q̇T (pS + pn

A)

subject to GS q̇ ≤ d,
(16)

whereMS is the skeletal inertia tensor, pS is the external impulse.
Note that all quantities defined are globally assembled. The con-
straints in Equation 16 are written as inequalities for generality,
even though most joint constraints will be equalities. Inequality
constraints can enforce, for example, joint angle bounds.

Similarly, the muscle QP is

vn+1 =argmin
v

1

2
vTMv − vTpB

subject to GV v = c,GCv ≥ 0,GAv = a,

(17)

where pB is the impulse due to advection and all the forces. M is
the global mass matrix, GV is the volume preservation constraint,
andGC are external contact constraints. We simplify the numerics
by lumping mass to the nodes so thatM is diagonal.



After Equation 16 is solved, we get q̇n+1 and subsequently for-
mulate the attachment constraints using the most recent rigid body
state, and solve Equation 17. Note that the coupling impulses λn+1

A
have been implicitly computed as the Lagrange multipliers associ-
ated with the attachment constraints:

pn+1
A = GT

Aλ
n+1
A . (18)

Once we know pn+1
A , we can advance to tn+2 by solving Equa-

tion 16 using pn+1
A . A high level overview of our solution proce-

dure for a single time step is given in Algorithm 1.

Algorithm 1 Solution Procedure

1: Initialize λ0
A = 0, q0 = 0, v0 = 0, t0 = 0 and n = 0

2: while tn < ttotal do
3: // Solve for Lagrangian DOFs (skeletal multibody system)
4: Compute pn

A = GT
Aλ

n
A

5: Solve the skeletal QP (Eq. 16) for q̇n+1

6: Update qn+1 = qn + dtq̇n+1

7: // Solve for Eulerian DOFs (muscles, soft tissues)
8: Advect vn and compute pB

9: Formulate the constraints in Equation 17 using qn+1

10: Solve muscle QP (Eqs. 17,19) for vn+1 and λn+1
A

11: Xn+1 = advect(Xn)
12: tn+1 = tn + dt
13: n = n+ 1
14: end while

7.3 Solver and Implementation

Each time step requires the solution of the skeletal and muscle
QPs, given by Equation 16 and Equation 17, respectively. Both are
solved via a primal-dual active-set method [Ito and Kunisch 2008].
Each iteration of the active-set method requires the solution of the
following symmetric, indefinite linear system or KKT system. For
the skeletal QP, the size is small and the solution is computed via a
direct solver. The KKT system of the muscle QP is


M GT

V G̃
T
C GT

A

GV −εL
G̃C

GA


 v
λV

λC

λA

 =

pB

c
0
a

 (19)

where G̃C consists of rows from the contact Jacobian GC corre-
sponding to active constraints. The QP solver usually converges
within five iterations since we don’t have a large number of external
objects in contact. To solve the resulting linear system Equation 19,
any off the shelf solves can be used. In our implementation, we use
a sparse direct solver based on LU factorization. Table 1 gives the
running time for the full arm simulations. Over the simulations, the
number of the constraints such as volume-preservation, attachment
and close contact does not change much. The above statistics are
representative for most of the time steps. Our implementation uses
both the GPU and CPU. The solver and assembly part are done on
the CPU while the rest are on GPU. Subsampling- takes a large
amount of time. Evaluating the mass matrix, divergence operator
and enforcing close contact all require subsampling. Currently we
do not prune empty cells far away, or fully filled cells deeply inside
of an object. If subsampling can be done only where needed, i.e.,
in partially filled cells, this will significantly improve the perfor-
mance.

Figure 7: A soft elastic cube is placed in a force field, with huge
horizontal forces that compress the cube. The forces are depicted by
arrows. (a) the original shape of the cube. (b) a compressible cube
is squeezed to a sheet under the force field. (c) incompressible solid
simulation using our method. The cube barely loses any volume.

8 Results

8.1 Volume Preservation

To validate the effectiveness of the volume-preserving constraint
with the positional stabilization, we crushed a soft cube using dif-
ferent methods. The cube was placed in a large horizontal force
field. The force magnitude was uniform over the whole space, but
the direction differed, see Figure 7. We have run three simulations

Figure 8: The figure shows the volume change for three simula-
tions. y-axis: object volume as a fraction; x-axis: total simulation
time in seconds. The red line is for the non-volume-preserving solid
while the green and blue lines are for volume preserving solids. The
green one is based on the ∇·v = 0 condition and the blue one is
based on our method.

for the same scenario: non-volume-preservation, velocity volume-
preservation only and velocity volume-preservation with positional
stabilization. The total volume change over time is shown in Fig-
ure 8 respectively. The three lines correspond to the three simula-
tions under investigation. The non-volume-preserving object (red
line) loses volume from the very beginning and is quickly smashed
to a sheet. In contrast, volume-preserving solids (green and blue
lines) are more resistant against volume change under the external
force field. The ∇·v = 0 formulation (green line) loses volume
over time. Our method with the proposed positional stabilization
(the blue line) exhibits almost constant volume. The maximum vol-
ume change does not exceed 0.2% of the original volume. This re-
sult shows that our method enforces volume preservation well and
prevents numerical drift from accumulation.

Figure 9 demonstrates that contact and volume-preservation con-
straints are simultaneously resolved. We simulated two bunnies
dropping to the ground at the same high speed, with one volume-
preserving (left) and the other one purely elastic (right). Figure 9



Dim (upper arm) Dim (forearm) DOFs Subsampling Assembly Muscle solver Multibody solver total (ms)
7× 55× 43× 30 2× 42× 20× 21 44394 1815 588 799 70 3526
6× 55× 43× 30 2× 42× 20× 21 20615 1486 456 118 66 2316

Table 1: Statistics for a typical time step of the simulations in milliseconds. The examples are run on i7 2.67 hz CPU and GTX 660 graphics
card. First row: isometric activation example with soft tissues on the upper arm. Second row: full arm dynamics example.

Figure 9: Comparison of volume-preserving and non-volume-
preserving bunnies dropping to the ground at the same speed. Left:
volume-preserving. Right: purely elastic.

captures the moment when the two bunnies touch the ground and
undergo large deformation. It is clear by inspection that the non-
volume preserving bunny has experienced a significant volume loss
near the contact area, compared to the volume preserving one.

8.2 Eye muscles: from MRI to Movement

As shown in Figure 10, we simulated the extraocular muscles and
the eyeball using our musculoskeletal simulator. The left pictures in
Figure 10 are the raw MRI images. When looking towards the nose
(bottom figure), the Medial Rectus (MR) muscle is highly active
and the Lateral Rectus (LR) muscle is very relaxed. When looking
outward (top figure), it’s the reverse. Thus it is possible to get mus-
cle shapes for individual muscles in different states of activation.
The 3D shapes of the muscles can be reconstructed from the MRI
data, for different gaze directions [Wei and Pai 2008; Wei et al.
2009]. As a first approximation, we took the most relaxed muscle
shape as the passive shape of the muscle and the most active muscle
shape as the active shape. Using our simulator we then simulate eye
movements using these shapes for activation.

Figure 10: Left: the MRI data of a human eye (courtesy of Dr. J. L.
Demer); middle:the passive configuration of the eye muscles; right:
simulations of the activated muscles in physical space

The results, seen in the video, are very promising. The muscle
shapes (seen on the right of the figure) deform realistically during

movement. The rotation of the globe slightly undershoots the target.
This may be due to the several approximations made: among the
six extraocular muscles, only the two most useful for horizontal
movement were modeled, and we didn’t model other soft tissues in
the eye. Other limitations are discussed in Sec. 9. Despite these
limitations, it’s remarkable that one can go from medical imaging
data directly to realistic musculoskeltal simulation.

8.3 Isometric Activation

(a) Passive (b) biceps activated

Figure 11: Activation of biceps and brachialis, with joints fixed.
Even though there is no skeletal motion, the muscle changes shape
as it should

Many muscle models used for visual effects are driven by skeleton
motion specified by an animator, but active muscles change shape
even when there is no change in total length, as shown in Fig. 4.
Figure 11 also illustrates this phenomenon. We fix all the bone
DOFs, and then fully activate the biceps and the brachialis. Muscle
deformation and activation in our method do not rely on skeleton
configurations.

8.4 General Soft Tissue Simulation

(a) Passive (b) biceps activated

Figure 12: Muscle wrapped in a soft tissue layer, representing fat
and skin.

Our method naturally extends to simulating tissues other than mus-
cles. Tissues such as fat have different material properties than the
muscles, but they are also volume preserving and are in close con-
tact with muscles. We can simulate tissues the same way as we
simulate muscles and add necessary constraints to them. In the ex-
ample, we wrap all the muscles on the humerus using an incom-
pressible soft tissue. That tissue is hollow inside, but has close con-
tact constraints with all the neighbouring muscles and bones. The
biceps are isometrically activated like the ones in Figure 11. Due to



incompressibility, the soft tissues above the biceps bulge appropri-
ately. As a side effect, this unified tissue simulator outputs dynamic
skin as a direct result of the simulation, and needs no additional
skinning effort.

8.5 Boxer’s Arm

Figure 13: The whole arm moves downwards and hits a rigid ob-
stacle and bounces back.

Figure 13 shows a simulation of an arm hitting a rigid body. We
first activate biceps and brachialis. This makes the arm flex. After
five seconds, those activated muscles are deactivated, meanwhile,
all the triceps are activated. This should make the whole arm move
towards the rigid obstacle at a high speed. As can be seen in the
video (and Figure 13), our simulator is capable of resolving exter-
nal contact while maintaining internal constraints. When contact
occurs, we see the collision between the glove and the rigid box is
correctly resolved locally. This contact prevents the arm from fur-
ther moving downwards and causes all the muscles to deform due
to inertial forces.

9 Limitations

As expected from any attempt to model a complex biological sys-
tem, our work has many limitations. Perhaps the foremost is the ne-
cessity of making approximations both in the biomechanical model
and in the simulation algorithms.

Our muscle activation model is clearly a major simplification, es-
pecially for partial activation, but as mentioned in Sec. 1, the alter-
natives have their own problems. A muscle’s behavior is influenced
by its fiber architecture, which is not modeled explicitly in our ap-
proach. We chose not model the architecture because the required
data are extremely difficult to obtain; most previous work in this
area (e.g., [Agur et al. 2003]) are not subject-specific and required
painstaking cadaver dissections. More recent work could produce
subject specific architecture in vivo using MRI (e.g., [Levin et al.
2011b]), but this work is at an early stage. To estimate active mus-
cle shape from imaging data we currently simply use a scaled ver-
sion of the in vivo active muscle shape, which is not stress-free.
This limitation could be addressed by using the simulator to itera-
tively refine the stress-free active muscle shape, solving an inverse
problem. Despite these limitations, the activation model works re-
markably well, perhaps because the realism is baked into data (ei-
ther from imaging or from an artist). It could be very useful for
graphics, in the same way that texture mapping and motion capture
have been; it may be better to have a bad model that can exploit
good data, rather than the other way around.

Our simulations also have many limitations and inefficiencies that

could be improved. We currently have one Eulerian-on-Lagrangian
grid attached to each moving bone to simulate the soft tissues near
each bone, similar to Chimera grids [English et al. 2013]. The
transitions between grids could be removed to produce a single
deformable grid using free-form deformation of the grid at the
joints (similar to lattice-based Lagrangian deformation methods,
e.g., [Patterson et al. 2012]); this fits easily into the Eulerian-on-
Lagrangian framework of [Fan et al. 2013]. The simulation grids
are also currently large and could be more tightly fitted and adapted.
There are some small jiggling artifacts visible in our video results.
This is partly due to observing soft tissue dynamics in slow mo-
tion, and partly due to the limitations of the numerical methods
used in our current implementation. Specifically, the oscillations
are probably due to explicit time integration of active elastic forces.
Employing an implicit time integration scheme could address this
issue. Finally, we do not address the problem of controlling the
musculoskeletal system. Our focus has been on a better model of
the “plant.” A controller should be added on top of our system to
produce interesting movements.

10 Conclusion

We have introduced a new comprehensive framework for muscu-
loskeletal simulation. The framework addresses several limitations
of previous musculoskeletal simulators, notably the ability to ro-
bustly model large numbers of volumetric muscles, sliding relative
to each other in close contact. We described a stabilized volume
preservation algorithm for Eulerian solids. Volume preservation
is essential for simulating tissues and for producing squash-and-
stretch effects. We introduced a new and practical muscle activa-
tion model that can exploit medical imaging data to not only cap-
ture anatomy but also this important physiological aspect of muscle
function. With the increasing availablity and affordability of medi-
cal imaging data, we believe this approach will grow in importance
for computer graphics.
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