
In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007 572

Efficient Reinforcement Learning with Relocatable Action Models

Bethany R. Leffler and Michael L. Littman and Timothy Edmunds
{bleffler,mlittman,tedmunds}@cs.rutgers.edu

Department of Computer Science
Rutgers University

NJ, USA

Abstract

Realistic domains for learning possess regularities that make
it possible to generalize experience across related states. This
paper explores an environment-modeling framework that rep-
resents transitions as state-independent outcomes that are
common to all states that share the same type. We analyze
a set of novel learning problems that arise in this framework,
providing lower and upper bounds. We single out one partic-
ular variant of practical interest and provide an efficient algo-
rithm and experimental results in both simulated and robotic
environments.

Introduction

Early work in reinforcement learning focused on learning
value functions that generalize across states (Sutton 1988;
Tesauro 1995). More recent work has sought to illu-
minate foundational issues by proving bounds on the re-
sources needed to learn near optimal policies (Fiechter 1994;
Kearns & Singh 2002; Brafman & Tennenholtz 2002). Un-
fortunately, these later papers treat states as being com-
pletely independent. As a result, learning times tend to scale
badly with the size of the state space—experience gathered
in one state is not reused to learn about any other state. The
generality of these results makes them too weak for use in
real-life problems in robotics and other problem domains.

The work reported in this paper builds on advances that
retain the formal guarantees of recent algorithms while mov-
ing toward algorithms that generalize across states. These
results rely critically on assumptions and the best assump-
tions are those that are both satisfied by relevant applications
and provide measurable computational leverage. Examples
of assumptions for which formal results are known include
the availability of a small dynamic Bayes net representation
of state transitions (Kearns & Koller 1999), local modeling
accuracy (Kakade, Kearns, & Langford 2003), and clearly
divided clusters of transitions (Leffler et al. 2005).

The main assumption adopted in the current work is that
states belong to a relatively small set of types that determine
their transition behavior. In the remainder of the paper, we
define our assumption, demonstrate that it leads to provable
improvements in learning efficiency, and finally show that

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A robot navigates in the real world using our
RAM-Rmax algorithm. Also shown is the path followed by
the agent to reach the goal from the starting position.

it is suitable for improving performance in a standard grid-
world simulation and a robot-navigation task with distinct
terrains. Because it provides measurable benefits in learning
efficiency and is also a natural match for a real-life problem,
we conclude that our assumption has value.

Background

A Markov decision process (MDP) is defined by a set of
states S, actions A, transition function T (s, a, s′) (the prob-
ability of a transition from state s ∈ S to s′ ∈ S when action
a ∈ A is taken), discount factor 0 ≤ γ ≤ 1 and reward func-
tion R(s, a) (expected immediate reward for taking action
a ∈ A from state s ∈ S).

An MDP defines a formal model of an environment
that an agent can interact with and learn about. In the
reinforcement-learning setting (Sutton & Barto 1998), the
agent begins knowing the state and action spaces, but does
not have knowledge of the transition and reward functions.

An MDP Decomposition

Sherstov & Stone (2005) presented a formalism for MDPs

In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007 573

that we call the RAM (relocatable action model) representa-
tion. The formalism provides a decomposition, or factoriza-
tion, of the transition function T into three other functions:

• κ : S → C is the type function. It maps each state to a
type (or cluster or class) c ∈ C.

• t : C × A → Pr(O) is the relocatable action model.
It captures the outcomes of different actions in a state-
independent way by mapping a type and action to a prob-
ability distribution over possible outcomes.

• η : S × O → S is the next-state function. It takes a state
and an outcome and provides the next state that results.

Additionally, r : C → ℜ is a version of the reward function
that depends only on state types. Thus, a RAM represen-
tation is defined by a set of states S, actions A, types C,
outcomes O, type function κ, relocatable action model t,
next-state function η, and reward function r.

To connect these quantities to standard MDP definitions,
we describe how MDPs specified in either format can be
captured by the other. First, if we have a RAM representa-
tion 〈S, A, C, O, κ, t, η, r〉, an equivalent MDP can be writ-
ten as 〈S, A, T ′, R′〉 as follows. First, R′(s, a) = r(κ(s), a).
That is, the reward for action a in state s is found by check-
ing the type of s (κ(s)), then looking up the reward value for
that type. Similarly, the transition probability is

T ′(s, a, s′) =
∑

o s.t. η(s,o)=s′

t(κ(s), a, o).

That is, the probability of transitioning to state s′ is found
by considering all possible outcomes o ∈ O for which the
next-state function η(s, o) takes us to s′. We then sum up,
for each such outcome, the probability that s’s type results
in that outcome.

Given an MDP 〈S, A, T ′, R′〉, we can construct a RAM
representation 〈S, A, C, O, κ, t, η, r〉. Specifically, we can
take O = S and C = S. Then, the type function and next-
state function are essentially identity functions κ(s) = s
and η(s, s′) = s′. The relocatable action model is then just
the transition function itself t(s, a, s′) = T ′(s, a, s′) and the
reward function remains the same r(s, a) = R′(s, a).

However, the RAM representation of transitions can
sometimes be much smaller than the standard MDP repre-
sentation. Let’s take n = |S| to be the size of the state space
and m = |A| to be the size of the action space. In addi-
tion, let B be the number of bits needed to write down a
transition probability. The standard MDP representation has
size mn2B since there is an n×n transition matrix for each
action. If the transition function is sparse with h non-zero
outcomes per transition, each state–action pair would need
to list h next states (each requiring at least log n bits), plus
their probabilities, for a size of nmh(log n + B).

For the RAM representation, let k = |C| be the number
of types and l = |O| be the number of outcomes. This rep-
resentation has size n log k+kmlB +nl log n. Considering
the representation size as a function of the number states and
actions, we have Θ(n log n+m) for the RAM representation
and the much larger Θ(mn2) for the standard representation.

For concreteness, let’s consider a well-known example of
grid-world dynamics (Russell & Norvig 1994). From each

grid position, the agent can choose any of four directions.
Transitions will take the agent in the intended direction with
probability 0.8, perpendicularly left of the intended direc-
tion with probability 0.1, and perpendicularly right of the
intended direction with probability 0.1. However, if motion
in the resulting direction is blocked by a wall, the action will
not change the state.

In the standard representation, each state has four possi-
ble actions. For each of these choices, there are at most four
next states with non-zero probability. Thus, a sparse repre-
sentation has at most 16n next states along with associated
probabilities, for a size of 16n logn + 16nB.

In the RAM representation, we can assign the states to
types in a number of different ways. One natural approach is
to define the set of types as the k = 16 possible surrounding
wall patterns and the l = 5 possible directional outcomes
(including no movement). Outcomes then have the proba-
bilities defined above, with no movement occurring in state
types that would result in collisions with walls. For exam-
ple, taking NE to be the state type in which walls are to the
north and east, n to be the action of attempting to go north,
and x to be the outcome of not moving, t(NE,n, x) = 0.9
since northward (probability 0.8) and eastward (probability
0.1) movement is blocked, resulting in no movement in these
cases. Finally, the next-state function has an extremely sim-
ple structure derived from the relative locations of the grid
squares. Based on these definitions, the total representation
size is 4n + 320B + 5n logn1. For large n, this representa-
tion is about 1/3 the size of the standard representation.

In this example, the type function captures the contents of
the grid cells—where the walls are. The relocatable action
model captures the local dynamics—how movement works.
The next-state function captures the topology of the state
space—the neighborhood relations in the grid. The rep-
resentation size is on par with the information needed in
an informal description of the domain. Smaller represen-
tations can often mean simpler learning problems because
there are fewer values that need to be estimated from experi-
ence. Next, we describe several RAM-representation-based
learning problems and compare their relative difficulty.

Learning Problems and Analysis

To define algorithms that learn with the RAM representa-
tion, we assume that the number of types k and outcomes l
are small relative to the number of states. Without this con-
straint, as we saw earlier, the RAM representation is really
no different from the standard MDP representation and the
same algorithms and complexity bounds apply.

We focus on learning transition functions in this paper—
learning rewards presents a similar, though simpler, set of
issues. To model transition behavior, the learner has three
functions to estimate: κ, t, and η. Different learning prob-
lems result from assuming that different functions are pro-
vided to the learner as background knowledge.

The relocatable action model t is the central structure to
be learned, since it captures how different actions behave. In
the remainder of this section, we show that learning t when

1Corrections to the originally published paper are noted in red.

In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007 574

s0 s1 s2

. . .

sn−3 sn−2

sn−1

Figure 2: A RAM combination-lock environment showing 3
types (black B, white W , and gray/goal G) and 3 outcomes
(solid/forward F , dashed/end E, and dotted/reset R).

only one of κ and η is known results in a learning problem
that is no easier than learning in the general MDP represen-
tation. However, learning t alone is a substantially easier
problem. Our experimental sections provide justification for
how κ and η can sometimes be derived in advance.

To provide intuition about the difficulty of the learning
problem, we consider the question How many steps does
a learner need to take in an environment with initially un-
known deterministic dynamics before it reaches an unknown
goal state? Answering this question provides a lower bound
for the more general setting since it constitutes a special case
in which rewards capture uniform step costs and a goal state,
dynamics are deterministic, and near optimal behavior can-
not be achieved until the goal is reached.

Example Dynamics. Our results can all be stated using a
family of related problems, generalized from the results of
Koenig & Simmons (1993) and illustrated in Figure 2. We
call these problems “RAM combination-lock environments”
(the combination is the sequence of actions that move the
agent from the start state to the goal) and they have n states
and m actions. State s0 is a start state, state sn−1 is the goal
state, and states s1, . . . , sn−2 are arranged as a sequential
chain. There are k = 3 types of states: white states W ,
black states B, and one gray goal state G. There are l = 3
outcomes: move forward F , move to goal end E, and reset
to start state R.

Next-state Function Known. Consider any learner in a
RAM combination-lock environment where the next-state
function η is known. That is, for every state si, the learner
knows that the E outcome results in a transition to the goal
sn−1, the F outcome results in a transition to si+1 (when
i = n− 2, we assume F is a self transition), and the R out-
come results in a reset to state s0. It also knows that each
state s0, . . . , sn−1 has one of three types, but doesn’t know
which is which (κ is unknown). Finally, it knows that ac-
tions consistently map types to outcomes.

We adversarially construct a RAM combination-lock en-
vironment in which one arbitrarily chosen state si∗ is white,
and all other non-goal states are black: κ(si∗) = W ,
κ(sn−1) = G, and κ(si) = B, for all 0 ≤ i < n where
i 6= i∗. The relocatable action model for black states is for

one action to move forward and all other actions to reset.
For the white state, one action moves forward, one other ar-
bitrary action aj∗ goes to the goal state and all others reset.
Symbolically, t(B, a0) = F , t(B, aj) = R for 0 < j < m,
t(W, a0) = F , t(W, aj∗) = E, and t(W, aj) = R for
0 < j < m and j 6= j∗.

Since the only difference between white and black states
is the outcome of one of the actions (aj∗) in one of the states
(si∗), the learner cannot identify the white state si∗ or the
action that reaches the goal aj∗ without trying at least m−1
actions in at least n − 1 states. In addition, each time an
action is taken in a state si that does not result in reaching
the goal, the state resets to s0 and i steps are needed to re-
turn to si to continue the search. Since half of the values i
are greater than n/2, no learner in such an environment can
be guaranteed to reach the goal in fewer than Ω(mn2) steps.
This bound matches that of Koenig & Simmons (1993), who
also provide matching upper bounds using variants of Q-
learning.

Type Function Known. Next, consider any learner in a
RAM combination-lock environment where the type func-
tion κ is known. That is, for every state si, the learner can
“see” whether the state is white or black (or gray). It knows
that all states of the same color produce the same outcomes
in response to the same actions. However, the next-state
function η is unknown, so for each state s, the state that
results from an outcome o is not known.

We adversarially construct a RAM combination-lock en-
vironment in which roughly half of the states are white
and half are black. The goal is gray, as before. Once
again, action a0 produces the forward outcome: t(W, a0) =
t(B, a0) = F . For some arbitrarily chosen action aj∗ ,
t(W, aj∗) = t(B, aj∗) = E. All other actions reset:
t(W, aj) = t(B, aj) = R for 0 < j ≤ m − 1 and j 6= j∗.
The “secret” of the environment is that only one state has
the E outcome resulting in a transition to the goal state. We
define the next-state function as:

η(s, R) = s0, for all s,

η(si, F) = si+1, for i < n− 2,

η(si, F) = si, for i = n− 2,

η(si, E) = s0, for 0 < i < n− 1 and i 6= i∗,

η(si∗ , E) = sn−1.

All states are essentially identical—action a0 moves forward
and all other actions reset to s0. Only one action for one state
produces an outcome that reaches the goal. Since outcomes
E and R are only distinguishable in this one case, the learner
has no choice but to try at least m−1 actions in at least n−1
states. Once again, Ω(mn2) steps are required.

Type and Next-state Functions Known. In contrast, if
both the next-state and type functions are known in advance,
learners can exploit the structure in the environment to reach
the goal state significantly faster.

The algorithm is presented in its general form in the next
section (Figure 1). For domains like the ones described in
this section, it behaves as follows. It keeps track of which
(c, a) pairs have been seen. For those that have been seen,

In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007 575

Algorithm 1: The RAM-Rmax algorithm for efficient
learning in the RAM representation.

Global data structures: a value table Q, a transition
count table tC

Constants: maximum reward rmax, experience
threshold M

forall cluster c ∈ C, action a ∈ A, outcome o ∈ O do1

tC(c, a, o)← 0;2

forall state s ∈ S, action a ∈ A do3

Q(s, a)← rmax;4

scur ← sstart;5

while s /∈ Sterminal do6

s′ ← TakeAction(argmaxa∈A Q(scur, a));7

forall outcome o ∈ O do8

if η(scur, o) = s′ then9

tC(κ(scur), a, o)← tC(κ(scur), a, o) + 1;10

repeat11

forall state s ∈ S, action a ∈ A do12

z ←
∑

o∈O tC(κ(s), a, o);13

if z < M then Q(s, a)← rmax;14

else15

Q(s, a)← r(s, a) . . .16

+γ
∑

o∈O[tC(κ(s), a, o)/z . . .
×maxa′∈A Q(η(s, o), a′)];

until Q stops changing ;17

scur ← s′;18

it records the outcome o that resulted. It uses its learned
model of transitions, along with the known type and next-
state function to build a graph of the known environment. It
always acts to take a path to the nearest state s for which
(κ(s), a) has not been seen for some a ∈ A. Each such path
is no longer than n steps. Since there are only k ×m pairs
to see, the algorithm must reach the goal in O(nmk) steps.
Since we’re assuming the number of types k is much smaller
than the number of states n, this bound is a big improvement
over what is possible in the general case.

Algorithm

The algorithm we propose (listed in Algorithm 1) is a vari-
ation of Rmax (Brafman & Tennenholtz 2002), although
other model-based algorithms could be used. It is very sim-
ilar to factored-Rmax (Guestrin, Patrascu, & Schuurmans
2002; Kakade 2003), which is a learning algorithm for envi-
ronments in which transitions can be modeled using a set of
dynamic Bayes nets. It assumes the structure of these nets is
known but conditional probability values need to be learned.
In our RAM-Rmax algorithm, the RAM representation of the
environment (κ and η) is known and the learner must esti-
mate the missing conditional probability values t to act near
optimally.

Concretely, the RAM-Rmax algorithm receives as input
κ (the type function), η (the next-state function), r (the re-

ward function, which could be learned), rmax (the maxi-
mum reward), and M (the experience threshold or minimum
number of transition samples needed to estimate probabili-
ties). At each decision point, the agent is told its current
state s. After choosing an action and executing it in the en-
vironment, the agent is told the resulting state s′. It keeps
a count tC(c, a, o) of the outcomes o observed from each
type–action pair (c, a).2 It uses these statistics to create
an empirical probability distribution over all possible out-
comes, but only for type–action pairs that have been seen
at least M times. The Q(s, a) value for a state–action pair
(s, a) is set to the maximum reward rmax if the correspond-
ing transition probabilities are based on fewer than M sam-
ples. All other values are determined by solving the Bellman
equations.

Like Rmax, RAM-Rmax chooses actions greedily with
respect to these computed Q(s, a) values because they in-
clude the necessary information for encouraging explo-
ration. In fact, RAM-Rmax, when applied to a general MDP
written in the RAM representation via the transformation de-
scribed earlier is precisely the Rmax algorithm.

Theorem 1 In a RAM MDP with n states, m actions, k
types, and l outcomes, there is a value of M , roughly
l/ǫ2(1 − γ)4, so that RAM-Rmax will follow a 4ǫ-optimal
policy from its current state on all but O(kml/(ǫ3(1−γ)6))
timesteps (ignoring log factors), with probability at least
1− 2δ.

The result can be proven using the tools of Strehl, Li,
& Littman (2006). The numerator of the bound, kml, is
the size of the relocatable action model. The analogous re-
sult for Rmax in general MDPs is a numerator of n2m, the
size of the general MDP model, which is substantially larger
when k and l are small.

Grid-World Experiment

As a first evaluation of our algorithm, we created a 9×9 grid
world with 69 states, 1 goal, and 11 “pits”, shown in Fig-
ure 3. The problem is inspired by the well-known marble-
maze puzzle, although the dynamics are quite different.

The transition dynamics of the problem were identical to
those of the grid world described earlier. The pits appear as
shaded positions in the figure. If the agent enters a pit, it
receives a reward of −1 and the run terminates. Each run
begins in the state in the upper right corner and ends with
a reward of +1 if the goal is reached. Each step has a re-
ward of −0.001. The 69 different states are each one of 16
different types, depending on the local arrangement of walls.

Our learning agent was informed of the location of the
goal, the state-to-type mapping κ, the reward function r, and
the outcome function η, which is derived directly from the
geometry of the grid. To master the task, the agent has to
learn the type-specific outcomes of its actions and use this
knowledge to build an optimal policy.

2We assume that outcomes can be uniquely determined from
an s, a, s

′ triple. More sophisticated approaches can be applied to
learn when outcomes are not “observable”, but they are beyond the
scope of this paper.

In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007 576

Start

Goal

Figure 3: Grid world. Gray and “Goal” squares are absorb-
ing states with −1 and +1 reward, respectively. The optimal
policy for a per step reward of -0.001 is shown by arrows.

-600

-400

-200

 0

 200

 0 100 200 300 400 500

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Run Number

Cumulative Reward in Simulated Domain

RAM-Rmax
Rmax
Q-Learning

Figure 4: Comparing algorithms in a grid-world domain
based on average cumulative reward. The error bars show
the minimum and maximum reward over 10 experiments.

The optimal policy in this environment requires an aver-
age of approximately 453 steps to reach the goal. Because
of the low step cost and the high cost of falling into a pit,
the optimal choice when next to a pit is to attempt to move
directly away from it. While this choice may lead the agent
farther away from the goal, there is also a 10% chance that
the agent will move in the desired direction and zero proba-
bility of falling into the pit.

Three learning algorithms were evaluated in this
domain—RAM-Rmax, Rmax, and Q-learning. For both
RAM-Rmax and Rmax, M , the experience threshold, was
set to 5 based on informal experimentation. For Q-learning,
exploration rate ǫ and learning rate α (Sutton & Barto 1998)
were set equal to 0 and .1, respectively; several values were
tested for these parameters and this combination was the first
pair that resulted in convergence. The discount rate was set
to γ = 1, for simplicity, since the task is episodic.

Figure 4 shows the cumulative reward each of these algo-
rithms received over 500 runs (where each run begins when
the agent is in the start state and ends when the agent enters

a terminal state). The elbows of each of the curves indicate
roughly where the learners begin to follow the optimal pol-
icy. Notice that for RAM-Rmax this event occurs between
runs 50 and 60, for Rmax between runs 260 and 270, and for
Q-learning around run 2000 (not shown).

As predicted, the additional structure provided to the
RAM-Rmax learner allows it to identify an optimal policy
more quickly than if this information were not available.

Robotic Experiments

In this section, we describe the robotic experiments. These
experiments demonstrate the utility of the RAM-Rmax al-
gorithm in a real-life task and show that its assumptions can
realistically be satisfied.

The Environment

Our robot was a 4-wheeled robot constructed from the Lego
Mindstorm NXT kit. Motors worked the front two tires inde-
pendently. Control computations were performed on a lap-
top, which issued commands to the robot via Bluetooth.

The experimental environment was a 4 × 4-foot “room”
with two different surfaces textures—wood and cloth. The
surface types and configuration were chosen to assess the
effectiveness of our learning algorithm. We found that that
the robot traversed the cloth roughly 33% more slowly than
it did the wood. Figure 1 provides an overview of the room.

An image taken from a camera placed above the empty
room was sent as input into an image parser so the system
could infer the mapping between surface types and the x, y
components of the state space. For this experiment, the sur-
faces were identified using a hand-tuned color-based clas-
sifier. Mounted around the room was a VICON motion-
capture system, which we used to determine the robot state
in terms of position and orientation.

The Input and Output

At the beginning of each timestep of the experiment, the
robot, or agent, is fed several pieces of information about
its state. The localization system tells the robot its state and
the image parser informs the robot of which surface type c is
associated with the current state. The robot knows from the
beginning of the experiment which states are terminal (goal
states with reward rmax = 1, and boundary states with re-
ward rmin = −1), and the step reward (−0.01) for each
action that does not take it to a terminal state.

The actions that the robot can take are limited to turn left,
turn right, and go forward. Each action is performed for
500 ms. After each action is taken, there is a 250 ms delay
to allow the robot to come to a complete stop. Then, state in-
formation is once again sent to the agent and is re-evaluated
to determine the next action. The cycle is repeated until the
robot enters a terminal state.

Results

We evaluated two learners, RAM-Rmax and Rmax. For both
of these algorithms, we used M = 4 and set γ = 1. Figure 5
shows the cumulative reward that each of these learners re-
ceived over 50 runs (where each run begins with the agent

In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007 577

-80

-60

-40

-20

 0

 20

 40

 60

 0 5 10 15 20 25 30 35 40 45 50

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

Run Number

Cumulative Reward in Robot Domain

RAM-Rmax
Rmax

Figure 5: Comparing algorithms in a robot domain based on
cumulative reward. Only one experiment is shown, due to
the time necessary to run real-world experiments.

being placed in roughly the same place and ends when the
robot enters a terminal state). The rapid rise of the RAM-
Rmax curve shows that the learner almost immediately starts
to follow an excellent policy. After the first run, the ex-
ploration phase of the learning was complete; all actions
had been explored M times in both state types. Over the
next few runs, the model (and therefore the policy) was fine
tuned. From run 5 on, the path taken seldom varied from
that shown in Figure 1. Rmax, on the other hand, held the
value of rmax for the majority of state–action pairs after 50
runs—it was still actively exploring. Setting M = 1 did not
visibly speed the learning process.

The policy learned by Rmax and RAM-Rmax was some-
what more effective with a finely discretized state space, as
its model was more accurate. Increasing the resolution in
this way had a very negative impact on Rmax, since there
were more states to explore. However, since RAM-Rmax’s
exploration time depends on the number of types of states,
it was not affected apart from the increased computational
cost of solving the model.

Conclusion

In this work, we augmented a well-known reinforcement-
learning algorithm, Rmax, with a particular kind of prior
knowledge. The form of this knowledge was that each
state is associated with a type and its type can be directly
“seen” by the learner. In addition, states are related ac-
cording to some known underlying “geometry” that allows
state transitions to be predicted once a relocatable action
model is learned. We illustrated these assumptions with
two examples—a classic grid-world simulation and a robotic
navigation task. We also provided formal results showing
that these assumptions make it possible to learn more effi-
ciently than is possible in general environments while some
similar assumptions cannot be used to improve efficiency.

Future work will explore approaches for learning state
types from perceptual experience with the goal of finding al-
gorithms that are just as efficient but more autonomous than
the algorithm presented here.

Acknowledgements

This material is based upon work supported by NSF ITR-
0325281, IIS-0329153, DGE-0549115, EIA-0215887, IIS-
0308157, and DARPA HR0011-04-1-0050.

References

Brafman, R. I., and Tennenholtz, M. 2002. R-MAX—
a general polynomial time algorithm for near-optimal re-
inforcement learning. Journal of Machine Learning Re-
search 3:213–231.

Fiechter, C.-N. 1994. Efficient reinforcement learning. In
Proceedings of the Seventh Annual ACM Conference on
Computational Learning Theory, 88–97. Association of
Computing Machinery.

Guestrin, C.; Patrascu, R.; and Schuurmans, D. 2002.
Algorithm-directed exploration for model-based reinforce-
ment learning in factored MDPs. In Proceedings of the
International Conference on Machine Learning, 235–242.

Kakade, S.; Kearns, M.; and Langford, J. 2003. Explo-
ration in metric state spaces. In Proceedings of the 20th
International Conference on Machine Learning.

Kakade, S. M. 2003. On the Sample Complexity of Rein-
forcement Learning. Ph.D. Dissertation, Gatsby Computa-
tional Neuroscience Unit, University College London.

Kearns, M. J., and Koller, D. 1999. Efficient reinforcement
learning in factored MDPs. In Proceedings of the 16th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 740–747.

Kearns, M. J., and Singh, S. P. 2002. Near-optimal rein-
forcement learning in polynomial time. Machine Learning
49(2–3):209–232.

Koenig, S., and Simmons, R. G. 1993. Complexity analy-
sis of real-time reinforcement learning. In Proceedings of
the Eleventh National Conference on Artificial Intelligence,
99–105. Menlo Park, CA: AAAI Press/MIT Press.

Leffler, B. R.; Littman, M. L.; Strehl, A. L.; and Walsh,
T. 2005. Efficient exploration with latent structure. In
Proceedings of Robotics: Science and Systems.

Russell, S. J., and Norvig, P. 1994. Artificial Intelligence:
A Modern Approach. Englewood Cliffs, NJ: Prentice-Hall.

Sherstov, A. A., and Stone, P. 2005. Improving action se-
lection in MDP’s via knowledge transfer. In Proceedings
of the Twentieth National Conference on Artificial Intelli-
gence.

Strehl, A. L.; Li, L.; and Littman, M. L. 2006. Incremen-
tal model-based learners with formal learning-time guar-
antees. In Proceedings of the 22nd Conference on Uncer-
tainty in Artificial Intelligence (UAI 2006).

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. The MIT Press.

Sutton, R. S. 1988. Learning to predict by the method of
temporal differences. Machine Learning 3(1):9–44.

Tesauro, G. 1995. Temporal difference learning and TD-
Gammon. Communications of the ACM 58–67.

