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Perceptually Augmented Simulator Design
Timothy Edmunds, Dinesh K. Pai

Abstract— Training simulators have proven their worth in a variety of fields, from piloting to air-traffic control to nuclear power
station monitoring. Designing surgical simulators, however, poses the challenge of creating trainers that effectively instill not only
high-level understanding of the steps to be taken in a given situation, but also the low-level “muscle-memory” needed to perform
delicate surgical procedures. It is often impossible to build an ideal simulator that perfectly mimics the haptic experience of a
surgical procedure, but by focussing on the aspects of the experience that are perceptually salient we can build simulators that
effectively instill learning.
We propose a general method for the design of surgical simulators that augment the perceptually salient aspects of an interaction.
Using this method, we can increase skill-transfer rates without requiring expensive improvements in the capability of the rendering
hardware or the computational complexity of the simulation. In this paper, we present our decomposition-based method for
surgical simulator design, and describe a user-study comparing the training effectiveness of a haptic-search-task simulator
designed using our method vs. an unaugmented simulator. The results show that perception-based task decomposition can be
used to improve the design of surgical simulators that effectively impart skill by targeting perceptually significant aspects of the
interaction.

Index Terms—Haptic I/O; Artificial, augmented, and virtual realities; Life and Medical Sciences; Surgical simulation.
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1 INTRODUCTION

SURGICAL procedures typically require dextrous
neuro-muscular control as well as high-level cog-

nitive awareness of the steps necessary to perform the
procedure. The need to develop this low-level neuro-
muscular control is the reason that repeated practice is
usually necessary to learn to competently execute the
surgical procedure. Since obtaining repeated oppor-
tunities to perform the real procedure is often costly
or dangerous, interactive surgical simulation can be
a valuable training tool. In a surgical simulator that
is intended to effectively instill the required neuro-
muscular control, the haptic modality is especially
important, but high-fidelity haptic simulation and
rendering can be one of the more prohibitively ex-
pensive aspects of a simulator design.

Whereas increasing the overall haptic fidelity of a
surgical simulator may require the costly develop-
ment of novel rendering hardware, and computation-
ally expensive updating of high-precision dynamical
models, the training effectiveness of the simulator may
be improved by selectively allocating resources to
certain aspects of the simulation and rendering.

In previous work [1] we demonstrated that by
augmenting the rendering of perceptually salient fea-
tures of the interaction that makes up a surgical
procedure, the effectiveness of a haptic simulator can
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be improved without requiring improved hardware.
We used this augmentation approach to design a
simulator for a surgical task (bone-pin insertion),
and showed a statistically significant performance
improvement among subjects who trained on that
simulator. In that work we left open the problem of
how to design such an augmented simulator in the
general case of surgical tasks that involve a sequence
of steps, each of which may require a distinct neuro-
motor control strategy. In preliminary work in this
direction [2] we described a decomposition approach
and user-study using a SensAble PHANToM [3] hap-
tic device, in which we found indications that the
decomposition approach could be used to build more
effective haptic simulators. In this paper we describe
how we modified the experimental task to use a high
performance magnetically levitated haptic device [4],
and conducted a more thorough user-study in which
we found that the augmented simulation designed
with our decomposition approach was a more effec-
tive training simulator than the basic unaugmented
simulator.

As a surgeon performs a procedure, various differ-
ent interaction features are encountered. For example,
when placing a suture, the interaction will involve
transient features such as making/breaking contact
between the holder and the needle or the needle and
the tissue, and changes to the tissue’s structure as the
needle pierces it. But the features of the interaction
that are pertinent to the user depend on what aspect
of the task is being performed. For the surgeon, the
forces on the needle when it is being prepared for
insertion may not be important, but the forces and
torques applied indirectly to the needle-holder once
the needle is being inserted are critical to properly
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guiding the needle through the tissue. The high-level
task can be decomposed into subtasks that correspond
to different contexts for interaction. In the suturing
example these subtasks might be: manipulating the
needle-holder to acquire a secure grasp with the
needle in the necessary orientation; maneuvering the
needle to the insertion area while keeping the thread
clear; placing the needle tip at the point of insertion;
piercing the tissue; guiding the needle smoothly along
its naturally curved trajectory to the tissue interface;
etc. The subtask being performed determines which
interaction features are most perceptually pertinent
and need to be effectively rendered by the simulation
(e.g., when the surgeon is guiding the needle along its
trajectory, effective rendering of the torques exerted by
the tissue is critical).

If we can identify the subtasks that make up a
surgical procedure, then we can selectively augment
the features of the interaction that are perceptually
pertinent for learning to perform those subtasks. This
reduces the problem of holistically assessing a surgical
procedure and generating appropriate augmentation
to three subproblems: decomposing the overall task
into subtasks; determining what augmentation is ap-
propriate for the perceptual context of each subtask;
and detecting throughout the interaction what type of
subtask is being performed.

A challenge in investigating the problem of surgical
simulator design is the same one that creates the
need for simulators in the first place: experimentation
requires a laboratory task that captures aspects of real-
world surgical procedures while being easily repeat-
able and allowing detailed analysis of the interaction.
To address this challenge, we designed an artificial
haptic search task that requires some of the same fine
neuro-motor control as do many surgical procedures:
the subject has to scan the haptic environment to find
textured surface patches; identify the surface patch
with the correct texture; and precisely locate its centre.
We use this task as the basis for an evaluation of our
design approach.

1.1 Our Contributions
In this paper, we address the question of how sur-
gical simulators can be designed to improve train-
ing effectiveness without requiring improvements in
the capabilities of the simulator rendering hardware.
Specifically, we examine the hypothesis that sub-
jects who train on a simulator designed using our
decomposition-based augmentation approach will ex-
hibit greater performance improvement on the real
task than control subjects who train on an unaug-
mented simulator.

1.2 Background and Approach
One approach to the problem of automatically gener-
ating augmentation for haptic simulations is to mea-
sure the haptic properties of the real task, find the

differences between those properties and the prop-
erties rendered by the simulation, and augment the
simulation with the “difference” between the two. Ac-
celeration matching for impact augmentation [5] is an
example of this type of approach. However, while this
approach might help achieve greater fidelity with a
real environment, that criterion is not always the only
or even the best one for judging the effectiveness of a
surgical simulation; when the goal of the simulation
is to improve transfer of training, controlled deviation
from the real dynamics can improve the simulation’s
effectiveness [6]. Instead of a purely fidelity-based
evaluation criterion, we need to consider what aug-
mentations will achieve the desired training effect in
a surgical simulator. For example, to evaluate the ef-
fectiveness of a surgical trainer, the procedure success
rate after training is more important than the amount
of error in the forces rendered.

The problem of augmenting haptic simulations is
complicated by the large number of different dimen-
sions that are perceived haptically. In their early work
on haptic exploration (focussing primarily on haptic
identification), Klatzky and Lederman [7] identified a
set of haptic dimensions that are directly sensed and
aid in the haptic identification of objects. (The term
haptic dimension [8] refers to a domain of variation that
is accessible to the perceptual system (e.g., roughness
of a surface being scraped); the value that a particular
situation has in that dimension (e.g., very smooth) is
a haptic property.) The dimensions that they identified
are texture, hardness, temperature, weight, global vol-
ume, exact shape, part motion, and specific function.
They also identified a set of exploratory procedures that
are typically used to assess an object’s value along
each of these dimensions.

In the broader context of general tasks, we can
define the set of interactive procedures as a parallel to
(and superset of) the set of exploratory procedures
described above. Where the goals of all exploratory
procedures are to investigate and assess a haptic
dimension, not all recognizable actions made while
performing a surgical procedure fall into this category.
Some actions are taken to have an effect on the
environment in order to accomplish the goal of the
procedure (e.g., making an incision in tissue). Such
actions are not exploratory, but they conform to the
schema that an interactive procedure is performed
with a specific intent, be it to explore a specific char-
acteristic of the environment (like material stiffness)
or to change a specific property of the environment
(as by cutting an object into parts).

One well studied category of interactive procedures
is the exploratory procedures used in haptic identifica-
tion which allows the interactor to identify the current
haptic situation. Awareness of the haptic situation can
involve such factors as identifying an object being
explored with the hand [7], assessing the geometric
properties of an object [9], or determining the material
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properties of a surface being tapped or scraped with
a tool [5, 10]. Identifying the haptic situation can
involve the assessment of both object features (such as
texture, shape, and compliance) and interaction features
(such as the onset of impact, the transition from stick-
ing to slipping, or object-part motion). The classifying
characteristic of these interactive procedures is that
they all involve performing an action intended to
reveal a property of the environment.

Another identifiable class of interactive procedures
involve haptic localization — i.e., actions whose goal
is to spatially locate a haptic feature. This can in-
volve determining which finger is touching a material
with a specific haptic property [11], noticing where
amongst a line of distractors a haptic target lies [12],
or finding where on an object a specific haptic feature
has been placed [13]. Haptic localization involves both
the construction of mental models of spatial location
of features and the execution of exploratory motions
to obtain the necessary sensory input.

Some interactive procedures involve not only the
discovery of properties of the environment, but also
the intent to change the environment. This class
of interactive procedure is particularly pertinent in
the context of surgical simulators designed to train
surgeons at a particular procedure. Such procedures
often require the user to explore an environment, and
then modify it to conform to a goal configuration
(e.g., make an incision, or insert a suture). This type
of interactive procedure still involves assimilating
sensory information, since accomplishing the desired
action is often assisted by haptic interaction with
the environment; the environment can influence the
trajectory of a planned motion, and the interactor
can, in turn, make use of this influence to achieve a
desired trajectory. This haptic guidance of the user by
the environment is critical in performing many tasks,
for example inserting a catheter into a vessel [14] or
inserting a peg into a hole [15].

A given task may involve the exercise of any
combination of interactive procedures, either simul-
taneously or sequentially, in separate subtasks. By
focussing on the set of interactive procedures used in
performing a task, we can guide the automatic gen-
eration of augmentation to improve the performance
of the task.

As well as determining which subtasks are per-
formed in executing a task, we need to consider what
augmentations are appropriate to improve the skill
transfer for the subtasks. We can describe the domain
of possible haptic augmentation as the addition of
haptic features to the environment or the modification
of features already present. For example, a smooth
surface could be made rough, a shallow groove could
be made deeper, or a light object could be made
heavier. Simulated haptic environments allow for a
broader range of features than real environments.
Force pulses can be applied in response to certain

events (e.g., braking pulses applied in response to
collision events [16, 17, 18]). Surfaces can be made
to vibrate on command. Features like grooves can be
made to move or disappear.

If we identify what sensory percepts are being
generated in performing a subtask, we can attempt to
generate augmentation that will target those percepts
(for example exaggerating the roughness of a surface
to make it easier to identify). By taking this ap-
proach, we decompose the problem of generating the
augmentation into two problems: determining which
interactive procedures are used in performing the sub-
task, and choosing haptic augmentations that improve
the transfer of training in those procedures. The first
of these problems can in many cases be solved wholly
or in part by high level domain knowledge of the
task, particularly with a focus on recognizing known
interactive procedures. To simplify the second prob-
lem, we can leverage existing psychophysical findings
that illuminate how different haptic dimensions are
perceived.

By measuring response time in a target/distractor
surface identification search task, experimenters
found that haptic dimensions that are discernible
without a spatial reference frame (termed intensive
dimensions) are available for processing earlier in
the neural pathway than those that require spatial
encoding [8]. Hence, variation in a surface’s mag-
nitude of roughness might make a better cue than
changes in the orientation of an anisotropic surface
(like a grating) for training the haptic identification
capability. For haptic localization, there is an inherent
need for a spatial reference frame. Even when the
space across which localization takes place is the set
of fixed fingertip sites, rather than a continuous 2-
or 3-D domain, there is a processing cost incurred
in determining the location of a particular haptic
property [11]. Thus, for a localization task, a cue
that contributes to the assembly of a spatial reference
frame should be more effective than one that does not.
For example, if the task is to locate a small haptic
feature that lies at the centre of a circle, then an
inherently spatial feature (such as a groove around
the periphery of the circle) is more helpful than an
intensive feature (such as a circular patch of uniform
roughness).

The remainder of this paper is organized as follows.
In Section 2 we describe the haptic search task that we
developed to facilitate a concrete investigation of our
approach to simulator design. We give the details of
how we applied our decomposition-based approach
to generate an augmented training simulator for the
haptic search task in Section 3. In Section 4, we
describe the user study we conducted to compare
the training effectiveness of our augmented simulator
to that of an unaugmented simulator. We analyzed
the results of that user study in terms of different
performance metrics — these metrics and the analysis
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are described in Section 4.1. In Section 5, we discuss
the implications of our findings in the context of sur-
gical simulation, including specific guidelines for how
our proposed decomposition-based approach can be
used in the design of perceptually-augmented haptic
training simulators.

2 HAPTIC SEARCH TASK

To allow for a concrete investigation of the design
of virtual simulators for real tasks, we need to test
our approach on a specific task. We created a haptic
search task that parallels a visual search task used in
psychophysical experiments: the subject attempts to
locate a target stimulus that is presented in the com-
pany of distractor stimuli that have similar (but dis-
tinguishable) characteristics [19]. In our search task,
the subject must: haptically scan the environment
to search for a target (or distractor) texture patch;
discriminate between the target and distractors based
on texture properties; and finally locate the precise
centre of the target patch.

This synthetic search task is useful in the laboratory
setting because it captures key aspects of real surgical
tasks (such as including a sequence of actions that
must be performed to allow later phases of the task
to be completed) while allowing detailed recording of
the subject’s interaction to support rigorous analysis
of the task performance along multiple dimensions.
This task is also easily repeatable for user studies
because it can be implemented entirely in a virtual
environment.

2.1 Stimulus Design

In order to apply and evaluate our decomposition
approach to developing an augmented training sim-
ulator for the haptic search task, we created a virtual
environment implementation of the search stimulus.
Since the virtual environment is used as the “real-
world” reference implementation of the haptic search
task, it should be rendered to feel as much like a rigid
surface as possible. For this experiment, we imple-
mented the task on a 6-DOF magnetic levitation haptic
device (MLHD) [4]. The performance characteristics of
this device allow for a realistic reference implementa-
tion of the haptic search task, while the simulators used
to investigate our approach use artificially degraded
capabilities to emulate the common design constraint
that affordable/feasible hardware cannot simulate a
real surgical procedure with complete fidelity.

The environment for the haptic search task consists
of a 3-D workspace with smooth flat walls around
four sides of a square floor whose height is varied to
create the target and distractor stimuli. The environ-
ment is rendered at different scales on the haptic and
graphical devices; the units used below to describe
the geometry correspond to 0.06 mm in the haptic

Fig. 1. Example stimulus height field (without texture).
The height of the surface ranges from the base floor
level (white) to 1 unit below that (black).

3units5units

2 units

(a) Groove Cross-
Section

3units

2units

5units
1unit

(b) Pit Cross-Section

Fig. 2. Environment geometry profiles. (a) The cross-
section of the groove surrounding each scene element.
(b) The cross-section of the pit at the centre of each
scene element.

rendering and to 1 mm in the graphical rendering. The
square floor is defined to be 240 units by 240 units.

The floor is a height field that is uniformly zero ev-
erywhere outside a target or distractor (a scene element)
— an example stimulus height field is shown in Fig. 1.
Each scene element consists of a groove surrounding
a flat circular patch of roughly textured surface. At
the centre of the patch, there is a small untextured
pit. See Fig. 2 for a visualization of the cross-sectional
geometry of the scene elements. The textured patch
has a radius of 25 units, and the surrounding groove
is 10 units wide (its maximum depth of 2 units is
at a radius of 30 units). The groove’s cross-section is
smooth, with its bottom being a segment of a circle (of
radius 2 units), and each lip being segments of circles
(of radius 3 units). The pit at the centre is similarly
smooth, with a total radius of 5 units and a maximum
depth of 1 unit at the centre, where the radial cross-
section is a segment of a circle (of radius 2 units);
likewise, the cross-section of the lip is a segment of a
circle of radius 3 units.

The only difference between targets and distractors
is the texture of the patch; the texture is manifested
as set of hemispherical bumps scattered over the
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TABLE 1
Parameters for the functions that generate the (a)
target textures and (b) the distractor textures. (See

example textures generated with these parameters in
Fig. 3a and Fig. 3b, respectively.)

Target
Bump Radius 2 units
Grid Spacing 7 units
Jitter Square 5.6 units

(a)

Distractor
Bump Radius 1 units
Grid Spacing 3 units
Jitter Square 2.4 units

(b)

(a) Target (b) Distractor

Fig. 3. Example (a) target and (b) distractor texture
patches as height maps.

patch’s surface. The bump pattern is generated by
arranging the bumps on a grid and then pseudo-
randomly jittering their positions within a square
centred on their original positions. The target and
distractor bump patterns were generated according to
the parameters given in Table 1; the generated bump-
patterns (shown in Fig. 3) were fixed and used as the
target and distractor textures for all the targets and
distractors in any instance of the haptic search task.

The full stimulus for one episode of the search task
consists of two distractors and one target — see Fig. 4a
for an example of the stimulus haptic environment.
In a visual search task, scene elements are often
(though not always) scattered about the visual field,
rather than according to some fixed pattern. In those
experiments, however, the viewer’s peripheral vision
is being used to locate scene elements in order to make
saccades to inspect them foveally. In the case of haptic
search, there is no source of peripheral information
regarding the location of scene elements, so we pro-
vide a fixed structure for their placement. The scene
elements are equally spaced around a circle of radius
200
3 units; the only variation between episodes is the

orientation of the triangle described by the three scene
elements.

2.2 Stimulus Interaction

To realize a repeatable haptic search task, we imple-
mented a virtual environment that allows the subject

(a) Example stimulus (b) Processed Height
Field

Fig. 4. (a) A height map of a stimulus environment
presented to the user. (b) The result of convolving
the height field from (a) (excluding the texture) with
the Gabor filter shown in Fig. 5. This image is one
slice of a 32×5×1024×1024 lookup table for the scan
augmentation.

to interact with the stimulus through the MLHD. This
device has a relatively small workspace (∼11 mm
radius), so the task environment is scaled to fit entirely
inside the device’s usable workspace; this works out
to a scale of 24 units per mm. Interaction with the
environment is simulated as the interaction between
a virtual probe-point attached to the device handle
and a constraint surface consisting of the environ-
ment’s walls and floor. The device’s output force
is determined by a (PD) controller; the controller’s
target position is updated by a 1 kHz servo loop
that computes the closest position to the actual device
position that satisfies the constraint-surface. The mag-
netic levitation device has negligable static friction,
and no simulated friction or other damping (beyond
the inherent damping introduced by the inertia of
the device handle) is applied. In addition to the PD
forces, a feed-forward force is applied to reduce the
effect of gravity on the device handle. Although the
MLHD is capable of 6-DOF movement and force-
output, the rotational axes are locked (using high-gain
PD forces) to constrain the handle’s motion to 3-DOF.
The proportional gains for the positional axes are set
to 5250 N

m (i.e., 126 N per unit); the derivative gains
are 20 N

m·s (0.48 N per unit per s).
Each episode of the search task begins with the

device handle held in place (by high PD gains) in the
centre of the workspace, 20 units above the surface.
Once the episode begins, the spring force is released,
and the subject is free to explore the environment. The
goal of the task is for the subject to locate the centre
of the target scene element and hold the probe-point
there for 0.5 s.

2.2.1 Visual Stimulus
In addition to the haptic feedback described above,
the subject is presented with a few visual cues: the
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outline of the boundaries of the workspace, and the
position of the virtual probe-point. This sparse visual
rendering of the environment is displayed on a ver-
tical screen in front of the subject, at a much larger
scale than the real (∼11 mm) haptic workspace. This
allows the subject to use visual cues to construct a
spatial representation of the location of haptic features
(which are not displayed) as they are felt.

3 AUGMENTED SIMULATOR DESIGN

Having defined the stimulus for our haptic search
task, we created a basic training simulator that is
simply the same rendering algorithm as the real
task but with artificially degraded stiffness (propor-
tional/derivative gains of 1050 N

m/4 N
m·s respectively);

this corresponds to the general design condition in
which the rendering hardware cannot trivially repro-
duce a real interaction with high fidelity. We then ap-
plied the general decomposition approach described
in Section 1.2 to develop an augmented “surgical”
simulator for this specific haptic search task. In our
approach to automatic simulation augmentation, a
complete task is decomposed into subtasks for which
different augmentation is applied in accordance with
the perceptual features involved in executing the sub-
task.

3.1 Task Decomposition

For most real-world tasks, domain knowledge will be
critical to successfully decompose the task into appro-
priate subtasks (e.g., identifying the sequence of low-
level actions used to perform a surgical procedure).
However, as discussed in Section 1.2, the decomposi-
tion can also be assisted by focussing on interactive
procedures that are known to be performed in a
somewhat atomic manner. For our haptic search task,
we were able to use this assistance to create a subtask
decomposition with limited domain knowledge.

The first subtask that the subject must execute
is to locate a scene element; we call this the scan
subtask. In this subtask, the subject typically scans
the surface with large scale, high-speed motions, until
he or she detects the high-temporal-frequency force
discontinuity event that signals that the probe-point
has encountered (the rising slope of) a groove around
a scene element.

The second subtask is assessing the shape (and thus
the extent of the texture patch) of the scene element. In
the shape assessment subtask, the subject traces part or
all of the groove around the scene element to generate
a spatial representation of where the texture patch
(and its centre) lies.

The other subtask the subject performs is the iden-
tification subtask; having located a scene element, the
subject must explore it (with a scrubbing interactive
procedure) to gauge the roughness of the surface in

order to identify the scene element as a distractor or
target.

Although there is only a small set of subtasks in
this decomposition, a single execution of the overall
task can include multiple instances of each subtask in
different orders. For example, while the scan subtask
is by necessity the first subtask performed, it may
be performed again if the user decides to examine a
second scene element after performing the shape as-
sessment and identification subtasks on the first scene
element. Likewise, after performing the identification
subtask and deciding that the scene element is the
target, the subject will likely perform the shape assess-
ment subtask again (or for the first time if the subject
went immediately from scanning to identification) to
strengthen the spatial awareness of the shape of the
scene element in order to locate its centre.

3.2 Subtask Augmentation
Having identified the different subtasks that make up
our haptic search task, we need to assign augmenta-
tions for each subtask.

3.2.1 Scan Augmentation
In the scan subtask, the pertinent perceptual features
of the interaction are the force discontinuities expe-
rienced when the probe-point passes over areas of
changing height. However, since the scanning inter-
active procedure is performed with relatively high
frequency motions (reducing the spatial accuracy of
the proprioceptive system), the temporal coherence of
these events is of greater significance than the precise
spatial alignment of the force discontinuity with the
surface feature. Since the simulator has low stiffness
haptic feedback, these high-temporal-frequency force
discontinuities are lost. These perceptual features can
be restored through the use of open-loop augmen-
tation generated by automated techniques similar to
those used in computer vision.

A common technique for processing images to ex-
tract or highlight pertinent features is to convolve the
image with a filter (either in the spatial domain or in
the frequency domain). An example of this is edge de-
tection by convolution with gradient-approximating
kernels. Since we want to identify places in the envi-
ronment where force discontinuities are experienced
during scanning, our problem is similar to that of
edge detection. Rather than edge detection in the 2-
dimensional (x,y) space though, we are performing
edge detection in the 4-dimensional (x,y,vx,vy) space
of the interaction between the height of the surface at
(x, y) and the velocity of the probe-point.

We can think of the height map of the surface as
an image whose edges we want to find, where for
a particular probe-point velocity we are only inter-
ested in edges of a certain orientation and spatial fre-
quency (i.e., at higher speeds, we want to detect edges
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Fig. 5. One example of the 2-dimensional anti-
symmetric Gabor filter used to pre-process the height
maps of the stimuli. This filter (shown in false-colour)
corresponds to σ = 24 pixels, θ = 0.589 radians, and
γ = 0.5.

with lower spatial frequency). The 2-dimensional anti-
symmetric Gabor filter is a widely used convolution
kernel for oriented edge detection at configurable
spatial resolution:

g(x, y, λ, θ, σ, γ) = exp

(
−x
′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+
π

2

)
(1)

x′ = x cos θ + y sin θ (2)
y′ = −x sin θ + y cos θ (3)

Here λ is the wavelength of the cosine factor, θ is
the orientation of the filter (direction perpendicular
to the parallel stripes), γ is the aspect ratio of the
filter, and σ is the standard deviation of the Gaussian
envelope that (together with λ) determines the spatial
resolution of the filter. See Fig. 5 for an example of the
type of filter used.

By pre-computing the convolution results of the
surface’s height map with Gabor filters of various
orientations and spatial resolutions, we can create a 4-
dimensional lookup table that indicates which surface
locations (at a given probe-point velocity) should
trigger a haptic pulse to signal an edge-crossing.

For the augmented training simulator, we pre-
computed the convolution of each stimulus with Ga-
bor filters at 32 different (equally spaced) orientations
and 5 different scales (σ = 20, 21, . . . , 24, λ = 4σ,
where σ is in units of pixels, and the height map
of the stimulus is represented as a 1024x1024 image
— see Fig. 4b). The aspect ratio of the filter (γ) was
uniformly 0.5. During the scan subtask, the probe-
point location and velocity are used as indices into a
lookup table formed by all 160 pre-processed images
for the current stimulus; if the lookup value exceeds

a threshold, an open-loop fixed-width force pulse is
initiated (upwards).

3.2.2 Shape Assessment Augmentation
In the shape assessment subtask, the subject follows
the groove around a scene element to determine the
spatial extent of the element (and the location of its
centre). This is an example of an interactive procedure
that uses the environment to constrain and guide the
exploratory motion (as the walls of the groove create
an anisotropic resistance to motion that channels the
probe-point tip longitudinally along the groove). Since
this interactive procedure leverages the curvature of
the surface (which produces the constraints on mo-
tion), we augment the simulation for this subtask by
applying local force-fields based on surface curvature.

The motion constraints imposed by curved sur-
faces channel motion towards points (or paths) that
are local minima of surface curvature (i.e., points of
maximum concavity). By constructing force fields that
attract the probe-point toward these loci of minimal
curvature, the guidance used by the shape-exploration
procedure can be replicated in the low-stiffness sim-
ulator.

Provided the force field is sufficiently smooth, it
will not introduce the instability that results when a
simulation’s stiffness exceeds the capabilities of the
rendering device. For example, a notch-shaped force
field (where the magnitude of the force increases
linearly with distance from the locus) is likely to create
instability near the locus, but a cosine function (hav-
ing zero slope at the locus) will be more stable. (Note
that the smoothness requirement could be quantified
by applying a rigorous analysis analagous to that used
for force fields arising from surface textures [20].)

In order to simplify matters computationally (and
to match the local effect of curvature-induced con-
straints), we want force-fields that have bounded
extent. We choose a single-cycle cosine function:

fshape =

{
fmax

(
1− cos(2π d

dmax
)
)

1
rcurv

n̂ if d ≤ dmax

0 if d > dmax

(4)
where fmax is a parameter controlling the overall scale
of the augmentation force (we used fmax = 10 N),
d is the distance to the nearest local minimum of
curvature, dmax is the distance threshold imposed
to make the force-fields local in extent (we used
dmax = 5 units), n̂ is a unit vector towards the attract-
ing point, and rcurv is the radius of curvature (along
the principal direction in which the attracting point is
a local minimum of curvature).

3.2.3 Identification Augmentation
In the identification subtask, the subject uses the lat-
eral motion interactive procedure to assess the rough-
ness of the surface. Klatzky and Lederman [21] found
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that when perceiving roughness through a probe (as
opposed to perceiving roughness from direct skin
contact), humans are able to achieve some measure
of speed constancy in their perception of the vibra-
tory phenomena induced by surface roughness (i.e.,
roughness is judged not by vibratory frequency alone,
but by speed-normalized vibratory frequency).

Since the subject’s perception of the surface rough-
ness is affected by the speed of the subject-controlled
motion, it is insufficient to simply augment the iden-
tification subtask by applying open-loop vibration
at a fixed frequency. Instead, we wish to produce
vibratory effects that mimic those of high-stiffness
texture interaction, independent of speed. To achieve
this, we can work in the speed-independent space of
the original texture.

At the level of stiffness used in our simulator, the
small bumps on the constraint surface that make
up the texture are barely perceptible when the de-
vice is handled with typical user-compliance levels.
However, we can use the same set of texture-feature
positions to generate open-loop augmentation forces.
When the probe-point is in contact with the constraint
surface we check whether it is inside the footprint
of one of the texture bumps; if so, an open-loop
vertical pulse is generated. Although this augmen-
tation only generates vertical forces, the sequence of
pulses generated as the probe-point is moved over the
texture corresponds spatio-temporally to the vibratory
motion experienced when interacting with the actual
bumps.

3.3 Subtask Identification

In our approach to automatic augmentation of interac-
tive simulation, we call for the use of domain knowl-
edge to assist in identifying the subtasks performed
in the course of completing a high-level task, and the
use of pre-selected augmentations that help develop
skill at the interactive procedure used in each subtask.
In this decomposition scheme, the remaining problem
is to identify during the interaction which subtask is
being performed, and which augmentation(s) should
thus be active.

Here we once again leverage the coupling between
subtask and interactive procedure; since different pro-
cedures are used to accomplish different subtasks, we
can identify the subtask that the subject is attempting
to perform by identifying the interactive procedure
being used. In our case, we can distinguish between
the scanning, tracing, and scrubbing procedures used
respectively in the scan, shape assessment, and iden-
tification subtasks, based solely on position in the
environment and velocity thresholds.

Since scanning is a relatively high-speed motion,
the scan augmentation is only activated if the probe-
point speed is at least 468.75 units/s — chosen be-
cause at the simulator’s 1 kHz this speed corresponds

TABLE 2
The simulations used by the subjects in each of the

blocks of the experiment.

Block Group 1 Group 2
Baseline Full Stiffness Full Stiffness
Training Low Stiffness Augmented Low Stiffness

Evaluation Full Stiffness Full Stiffness

to the spatial frequency of the finest Gabor filter used
to preprocess the height map.

Since the shape assessment procedure is executed
using finer-controlled (slower) actions than the scan
procedure, the shape assessment augmentation (the
local force fields around local minima of curvature) is
activated when the probe-point speed is below the
scanning augmentation threshold. Of course, since
the force fields are local in extent and are located
around the curvature minima, the shape assessment
augmentation is only truly active when the subject is
exploring pertinent surface geometry.

The identification subtask is characterized by the
use of lateral motion to investigate an area of surface
texture. The identification augmentation is thus only
activated when the probe-point is in contact with a
textured surface, and only when the probe-point is
“moving laterally.” In the context of a discrete time-
step rendering loop this lateral motion criterion is
deemed to be satisfied when the probe-point’s tangen-
tial speed is at least 400 units/s (a threshold selected
by simple experimental tuning).

4 USER STUDY

To test the effectiveness of the augmented simulator
design generated by our approach, we conducted
a user study comparing the augmented simulator
against the basic unaugmented simulator. 24 subjects
were included in the experiment. 23 subjects used the
haptic device with their right hands; 1 subject used the
haptic device with his left hand. 3 of the subjects did
not complete the experiment and are excluded from
the results.

A subject’s participation consisted of three blocks of
trials taking place in two sessions on different days
(see Table 2). In the first session, each subject was
familiarized with the capabilities of the MLHD and
the task to be performed; the subject then performed
a baseline block of 60 episodes of the search task (in
3 sets of 20 trials, punctuated by rest-breaks).

In the second session, each subject performed 40
training episodes (2 sets of 20) on one of two sim-
ulations of the search task (with subjects randomly
assigned to a simulation group), followed by 60
episodes (3 sets of 20) of evaluation on the “real”
search task.

The first simulation was simply a degraded version
of the rendering of the real search task (lower PD
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Fig. 6. Baseline success rate and evaluation success
rate are plotted for each subject. On the left is the
group of subjects that trained on the unaugmented
simulation. On the right is the group of subjects that
trained on the augmented simulation.

gains). The second simulation was an augmented
version of the degraded simulation. The low gains
were still used for the PD controller, but feed-forward
augmentation was applied according to the subtask
being performed.

4.1 Results and Analysis
The first part of our analysis of the user-study results
looks at the aggregate performance of all the subjects
in each of the two subject groups. As is the case with
many real surgical procedures, our task had both an
explicit measure of success (correct discrimination of
target from distractor) and an implicit measure (time
taken to perform the task). To quantitatively assess
the effect of our proposed augmentation technique on
the simulator’s training effectiveness, we evaluated
subject improvement on each of these two overall
success metrics.

For each subject, we measured separately the rate
of successful task execution (i.e., finishing the trial by
selecting the target scene element rather than one of
the distractors) before and after simulator training:

success rate =
successful executions

total executions
(5)

0 ≤ success rate ≤ 1 (6)

Fig. 6 shows the success rates of each subject, grouped
by whether the subject was trained on the augmented
or unaugmented training simulation. Coincidentally,
all five of the subjects whose baseline success rates
were closer to chance than to complete success were
randomly assigned to the augmented training group.
To gauge the difference in training effectiveness be-
tween the two simulators, we compared the success
rate before and after simulator training to determine
the subjects’ absolute improvements (i.e., the slopes
of the lines in Fig. 6):

improvement = success rateafter − success ratebefore
(7)
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Fig. 7. Baseline average trial duration and evaluation
average trial duration are plotted for each subject. On
the left is the group of subjects that trained on the
unaugmented simulation. On the right is the group of
subjects that trained on the augmented simulation.

− 1 ≤ improvement ≤ 1 (8)

We performed an ANOVA on the success-rate im-
provement with the type of training simulator as
the single factor; although the group that trained on
the augmented simulator had a higher average im-
provement (0.11 vs. 0.05), the inter-group difference in
improvement at successful discrimination alone was
not statistically significant (F (1, 19) = 1.41, p = 0.25).

A similar analysis was applied to the other overall-
success metric. Fig. 7 shows the average trial duration
of each subject before and after training on a simula-
tor. An ANOVA on the average relative trial-duration
decrease yielded F (1, 19) = 0.03, p = 0.87.

The results described above illustrate a common
difficulty in assessing the effectiveness of training
simulators for surgical procedures: the two measures
of success tend to oppose each other, in that working
slowly is likely to increase the correctness of the
procedure performance at the expense of timely com-
pletion. While a training simulator would ideally gen-
erate improvement in both metrics, each individual
subject’s balancing of the correctness-speed tradeoff
means that isolated analysis of each of the metrics
may not capture the complete effect of the training
simulator. In order to analyze overall improvement,
we normalized the two metrics by scaling each sub-
ject’s success rate improvement with respect to the
standard deviation of the success rate improvements
of all the subjects; we likewise normalized each sub-
ject’s average relative trial-duration decrease. When
visualized with respect to both metrics simultane-
ously (see Fig. 8), the inter-subject variation that was
concealed by the correctness-speed tradeoff is more
clearly revealed. When we compare the summed im-
provement of each subject on both of the two metrics,
the difference between the two subject groups is more
striking than for either metric alone. An ANOVA
comparing the two groups of subjects in terms of their
summed improvements yields: F (1, 19) = 3.14, p =
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Fig. 8. The normalized improvement in both of the
overall success metrics for each subject. The subjects
that trained on the unaugmented simulation are plotted
as black diamonds. The subjects that trained on the
unaugmented simulation are plotted as grey squares.

0.09. The distribution of the datapoints in Fig. 8
suggests that subjects may have been making a binary
choice: to focus their post-training efforts on either
accurate target discrimination or on speedy trial com-
pletion. An ANOVA comparing the maximum of the
two normalized improvements for the two groups
yields: F (1, 19) = 5.80, p = 0.026. We can interpret
the difference between the two groups by noting that
the subjects who trained on the augmented simulator
tended to show significantly greater than average im-
provement in at least one of the measures of success.

4.1.1 Learning
The analysis described above examined the coarse
effects of the training simulators (average baseline
performance vs. average evaluation performance); we
can see other training effects by inspecting single-
subject performance over the course of the entire
experiment.

Although we labelled the three blocks of our ex-
periment “Baseline,” “Training,” and “Evaluation,” it
would be unreasonable to expect that subject perfor-
mance is constant within each block, or that learning
only occurs during the training block. By looking at
subject performance on a per-trial basis, we would
expect to see performance generally improve as the
subject becomes more familiar with the task and adept
at performing it correctly and quickly. This type of
trend is found in many subjects for the trial-duration
metric, but the quantum nature of the correctness
metric (correct target selection or incorrect distractor
selection) leads to less of an observably continuous
progression. The more continuous nature of the trial-
duration progression allows us to contrast the effect
of training on the unaugmented simulator vs. the
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Fig. 9. The trial durations for a single subject who
trained on the augmented simulator. Each plotted point
is the average of 4 consecutive trials.
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Fig. 10. The trial durations for a single subject who
trained on the unaugmented simulator. Each plotted
point is the average of 4 consecutive trials.

augmented simulator.
In the majority of the subjects who trained on

the augmented simulator we found a similar trend,
exemplified by the subject shown in Fig. 9: the trial
duration trended generally downward over the course
of the experiment, including the training block. While
there is a temporary increase in the trial durations
at the beginning of the training block (where the
subject is first encountering the different feel of the
simulator), the downward trend carries through to
the evaluation block. Note that there is a considerable
discontinutity in performance between the end of the
baseline block and the beginning of the evaluation
block; this jump verifies that learning was taking place
over the course of the simulator training.

In contrast, none of the subjects who trained on the
unaugmented simulator displayed this characteristic
performance jump between the end of the baseline
block and the beginning of the evaluation block. A
more typical trend for the unaugmented simulator
subjects is shown in Fig. 10; trial durations are con-
sistently longer throughout the training block, and
then revert in the evaluation block to no better than
at the end of the baseline block. When considering
only the baseline and evaluation blocks, the continuity
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of performance before and after the training block is
striking. It seems that training on the unaugmented
simulator has little efficacy in speeding up the task
performance — more significant improvement is seen
over the course of the baseline block.

4.2 Conclusions

In our user-study, we examined two metrics of pro-
cedure success (neither of which was explicitly em-
phasized to the subjects), and found that while the
subjects who trained on the unaugmented and aug-
mented simulators had similar average improvements
on each metric, when the two metrics were consid-
ered in combination, a clearer difference between the
two groups emerged. Examining the task-completion
duration across the entire experiment for individual
subjects gave further qualitative evidence that the
augmented simulator designed according to the pro-
posed decomposition approach provided more effec-
tive training than the unaugmented simulator.

5 IMPLICATIONS FOR SURGICAL SIMULA-
TOR DESIGN

The results of our user study indicate that our
decomposition-based augmentation approach en-
hances the training effectiveness of a low-fidelity
training simulation for the haptic search task, but
what are the implications for more realistic surgical
tasks? Although the haptic search task is not a surgi-
cal procedure, it was selected as the laboratory task
because of properties that support the generalization
of results to the broader class of surgical tasks: the
haptic search task requires the subject to integrate
a high-level understanding of the steps needed to
successfully complete the procedure with a low-level
sensorimotor strategy that can exert the necessary fine
control over the tool’s interaction with the environ-
ment.

Our previous work [1] examined the training effec-
tiveness of an augmented simulator on the surgical
procedure of bone-pin insertion, but used an aug-
mentation strategy built around a single event (the
sudden resistance change when transitioning from
hard cortical bone to the spongey cancellous). In this
work we have addressed the integrated view of how
decomposition of a task into subtasks with different
augmentations can improve training simulations for
a wider variety of surgical procedures.

We can extract some specific guidelines for surgical-
simulator design from our results. The first step of
incorporating our proposed method of augmentation
into a simulator design is the identification of the
subtasks that make up the surgical procedure. The
decomposition will likely leverage the expert domain
knowledge of experienced surgeons, but it can also
be guided by analyzing the task in terms of the

sequence of interactive procedures used (such as the
exploratory procedures identified by Klatzky and Le-
derman [7]). This approach to the task decomposition
simplifies the next steps of designing a method to
identify the relevant subtask at run-time and selecting
augmentations for each subtask.

Structuring the decomposition so that different sub-
tasks correspond to different interactive procedures
makes it possible to identify the subtask being per-
formed by analyzing the action being performed. The
interactive procedure used may be temporally com-
plex (e.g., the back-and-forth scraping in roughness
examination), but identifying the current procedure
may be simpler (particularly when the expected set
of procedures are known). For instance, a simple
velocity threshold can be effective for identifying the
scraping procedure to indicate that the user is per-
forming a roughness assessment subtask. This same
process of identifying the current subtask by deter-
mining what interactive procedure is being performed
could be used to assist in the original decomposi-
tion by automated analysis of recordings of expert
executions of the surgical procedure. By comparing
position/velocity/force profiles from instrumented
recordings to a library of known interactive proce-
dures, an automated process could propose candidate
decompositions of the overall surgical procedure.

Since the goal of a surgical simulator is to improve
performance of the surgical procedure, it is important
to note that the augmentation chosen for a particular
subtask should not necessarily aim to reproduce the
real-world interaction experience, even for the tar-
geted interactive procedure. Rather, the purpose of the
augmentation is to reproduce or enhance the aspects
of the interaction that are perceptually pertinent for
successful performance of the subtask. For example,
in the case of texture comparison for the purpose
of surface identification, the application of vertical
pulses at surface micro-geometry (rather than accurate
horizontal forces corresponding to the surface orienta-
tion of the micro-geometry) reproduces the spatially-
linked vibratory phenomenon encountered during the
back and forth scraping interactive procedure used to
assess roughness. However, since horizontal forces are
not applied, it does not actually fully mimic the expe-
rience of the interaction. For interactive procedures
that target the inspection of micro-geometry (such
as slow dragging), we expect that this augmentation
would be ineffective. As well as a library mapping
position/velocity/force profiles to interactive proce-
dures that we proposed above for use in automatically
decomposing a surgical procedure based on expert
recordings, it would be useful to build a library that
maps from an interactive procedures to a low-level
descriptions of the perceptual features that contribute
to successful accomplishment of that interactive pro-
cedure’s purpose.
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