
MoDB: Database System For Synthesizing Human Motion

Timothy Edmunds S. Muthukrishnan Subarna Sadhukhan Shinjiro Sueda

Rutgers, The State University of New Jersey
{tedmunds,muthu,sadhukha,sueda}@cs.rutgers.edu

Abstract

Enacting and capturing real motion for all potential
scenarios is terribly expensive; hence, there is a great
demand to synthetically generate realistic human mo-
tion. However, it is a central conceptual challenge in
character animation to generate a large sequence of
smooth human motion, in a synthetic way.

We present a novel, database-centric solution to ad-
dress this challenge. We propose to generate long, syn-
thetic strips of motion from a database of a small set of
real motion captured data, in particular, using various
similarity-based “joins” of real motion snippets.

This demo will illustrate our system MoDB and
showcase the entire process of (a) capturing small real
motion data and generating ‘snippets” (b) encoding
snippets it into relational data, and (c) generating syn-
thetic, realistic smooth motion by concatenating snip-
pets based on similarity metrics. In particular, the demo
will be interactive consisting of an “avatar”—a graph-
ical creature—that continually moves towards users’
motion targets in a smooth human-like motion and will
rely on real time performance of the database for index-
ing and similarity searching from snippets. We believe
that synthetic motion generation is a new application
area where database technology can have a significant
impact.

1 Introduction

When creating motion for animated characters, his-
torically, a number of approaches have been taken.
Hand-crafted motions by animation artists was the
norm before computer-synthesized motion was avail-
able. With the advent of computer-assisted anima-
tion, the potential for totally synthetic motion genera-
tion arises: one can use motion capture systems to ac-
quire either the entirety of the desired motion or a pool
of motions from which further motions can be synthe-
sized.

A number of approaches have been taken to the syn-
thesis of novel motions from a pool of motion-capture
data; we will describe them in§2. We propose a new
approach based on using a database system to index and
retrieve motion snippets. We will describe all the steps
involved in§3, and describe the demo in§4. Concluding
remarks are in§5.

2 Previous Work

The increasing accessibility of high-quality motion-
capture systems that record real character actions has
generated growing interest in methods for synthesiz-
ing character animations from pre-recorded motion data
[1, 2, 3, 4]. In order to generate synthetic motions that
go beyond simply playing the captured animations, the
captured motion frames must be recombined into se-
quences that werenot performed by the motion-capture
subject. Animators (both artists and automated pro-
cesses) can use motion sequence recombination to drive
the actions of an animated character.

When recombining captured motion frames to form
novel sequences for character animation, there are two
considerations that must be addressed:

• the feasibility of the motion, and

• the degree to which it accomplishes the action de-
sired by the animator.

Arbitrary reordering of motion capture frames will
result in discontinuous, physically infeasible motions;
to meet the minimum requirements of feasibility, a syn-
thesized motion sequence must achievecontinuity be-
tween adjacent frames. In previous work [1, 2, 3], au-
thors assess motion continuity by means of a distance
function between adjacent frames. The distance func-
tion may be a weighted combination of joint angle dif-
ferences [1, 3], a weighted sum over a skeletally de-
formed point-cloud [2], or any other cost function that
quantifies the feasibility of the motion as perceived by a
human observer.



By establishing a threshold for the adjacent-frame
distance function, and incorporating other constraints
(such as contact with the environment), [1, 2, 3] pre-
computemotion graphswhose nodes consist of motion
frames and whose edges represent feasible transitions
between frames.

In order to synthesize character animations from the
motion graphs (other than by random walks), it is neces-
sary to incorporate an objective function that, for a given
set of feasible transitions, quantifies the degree to which
the resulting motion would accomplish the goals of the
animator. The manifestation of this objective function is
dictated largely by the application; it can be as concrete
as the Euclidean distance between the result and some
trajectory [2, 3], or as abstract as matching high-level
motion annotations (such as “running”, “jumping”, or
“happy”) [4].

A severe limitation of the motion graph approach dis-
cussed above is that the continuity constraint is consid-
ered only in the pre-processing stage. This makes pre-
processing costly. In addition, and more significantly,
this dictates that motion quality cannot be traded off
against the objective function. That is, the animator
cannot force generation of a motion that accomplishes
a desired goal that cannot be achieved by thepresetre-
combination of the available motions as given by the
motion graph! [4] address the tradeoff between the con-
tinuity constraint and the objective function by combin-
ing the two into a single cost function which is then
optimized by a method centred around dynamic pro-
gramming. Still, the fundamental gap remains: how to
provide for flexible continuity constraints in a dynamic,
user-driven manner, in synthetic motion generation.

3 MoDB

We propose an approach to synthetic motion gener-
ation using database technology. Our approach to the
problem of generating long realistic motion sequences
from a small pool of motion frames is to leverage the ca-
pabilities of a relational database management system.

At the high level, our approach works as follows. We
acquire small sequence of motion data using appropri-
ate tools, and decompose the motion data into a set of
contiguous sequences or “snippets”. We load the snip-
pets and their attributes into a database. In order to gen-
erate synthetic motions, we phrase both the continuity
constraint as well as the animation objective function
(discussed in§2) as queries over the database. By ad-
justing the parameters of the query, we can control the
tradeoff between the continuity constraint and the objec-
tive function. We balance database retrieval time versus

motion execution delays to get real-time realistic syn-
thetic motion for very long durations from a small pool
of snippets. In what follows, we describe each of the
steps in more detail.

3.1 Data Acquisition

The character motion data that forms the pool of mo-
tions available to our system is obtained using a Vi-
con optical motion tracking system. The system uses
6 cameras, recording at 60Hz, to track the 42 markers
worn by the subject as he performs the motions within
a 4mx4mx2m capture volume. The raw outputs of each
camera are combined to triangulate the 3D marker loca-
tions at each video frame.

Through a semi-automated process, we use the trian-
gulated marker locations to fit a skeleton to the recorded
motion (by varying joint parameters such as the angle of
the elbow or the orientation of the hip). The processing
takes into account temporal continuity between consec-
utive frames.

Each captured motion sequence is divided up into
several short snippets, each comprising∼30 consecu-
tive frames from the original motion. The extraction of
the snippets is performed in an overlapping fashion (the
first snippet is composed of frames 0 to 29, the second
snippet from 1 to 30, etc.). The final result of the pre-
processing is the pool of motion snippets extracted from
all of the captured example motions.

There are data-quality issues to be considered when
working with motion capture data. Since the quanti-
ties of interest (joint angles) are modelled and estimated
from other quantities (marker locations), errors can
be introduced by marker mis-estimation, marker mis-
labelling, unwanted/unmodelled movement of markers
with respect to the subject’s bones, etc. The motion
capture processing software we use provides a mecha-
nism for rapidly cleaning the data to eliminate/minimize
many of these errors - working on entire sequences of
motions rather than frame by frame. Even after process-
ing, however, there is still the possibility that the joint
parameters recorded in our data will not entirely accu-
rately represent the motions that occurred. As in any
real database application scenario, our system needs to
work with such data quality issues.

3.2 Relational Representation

The motions synthesized from our data set are com-
posed by stringing together short (∼0.5s) sequences
(snippets) of the original motion capture data into
longer, continuous sequences. Within each snippet,
there is frame continuity because the frames appearin



the same orderas originally recorded; however, conti-
nuity betweensnippets must be maintained by choos-
ing only compatible snippets, which we do based on the
configuration of the synthetic character—avatar—at the
beginning and end of each sequence, as follows.

A configuration of the character is represented as a
relation (MotionTerminator) whose attributes describe
the joint parameters in a 17 joint skeleton. The joints are
each one of two different types: free joints with a full 6
degrees of freedom (3 position, 3 orientation), or ball
joints with 3 degrees of rotational freedom. 7 attributes
for each free joint and 4 for each ball joint (orientations
are stored as normalizedquaternions) thus allows for
the detection ofC0 continuity. In order to also allow for
consideration ofC1 continuity, ball joints are issued an
extra 3 attributes for angular velocity, and free joints an
extra 6 attributes (for velocity and angular velocity). In
total, theMotionTerminatorrelation contains 137 dou-
ble format attributes, and 1 primary key attribute.

As well as maintaining continuity between our se-
lected snippets, we also have a preference for some snip-
pets over others based on the objective of the animation.
In our application, the objective is to move the character
(in a feasible way) toward some target in the character’s
environment. Thus, for each motion snippet, we need to
be able evaluate how effective the snippet is at moving
toward the target position. Our database contains a rela-
tion (SnippetDescriptorthat describes the pertinent as-
pects of an entire motion snippet; as well as references
to a starting and an endingMotionTerminator, it con-
tains 3 attributes that give the 3 dimensional net transla-
tion of the character that results from playing a snippet.
Since we can start playing a motion snippet in any po-
sition and orientation in the environment (to match the
ending position and orientation of the previous snippet),
the net translation is recorded with respect to the char-
acter’s configuration at the start of the motion snippet.

Since a snippet’s net translation is recorded with re-
spect to the snippet’s starting configuration, we need to
be able to transform the target location from world co-
ordinates into the current local coordinates of the char-
acter. To keep track of the character’s local coordinate
frame, we need to know the net rotation resulting from
playing a motion snippet (as well as the net transla-
tion). Though this can be obtained by patiently play-
ing through the snippet, in order to be able to compute
the pertinent state independently of animation process,
we record 4 extra attributes (the normalized quaternion
recording the final orientation) in theSnippetDescrip-
tor relation. In total, theSnippetDescriptorcontains 7
double format attributes, 2 foreign key attributes, and 1
primary key attribute.

When serialized in the most convenient format for
driving an animated character in realtime, each motion
snippet is∼100kB in size. For a non-trivial data set,
retaining the snippets in memory rapidly becomes in-
feasible. Since a DBMS is expected to be at least as
fast at retrieval from disk as ordinary application I/O,
we opted to store the snippets serialized as BLOBs in a
third database relation.

3.3 Snippet Selection

As alluded to above, when the application chooses
which snippet to play next, two criteria are involved: the
beginning of the chosen snippet must be “close enough”
of a match to the ending of the previously played snip-
pet, and given a set of candidate snippets, the snippet
that will move the character the closest to its current
goal is preferred. These two criteria are expressed in
the selection query by a WHERE clause and an ORDER
BY clause respectively.

The WHERE clause of the database selection uses
inequality comparisons to reject motion snippets whose
starting configurations have joints that deviate more
than a specified amount from the ending configuration
of the previous snippet. The challenge presented in
composing this query is in choosing the metric by which
joints are compared. For the position components of
free joints, theL2 norm of the distance between the
joints is most appropriate, but requires mathematical ag-
gregation of multiple attributes; theL1 norm, though
less accurate a representation of 3 dimensional distance,
is easily expressed using only comparisons between two
values of the same attribute. For the joint orientations,
the situation is even more dire since theL1 norm of
a quaternion difference is a very poor metric of orien-
tation discontinuity. Again, however, it is possible to
obtain a more meaningful quantity (the magnitude of
the rotation necessary to go from one orientation to the
other) by computing mathematical aggregates of all 4 of
the quaternion attributes.

The ORDER BY clause that prefers snippets that
take the character closer to its goal is simpler than the
WHERE clause. After the application has transformed
the target position into the character’s current local co-
ordinates, all that is necessary is to define an attribute
in the output relation that contains the difference be-
tween the target location and the snippet’s net transla-
tion. Again, the choice of difference metric determines
the attribute aggregation that is necessary.



3.4 Query Tuning

Given the query structure described above, there is
a great deal of flexibility in the actual query issued to
select motion snippets.

The thresholds used to parameterize the similarity
tests on the joint configurations can be varied to increase
the number of candidate snippets at the cost of degrad-
ing the motion’s feasibility (and vice-versa). In addition
to tuning the query to trade motion quality off against
the objective function, the query can be modified to im-
prove the query execution time (also at the expense of
motion quality). As mentioned above, theL1 norm joint
difference is more likely to optimizable by a DBMS than
the l2 norm which involves aggregation of multiple at-
tributes. Also, joints closer to the root of the skeleton’s
hierarchy contribute more to the perceived continuity of
motions; by eliminating selected joints from the query,
the complexity of the join condition is reduced. Simi-
larly, joint velocity and angular velocity can be ignored
for some or all of the joints.

Reducing the complexity of the WHERE clause is
not without its cost (as well as the degradation of the
motion quality). Fewer constraints on the continuity
match results in a larger number of selected records,
which results in a larger sorting operation for the OR-
DER BY clause.

The importance of query response time depends on
the purposes of the application. For an off-line anima-
tor assistance tool, query execution times on the order
of a second would be reasonable. For our application,
however, we desire real-time user interactivity; the se-
lection of the next motion snippet to play must not delay
the animation. In this situation, the query response time
governs the latency of the character’s response to user
input. The minimum latency is the time between two
frames of animation (∼17ms for a standard 60Hz ani-
mation); if the query response time is less than this pe-
riod, the snippet selection adds no overhead to the user-
response latency. As the system scales to a larger data
set, and the minimum response time becomes unachiev-
able, motion quality can be maintained by increasing
the user-response latency; by starting the selection of
the next snippet before the current snippet has finished
playing, the DBMS is given more time to process the
query at the cost of ignoring user input that occurs after
the selection is started.

4 Demo

Our demo will show MoDB, our system for synthe-
sizing long sequences of realistic motion from a small

set of captured, real motion data. The demo will ren-
der, in real-time, anavatar that responds to user input.
The user will be able to interactively select a goal for
the avatar to pursue. Each time a new motion snippet is
required, the system will query the DBMS for a match-
ing motion snippet that will take the avatar as close to
the goal as possible.

We will demonstrate the effect that the parameters
controlling the selection of motion snippets have on
query response time in the DBMS. By changing such
parameters as the distance norm used or different joints
on which to perform the joins, the user will be able to,
at run time, balance the visual fidelity and responsive-
ness of the avatar. The goal is to convince the audience
that (a) real-time synthetic generation of realistic mo-
tion is highly feasible, and (b) the database technology
crucially impacts the performance of the application.

Under the hood, the system relies on mySQL for
database technology, OpenGL for animation and Java
for the application logic and database/graphical glue.
Much of the database queries are far too complex to
hand code because of the number of attributes involved
in the queries and the sophisticated constraints on them.
So, we had to develop scripting programs for generat-
ing queries. An example query is presented in the Ap-
pendix. A video tape of the avatar’s synthetically gener-
ated motion is shown in the attached file.

5 Concluding Remarks

This demo shows the power of the database in a new
application of generating long sequences of synthetic
motion from a small set of captured, real motion data.
Our system relies on decomposing input data into snip-
pets and relying on the DBMS to index the snippets
and retrieve them based on similarity criteria for any
desired synthetic motion. Our system MoDB demon-
strates the real-time performance of this application.
DBMSs promise to have a significant impact in solving
the challenge of generating synthetic motion, and likely
to have a commercial impact in the emerging industry
of synethetic motion generation for animation.

Acknowledgements

Data acquired using the HAVEN facility at Rutgers.
Development of the HAVEN was supported in part by
NSF grants EIA-0215887 and IIS-0308157 (PI: Pai).



References

[1] O. Arikan and D. A. Forsyth, “Interactive motion
generation from examples,” inProceedings of SIG-
GRAPH 2002, July 2002.

[2] L. Kovar, M. Gleicher, and F. Pighin, “Motion
graphs,” inProceedings of SIGGRAPH 2002, July
2002.

[3] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and
N. S. Pollard, “Interactive control of avatars with
human motion data,” inProceedings of SIGGRAPH
2002, July 2002.

[4] O. Arikan, D. A. Forsyth, and J. F. O’Brien, “Mo-
tion synthesis from annotations,” inProceedings of
SIGGRAPH 2003, July 2003.



Appendix

The following is an example of one of the queries generated by our system.
Note that this query is a very small subset of a usual query; it deals with only
one of the skeleton’s joints (the thorax). The symbol ‘?’ denotes a variable
parameter.

SELECT

descriptor.SnippetID AS SnippetID,

SQRT(((descriptor.PelvisTranslationX - ?)*(descriptor.PelvisTranslationX - ?))

+ ((descriptor.PelvisTranslationY - ?)*(descriptor.PelvisTranslationY - ?))

+ ((descriptor.PelvisTranslationZ - ?)*(descriptor.PelvisTranslationZ - ?))) AS targetProximity

FROM

SnippetDescriptors descriptor, MotionTerminators previousEnding, MotionTerminators candidateBeginning

WHERE

candidateBeginning.TerminatorID = descriptor.BeginningTerminatorID

AND

previousEnding.TerminatorID = ?

AND (

SQRT(

(candidateBeginning.ThoraxPositionX - previousEnding.ThoraxPositionX)

*(candidateBeginning.ThoraxPositionX - previousEnding.ThoraxPositionX)

+ (candidateBeginning.ThoraxPositionY - previousEnding.ThoraxPositionY)

*(candidateBeginning.ThoraxPositionY - previousEnding.ThoraxPositionY)

+ (candidateBeginning.ThoraxPositionZ - previousEnding.ThoraxPositionZ)

*(candidateBeginning.ThoraxPositionZ - previousEnding.ThoraxPositionZ)

) <= ?

)

AND (

2*ACOS(

candidateBeginning.ThoraxOrientationW * previousEnding.ThoraxOrientationW

+ candidateBeginning.ThoraxOrientationX * previousEnding.ThoraxOrientationX

+ candidateBeginning.ThoraxOrientationY * previousEnding.ThoraxOrientationY

+ candidateBeginning.ThoraxOrientationZ * previousEnding.ThoraxOrientationZ

) <= ?

)

AND (

SQRT(

(candidateBeginning.ThoraxVelocityX - previousEnding.ThoraxVelocityX)

*(candidateBeginning.ThoraxVelocityX - previousEnding.ThoraxVelocityX)

+ (candidateBeginning.ThoraxVelocityY - previousEnding.ThoraxVelocityY)

*(candidateBeginning.ThoraxVelocityY - previousEnding.ThoraxVelocityY)

+ (candidateBeginning.ThoraxVelocityZ - previousEnding.ThoraxVelocityZ)

*(candidateBeginning.ThoraxVelocityZ - previousEnding.ThoraxVelocityZ)

) <= ?

)

AND (

SQRT(

(candidateBeginning.ThoraxAngularVelocityX - previousEnding.ThoraxAngularVelocityX)

*(candidateBeginning.ThoraxAngularVelocityX - previousEnding.ThoraxAngularVelocityX)

+ (candidateBeginning.ThoraxAngularVelocityY - previousEnding.ThoraxAngularVelocityY)

*(candidateBeginning.ThoraxAngularVelocityY - previousEnding.ThoraxAngularVelocityY)

+ (candidateBeginning.ThoraxAngularVelocityZ - previousEnding.ThoraxAngularVelocityZ)

*(candidateBeginning.ThoraxAngularVelocityZ - previousEnding.ThoraxAngularVelocityZ)

) <= ?

)

ORDER BY targetProximity LIMIT 1


