
In Proceedings of ICDE ’05 1131

MoDB: Database System For Synthesizing Human Motion

Timothy Edmunds S. Muthukrishnan Subarna Sadhukhan Shinjiro Sueda
Rutgers University

{tedmunds,muthu,sadhuka,sueda}@cs.rutgers.edu

Abstract

Enacting and capturing real motion for all potential sce-
narios is prohibitively expensive; hence, there is a great
demand to synthetically generate realistic human motion.
However, it is a central challenge in character animation
to synthetically generate a large sequence of smooth human
motion.

We present a novel, database-centric solution to address
this challenge. We demonstrate a method of generating long
sequences of motion by performing various similarity-based
“joins” on a database of captured motion sequences.

This demo illustrates our system (MoDB) and show-
cases the process of encoding captured motion into rela-
tional data and generating realistic motion by concatenat-
ing sub-sequences of the captured data according to fea-
sibility metrics. The demo features an interactive charac-
ter that moves towards user-specified targets; the charac-
ter’s motion is generated by relying on the real time perfor-
mance of the database for indexing and selection of feasible
sub-sequences.

1. Introduction

The increasing accessibility of high-quality motion-
capture systems that record real character actions has pro-
vided an inexpensive alternative to hand-editing for the
creation of large pools of motion data for character anima-
tion. Even so, it is often intractable to capture all motions
that a character may be required to perform (particu-
larly in interactive applications); an attractive option,there-
fore, is to synthesize the desired motions from a pool of
captured motion.

When recombining captured motion frames to form
novel sequences for character animation, there are two con-
siderations that must be addressed: the feasibility of the
motion, and the degree to which it accomplishes the objec-
tive desired by the animator.

Whereas a captured motion sequence guarantees feasi-
bility (in that it was actually performed by a human), that

guarantee is lost when sub-sequences are concatenated. Pre-
vious work[1, 3, 4] has addressed the feasibility concern
by pre-processing the captured data into a directed graph
in which the nodes are sub-sequences of recorded motions
(“snippets”) and an edge indicates that the corresponding
concatenation yields a feasible motion. While this “motion-
graph” approach has illustrated the utility of recombining
motion snippets, it suffers from the inability to tradeoff a
motion’s feasibility against how well the motion accom-
plishes the desired objective.

When synthesizing character animations from motion
graphs, it is necessary to incorporate an objective func-
tion that, for a given set of feasible transitions, quantifies
the degree to which the resulting motion would accomplish
the goals of the animator. The specific function is dictated
largely by the application; it can be as concrete as the Eu-
clidean distance between the result and some trajectory[3,
4], or as abstract as matching high-level motion annotations
(such as “running”, “jumping”, or “happy”)[2]. In the mo-
tion graph approach, the choice of transitions is limited to
those deemed feasible at the time of pre-processing; while
there might exist a combination that would better accom-
plish the objective, it will not be found if the corresponding
edge is absent from the graph.

Our approach is to select transitions fromall of the snip-
pets in the data pool (without a crushing quadratic space
or time cost) by leveraging the capabilities of a relational
database management system.

2. MoDB

At the high level, our approach works as follows. We ac-
quire small sequence of motion data using appropriate tools,
and decompose the motion data into a set of contiguous
sequences (“snippets”). We load the snippets and their at-
tributes into a database. In order to generate synthetic mo-
tions, we phrase both the feasibility constraint as well as
the animation objective function (discussed in§1) as queries
over the database. By adjusting the parameters of the query,
we can control the tradeoff between the feasibility of the
motion and how well the motion accomplishes the anima-
tion’s objective. We balance database retrieval time against



In Proceedings of ICDE ’05 1132

motion execution delays to create motions that respond in-
teractively to user input.

The motions synthesized from our data set are composed
by stringing together short (∼0.5s) snippets of the original
motion capture data. The feasibility of a snippet concate-
nation is based on a comparison of the configuration of the
character’s (simplified) skeleton at the beginning and end of
each snippet.

A character configuration is represented as a relation
(MotionTerminator) whose attributes describe the joint pa-
rameters in a 17 joint skeleton. The joints are either free
joints with a full 6 degrees of freedom, or ball joints with 3
degrees of rotational freedom. 7 attributes for each free joint
and 4 for each ball joint (orientations are stored as normal-
izedquaternions) thus allows for the detection ofC0 con-
tinuity. In order to also allow for consideration ofC1 con-
tinuity, an extra 3 attributes encode angular velocity and 3
attributes encode linear velocity. In total, theMotionTermi-
nator relation contains 137 double format attributes, and 1
primary key attribute.

In our application, the objective is to move the character
toward some target in the character’s environment. Thus, we
need to be able evaluate the effectiveness of a given snippet
at moving toward the target position. Our database contains
a relation (SnippetDescriptor) that describes the pertinent
aspects of an entire motion snippet; as well as references to
a starting and an endingMotionTerminator, it contains 3 at-
tributes that give the 3 dimensional net translation of the
character that results from playing a snippet. To keep track
of the character’s local coordinate frame, we also record the
snippet’s final orientation (4 attributes). In total, theSnip-
petDescriptorcontains 7 double format attributes, 2 foreign
key attributes, and 1 primary key attribute.

When serialized in the most convenient format for driv-
ing an animated character in realtime, each motion snip-
pet is∼100kB in size. For a non-trivial data set, retaining
the snippets in memory rapidly becomes infeasible. Since
a DBMS is expected to be at least as fast at retrieval from
disk as ordinary application I/O, we opted to store the snip-
pets serialized as BLOBs in a third database relation.

When composing a query to select a snippet for concate-
nation, the feasibility criterion is expressed by a WHERE
clause, and the objective-accomplishment criterion is ex-
pressed by an ORDER BY clause.

The WHERE clause of the query uses inequality com-
parisons to reject motion snippets whose starting configura-
tions have joints that deviate more than a specified amount
(according to one of a variety of available metrics) from the
ending configuration of the previous snippet.

The ORDER BY clause that prefers snippets that take
the character closer to its goal is simpler than the WHERE
clause. After the application has transformed the target po-
sition into the character’s current local coordinates, allthat

is necessary is to define an attribute in the output relation
that contains the difference between the target location and
the snippet’s net translation. As with the WHERE clause,
the choice of distance metric determines the attribute ag-
gregation that is necessary.

Given the query structure described above, there is a
great deal of flexibility in the actual query issued to select
motion snippets.

The thresholds used to parameterize the similarity tests
on the joint configurations can be varied to increase the
number of candidate snippets at the cost of degrading the
motion’s feasibility (and vice-versa). In addition to tuning
the query to trade motion quality off against the objective
function, the query can be modified to improve the query
execution time (also at the expense of motion quality). The
choice of distance metric in both the WHERE and ORDER
BY clauses affects how much per-joint attribute aggregation
is necessary. In the WHERE clause, some joints may be ig-
nored entirely to reduce the join complexity. Similarly, joint
velocity and angular velocity may be ignored for some or all
of the joints.

Reducing the complexity of the WHERE clause is not
without its cost (as well as the degradation of the motion
quality). Fewer constraints on the continuity match results
in a larger number of selected records, which results in a
larger sorting operation for the ORDER BY clause.

3. Demo

We implemented the MoDB system using mySQL for
database technology, OpenGL for animation and Java for
the application logic and database/graphical glue. The demo
renders, in real-time, a character that responds to user input
— the user interactively selects a goal for the avatar to pur-
sue. Each time a new motion snippet is required, the system
queries the DBMS for a snippet that will take the charac-
ter as close to the goal as possible. We show the effect that
the parameters controlling the selection of motion snippets
have on query response time in the DBMS.

References

[1] O. Arikan and D. A. Forsyth. Interactive motion generation
from examples. InProceedings of SIGGRAPH 2002, July
2002.

[2] O. Arikan, D. A. Forsyth, and J. F. O’Brien. Motion synthesis
from annotations. InProceedings of SIGGRAPH 2003, July
2003.

[3] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. InPro-
ceedings of SIGGRAPH 2002, July 2002.

[4] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pol-
lard. Interactive control of avatars with human motion data.
In Proceedings of SIGGRAPH 2002, July 2002.


