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ABSTRACT

We approach the problem of determining a general method for aug-
menting haptic simulators to amplify the perceptually salient as-
pects of the interaction that induce effective skill transfer. Using
such a method, we seek to simplify the design of haptic simulators
that can improve training effectiveness without requiring expensive
improvements in the capability of the rendering hardware.

We present a decomposition approach to the automated design of
perceptually augmented simulations, and we describe a user-study
of the training effectiveness of a search-task simulator designed us-
ing our approach vs. an un-augmented simulator. The results indi-
cate that our decomposition approach allows existing psychophys-
ical findings to be leveraged in the design of haptic simulators that
effectively impart skill by targeting perceptually significant aspects
of the interaction.

1 INTRODUCTION

In previous work [1] we established that augmenting perceptually
salient interaction features can improve haptic simulations without
requiring improved rendering hardware. We used this approach to
design an augmented simulator for a surgical task (bone-pin inser-
tion), and showed a significant task improvement among subjects
who trained on that simulator. However, we left open the question
of how this design process could be generalized or automated.

The wide variety of haptic tasks and the multiple modes of haptic
interaction make it hard to address this general problem. In this
paper, we propose an approach that makes the general augmented-
design problem more tractable through decomposition.

As a user performs a task, various different interaction features
are encountered. For example, when a mechanic inserts an engine
part into a visually obscured location, the interaction will involve
the shape and surface properties of the part and of the engine, as
well as transient features such as making/breaking contact between
the part and the engine, stick/slip as the part slides into place, or
jamming if the part is inserted incorrectly. But the features of the
interaction that are pertinent to the user depend on what aspect of
the task is being performed. For the mechanic, contact between
the part and the engine may be irrelevant when maneuvering the
part towards the general area of insertion, but is critical to correctly
insert the part precisely in place. The high-level task can be de-
composed into subtasks that correspond to different contexts for
interaction. In our example, these subtasks might be: manipulating
the part to acquire a secure grasp and assess its shape; maneuvering
into the general area; exploring the area of insertion to find the cor-
rect insertion point; positioning the part for insertion; and sliding
the part into place. The subtask being performed determines which
interaction features are most perceptually pertinent and need to be
effectively rendered by the simulation (e.g., when the user is sliding
the part into place, effective rendering of stick/slip and jamming is
critical).

If we can identify the subtask being performed by the subject
at any given time, then we can selectively augment the interac-
tion features that are deemed pertinent for that subtask. We have
thus reduced the problem of holistically assessing an interaction in
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progress and generating appropriate augmentation to three subprob-
lems: decomposing the overall task into subtasks; determining what
augmentation is appropriate for the perceptual context of each sub-
task; and detecting throughout the interaction what type of subtask
is being performed.

A challenge in investigating the broad problem of training sim-
ulator design is that experimentation requires a laboratory task that
captures aspects of real-world tasks while being repeatable and al-
lowing detailed analysis of the interaction. Towards this end, we
designed an artificial haptic search task that mimics the activities
found in an engine-part insertion task: the subject has to scan the
haptic environment to find textured surface patches; identify the
surface patch with the correct texture; and precisely locate its cen-
tre. We use this task as the basis for an evaluation of our design
approach.

Our Contributions: In the work described here, we apply our
decomposition approach to the problem of general augmented train-
ing simulator design. We conducted a user-study to validate our
approach; we created a haptic search task that involves a variety
of interactions, and used our decomposition framework to design
an augmented simulator for training on the task. We analyzed the
training effectiveness of the augmented simulator across a variety
of metrics designed to gauge the effective skill transfer of different
components of the augmented simulation. Our results indicate that
the augmented simulation design that was generated by our gen-
eralized decomposition approach resulted in an effective training
simulator.

Background and Approach

One approach to the problem of automatically generating augmen-
tation for haptic simulations is to measure the haptic properties of
the real task, find the differences between those properties and the
properties rendered by the simulation, and augment the simulation
with the “difference” between the two. Acceleration matching for
impact augmentation [5] is an example of this type of approach.
However, while this approach might help achieve greater fidelity,
that criterion is not always the best one for judging the effective-
ness of a haptic simulation; when the goal of the simulation is to
improve transfer of training, controlled deviation from the real dy-
namics can improve the simulation’s effectiveness [14]. Instead of a
purely fidelity-based evaluation criterion, we need to consider what
augmentations will achieve the desired training effect in a haptic
simulation. For example, to evaluate the effectiveness of a surgical
trainer, the procedure success rate after training is more important
than the amount of error in the forces rendered.

The problem of augmenting haptic simulations is complicated
by the large number of different dimensions that are perceived hap-
tically. Early work on haptic exploration (focussing primarily on
haptic identification) [4] identified a set of haptic dimensions that
are directly sensed and aid in the haptic identification of objects.
(A haptic dimension [7] is a domain of variation that is accessi-
ble to the perceptual system — e.g., hardness of a surface being
tapped.) The identified dimensions were texture, hardness, temper-
ature, weight, global volume, exact shape, part motion, and specific
function. The researchers also identified a set of exploratory proce-
dures that are typically used to assess an object’s value along each
of these dimensions.
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Figure 1: Environment geometry at 2.5× scale. (a) The cross-
section of the groove surrounding each scene element. (b) The
cross-section of the pit at the centre of each scene element.

In the broader context of general tasks, we can define the set
of interactive procedures as a super-set of these exploratory pro-
cedures. Where the goals of all exploratory procedures are to in-
vestigate and assess a haptic dimension, not all recognizable ac-
tions fall into this category. A review of the haptic literature reveals
many examples of identifiable interactive procedures. Some are
procedures intended to assess properties of the environment, such
as feeling a spot with a finger to determine the small-scale geome-
try [11], tapping or scraping an object with a tool to estimate its ma-
terial properties [5, 9], or moving an object’s parts to determine its
range of motion [4]. Other procedures involve spatial localization,
such as multi-finger touching to detect where a specified feature oc-
curs [10], sliding a finger along a line to find where a haptic target
lies amidst distractors [8], or manually scanning visually obscured
objects to locate a goal [6]. There are also procedures whose intent
is to modify the environment to accomplish a goal, such as guiding
a catheter into a vessel [2], or inserting a peg into a hole [13].

A given task may involve the exercise of any combination of in-
teractive procedures, either simultaneously or sequentially, in sep-
arate subtasks. By focussing on the set of interactive procedures
used in performing a task, we can guide the automatic generation
of augmentation to improve the performance of the task.

As well as determining which subtasks are performed in execut-
ing a task, we need to consider what augmentations are appropriate
to improve the skill transfer for the subtasks. Here we can again
leverage findings in the literature that illuminate how different in-
teractive procedures are affected by properties of the environment.

The remainder of this paper is organized as follows. In Section 2
we describe the haptic search task that we developed to facilitate a
concrete investigation of our approach to simulator design. We give
the details of how we applied our decomposition-based approach to
generate an augmented training simulator for the haptic search task
in Section 3. In Section 4, we describe the user study we conducted
to evaluate the training effectiveness of our augmented simulator.
In Section 5, we draw conclusions about the effectiveness of our
proposed decomposition-based approach, including guidelines for
the design of perceptually-augmented haptic training simulators.

2 HAPTIC SEARCH TASK

To allow for a concrete investigation of the design of virtual sim-
ulators for real tasks, we need to test our approach on a specific
task. We created a haptic search task that is structurally similar to
the mechanic’s problem of inserting an engine part without visual
feedback. The task parallels the standard visual search task com-
monly used in psychophysical experiments: the subject attempts to
locate a target stimulus that is presented in the company of distrac-
tor stimuli that have similar (but distinguishable) characteristics. In
our search task, the subject must: haptically scan the environment
to search for a target (or distractor) texture patch; discriminate be-
tween the target and distractors based on texture properties; and
finally locate the precise centre of the target patch.

This search task is useful in the laboratory setting because it cap-
tures key aspects of real-world tasks (such as including a sequence
of actions that must be performed to allow later phases of the task to
be completed) while allowing detailed recording of the subject’s in-
teraction to support rigorous analysis of the task performance along

(a) Distractor (b) Target

Figure 2: Example (a) distractor and (b) target texture patches at
1:1 scale. The texture is represented visually by lightness corre-
sponding to the coefficient of friction, µ (ranging from 0 to 0.75).

multiple dimensions. This task is also easily repeatable for user
studies because it can be implemented entirely in a virtual environ-
ment.
2.1 Stimulus Design
In order to apply and evaluate our decomposition approach to de-
veloping an augmented training simulator for the haptic search
task, we created a virtual environment implementation of the search
stimulus.

The environment for the haptic search task consists of a 3-D
workspace with smooth flat walls around four sides of a 240 mm
by 240 mm floor whose height and surface roughness are varied to
create the target and distractor stimuli.

The floor is a height field that is uniformly zero everywhere out-
side a target or distractor (a scene element). Each scene element
consists of a groove surrounding a flat circular patch of roughly
textured surface. At the centre of the patch, there is a small pit.
See Figure 1 for a visualization of the cross-sectional geometry of
the scene elements. The textured patch has a radius of 20 mm,
and the surrounding groove is 10 mm wide. The groove’s cross-
section is smooth, with its bottom being a segment of a circle, and
each lip being segments of circles. The pit at the centre is simi-
larly smooth, with a total radius of 5 mm and a maximum depth of
1 mm at the centre. The only difference between targets and dis-
tractors is the texture of the patch (manifested as variation in the
coefficient of friction, which is functionally equivalent to texture,
but more robust [9]). We use the standard Coulomb friction model,
f f =−µ‖fn‖um, where f f is the frictional force, um is a unit vector
in the direction of motion, and µ is the (spatially varying) coeffi-
cient of friction. Both types of texture are generated by adding a
baseline coefficient of friction (µ0) to the output of a noise-driven
autoregressive AR(p) process that generates the randomness and
periodicity typical of real surfaces [9]:

µ(x,y) = µ0 + µ̃(x,y) (1)
µ̃(x,y) = µ̃(x∆x)+ µ̃(y∆y) (2)

µ̃(k) =
p

∑
i=1

aiµ̃(k− i)+σε(k) (3)

where ∆x and ∆y are the spatial Target
µ0 0.1
a1 0.783
a2 0.116
σ 0.05

Distractor
µ0 0.1
a1 0.25
a2 0.1
σ 0.1

Table 1: Texture parameters.

discretization resolutions in the x
and y direction, k is the sample
index along a dimension, σ is
the standard deviation of the in-
put noise, and ε(k) is a zero mean
noise input with a standard devi-
ation of one. For both the target
and distractor textures, we used an AR(2) model, and a spatial dis-
cretization resolution of 10 samples/mm. See Table 1 for the pa-
rameters for the AR(2) functions used to generate the target and
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(a) Example stimulus (b) Processed Height Field

Figure 3: (a) A visual rendering (at 1:6 scale) of a stimulus envi-
ronment presented to the user. The texture is represented visually
by lightness corresponding to the coefficient of friction, µ , and the
height map of the surface is overlayed in blue. (b) The result of
convolving the example height field from (a) with the Gabor filter
shown in Figure 4. This image is one slice of a 32×5×1024×1024
lookup table for the scan augmentation.

distractor textures. Examples of the texture patches generated by
these parameters are shown in Figure 2.

The surface outside the texture patches has a uniform coefficient
of friction µbackground = 0.2.

The full stimulus for one episode of the search task consists of
two distractors and one target (see Figure 3a). The scene elements
are equally spaced around a circle of radius 66.7 mm; the only vari-
ation between episodes is the orientation of the triangle described
by the three scene elements (and the noise driving the autoregres-
sive texture of the elements).

2.2 Stimulus Interaction
To realize a repeatable haptic search task, we implemented a virtual
environment that allows the subject to interact with the stimulus
through a SensAble Technologies PHANTOM Premium 1.0 haptic
device with 6 degrees of freedom in position input and 3 degrees of
freedom in force output.

Interaction with the environment is simulated by a quasi-static
system where the stylus tip of the PHANTOM represents the master
position that is spring-coupled to a proxy point that is constrained
to lie within the workspace and above the surface of the floor. When
the master is inside the walls and above the floor, the proxy moves
with the master and no forces are generated.When the master is
outside the walls or below the floor, the proxy is placed at the clos-
est permitted point, and a spring force acts on the master to pull it
toward the proxy: fn = k(xp− xm), where k is the stiffness of the
virtual spring, and fn is the normal force applied to push the master
toward the surface.

The texture of the scene elements (and the friction of the back-
ground) is implemented by a stick-slip Coulomb model as described
by Salisbury et al. [12]. In that model, the tangential force is af-
fected by the local coefficient of friction and the normal force;
hence the frictional force is also affected by the spring stiffness k.

Each episode of the search task begins with the master held in
place (by a stiff spring force) in the centre of the workspace, 20 mm
above the surface. Once the episode begins the spring force is re-
leased, and the subject is free to explore the environment. The goal
of the task is for the subject to locate the centre of the target scene
element and hold the stylus tip there for 0.5 seconds.

2.2.1 Visual Stimulus
In addition to the haptic feedback described above, the subject is
presented with a few visual cues: the outline of the boundaries of
the workspace, and the position of the proxy. This sparse visual
rendering of the environment is displayed on a vertical screen in

front of the subject. This allows the subject to use visual cues to
construct a spatial representation of the location of haptic features
(which are not displayed) as they are felt.

3 AUGMENTATION

Having defined the stimulus for our haptic search task, we created a
basic training simulator that is simply the same rendering algorithm
as the real task but with artificially degraded stiffness (correspond-
ing to the general design condition in which the rendering hardware
cannot trivially reproduce a real interaction with high fidelity). We
then applied our approach to develop an augmentation scheme for
this simulator. In our approach to automatic simulation augmen-
tation, a complete task is decomposed into subtasks for which dif-
ferent augmentation is applied in accordance with the perceptual
features involved in executing the subtask.

3.1 Task Decomposition
As discussed in Section 1, the decomposition can be assisted by
focussing on interactive procedures. For our haptic search task, we
were able to use this assistance to create a subtask decomposition
with limited domain knowledge.

The first subtask that the subject must execute is to locate a scene
element; we call this the scan subtask. In this subtask, the subject
typically scans the surface with large scale, high-speed motions,
until he or she detects the high-temporal-frequency force disconti-
nuity event that signals that the stylus has encountered (the rising
slope of) a groove around a scene element.

The second subtask is assessing the shape (and thus the extent
of the texture patch) of the scene element. In the shape assessment
subtask, the subject traces part or all of the groove around the scene
element to generate a spatial representation of where the texture
patch (and its centre) lies.

The other subtask is the identification subtask; having located
a scene element, the subject must explore it (with a scrubbing ex-
ploratory procedure) to gauge the roughness of the surface in order
to identify the scene element as a distractor or target.

Although there there are only three subtasks in this decompo-
sition, a single execution of the overall task can include multiple
instances of each subtask in different orders. The subject may scan,
identify a distractor, scan again, assess shape, identify the target,
and reassess the shape before moving to the target’s centre.

3.2 Subtask Augmentation
Having identified the different subtasks that make up our haptic
search task, we need to assign augmentations for each subtask.

3.2.1 Scan Augmentation
In the scan subtask, the pertinent perceptual features of the inter-
action are the force discontinuities experienced when the stylus
tip passes over areas of changing height. Since the simulator has
low stiffness haptic feedback, these high-temporal-frequency force
discontinuities are lost. These perceptual features can be restored
through the use of open-loop augmentation generated by automated
techniques similar to those used in computer vision.

A common technique for processing images to extract or high-
light pertinent features is to convolve the image with a filter. Since
we want to identify places in the environment where force discon-
tinuities are experienced during scanning, our problem is similar
to that of edge detection. Rather than edge detection in the 2-
dimensional (x,y) space though, we are performing edge detection
in the 4-dimensional (x,y,vx,vy) space of the interaction between the
height of the surface at (x,y) and the velocity of the stylus.

We can think of the height map of the surface as an image whose
edges we want to find, where for a particular stylus velocity we
are only interested in edges of a certain orientation and spatial fre-
quency (i.e., at higher speeds, we want to detect edges with lower
spatial frequency). The 2-dimensional anti-symmetric Gabor filter
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is a widely used convolution kernel for oriented edge detection at
configurable spatial resolution:

g(x,y,θ ,σ) = exp
(
−x′2 +0.25y′2

2σ2

)
cos
(

π
x′

2σ
+

π

2

)
(4)

x′ = xcosθ + ysinθ (5)

y′ =−xsinθ + ycosθ (6)

Here θ is the orientation of the filter (direction perpendicular to the
parallel stripes), and σ is the standard deviation of the Gaussian
envelope that determines the spatial resolution of the filter. See
Figure 4 for an example of the type of filter used.

By pre-computing the convolu-

Figure 4: Example Gabor fil-
ter (σ = 24 px, θ = 0.589 rad,
γ = 0.5).

tion results of the surface’s height
map with Gabor filters of vari-
ous orientations and spatial res-
olutions, we can create a 4-
dimensional lookup table that in-
dicates which surface locations
(at a given stylus velocity) should
trigger a haptic pulse to signal an
edge-crossing.

For the augmented training
simulator, we pre-computed the
convolution of each stimulus with
Gabor filters at 32 different
(equally spaced) orientations and
5 different scales (σ = 20,21, . . . ,24, where σ is in units of pixels,
and the height map of the stimulus is represented as a 1024x1024
image — see Figure 3b). During the scan subtask, the stylus tip lo-
cation and velocity are used as indices into a lookup table formed by
all 160 pre-processed images for the current stimulus; if the lookup
value exceeds a threshold, an open-loop fixed-width force pulse is
initiated (upwards).

3.2.2 Shape Assessment Augmentation
In the shape assessment subtask, the subject follows the groove
around a scene element to determine the spatial extent of the el-
ement (and the location of its centre). This is an example of an
exploratory procedure that uses the environment to constrain and
guide the exploratory motion. Since this exploratory procedure
leverages the curvature of the surface (which produces the con-
straints on motion), we augment the simulation for this subtask by
applying local force-fields based on surface curvature.

The motion constraints imposed by curved surfaces channel mo-
tion towards points (or paths) that are local minima of surface cur-
vature (i.e., points of maximum concavity). By constructing force
fields that attract the proxy toward these loci of minimal curvature,
the guidance used by the shape-exploration procedure can be repli-
cated in the low-stiffness simulator.

In order to simplify matters computationally (and to match the
local effect of curvature-induced constraints), we want force-fields
that have bounded extent and that are smooth, so as to avoid insta-
bility. We choose a single-cycle cosine function:

fshape =

{
fmax

(
1− cos(2π

d
dmax

)
)

1
rcurv

n̂ if d ≤ dmax

0 if d > dmax
(7)

where fmax is a parameter controlling the overall scale of the aug-
mentation force (we used fmax = 0.75 N), d is the distance to the
nearest local minimum of curvature, dmax is the distance thresh-
old imposed to make the force-fields local in extent (we used
dmax = 5 mm), n̂ is a unit vector towards the attracting point, and
rcurv is the radius of curvature (along n̂).

3.2.3 Identification Augmentation
In the identification subtask, the subject uses the lateral motion ex-
ploratory procedure to assess the roughness of the surface. Klatzky

and Lederman [3] found that when perceiving roughness through a
probe (as when perceiving roughness from direct skin contact), hu-
mans are able to achieve some measure of speed constancy in their
perception of the vibratory phenomena induced by surface rough-
ness (i.e., roughness is judged not by vibratory frequency alone, but
by speed-normalized vibratory frequency).

Since the subject’s perception of the surface roughness is af-
fected by the speed of the subject-controlled motion, it is insuf-
ficient to simply augment the identification subtask by applying
open-loop vibration at a fixed frequency. Instead, we wish to pro-
duce vibratory effects that mimic those of high-stiffness texture in-
teraction, independent of speed. To achieve this, we can work in
the speed-independent space of the original texture.

In the friction coefficient variation model of texture, the vibration
experienced during lateral motion over texture is due to changes in
the coefficient of friction; therefore, we augment the identification
task by applying vertical forces proportional to the change in the
coefficient of friction.

When the proxy is in contact with the surface, we look up the
coefficient of friction, but instead of using it to generate tangen-
tial forces (which, in the low stiffness simulator fail to convey the
surface texture), we compare it to the previous coefficient (i.e., the
coefficient at the previous time-step of the rendering cycle), and
generate a vertical force proportional to the change in coefficient
(independent of the normal force). Although this generates vertical
forces, rather than lateral friction forces, the vibratory signal expe-
rienced through the stylus conveys the same frequencies.

3.3 Subtask Identification
Having decomposed our task into subtasks and selected the aug-
mentation for each subtask, the remaining problem is to identify
during the interaction which subtask is being performed, and which
augmentation(s) should thus be active.

Here we once again leverage the coupling between subtask and
interactive procedure; since different procedures are used to accom-
plish different subtasks, we can identify the subtask that the subject
is attempting to perform by identifying the interactive procedure
being used. In our case, we can distinguish between the scanning,
tracing, and scrubbing procedures used respectively in the scan,
shape assessment, and identification subtasks, based solely on po-
sition in the environment and velocity thresholds.

Since scanning is a relatively high-speed motion, the scan
augmentation is only activated if the stylus speed is at least
468.75 mm/s (the speed corresponding to the smallest size of Gabor
filter used to preprocess the height map).

Since the shape assessment procedure is executed using finer-
controlled (slower) actions than the scan procedure, the shape as-
sessment augmentation is activated when the stylus speed is below
the scanning augmentation threshold. Of course, since the force
fields are local in extent and are located around the curvature min-
ima, the shape assessment augmentation is only truly active when
the subject is exploring pertinent surface geometry.

The identification subtask is characterized by the use of lateral
motion to investigate an area of surface texture. The identification
augmentation is thus only activated when the stylus tip is in con-
tact with a textured surface, and only when the stylus is “moving
laterally.” In the context of a discrete time-step rendering loop this
lateral motion criterion is deemed to be satisfied when the stylus’s
tangential speed is at least enough to move it from one texel (at the
spatial discretization ∆) to the next (i.e., vx,y ≥

√
2∆).

4 USER STUDY

To test the effectiveness of the augmented simulator design gen-
erated by our approach, we conducted a user study comparing
the augmented simulator against the basic unaugmented simulator.
Twelve subjects (recruited from faculty and students in the Rutgers
Computer Science and Psychology departments) were included in
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the experiment. All subjects gave written consent and were com-
pensated for their time. All subjects were right-handed and used
the PHANTOM with their right hands.

A subject’s participation Block Group 1 Group 2

Baseline
Full

Stiffness
Full

Stiffness

Training
Low

Stiffness

Augmented
Low

Stiffness

Evaluation
Full

Stiffness
Full

Stiffness

Table 2: The simulations used by
the subjects in each of the blocks
of the experiment.

consisted of three blocks of
trials taking place in two ses-
sions on different days (see
Table 2). In the first ses-
sion, each subject was fa-
miliarized with the capabil-
ities of the PHANTOM de-
vice and the task to be per-
formed; the subject then per-
formed a baseline block of 50
episodes of the search task.

In the second session, each subject performed 50 training
episodes on one of two simulations of the search task (with subjects
randomly assigned to a simulation group), followed by 50 episodes
of evaluation on the “real” search task.

The first simulation was simply a degraded version of the ren-
dering of the real search task (the stiffness coefficient k was set to
60.0 N

m in contrast to the rendering of the real task that used the de-
vice’s nominal max stiffness of 600 N

m ). The second simulation was
an augmented version of the degraded simulation. The low stiffness
was still used for the quasi-static force output, but active augmen-
tation was applied according to the subtask being performed.

4.1 Results and Analysis

Since all blocks of trials in this experiment were performed on a
simulated virtual environment, complete captures of the stylus po-
sition and forces were recorded for all trials, allowing multiple di-
mensions of the subjects’ performances to be analyzed. As well
as comparing overall task improvement after training, we measured
and compared indicators of proficiency for each of the identified
subtasks. While the success rate on the task doesn’t significantly
differ between the augmented and unaugmented training groups,
analysis of the subtask proficiency metrics indicates that the effort
required to achieve post-training success is significantly larger for
the group trained on the unaugmented simulator.

4.1.1 Task Success
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Figure 5: Baseline success, evaluation success, and change in suc-
cess rate are plotted for each subject. On the left is the group of
subjects that trained on the unaugmented simulation. On the right
is the group of subjects that trained on the augmented simulation.

A primary metric for evaluating the effectiveness of the proposed
augmentation technique is a comparison of the improvement in rate
of successful task completion after training on the augmented vs.
the unaugmented training simulation. For each subject, we mea-
sured separately the rate of successful task execution (i.e., finishing

the trial by selecting the target scene element rather than one of the
distractors) before and after simulator training:

success rate =
successful executions

total executions
(8)

0≤ success rate≤ 1 (9)

We compared the success rate before and after simulator training to
determine the subject’s absolute improvement.

improvement = success ratea f ter− success ratebe f ore (10)

−1≤ improvement≤ 1 (11)

Figure 5 shows the success rates and improvement of each subject,
grouped by whether the subject was trained on the augmented or
unaugmented training simulation.

The group that trained on the unaugmented simulation had an
average improvement of −0.03 (σ = 0.26), and the group that
trained on the augmented simulation improved by an average of
0.05 (σ = 0.12). While this indicates that the subjects who trained
on the unaugmented simulation improved more than the other sub-
jects, a two-sample Kolmogorov-Smirnov (K-S) test (with the null
hypothesis that unaugmented group’s improvement cumulative dis-
tribution function is larger than that of the augmented group) yields
an asymptotic p-value of 0.4425, so these results alone are not nec-
essarily statistically significant (as indicated by the relatively large
standard deviations of the samples).

4.1.2 Scan Subtask

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Change

Evaluation 

Augmented Training

Baseline

Change

Evaluation 

Unaugmented Training

Baseline

A
ve

ra
ge

 S
ca

n 
Ti

m
e 

(s
)

Average Change (   )

Figure 6: Change in average time to first encounter with a scene
element before and after training.

To evaluate the isolated effectiveness of the scan subtask aug-
mentation, we looked at the time between the start of the trial and
the subject’s first encounter with one of the scene elements, which
we take to be indicative of both the subject’s proficiency at the scan
subtask and the subject’s confidence in his or her sensitivity to the
haptic stimulus (since faster exploratory movement indicates that
the subject expects to be able to detect higher-frequency changes in
the haptic stimulus).

For each subject, we measured the average time between the start
of a trial and the first encounter with a scene element for both the
baseline block of trials and the evaluation block. We then com-
puted the absolute change in that average from before to after train-
ing. The change for each subject (sorted by training type) is shown
in Figure 6. These results show a statistically significant training
effect (the K-S asymptotic p-value is 0.0383).

4.1.3 Identification Subtask
Although a subject’s proficiency at the identification subtask is
strongly indicated by the overall task success rate, we can also
gauge the subject’s self-assessment of his or her skill at the iden-
tification subtask by examining the number of scene elements that
the subject explores.
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Figure 7: Change in average number of scene elements explored
after first exploring the target element.

We computed the average number of scene element explorations
that a subject performed after first visiting the target scene element
in the baseline trial block and the evaluation block. The absolute
change in average number of scene element visits is plotted in Fig-
ure 7. These results show a statistically significant training effect
(the K-S asymptotic p-value is 0.0061).

4.1.4 Shape Assessment Subtask
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Figure 8: Change in average number of failed attempts to locate the
centre of the scene element.

Since the shape assessment subtask is used to provide the sub-
ject with a spatial representation of the location of the centre of the
scene element, a good indirect indicator of the subject’s skill at per-
forming this subtask is the number of attempts needed to locate the
centre after the subject has decided to select a scene element.

We computed each subject’s average number of failed ap-
proaches preceding the final successful approach for the baseline
trial block and the evaluation trial block. The absolute change in
average number of failed approaches is plotted in Figure 8. This
metric shows a slight training effect, but is not statistically signifi-
cant (the K-S asymptotic p-value is 0.1597)

5 CONCLUSIONS

In the study described in this paper, only one dimension of task
performance (correct discrimination between target and distractor
patches) was made explicit to the subjects, but we were also able
to analyze subject performance (and improvement) along other di-
mensions. This analysis indicated that the augmentations that were
incorporated on the basis of existing psychophysical findings were
effective at improving the ability of subjects to locate the scene ele-
ments, at speeding the discrimination decision (in terms of number
of redundant visits to scene elements), and at developing more con-
trol in the subjects’ approach to the scene element centre once the
discrimination choice was made.

The study results also raise some questions for future work. One
interesting result is the apparent effect of the degraded training on
subject behaviour indicated by the identification subtask results;

the subjects who trained on the unaugmented simulator all became
more cautious (in terms of the amount of exploration before making
a decision). Here the paucity of the simulation seems to have had a
strong training effect (though the increased caution did not translate
into increased average success rate).

We can extract some specific guidelines for interactive simula-
tion design from our results. The simulated task can be decom-
posed into subtasks based on domain knowledge and guided by an-
alyzing the task in terms of the interactive procedures used in per-
forming the task. Augmentation can then be designed for each sub-
task by reinforcing the haptic dimensions applicable to the relevant
interactive procedures (this reinforcement does not have to create
higher fidelity with the real experience). At run-time, the interactive
procedure being performed can often be detected by simple meth-
ods (e.g., even temporally complex procedures like back-and-forth
scraping for roughness examination and scanning to locate haptic
features can be distinguished by basic velocity thresholds).
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