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Most current models of musculoskeletal dynamics lump a muscle’s mass with its body segment, and

then simulate the dynamics of these body segments connected by joints. As shown here, this popular
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approach leads to errors in the system’s inertia matrix and hence in all aspects of the dynamics. Two

simplified mathematical models were created to capture the relevant features of monoarticular and

biarticular muscles, and the errors were analyzed. The models were also applied to two physiological

examples: the triceps surae muscles that plantar flex the human ankle and the biceps femoris posterior

muscle of the rat hind limb. The analysis of errors due to lumping showed that these errors can be large.

Although the errors can be reduced in some postures, they cannot be easily eliminated in models that

use segment lumping. Some options for addressing these errors are discussed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Computer simulation of the dynamics of musculoskeletal
systems is an important tool in biomechanics. It is useful for a
wide range of problems, such as predicting the outcome of tendon
transfers (Delp and Loan, 2000), understanding multijoint move-
ments (Hollerbach and Flash, 1982), evaluating ergonomics
(AnyBodyTech, 2009), optimizing biomechanical performance
(Pandy et al., 1990; Kargo et al., 2002), developing neural
prostheses (Davoodi et al., 2007), and understanding the neural
control of movement (McKay et al., 2007; Berniker et al., 2009).
Software for musculoskeletal simulation is widely available today,
both from commercial vendors and open source software projects.

Most musculoskeletal simulators are based on algorithms for
multibody dynamics initially developed for simulating robots and
engineering machinery. At their core, they simulate chains of rigid
bodies connected by joints. The rigid bodies represent body
segments. Muscles apply forces on the rigid bodies, or torques at
the joints (via the muscle’s moment arm at the joint), using
physiologically reasonable constitutive models. Examples of these
types of simulators include software packages such as SIMM (Delp
and Loan, 2000), AnyBody (AnyBodyTech, 2009), MSMS (Davoodi
et al., 2007), and OpenSim (Delp et al., 2007), and many research
simulations, including those used in all the papers cited above.

How should muscle mass be accounted for in these types of
models of musculoskeletal dynamics? Muscles comprise the
majority of mass in many body segments, such as the human
upper arm and thigh, so this is an important decision that any
modeler has to make.
ll rights reserved.
One convenient method is to lump the mass of the muscle
along with the bones and soft tissues within a body segment; that
is, an entire body segment, such as the thigh, is modeled as a
single body in the model of dynamics. We will refer to this
method as ‘‘segment lumping.’’ This method appears to be widely
used in practice. Some authors explicitly state that they use body
segment inertial parameters (e.g., Pandy et al., 1990; Kargo et al.,
2002; Wu et al., 2008); many others do not specify how they treat
muscle mass at all, suggesting that they do not make any special
distinction from the body segment mass. Indeed, there is a
considerable literature on measuring body segment inertial
parameters (BSIPs) and scaling them appropriately (see Jensen,
1993; de Leva, 1996; Dumas et al., 2007, and the extensive
references therein).

Surprisingly, there has been little analysis of the effect of this
important modeling choice on the dynamics of the musculoske-
letal system. Muscles are mechanically coupled—through stiff
tendons—to physically distant joints and bones, so one may
suspect that the inertias of distal joints will be incorrectly
estimated by lumping muscles with their nearest body segments.
How large are these errors? Under what circumstances can these
errors be ignored and when are they likely to be significant? The
present study addresses these questions using models of
musculoskeletal systems that are as simple as possible to clearly
illustrate the effects of segment lumping.
2. Methods

Two mathematical models of simple musculoskeletal systems were

constructed and the errors from segment lumping analyzed. These models

were deliberately designed to have simple anatomical parameters so that readers

can verify the results themselves using pencil and paper calculations. The
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simplifications are generally conservative (see Appendix B). Generalization to

more complex musculoskeletal anatomy is conceptually straightforward but the

details may have to be buried in a software implementation which will obscure

the essential ideas.

Muscle mass influences the dynamics of the musculoskeletal system in two

distinct ways: it serves as a store of kinetic energy during movement, and as a

store of potential energy in a gravitational field. The equations of motion are

derived from these energies in Lagrangian mechanics and hence errors in

modeling energy produce errors in all aspects of dynamics. This paper focuses

on kinetic energy since it provides a concise description of the dynamic state of the

system and allows for direct comparison of approaches. The contribution of a

muscle’s mass to the biomechanical system’s kinetic energy is calculated for each

model, with and without segment lumping. This contribution is completely

characterized by the muscle’s generalized inertia matrix, Im , to be defined below.

The general approach is to parameterize the kinematics of the musculoskeletal

system in terms of a vector of n joint angles y¼ ðy1 � � �ynÞ
T , following the usual

practice in biomechanics. For simplicity of exposition, muscles and bones are

modeled as line segments with uniformly distributed mass along their lengths,

and total mass m. Following the standard practice in these types of biomechanical

models (e.g., Zajac, 1989; Cheng et al., 2000), the musculotendon is treated as a

unit actuator (which I will refer to as ‘‘muscle,’’ for short) whose behavior is

determined by its length and the time derivatives of length.

As the skeleton moves, the muscle must stretch or shorten between its origin

and insertion. The muscle is assumed to be sufficiently active so that it does not

buckle. Since the standard musculotendon unit model above ignores variations in

physical properties within the muscle, we will assume that it stretches uniformly.

The crucial point is that the muscle stretches and shortens during movement, and

hence the mass in the muscle must be moved in the direction of the stretch as

well, and will contribute to the system’s inertia.

The position of a material point p in a muscle is parameterized by an intrinsic

non-dimensional material coordinate sA ½0,1� (see Fig. 1); s¼0 at muscle origin

and s¼1 at insertion. The value of s remains fixed for a material point when the

material stretches.

The point’s velocity _p is related to the system’s joint angle velocity _y using the

material point’s Jacobian matrix Jm(s):

_p ¼
def

JmðsÞ _y: ð1Þ

Note that this Jacobian gives the three dimensional velocity of the point, and

should not be confused with other Jacobians that arise in biomechanics; for

instance, the moment arm Jacobian relating the rate of change of muscle length to

joint velocity.

The total kinetic energy of a muscle is therefore

Km ¼
1

2

Z 1

0

_pT _pmm ds¼
1

2
_y

T
mm

Z 1

0
JmðsÞ

T JmðsÞds

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼
def Im

_y: ð2Þ

This computation defines the muscle’s generalized inertia Im . It is the contribution

of the muscle’s mass to the system’s inertia, expressed in joint space. Generalized

inertia matrices are defined similarly for bones. The total inertia of the system is

the sum of these inertia matrices for each muscle and bone in the system.
Fig. 1. (M1) Planar musculoskeletal model with a monoarticular muscle labeled m,

two moving bones labeled 1 and 2, and a ‘‘grounded’’ bone. A reference coordinate

frame is shown attached to the ground. Bones are connected by revolute joints,

with joint angles y1 and y2, measured as shown. The muscle’s origin on bone 1 is

assumed, for simplicity, to coincide with the center of the first joint, and its

insertion on bone 2 to be offset by a distance r from second joint. The muscle and

bones are line segments with uniformly distributed mass along their lengths, with

total mass mm , m1, and m2, respectively. We can normalize all lengths by the length

of bone 2, without loss of generality, and hence we denote the bone lengths as l1¼ l

and l2¼1. (M2) Biarticular model. This is similar to M1 except that the muscle

origin is on the grounded bone, and offset by ro from the proximal joint.
2.1. M1: a monoarticular model

This is an idealization of the kinematically simplest muscles which span a

single joint, for instance, brachialis and soleus. See Fig. 1(M1).

The coordinates of a material point on the muscle, p, are given by

p¼
lcosy1þrcosðy1þy2Þ

lsiny1þrsinðy1þy2Þ

 !
s: ð3Þ

If the muscle is lumped with the segment of bone 1, the muscle’s mass moves

with the bone. The material point, pL, is still given by Eq. (3), but now y2 is fixed at

the angle at which the muscle was lumped (say, p=2).

2.2. M2: a biarticular model

This is a simplification of many common biarticular muscles, for instance,

biceps brachii, gastrocnemius, and biceps femoris in mammals. See Fig. 1(M2). The

coordinates of a material point on the muscle, p, are given by

p¼
0

ro

 !
ð1�sÞþ

lcosy1þrcosðy1þy2Þ

lsiny1þrsinðy1þy2Þ

 !
s: ð4Þ

If, on the other hand, the muscle is lumped with the segment of bone 1 in the

configuration y1 ¼ 0, y2 ¼p=2, the material point, pL, is given by

pL ¼
�rosiny1

rocosy1

 !
ð1�sÞþ

lcosy1�rsiny1

lsiny1þrcosy1

 !
s: ð5Þ

2.3. Numerical simulation

To investigate how inertial errors affect simulations, a specific monoarticular

model, based on M1, was created using the following parameters:

m1 ¼m2 ¼ mm ¼ 4:20 kg, l1¼ l2¼0.43 m, and r¼0.1. The parameters were chosen

to be approximately the mass and dimensions of the leg of a human male

weighing 70 kg, based on Dumas et al. (2007). Half the mass of link 1 (thigh) is

assumed to be in the muscle. The intent was not to construct an accurate model of

the leg (there is only one muscle in this model) but to pick reasonable values of the

parameters. Two numerical experiments were performed with this model; Matlab

source code for the experiments is included in the supplementary materials.

Experiment 1 measures trajectory errors due to segment lumping. Equations

of motion were derived using the standard Lagrangian formulation (e.g., see

Murray et al., 1994, Chapter 4), and numerically integrated over time. The kinetic

energy of the system is K ¼ 1
2
_y

T
I _y (see Eq. (2)); the potential energy V due to

gravity was modeled, with gravitational acceleration in the +x direction. Since the

goal is to understand the errors in modeling mass, viscoelastic forces in muscle

were not included in the simulation. Simulations were performed in Matlab

(Mathworks, Natick, MA), using ode45, their implementation of the Runge–

Kutta(4,5) numerical integrator.

Experiment 2 measures errors in forces and effective inertia at the end point of

the limb (see Appendix A).
3. Results

3.1. M1: a monoarticular model

Since we have an explicit expression for the kinematics of a
material point, Eq. (3), the Jacobian matrix Jm(s) is obtained by
differentiating it:

_p ¼
�lsiny1�rsinðy1þy2Þ �rsinðy1þy2Þ

lcosy1þrcosðy1þy2Þ rcosðy1þy2Þ

 !
s

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼
def

JmðsÞ

_y ¼ JmðsÞ _y: ð6Þ

Here y¼ ðy1 y2Þ
T , a vector of joint angles. Then the inertia of the

muscle (see Eq. (2)) is

Im ¼ mm

Z 1

0
JmðsÞ

T JmðsÞds¼
mm

3

l2þr2þ2lrcosy2 r2þ lrcosy2

r2þ lrcosy2 r2

 !
:

ð7Þ

Note (see caption of Fig. 1) that all lengths are normalized by
the length of bone 2. Using the same method, the inertias of bones
1 and 2 can be found, and the total inertia of the system
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is I ¼ I1þI2þIm.

I1 ¼
m1

3

l2 0

0 0

 !
, I2 ¼

m2

3

1þ3l2þ3lcosy2 1þ
3

2
lcosy2

1þ
3

2
lcosy2 1

0
BB@

1
CCA:
ð8Þ

If the muscle was lumped with bone 1 (with the insertion fixed
at y2 ¼ p=2) the muscle’s inertia matrix becomes1

I L
m ¼

mm

3

l2þr2 0

0 0

 !
: ð9Þ

Comparing I and I L, we see that the error in inertia is

E ¼ I�I L ¼ Im�I L
m ¼

mm

3

2lrcosy2 r2þ lrcosy2

r2þ lrcosy2 r2

 !
: ð10Þ

One can make several observations about the error. The
magnitude depends on the configuration of the body. There are
significant off-diagonal terms which means that the error couples
velocities of different joints, making it more difficult to remove
the error by calibration.

The error decreases with the insertion distance r. However, in
physiological conditions one cannot hope that r will be very small,
since this would also reduce the moment arm, and hence the
torque on the joint. Specifically, the moment arm of the muscle at
joint 2 is a2 ¼ lrsiny2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þr2þ2lrcosy2

p
. As r-0, both the inertia

error E and the moment arm a2 asymptotically decrease linearly
with r.

The error decreases in some postures. Eð1,1Þ is reduced to zero
when y2 ¼ p=2. But all other elements of the matrix will still have
an error of mm=3 � r2.

It is instructive to look at Eð2,2Þ, the error in self-inertia2

experienced during motions that only involve the second joint,
which is independent of the posture of the joint. This error,
relative to the segment lumped inertia I L used in current
models, is

e2,2 ¼
def Eð2,2Þ

I Lð2,2Þ
¼
mm

m2

r2: ð11Þ

Thus the error can be significant if r is large, and if the mass of the
muscle is large relative to the mass of the segment on which it
inserts.
3.2. Consequences of inertial errors for simulation

Errors in inertia affect all aspects of a dynamic simulation. In the
first experiment, the monoarticular leg model (Section 2.3) was
simulated, starting with the knee raised and dropping passively to
the ground. See Fig. 2. The two models, with and without lumping,
quickly diverge, with a 141 error in y2 within 300 ms. This also
results in errors in ‘‘foot’’ position; when the unlumped foot reaches
the ground, the lumped foot is still 2.9 cm above the ground. The
total energy remains essentially constant during simulation in both
the lumped and unlumped models, showing that energy is
conserved in both. The solutions diverge only because of the
differences in inertia. Thus we see that errors in inertia produce
errors that accumulate over time, rather quickly.

In a second experiment errors in the effective inertia of the
endpoint of the limb were computed and found to be large in
natural configurations (see Appendix A for details).
1 Substitute y2 ¼ p=2 in Eq. (3) and recompute Im.
2 The ‘‘self-inertia’’ of joint n is I ðn,nÞ: the inertia experienced if you move just

that joint.
3.3. M2: a biarticular model

Once again, we can simply differentiate the expression for the
kinematics of a material point, Eq. (4), to obtain the Jacobian
matrix Jm(s). It turns out to be the same expression (Eq. (6)) we
obtained for example M1; this is not surprising, since in M1 the
muscle origin is assumed to be at the center of the first joint, and
hence also has zero velocity, just like M2. Indeed, M1 is a special
case of M2, with the origin offset, ro, set to zero. Thus Im is also
the same as in our example M1 and is given by Eq. (7).

The main difference is that when the muscle is lumped with
bone 1 the muscle’s inertia matrix becomes a bit more
complicated. If segment lumping was performed in the posture
y1 ¼ 0 and y2 ¼ p=2,

I L
m ¼

mm

3

l2þr2þroðrþroÞ 0

0 0

 !
: ð12Þ

When ro-0, Eq. (12) becomes the same as Eq. (9), as one would
expect. When ro-r, I L

mð1,1Þ-mmðl
2=3þr2

o Þ, as one would predict
from the parallel axis theorem.

Comparing I and I L, we see that the error in inertia is now

Im�I L
m ¼

mm

3

2lrcosy2�roðrþroÞ r2þ lrcosy2

r2þ lrcosy2 r2

 !
: ð13Þ

Interestingly, the error in the I ð2,2Þ element, the inertia
experienced during motions that only involve the second joint, is
the same as in the M1 case (Eq. (11)). Therefore, monarticular and
biarticular muscles can be combined when estimating this
important error.
3.4. Human triceps surae

A simplified model of the triceps surae of the human ankle,
comprising gastrocnemius and soleus, is shown in Fig. 3. We will
compare the contributions to I ð2,2Þ, the self-inertia of ankle joint,
due to the mass of the foot and triceps surae.

Based on Sections 3.1 and 3.3, the formulae are identical for
the monoarticular soleus and the biarticular gastrocnemius. The
masses of the two muscles were estimated based on Wickiewicz
et al. (1983) to be 0.215 and 0.158 kg, respectively, for a muscle
mass of mm ¼ 0:373 kg. The insertion distance from the ankle joint
was estimated from Binder-MacLeod et al. (2009) to be r¼42.7
mm. This is the average measured moment arm when the foot is
plantarflexed by 101. This angle was chosen to maximize the
moment arm, which is a conservative estimate since r is always
greater than the moment arm at any angle. With these values,
Imð2,2Þ ¼ 0:227� 10�3 kg m2.

The inertia of the foot about the ankle was computed from
anthropometric data in Dumas et al. (2007, Table 2). The values
were averaged for males and females, since the sex and body
segment dimensions of the subject were not reported in
Wickiewicz et al. (1983). Scaled to a total body mass of 70 kg
and an average foot length of 0.249 m, we estimate
I f ð2,2Þ ¼ 2:98� 10�3 kg m2.

Therefore just the triceps surae (which account for about half
the muscle mass in the shank) contribute an additional 7.6% to the
self-inertia of the ankle joint, which is erroneously ignored if the
muscle mass is lumped with the shank segment. These numbers
are approximate as anthropometric data were combined from
different sources and subjects, but it is clear that such errors due
to segment lumping are quite large.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−50

0

50

100

150
Joint angles θ

A
ng

le
 (d

eg
re

es
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−5

0

5

10

15
Error in joint angles

A
ng

le
 (d

eg
re

es
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−10

0

10

20

30

40
Distance to ground

D
is

ta
nc

e 
(c

m
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−40

−20

0

20

40
Energy

Time (s)

E
ne

rg
y 

(J
)

θ1

θ2

θ1
L

θ2
L

error in θ1

error in θ2

unlumped
lumped

kin.
pot.
tot.
kin.L

pot.L

tot.L
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3.5. Rat biceps femoris posterior

Biceps femoris posterior (BFp) is a broad biarticular muscle
that inserts on the tibia of the rat hind limb and plays an
important role in locomotion. See Fig. 4. It is instructive to
compare the contributions to self-inertia of the knee joint from
the BFp and the bones of the shank. This is similar to the
computation in Eq. (11), with the shank segment replaced by the
shank bones. From the measurements of Johnson et al. (2008),
r¼0.42. The relevant masses were measured by dissecting an
adult female Sprague–Dawley rat (300 g) in the laboratory of Prof.
Matthew Tresch, using protocols approved by the Northwestern
University ACUC. Tibia and fibula together weighed
mtibfib ¼ 0:801 g, and BFp had a wet weight of mBFp ¼ 2:046 g
(a number which is consistent with the published results of Eng
et al., 2008, who measured both heads of BF together). Then

IBFpð2,2Þ

I tibfibð2,2Þ
¼
mBFpr2

mtibfib

¼ 0:45: ð14Þ

Therefore, ignoring BFp’s contribution to the self-inertia of the
knee as a consequence of segment lumping is comparable to
ignoring 45% of the mass of the bones of the shank.
4. Discussion

The preceding analyses and numerical examples show that
errors in inertia due to the common practice of segment lumping
can be quite large and variable, changing with body posture and
coupling the velocities of different joints. The errors can be



Fig. 3. Human triceps surae.

Fig. 4. Rat biceps femoris posterior.
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reduced in some postures but cannot be easily eliminated. The
examples suggest that even the smallest errors can be quite large.
The errors are likely to remain even if more details, such as soft
tissue and muscle wobble, are included (Appendices B and C),
since the errors are due to the fundamental inertial coupling of a
muscle to distal joints.

Errors in inertia lead to errors in all aspects of a dynamic
simulation. They directly translate into errors in predicted muscle
forces and computed accelerations (which are integrated over
time and hence accumulate). Inertia errors are likely to have a
significant effect in highly dynamic simulations involving impacts
and friction, such as tapping with a finger, throwing a ball, or
kicking with a toe. For impacts with impulsive loads, such as
during running or landing on one’s feet, errors in inertia will cause
proportional errors in the velocity change after impact.

What can be done about these errors?
One option is to do nothing. This has the advantage of

convenience, since both software and body segment inertial
parameters (BSIPs) are easily available. Some applications may
have high error tolerance; indeed, dynamic simulations are
sometimes used to answer essentially kinematic or static
questions. Questions about muscle moment arms and isometric
forces are of this type, and may not be affected by errors in
dynamic simulation.

A second option is to explicitly include muscle mass within a
musculotendon unit model. Most current models of musculoten-
don units are massless (Zajac, 1989). Some models include a
muscle mass parameter but use it only for stabilizing the internal
dynamics of the contractile element (e.g., Virtual Muscle, Cheng
et al., 2000, uses mass in this way and to scale the physiological
cross-sectional area of the muscle). To contribute to the
musculoskeletal system’s dynamics, the acceleration of the
muscle mass must be coupled with the acceleration of the body
segments and must not be solved for independently. This will
require a non-trivial change to existing simulators, similar to the
inclusion of closed kinematic loops. Another challenge is that
individual muscle masses are now required for simulation, rather
than just BSIPs.

A third option is to compute the full contribution of each
muscle to the joint space inertia matrix, Im, as suggested in this
paper (Eqs. (2) and (7)). This has the advantage of retaining
current models of force generation in muscle while accounting
better for the muscle’s mass. In principle, existing simulators
could be revised to incorporate Im fully. One challenge is how to
adapt the fast linear time algorithms developed for serial multi-
body chains, while retaining their efficiency. It may be possible to
design such efficient algorithms, as many previous fast algorithms
are implicitly based on exploiting matrix sparsity (Pai et al., 2000).
This also requires individual muscle masses.

A final option is to use muscle models based on continuum
mechanics (for instance, finite element models (FEM), e.g.,
Blemker and Delp, 2005, or strands, Sueda et al., 2008). These
models represent muscle mass at nodal points within a muscle,
and therefore account for not only the total mass of the muscle
but also for changes in mass distribution within muscle during
movement. FEM models with volumetric elements are very
general but can have significant computational cost and modeling
complexity. Fully dynamic FEM simulations have therefore been
limited to small numbers of muscles and joints. Strand models use
one dimensional elements that can curve in space and represent
the dynamics of a set of fibers, such as muscle, tendon, or fascicle.
They are designed for large scale musculoskeletal simulation for
motor control, with many constraints such as tendon sheaths. A
challenge for both models is that they need the distribution of
muscle mass and material properties within muscle.

Perhaps the most important observation here is that a muscle’s
mass can influence the self-inertia of joints that are physically
distant and distal to it. This is impossible in kinematic chains of
rigid bodies that are widely used in current biomechanical
models; the mass of a proximal body has no effect on the
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self-inertia of a distal joint in those models. The analysis
presented here shows, for example, that the self-inertia of the
distal interphalangeal joint of the finger is influenced not only by
the mass of the tiny distal phalanx, but also of the larger extrinsic
muscles in the forearm. This may be a useful physical principle
exploited by nature for dealing with large and impulsive loads on
the extremities.
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