
In Proceedings of ISMAR 2006

An Event Architecture for Distributed Interactive Multisensory Rendering

Timothy Edmunds∗

Rutgers University
Dinesh K. Pai†

Rutgers University

ABSTRACT

We describe an architecture for coping with latency and asynchrony
of multisensory events in interactive virtual environments. We pro-
pose to decompose multisensory interactions into a series of dis-
crete, perceptually significant events, and structure the applica-
tion architecture within this event-based context. We analyze the
sources of latency, and develop a framework for event prediction
and scheduling. Our framework decouples synchronization from
latency, and uses prediction to reduce latency when possible. We
evaluate the performance of the architecture using vision-based mo-
tion sensing and multisensory rendering using haptics, sounds, and
graphics. The architecture makes it easy to achieve good perfor-
mance using commodity off-the-shelf hardware.

Keywords: multimodal interaction, augmented reality, multisen-
sory, synchronization, latency, mixed reality, virtual environments

1 INTRODUCTION

In augmented reality (AR) applications, the user’s productivity and
sense of seamlessness can be destroyed by latency between the
user’s input and the system’s response, and asynchrony between the
system’s different output sensory modalities. This is particularly
important in multisensory environments in which it is necessary to
control and synchronize a large number of specialized sensors and
display devices, each controlled by different computers over a local
area network.

A well known approach to reducing latency and asynchrony is to
make predictions about the future interactions between the user and
the system. The limitations of the human body make it possible to
perform two distinct types of prediction: continuous and discrete.
Prediction of continuous future state is possible because inertia and
muscle dynamics cause human movement to be relatively smooth;
once a body part is in motion, it tends to continue that motion. For
example, a virtual golf simulation might predict the trajectory of a
golf swing in order to graphically render the motion of the club.

The second type of prediction that can be used to improve la-
tency and synchronization is the prediction of discrete interaction
events. Many VE and AR applications involve discrete decisions
by the user; after the decision is in the user’s mind, the body takes
time to physically manifest the decision. Following the virtual golf
example above, the application might not be concerned with the
precise trajectory of the golf club throughout the user’s swing; in-
stead, the important aspect of the interaction is the moment when
the club makes contact with the ball, triggering the rendering (e.g.,
graphically, acoustically, and haptically) of the ball’s launch. Cor-
rectly predicting this event, rather than the entire club trajectory,
is likely to be both more important (given that the motion of the
club is a perceptual blur), and simpler (since the speed of a golf
swing would require a very high frequency tracking sensor to yield
enough readings to accurately predict the entire trajectory).

∗e-mail: tedmunds@cs.rutgers.edu
†e-mail:dpai@cs.rutgers.edu

Augmented
surface
projection

Vicon tracking
markers

Audio
loudspeaker

iFeel
haptic mouse

Figure 1: Multisensory PONG! This simple game demonstrates the
issues arising in many distributed interactive virtual environments.
The user input is measured (using an optical motion capture mark-
ers), and the game logic has to render the virtual world in time,
with graphics from a projection display, sound from loudspeakers,
and haptic forces from a force feedback mouse.

The ability to generate advanced warning of user actions prompts
us to develop an event based architecture for interactive applica-
tions.

When considering discrete events in AR, other aspects of the hu-
man user affect the design decisions. Specifically, characteristics
of the user’s perception affect the interpretation of output stimuli as
cohesive events. Psychophysical studies yield intermodal and in-
tramodal thresholds beyond which stimuli are perceived as separate
events (see § 2). These thresholds impose design requirements for
the synchronization of output rendering across sensory modalities.

Our Contribution is a flexible, easy-to-implement distributed
architecture for rendering multisensory spatio-temporal events with
low latency and good synchronization. Our approach decouples
the prediction of system state from synchronization of multisen-
sory output, and can be run on commodity consumer level com-
puters and networks. We show that structuring multisensory AR
applications within an event-based architecture simplifies the prob-
lem of reducing both the relative latency between the rendering of
multisensory aspects of the same event, and the end-to-end latency
between the occurrence of the event and its perception by the user.

The rest of this paper is organized as follows: in § 2 we dis-
cuss related work, including some psychophysical results that in-
fluence our design choices. § 3 contains an analysis of latency and
asynchrony in an interactive application pipeline. We present our
general-purpose architecture in § 4. In § 5 we give a proof-of-
concept evaluation of how our architecture can be used to achieve

197



In Proceedings of ISMAR 2006

latency bounds imposed by human perception. Finally, in § 6, we
describe a concrete example implementation that illustrates how our
architecture can be used to develop multi-modal spatio-temporal
event based interactive applications.

2 RELATED WORK

Many papers proposing architectures for distributed interactive ap-
plications present specific codebases, APIs, or communications
protocols [32, 4, 16, 30, 29, 25, 8, 21]. Our intent is to provide a
design pattern for distributed multisensory interactive applications
that can be flexibly applied in a manner independent of the underly-
ing application development environment, and that can be easily in-
corporated in mixed model architectures that could allow a broader
class of applications [17].

The purpose of our architecture is to address two key issues: sys-
tem latency (the delay between a user signalling a decision and the
system rendering the appropriate response), and cross-modal syn-
chronization (the temporal separation between different aspects of
a single event being rendered). The impact of these two issues on
interactive applications is well-recognized [9, 18, 17, 21, 4], and
a number of methods to address them have been proposed in the
context of VE and AR applications.

Most of the work on distributed interactive applications (like
shared virtual worlds [20, 16, 21, 30, 25] and cooperative
workspaces [5, 29]) focusses on accurately replicating state be-
tween different sites, where a different user (or set of users) ex-
periences each “subjective” [26] interpretation of the shared state.
In multimodal applications, we must be concerned with the repli-
cating a single subjective interpretation of the state across different
sensory modalities.

The coordination of different sensory modalities at a single site
is usually left to be handled by a single powerful machine [25],
likely making use of multiprocessor hardware [4]. However, build-
ing multimodal systems often requires (or is simplified by) separate
machines to control independent hardware for some or all of the
sensors or rendering systems, and a desirable architectural feature
is the ability to connect different local components of the applica-
tion over a network.

Distributing replicated state over a network is the goal of many of
the approaches mentioned above, but the techniques used to address
replication between different users are often unsuitable for replica-
tion between different aspects of a single user’s experience. For
instance, tradeoff between local responsiveness and the frequency
of replication inconsistencies [21] addresses the need for replica-
tion correctness, but comes at the cost of increased end-to-end la-
tency; when dealing with AR, this cost is particularly problematic,
since the real world cannot be time-shifted, and always provides a
baseline against which other latencies are measured. Relaxing the
synchronization by allowing temporary or slight inconsistencies [8]
can result in conflicting cues in the user’s perception; the applicabil-
ity of such constraint relaxation approaches is bounded by human
perceptual characteristics.

Previous work in the AR field has recognized the impact of
latency on the user’s experience [22], and the various contribu-
tions to latency found in typical AR applications have been cate-
gorized [22, 35, 12]. These works have also established the impor-
tance of latency measurement as the precursor to latency elimina-
tion. However, the analysis and solutions presented in those papers
was set in the context of single machine, single output modality AR
applications, whereas we are also concerned with multisensory out-
put applications (particularly the case where different machines are
producing different components of the output). The incorporation
of multiple output modalities adds new sources of lag to the latency
analysis (and new psychophysical constraints to the latency require-
ments). The desire to host AR applications on locally distributed

systems also calls for further techniques for latency reduction.
When rendering multiple simultaneous signals that are intended

to be perceived as a single stimulus, we must quantify what tempo-
ral range qualifies as “simultaneous”. Psychophysical studies have
shown that the modality of the signals affects the temporal thresh-
old within which simultaneity is perceived. Whereas two sounds
must occur within 2 ms of each other to be perceived as a single
sound [14], the sight/sound asynchrony threshold has been mea-
sured at values ranging from as high as 175 ms [23] to as low
as around 75 ms [14, 7]. The touch/sound threshold is approxi-
mately 24 ms [1, 6], and the touch/sight threshold is approximately
45 ms [34] (but has been seen to vary with attention). These percep-
tual thresholds dictate the synchronization that must be maintained
between output renderers to provide a consistent experience by the
user.

Even as LAN speeds and clock synchronization algorithms [27]
advance to approach the behaviour of a multiprocessor machine, the
sensors and rendering devices used impose a minimum end-to-end
latency from direct signal detection to system response. Advances
in sensor and rendering hardware can lower this minimum [28],
but with current and foreseeable systems, there is an unavoidable
latency floor that establishes a need for the prediction of future state.

A major application for the prediction of future state is head
tracking for use in immersive VR [9] and head-mounted AR [2].
When determining user head orientation for AR, latency results in
registration errors during movement [2, 3]; in VE, the visual arti-
facts due to latency can cause performance degradation, loss of im-
mersion, and nausea [31, 18]. Predictive compensation (constantly
estimating real current head orientation from old measurements) is
a widely explored [10, 13, 15, 19, 3] remedy to this problem.

This type of continuous state prediction is the one most com-
monly seen in the literature. In contrast, our approach is to focus on
the prediction of when and where discrete system events (including
user input) will occur (this approach was introduced in [24]). The
focus on discrete events rather than on continuous state highlights
different issues. For example, continuous prediction is robust with
respect to the occasional spurious prediction (which will only elicit
a momentary blip in the user’s perception) whereas with discrete
prediction, it is more important that every prediction be (close to)
correct. Slight errors in the time/location at which an event is pre-
dicted will likely to go unnoticed by the user (whereas even small
persistent errors in continuous head tracking will cause perceptible
registration problems).

3 ANALYSIS OF LATENCY AND ASYNCHRONY

The goal of our event prediction architecture is to eliminate the la-
tency between real-world events and the synthesized response to
them, and the asynchrony between different modalities in respond-
ing to the same event. To understand our approach to achieving this
goal, we must examine the factors that contribute to the existing
latency.

Our model of the data-flow within the system is that state
data flows from sensors to controllers, where events are de-
tected/predicted and dispatched to renderers. This model can be
illustrated by charting the time-line of one piece of data as it flows
through a naı̈ve implementation of the system (see Figure 2(b)).

Let tevent be the time when a renderable event occurs, at which
point the world is in state sevent . Let tin = tevent + δin be the
time at which the sensor begins processing the sevent data (δin in-
cludes both the time it takes for real world phenomena to reach
the sensor and the processing overhead involved in such activi-
ties as sampling, buffer reading, etc.). The sensor then processes
the sevent data (for example, an optical tracking sensor might per-
form 3-D reconstruction, temporal filtering, etc.), and produces a
sensor reading, revent at tsensed = tin + δsense; for the purposes of

198



In Proceedings of ISMAR 2006

network network
Sensor Application Renderer

(a) General Application dataflow

Sensor Detector Immediate
Renderer

tevent tin tsensed tnoti f ied tdetected talerted trendered tperceived
δin δsense δnoti f y δdetect δalert δrender δout

pertinent
state

sensor data
acquired

state
sensed

state
arrives

event
detected

event
received

rendering
initiated

output
perceived

δtotal
(b) Naı̈ve timeline

Sensor Predictor Scheduled
Renderer

t ′event t ′in t ′sensed
t ′noti f ied t ′predicted t ′alerted t ′rendered

t ′perceived
(= tevent )

δin δsense δnoti f y δpredict δalert scheduled wait ≥ δrender δout

predictive
state

sensor data
acquired

state
sensed

state
arrives

event
predicted
(tevent )

event
received

rendering
initiated

output
perceived

≤ θ f orecast

(c) Predictive timeline

Figure 2: (a) In general, an interactive application has a dataflow from the real world, through a sensor, through the application logic, then
through a renderer, and finally back through the real world to the user. (b) Each component of the latency in the näıve event-based application
contributes directly to the end-to-end latency. (c) In the predictive event-based application, the timeline begins at an earlier state from which
the event can be predicted; predicting the correct time to initiate rendering results in an output perception time that coincides with the real
world pertinent state.

this discussion, the tsensed is the value timestamped onto the sen-
sor reading. revent (and timestamp) is sent (e.g., over the network)
to the controller, arriving at time tnoti f ied = tsensed + δnoti f y. In
the naı̈ve system, the controller checks to see whether revent im-
plies that a renderable event has occurred; if it has, an event is dis-
patched (at time tdetected = tnoti f ied + δdetect ) to the renderer. This
overhead δdetect could include the computation necessary to esti-
mate hand configuration from pressure sensor data in order to do
gesture detection. The event arrives (over the network) at time
talerted = tdetected + δalert , and (in the naı̈ve system) the renderer
“immediately” (at time trendered = talerted + δrender) initiates ren-
dering of an appropriate stimulus, which is perceived by the user at
time tperceived = trendered +δout . In addition to real-world transmis-
sion from the output device to the user’s sensory organs, δout in-
cludes overhead added by the operating system, the device drivers,
and the hardware itself. The end-to-end latency for the naı̈ve sys-
tem is thus δtotal = δsense +δnoti f y +δdetect +δalert +δrender +δout .
This means that the rendered stimulus will be perceived δtotal too
late.

As developers of an application using a given set of sensors
and rendering devices, we only have control over certain parts of
this time-line. Even if the controller and render applications are
implemented with no computational or communication overhead
(i.e., δdetect = δalert = δrender = 0), there will still be some latency
(δin + δsense + δnoti f y + δout ) between an event occurring and the
user perceiving the system’s response to the event. This shows that
rendering of an event must be initiated before the controller is noti-
fied of the sensor reading corresponding to the event; i.e., the event
must be predicted from previous states reported by the sensor.

We classify the identified sources of latency into two categories:
those which can be circumvented, and those which must be compen-
sated for. Recall that we defined tsensed to be the time with which
the sensor reading is stamped. If all the application’s machines

are working to a common clock, δnoti f y, δdetect , δalert , and δrender
can all be circumvented by prediction; if (from revent ) we can pre-
dict the event at least δcircumvent = δnoti f y +δdetect +δalert +δrender
in advance, they will not affect the perceived end-to-end latency.
However, since δin, δsense, and δout represent latencies before time-
stamping and after rendering, they will be manifest no matter how
far in advance the event is predicted. These latencies must be com-
pensated for by offsetting the rendering time.

4 SPATIO-TEMPORAL EVENT ARCHITECTURE

4.1 Programming Model

Our model of a multisensory inter-
Controller

Controller

Sensor

Sensor

Sensor

Sensor

Renderer

Renderer

Renderer

Renderer

Figure 3: Generic archi-
tecture of an interactive
multisensory virtual en-
vironment

active system incorporates three enti-
ties: sensors, controllers, and render-
ers (Figure 3). The sensors continu-
ally send time-stamped measurements to
the controllers. The controllers decide
what spatio-temporal events are render-
able and predict when and where these
events will occur. The event predic-
tions are sent to renderers that schedule
and manifest appropriate output for the
event. The important point is that this decouples the latency (which
depends on how prediction is accomplished) from synchronization
(which depends on the accuracy with which the clocks on different
machines are synchronized and on the variance of only δout , the last
link in the chain).
4.2 Synchronization

Our architecture relies on accurate clock synchronization to com-
pensate and circumvent timing problems. Fortunately, robust dis-

199



In Proceedings of ISMAR 2006

tributed clock synchronization is a well studied problem [27]. We
will assume that the clocks on each node in our network have been
synchronized as closely as desired. For most human interactions,
clock synchronization to within a millisecond is sufficient and easy
to achieve even on consumer operating systems. We used a simple
multicast protocol to synchronize the clocks in our network.

4.3 Event Scheduling

Suppose now that we can forecast (perfectly), θ f orecast time units
in advance, the time and location at which the event will occur.
This means that we will be able to dispatch the event at time
t ′predicted = tdetected − θ f orecast to the renderers, who will be able
to initiate rendering at any t ′rendered ≥ trendered − θ f orecast . To cor-
rectly synchronize the output, we want t ′rendered = trendered −δtotal ;
we will thus be satisfied provided θ f orecast ≥ δtotal (see Figure 2(c).

The above reasoning provides us with an estimate of how far
into the future we must be able to forecast, but it leaves unresolved
the question of exactly when to initiate rendering. The analysis in
§ 3 assumes that the latencies quoted are consistent; compensation
using a fixed offset will result in the transmission of any latency
variation through the the end-to-end perceived latency. In the naı̈ve
system, since the playback scheduling is “as soon as possible”, the
variability in every component of the latency contributes directly to
the variability of the end-to-end latency. Analyzing the proposed
architecture, it is important to reemphasize the two categories of
latency; variation in δcircumvent (provided the variation is bounded)
will not be transmitted, but variation in δin, δsense, and δout will.
Thus it is the temporal consistency of the sensors and renderers
(not of data and event transmission) that is most important in main-
taining the quality of the output in this architecture. Only the input
and output latencies (δin, δsense, and δout ) need to be compensated
for when choosing the time at which to initiate rendering (t ′rendered).
Since the prediction horizon builds in sufficient time to dispatch the
event, a scheduled wait is introduced into the final phase of the ar-
chitecture; this wait time acts as a buffer that absorbs the variation
in δcircumvent .

While we assumed above that we can forecast arbitrarily far into
the future, our analysis establishes a bound for the minimum fore-
cast horizon necessary to compensate for a given set of sensors and
renderers and to circumvent the latency introduced by the applica-
tion’s logic.

5 EVALUATION

To test the feasibility of our spatio-temporal event architec-
ture, we implemented a simple application that allows for pre-
cise measurement of the end-to-end latency of the entire sens-
ing/prediction/rendering system.

The sensor input to our application consists of motion-tracking
measurements of a probe’s position. The measurements are ob-
tained from a six-camera motion capture system [33] that tracks
the location of optical markers on the probe and reconstructs the
probe’s position and orientation at approximately 120 Hz.

The event that this test detects/predicts is the impact of the tip of
the probe with the surface onto which it is dropped from a height
of about 40 cm. The system responds to the event by playing a col-
lision sound over a loudspeaker and/or by rendering a force pulse
on a haptic mouse [11]. Please see the accompanying video for an
illustration of the environment setup. The test was implemented
on a collection of 4 commodity PCs (ranging from a 2 GHz dual
processor Xeon to a 3.2 GHz Pentium 4) connected by a gigabit
network. The distributed components are Java applications running
under Windows XP (except the sound renderer, which is a Java ap-
plication running under Fedora Core 2 controlling an RME Ham-
merfall DSP).

0 50 100 150

-1

0

1

Recorded Signal (ms)

R
ea

l I
m

pa
ct

-1

0

1

Sy
nt

he
tic

 A
ud

io

-1

0

1

H
ap

tic
 V

ib
ra

tio
n

(a) Isolated signal recordings

-1

-0.5

0

0.5

1

N
ai

ve
 A

ud
io

← real impact
audio response →

← latency ≈ 70 ms →

-1

-0.5

0

0.5

1

N
ai

ve
 H

ap
tic

↓ real impact
↓ haptic response

←latency ≈ 40 ms→

(b) Naı̈ve solution latency

-1

0

1

C
or

re
ct

ed
 A

ud
io ← real impact and audio response

-1

0

1

C
or

re
ct

ed
 H

ap
tic ↓ real impact and haptic response

0 50 100 150
-1

0

1

C
or

re
ct

ed
 B

ot
h ↓ real impact and audio response and haptic response

(c) Our solution

Figure 4: Audio recordings of the evaluation application. (a) shows
the shape of the real impact sound as well as the sounds recorded
from isolated playback of the audio and haptic responses. (b) shows
typical examples of the latency between the real stimulus and the sys-
tem’s response under the näıve solution - note that the microphone
placement for the haptic recording is such that the real impact sound
is more muffled. (c) show the effect of using our event prediction
model to reduce the latency between the real stimulus and the sys-
tem’s response - the two signals (three in the final plot) coincide.

200



In Proceedings of ISMAR 2006

For this application, the pertinent psychophysical thresholds are
for auditory intramodal (2 ms) and audio-haptic intermodal (24 ms).
To time the actual outputs, we exploit the fact that haptic devices
can not avoid making a sound when they apply a force, and the
probe also makes a sound when it hits the surface. By recording the
output sounds from all devices (loudspeaker, haptic mouse, actual
collision) with a single microphone, we can achieve accurate timing
(better than 0.1ms) and perfect stimulus synchronization.

The recordings of the naı̈ve solution (Figure 4 (b)) show sig-
nificant delay (greater than the perceptual thresholds) between the
onset of the real event and the system’s response.

Observing the mean end-to-end latency observed in the naı̈ve
implementation, a simple kinetic predictor with a forecast hori-
zon of 90 ms was implemented; tuning of the compensation offset
yielded successful latency correction (Figure 4 (c) shows that the
asynchrony between the real sound and the synthesized response is
within the desired thresholds) with an 82 ms offset for the audio
renderer and a 50 ms offset for the haptic renderer.

As well as showing the capability of the spatio-temporal event
architecture to synchronize synthetic rendering with real phenom-
ena, this evaluation application also reveals some of the boundaries
of a system’s effectiveness. Although the prediction architecture
circumvents the internal latency, the variation in the compensated
latency is transmitted (see § 4.3). This can be seen by examining the
final two plots in Figure 4 (c); the location of the distinctive haptic
onset varies within the ringing of the real impact sound, due largely
to the maximum temporal resolution at which haptic playback can
be initiated.

The sensor is the other aspect of this application’s data chain that
cannot be fully controlled. In the case of the Vicon sensor, the tem-
poral variation arises from the preprocessing done by the motion
tracker coupled with the fact that the data frames are sequentially
numbered, rather than actually time-stamped.

6 EXAMPLE APPLICATION

As well as our feasibility evaluation, we implemented an example
AR application to illustrate how the spatio-temporal event predic-
tion architecture can be scaled to meaningful application domains.
Our application is a PONG-derivative table-top game incorporating
multimodal user interaction. See Figure 1.

The playing surface and the virtual PONG ball are displayed on
the table’s surface using overhead video-projection. The user grasps
and manipulates an iFeel haptic mouse, which is tracked by the Vi-
con motion tracking system. When a collision occurs with the vir-
tual paddle represented by the mouse, the virtual ball is redirected,
and a haptic pulse and a collision sound are rendered. Audio feed-
back is also used to perceptually reinforce ball bounces off the side
walls and the ball dropping off the table when the player fails to
intercept it.

To highlight the distributed flexibility of our architecture, the ex-
ample application is structured with each system component run-
ning on a different commodity PC. Figure 5 illustrates the different
components and the communication between them.

The Event Predictor uses the Vicon tracking information to de-
termine when and where the user intercepts the PONG ball with
the virtual paddle. In order to ensure that notification of changes to
the ball’s trajectory arrive at the renderers in time to allow coherent
rendering, the interceptions must be predicted in advance. The time
and location (and bounce angle) of the next interception is predicted
by extrapolating the mouse’s trajectory (assuming constant acceler-
ation) from the most recent tracking information. If an interception
is found within the forecast horizon (a tuneable parameter), an in-
terception event is dispatched to the renderers. Since the renderers
need to know in a timely manner about other events that affect the
ball’s trajectory (like wall bounces and miss-line crossings), if no

Event
Predictor

VICON

Haptic
Renderer

Graphical
Renderer

Audio
Renderermouse

positions

launch events
score events
wall events
interception events
miss events

interception events

miss events
interception events
wall events

Figure 5: Distributed Structure

interception is found within the forecast horizon, but another sys-
tem event will occur before the end of the forecast period, that event
is dispatched to the renderers.

Three renderers are used in this application to create the user
environment. The simplest is the Haptic Renderer that drives the
iFeel’s vibration motor in response to interception events. The Au-
dio Renderer is similar to the Haptic Renderer in that it receives
events relating to changes in the PONG ball’s trajectory and sched-
ules playback to contribute to the user’s perception of impact (with
different audio cues for paddle hits, wall bounces, and misses). The
Audio Renderer’s playback scheduling is more precisely controlled
than in the Haptic Renderer; instead of waiting until the appointed
time to begin playback, the Audio Renderer is constantly writing
(silence) to the rendering hardware, and the response sounds are in-
serted into the written stream at the appropriate location to achieve
the desired timing. The lower-level control provided by the hard-
ware interface allows the application programmer to reduce the
variation in δout for this modality (relative to the Haptic Renderer,
where δout is subject to the timing vagaries of the iFeel API and
USB communication).

The final output device is the Graphical Renderer, which uses
structured-light reality augmentation to display the virtual PONG
ball and the field of play on a blank table top. Since the unperturbed
behaviour of the ball is deterministic, the Graphical Renderer only
needs to be informed of the spatio-temporal events corresponding to
changes in the ball’s trajectory (launches, wall bounces, paddle hits,
misses) or to other changes in the game state (e.g., score increases
when the ball crosses the centre-line). The accompanying video
shows the game in action.

This example is intended to show how our architecture is used in
a meaningful (if simple) real-world application. The use of spatio-
temporal event prediction allows for responsiveness in the inter-
action between real and virtual elements of the environment, and
also facilitates the synchronization of the different modalities (vi-
sual, auditory, and haptic). By ensuring that the forecast horizon is
sufficiently large to allow in-time rendering by the different render-
ers, the different modalities combine to reinforce the perception of
seamlessness between real and virtual.

7 CONCLUSIONS

We described a simple, yet surprisingly effective, architecture for
distributed rendering of multisensory events. Based on our experi-
ments, we make the following observations.
• Separation of latency from synchronization is easy in our archi-

tecture, and significantly reduces asynchrony. For further improve-
ments, it is sufficient to focus on the renderer latency and clock
synchronization.
• The effect of latency variation on synchronization makes ac-

curate time-stamping of sensor data a worthwhile area of focus.

201



In Proceedings of ISMAR 2006

For example, in using Vicon’s real-time output as our sensor, we
observed that Vicon’s “sensor readings” include temporal filtering,
and can arrive at variable rate, but are stamped with a frame-number
which is not consistently correlated with the time a given state oc-
curred.
• Although not all AR applications can be structured in a purely

event-based architecture like we have described (e.g., those where
tracking is tightly coupled with output on a frame-by-frame basis),
hybrid architectures could be implemented that combine an event-
based structure with additional data-paths where necessary for con-
tinuous phenomena.
• The calibration of the forecast horizon and the latency com-

pensation offset should be performed sequentially in two phases.
The presence of a sufficient forecast horizon allows the pertinent
compensatable latencies to be isolated.
• Simple predictive models are often sufficient to achieve the

necessary forecast horizon. In our applications, simple 1-D and
2-D kinetic predictors were sufficient to obtain adequate results.
While domain knowledge of the mechanics of an interaction could
facilitate more sophisticated prediction models, it is worth noting
the effectiveness of easy-to-implement solutions.

Acknowledgements: This material is based on work sup-
ported in part by NSF grants IIS-0308157, EIA-0215887, ACI-
0205671, EIA-0321057, NIH(CRCNS) grant R01 NS50942, and
SimQuest LLC.

REFERENCES

[1] Bernard D. Adelstein, Durand R. Begault, Mark R. Anderson, and
Elizabeth M. Wenzel. Sensitivity to haptic-audio asynchrony. In
Proceedings, 5th International Conference on Multimodal Interfaces,
pages 73–76, 2003.

[2] Ronald Azuma. A survey of augmented reality. Presence, 6(4), 1997.
[3] Ronald Azuma and Gary Bishop. Improving static and dynamic reg-

istration in an optical see-through hmd. In SIGGRAPH ’94: Proceed-
ings of the 21st annual conference on Computer graphics and interac-
tive techniques, pages 197–204, New York, NY, USA, 1994.

[4] Roland Blach, Jürgen Landauer, Angela Rösch, and Andreas Simon.
A highly flexible virtual reality system. Future Gener. Comput. Syst.,
14(3-4):167–178, 1998.

[5] P. Buttolo, R. Oboe, and B. Hannaford. Architectures for shared haptic
virtual environments. Computers and Graphics, 21:421–429, 1997.

[6] Derek DiFilippo and Dinesh K. Pai. The AHI: an audio and haptic in-
terface for contact interactions. In UIST ’00: Proceedings of the 13th
annual ACM symposium on User interface software and technology,
pages 149–158, New York, NY, USA, 2000. ACM Press.

[7] N. F. Dixon and L. Spitz. The detection of auditory visual desyn-
chrony. Perception, 9, 1980.

[8] Emmanuel Frécon and Mårten Stenius. DIVE: A scaleable network
architecture for distributed virtual environments. Distributed Systems
Engineering Journal, 5(3):91–100, September 1998.

[9] Aaron Garrett. Reduction of latency in virtual environments. Master’s
thesis, Jacksonville State University, 2002.

[10] Aaron Garrett, Mario Aguilar, and Yair Barniv. A recurrent neural net-
work approach to virtual environment latency reduction. In IJCNN’02.
Proceedings of the 2002 International Joint Conference on Neural
Networks, volume 3, pages 2288–2292, 2002.

[11] iFeel. http://www.immersion.com/.
[12] Marco C. Jacobs, Mark A. Livingston, and Andrei State. Managing

latency in complex augmented reality systems. In SI3D ’97: Proceed-
ings of the 1997 symposium on Interactive 3D graphics, pages 49–54,
New York, NY, USA, 1997. ACM Press.

[13] J. Y. Jung, B. D. Adelstein, and S. R. Ellis. Predictive compensator
optimization for head tracking lag in virtual environments. In IMAGE
(Innovative Modeling and Advanced Generation of Environments),
pages 123–132, 2000.

[14] D. J. Levitin, M. V. Mathews, and Karon MacLean. The perception
of cross-modal simultaneity. In International Journal of Computing
Anticipatory Systems, 1999.

[15] Jiandong Liang, Chris Shaw, and Mark Green. On temporal-spatial
realism in the virtual reality environment. In UIST ’91: Proceedings
of the 4th annual ACM symposium on User interface software and
technology, pages 19–25, New York, NY, USA, 1991. ACM Press.

[16] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and
S. Zeswitz. NPSNET: A network software architecture for large-scale
virtual environments. Presence, 3(4):265–287, 1994.

[17] Michael R. Macedonia and Michael J. Zyda. A taxonomy for net-
worked virtual environments. IEEE MultiMedia, 4(1):48–56, – 1997.

[18] Katerina Mania, Bernard D. Adelstein, Stephen R. Ellis, and
Michael I. Hill. Perceptual sensitivity to head tracking latency in
virtual environments with varying degrees of scene complexity. In
APGV ’04: Proceedings of the 1st Symposium on Applied perception
in graphics and visualization, pages 39–47, 2004.

[19] João Luı́s Marins, Xiaoping Yun, Eric R. Bachmann, Robert B.
McGhee, and Michael J. Zyda. An extended kalman filter for
quaternion-based orientation estimation using MARG sensors. In Pro-
ceedings of the 2001 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 2003–2011, 2001.

[20] Martin Mauve. Consistency in replicated continuous interactive me-
dia. In CSCW ’00: Proceedings of the 2000 ACM conference on Com-
puter supported cooperative work, pages 181–190, 2000.

[21] Martin Mauve, Jürgen Vogel, Volker Hilt, and Wolfgang Effelsberg.
Local-lag and timewarp: Providing consistency for replicated contin-
uous applications. 6(1):47–57, February 2004.

[22] Mark R. Mine. Characterization of end-to-end delays in head-
mounted display systems. Technical Report TR93-001, University of
North Carolina at Chapel Hill, 1993.

[23] Nadine E. Miner and Thomas P. Caudell. Computational requirements
and synchronization issues for virtual acoustic displays. Presence,
7(4):396–409, 1998.

[24] Dinesh K. Pai. Multisensory interaction: Real and virtual. In Robotics
Research: The Eleventh International Symposium, volume 15. 2005.

[25] Steve Pettifer, Jon Cook, James Marsh, and Adrian West. DEVA3: ar-
chitecture for a large-scale distributed virtual reality system. In VRST
’00: Proceedings of the ACM symposium on Virtual reality software
and technology, pages 33–40, New York, NY, USA, 2000. ACM Press.

[26] Steve Pettifer and Adrian West. Subjectivity and the relaxing of syn-
chronization in networked virtual environments. In VRST ’99: Pro-
ceedings of the ACM symposium on Virtual reality software and tech-
nology, pages 170–171, New York, NY, USA, 1999. ACM Press.

[27] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler.
Fault-tolerant clock synchronization in distributed systems. IEEE
Computer, 23(10):33–42, 1990.

[28] Matthew J. P. Regan, Gavin S. P. Miller, Steven M. Rubin, and Chris
Kogelnik. A real-time low-latency hardware light-field renderer. In
SIGGRAPH ’99: Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, pages 287–290, 1999.

[29] Xiaojun Shen, Jilin Zhou, Abdulmotaleb El Saddik, and Nicolas D.
Georganas. Architecture and evaluation of tele-haptic environments.
In DS-RT ’04: Proceedings of the Eighth IEEE International Sym-
posium on Distributed Simulation and Real-Time Applications, pages
53–60, 2004.

[30] Shervin Shirmohammadi and Nicolas D. Georganas. An end-to-end
communication architecture for collaborative virtual environments.
Comput. Networks, 35(2-3):351–367, 2001.

[31] Kay M. Stanney, Ronald R. Mourant, and Robert S. Kennedy. Hu-
man factors issues in virtual environments: A review of the literature.
Presence, 7(4):327–351, 1998.

[32] Russell M. Taylor II, Thomas C. Hudson, Adam Seeger, Hans Weber,
Jeffrey Juliano, and Aron T. Helser. VRPN: a device-independent,
network-transparent vr peripheral system. In VRST ’01: Proceedings
of the ACM symposium on Virtual reality software and technology,
pages 55–61, New York, NY, USA, 2001. ACM Press.

[33] Vicon. http://www.vicon.com.
[34] Ingrid M. L. C. Vogels. Detection of temporal delays in visual-haptic

interfaces. Human Factors: The Journal of the Human Factors Soci-
ety, 46(1):118, 2004.

[35] M. Wloka. Lag in multiprocessor virtual reality. Presence, 4(1):50–
63, 1995.

202


